
Journal of applied logics (Print) ISSN 2631-9810
Journal of applied logics (Online) ISSN 2631-9829

Contents
Articles
Introduction to Legal AI
Livio Robaldo and Leendert van der Torre 711
I/O Logic in HOL
Christoph Benzmüller, Ali Farjami, Paul Meder
and Xavier Parent 715
Åqvist’s Dyadic Deontic Logic E in HOL
Christoph Benzmüller, Ali Farjami and Xavier Parent 733
LEGIS: A Proposal to Handle Legal Normative Exceptions
and Leverage Inference Proofs Readability
Cleyton Rodrigues, Eunice Palmeira, Fred Freitas,
Italo Oliveira and Ivan Varzinczak 757
Principles for a Judgement Editor Based on Binary
Decision Diagrams
Guillaume Aucher, Jean Berbinau and Marie-Laura Morin 783
Time and Compensation Mechanisms in Checking
Legal Compliance
Guido Governatori and Antonino Rotolo 817
Rights and Punishment: The Hohfeldian Theory’s
Applicability and Morals in Understanding Criminal Law
Réka Markovich 849
Probabilistic Legal Decision Standards Still Fail
Rafal Urbaniak 867
A Deontic Argumentation Framework Towards
Doctrine Reifi cation
Régis Riveret, Antonino Rotolo and Giovanni Sartor 905
Two Limitations in Legal Knowledge Base Constructing
and Formalizing Law
Réka Markovich 941
Effi cient Full Compliance Checking of Concurrent
Components for Business Process Models
Silvano Colombo Tosatto, Guido Governatori, Nic Van Beest and
Francesco Olivieri 963

Volume 6 Issue 5 August 2019

Journal of
Applied Logics
The IfCoLog Journal of Logics and their Applications

Available online at
www.collegepublications.co.uk/journals/ifcolog/

Free open access

Published by
Sponsored by

V
o
lu

m
e
 6

 Is

s
u
e
 5

 A

u
g
u
s
t 2

0
1
9

Journal of Applied Logics The IfCoLog Journal of Logics and their Applications

Special Issue
Reasoning for Legal AI
Guest Editors
Livio Robaldo
and Leendert van der Torre

Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications

Volume 6, Number 5

August 2019

Disclaimer
Statements of fact and opinion in the articles in Journal of Applied Logics - IfCoLog Journal of
Logics and their Applications (JALs-FLAP) are those of the respective authors and contributors and
not of the JALs-FLAP. Neither College Publications nor the JALs-FLAP make any representation,
express or implied, in respect of the accuracy of the material in this journal and cannot accept any
legal responsibility or liability for any errors or omissions that may be made. The reader should
make his/her own evaluation as to the appropriateness or otherwise of any experimental technique
described.

c© Individual authors and College Publications 2019
All rights reserved.

ISBN 978-1-84890-311-1
ISSN (E) 2631-9829
ISSN (P) 2631-9810

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk

Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
David Fernandez Duque
Jan van Eijck
Marcelo Falappa
Amy Felty
Eduaro Fermé

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Pavlos Peppas
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

iii

iv

Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief change/revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

v

jane.spurr@kcl.ac.uk

vi

Contents

ARTICLES

Introduction to Legal AI . 711
Livio Robaldo and Leendert van der Torre

I/O Logic in HOL . 715
Christoph Benzmüller, Ali Farjami, Paul Meder and Xavier Parent

Åqvist’s Dyadic Deontic Logic E in HOL . 733
Christoph Benzmüller, Ali Farjami and Xavier Parent

LEGIS: A Proposal to Handle Legal Normative Exceptions and
Leverage Inference Proofs Readability . 755
Cleyton Rodrigues, Eunice Palmeira, Fred Freitas, Italo Oliveira and Ivan Varzinczak

Principles for a Judgement Editor Based on Binary Decision Diagrams . . . 781
Guillaume Aucher, Jean Berbinau and Marie-Laure Morin

Time and Compensation Mechanisms in Checking Legal Compliance 815
Guido Governatori and Antonino Rotolo

Rights and Punishment: The Hohfeldian Theory’s Applicability and
Morals in Understanding Criminal Law . 847
Réka Markovich

vii

Probabilistic Legal Decision Standards Still Fail 865
Rafal Urbaniak

A Deontic Argumentation Framework Towards Doctrine Reification 903
Régis Riveret, Antonino Rotolo and Giovanni Sartor

Two Limitations in Legal Knowledge Base Constructing
and Formalizing Law . 941
Réka Markovich

Efficient Full Compliance Checking of Concurrent Components for
Business Process Models . 963
Silvano Colombo Tosatto, Guido Governatori, Nic Van Beest and Francesco Olivieri

viii

Introduction to Legal AI

Livio Robaldo
University of Luxembourg
livio.robaldo@uni.lu

Leendert van der Torre
University of Luxembourg

leon.vandertorre@uni.lu

Legal AI is the research area concerned with the AI-driven processing of norms
occurring in legislation and related documents (jurisprudence, international stan-
dards, doctrine, etc.), in order to achieve compliance of the systems with the regu-
lations in force.

Compliance checking in computer systems is the process of ensuring that the
specification requirements of such systems are in accordance with prescribed and/or
agreed set of norms, a.k.a. compliance requirements. Compliance requirements may
stem from legislation and regulatory bodies (e.g., Sarbanes-Oxley, Basel II, HIPAA),
standards and codes of practice (e.g., SCOR, ISO9000), and business partner con-
tracts.

Two fundamental strategies are identified in the literature to characterize norm
enforcement and the concept of compliance in computer systems.

First, norms may be hard constraints and the system compliance is achieved by
design. This option is usually implemented by adopting the so-called norm regimen-
tation strategy, which can amount to designing the system in such a way as illegal
states are ruled out and made impossible in it, or by imposing that the occurrence
of any illegal states is, in theory, possible but leads to signaling a system failure.

Second, norms are soft constraints and so do not limit in advance the system’s
behavior. Compliance is then ensured by system mechanisms stating that violations
should result in sanctions or other normative effects to recover from violations.
In general, certain situations must be avoided by design, for example any serious
failure affecting the system’s overall functionality: norms can be modeled here as

This special issue is supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 690974 for the project “MIREL:
MIning and REasoning with Legal texts”.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Robaldo and van der Torre

hard constraints. In other cases, where it is of paramount importance to design
flexible and adaptive systems, coordination and social models are used to set up self-
organizing systems: whenever the overall functionality of the system is not directly
in jeopardy, then norms (as soft constraints) can play in this second case a decisive
role to guide and control the desired system behavior.

Legal AI has recently received a lot of investments from industry and institu-
tions, due to the well-known rise of RegTech and FinTech, which is in turn due to
the 2008 global financial crisis. Legal scholars and practitioners are feeling increas-
ingly overwhelmed with the expanding set of legislation and case law available these
days, which is assuming more and more of an international character. Consider,
for example, European legislation, which is estimated to be 170,000 pages long, of
which over 100,000 pages have been produced in the last ten years.

The European Union (EU) chose as one of its primary objectives to establish an
integrated and standardized system of laws that applies in all member states. Fur-
thermore, legislation is available in unstructured formats, which makes it difficult for
users to cut through the information overload. As the law gets more complex, con-
flicting, and ever changing, more advanced methodologies are required for analyzing,
representing and reasoning on legal knowledge.

Two main sequential steps may be identified in Legal AI systems: legal mining
and legal reasoning.

Legal mining is the application of Natural Language Processing (NLP) methods
to the source texts, in order to extract data, classify the documents fit to facilitate
navigation and search.

Legal reasoning is concerned with the development of AI applications able to
infer new knowledge and actions from the data mined via legal mining. In other
words, legal reasoning aims at speed up the work that is currently mostly done
by humans by automatizing repetitive operations, which are rather common in the
legal domain, and performs automatic checks to support and monitor compliance
assessment, risk analyses, etc.

The Horizon 2020 Marie Skłodowska-Curie Research and Innovation Staff Ex-
changes (RISE) project “MIREL - MIning and Reasoning with Legal texts” aims
at bridging legal mining and legal reasoning, whose communities have previously w
orked mostly in isolation.

In the past, research in Legal AI had primarily focused on legal mining, specifi-
cally on the design and implementations of legal document management systems for
helping legal professionals to retrieve the information they are interested in.

Legal document management systems classify, index, and discover inter-links be-
tween legal documents by exploiting Natural Language Processing (NLP) tools such
as parsers and statistical algorithms as well as semantic knowledge bases, such as

712

Introduction to Legal AI

legal ontologies in Web Ontology Language (OWL). This is often done by transform-
ing the source legal documents into XML standards, where relevant information is
tagged. The XML files are then archived and queried in subsequent phases. Al-
though these techniques provide valid solutions to help navigate legislation and re-
trieve information, the overall usefulness and effectiveness of the systems are limited
due to their focus on terminological issues and information retrieval while disregard-
ing the specific semantic aspects of law, in particular its logical structure in terms
of constitutive and regulative rules, which allows legal reasoning.

The major known problem to bridge mining and reasoning is the handling of mul-
tiple legal interpretations of the provisions. Being natural language ambiguous, legal
interpretations are the different context-specific (pragmatic) interpretations of the
terms and sentences occurring in the source texts. What makes legal texts so much
dependent on human interpretation is that they are used in disputes that represent
different interests, so that interpretation of terms tends to be stretched to the max-
imum. Since it is impossible to predict every possible context where the provisions
will be deployed, legislators tend to use vague terms, which are used to account for
the multitude of situations that should be covered by the abstract legislation, which
often depend on the legal cases as they occur (precedent cases), and on the reflec-
tions of legal doctrine. It is eventually up to judges and other appointed authorities
to decide the “final” interpretation of provisions in contexts. However, some con-
texts are clearly borderline, so that it is quite common that different judges adopt
different legal interpretations, incompatible among themselves (sometimes even con-
cerning identical cases). For legal reasoning, handling multiple interpretations, to
be possibly computed via exclusive disjunction, of course introduces another layer
of complexity.

Legal ontologies are the main instrument to bridge mining and reasoning from
legal texts. Legal ontologies provide a comprehensive framework to model main legal
concepts at stake, as they explicitly describe reality. In Artificial Intelligence, the
objective is to provide people, or more typically artificial agents, with structured
and navigable knowledge about classes, individuals, and their inter-relations, thus
allowing them to share and reference knowledge about concepts in general or spe-
cific areas, abstracting from the languages in which these concepts are expressed.
Ontologies are ultimately used in information technology applications for semantic
searches, interoperability between systems, or to facilitate reasoning and problem
solving. In Legal Informatics, ontologies are useful in a range of different scenarios.
They could help legal practitioners and scholars keep up to date with continuous
changes in the law and understand legal sub-languages outside their own areas of
expertise or jurisdiction. They could help legislators draft legislation with clarity
and consistency. Moreover, they could help identify the inter-relationship between

713

Robaldo and van der Torre

general jurisdictions and specific related ones, e.g., between the jurisdiction of the
European Union and the ones of the Member States, in order to foster harmoniza-
tion.

The first two contributions of this special issue on Reasoning for Legal AI are
concerned with computational approaches to deontic logic. Christoph Benzmüller,
Ali Farjami, Paul Meder and Xavier Parent show how to provide a shallow semanti-
cal embedding in higher-order logic of the input/output logics called out2 and out4,
as well as Åqvist’s dyadic deontic logic called E. These embeddings are also encoded
in Isabelle/HOL, which turns the system into a proof assistant for deontic logic rea-
soning. The experiments with this environment illustrate interactive and automated
reasoning at the meta-level and the object-level. Moreover, the first embedding is
applied to an example of moral luck.

The following two contributions describe concrete legal AI systems. Cleyton Ro-
drigues, Eunice Palmeira, Fred Freitas, Italo Oliveira and Ivan Varzinczak present
the prototype LEGIS and discuss a proposal to handle legal normative exceptions
and leverage inference Proofs Readability. The Sequent Calculus is used as a formal
logic argumentation style to achieve a higher level of legibility. Guillaume Aucher,
Jean Berbinau, and Marie-Laure Morin describe a Judgement Editor based on the-
oretical principles for Binary Decision Diagrams (BDDs).

Focusing on the compliance and reification problems, Guido Governatori and
Antonino Rotolo introduce time and compensation mechanisms for checking le-
gal compliance. Silvano Colombo Tosatto, Guido Governatori, Nic Van Beest and
Francesco Olivieri provide efficient full compliance checking of concurrent compo-
nents for business process models, and Régis Riveret, Antonino Rotolo and Giovanni
Sartor provide a deontic argumentation framework towards doctrine reification.

Finally, three contributions focus on challenges in legal reasoning. Rafal Urba-
niak argues that probabilistic legal decision standards still fail, and Réka Markovich
argues that criminal law is not a limitation of the general applicability of the Ho-
hfeldian theory of rights and duties and their correlativity. She presents an analysis
of sanction in terms of rights and duties in order to resolve the seemingly para-
doxical situation of legal systems in which one has the right to escape from prison.
Moreover, in a second paper she discusses two limitations in legal knowledge-base
constructing and formalizing law.

Received August 2019714

I/O Logic in HOL

Christoph Benzmüller
Freie Universität Berlin, Germany, and University of Luxembourg, Luxembourg

c.benzmueller@gmail.com

Ali Farjami
University of Luxembourg, Luxembourg

ali.farjami@uni.lu

Paul Meder
University of Luxembourg, Luxembourg

paul.meder@uni.lu

Xavier Parent
University of Luxembourg, Luxembourg

xavier.parent@uni.lu

Abstract

A shallow semantical embedding of Input/output logic in classical higher-
order logic is presented, and shown to be faithful (sound and complete). This
embedding has been implemented in Isabelle/HOL, a proof assistant tool. It
is applied to a well-known example in moral philosophy, the example of moral
luck.

Keywords: Input/output logic; Classical higher-order logic; Isabelle/HOL;
Moral luck.

This work has been supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 690974 – MIREL – MIning and
REasoning with Legal texts. Benzmüller has been funded by the Volkswagen Foundation under
project CRAP – Consistent Rational Argumentation in Politics.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Benzmüller, Farjami, Meder and Parent

1 Introduction

Deontic logic is concerned with normative concepts like obligation, permission, and
prohibition. On the one hand, we have the family of traditional deontic logics which
includes Standard Deontic Logic (SDL), a modal logic of type KD, and Dyadic
Deontic Logic (DDL) [1, 15, 16]. On the other hand, we have so-called “norm-
based” deontic logics. The deontic operators are evaluated not with reference to a
set of possible worlds but with reference to a set of norms. A particular framework
that falls within this category is called Input/Output (I/O) logic [18]. It has gained
recognition from the AI community, and has a dedicated chapter in the handbook of
deontic logic [15]. The framework is expressive enough to support reasoning about
constitutive, prescriptive and defeasible rules; these notions play an important role
in the legal and ethical domains [13].

Our focus is on two I/O logics called Basic Output and Basic Reusable Output.
We present an embedding of them into classical Higher-Order Logic (HOL), also
known as simple type theory [14, 5], and study their automation. The syntax and
semantics of HOL are well understood [3] and there exist automated proof tools for
it; examples include Isabelle/HOL [21], LEO-II [10] and Leo-III [23]. Our approach
is an indirect one. We take advantage of the known possibility of embedding I/O
logic into modal logic, and we reuse the shallow semantical embedding of modal
systems K and KT in HOL [8]. In related work, Benzmüller et al. [4, 6] developed
analogous shallow semantical embeddings for some well-known dyadic deontic logics.

The embeddings presented in this article are faithful (sound and complete). They
are also encoded in Isabelle/HOL to enable experiments. As an illustration of the
kind of experiments the framework enables, we use a well-known example in moral
philosophy, the example of moral luck [20]. This term refers to situations where an
agent receives moral praise or blame for an action and its consequences even though
he did not have full control over them. In particular, a classical scenario of moral
luck, known as the Drink and Drive example, is used as an illustration.

The article is structured as follows: Section 2 gives a quick review of modal
logic and higher-order logic, and Section 3 introduces I/O logic. The semantical
embeddings of Basic Output and Basic Reusable Output in HOL are then described
in Section 4. This section also shows the faithfulness of the embeddings. In Section 5
we apply the framework to the Drink and Drive example.

2 Preliminaries

In this section, we recap some important notions from modal logic and HOL.

716

I/O Logic in HOL

2.1 Modal logic K
The language ofK is obtained by supplementing the language of Propositional Logic
(PL) with a modal operator 2. It is generated as follows:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|2ϕ

where p denotes an atomic formula. Other logical connectives such as ∧, → and 3,
are defined in the usual way. The axioms of system K consist of those of PL plus
2(ϕ→ ψ)→ (2ϕ→ 2ψ), called axiom K. The rules of K are Modus ponens (from
ϕ and ϕ→ ψ infer ψ) and Necessitation (from ϕ infer 2ϕ).

A Kripke model for K is a triple M = 〈W,R, V 〉, where W is a non-empty set
of possible worlds, R is a binary relation on W , called accessibility relation, and V
is a function assigning a set of worlds to each atomic formula, that is, V (p) ⊆W .

Truth of a formula ϕ in a model M = 〈W,R, V 〉 and a world s ∈ W is written
as M, s |= ϕ. We define V (ϕ) = {s ∈ W |M, s |= ϕ}. The relation |= is defined as
follows:

M, s |= p if and only if s ∈ V (p)
M, s |= ¬ϕ if and only if M, s 6|= ϕ (that is, not M, s |= ϕ)
M, s |= ϕ ∨ ψ if and only if M, s |= ϕ or M, s |= ψ
M, s |= 2ϕ if and only if for every t ∈W such that sRt, M, t |= ϕ

As usual, a modal formula ϕ is true in a Kripke model M = 〈W,R, V 〉, i.e., M |= ϕ,
if and only if for all worlds s ∈ W , we have M, s |= ϕ. A formula ϕ is valid in a
class C of Kripke models, denoted as |=C ϕ, if and only if it is true in every model
in class C.

SystemK is determined by (i.e., is sound and complete with respect to) the class
of all Kripke models. System KT is obtained from system K by adding the schema
T : 2ϕ → ϕ as an axiom. System KT is determined by the class of all Kripke
models in which R is reflexive. We denote the class of all Kripke models and the
class of Kripke models where R is reflexive as CK and CKT , respectively.

Two other axiom schemas that can be added to K are 4 : 2ϕ → 22ϕ and
5 : 3ϕ → 23ϕ. For instance, K45 is an extension of K obtained by adding 4
and 5 as axioms. The schemas 4 and 5 are valid if R is transitive and euclidean,
respectively.

2.2 Classical higher-order logic
HOL is based on simple typed λ-calculus. We assume that the set T of simple types
is freely generated from a set of basic types {o, i} using the function type constructor

717

Benzmüller, Farjami, Meder and Parent

→. Type o denotes the set of Booleans whereas type i refers to a non-empty set of
individuals.

For α, β, o ∈ T , the language of HOL is generated as follows:

s, t ::= pα|Xα|(λXαsβ)α→β|(sα→β tα)β

where pα represents a typed constant symbol (from a possibly infinite set Pα of
such constant symbols) and Xα represents a typed variable symbol (from a possibly
infinite set Vα of such symbols). (λXαsβ)α→β and (sα→β tα)β are called abstraction
and application, respectively. HOL is a logic of terms in the sense that the formulas
of HOL are given as terms of type o. Moreover, we require a sufficient number of
primitive logical connectives in the signature of HOL, i.e., these logical connectives
must be contained in the sets Pα of constant symbols. The primitive logical con-
nectives of choice in this paper are ¬o→o, ∨o→o→o, Π(α→o)→o and =α→α→o. The
symbols Π(α→o)→o and =α→α→o generally assumed for each type α ∈ T . From the
selected set of primitive connectives, other logical connectives can be introduced as
abbreviations. Type information as well as brackets may be omitted if obvious from
the context, and we may also use infix notation to improve readability. For example,
we may write (s∨ t) instead of ((∨o→o→o so) to)o. We often write ∀Xαso as syntactic
sugar for Π(α→o)→o(λXαso).

The notions of free variables, α-conversion, βη-equality and substitution of a
term sα for a variable Xα in a term tβ, denoted as [s/X]t, are defined as usual.

The semantics of HOL are well understood and thoroughly documented [3]. In
the remainder, the semantics of choice is Henkin’s general models [17].

A frame D is a collection {Dα}α∈T of nonempty sets Dα, such that Do = {T, F},
denoting truth and falsehood, respectively. Dα→β represents a collection of functions
mapping Dα into Dβ.

A model for HOL is a tuple M = 〈D, I〉, where D is a frame and I is a family of
typed interpretation functions mapping constant symbols pα to appropriate elements
of Dα, called the denotation of pα. The logical connectives ¬, ∨, Π and = are
always given in their expected standard denotations. A variable assignment g maps
variables Xα to elements in Dα. g[d/W] denotes the assignment that is identical to
g, except for the variable W , which is now mapped to d. The denotation ‖sα‖M,g of
a HOL term sα on a model M = 〈D, I〉 under assignment g is an element d ∈ Dα

defined in the following way:

718

I/O Logic in HOL

‖pα‖M,g = I(pα)
‖Xα‖M,g = g(Xα)

‖(sα→β tα)β‖M,g = ‖sα→β‖M,g(‖tα‖M,g)
‖(λXαsβ)α→β‖M,g = the function f from Dα to Dβ such that

f(d) = ‖sβ‖M,g[d/Xα] for all d ∈ Dα

Since I(¬o→o), I(∨o→o→o), I(Π(α→o)→o) and I(=α→α→o) always denote the stan-
dard truth functions, we have:

1. ‖(¬o→o so)o‖M,g = T iff ‖so‖M,g = F .

2. ‖((∨o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T or ‖to‖M,g = T .

3. ‖(∀Xαso)o‖M,g = ‖(Π(α→o)→o(λXαso))o‖M,g = T iff for all d ∈ Dα we have
‖so‖M,g[d/Xα] = T .

4. ‖((=α→α→o sα) tα)o‖M,g = T iff ‖sα‖M,g = ‖tα‖M,g.

A HOL formula so is true in a Henkin model M under the assignment g if and
only if ‖so‖M,g = T . This is also expressed by the notation M, g |=HOL so. A HOL
formula so is called valid in M , denoted as M |=HOL so, if and only if M, g |=HOL so
for all assignments g. Moreover, a formula so is called valid, denoted as |=HOL so,
if and only if so is valid in all Henkin models M . Finally, we define Σ |=HOL so for
a set of HOL formulas Σ if and only if M |=HOL so for all Henkin models M with
M |=HOL to for all to ∈ Σ.

3 Input/Output Logic
Input/output logic was initially introduced by Makinson and van der Torre [18].
There are various I/O operations. In this paper we focus on two of them, called
“Basic Output” and “Basic Reusable Output”.

3.1 Syntax
G ⊆ L × L is called a normative system, with L representing the set of all the
formulas of propositional logic. A pair (a, x) ∈ G is referred to as a conditional
norm or obligation, where a and x are formulas of propositional logic. The pair
(a, x) is read as “given a, it is obligatory that x”. a is called the body and represents
some situation or condition, whereas x is called the head and represents what is
obligatory or desirable in that situation.

719

Benzmüller, Farjami, Meder and Parent

3.2 Semantics
For a set of formulas A, we define G(A) = {x | (a, x) ∈ G for some a ∈ A} and
Cn(A) = {x | A ` x} with ` denoting the classical consequence relation. A set
of formulas V is maximal consistent if it is consistent, and no proper extension of
V is consistent. A set of formulas V is said to be complete if it is either maximal
consistent or equal to L.

Definition 1 (Basic Output). Given a set of conditional norms G and an input set
A of propositional formulas,

out2(G,A) =
⋂
{Cn(G(V)) | A ⊆ V, V complete}

Definition 2 (Basic Reusable Output). Given a set of conditional norms G and an
input set A of propositional formulas,

out4(G,A) =
⋂
{Cn(G(V)) | A ⊆ V ⊇ G(V), V complete}

Besides those traditional formulations of the operations, the paper [18] docu-
ments modal formulations for out2 and out4.

Theorem 1. x ∈ out2(G,A) if and only if x ∈ Cn(G(L)) and G2 ∪ A `S 2x for
any modal logic S with K0 ⊆ S ⊆ K45.

Theorem 2. x ∈ out4(G,A) if and only if x ∈ Cn(G(L)) and G2 ∪ A `S 2x for
any modal logic S with K0T ⊆ S ⊆ KT45.

K0 is a subsystem of system K with axiom K, modus ponens and the inference
rule “from ψ, infer 2ψ, for all tautologies in propositional logic”. G2 denotes the set
containing all modal formulas of the form b → 2y, such that (b, y) ∈ G. We have
that G2∪A `S 2x if for a finite subset Y of G2∪A, it holds that (∧Y → 2x) ∈ S.
The notation ∧

Y stands for the conjunction of all the elements y1, y2, . . . , yn in Y ,
i.e., y1 ∧ y2 ∧ · · · ∧ yn.

3.3 Proof theory
The proof theory of an I/O logic is specified via a number of derivation rules acting
on pairs (a, x) of formulas. Given a set G of pairs, we write (a, x) ∈ derivi(G) to
say that (a, x) can be derived from G using those rules.

• (SI) Strengthening of the input: from (a, x) and ` b→ a, infer (b, x)

• (WO) Weakening of the output: from (a, x) and ` x→ y, infer (a, y)

720

I/O Logic in HOL

• (AND) Conjunction of the output: from (a, x) and (a, y), infer (a, x ∧ y)

• (OR) Disjunction of the input: from (a, x) and (b, x), infer (a ∨ b, x)

• (CT) Cumulative transitivity: from (a, x) and (a ∧ x, y), infer (a, y)

The Basic Output is syntactically characterized by deriv2(G) that is closed under
rules SI, WO, AND and OR. The Basic Reusable Output is determined by deriv4(G)
that is closed under all of the five rules.

4 Shallow Semantical Embedding

The shallow semantical embedding approach proposed by Benzmüller [2] uses HOL
as a meta-logic in order to represent and model the syntactic and semantical elements
of a specific target logic. This methodology is documented and studied for Kripke
semantics in [8] and for neighborhood semantics in [4]. This section presents shallow
semantical embeddings of the I/O operations out2 and out4 in HOL and provides
proofs for the soundness and completeness of both operations. To realize these
embeddings, we below use the provided modal formulations of the operations; an
alternative approach is studied in [7].

4.1 Semantical embedding of K and KT in HOL

We start by describing the semantical embeddings of K and KT in HOL. This
material is taken from [8, 9].

By introducing a new type i to denote possible worlds, the formulas of K are
identified with certain HOL terms (predicates) of type i → o. The type i → o is
abbreviated as τ in the remainder. This allows us to represent the formulas of K
as functions from possible worlds to truth values in HOL and therefore the truth of
a formula can explicitly be evaluated in a particular world. The HOL signature is
assumed to further contain the constant symbol ri→i→o. Moreover, for each atomic
propositional symbol pj of K, the HOL signature must contain the corresponding
constant symbol pjτ . Without loss of generality, we assume that besides those sym-
bols and the primitive logical connectives of HOL, no other constant symbols are
given in the signature of HOL.

The mapping b·c translates a formula ϕ of K into a term bϕc of HOL of type τ .

721

Benzmüller, Farjami, Meder and Parent

The mapping is defined recursively:

bpjc = pjτ
b¬ϕc = ¬τ→τ bϕc
bϕ ∨ ψc = ∨τ→τ→τ bϕcbψc
b2ϕc = 2τ→τ bϕc

¬τ→τ , ∨τ→τ→τ and 2τ→τ abbreviate the following terms of HOL:

¬τ→τ = λAτλXi¬(AX)
∨τ→τ→τ = λAτλBτλXi(AX ∨BX)
2τ→τ = λAτλXi∀Yi(¬(ri→i→oX Y) ∨AY)

Analyzing the truth of formula ϕ, represented by the HOL term bϕc, in a partic-
ular world w, represented by the term Wi, corresponds to evaluating the application
(bϕcWi). In line with the previous work [9], we define vldτ→o = λAτ∀Si(AS).
With this definition, validity of a formula ϕ in K corresponds to the validity of the
formula (vld bϕc) in HOL, and vice versa.

To prove the soundness and completeness, that is, faithfulness, of the above
embedding, a mapping from Kripke models into Henkin models is employed.

Lemma 1 (Kripke models ⇒ Henkin models). For every Kripke model M =
〈W,R, V 〉 there exists a corresponding Henkin model HM , such that for all formulas
δ of K, all assignments g and worlds s it holds:

M, s |= δ if and only if ‖bδcSi‖H
M ,g[s/Si] = T

Proof. See [8, 9].

Lemma 2 (Henkin models ⇒ Kripke models). For every Henkin model H =
〈{Dα}α∈T , I〉 there exists a corresponding Kripke model MH , such that for all for-
mulas δ of K, all assignments g and worlds s it holds:

‖bδcSi‖H,g[s/Si] = T if and only if MH , s � δ

Proof. See [8, 9].

The following table summarizes the alignment of Kripke models and Henkin
models. For the class of Kripke models 〈W,R, V 〉 that validates some property,
such as reflexivity, the corresponding class of Henkin models needs to validate a
corresponding formula. In system KT, for example, the class of Kripke models
satisfies the property of reflexivity, which corresponds to axiom T. The counterpart

722

I/O Logic in HOL

of this property is represented as REF in HOL: ∀Xi(ri→i→oXiXi), where constant
symbol ri→i→o denotes the accessibility relation.

Kripke model 〈W,R, V 〉 Henkin model 〈D, I〉
Possible worlds s ∈W Set of individuals si ∈ Di

Accessibility relation R Binary predicates ri→i→o

sRu Iri→i→o(si, ui) = T

Propositional letters pj Unary predicates pji→o

Valuation function s ∈ V (pj) Interpretation function Ipji→o(si) = T

These correspondences between Kripke and Henkin models include the assumptions
that have been formulated at the beginning of this section.

Theorem 3 (Faithfulness of the embedding of systemK in HOL for G and A finite).

|=CK ϕ if and only if |=HOL vld bϕc

Proof. See [8, 9].

Theorem 4 (Faithfulness of the embedding of system KT in HOL for G and A
finite).

|=CKT ϕ if and only if {REF} |=HOL vld bϕc

Proof. See [8, 9].

4.2 Semantical embedding of I/O logic in HOL
In order to embed the operations out2 and out4 in HOL, we just use the correspond-
ing modal formulations. We apply Theorem 3 and Theorem 4, respectively, to prove
the faithfulness of the embeddings.

Theorem 5 (Faithfulness of the embedding of out2 in HOL for G and A finite).

ϕ ∈ out2(G,A)

if and only if

|=HOL vldb
∧

(G2 ∪A)→ 2ϕc and |=HOL vldb
∧
G(L)→ ϕc

Proof. We choose S = K in Theorem 1 and then apply Theorem 3.

ϕ ∈ out2(G,A)

723

Benzmüller, Farjami, Meder and Parent

if and only if
G2 ∪A `K 2ϕ and ϕ ∈ Cn(G(L))

if and only if
|=CK

∧
(G2 ∪A)→ 2ϕ and

∧
G(L) ` ϕ

if and only if
|=CK

∧
(G2 ∪A)→ 2ϕ and |=CK

∧
G(L)→ ϕ

if and only if

|=HOL vld b
∧

(G2 ∪A)→ 2ϕc and |=HOL vldb
∧
G(L)→ ϕc

Theorem 6 (Faithfulness of the embedding of out4 in HOL for G and A finite).

ϕ ∈ out4(G,A)

if and only if

{REF} |=HOL vld b
∧

(G2 ∪A)→ 2ϕc and {REF} |=HOL vld b
∧
G(L)→ ϕc

Proof. We choose S = KT in Theorem 2 and then apply Theorem 4.

ϕ ∈ out4(G,A)

if and only if
G2 ∪A `KT 2ϕ and ϕ ∈ Cn(G(L))

if and only if
|=CKT

∧
(G2 ∪A)→ 2ϕ and

∧
G(L) ` ϕ

if and only if

|=CKT

∧
(G2 ∪A)→ 2ϕ and |=CKT

∧
G(L)→ ϕ

if and only if

{REF} |=HOL vld b
∧

(G2 ∪A)→ 2ϕc and {REF} |=HOL vld b
∧
G(L)→ ϕc

724

I/O Logic in HOL

Figure 1: Semantical embedding of out2 in Isabelle/HOL

4.3 Implementation of I/O logic in Isabelle/HOL
The semantical embeddings of the operations out2 and out4 in HOL as devised in
the previous section have been implemented in the higher-order proof assistant tool
Isabelle/HOL [21], see Fig. 1. We declare the type i to denote possible worlds and
introduce the relevant connectives in lines 6–12.

Let the set of conditional norms G be composed of the elements (a, e) and (b, e),
where a, b and e are propositional symbols, and let the input set A correspond to the
singleton set containing a∨ b. By the rule of disjunction (OR), we should have that
e ∈ out2(G,A). According to the provided translation, e ∈ out2(G,A) if and only if
G2 ∪ A `K 2e and e ∈ Cn(G(L)). Theorem 5 provides us now with higher-order
formulations for both of these statements, i.e., |=HOL vld b∧(G2 ∪ A) → 2ec and
|=HOL vldb∧G(L) → ec, respectively. Regarding the implementation, the proposi-
tional symbols a, b and e have to be declared as constants of type τ . The frame-
work’s integrated automatic theorem provers (ATPs), called via the Sledgehammer
tool [12], are able to prove both statements. This is shown in Fig. 1, lines 22–23
and 26.

725

Benzmüller, Farjami, Meder and Parent

Figure 2: Failure of CT for out2

Consider the set of conditional norms G = {(a, b), (a ∧ b, e)} with the input set
A = {a}. The rule of cumulative transitivity (CT) is not satisfied by the opera-
tion out2. This can also be verified with our implementation. The model finder
Nitpick [11] is able to generate a countermodel for the statement G2 ∪ A `K 2e
and therefore we were able to show that e /∈ out2(G,A). In particular, Nitpick
came up with a model M consisting of two possible worlds i1 and i2. We have that
V (a) = {i2}, V (b) = {i1} and V (e) = ∅. And R = {(i1, i1), (i2, i1)}. The formula
((a → 2b) ∧ ((a ∧ b) → 2e) ∧ a) → 2e is not valid in this model. The formulation
of the example and the generation of the countermodel is illustrated in Fig. 2.

The embedding of the operation out4 refers to system KT which means that
the corresponding class of Kripke models satisfies the property of reflexivity. In
our implementation, the accessibility relation for this system is denoted by the con-
stant r_t which we declare as reflexive. Due to this property, the Sledgehammer
tool is able to prove the statement G2 ∪ A `KT 2e and thus we can verify that
e ∈ out4(G,A). Fig. 3 shows the encoding of the operation out4 in Isabelle/HOL
and the verification of the CT example.

726

I/O Logic in HOL

Figure 3: Semantical embedding of out4 in Isabelle/HOL

5 Application: Moral Luck
The literature on moral luck [20] is addressing the question whether luck can ever
make a moral difference or not. Examples involving moral luck are typical scenarios
in which an agent is held accountable for his actions and its consequences even
though it is clear that the agent was neither in full control of his actions nor its
consequences. These examples are thus in conflict with the ethical principle that
agents are not morally responsible for actions that they are unable to control.

The Drink and Drive [19] example highlights a classical scenario of moral luck.
There exist many different variations of this example and a possible variant can be
formulated as follows:

Assume a situation where two persons, Ali and Paul, go out for a drink in
the evening. Both of them go to the same bar, consume the same amount of
alcoholic drinks and end up pretty drunk. At one point during the night, they
both decide to leave the place. So they go to their own individual vehicles and
hit the road in order to drive home. The roads are pretty deserted at that

727

Benzmüller, Farjami, Meder and Parent

time and Ali manages to drive home safely even with the high percentage of
alcohol in his blood. Paul, in contrast, is facing something unexpected. Out
of nowhere, a child appears in front of his car. Since he had a few drinks too
much, his reaction time is impaired by the alcohol and it makes it impossible
for him to stop and swerve to avoid hitting and killing the child.

Both Ali and Paul, made the blameworthy decision of driving while being drunk.
But neither one of them had the intention to hit and kill anyone. Nevertheless, most
people would tend to judge Paul more guilty than Ali simply because in his case a
child got killed. However, both of them violated the same obligation, namely that
one should not drive while being intoxicated and it was only a matter of luck that
nobody got harmed or killed in the case of Ali. Therefore we say that Ali got morally
lucky.

To formulate the Drink and Drive example in Isabelle/HOL, we first import the
Isabelle/HOL file containing the implementation of the operation out2. This can be
done using the Isabelle/HOL command imports (cf. Fig. 4, line 1). Next, we have
to declare three individuals, namely Ali and Paul, representing the two drivers, and
Child, representing the child in the scenario (cf. Fig. 4, line 3). In lines 4–5, we
define the constant symbols for the relevant propositions (state of affairs or action).

One associates with each driver a set of Norms and an Input. For the individual
Paul, the set of Norms G is defined as follows: (cf. Fig. 4, lines 9–11)

• (>,¬Kill Child ∧ ¬HurtChild)
This norm states that it is forbidden to kill or even hurt the child.

• (>, Drive_carefully Paul)
This norm states that Paul is obligated to drive carefully in any situation.

• (¬Drive_carefully Paul, StayPaul)
This norm states that if Paul does not drive carefully, he should stay (at his
current location).

To complete the formalization for the individual Paul, we need to add the fol-
lowing facts to the Input set A: (cf. Fig. 4, lines 13–17)

• Drunk Paul; DrivePaul; JumpChild
Paul is actually drunk; Paul drives home; The child jumps.

• Drunk Paul→ ¬Drive_carefully Paul
If Paul is drunk then he drives not carefully.

728

I/O Logic in HOL

• (¬Drive_carefullyPaul ∧DrivePaul ∧ JumpChild)
→ (KillChild ∨HurtChild)
If Paul drives, but does not do it carefully, and the child jumps in front of his
car then Paul will kill or hurt the child.

Figure 4: Drink and Drive scenario for Paul in Isabelle/HOL

Since Nitpick finds a model satisfying our statements, the formalization of the
Drink and Drive is consistent; cf. Fig. 4, line 20.

Actually, we are able to derive the obligation that Paul should stay (at his
current position) by using the norm A2 and the facts A3 and A6, meaning that
we can derive G2 ∪ A `K 2Stay_Paul and Stay_Paul ∈ Cn(G(L)). The first
statement is proven by Sledgehammer tool; cf. Fig. 4, line 22. In this exam-
ple, we skip checking the following (trivial) statements X ∈ Cn(G(L)) for X ∈
{Stay_Paul,Drive_carefully_Paul,¬KillChild∧¬HurtChild} in Isabelle/HOL.

Furthermore, our implementation is capable of recognizing violations to norms,
formally written as α ∈ out2(G,A) and ¬α ∈ Cn(A). In particular, Paul violated
the norms A0 and A1. For instance, the violation to A1 is proven by Sledgehammer;

729

Benzmüller, Farjami, Meder and Parent

cf. Fig. 4, lines 24–25. Paul did not drive carefully even though there is an obliga-
tion to do so, meaning that we have G2 ∪ A `K 2Drive_carefully_Paul (using
A1), Drive_carefully_Paul ∈ Cn(G(L)) and ¬Drive_carefully_Paul ∈ Cn(A)
(using A3 and A6).

Figure 5: Drink and Drive scenario for Ali in Isabelle/HOL

For the individual Ali, the set of Norms remains the same except that we adapted
the name of the individual accordingly. However, in Ali’s case, the child was not
involved. Therefore, the Input set only consists of our facts: A3, A4, A6 and A7
(cf. Fig. 5, lines 13–16).

The formalization of Ali’s scenario is consistent, again proven by Nitpick (cf.
Figure 5, line 19). In contrast to Paul, Ali did not violated the norm A0 as Nitpick
find a counter model for the corresponding statement (cf. Fig. 5, lines 27–28).

6 Conclusion
We have presented an embedding of two I/O operations in HOL and we have shown
that each embedding is faithful, i.e., sound and complete. The work presented

730

I/O Logic in HOL

here continues a project started in Benzmüller et al. [4], and aiming at providing
the theoretical foundation for the implementation and automation of deontic logic
within existing theorem provers and proof assistants for HOL. Future research should
investigate whether the provided implementation already supports non-trivial ap-
plications in practical normative reasoning such as legal reasoning or multi-agent
systems, or whether further improvements are required. We could also employ our
implementation to systematically study some meta-logical properties of I/O logic
within Isabelle/HOL. Moreover, we could analogously implement intuitionistic I/O
logic [22].

Acknowledgements

We thank an anonymous reviewer for valuable comments.

References
[1] Åqvist, L.: Deontic logic. In: Gabbay, D., and Guenthner, F., (eds.) Handbook of

Philosophical Logic, pp. 147–264. Springer, Dordrecht (2002)
[2] Benzmüller, C.: Universal (meta-)logical reasoning: Recent successes. Science of

Computer Programming, 172, 48–62 (2019)
[3] Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality.

Journal of Symbolic Logic, 69(4), 1027–1088 (2004)
[4] Benzmüller, C., Farjami, A., Parent, X.: A dyadic deontic logic in HOL. In: Broersen,

J., Condoravdi, C., Nair, S., Pigozzi, G. (eds.) Deontic Logic and Normative Systems
— 14th International Conference, DEON 2018, Utrecht, The Netherlands, 3-6 July,
2018, pp. 33–50, College Publications, UK (2018)

[5] Benzmüller, C., Andrews, P.B.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer
2019 Edition (2019)

[6] Benzmüller, C., Farjami, A., Parent, X.: Åqvist’s dyadic deontic logic E in HOL.
Journal of Applied Logics – IfCoLoG Journal of Logics and their Applications, this
issue (2019)

[7] Benzmüller, C., Parent, X.: I/O logic in HOL – First steps. arXiv preprint,
arXiv:1803.09681 [cs.AI] (2018)

[8] Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory.
The Logic Journal of the IGPL, 18(6), 881–892 (2010)

[9] Benzmüller, C., Paulson, L. C.: Quantified multimodal logics in simple type theory.
Logica Universalis (Special Issue on Multimodal Logics), 7(1), 7–20 (2013)

[10] Benzmüller, C., Sultana, N., Paulson, L. C., Theiß, F.: The higher-order prover LEO-II.
Journal of Automated Reasoning, 55(4), 389–404 (2015)

731

Benzmüller, Farjami, Meder and Parent

[11] Blanchette, J. C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L. C. (eds.)
International Conference on Interactive Theorem Proving 2010, LNCS, vol. 6172 pp.
131–146, Springer (2010)

[12] Blanchette, J. C., Paulson, L. C.: Hammering away – A user’s guide to Sledgehammer
for Isabelle/HOL (2017)

[13] Boella, G., van der Torre, L.: Regulative and constitutive norms in normative mul-
tiagent systems. In: Dubois, D., Welty, C., Williams, M. (eds.) Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Ninth International Conference
(KR2004), Whistler, Canada, June 2-5, 2004, pp. 255–266, AAAI Press, USA (2004)

[14] Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2), 56–68 (1940)

[15] Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook of
Deontic Logic and Normative Systems. Volume 1. College Publications, UK (2013)

[16] Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook
of Deontic Logic and Normative Systems. Volume 2. College Publications, UK. (To
appear)

[17] Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic, 5(2),
81–91 (1950)

[18] Makinson, D., van der Torre, L.: Input/output logics. Journal of Philosophical Logic,
29(4), 383–408 (2000)

[19] Nagel, T.: Moral luck. Chapter in Mortal Questions, Cambridge University Press, New
York (1979)

[20] Nelkin, K.: Moral luck. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University (2013)

[21] Nipkow, T., Paulson, L. C., Wenzel., M.: Isabelle/HOL — A proof assistant for higher-
order logic, volume 2283 of Lecture Notes in Computer Science. Springer (2002)

[22] Parent, X.: A modal translation of an intuitionistic I/O operation. Presented at the
7th Workshop on Intuitionistic Modal Logic and Applications (IMLA 2017), organized
by V. de Paiva and S. Artemov at the University of Toulouse (France), 17-28 July,
(2017)

[23] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz,
S., Sebastiani, R. (eds.) Automated Reasoning. IJCAR 2018, LNCS, vol. 10900, pp.
108-116, Springer (2018)

Received 29 November 2018732

Åqvist’s Dyadic Deontic Logic E in HOL

Christoph Benzmüller
Freie Universität Berlin, Germany, and University of Luxembourg, Luxembourg

c.benzmueller@gmail.com

Ali Farjami
University of Luxembourg, Luxembourg

ali.farjami@uni.lu

Xavier Parent
University of Luxembourg, Luxembourg

xavier.parent@uni.lu

Abstract

We devise a shallow semantical embedding of Åqvist’s dyadic deontic logic E
in classical higher-order logic. This embedding is shown to be faithful, viz.
sound and complete. This embedding is also encoded in Isabelle/HOL, which
turns this system into a proof assistant for deontic logic reasoning. The exper-
iments with this environment provide evidence that this logic implementation
fruitfully enables interactive and automated reasoning at the meta-level and the
object-level.

Keywords: Dyadic deontic logic; Preference semantics; Classical higher-
order logic; Semantical embedding; Automated reasoning.

1 Introduction
Normative notions such as obligation and permission are the subject of deontic
logic [23] and conditional obligations are addressed in so-called dyadic deontic logic.

This work has been supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 690974 - MIREL - MIning and
REasoning with Legal texts. Benzmüller has been funded by the Volkswagen Foundation under
project CRAP — Consistent Rational Argumentation in Politics.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Benzmüller, Farjami and Parent

A landmark and historically important family of dyadic deontic logics has been pro-
posed by B. Hansson [25]. These logics have been recast in the framework of possible
world semantics by Åqvist [2]. They come with a preference semantics, in which a
binary preference relation ranks the possible words in terms of betterness. The
framework was motivated by the well-known paradoxes of contrary-to-duty (CTD)
reasoning like Chisholm [19]’s paradox. In this paper, we focus on the class of all
preference models, in which no specific properties (like reflexivity or transitivity)
are required of the betterness relation. This class of models has a known axiomatic
characterization, given by Åqvist’s system E [30].

When applied as a meta-logical tool, simple type theory [20], aka classical Higher-
Order Logic (HOL), can help to better understand semantical issues of embedded
object logics. The syntax and semantics of HOL are well understood [10] and there
exist automated proof tools for it; examples include Isabelle/HOL [28], LEO-II [15]
and Leo-III [31].

In this paper we devise an embedding of E in HOL. This embedding utilizes the
shallow semantical embedding approach that has been put forward by Benzmüller [7,
9] as a pragmatical solution towards universal logic reasoning. This approach uses
HOL as (universal) meta-logic to specify, in a shallow way, the syntax and semantics
of various object logics, in our case system E. The embedding has been encoded in
Isabelle/HOL to enable syntactical and semantical experiments in deontic reasoning.

Benzmüller et al. [12] developed an analogous shallow semantical embedding
for the dyadic deontic logic proposed by Carmo and Jones [18]. A core difference
concerns the notion of semantics employed in both papers, which leads to different
semantical embeddings. Instead of the semantics based on preference models as
employed by Hansson [25] and Åqvist [2], a neighborhood semantics is employed by
Carmo and Jones [18]. Moreover, this method has been applied to some more recent
deontic frameworks like so-called I/O logic [13].

Deep semantical embeddings of non-classical logics have been studied in the
related literature [22, 21]. The emphasis in these works typically is on interactive
proofs of meta-logical properties. While meta-logical studies [11, 24] are also in
reach for the methods presented here, our interest is in proof automation at object
level, i.e., proof automation of Åqvist’s system E. In other words, we are interested
in practical normative reasoning applications of system E in which a high degree
of automation at object level is required. Moreover, we are interested not only
in the “propositional” system E, but also in quantified extensions of it. For this,
we plan to accordingly adapt the achievements of previous works [14, 5]. Making
deep semantical embeddings scale for quantified non-classical logics, on the contrary,
seems more challenging and less promising regarding proof automation.

The article is structured as follows. Section 2 describes system E and Section 3

734

Åqvist’s Dyadic Deontic Logic E in HOL

introduces HOL. The semantical embedding of E in HOL is then devised and studied
in Section 4. This section also shows the faithfulness (viz. soundness and complete-
ness) of the embedding. Section 5 discusses the implementation in Isabelle/HOL
[28]. Section 6 concludes the paper.

2 Dyadic Deontic Logic E
The language of E is obtained by adding the following operators to the language of
propositional logic: 2 (for necessity); 3 (for possibility); and ©(−/−) (for condi-
tional obligation) ; P (−/−) (for conditional permission). ©(ψ/ϕ) is read “If ϕ, then
ψ is obligatory”, and P (ψ/ϕ) is read “If ϕ, then ψ is permitted’. The set of well-
formed formulas (wffs) is defined in the straightforward way. Iteration of the modal
and deontic operators is permitted, and so are “mixed” formulas, e.g., ©(q/p) ∧ p.
We put > =df ¬q∨ q, for some atomic wff q, and ⊥ =df ¬>. 3 is the dual of 2, viz.
3ϕ =df ¬2¬ϕ. P is also the dual of ©, viz. P (ψ/ϕ) =df ¬© (¬ψ/ϕ).

We recall the main difference between the Kripke relational semantics for so-
called Standard Deontic Logic (SDL) [23] and the semantics for E. The first one
uses a binary classification of worlds into good/bad (or green/red). The second one
allows for gradations between these two extremes. The closer a world is to ideality,
the better it is.

A preference model is a structure M = 〈W,�, V 〉 where:

• W is a non-empty set of possible worlds (W is called “universe”);

• � ⊆ W ×W (intuitively, � is a betterness or comparative goodness relation;
“s � t” can be read as “world s is at least as good as world t”);

• V is a function assigning to each atomic wff a set of worlds, i.e., V (p) ⊆ W
(intuitively, V (p) is the set of worlds at which p is true).

No specific properties (like reflexivity or transitivity) are required of the betterness
relation.

Given a preference model M = 〈W,�, V 〉 and a world s ∈ W , we define the
satisfaction relationM, s � ϕ (read as “world s satisfies ϕ in modelM”) by induction
on the structure of ϕ as described below. Intuitively, the evaluation rule for the
dyadic obligation operator puts ©(ψ/ϕ) true whenever all the best ϕ-worlds are ψ-
worlds. Here best is defined in terms of optimality rather than maximality [30]. A
ϕ-world is optimal if it is at least as good as any other ϕ-world. We define VM (ϕ) =
{s ∈ W | M, s |= ϕ} and opt�(VM (ϕ)) = {s ∈ VM (ϕ) | ∀t(t � ϕ → s � t)}.

735

Benzmüller, Farjami and Parent

Whenever the model M is obvious from context, we write V (ϕ) instead of VM (ϕ).

M, s |= p if and only if s ∈ V (p)
M, s |= ¬ϕ if and only ifM, s 6|= ϕ (that is, not M, s |= ϕ)
M, s |= ϕ ∨ ψ if and only ifM, s |= ϕ or M, s |= ψ

M, s |= 2ϕ if and only if V (ϕ) = W

M, s |= © (ψ/ϕ) if and only if opt�(V (ϕ)) ⊆ V (ψ)

As usual, a formula ϕ is valid in a preference model M = 〈W,�, V 〉 (notation:
M |= ϕ) if and only if, for all worlds s ∈ W , M, s |= ϕ. A formula ϕ is valid
(notation: |= ϕ) if and only if it is valid in every preference model. The notions of
semantic consequence and satisfiability in a model are defined as usual.

System E is defined by the following axioms and rules:

Axiom schemata for propositional logic (PL)
S5-schemata for 2 and 3 (S5)
© (ψ1 → ψ2/ϕ)→ (©(ψ1/ϕ)→©(ψ2/ϕ)) (COK)
© (ψ/ϕ)→ 2© (ψ/ϕ) (Abs)
2ψ →©(ψ/ϕ) (Nec)
2(ϕ1 ↔ ϕ2)→ (©(ψ/ϕ1)↔©(ψ/ϕ2)) (Ext)
© (ϕ/ϕ) (Id)
© (ψ/ϕ1 ∧ ϕ2)→©(ϕ2 → ψ/ϕ1) (Sh)
If ` ϕ and ` ϕ→ ψ then ` ψ (MP)
If ` ϕ then ` 2ϕ (N)

The notions of theoremhood, deducibility and consistency are defined as usual.
The following theorem tells us that system E is the weakest system that char-

acterizes preference models. It also tells us that the assumptions of reflexivity and
totalness of � do not modify the logic, in the sense that they do not add new
validities (or theorems).

Theorem 1. System E is sound and complete with respect to the class of all prefer-
ence models. System E is also sound and complete with respect to the class of those
in which � is reflexive, and with respect to the class of those in which � is total (for
all s, t ∈W , s � t or t � s).

Proof. See Parent [30].

736

Åqvist’s Dyadic Deontic Logic E in HOL

E is first in a family of three systems. Consider the condition of limitedness. Its
role is to rule out infinite chains of strictly better worlds. Formally: if V (ϕ) 6= ∅,
then opt�(V (ϕ)) 6= ∅. Such a condition boosts the logic to system F, obtained by
supplementing E with D∗:

3ϕ→ (©(ψ/ϕ)→ P (ψ/ϕ)) (D∗)

Similarly, the additional assumption of transitivity of � boosts the logic to system
G, obtained by supplementing F with Sp:

(P (ψ/ϕ) ∧©((ψ → χ)/ϕ)→©(χ/(ϕ ∧ ψ)) (Sp)

None of F and G will concern us in this paper.

3 Classical Higher-Order Logic
In this section we introduce classical higher-order logic (HOL). The presentation,
which has been adapted from [6], is rather detailed in order to keep the article
sufficiently self-contained.

3.1 Syntax of HOL
To define the syntax of HOL, we first introduce the set T of simple types. We
assume that T is freely generated from a set of basic types BT ⊇ {o, i} using the
function type constructor �. Type o denotes the (bivalent) set of Booleans, and i a
non-empty set of individuals.

For the definition of HOL, we start out with a family of denumerable sets of typed
constant symbols (Cα)α∈T , called the HOL signature, and a family of denumerable
sets of typed variable symbols (Vα)α∈T .1 We employ Church-style typing, where
each term tα explicitly encodes its type information in subscript α.

The language of HOL is given as the smallest set of terms obeying the following
conditions.

• Every typed constant symbol cα ∈ Cα is a HOL term of type α.

• Every typed variable symbol Xα ∈ Vα is a HOL term of type α.

• If sα�β and tα are HOL terms of types α � β and α, respectively, then
(sα�β tα)β, called application, is an HOL term of type β.

1For example in Section 4 we assume constant symbol r, with type i � i � o as part of the
signature.

737

Benzmüller, Farjami and Parent

• If Xα ∈ Vα is a typed variable symbol and sβ is an HOL term of type β, then
(λXαsβ)α�β, called abstraction, is an HOL term of type α � β.

The above definition encompasses the simply typed λ-calculus. In order to
extend this base framework into logic HOL we simply ensure that the signature
(Cα)α∈T provides a sufficient selection of primitive logical connectives. Without
loss of generality, we here assume the following primitive logical connectives to be
part of the signature: ¬o�o ∈ Co�o, ∨o�o�o ∈ Co�o�o, Π(α�o)�o ∈ C(α�o)�o and
=α�α�α∈ Cα�α�α, abbreviated as =α. The symbols Π(α�o)�o and =α�α�α are
generally assumed for each type α ∈ T . The denotation of the primitive logical con-
nectives is fixed below according to their intended meaning. Binder notation ∀Xα so
is used as an abbreviation for (Π(α�o)�o(λXαso)). Universal quantification in HOL
is thus modeled with the help of the logical constants Π(α�o)�o to be used in combi-
nation with lambda-abstraction. That is, the only binding mechanism provided in
HOL is lambda-abstraction.

HOL is a logic of terms in the sense that the formulas of HOL are given as the
terms of type o. In addition to the primitive logical connectives selected above,
we could assume choice operators ε(α�o)�α ∈ C(α�o)�α (for each type α) in the
signature. We are not pursuing this here.

Type information, as well as brackets, may be omitted if obvious from the con-
text, and we may also use infix notation to improve readability. For example, we
may write (s ∨ t) instead of ((∨o�o�oso)to).

From the selected set of primitive connectives, other logical connectives can be
introduced as abbreviations.2 For example, we may define s ∧ t := ¬(¬s ∨ ¬t),
s → t := ¬s ∨ t, s ←→ t := (s → t) ∧ (t → s) , > := (λXiX) = (λXiX), ⊥ := ¬>
and ∃Xαs := ¬∀Xα¬s.

Each occurrence of a variable in a term is either bound by a λ or free. We use
free(s) to denote the set of variables with a free occurrence in s. We consider two
terms to be equal if the terms are the same up to the names of bound variables, that
is, we consider α-conversion implicitly.

Substitution of a term sα for a variable Xα in a term tβ is denoted by [s/X]t.
Since we consider α-conversion implicitly, we assume the bound variables of t to
avoid variable capture.

Well-known operations and relations on HOL terms include βη-normalization
and βη-equality, denoted by s =βη t, β-reduction and η-reduction. A β-redex (λXs)t
β-reduces to [t/X]s. An η-redex λX(sX), where X 6∈ free(s), η-reduces to s. We

2As demonstrated by Andrews [8], we could, in fact, start out with only primitive equality in
the signature (for all types α) and introduce all other logical connectives as abbreviations based on
it.

738

Åqvist’s Dyadic Deontic Logic E in HOL

write s =β t to mean s can be converted to t by a series of β-reductions and
expansions. Similarly, s =βη t means s can be converted to t using both β and η.

3.2 Semantics of HOL
The semantics of HOL is well understood and thoroughly documented. The intro-
duction provided next focuses on the aspects as needed for this article. For more
details we refer to the literature [10].

The semantics of choice for the remainder is Henkin semantics, i.e., we work with
Henkin’s general models [26]. Henkin models and standard models are introduced
next. We start out with introducing frame structures.

A frame D is a collection {Dα}α∈T of nonempty sets Dα, such that Do = {T, F}
(for truth and falsehood). The Dα→β are collections of functions mapping Dα into
Dβ.

A model for HOL is a tuple M = 〈D, I〉, where D is a frame, and I is a family
of typed interpretation functions mapping constant symbols pα ∈ Cα to appropriate
elements of Dα, called the denotation of pα. The logical connectives ¬, ∨, Π and =
are always given their expected, standard denotations:3

• I(¬o→o) = not ∈ Do→o such that not(T) = F and not(F) = T .

• I(∨o→o→o) = or ∈ Do→o→o such that or(a, b) = T iff (a = T or b = T).

• I(=α→α→o) = id ∈ Dα→α→o such that for all a, b ∈ Dα, id(a, b) = T iff a is
identical to b.

• I(Π(α→o)→o) = all ∈ D(α→o)→o such that for all s ∈ Dα→o, all(s) = T iff
s(a) = T for all a ∈ Dα; i.e., s is the set of all objects of type α.

Variable assignments are a technical aid for the subsequent definition of an inter-
pretation function ‖.‖M,g for HOL terms. This interpretation function is parametric
over a model M and a variable assignment g.

A variable assignment g maps variables Xα to elements in Dα. g[d/W] denotes
the assignment that is identical to g, except for variable W , which is now mapped
to d.

The denotation ‖sα‖M,g of an HOL term sα on a model M = 〈D, I〉 under
assignment g is an element d ∈ Dα defined in the following way:

3Since =α→α→o (for all types α) is in the signature, it is ensured that the domains Dα→α→o
contain the respective identity relations. This addresses an issue discovered by Andrews [1]: if such
identity relations did not exist in the Dα→α→o, then Leibniz equality in Henkin semantics might
not denote as intended.

739

Benzmüller, Farjami and Parent

‖pα‖M,g = I(pα)
‖Xα‖M,g = g(Xα)

‖(sα→β tα)β‖M,g = ‖sα→β‖M,g(‖tα‖M,g)
‖(λXαsβ)α→β‖M,g = the function f from Dα to Dβ such that

f(d) = ‖sβ‖M,g[d/Xα] for all d ∈ Dα

A model M = 〈D, I〉 is called a standard model if and only if for all α, β ∈
T we have Dα→β = {f | f : Dα −→ Dβ}. In a Henkin model (general model)
function spaces are not necessarily full. Instead it is only required that for all
α, β ∈ T , Dα→β ⊆ {f | f : Dα −→ Dβ}. However, it is required that the valuation
function ‖ · ‖M,g from above is total, so that every term denotes. Note that this
requirement, which is called Denotatpflicht, ensures that the function domainsDα→β
never become too sparse, that is, the denotations of the lambda-abstractions as
devised above are always contained in them.

Corollary 1. For any Henkin model M = 〈D, I〉 and variable assignment g:

1. ‖(¬o→o so)o‖M,g = T iff ‖so‖M,g = F .

2. ‖((∨o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T or ‖to‖M,g = T .

3. ‖((∧o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T and ‖to‖M,g = T .

4. ‖((→o→o→o so) to)o‖M,g = T iff (if ‖so‖M,g = T then ‖to‖M,g = T).

5. ‖((←→o→o→o so) to)o‖M,g = T iff (‖so‖M,g = T iff ‖to‖M,g = T).

6. ‖>‖M,g = T .

7. ‖⊥‖M,g = F .

8. ‖(∀Xαso)o‖M,g = T iff for all d ∈ Dα we have ‖so‖M,g[d/Xα] = T .

9. ‖(∃Xαso)o‖M,g = T iff there exists d ∈ Dα such that ‖so‖M,g[d/Xα] = T .

Proof. The proof is straightforward, for instance we prove the first one.
‖(¬o→o so)o‖M,g = T iff ‖¬o→o‖M,g(‖so‖M,g) = T iff not(‖so‖M,g) = T
iff ‖so‖M,g = F .

An HOL formula so is true in a Henkin model M under assignment g if and
only if ‖so‖M,g = T ; this is also expressed by writing that M, g |=HOL so. An HOL
formula so is called valid in M , which is expressed by writing that M |=HOL so, if

740

Åqvist’s Dyadic Deontic Logic E in HOL

and only if M, g |=HOL so for all assignments g. Moreover, a formula so is called
valid, expressed by writing that |=HOL so, if and only if so is valid in all Henkin
models M .

4 Embedding E into HOL
4.1 Semantical embedding
The formulas of E are identified in our semantical embedding with certain HOL
terms (predicates) of type i � o. They can be applied to terms of type i, which
are assumed to denote possible worlds. That is, the HOL type i is now identified
with a (non-empty) set of worlds. Type i � o is abbreviated as τ in the remain-
der. The HOL signature is assumed to contain the constant symbol ri�τ . Moreover,
for each atomic propositional symbol pj of E, the HOL signature must contain the
corresponding constant symbol pjτ . Without loss of generality, we assume that be-
sides those symbols and the primitive logical connectives of HOL, no other constant
symbols are given in the signature of HOL.

The mapping b·c translates a formula ϕ of E into a term bϕc of HOL of type τ .
The mapping is defined recursively:

bpjc = pjτ
b¬ϕc = ¬τ�τ bϕc
bϕ ∨ ψc = ∨τ�τ�τ bϕcbψc
b2ϕc = 2τ�τ bϕc
b©(ψ/ϕ)c = ©τ�τ�τ bϕcbψc

¬τ�τ , ∨τ�τ�τ , 2τ�τ and ©τ�τ�τ abbreviate the following terms of HOL:

¬τ�τ = λAτλXi¬(AX)
∨τ�τ�τ = λAτλBτλXi(AX ∨BX)
2τ�τ = λAτλXi∀Yi(AY)
©τ�τ�τ = λAτλBτλXi∀Wi((λVi(AV ∧ (∀Yi(AY → ri�τV Y))))W → BW)4

Analyzing the truth of formula ϕ, represented by the HOL term bϕc, in a partic-
ular world w, represented by the term Wi, corresponds to evaluating the application
(bϕcWi). In line with previous work [14], we define vldτ�o = λAτ∀Si(AS). With
this definition, validity of a formula ϕ in E corresponds to the validity of the formula
(vld bϕc) in HOL, and vice versa.

4If opt�(A) is taken as a abbreviation for λVi(AV ∧ (∀Yi(AY → ri�τV Y))), then this can be
simplified to ©τ�τ�τ = λAτλBτλXi(opt�(A) ⊆ B).

741

Benzmüller, Farjami and Parent

4.2 Soundness and completeness
To prove the soundness and completeness, that is, faithfulness, of the above embed-
ding, a mapping from preference models into Henkin models is employed.

Definition 1 (Preference model⇒ Henkin model). Let M = 〈W,�, V 〉 be a prefer-
ence model. Let p1, ..., pm for m ≥ 1 be atomic propositional symbols and bpjc = pjτ
for j = 1, ...,m. A Henkin model HM = 〈{Dα}α∈T , I〉 for M is defined as follows:
Di is chosen as the set of possible worlds W and all other sets Dα�β are chosen as
(not necessarily full) sets of functions from Dα to Dβ. For all Dα�β the rule that
every term tα�β must have a denotation in Dα�β must be obeyed, in particular, it
is required that Dτ and Di�τ contain the elements Ipjτ and Iri�τ . Interpretation I
is constructed as follows:

1. For 1 ≤ i ≤ m, Ipjτ ∈ Dτ is chosen such that Ipjτ (s) = T iff s ∈ V (pj) in M .

2. Iri�τ ∈ Di�τ is chosen such that Iri�τ (s, u) = T iff s � u in M .

Since we assume that there are no other symbols (besides the r, the pj and the prim-
itive logical connectives) in the signature of HOL, I is a total function. Moreover,
the above construction guarantees that HM is a Henkin model: 〈D, I〉 is a frame,
and the choice of I in combination with the Denotatpflicht ensures that for arbitrary
assignments g, ‖.‖HM ,g is a total evaluation function.

Lemma 1. Let HM be a Henkin model for a preference model M . For all formulas
δ of E, all assignments g and worlds s it holds:

M, s |= δ if and only if ‖bδcSi‖H
M ,g[s/Si] = T

Proof. See appendix.

Lemma 2 (Henkin model ⇒ Preference model). For every Henkin model H =
〈{Dα}α∈T , I〉 there exists a corresponding preference model M . Corresponding here
means that for all formulas δ of E and for all assignments g and worlds s,

‖bδcSi‖H,g[s/Si] = T if and only if M, s � δ

Proof. Suppose that H = 〈{Dα}α∈T , I〉 is a Henkin model. Without loss of gener-
ality, we can assume that the domains of H are denumerable [26]. We construct the
corresponding preference model M as follows:

• W = Di.

• s � u for s, u ∈W iff Iri�τ (s, u) = T .

742

Åqvist’s Dyadic Deontic Logic E in HOL

• s ∈ V (pjτ) iff Ipjτ (s) = T for all pj .

Moreover, the above construction ensures that H is a Henkin model for M . Hence,
Lemma 1 applies. This ensures that for all formulas δ of E, for all assignments g
and all worlds s we have ‖bδcSi‖H,g[s/Si] = T if and only if M, s � δ.

Theorem 2 (Soundness and completeness of the embedding).

|= ϕ if and only if |=HOL vld bϕc

Proof. (Soundness, ←) The proof is by contraposition. Assume 6|= ϕ, i.e, there
is a preference model M = 〈W,�, V 〉, and a world s ∈ W , such that M, s 6|= ϕ.
By Lemma 1 for an arbitrary assignment g it holds that ‖bϕcSi‖HM ,g[s/Si] = F
in Henkin model HM = 〈{Dα}α∈T , I〉. Thus, by definition of ‖.‖, it holds that
‖∀Si(bϕcSi)‖HM ,g = ‖vld bϕc‖HM ,g = F . Hence, HM 6|=HOL vld bϕc. By definition
6|=HOL vld bϕc.

(Completeness,→) The proof is again by contraposition. Assume 6|=HOL vld bϕc,
i.e., there is a Henkin model H = 〈{Dα}α∈T , I〉 and an assignment g such that
‖vld bϕc‖H,g = F . By Lemma 2, there is a preference model M such that M 2 ϕ.
Hence, 6|= ϕ.

Remark: In contrast to a deep logical embedding, in which the syntactical struc-
ture and the semantics of logic L would be formalized in full detail (using e.g., struc-
tural induction and recursion), only the core differences in the semantics of both
system E and meta-logic HOL have been explicitly encoded in our shallow seman-
tical embedding. In a certain sense we have thus shown, that system E can, in fact,
be identified and handled as a natural fragment of HOL.

5 Implementation in Isabelle/HOL
5.1 Implementation
The semantical embedding as devised in Section 4 has been implemented in the
higher-order proof assistant Isabelle/HOL [28]. Figure 1 displays the respective
encoding. Some explanations are in order:
• On line 3, the type i for possible words is introduced
• On line 4, the type τ for formulas is introduced
• On line 5, a designated constant for the actual world (aw) is introduced
• On line 6, the constant r is introduced. r encodes the preference relation �
• Lines 8–14 define the Boolean connectives in the usual way

743

Benzmüller, Farjami and Parent

Figure 1: Shallow semantical embedding of system E in Isabelle/HOL

• Lines 16 and 17 introduce the alethic operators 2 and 3

• The dyadic deontic operators are handled in lines 19–26. Lines 19–20 define
the notion of optimal ϕ-world, and lines 23–26 define the dyadic operators
using this notion.

• Lines 28–31 introduce the notion of global validity (i.e, truth in all worlds)
and local validity (truth at the actual world).

A sample query is run on line 33. The model finder Nitpick [16] confirms the
consistency of the definitions.

In the remainder of this section, we illustrate how the implementation in Is-
abelle/HOL can be used.

744

Åqvist’s Dyadic Deontic Logic E in HOL

5.2 CTD scenarios
In this section we apply the framework to one of the benchmark problems of deon-
tic logic, the problem of CTD reasoning. We give two examples of CTD scenarios
discussed in the deontic logic literature: Chisholm’s scenario [19]; Reykjavic’s sce-
nario [4].

Chisholm’s scenario. The scenario involves the following four sentences:
1. It ought to be that a certain man goes (to the assistance of his neighbours);
2. It ought to be that if he goes he tells them he is coming;
3. If he does not go, he ought not to tell them he is coming;
4. He does not go.

We briefly recall the problem raised by CTDs in SDL. (For more on CTDs the reader
may wish to consult [27].) When representing a conditional obligation sentence
©(ψ/ϕ) in SDL, one separates the contribution of if ... then and that of ought.
The ought operator can then take either wide scope (“It ought to be the case that,
if ϕ, then ψ”) or narrow scope (“If ϕ, then it ought to be the case that ψ”). There
are thus different possible formalisations of the scenario depending on the choice
being made. It turns out that none rendering is satisfactory. The formalisation of
these sentences is either inconsistent or the sentences are logically dependent. The
Chisholm set is therefore called a paradox.

System E is known to provide a solution to Chisholm’s paradox: the formalisa-
tion of 1–4 is consistent, and each sentence remains logically independent one from
the others. These two facts are confirmed by our implementation. This is docu-
mented further by Figure 2. On line 1, the theory embedding E in Isabelle/HOL (as
described in Figure 1) is loaded. On lines 11–14, the Chisholm scenario is encoded.
On line 17, a consistency check query is run. Nitpick confirms consistency of 1–4,
and outputs the Henkin model described in Figure 3. One can easily read off the
preference model this Henkin model encodes. We have
• W = {i1, i2, i3, i4}
• � = {(i3, i1), (i3, i2)}
• V (go) = ∅ and V (tell) = {i4}.

On the one hand, i4 |= ¬go. On the other hand, each obligation in Chisholm’s set
(ax1, ax2 and ax3) is vacuously true, because the set of best antecedent-worlds is
empty:

opt�(V (>)) = opt�(V (¬go)) = opt�(V (go)) = ∅
The above model does the job, but it is not a very interesting one. One can

enforce some aspects of the outputted model, by putting a number of suitable con-
straints on this one, like those shown on lines 19 and 20. First, all the possible

745

Benzmüller, Farjami and Parent

Figure 2: Chisholm’s paradox in Isabelle/HOL

Figure 3: Henkin model for the Chisholm scenario

truth assignments for the relevant propositional letters must be considered (line 19).
Second, the condition of limitedness (which boots us to system F) must be verified
(line 20). The combination of these two constraints has the effect of preventing the
obligations ax1, ax2 and ax3 from being vacuously true.

746

Åqvist’s Dyadic Deontic Logic E in HOL

Lines 25 to 28 in Figure 2 confirm that the representation of the scenario in E
meets the requirement of independence. This is confirmed by showing that no sen-
tence follows logically for the other three.

Reykjavic’s scenario. It consists of the following five sentences:
1. You should not tell the secret to Reagan;
2. You should not tell the secret to Gorbachev;
3. You should tell Reagan if you tell Gorbachev;
4. You should tell Gorbachev if you tell Reagan;
5. You tell the secret to Gorbachev.

Figure 4: The Reykjavic scenario in system E

On line 14 in Figure 4 Nitpick confirms that the set of formulas ax1–ax5 (=the
representation of 1–5 in E) is consistent.

5.3 Automatic verification of validities
Automatic verification of valid formulas is also possible. In Figure 5 Isabelle/HOL
confirms the validity of each and every axiom and primitive rule of E by using the
Sledgehammer tool [17] that gives access to automatic theorem provers (ATPs).
Figure 6 gives the example of four “reduction” laws identified by Belanyek et al. [3].
They use these reduction laws to establish a more general result concerning iterated
modalities in G, to the effect that any formula containing nested modal operators
is equivalent to some formula with no nesting. The reduction laws are:

©(ϕ|(π ∨ (χ∧©(γ|η))))↔ ((©(γ|η)∧©(ϕ|(π ∨χ)))∨ (¬© (γ|η)∧©(ϕ|π)))
©(ϕ|(π∨(χ∧¬©(γ|η))))↔ ((¬©(γ|η)∧©(ϕ|(π∨χ)))∨(©(γ|η)∧©(ϕ|π)))
©(π ∨ (χ ∧©(γ|η))|ψ)↔ ((©(γ|η) ∧©(π ∨ χ|ψ)) ∨ (¬© (γ|η) ∧©(π|ψ)))
©(π ∨ (χ∧¬© (γ|η))|ψ)↔ ((¬© (γ|η)∧©(π ∨ χ|ψ))∨ (©(γ|η)∧©(π|ψ)))

747

Benzmüller, Farjami and Parent

Figure 5: Verifying the validity of the axioms and rules of system E

On lines 3-13 in Figure 6 , Isabelle/HOL confirms that the proofs of these equiva-
lences carry over from G to E. However, the more general result concerning iterated

Figure 6: Reduction laws in system E

748

Åqvist’s Dyadic Deontic Logic E in HOL

modalities does not. To establish that one, the authors appeal to the fact that in G,
2 is definable in terms of ©(−/−): 2ϕ ↔ ©(⊥/¬ϕ). Nitpick confirms that this
equivalence is falsifiable in the class of all preference models (line 15).

5.4 Correspondence theory

The aim of correspondence theory is to establish connections between properties of
Kripke frames and the formulas in modal logic that are true in all Kripke frames
with these properties. Figure 7 shows some first experimentations in correspondence
theory. Lines 8–9 tell us that limitedness is equivalent with (and thus corresponds
to) D∗. Lines 11–13 tell us that limitedness and transitivity are conjointly enough
to get both D∗ and Sp. However, on lines 15–16, Isabelle/HOL fails to show that
they are necessary conditions too. The problem is with the proof of the property of
transitivity (lines 23–24). The good news is: we do not get a counter-model to the
implication (calls for countermodel search with nitpick are not displayed here).

Figure 7: Experiments in correspondence theory

749

Benzmüller, Farjami and Parent

6 Conclusion
A shallow semantical embedding of Åqvist’s dyadic deontic logicE in classical higher-
order logic has been presented and shown to be faithful (sound and complete). The
work presented here and in Benzmüller et al. [12] provides the theoretical founda-
tion for the implementation and automation of dyadic deontic logic within existing
theorem provers and proof assistants for HOL. We do not define new logics. Instead,
we provide an empirical infrastructure for assessing practical aspects of ambitious,
state-of-the-art deontic logics; this has not been done before.

We end this paper by listing a number of topics for future research. First, it
would be worthwhile to study the shallow semantical embedding of the stronger
systems F and G in HOL. Second, it would be interesting to look at the three sys-
tems from the point of view of a semantics defining best in terms of maximality
rather than optimality [29, 30]. Third, we could employ our implementation to sys-
tematically inspect and verify some meta-logical properties of these systems within
Isabelle/HOL. Fourth, it would be interesting to study the quantified extensions
of these systems. Previous work has focused on monadic modal logic and condi-
tional logic [5, 6, 14]. Last, but not least, experiments could investigate whether
the provided implementation already supports non-trivial applications in practical
normative reasoning, or whether further improvements are required.

Acknowledgements

We thank an anonymous reviewer for valuable comments.

References
[1] Andrews, P.B.: General models and extensionality. Journal of Symbolic Logic 37(2),

395–397 (1972)
[2] Åqvist, L.: Deontic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosoph-

ical Logic, pp. 147–264, Springer, Dordrecht (2002)
[3] Belanyek, A., Grossi, D., van der Hoek, W.: A note on nesting in dyadic deontic logic.

arXiv preprint, arXiv:1710.03481 (2017)
[4] Belzer., M.: A logic of deliberation. In: Kehler, T. (ed.) Proceedings of the Fifth National

Conference on Artificial Intelligence, pp. 38–43 (1986)
[5] Benzmüller, C.: Automating quantified conditional logics in HOL. In: Rossi, F. (ed.)

23rd International Joint Conference on Artificial Intelligence, IJCAI-13, Beijing, China,
pp. 746–753, AAAI Press (2013)

[6] Benzmüller, C.: Cut-elimination for quantified conditional logic. Journal of Philosophical
Logic, 46(3), 333–353 (2017)

750

Åqvist’s Dyadic Deontic Logic E in HOL

[7] Benzmüller, C.: Universal (meta-)logical reasoning: Recent successes. Science of Com-
puter Programming, 172, 48–62 (2019)

[8] Benzmüller, C., Andrews, P.B.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer
2019 Edition (2019)

[9] Benzmüller, C.: Universal (meta-)logical reasoning: The Wise Men Puzzle (Is-
abelle/HOL dataset). Data in Brief, 24, no. 103774 (2019)

[10] Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality.
Journal of Symbolic Logic, 69(4), 1027–1088 (2004)

[11] Benzmüller, C., Claus, M., Sultana, N.: Systematic verification of the modal logic cube
in Isabelle/HOL. In: Kaliszyk, C., Paskevich, A. (eds.) Workshop on Proof Exchange
for Theorem Proving, PxTP 2015, Berlin, Germany, EPTCS, vol. 186, pp. 24–41 (2015)

[12] Benzmüller, C., Farjami, A., Parent., X.: A dyadic deontic logic in HOL. In: Broersen,
J., Condoravdi, C., Nair, S., Pigozzi, G. (eds.) Deontic Logic and Normative Systems —
14th International Conference, DEON 2018, Utrecht, The Netherlands, 3-6 July, 2018,
pp. 33–50, College Publications, UK (2018)

[13] Benzmüller, C., Farjami, A., Meder, P., Parent., X.: I/O logic in HOL. Journal of
Applied Logics – IfCoLoG Journal of Logics and their Applications, this issue (2019).

[14] Benzmüller, C., Paulson, L. C.: Quantified multimodal logics in simple type theory.
Logica Universalis (Special Issue on Multimodal Logics), 7(1), 7–20 (2013)

[15] Benzmüller, C., Sultana, N., Paulson, L. C., Theiß, F.: The higher-order prover LEO-II.
Journal of Automated Reasoning, 55(4), 389–404 (2015)

[16] Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L. C. (eds.)
International Conference on Interactive Theorem Proving 2010, LNCS, vol. 6172, pp.
131–146, Springer (2010)

[17] Blanchette, J. C., Paulson, L. C.: Hammering away - A user’s guide to Sledgehammer
for Isabelle/HOL (2017)

[18] Carmo, J., Jones, A.: Completeness and decidability results for a logic of contrary-to-
duty conditionals. Journal of Logic and Computation 23(3), 585–626 (2013)

[19] Chisholm, R. M.: Contrary-to-duty imperatives and deontic logic. Analysis, 24(2),
33–36 (1963)

[20] Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2), 56–68 (1940)

[21] Doczkal, C., Bard, J.: Completeness and decidability of converse PDL in the construc-
tive type theory of Coq. In: Andronick, J., Felty, A. P. (eds.) International Conference
on Certified Programs and Proofs, CPP 2018, Los Angeles, USA, Proceedings of the 7th
ACM SIGPLAN, pp. 42–52, ACM, New York, USA (2018)

[22] Doczkal, C., Smolka., G.: Completeness and decidability results for CTL in constructive
type theory. Journal of Automated Reasoning, 56(32), 343–365 (2016)

[23] Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook of

751

Benzmüller, Farjami and Parent

Deontic Logic and Normative Systems. Volume 1. College Publications, UK (2013)
[24] Kirchner, D., Benzmüller, C., Zalta, E.: Mechanizing principia logico-metaphysica in

functional type theory. CoRR https://arxiv.org/abs/1711.06542 (2017)
[25] Hansson, B.: An analysis of some deontic logics. Noûs, 373–398 (1969)
[26] Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic, 5(2),

81–91 (1950)
[27] Hilpinen, R., McNamara, P.: Deontic logic. In [23, pp. 3–136]
[28] Nipkow, T., Paulson, L. C., Wenzel., M.: Isabelle/HOL — A proof assistant for higher-

order logic. volume 2283 of Lecture Notes in Computer Science, Springer (2002)
[29] Parent, X.: Maximality vs optimality in dyadic deontic logic - Completeness results for

systems in Hansson’s tradition. Journal of Philosophical Logic, 43(6), 1101–1128 (2014)
[30] Parent, X.: Completeness of Åqvist’s systems E and F. The Review of Symbolic Logic,

8(1), 164–177 (2015)
[31] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz,

S., Sebastiani, R. (eds.) Automated Reasoning. IJCAR 2018, LNCS, vol. 10900, pp.
108-116, Springer (2018)

Appendix
Proof of Lemma 1
In the proof we implicitly employ curring and uncurring, and we associate sets with
their characteristic functions. Throughout the proof whenever possible we omit types
in order to avoid making the notation too cumbersome. The proof of Lemma 1 is
by induction on the structure of δ. We start with the case where δ is pj . We have

‖bpjcS‖HM ,g[s/Si] = T

⇔ ‖pjτS‖H
M ,g[s/Si] = T

⇔ Ipjτ (s) = T
⇔ s ∈ V (pj) (by definition of HM)
⇔ M, s � pj

In the inductive cases we make use of the following induction hypothesis: For
sentences δ′ structurally smaller than δ we have: For all assignments g and states
s, ‖bδ′cS‖HM ,g[s/Si] = T if and only if M, s � δ′.

We consider each inductive case in turn:
(a) δ = ϕ ∨ ψ. In this case:
‖bϕ ∨ ψcS‖HM ,g[s/Si] = T

⇔ ‖(bϕc ∨τ�τ�τ bψc)S‖HM ,g[s/Si] = T

⇔ ‖(bϕcS) ∨ (bψcS)‖HM ,g[s/Si] = T ((bϕc ∨τ�τ�τ bψc)S =βη (bϕcS) ∨ (bψcS))

752

Åqvist’s Dyadic Deontic Logic E in HOL

⇔ ‖bϕcS‖HM ,g[s/Si] = T or ‖bψcS‖HM ,g[s/Si] = T
⇔ M, s � ϕ or M, s � ψ (by induction hypothesis)
⇔ M, s � ϕ ∨ ψ

(b) δ = ¬ϕ. In this case:
‖b¬ϕcS‖HM ,g[s/Si] = T

⇔ ‖(¬τ�τbϕc)S‖HM ,g[s/Si] = T

⇔ ‖¬(bϕc)S)‖HM ,g[s/Si] = T ((¬τ�τbϕc)S =βη ¬(bϕcS))
⇔ ‖bϕcS‖HM ,g[s/Si] = F
⇔ M, s 2 ϕ (by induction hypothesis)
⇔ M, s � ¬ϕ

(c) δ = 2ϕ. We have the following chain of equivalences:

‖b2ϕcS‖HM ,g[s/Si] = T

⇔ ‖(λX∀Y (bϕcY))S‖HM ,g[s/Si] = T

⇔ ‖∀Y (bϕcY)‖HM ,g[s/Si] = T

⇔ For all a ∈ Di we have ‖bϕcY ‖HM ,g[s/Si][a/Yi] = T

⇔ For all a ∈ Di we have ‖bϕcY ‖HM ,g[a/Yi] = T (S /∈ free(bϕc) = ∅)
⇔ For all a ∈ Di we have M,a |= ϕ (by induction hypothesis)
⇔ M, s |= 2ϕ

(d) δ =©(ψ/ϕ). We have the following chain of equivalences:
‖b©(ψ/ϕ)cS‖HM ,g[s/Si] = T

⇔ ‖(λX∀W ((λV (bϕcV ∧ (∀Y (bϕcY → r V Y))))W → bψcW))S‖HM ,g[s/Si] = T

⇔ ‖∀W ((λV (bϕcV ∧ (∀Y (bϕcY → r V Y))))W → bψcW)‖HM ,g[s/Si] = T
⇔ For all u ∈ Di we have:
‖(λV (bϕcV ∧ (∀Y (bϕcY → r V Y))))W → bψcW‖HM ,g[s/Si][u/Wi] = T

⇔ For all u ∈ Di we have:
If ‖(λV (bϕcV ∧ (∀Y (bϕcY → r V Y))))W‖HM ,g[s/Si][u/Wi] = T ,
then ‖bψcW‖HM ,g[s/Si][u/Wi] = T

⇔ For all u ∈ Di we have:
If ‖bϕcW‖HM ,g[s/Si][u/Wi] = T and
‖∀Y (bϕcY → rW Y)‖HM ,g[s/Si][u/Wi] = T ,
then ‖bψcV ‖HM ,g[s/Si][u/Wi] = T

⇔ For all u ∈ Di we have:
If ‖bϕcW‖HM ,g[s/Si][u/Wi] = T and
for all t ∈ Di we have ‖bϕcY → rW Y ‖HM ,g[s/Si][u/Wi][t/Yi] = T ,

753

Benzmüller, Farjami and Parent

then ‖bψcW‖HM ,g[s/Si][u/Wi] = T
⇔ For all u ∈ Di we have:

If ‖bϕcW‖HM ,g[s/Si][u/Wi] = T and
for all t ∈ Di we have ‖bϕcY ‖HM ,g[s/Si][u/Wi][t/Yi] = T implies Iri�τ (u, t) = T ,
then ‖bψcW‖HM ,g[s/Si][u/Wi] = T

⇔ For all u ∈ Di we have:
If u ∈ V (ϕ) and
for all t ∈ Di we have t ∈ V (ϕ) implies u � t,
then u ∈ V (ψ) (see the justification *)

⇔ opt�(V (ϕ)) ⊆ V (ψ)
⇔ M, s |=©(ψ/ϕ)

Justification *: What we need to show is: ‖bϕc‖HM ,g[s/Si] is identified with
V (ϕ) (analogously ψ). By induction hypothesis, for all assignments g and states s,
we have ‖bϕcS‖HM ,g[s/Si] = T if and only if M, s � ϕ. Expanding the details of this
equivalence we have: for all assignments g and states s

s ∈ ‖bϕc‖HM ,g[s/Si] (functions to type o are associated with sets)

⇔ ‖bϕc‖HM ,g[s/Si](s) = T

⇔ ‖bϕc‖HM ,g[s/Si]‖S‖HM ,g[s/Si] = T

⇔ ‖bϕcS‖HM ,g[s/Si] = T

⇔M, s � ϕ
⇔ s ∈ V (ϕ)

Hence, s ∈ ‖bϕc‖HM ,g[s/Si] if and only if s ∈ V (ϕ).
By extensionality we thus know that ‖bϕc‖HM ,g[s/Si] is identified with V (ϕ). More-
over, since HM obeys the Denotatpflicht we know that V (ϕ) ∈ Dτ .

Received 29 November 2018754

LEGIS: A Proposal to Handle Legal Normative
Exceptions and Leverage Inference Proofs Readability

CleytonMário de Oliveira Rodrigues
University of Pernambuco, Garanhuns–PE, Brazil

Center of Informatics, Federal University of Pernambuco, Recife–PE, Brazil
cleyton.rodrigues@upe.br

Eunice Palmeira
Federal Institute of Alagoas (IFAL), Maceió–AL, Brazil

eunicepalmeira@ifal.edu.br

Fred Freitas
Center of Informatics, Federal University of Pernambuco, Recife–PE, Brazil

fred@cin.ufpe.br

Italo Oliveira
Faculty of Law, Federal University of Pernambuco, Recife–PE, Brazil

italojsoliveira1@gmail.com

Ivan Varzinczak
Centre de Recherche en Informatique de Lens, Université d’Artois, Lens, France

varzinczak@cril.fr

Abstract

Although the representation of normative texts and simulation of legal acts are
commonly interdisciplinary themes in the field of Artificial Intelligence and Law (AI
& Law), some questions remain open or are yet explored. Among them, we can men-
tion the formalization of the legal body in the face of explicit or implicit exceptions
in the juridical reasoning, and the treatment of readability issues, in exposing or jus-
tifying decision-making. In this paper, we present the prototype LEGIS and discuss
about a proposal to simulate legal action on two fronts. We adopt a non-monotonic
semantics for knowledge representation that is appropriate to the singularities of the
legal realm, the Preferential Semantics, and propose a transformation to a formal logic
argumentation style, the Sequent Calculus, in order to raise the inference proofs to a
level of legibility not yet conveniently attained by conventional reasoners.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Rodrigues et al.

1 Introduction

The interdisciplinary field of AI & Law has witnessed the construction of conceptual on-
tologies capable of mapping the complexity of the legal domain, and of simulating legal
actions based on normative texts. Despite intense research in recent years, some subareas
still require further investigation. Two not fully resolved issues in this universe are the in-
ability to produce a coherent system w.r.t. the judicial reality (for example, able to handle
exceptions between written rules), and the technical language used by the formalisms of
knowledge representation, which undermines the understanding of those who would use
the system in practice.

Figure 1 pictures a peculiar situation where a juridical normative knowledge-based sys-
tem would be quite applicable. An agent A deliberately kills an agent B; without further
information, the situation normally leads to a simple homicide classification with basic
prison sentences. Additional circumstances, such as behavior driven either by frivolous1 or
moral reasons, would increase or decrease the calculus of the punishment, respectively. In
addition, more exclusive circumstances, such as those related to sex-based hate, may lead
to specific homicide extensions (in this case, a Femicide), overriding previous generic in-
ferences. In this perspective, we argue that a system capable of reasoning over the legal
corpus covering possible exceptions, as well as being able to respond (in a controlled nat-
ural language) about crimes, penalties, and conflicts between norms, is unprecedented and
necessary. Although in different proportions, such a practical system would be fruitful for
different users, ranging from ordinary laymen, passing law students to lawyers and judges.

Figure 1: An arbitrary homicide situation

This paper, therefore, proposes the development of a prototype, known as LEGIS (the
acronym for LEgal analysIS), addressing the aforementioned issues. We focus on norma-
tive legal knowledge, that is, that derived from written legal rules and from legal principles;
the ontological basis of LEGIS represents a portion of the Brazilian Penal code. In this
context, the exceptions dealt with are those that occur between crimes surrounded by spe-
cific circumstances (e.g., an infanticide) in relation to more “normal” crimes (e.g., a typical

1In Figure 1, the murder was motivated by a silly discussion among the agents, that is, a shallow reason.

756

LEGIS: A Proposal to Handle Legal Normative Exception

homicide). Besides, the second problem addressed consists of clarifying the users about rea-
soning and decision-making. For that purpose, LEGIS is soon encompassing an approach
that transforms connection-based proofs over the Semantic Web language OWL [1] into
sequent calculus’ proofs. Such proofs are already quite close to natural language, and an
additional translation to text will certainly serve users, e.g., to justify their arguments better
while relying on LEGIS.

The paper is organized as follows. Section 2 presents the architecture proposal for
LEGIS. Section 3 highlights how exceptions can arise in legal texts. Section 4 shows the
syntax, semantics, and reasoning tasks for the Classical and Preferential Description Logic.
An axiomatization of the Penal Code based on these logics are discussed in Section 5. In
Section 6, we briefly introduce the Connection Calculus proof search, and how to transform
connection proofs into more intelligible Sequent Proofs. Finally, conclusions about LEGIS
and the ongoing works are discussed in Section 7.

2 LEGIS Proposal

LEGIS is a collaborative effort aimed at reasoning on legal norms. In this perspective, the
project unfolds in some dimensions, such as: classical vs. defeasible knowledge bases;
monotonic vs. non-monotonic approaches to reasoning; practical implementations with
parsimonious use of resources (time, memory, ...); and a justification module for inference
proofs. A holistic view of LEGIS extensions is highlighted in Figure 2.

Figure 2: The Holistic View of LEGIS Prototype

Roughly, the idea of LEGIS can be broken down into three levels: one for the rep-
resentation of knowledge of the legal realm, another for the reasoning strategies, and a
third module to provide explanations of the inference proofs closer to natural language. In

757

Rodrigues et al.

Figure 2, the knowledge base should be used by the reasoning module, which provides a
customized entry for the transformation process embedded within the justification module.

In particular, in order to attain the previous issues, this work has a two-fold purpose.
The first concerns the use of a non-monotonic logical semantics capable of representing
and reasoning with exceptions, common in legal texts (labeled in Figure 2 with the identi-
fier [1]). The ontological basis of LEGIS is formed by so-called classical ontologies, i.e.
those which reason according to the principles of classical logic, as well as by defeasible
ontologies, which allow provisional inferences to be removed as possibly contradictory in-
formation is added. These ontologies conceptualize norms of the Brazilian legal system,
and the exceptions dealt here involve those that happen between a more general norm and
a more specific one. Norms, in turn, are specialized into written rules and general princi-
ples. Another goal is the use of a formal logic argumentation in order to make the inference
proofs more intelligible to the end user (labeled in Figure 2 with the identifier [2]). This
purpose lies in the efficiency vs. readability trade-off regarding the inference engines. So
far, LEGIS’ reasoning tasks include lawsuit simulation, classification of criminal behavior,
and penalty calculus. LEGIS’ architecture is illustrated in Figure 3.

Figure 3: LEGIS Architecture

Through a Graphical User Interface (GUI), an user poses an arbitrary situation. By
means of specific reasoners, consistent OWL ontologies will serve as a basis for classifying
input instances, even using defeasible axioms. In case of using an inference engine based
on the connection calculus (such as RACCOON, an OWL reasoner based on a Descrip-
tion Logic connection calculus, developed under our group [2]), it is possible to transform
connection proofs into Sequent proofs (rooted in Sequent Calculus [3]), returning the sim-
ulation result and a more readable proof of the inferences made. In the following sections
we detail how LEGIS addresses these specific issues.

758

LEGIS: A Proposal to Handle Legal Normative Exception

3 Exceptions in Legal Regulations

Mapping legal normative knowledge into a mathematical formalism free of ambiguities
demands time and effort. Some inherent peculiarities of the domain make it especially
challenging. Potential sources of anomalies are, for example, the volume of data, the het-
erogeneity of legal sources, and the legal jargon itself, which uses syntactic inversions,
referential ambiguities, and vague terms (open-textured concepts) [4]. In addition, legal
systems often present singularities from their political, social and cultural contexts, which
makes hard to find a general formalism suited to all of them.

On one hand, it is unfeasible to draw up a normative document capable of anticipating
all possible and relevant circumstances. This is why in some cases there are general legal
principles that may override the rules, in order to avoid injustices or unwanted conclusion
from the literal and direct application of rules. On the other hand, exceptions can be explic-
itly added throughout the text to accommodate potential specificities of a more general case.
In addition to the legal domain peculiarities aforementioned, which may lead to exceptions,
Atienza and Manero (2012) [5] argue that the very interplay among laws with legal princi-
ples, and apparent conflicts between rules can lead to exceptions and even lack of consensus
among lawyers themselves, creating defeasible scenarios of regulation.

In order to illustrate such situation, we exemplify a scenario where an agent’s conduct
matches the typification of crimes against property, as well as the Trifling principle which
removes any criminal liability if the subtracted good is of irrelevant value. The crimes
against property correspond to the protected legal interest in the crimes set out in Articles
155-180 of the Brazilian Penal Code2. The Trifling principle is entirely related to the glob-
ally accepted principle known as De Minimis Non Curat Lex [6], in which a behavior with
extremely low transgression of the law is not classified as illegal. We transcribe the related
legislation below, followed by two didactic examples.

• In Portuguese:

– Furto: Subtrair, para si ou para outrem, coisa alheia móvel. (Art. 155).

• In English:

– Theft: To take a chattel3, for himself or others. (Art. 155).

Example 3.1. Will is in a restaurant, and momentarily leaves his wallet on the table to go
to the bathroom. John, as he walks past Will’s desk, grabs his wallet and leaves.

2http://www.planalto.gov.br/ccivil_03/decreto-lei/Del2848compilado.htm
3An item of personal property that is movable.

759

Rodrigues et al.

Example 3.2. John is a family man who is unemployed. John often asks for money from
passersby near a bakery. Taking advantage of the distraction of an attendant in this bakery,
and very hungry, John steals two loaves that were on a nearby counter.

The behavior in Example 3.1 matches a typical theft crime. Regarding the behavior in
Example 3.2, at first sight, the conduct falls under article 155 of the Penal Code. Never-
theless when analyzing the patrimonial issue, emerge questions like: Does somebody suffer
serious injury? Was the bakery impoverished? How much do two loaves cost? Was the act
previously planned? From a material point of view, the action becomes atypical, as it does
not apply a very serious legal injury, thus not involving criminal charges. The principle of
insignificance overrides the theft imputability. Therefore, it is assumed that the legal texts
are defeasible.

Although debates on the use of non-monotonic legal reasoning persist today [7], in
the 1980s, Gardner (1987) [8] elicited the minimum requirements for legal reasoning ac-
cordingly what happens in legal practice: ability to reason with cases, and to handle open-
textured predicates, exceptions, conflicts between rules, besides the ability to handle change
and non-monotonicity.

The research developed under the umbrella of AI & Law has relied on full synergy
with Description Logic formalism. However, as legal regulations are somehow defeasible,
open to implicit exceptions; the inferences made in the legal field are not completely linear,
they are usually overruled by new information acquired. Therefore, generalizations are
only valid for more typical cases. In the following section, we briefly introduce the syntax
and semantics of Description Logic, as well as a DL extension addressing a defeasible
subsumption constructor to axiomatize exceptions for typical situations. In addition, we
discuss a portion of the axiomatization of the Brazilian Criminal domain.

4 Description Logics

4.1 Classical Description Logic

Description Logics (DLs) [9] are a family of formalisms to knowledge representation and
reasoning, able to balance the trade-off between expressiveness and decidability for classi-
cal monotonic logic. DLs can be seen as subsets of First-order Logic (FOL), in particular,
a well-behaved fragment of L2 FOL (first order predicates with 2 variables). DLs accom-
modate a range of different flavours, each with its own requirements of decidability and
expressiveness. For the sake of clarity, throughout the text, we focus on the sublanguage
ALC (Attributive Language with Complements) which allows axiomatizing an arbitrary
domain through conjunction, disjunction, negation, existential and universal restriction con-
structors.

760

LEGIS: A Proposal to Handle Legal Normative Exception

4.1.1 DL Syntax

A DL language is structured in terms of elementary building blocks, i.e., atomic concepts
(A), atomic roles (R), and Individuals (I). Complex concept expressions (C,D) may be
constructed on these basic descriptions. In especial, ALC grammar allows the following
concept expressions:

C,D ::= A | C ⊓C | C ⊔C | ¬C | ⊤ | ⊥ | ∃R.C | ∀R.C
An ALC knowledge base (KB := ⟨A,T⟩) is conveniently divided into two disjoint

components, one comprising terminological axioms (T), such as concept inclusion and
equivalence (C ⊑ D and C ≡ D, respectively) and the second with assertional axioms (A),
such as concept and role assertion (a : C and (a, b) : R, where a, b are members of the
set of individuals). Hereinafter, we will refer to these components as TBox and ABox,
respectively.

4.1.2 DL Semantics

As for its semantics, DL is based on the Open-World Assumption (OWA) [10], since in
practice it is inevitably common to handle in the knowledge base with incomplete informa-
tion. DL semantics is built on top of FOL interpretations, as described in [9]. In short, an
Interpretation (I) is a tuple ⟨∆I, ·I⟩, where ∆I represents the non-empty set known as the
domain of I; and ·I is a function that maps concepts to subsets of ∆I, relations to subsets
of ∆I × ∆I, and each individual name a to an element aI ∈ ∆I, from which we can ascribe
the following semantics for theALC constructors:

• Individual Name (a): aI;

• Atomic Role (R): RI;

• Atomic Concept (A) : AI;

• Intersection (C ⊓ D): CI ∩ DI;

• Union (C ⊔ D): CI ∪ DI

• Complement (¬C): ∆I\CI;

• Top Concept (⊤): ∆I;

• Bottom Concept (⊥): ∅;
• Existential Restriction (∃R.C): {a ∈ ∆I | ∃b, (a, b) ∈ RI, b ∈ CI};
• Universal Restriction (∀R.C): {a ∈ ∆I | ∀b, (a, b) ∈ RI ⇒ b ∈ CI};

761

Rodrigues et al.

• Subsumption (C ⊑ D): CI ⊆ DI;

• Equivalence (C ≡ D): CI = DI;

• Concept Assertion (C(a)): aI ∈ CI;

• Role Assertion (R(a, b)): ⟨aI, bI⟩ ∈ RI

4.1.3 DL Reasoning Tasks

From the first-order interpretations, some reasoning tasks [9] are available in DL, such as
Concept Satisfiability and Logical Implication. Given an arbitrary concept C, C is satisfiable
iff it admits a model. An interpretation I is a model of a concept C if CI , ∅. Likewise, an
interpretation I is a model of a general concept subsumption (C ⊑ D) if CI ⊆ DI.

Some reasoning tasks can be applied directly to the knowledge base as a whole, in
both TBox and ABox sub components. Taking into account the terminological part, we
emphasize the following inference tasks:

• Knowledge Base Satisfiability: Given a knowledge baseKB, and two concepts C and
D, KB is satisfiable if it admits a model, that is, an Interpretation I, which for every
axiom C ⊑ D in KB, CI ⊆ DI.

• Concept Satisfiability w.r.t. Knowledge Base (KB ̸|= C ≡ ⊥): Given a knowledge
base KB, and a concept C, C is satisfiable w.r.t. KB if there is an Interpretation I,
which is a model for KB, and further a model for C, that is, CI , ∅.

• Logical Implication (KB |= C ⊑ D): Given a knowledge base KB, and two concepts
C and D, D subsumes C, if for all models I of KB, CI ⊆ DI.

For the assertional component, the following reasoning tasks stand out:

• Concept Instantiation (KB |= x : C): Given a knowledge baseKB, and an individual
x, x is an instance of concept C w.r.t. KB if xI ∈ CI holds for all models I of KB;

• Role Name Instantiation (KB |= (x, y) : R): Given a knowledge base KB, and some
individuals x, y, the pair of individuals (x, y) is an instance of role name R w.r.t. KB
if ⟨xI, yI⟩ ∈ RI holds for all models I of KB;

From the considerations made so far, we emphasize that an interpretation I is a model
of a KB := ⟨A,T⟩ if I is a model of T and a model ofA.

762

LEGIS: A Proposal to Handle Legal Normative Exception

Example 4.1. To exemplify the classical DL, let us say that something that has a criminal
act is a crime. In addition, a theft has an action of subtraction4, and that any role “has” is
associated with a criminal act. KBcrime represents the DL axioms:

KBcrime =

{
∃has.CriminalAct ⊑ Crime
Theft ⊑ ∃has.Subtraction ⊓ ∀has.CriminalAct

}

From KBcrime, by Logical Implication inference task, we have:

KBcrime |= Theft ⊑ Crime

4.2 Preferential Description Logic

DL entailment is non-ampliative and non-defeasible, features that are sought for when rea-
soning with incomplete information and (potential) exceptions. In order to cope with ex-
ceptionality, Britz et al. (2011) [11] introduced the Preferential Description Logic (PDL),
a DL extension addressing a defeasible subsumption constructor (⊏∼). The principal idea is
to organize the elements of a domain in degrees of normality, from bottom (the most typi-
cal) to up. We note that this kind of knowledge base stratification is fully aligned with the
way humans actually reason under incomplete information. In carrying out the reasoning,
humans being do not explicitly think of all special cases that would prevent a conclusion
from being drawn. Instead, we base our reasoning only on the information at our disposal
and provisionally jump to the conclusion. It is only when we come across new information
that we accommodate it with the previous knowledge we had and, usually, we do it in a
non-disruptive way.

4.2.1 Preferential DL Syntax and Semantics

By extending the DL semantics with non-monotonic reasoning, Britz et al. (2011) [11] have
proposed a partial order to set out the levels of typicality. Therefore, the semantics of Pref-
erential DL is organized in terms of strictly partially-ordered structures, P := ⟨∆P, ·P,≺P⟩,
where: ⟨∆P, ·P⟩ is an ordinary DL interpretation; and, ≺P is a irreflexive, anti-symmetric
and transitive partial order on ∆P. Therefore, given a preferential DL interpretation P and a
defeasible subsumption statement C ⊏∼D, the semantics of this defeasible axiom is given by:

P ⊩ C ⊏∼ D iff min≺P(CP) ⊆ DP

The intuition is that objects lower down in ≺P are more normal than those higher up.
Thus, min≺P(CP) denotes the most typical elements in CP. In order to explain this pref-
erential semantics, Figure 4 pictures a domain stratified in levels of typicality addressing

4In our context, “subtraction” is a convenient synonym for stealing.

763

Rodrigues et al.

the criminal domain. We have introduced the concept of Event, that is, a category of ele-
ments that happens in time, such as an action. event1 maps approximately to Example 3.1,
while event2 focuses on the violation addressed in the Example 3.2. In this sense, instead
of axiomatizing that events in which an item was subtracted from someone is definitely a
theft, it is said that “typically" (that is, in the most normal case), these events are thefts. In
such domains, these normal cases is organized in the lower part (event1) of the preferential
interpretation of Event of Subtraction domain. In the higher level, event2 is a subtraction
of an object (loaf) whose value is so derisory that the Trifle Principle would be triggered
to ward off any indication of crime. Thus, regarding this domain, we have the preferential
domain P defined in terms of ⟨∆P, ·P,≺P⟩, where:

P :

∆P = {event1, event2, loa f ,wallet}
TheftP = {event1}
NonCriminalP = {event2}
ObjectP = {wallet, loa f }
WorthlessObjectP = {loa f }
≺P= {(event1, event2)}

Figure 4: Hierarchy of Item Subtraction Events

Accordingly, we say that normally, an item subtraction event is a theft:

EventofSubtraction ⊏∼ Theft

4.2.2 Preferential and Rational Entailment

To provide reasoning capabilities within a defeasible knowledge base, the newly introduced
subsumption constructor also allows for inference tasks, namely the Preferential and Ra-
tional entailment tasks. A subsumption relation C ⊏∼ D is preferentially entailed by a given

764

LEGIS: A Proposal to Handle Legal Normative Exception

defeasible knowledge base KB iff C ⊏∼ D is a statement of the preferential closure of KB
[11], i.e., it is a derivation from KB using the following rules of Preferential Subsumption
(derived from the KLM theory [12]):

Reflexivity : C ⊏∼C Left Logical Equivalence : C≡D,C ⊏∼ E
D ⊏∼ E

And : C ⊏∼ D,C ⊏∼ E
C ⊏∼ D⊓E Or : C ⊏∼ E,D ⊏∼ E

C⊔D ⊏∼ E

RightWeakening : C ⊏∼ D,D⊑E
C ⊏∼ E CautiousMonotonicity : C ⊏∼ D,C ⊏∼ E

C⊓D ⊏∼ E

As usual, inferences in the legal domain should be ampliative beyond retractable. Nev-
ertheless, the preferential entailment does not cover such requirement, since there is no way,
from the provided properties, to have P ⊩ C⊓E⊏∼D from P ⊩ C⊏∼D. In order to accomplish
this, Britz et al. (2011) [11] define further the Rational entailment task. Therefore, an addi-
tional property, the Rational Monotonicity (RM), should also be ensured by the defeasible
subsumption constructor:

RationalMonotonicity :
C ⊏∼ D,C a∼ ¬E

C ⊓ E ⊏∼ D

It is worth to mention that we are referring to one of the fundamental principles of
rationality in non-monotonic reasoning, namely the principle of presumption of typicality,
formalized by Lehmann (1995) [13]. Briefly, the principle of presumption of typicality is at
the heart of a form of ampliative reasoning and states that we shall always assume that we
are dealing with the most typical possible situation compatible with the information at our
disposal. RM is a necessary condition to model the presumption of typicality; therefore,
in the absence of opposite information, RM property infers that individuals are as typical
as possible (plausible, though provisional inferences). In this sense, a subsumption relation
C ⊏∼ D is rationally entailed by a defeasible knowledge base KB [11], if C ⊏∼ D is an axiom
inferred by the above-mentioned properties including Rational Monotonicity. Suppose, for
example, the following TBox:

T =
{

EventOfSubtraction ⊏∼ Theft
Theft ⊑ Crime
EventOfSubtraction ⊏∼ ¬∃violates.WorthlessObject

}

By the Right Weakening property, we have:

[1]

{
EventOfSubtraction ⊏∼ Theft, Theft ⊑ Crime

}

|= EventOfSubtraction ⊏∼ Crime

In the same way, considering the result of the inference in [1], for any concept expres-
sion D, since EventOfSubtraction a∼ ¬D, we have by the Rational Monotonicity:

765

Rodrigues et al.

[2]

{
EventOfSubtraction ⊏∼ Crime, EventOfSubtraction a∼ ¬D

}

|= EventOfSubtraction ⊓ D ⊏∼ Crime

Obviously, by the same conditions, we can not consider that we will be dealing with the
most typical situations possible, considering that D is ∃violates.WorthlessObject. There-
fore, an arbitrary reasoner cannot infer:

T |= EventOfSubtraction ⊓ ∃violates.WorthlessObject ⊏∼ Crime

5 A Proposal to Axiomatize the Legal Domain

In this section, we explore how it is possible to axiomatize the criminal domain, taking into
account the exceptions between the norms through the (Preferential) Description Logic. We
are not interested in presenting a complete axiomatization of the penal code, but rather how
we can extend a legal corpus base with defeasible axioms. The full ontology can be found
at https://github.com/cleytonrodrigues/Tese.

Throughout the development of the legal conceptual model, we seek to align our domain
with some foundational (or upper) ontology, favoring the ontological adequacy, that is, the
degree of closeness to reality [14]. As the upper ontology, we chose to stick to UFO (Unified
Foundational Ontology [15]) for grounding our concepts with the UFO categories, thus
avoiding typical mistakes while building our ontology hierarchy. UFO is a collection of
domain-independent ontologies that makes explicit as much as possible the assumptions and
rationales w.r.t. the commonsense, through a rich axiomatization of the vocabulary used.
In particular, UFO is based on the ontologies of universals, besides providing a profile with
constraints that govern how to construct ontologically valid models that are consistent with
reality. In the definition of its categories, UFO incorporates, among others, the principle of
identity (which provides for the possibility of judging two entities as being the same, i.e,
sortals and non-sortals types), besides the principle of rigidity, which investigates whether
a type can be instantiated imperiously in all contexts or not (derived from [16]). Table 1
shows a part of this profile.

In particular, UFO addresses the dichotomy between endurant (UFO-A subontology)
and perdurant (UFO-B subontology) categories, as shown at the top of Figure 5. For the
first component, we have those entities that persist in time (as an agent, an object), and
for the second, those which occur in time (i.e., framed by a time interval), as an event.
Endurants may be existentially independent (Substantial) or exist only when associated with
another entity (Moment). A notoriously complex type of endurant is Situation, a portion of
reality recognized as a whole, a state of affairs. In practice, situations are fulfilled by other

766

LEGIS: A Proposal to Handle Legal Normative Exception

Stereotype Type Constraint
«kind» Rigid Sortal Supertype cannot be a member of «subkind»,

«phase», «role», «roleMixin».
«subkind» Rigid Sortal Supertype cannot be a member of «phase», «role»,

«roleMixin», and there must be exactly one «kind»
as the supertype

«phase» Anti-Rigid Sortal Instantiated only in certain contexts, and defined as
part of a partition. There must be exactly one «kind»
as the supertype.

«role» Anti-Rigid Sortal Instantiated only in certain contexts, and dependent
on an external relationship. Cardinality on the op-
posite side of the «role» type should be ≥ 1. There
must be exactly one «kind» as the supertype.

Table 1: Modeling Profile of UFO [15]

endurants, including other minor situations. Dependent moment instances may be tied to
either a single entity – Intrinsic Moment –, or to an assortment of these: a Relator.

Another reason for choosing this top-level ontology comes from the fact that it pro-
vides an ontology of social entities, known as UFO-C [17]. The legal domain is conceived
as a description of social reality, where a group of individuals behaves according to a set
of State-approved rules that either allow, forbid, or force them to act under some specific
circumstances. UFO-C already considers some assumptions of the legal universe. Agents
and objects are part of UFO-C subontology. However, unlike an inanimate object, an agent
creates actions (Action Contribution).

Figure 6 illustrates a brief overview of the conceptualization of Crime, regarding the
Brazilian Criminal Law. Actually, it is an update of the studies discussed in [18] and [19].
The engineering of this conceptual model was elaborated according to a middle-out ap-
proach [20], where intermediate categories of elements are identified first. These are then
specialized to match the concepts extracted from legal texts, and generalized towards more
generic concepts extracted from the UFO foundational ontology. A crime is a kind of event
having as the central kernel an action (we do not consider the crimes of omission, that is,
those where an agent had a legal obligation to act, but decides not to accomplish it). Crim-
inalAct, therefore, represents these legal actions performed by an Offender, who violates
some object of the Victim. A LegalObject can be abstract (honor, life, public peace), or
physical (patrimony). An event, in general, starts from an earlier situation towards a re-
sult. It is worth mentioning that other important criminal entities, such as space-temporal

767

Rodrigues et al.

Figure 5: UFO Concepts

occurrence, deontic notions of prohibition/permission, norms and punishments are outside
the scope of this work; therefore, they are not displayed in the model of Figure 65. Next,
we present a DL axiomatization with pure classical axioms. Then, we show an elaborated
base enriched with defeasible axioms, highlighting the problems resolved.

5.1 A Pedagogical Example in DL

In order to make clear the problems arising from the exceptions in the legal texts, we axiom-
atized a knowledge base related to example 3.2. The base holds the terminological axioms
(T) and the assertional ones (A). The terminological axioms map descriptions of a Theft (a
subkind of criminal event). In addition, this TBox addresses further a slightly modified set
of circumstances that rule out the classification of a crime. For the latter case, we consider
the aforementioned Trifle principle.

5Additional information can be found at https://github.com/cleytonrodrigues/Tese

768

LEGIS: A Proposal to Handle Legal Normative Exception

Figure 6: Conceptualization of a Criminal Event

T =

Crime ≡ Event ⊓ ∃has.CriminalAct
CriminalAct ≡ Action ⊓ ∃performanceOf.Offender ⊓ ∃violates.LegalObject
Offender ⊑ ∃injures.Victim
Subtraction ⊑ CriminalAct
Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject ⊑ Theft,

Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject
⊓∃violates.WorthlessObject ⊑ NonCriminalEvent,

Theft ⊑ Crime,

NonCriminalEvent ⊑ ¬Crime

A =

Event(johnBehavior),Subtraction(loafSubtraction),ChattelObject(loaf),
WorthlessObject(loaf), has(johnBehavior, loafSubtraction),

violates(johnBehavior, loaf).

An Event carried out by means of a Subtraction, violating a ChattelObject classifies

the behavior as a theft. New information acquired as the despicable value of the object
(WorthlessObject) should refute the previous inference, causing a retraction of the knowl-
edge base. Under the new condition, the event no longer meets the typical theft. It is not
possible to keep both inferences, because they are disjoint. It is therefore suggested that the
Trifle principle is an exception to the normal case.

Classical DL, therefore, does not address what happens in legal practice. Considering
the ABox from the same example, John’s behavior would be classified as a theft and a non-
criminal event, making the knowledge base inconsistent, i.e., KB |= ⊤ ⊑ ⊥, since:

769

Rodrigues et al.

[3]

Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject ⊑ Theft,
Event(johnBehavior),
Subtraction(loafSubtraction), has(johnBehavior, loafSubtraction),
violates(johnBehavior, loaf),ChattelObject(loaf)

|= Theft(johnBehavior)

[4]

Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject ⊓ ∃violates.WorthlessObject
⊑ NonCriminalEvent,

Event(johnBehavior),WorthlessObject(loaf),
Subtraction(loafSubtraction), has(johnBehavior, loafSubtraction),
violates(johnBehavior, loaf),ChattelObject(loaf)

|= NonCriminalEvent(johnBehavior)

KB |= {Theft(johnBehavior),NonCriminalEvent(johnBehavior),NonCriminalEvent ⊑ ¬Theft}

We therefore need a non-monotonic extension of DL Logic capable of dealing satis-
factorily with exceptions, as in the interplay between principles and legal laws. Therefore,
based on the Preferential DL semantics, the terminological component w.r.t. the john’s be-
havior needs to be slightly modified. In particular, it is necessary to axiomatize that: (1) an
event with a subtraction of a chattel object is typically a theft, and (2) these events do not
typically violate a worthless object, and (3) an event with a trifling value object subtraction
is typically a non-criminal event. The new TBox is shown as follows (the other axioms in
T remain unchanged):

T =

Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject ⊏∼ Theft, (1)
Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject

⊏∼ ¬∃violates.WorthlessObject, (2)
Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject

⊓ ∃violates.WorthlessObject ⊏∼ NonCriminalEvent, (3)
Theft ⊑ Crime,

NonCriminalEvent ⊑ ¬Crime

Back to Example 3.2, the Rational Monotonicity property rightly prevents John’s be-

havior from being classified as a Theft, but we still have:

[5]

Event ⊓ ∃has.Subtraction ⊓ ∃violates.ChattelObject ⊓ ∃violates.WorthlessObject
⊏∼ NonCriminalEvent,

Event(johnBehavior),WorthlessObject(loaf),
Subtraction(loafSubtraction), has(johnBehavior, loafSubtraction),
violates(johnBehavior, loaf),ChattelObject(loaf)

|= NonCriminalEvent(johnBehavior)

770

LEGIS: A Proposal to Handle Legal Normative Exception

In the following section, we discuss the second objective of this study, as highlighted in
Figure 2; specifically, the development of the LEGIS module that is capable of producing
more readable inference proofs.

6 A Proposal to Sequent Proofs Generator

As previously discussed, it is not enough to develop systems of legal simulation, without
guaranteeing an understandable proof verification. Therefore, we discuss an approach based
on a formal logic argumentation, in order to provide legible inferences proofs. Neverthe-
less, the proposal showed here deals only with Classical DL. The extension addressing the
Preferential counterpart is discussed in the final remarks.

Freitas and Otten (2016) [1] have proposed a Connection Calculus for the Description
Logic ALC (DL connection method ALC θ-CM), in the search for a reasoning method
that makes a parsimonious usage of memory. In addition, an efficient implementation of
this reasoning, known as RACCOON, was developed by Melo Filho et al. (2017) [2].
RACCOON is also highlighted in Figure 3 as an inference engine capable of parsing and
reasoning about OWL 2 ALC ontologies. However, Proof Calculus is far from easy to
assimilate. Sequent Calculus [3], a calculus for expressing line-by-line logical arguments, is
a more intuitive proof logic. Therefore, we propose in the next subsections a transformation
ofALC Connection Proofs intoALC Sequent Proofs.

6.1 Non-clausalALC θ-Connection Proofs

Our focus is on the non-clausal ALC θ-Connection Calculus, which is based on the Con-
nection Calculus [21]. Connection calculus is a clear and effective inference method applied
successfully over First-Order Logic (FOL). The main idea of connection calculus is check-
ing paths through the FOL formula represented as a matrix, with the purpose of connecting
a literal P with its complement ¬P. Each pair sets up a connection, which coincides with
a tautology in the search branch being examined; therefore, one formula is valid if each
path through its matrix representation has a connection. However, before attempting to find
a proof, connection calculus converts a formula into a disjunctive normal form (or clausal
form), while non-clausalALC θ-connection calculus works directly on the structure of the
original formula, hence avoiding any translation steps. The later uses ALC formula with
polarity and non-clausal matrices.

An ALC formula can be expressed as a literal L, or by a disjunction (C ⊔ D), or an
universal restriction (∀R.C), or a conjunction (C⊓D), or an existential restriction (∃R.C). C
and D are arbitrary concept expressions and L is either an atomic concept or role, possibly
negated or instantiated. The polarity is denoted by F p, where F is an ALC formula and
p is the polarity (p ∈ {0, 1}). It is used to represent negation in a matrix, i.e. if F and

771

Rodrigues et al.

¬F are ALC formulae, F has polarity 0 and ¬F has polarity 1 (represented by F0 and
F1, respectively). The non-clausal matrix is a set of clauses, and each clause is a set of
literals and (sub)matrices. The matrix of F p, denoted by M(F p), is defined inductively
according to Table 2. Therefore, the F matrix is M(F0). Connection Calculus provides
further a graphical representation, in which clauses are organized horizontally, while literals
and (sub-)matrices of each clause are arranged vertically. A matrix M can be simplified
by replacing matrices and clauses of the form M = {. . . , {X1, . . . , Xn}, . . .} within M by
M′ = {. . . , X1, . . . , Xn, . . .}. Restrictions are represented by lines; restrictions with indexes
(i.e., the notation Li, j) are horizontal lines; restrictions without indexes are vertical lines.

Type F p M(F p) Type F p M(F p)
Atomic A0 {{A0}} β (C ⊓ D)0 {{M(C0),M(D0)}}

A1 {{A1}} (C ⊔ D)1 {{M(C1),M(D1)}}
α (¬C)0 M(C1) (C ⊑ D)1 {{M(C0),M(D1)}}

(¬C)1 M(C0) γ (∀R.D)1 {{M(R0),M(D1)}}
(C ⊓ D)1 {{M(C1)}, {M(D1)}} (∃R.D)0 {{M(R0),M(D0)}}
(C ⊔ D)0 {{M(C0)}, {M(D0)}} δ (∀R.D)0 {{M(R1)}, {M(D0)}}
(C ⊑ D)0 {{M(C1)}, {M(D0)}} (∃R.D)1 {{M(R1)}, {M(D1)}}
(C |= D)0 {{M(C1)}, {M(D0)}}

Table 2: Matrix of a formulaALC F p.

In order to define the non-clausal matrix of an arbitraryALC formula, the process starts
by the root position (|= or ⊑), which has polarity 0. For example, suppose the example 6.1
drawn from the universe of crime and theft, and the query F1:

Example 6.1.

(∃has.CriminalAct ⊑ Crime) ⊓
(Theft ⊑ ∃has.Subtraction ⊓ ∀has.CriminalAct)

}
|= Theft ⊑
Crime

The simplified non-clausal matrix M1 of F1 is:

{ {has0, CriminalAct0, Crime1},
{Theft0, {{has1

1}, {Subtraction1
1}, {has0, CriminalAct1}} },

{Theft(johnBehavior)1}, {Crime(johnBehavior)0} }

Its graphical representation (without polarity notation) is shown in Figure 7. The val-
idation process consists in checking paths through DL formulae, represented as a matrix

772

LEGIS: A Proposal to Handle Legal Normative Exception

has

CriminalAct

∣∣∣∣∣∣
¬Crime

Theft[

[¬has1][¬Subtraction1]
[

has
¬CriminalAct

∣∣∣∣∣∣

]]
 [¬Theft(jB)][Crime(jB)]

Figure 7: Graphical representation of non-clausal matrix for F1.

with the purpose of connecting a literal P with its complement ¬P, which are in different
clauses. Therefore, a path is a disjunction of literals of the form P1 ⊔ . . . ⊔ Pn.

Stemming from query F1 and its graphical matrix representation, the non-clausalALC
θ-connection proof is depicted in Figure 8. This process is guided by an active path, a sub-
set of a path being investigated through the matrix. It consists of a set of literals that have
been connected to reach the current path of proof. In the first step, a clause of the conse-
quent side is selected, Crime(jB), and through an extension step, Crime(jB) is connected
to ¬Crime(jB) applying the θ-substitution, which assigns each (possibly omitted) variable
an individual or another variable. All remaining paths through the second matrix of the first
clause have to be investigated. In order to accomplish this, the second proof extension step
connects CriminalAct to ¬CriminalAct. The third step connects has to ¬has. Likewise,
The f t is connected with ¬The f t(jB). Finally, a reduction step connects has to ¬has literal
in the active path. This ends the proof showing that every path through the related matrix
contains a θ-complementary connection. Therefore, theALC query is valid.

5.

jBx

jB(jB,x)

1.2.

4.

(jB,x) 3.

Figure 8: ALC θ-connection proof using the graphical representation.

6.2 TranslatingALC Connection Proofs intoALC Sequent Proofs

Given an ALC formula and its ALC non-clausal matrix proof, the conversion procedure
begins by representing the ALC formula in its corresponding syntactic tree, where each
node can have up to two child nodes. Every node is structured in terms of: (i) a posi-
tion that identifies each element (predicate or connective) in the formula and is denoted by
a0, a1, a2, . . .; (ii) a label consisting of a connective or a logical quantifier (or the predicate
itself, if it is atomic); (iii) a polarity (0 or 1), determined by the label and polarity of its
parent nodes (root position has polarity 0); and (iv) a type labelled by one Greek letter (α,
β, α′, β′, γ or δ), which is determined by its polarity and its label. Leaf node has no type.

773

Rodrigues et al.

Polarity and type of a node are presented in Table 3. The first entry, (C ⊓ D)1 for example,
means that a node labeled with ⊓ and polarity 1 has type α and its successor nodes have
polarity 1. The syntactic tree for F1 is shown in Figure 9. The literals names are abbreviated
due to space limitations.

Type α Type β Type δ
(C ⊓ D)1 C1 D1 (C ⊓ D)0 C0 D0 (∀R.C)0 R1 C0

(C ⊔ D)0 C0 D0 (C ⊔ D)1 C1 D1 (∃R.C)1 R1 C1

(¬C)1 C0

(¬C)0 C1

Type α′ Type β′ Type γ
(C ⊑ D)0 C1 D0 (C ⊑ D)1 C0 D1 (∀R.C)1 R0 C1

(C |= D)0 C1 D0 (∃R.C)0 R0 C0

Table 3: Polarity and types of nodes forALC

|=0 a0

α′
⊑0 a16

α′

C(jB)0 a18T (jB)1 a17

⊓1a1

α

⊑1a7

β′2

⊓1 a9

α

∀1 a13

γ

CA(a13)1 a15h(a7, a13)0 a14

∃1 a10

δ

S (a10)1a12h(a7, a10)1a11

d

T (a7)0 a8

c

⊑1a2

β′1

C(a2)1a6

b

∃0a3

γ

CA(a3)0a5h(a2, a3)0a4

a

Figure 9: Formula Tree for F1.

Back to translation, a position is assigned to each corresponding elements in the non-
clausal matrix, as shown in Figure 10. After this, the ALC non-clausal matrix proof is
read, and for each connection found, the tree is examined in order to find leaf nodes that
correspond to the connection. The paths between the root node and these nodes in the tree
are then analyzed to determine the order of the nodes to be worked on, and thus building

774

LEGIS: A Proposal to Handle Legal Normative Exception

a (partial) sequent proof structure. This structure provides information about the ordering
in which a given formula F has to be transformed by the rules of the sequent calculus. In
addition, it brings out information about branches in the sequent given by positions of type
β and β′, as shown in Figure 10.

T 0a8 ⊢ h1a11S 1a12, h0a14CA1a15

2.

⊑1 (a2β
′
1)

ba
⊑1 (a7β

′
2) ⊓1(a9α)

∃1(a10δ)
CA1a15 ⊢ CA0a5

⊑0 (a16α
′)

|=0 (a0α
′)

⊓1(a1α)

h0a4CA0a5 ⊢ C1a6
c d

1.jB

4.jB(jB, a10)5.

3.(jB, a10)
a10

Figure 10: Matrix and structure of the Sequent Proof for F1.

T ⊢ ∃h.S ⊓ ∀h.CA

=
S ,CA ⊢ CA

l∃∃h.S ,∀h.CA ⊢ ∃h.CA
l⊓∃h.S ⊓ ∀h.CA ⊢ ∃h.CA cut

T ⊢ ∃h.CA ∃h.CA ⊢ C cut(∃h.CA ⊢ C, T ⊢ ∃h.S ⊓ ∀h.CA) ⊢ (T ⊢ C)
l⊓((

(∃h.CA ⊢ C) ⊓ (T ⊢ ∃h.S ⊓ ∀h.CA)
) ⊢ (T ⊢ C)

)

Figure 11: Complete representation of the resultingALC Sequent Proof for F1.

Furthermore, a complete sequent proof (Figure 11) is constructed from the partial se-
quent proof obtained in the process and by the correspondence between the node and the
rules of the sequent, described in Tables 4 and 5 (appendix A). Rules of Sequent Calculus
forALC [22] is described in appendix B.

The conversion method might be used in practical applications, in areas that employ
DL reasoning and generate descriptions on natural language inferences for lay users. Proof

775

Rodrigues et al.

conversion can help users understand why a particular situation is characterized as a crimi-
nal event, making its use viable in practice, if an additional translation from these sequents
to natural language is accomplished. Our research group is already working in this second
translation, which will be available soon.

7 Final Remarks and Ongoing Works

LEGIS is a legal action simulation proposal that should address an ontological basis of legal
norms and principles, some inference mechanisms for efficient reasoning, and a justifica-
tion module capable of generating intuitive proofs. In the present study, we proposed an
axiomatization based on the Preferential Description Logic to address the possible levels of
exception between the norms. In addition, the conversion process between connection and
sequent proofs highlighted is complete. Since the prototype is the (partial) result of a joint
effort, other activities have also been carried out in related studies:

• an ontology for Crimes against Life [19];

• an ontology for Crimes against Property [18]; and,

• an implementation for the Connection calculus for the Description LogicALC [2];

With respect to the ongoing works, it is under investigation how to extend the current
OWL 2 reasoners to enable non-monotonic inferences, according to Preferential DL per-
spective. Similarly, a next step will be to engineer a connection calculus implementation to
PreferentialALC. In particular, one future work is to investigate how to extend the Protégé
reasoner plugin DIP (Defeasible Inference Platform) – a scalable implementation for the
preferential semantics [23] – to accomplish such task. Currently, we are also implementing
an automatic translation system from the connections proofs to sequent proofs and another
to natural language. According, a sequent proof generator for Preferential DL entailment is
also expected.

Finally, we intend to make LEGIS available as a web-based front-end system through
which it is possible to perform functional and accessible legal simulations by the mapped
ontologies. We hope that the results obtained so far can improve the layperson’s legal
understanding and assist in the labor-intensive task of lawsuits performed by professional
lawyers. A prototype is available at https://github.com/cleytonrodrigues/Tese.
Currently, for arbitrary situations, the prototype is able to infer about the presence of some
crime, the violated norms, and the penalties imposed.

776

LEGIS: A Proposal to Handle Legal Normative Exception

Acknowledgement

This research is part of project APQ-0550-1.03/16 (Reconciling Description logic and non-
monotonic reasoning in the legal domain), supported by Fundação de Amparo à Ciência e
Tecnologia do Estado de Pernambuco, by the Institut National de Recherche en Informa-
tique et Automatique and by the Centre National de la Recherche Scientifique.

References

[1] Freitas, F., Otten, J.: A connection calculus for the description logic ALC. In Khoury, R.,
Drummond, C., eds.: Advances in Artificial Intelligence, Cham, Springer International Pub-
lishing (2016) 243–256

[2] Melo Filho, D., Freitas, F., Otten, J.: Raccoon: A connection reasoner for the description
logic alc. In Eiter, T., Sands, D., eds.: LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning. Volume 46 of EPiC Series in Computing.,
EasyChair (2017) 200–211

[3] Gentzen, G.: Untersuchungen über das logische Schließen II. Mathematische Zeitschrift 39
(1935)

[4] Rissland, E.L., Ashley, K.D., Loui, R.: Ai and law: A fruitful synergy. Artificial Intelligence
150(1) (2003) 1 – 15

[5] Atienza, M., Manero, J.R.: Rules, principles and defeasibility. In Beltrán, J.F., Ratti, G.B.,
eds.: The Logic of Legal Requirements - Essays on Defeseability. Oxford University Press,
Oxford, United Kingdom (2012) 238–253

[6] Samuels, A.: De minimis non curat lex. Statute Law Review 6(1) (1985) 167–169
[7] Araszkiewicz, M. In: Legal Rules: Defeasible or Indefeasible? Springer International Publish-

ing, Cham (2015) 415–431
[8] Gardner, A.: An Artificial Intelligence Approach to Legal Reasoning. MIT Press, Cambridge,

MA, USA (1987)
[9] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description

Logic Handbook: Theory, Implementation and Applications. 2nd edn. Cambridge University
Press, New York, NY, USA (2010)

[10] Reiter, R. In: On Closed World Data Bases. Springer US, Boston, MA (1978) 55–76
[11] Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential description logics. In

Wang, D., Reynolds, M., eds.: AI 2011: Advances in Artificial Intelligence, Berlin, Heidelberg,
Springer Berlin Heidelberg (2011) 491–500

[12] Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2) (1990) 167–207

[13] Lehmann, D.: Another perspective on default reasoning. Annals of Mathematics and Artificial
Intelligence 15(1) (1995) 61–82

777

Rodrigues et al.

[14] Bringuente, A.C.O., de Almeida Falbo, R., Guizzardi, G.: Using a foundational ontology for
reengineering a software process ontology. JIDM 2(3) (2011) 511–526

[15] Guizzardi, G.: Ontological foundations for structural conceptual models. PhD thesis, Univer-
sity of Twente (2005)

[16] Guarino, N., Welty, C.: An overview of ontoclean. In Staab, S., Studer, R., eds.: Handbook
on Ontologies. International Handbooks on Information Systems. Springer Berlin Heidelberg
(2004) 151–171

[17] Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in
business modeling. In Grundspenkis, J., Kirikova, M., eds.: CAiSE Workshops (3), Faculty
of Computer Science and Information Technology, Riga Technical University, Riga, Latvia
(2004) 129–143

[18] Rodrigues, C.M.d.O., Azevedo, R.R., Freitas, F.L.G., da Silva, E.P., da Silva Barros, P.V.: An
ontological approach for simulating legal action in the brazilian penal code. In: Proceedings
of the 30th Annual ACM Symposium on Applied Computing. SAC ’15, New York, NY, USA,
ACM (2015) 376–381

[19] Rodrigues, C.M.d.O., de Freitas, F.L.G., da Silva Oliveira, I.J.: An ontological approach to the
three-phase method of imposing penalties in the brazilian criminal code. In: 2017 Brazilian
Conference on Intelligent Systems, Uberlândia, Brazil, October 2-5. (2017) 414–419

[20] Uschold, M., Gruninger, M.: Ontologies: Principles, Methods, Applications. Volume 11.
(1996)

[21] Bibel, W.: Automated theorem proving. 2 edn. Künstliche Intelligenz. Vieweg, Braunschweig,
Germany (1987)

[22] Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC Subsumption. ECAI - European
Conference on Artificial Intelligence (2000)

[23] Casini, G., Meyer, T.A., Moodley, K., Sattler, U., Varzinczak, I.J.: Introducing defeasibility
into OWL ontologies. In: The Semantic Web - ISWC 2015 - 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part II. (2015) 409–426

[24] Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, New York,
NY, USA (1989)

A Matrices for Translating ALC Connection Proofs into ALC
Sequent Proofs

B A Sequent Calculus forALC
The calculus consists of three parts, where the first two describe sets of rules, while the
latter describes a set of axioms, see figure 12, and the Cut Elimination Theorem is applied
according to the proposition 1.

Proposition 1. Cut Elimination Theorem [24]. Let S be a set of sequents (axioms) and s

778

LEGIS: A Proposal to Handle Legal Normative Exception

Type α Rule Type β Rule
¬1 r¬¬ ⊓0 l¬⊓
¬0 l¬¬ ⊔1 r¬⊔
⊓1 r¬⊓ Type δ Rule
⊔0 l¬⊔ ∀0 l¬∀

∃1 r¬∃
Table 4: Correspondence between label, polarity and type of a node, preceded by a node
labeled by a negation, with the sequent rules

Type α Rule Type β Rule Type δ Rule
⊓1 l⊓ ⊓0 r⊓ ∀0 r∀
⊔0 r⊔ ⊔1 l⊔ ∃1 l∃
¬1 ∅

¬0 ∅

Type α′ Rule Type β′ Rule Type γ Rule

⊑0 ∅ ⊑1
Γ ⊢ ∆, A A,Σ ⊢ Π

Γ,Σ ⊢ ∆,Π ∀1 ∅

|=0 ∅ ∃0 ∅

Table 5: Correspondence between label, polarity and type of a node, not preceded by nega-
tion, with the sequent rules

an individual sequent. S ⊢S C s, if and only if, there is a proof in S C of s whose leaves
are either logical or sequent axioms obtained by the substitution of S -belonging sequents ,
where the cut rule, Γ ⊢ ∆, A A,Σ ⊢ Π

Γ,Σ ⊢ ∆,Π , is only applied with a premise being an axiom.

Received 1 December 2018779

Rodrigues et al.

Rules for the propositional formulae
X ,a ,b ⊢ Y

X , a⊓b ⊢ Y (l⊓) X ⊢ a ,Y X ⊢ b ,Y
X , ⊢ a⊓b ,Y (r⊓)

X ,¬a ⊢ Y X ,¬b ⊢ Y
X ,¬(a⊓b) ⊢ Y (l¬⊓) X ⊢ ¬a ,¬b , Y

X ⊢ ¬(a⊓b) , Y (r¬⊓)

X , a ⊢ Y X , b ⊢ Y
X , a⊔b ⊢ Y (l⊔) X ⊢ a , b ,Y

X ⊢ a⊔b , Y (r⊔)

X ,¬a ,¬b ⊢ Y
X ,¬(a⊔b) ⊢ Y (l¬⊔) X ⊢ ¬a ,Y X ⊢ ¬b ,Y

X ⊢ ¬(a⊔b) ,Y (r¬⊔)

X , a ⊢ Y
X ,¬¬a ⊢ Y (l¬¬) X ⊢ a ,Y

X ⊢ ¬¬a ,Y (r¬¬)

Rules for quantified formulae
X′ ⊢ b ,Y ′

X ⊢ ∀r.b , Y (r∀) X′ , b ⊢ Y ′
X , ∃r.b ⊢ Y (l∃)

X′ , ¬b ⊢ Y ′
X ,¬∀r.b ⊢ Y (l¬∀) X′ ⊢ ¬b ,Y ′

X ⊢ ¬∃r.b ,Y (r¬∃)

where X′ = {a | ∀r.a ∈ X} ∪ {¬a | ¬∃r.a ∈ X}, and
Y ′ = {a | ∃r.a ∈ Y} ∪ {¬a | ¬∀r.a ∈ Y}

Termination axioms
X, a ⊢ a , Y (=) X ,¬a ⊢ ¬a , Y (=)

X, a , ¬a ⊢ Y (l↑) X ⊢ a , ¬a , Y (r↑)
X ,⊥ ⊢ Y (l⊥) X ⊢ ⊤ , Y (l⊤)

Figure 12: Rules of Sequent Calculus forALC [22].

Received 1 December 2018780

Principles for a Judgement Editor Based on
Binary Decision Diagrams

Guillaume Aucher
Univ Rennes, CNRS, IRISA

guillaume.aucher@irisa.fr

Jean Berbinau
French Association of IT Judicial Experts

(ex- & honorary member)
jean.berbinau@m4x.org

Marie-Laure Morin
CNRS, Cour de cassation (Former trial judge)

mlmorin@orange.fr

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Aucher et al.

Abstract

We introduce the theoretical principles that underlie the design of a soft-
ware tool which could be used by judges for making decisions about litigations
and for writing judgements. The tool is based on Binary Decision Diagrams
(BDD), which are graphical representations of truth–valued functions associated
to propositional formulas. Given a type of litigation, the tool asks questions to
the judge; each question is represented by a propositional atom. Their answers,
true or false, allow to evaluate the truth value of the formula which encodes
the overall recommendation of the software about the litigation. Our approach
combines some sort of ‘theoretical’ or ‘legal’ reasoning dealing with the core of
the litigation itself together with some sort of ‘procedural’ reasoning dealing
with the protocol that has to be followed by the judge during the trial: some
questions must necessarily be examined and sometimes in a specific order. That
is why we consider extensions of BDD called Multi-BDD. They are BDD with
multiple roots corresponding to the different specific issues that must necessar-
ily be addressed by the judge during the trial. We illustrate our ideas on a case
study dealing with French trade union elections which has been used through-
out our project with the Cour de cassation. We also introduce the prototype
developed during our project and a link with restricted access to try it out.

1 Introduction
The systematic form of many legal systems derives from Roman law. Romans of
antiquity were the first to integrate and apply the methods and rigor of Greek
philosophy and logic to the law, especially Gallius, Mucius Scaevola in the 2nd
century BC and subsequent jurisconsults of the imperial period. The rediscovery of
Roman law via Justinien’s compilations in the 12th–13th century in northern Italy
and France followed by its interaction and confrontation with the humanists of the
15th–16th century rang the knell of custom and unwritten law and greatly contributed
to shape the landscape of law in continental Europe [39]. It is therefore not surprising
that the structures of Roman law and of many subsequent and current legal systems
are closely related to logic and mathematical theories. Over the centuries, many
jurists have brought to the fore the systematic and deductive power of legal systems,
such as for instance the Roman Cicero (106–43 BC, “jus in artem redigere”), the
French Domat (1625–1696), the German Leibniz (1646–1716) or the Italian Beccaria
(1738–1794).

Logic, sometimes viewed as the “calculus of computer science” [28, 42], then
became a natural theoretical background to address new kinds of legal matters. In
the new societal and virtual context raised by the recent technological developments
of internet and computers, law must still be enforced, transparent, accountable and

782

Principles for a Judgement Editor Based on BDD

understandable by anybody more than ever. As it turns out, an important amount
of works at the intersection of logic, law and artificial intelligence has emerged over
the last decades. We are now going to briefly summarize it and we refer the reader
to the handbooks [22, 18] or survey articles [15, 35, 27] for more details and pointers.

1.1 A status quo in logic and law
Originally, logic was intended to be used for the representation of law in a clear and
unambiguous manner. On top of this representation, some kind of reasoning could
then take place to infer some information. Sergot and Kowalski [37] were pionneers in
that field, with the use of logic programming that they applied to the formalization of
the British Nationality Act. However, they encountered difficulties with the Prolog
treatment of negation as failure and with the lack of deontic operators [29]. In
Prolog, something is said to be false if it is not known or cannot be inferred to be
true. Hence, if a program cannot show that an infant was born in the UK, it assumes
that it was not.1 More generally, researchers realized that several aspects of the law
which can not be dealt with standard (Fregean) logic had to be taken into account,
such as the need to handle exceptions, conflicting rules, vagueness, open texture (i.e.
the failure of natural languages to determine future usage of terms), counterfactual
conditionals and the possibility of rational disagreement. Some of these peculiarities
of legal reasoning were and are in fact still addressed by various non–classical logics
in an area sometimes called ‘applied logic’ [32].

Representation of law. Among the logical formalisms used to represent law,
deontic logic provides formal tools for the clarification of the meaning of normative
terms such as ‘may’, ‘must’ and ‘shall’, which play a central role in specifying the
legal relations between agents (which can be human beings or machines). Therefore,
it has been used in the analysis of law [29] and in the area of automated contract
management. Other notions which play an important role in law and legal reasoning
were also analysed logically, such as the notion of power, as involved in sentences
such as “the president has the power to declare a state of emergency”. Normative
systems propounded by Alchourrón and Bulygin were another influential approach
to represent legal systems [2]. A normative system is a set of norms, which are pairs
of the form 〈condition, consequence〉: if the condition holds then the consequent
must hold. Unlike formulas of deontic logic, they do not bear truth values.

Several structural features of legal regulations, such as the use of exception,
the use of hierarchies of legislation to resolve conflicts, cross references to other

1This thread of research in legal reasoning using logic programming is in fact still active, as
witnessed for example by the Japanese PROLEG system [36].

783

Aucher et al.

parts of the legislation, deeming provisions, conditions under which the legislation
is applicable, and conditions for the validity of particular norms, led to the use of
non-monotonic logics [34]. These are logics where the consequence relation is not
monotonic, meaning that adding a formula to a theory does not necessarily produce
an increase of its set of consequences. However, these formalisms proved inadequate
to provide a general means of conflict resolution. These conflicts are sometimes due
to conflicting interpretations of the law and get even more difficult to handle in
the context of stare decisis (a legal principle of Common Law by which judges are
obliged to respect the precedents established by prior decisions of higher jurisdic-
tions). These difficulties led to a shift of focus from the modes of representation to
the modes of reasoning.

Reasoning about law. Law and its practice are subject to different kinds of
reasoning:

• Case-based reasoning uses considerations about precedent legal cases to show
how they justify particular outcomes in a new case (following the stare decisis
principle of the Anglo-American Common Law). The problem is then to map
appropriately the precedent cases to the new case. Several models have been
developped and logically formalized, notably by McCarty [31]. This problem
involves the classification of the facts of a case under legal concepts and the
interpretation of these legal concepts.

• Practical and teleological reasoning deals with the reasoning involved in the
justification of choices that the arbiter has to make in some legal decisions.
These justifications should be in line with the underlying purpose of the law.
This involves to be able to derive normative consequences from the classifica-
tion of facts and the interpretation of legal concepts.

• Evidential reasoning is the kind of reasoning that occurs when judges strive to
establish the facts on the basis of evidences.

Different kinds of logical formalisms were developped to address these different kinds
of reasonings, and in particular numerous works resorted to argumentation theory.
However, legal reasoning mostly arises in the conduct of a dispute which is regulated
by a particular procedure. The outcome of this dispute does not only depend on
facts and a body of law, but also on the procedure itself: whether it is a criminal
proceedings or a civil proceedings, to which party is assigned the burden of proof
in this procedure, etc. A number of dialogue games models of legal procedure have
been produced in the last 20 years [33].

784

Principles for a Judgement Editor Based on BDD

All this said, a striking particularity of most of the works which have been pur-
sued at the interface of logic and law in the last decades is that they were mostly
driven by theoretical considerations and without much interaction with jurists and
lawyers. Arguably, this work did not really catch the attention of the lawyers and
jurists. In particular, they did not change the way they work or their actual prac-
tice of the law, except maybe for the adoption of large and online databases such as
LexisNexis or Legifrance2 (based on standards for legal documents such as Legal-
RuleXML) and the use of knowledge management systems [17, 16, 1]. This theo-
retical work did not seem for jurists to answer an actual need and it was somehow
remote from their daily preoccupations, although the researchers could sense the
potential and the important applicability of their work in the practice of the law.

1.2 Current problems in the application of law in France
The joint work reported in this article stems from actual problems in the application
of law in France that were expressed to us by jurists and magistrates of the French
Cour de cassation.3 These problems are in fact not specific to France. The appli-
cation of law is plagued with a series of problems which are difficult to overcome
with the standard and present methods employed by jurists [30, 11].4 First, the
increasing diversity and complexity of legal texts and jurisprudence makes the work
of jurists (and lawyers) very difficult to pursue nowadays. This complexity appears
not only at the local or national level but is sometimes worsened by its interaction
with the European level, and sometimes even the international level. Second, legal
texts and jurisprudence are changing at a high pace in some areas and it is difficult
for jurists (and lawyers) to cope and keep up-to-date with the current legislation
and regulations. Third, there is a lack of consistency in the application of law, de-
pending on the geographical part in which trials take place, on the local customs
and sometimes the personnality of the judges, and more generally on the specific

2See www.lexisnexis.com and www.legifrance.gouv.fr.
3The main role of the Cour de cassation is to check that the law is applied correctly and

uniformly in France mainly from a legal and procedural point of view, the determination of facts
being left to the ‘tribunaux de grande instance et d’instance’ and ‘cour d’appel’. Stemming from
the ‘justice retenue’ dispensed by the French kings from the 13th century on and formerly called
‘Conseil des parties’ and then ‘Tribunal de cassation’ during the French revolution, the Cour de
cassation is one of the oldest juridical institution in France. It “is the highest Court in the French
judiciary. [...] the Court of Cassation is thus required to find whether the rules of law have been
correctly applied by the lower courts based on the facts. [...] If the decision of the lower court is
quashed [cassée in French], the case has consequently to be heard again.” (www.courdecassation.
fr/about_the_court_9256.html)

4In some countries subject to common law, like the United Kingdom, such problems are worsen
by the fact that some legal decisions are not made by professional jurists [11].

785

Aucher et al.

Figure 1: Screenshot of the graphical user interface.

political or social context in which a legal decision is taken.
The third problem is not novel and was already raised before the French revolu-

tion of 1789 by philosophers such as Voltaire, Diderot or Rousseau and the lawyer
Linguet for example. It led to the vast enterprise of codification of the law. Dur-
ing the French revolution, the Assemblée voted for a Code penal inspired by ideas
of Montesquieu and Beccaria and a series of ‘revolutionary’ projects led by Cam-
bacérès were submitted. One had to wait for Napoleon and more peaceful times
for the promulgation of the first comprehensive Code civil and other codes. The
Napoleonian codification had a lasting impact over France and many other countries
which adopted (partly) the French codes or took inspiration from them. However,
as already noted by Thireau in 2009, “with the inflation of legal texts and regula-
tions, the time of large codifications seems over” [39, p. 335]. Altogether, these three
problems call for a new kind of solution.

1.3 A new kind of solution: a software assistant

The solution that we propose is to make use of a software, whose ultimate role is to
help judges write a judgement and take better and well-informed decisions thanks
to a series of questions to which she/he has to answer. These questions would be

786

Principles for a Judgement Editor Based on BDD

backed up by the corresponding legal texts and jurisprudence.
This software assistant would indeed be a solution to the problems mentioned

above. First, it would unify and uniformize the application of law in France: the
kind of reasoning proposed by the software to sort out a given (type of) litigation
could then be controlled and it could also be the same in every jurisdiction of France.
Second, like any software, it could take into account the evolution of legal texts and
jurisprudence to update the different kinds of reasoning and therefore cope with
the increasing complexity of law. Third, its easy access to a large and up-to-date
knowledge base comprising the current legal texts and jurisprudence would increase
the chance for the judge to make well–informed decisions.

The graphical user interface (GUI) of this software is depicted in Figure 1. On
the left hand side of the GUI, a guide for reasoning consisting of a series of questions
is displayed. These questions and their underlying reasoning are backed up by legal
texts and jurisprudence to which the user can have access whenever she/he wants.
On the right hand side of the GUI, a judgement is produced automatically as the user
answers the questions. The user can modify at any time the judgement produced
and can also have an alternative graphical representation of the web of questions to
which she/he has to answer on the left hand side.

1.4 Structure of the article
In Section 2, we recall the basics of propositional logic and BDD. In Section 3,
we extend propositional logic with the examination operator !ϕ and we provide a
semantics for this operator based on Multi-OBDD. In Section 4, we consider as case
study the problems of determining whether an association of employees in a firm
can indeed be considered (‘qualified’) as a trade union. In Section 5, we show how
the various algorithms that have been designed for OBDD can be used to solve
and address specific kinds of legal issues that arise in the practice of the law. In
Section 6, we describe the prototype that we have implemented during our project
and provide a link with restricted access to try it out. We conclude in Section 7.

2 Propositional logic and BDD
In this section, we recall the basics of propositional logic and Binary Decision Di-
agrams (BDD for short, [20, 21]) and we show how they are related to each other.
BDD provide a graphical semantics for formulas of propositional logic in which the
truth–values of their atoms can be assigned in a specific order. This feature will play
a role in the legal context since it will allow us to represent the procedural aspect of
the practice of law (during a trial especially).

787

Aucher et al.

I(ϕ) I(ψ) I(¬ϕ) I(ϕ ∧ ψ) I(ϕ→ ψ) I(ϕ ∨ ψ)
T T F T T T
T F F F F T
F T T F T T
F F T F T F

Figure 2: Semantics of propositional connectives.

2.1 Propositional logic

In the sequel, P is a set of atoms (propositional letters) denoted p, q, r, . . . and T
and F are two symbols called truth values standing for T rue and False.

Definition 1 (Propositional language L). The language L is the set that contains
P and such that

• if ϕ,ψ ∈ L, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) ∈ L;

• L contains no more formulas.

We introduce the following abbreviations: ϕ ↔ ψ , (ϕ → ψ) ∧ (ψ → ϕ),> ,
(p ∨ ¬p),⊥ , (p ∧ ¬p) for some p ∈ P. The formula ϕ[p\ψ] denotes the formula ϕ
where the atom p is uniformly substituted with ψ.

The intuitive reading of the formulas is as follows: ¬ϕ: “ϕ does not hold”; ϕ∧ψ:
“ϕ holds and ψ holds”; ϕ ∨ ψ: “ϕ holds or ψ holds”; ϕ → ψ: “If ϕ holds then ψ
holds”.

Definition 2 (Interpretation). A total (partial) interpretation is a total (resp. par-
tial) function I : P 7→ {T, F} that assigns one of the truth values T or F to every
(resp. some of the) atom(s) in P. The set of total interpretations is denoted C and
the set of partial interpretations is denoted Cp. Note that C ⊆ Cp. If I ∈ Cp, then
Ext(I) is the set of total interpretations extending the interpretation I, that is, for
all I ′ ∈ Ext(I), for all p ∈ P such that I(p) is defined, we have that I(p) = I ′(p).

We can extend the domain of an interpretation function from the set of atoms
to the set of all formulas of L. This extension is inductively defined by the truth
table given in Figure 2. If E is a set of interpretations, we say that a formula ϕ of L
is valid on E when for all I ∈ E, we have that I(ϕ) = T . When E = C, we simply
say that ϕ is valid.

788

Principles for a Judgement Editor Based on BDD

p

q

r

F T

I(p) I(q) I(r) I(p ∨ (q ∧ r))
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

Figure 3: OBDD and truth table of the formula (p ∨ (q ∧ r)).

2.2 Binary Decision Diagrams (BDD)

Binary decision diagrams are graphical data structures for representing compactly
the semantics of formulas of propositional logics. They have been widely used in
the industry for the verification of computer hardware. Our presentation is adapted
from the book of Ben-Ari [14], based on the articles on BDDs by Bryant [20, 21].

Definition 3 (Binary Decision Diagram, BDD). A binary decision diagram (BDD)
is a directed acyclic graph with a unique root, which is also called the entry point.
Each leaf is labeled with one of the truth values T or F . Each interior node is
labeled with an atom and has two outgoing edges: one, the false edge, is denoted
by a dotted line, while the other, the true edge, is denoted by a solid line. No atom
appears more than once in a branch from the root to a leaf.

During a trial, some questions have to be examined in a certain temporal order.
This temporal order does not play a role from a logical point of view, in the sense
that the truth value of a given statement will not depend on the order in which
its arguments are examined. However, this temporal order plays a role from a
procedural point of view when the judge constructs its judgment while answering
the different questions.

This ordering is made explicit in ordered binary decision diagrams (OBDD): we
can canonically associate to each OBDD an ordering corresponding to the order
in which the different questions should be examined by the judge. However, these
orderings of the different branches of the OBDD should be somehow ‘compatible’.

Definition 4 (Compatible orderings). Let <1, . . . , <n be orderings on P, that is, for
each i ∈ {1, . . . , n}, <i is a total relation on a subset Pi ⊆ P. We say that <1, . . . , <n

789

Aucher et al.

Input: A BDD bdd.
Output: A reduced BDD denoted Reduce(bdd).
Perform a recursive traversal of the BDD:

• If bdd has more than two leaves T and F , remove duplicate leaves. Direct all
edges that pointed to a removed leaf to the remaining respective leaf.

• Perform the following steps as long as possible:

1. If all outgoing edges of a node labeled p point at the same node labeled
q, delete this node for p and direct p’s incoming edges to q.

2. If two nodes labeled p (distinct from roots) are the roots of identical sub-
BDDs, delete one sub-BDD and direct its incoming edges to the other
node.

Figure 4: Schematic algorithm Reduce.

are compatible orderings when for all i 6= j, there are no atoms p, p′ ∈ Pi ∩ Pj such
that p <i p′ while p′ <j p.

Definition 5 (Ordered Binary Decision Diagrams, OBDD). An ordered binary deci-
sion diagram (OBDD) is a BDD such that the orderings of atoms <1, . . . , <n defined
by the branches stemming from the root are compatible. The ordering associated to
the OBDD is <1 ∪ . . .∪ <n.

Example 1. Figure 3 shows an OBDD and the truth table of the formula (p∨ (q ∧
r)). The OBDD representation is more compact and avoids redundancy. One can
indeed notice that the four rows of the truth table where p is true make the formula
(p ∨ (q ∧ r)) true, regardless of the truth values of q and r. This redundancy is
represented in the OBDD by setting a true edge from the entry point p to the leaf
labeled T .

Definition 6 (Operation Reduce on BDD). The operation Reduce on BDD is de-
fined in Figure 4.

Example 2. Figure 5 shows the application of a sequence of Reduce on an OBDD
equivalent to the OBDD of Figure 3. First, we merge all the leaves labeled by F
in one single leaf and we merge all the leaves labeled by T in one single leaf. Then
we ‘bypass’ the r-node and the two r-nodes on the right because all outgoing edges
lead to the same node. In the last step, we ‘bypass’ the q-node on the right.

790

Principles for a Judgement Editor Based on BDD

p

q q

r r r r

F F F T T T T T

p

q q

r r r r

F T

p

q q

r

F T

p

q

r

F T

Figure 5: Step-by-step of algorithm Reduce.

Definition 7 (Operation Apply on OBDD). The operation Apply on OBDD is
defined in Figure 6.

Instead of the set-theoretical semantics of propositional logic based on the notion
of interpretation, we can provide a semantics to propositional logic in terms of
OBDD. The meaning of a propositional formula is completely determined by the
OBDD associated to that formula, which is itself built inductively with the Apply
Algorithm of Figure 6. The soundness of Apply is ensured by the following theorem:

Theorem 1 (Shannon expansion). For all formulas ϕ,ψ ∈ LM , for all ? ∈ {∧,∨,→
}, the following formula is valid:

ϕ ? ψ ↔ (p ∧ (ϕ[p\>] ? ψ[p\>])) ∨ (¬p ∧ (ϕ[p\⊥] ? ψ[p\⊥]))

For example, ϕ ∧ ψ ↔ (p ∧ (ϕ[p\>] ∧ ψ[p\>])) ∨ (¬p ∧ (ϕ[p\⊥] ∧ ψ[p\⊥])).

Definition 8 (OBDD associated to a formula and an ordering). Let χ ∈ L and let
< be an ordering on the set of atoms occuring in χ. The OBDD associated to χ and
<, written obddχ, is defined inductively on χ as follows:

• obdd> is the OBDD consisting of a single node labeled T ;

• obdd⊥ is the OBDD consisting of a single node labeled F ;

• obddp is the following OBDD:

791

Aucher et al.

Input: MOBDDs mobdd and mobdd′, an ordering < on all atoms of mobdd and
mobdd′ compatible with their associated orderings. A truth–functional connective
?.
Output: A MOBDD denoted Apply(mobdd,mobdd′, ?,<).

1. Take the OBDDs obdd and obdd′ generated by the entry points of mobdd and
mobdd′. Let p and p′ be the labels of the entry points of obdd and obdd′ respectively.

• If obdd and obdd′ are both leaves, define the leaf mobdd0 labeled by p ? p′.

• If p = p′, define the OBDD mobdd0 whose entry point is labeled by p,
whose left sub-OBDD is Apply(obddl, obdd′

l, ?,<) and whose right sub-OBDD
is Apply(obddr, obdd′

r, ?,<).

• if p < p′, define the OBDD mobdd0 whose entry point is labeled by p,
whose left sub-OBDD is Apply(obddl, obdd′, ?,<) and whose right sub-OBDD
is Apply(obddr, obdd′, ?,<).
Otherwise, define the OBDD mobdd0 whose entry point is p′, whose
left sub-OBDD is Apply(obdd, obdd′

l, ?,<) and whose right sub-OBDD is
Apply(obdd, obdd′

r, ?,<).

where obddl, obdd′
l (resp. obddr, obdd′

r) are the left (resp. right) sub-BDDs of obdd
and obdd′.
2. Return obdd0 [with the disjoint union of the OBDDs generated by the other roots
of mobdd and mobdd′].

Figure 6: Schematic algorithm Apply for OBDD [and MOBDD].

p

F T

• if χ = ϕ ? ψ, then obddχ , Apply(obddϕ, obddψ, ?,<).

• if χ = ¬ϕ, then obddχ is obddϕ where the labels T or F of the leafs have been
switched.

Example 3. Let us consider the formula ϕ , p → ((q ∧ ¬r) ∨ ¬s). The syntactic
decomposition tree of formula ϕ is represented at the top of Figure 7. From this
decomposition tree, we can apply the induction process of Definition 8 to obtain

792

Principles for a Judgement Editor Based on BDD

p

→

∨

∧ ¬

q ¬

r

s

p

→

∨

∧ ¬

q ¬

r

s

T F

T F

T F

T F

p

→

∨

∧ s

q r

T F

T F T F

T F

p

→

∨

q s

r

F T

T F

T F

p

T F

→

q

r

s

T F

p

q

r

s

T F

Figure 7: Successive applications of Apply with the ordering p < q < r < s: from
the syntactic tree of ϕ , p→ ((q ∧ ¬r) ∨ ¬s) (top left) to obddϕ (bottom right).

793

Aucher et al.

Input: A BDD obdd for a formula ϕ; an interpretation I ∈ Cp (partial or total).
Output: A BDD denoted Restrict(I, obdd).
Perform a recursive traversal of the BDD:

• If the root of obdd is a leaf, return the leaf.

• If the root of obdd is labeled p and I(p) is defined, return the sub-BDD reached
by its true edge if I(p) = T and the sub-BDD reached by its false edge if
I(p) = F .

• Otherwise (the root of obdd is labeled p and I(p) is not defined), apply the
algorithm to the left and right sub-BDD, and return the BDD whose root is p
and whose left and right sub-BDD are those returned by the recursive calls.

Figure 8: Schematic algorithm Restrict.

p

q

r

s

T F

q

r

s

T F

r

s

T F

s

T F T

Figure 9: Successive applications of Restrict to obddϕ of Figure 7 with the inter-
pretations I1, I2, I3 and I4.

the OBDD obddϕ. This process is represented in Figure 7, it consists in applying
iteratively algorithm Apply of Figure 6.

Definition 9 (Operation Restrict). The operation Restrict on BDD and inter-
pretations is defined in Figure 8.

Example 4. Figure 9 shows the successive application of Restrict on the OBDD
obddϕ of Figure 7, with the interpretations I1(p) = T and I1(t) undefined for all

794

Principles for a Judgement Editor Based on BDD

t 6= p, I2(q) = T and I2(t) undefined for all t 6= q, I3(r) = T and I3(t) undefined
for all t 6= r, I4(s) = F and I4(t) undefined for all t 6= s.

The key properties of the algorithms Restrict and Reduce are highlighted by
the following results.

Proposition 1. Let obddϕ be an OBDD associated to a formula ϕ ∈ L (and an
ordering) and let I ∈ Cp be an interpretation. Then, Restrict(I, obddϕ) returns an
OBDD associated to a formula ψ such that ϕ↔ ψ is valid on the set of interpreta-
tions extending I, Ext(I).

Theorem 2. The algorithm Reduce constructs an OBDD if the original BDD is
ordered. For a given ordering of atoms, the reduced OBDDs for logically equivalent
formulas are structurally identical.

All operations on OBDD, Apply, Reduce, and Restrict, have a polynomial
algorithmic complexity with the size of the OBDD they operate on. The size of the
result of Reduce strongly depends on the atom ordering. It is exponential in the
worst case. Some formulas even have an exponential size OBDD for all orderings.
However, OBDD have shown to be of great pratical value, and have become a
standard solution for dealing with industrial size propositional formulas, e.g. in the
areas of digital system design, verification and testing [10].

3 The examination operator
Sometimes during a trial, the judge must necessarily examine or raise a specific issue.
For example, the complainant can attack the legitimity of a trade union presenting
a candidate to the professionnal elections of a firm. The complainant could argue
that this association of employees cannot really be qualified as a syndicate because
it is not senior enough. In that case, even if the trade union turns out to be senior
enough (older than 2 years), the judge must nevertheless examine all the other
criteria (different from seniority) that make the association of employees qualify as
a trade union (even if she/he does not decide to raise the issue of the other criteria
during the trial).

Definition 10 (Language LM). The language LM is the set that contains P∪ {>,⊥}
and such that

• if ϕ,ψ ∈ LM , then !ϕ,¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) ∈ LM ;

• LM contains no more formulas.

795

Aucher et al.

We use the same abbreviations and notations as in Definition 1.

The intuitive reading of the formula !ϕ is as follows: “ϕ is examined and it holds”.
For example, the formula q∧!p holds if, and only if, p is examined and p and q both
hold.

We must provide a semantics to our extended language LM , in particular to
the examination operator !ϕ. The Algorithm Apply provides already a semantics to
every formula of the propositional language in terms of OBDD. Indeed, it suffices
to apply it inductively to every subformula of a given formula ϕ (from the atoms
up to the formula ϕ) to obtain an OBDD that captures the meaning of ϕ. Thus,
we extend this algorithm to include the examination operator as well. With this
aim in view, we introduce an extended form of BDD with several entry points. This
extension is called a Multi-BDD and, contrary to BDD, it can have several roots.

Definition 11 (Multi-BDD, Multi-OBBB). A Multi-BDD (MBDD for short) is a
BDD with possibly multiple roots r0, . . . , rk. The root r0 is distinguished and called
the entry point of the MBDD. A Multi-OBDD (MOBDD for short) is a MBDD such
that the orderings of atoms <0, . . . , , <k defined by the branches stemming from the
roots r0, . . . , rk are compatible. A MBDD or MOBDD is elementary when it consists
only of leaves.

Example 5. Figure 13 shows a MOBDD. The construction of this MOBDD is
detailed in the next section.

Definition 12 (MOBDD associated to a formula and an ordering). Let χ ∈ LM
and let < be an ordering on the set of atoms occuring in χ. The MOBDD associated
to χ (and <), written mobddχ, is defined inductively on χ as follows.

• mobdd> , obdd>, mobdd⊥ , obdd⊥, mobddp , obddp of Definition 8.

• if χ = (ϕ ? ψ), then

– if ϕ 6=!ϕ′ and ψ 6=!ψ′ for any ϕ′, ψ′ ∈ LM , then
mobddχ , Apply(mobddϕ,mobddψ, ?,<) (as defined in Figure 6);

– if ϕ =!ϕ′ and ψ 6=!ψ′ for some ϕ′ ∈ LM and any ψ′ ∈ LM (or ϕ 6=!ϕ′ and
ψ =!ψ′ for some ψ′ ∈ LM and any ϕ′ ∈ LM), then
mobddχ , mobddϕ′ t Apply(mobddϕ′ ,mobddψ, ?,<)
(resp. mobddχ , mobddϕ′ t Apply(mobddϕ,mobddψ′ , ?,<);

– if ϕ =!ϕ′ and ψ =!ψ′ (for some ϕ′, ψ′ ∈ LM), then
mobddχ , mobddϕ′ tmobddψ′ t Apply(mobddϕ′ ,mobddψ′ , ?,<).

796

Principles for a Judgement Editor Based on BDD

q

T F

p

q

T F

q p

q

T F

q

T F T F

Figure 10: obddq (first), obddp∧q (second), mobdd(p∧!q,<) reduced (third),
Restrict

(
I,mobdd(p∧!q,<)

)
reduced, with I(p) = F and I(q) undefined (fourth),

Restrict
(
I,mobdd(p∧!q,<)

)
with I(p) = F and I(q) = T (fifth) with ordering p < q.

• if χ = ¬ϕ, then mobddχ is mobddϕ where the labels T or F of the leafs have
been switched.

It is important to notice that in order to reduce a MOBDD to an elementary
MOBDD, the magistrate must evaluate every formula associated to a root of the
MOBDD. The proposition below shows that our definition of MOBDD does capture
that requirement.

Proposition 2. Let ϕ ∈ LM with subformula !ψ and let I ∈ Cp be a partial inter-
pretation. If I(ψ) /∈ {T, F}, then Reduce (Restrict(I,mobddϕ)) is not elementary.

Example 6. In Figure 10, we represent the MOBDD associated to the formula p∧!q
and ordering p < q (disjoint union of first and second OBDD, reduced in the third
graph). Roots are in gray and the entry points are darker. This formula is true if,
and only if, p and q are both true and q is examined. Hence, if p is given the value
F (by the judge), then, even if the truth value of the formula p∧!q is determined,
the MOBDD is still not elementary. Indeed, we must examine the ‘question’ q and
give a truth value to q. Then, once the judge has examined question ‘q’, we reach
the fifth MOBDD, which is elementary.

4 Case study: French trade unions
Our case study deals with French professional election in a firm [38]. Among the
problems to be decided upon, one is to determine whether an association of employ-
ees is really qualified as a trade union so that this association can propose employees
to come forward as candidates at the professional elections of the firm. Law intro-
duces four criteria that have to be fulfilled so that an association can indeed be

797

Aucher et al.

qualified as a trade union. These four criteria have to hold altogether, and during a
trial, the judge must necessarily examine all of them. They are the following:

1. the association of employees should respect the ‘Republican values’;

2. the association of employees should be ‘Independent’ (from the directorate of
the firm for example);

3. the association of employees should be ‘Senior’ enough (minimum 2 years of
existence);

4. the association of employees should be within the appropriate ‘Geographical
and professional range’.

Hence, we introduce the formula R (resp. I, S and G) which stands respectively
for “the criteria of the Republican values (resp. Independence, Seniority, Geographical
and professional range) is fulfilled”. The four criteria must hold for an association
of employees to be legally qualified as trade union in a firm, and they must all be
examined by the judge, even if they are not contested. Therefore, the following
formula must be true: (!R ∧ (!I ∧ (!G∧!S))).

4.1 The criterias of ‘republican values’ and ‘independence’

To determine whether the criteria of ‘Republican values’ holds, the judge has to
answer a number of questions. To formulate these questions, we introduce the
following set of atoms:

PR , {LitR, OldJugR, NewEltR, P roof¬R}

These atoms stand for the following propositions:

• LitR: “The plaintiff contests the criteria of ‘Republican values’ ”;

• OldJugR: “An old judgement dealing with the criteria of ‘Republican values’
already established that the association of employees fulfills that criteria”;

• NewEltR: “New elements have been brought to the fore that oblige to recon-
sider the old judgement”;

• Proof¬R: “The plaintiff presents the proof that the criteria of ‘Republican
values’ is not fulfilled”.

798

Principles for a Judgement Editor Based on BDD

Then, we can give the formula in the language LM that determine in which case
the criteria of ‘Republican values’ holds. It is the following:

R , LitR → ((OldJugR ∧ ¬NewEltR) ∨ ¬Proof¬R)

The above formula reads as follows: “if the plaintiff contests that the criteria of
‘Republican values’ is satisfied, then either there is an old judgement which already
established that this criteria was fulfilled and no new elements have been brought to
the fore which oblige to reconsider this old judgement, or there is no old judgement
and the plaintiff has not been able to prove that the criteria is not fulfilled”. However,
in the procedure that the judge must follow during a trial, he must first determine
whether or not there was an old judgment (that already established that this criteria
was fulfilled) before asking the plaintiff to provide a proof that the criteria is not
fulfilled. This procedural reasoning is captured by our OBDDs. In the left OBDD of
Figure 11, the judge first has to check that there was an old judgement establishing
the criteria. In the right OBDD of Figure 11, he first has to ask the plaintiff to
provide a proof that the criteria is not fulfilled (without wondering whether an old
judgement was already established or not).

Dealing with the criteria of ‘Independence’ is completely similar. Hence, we
introduce the following set of atoms:

PI , {LitI , OldJugI , NewEltI , P roof¬I}

Their interpretation is the same as for the criteria of Republican values, except that
the term “Republican values” has to be replaced by “Independence” everywhere.
So, the formula I of the language LM which determines in which case I holds is the
following:

I , LitI → ((OldJugI ∧ ¬NewEltI) ∨ ¬Proof¬I)

Its intuitive interpretation is the same as for the previous criteria.

4.2 The criteria of ‘geographical and professional range’

For the criteria of ‘Geographical and professional range’, we introduce the following
set of atoms:

PG , {LitG, DecideG, P roof¬G}

These atoms stand for the following propositions:

799

Aucher et al.

LitR

OldJugR

NewEltR

Proof¬R

T F

LitR

Proof¬R

OldJugR

NewEltR

T F

I(LitR) I(OldJugR) I(NewEltR) I(Proof¬R) I(R)
T T T T F
T T T F T
T T F T T
T T F F T
T F T T F
T F T F T
T F F T F
T F F F T
F T T T T
F T T F T
F T F T T
F T F F T
F F T T T
F F T F T
F F F T T
F F F F T

Figure 11: Three logically equivalent representations. OBDD associated to
R = LitR → ((OldJugR ∧ ¬NewEltR) ∨ ¬Proof¬R) and LitR < OldJugR <
NewEltR < Proof¬R (top left), LitR < Proof¬R < OldJugR < NewEltR (top
right). Truth table of R (bottom).

• LitG: “The plaintiff contests the criteria of ‘Geographical and professional
range’ ”;

• DecideG: “The judge decides to examine the criteria of ‘Geographical and
professional range’ ”;

• Proof¬G: “The plaintiff presents the proof that the criteria of ‘Geographical

800

Principles for a Judgement Editor Based on BDD

and professional range’ is not fulfilled”.
The formula G of the language LM determines in which case the criteria of

‘Geographical and professional range’ holds:

G , (LitG ∨DecideG)→ ¬Proof¬G

The formula G reads as follows: “if the plaintiff contests that the criteria of ‘Geo-
graphical and professional range’ is fulfilled or if the judge decides to consider this
criteria, then the plaintiff presents the proof that the criteria is not fulfilled”. The
OBDD associated to the formula G is depicted in Figure 12, it is the third OBDD
from the left. In that last example, even if the criteria was not contested by the
plaintiff, the judge can decide to solicit or not the plaintiff on that issue.

Logically equivalent representations. In Figure 11, we provide three equiva-
lent and alternative representations of the semantics of the formula R: the truth
table of R and two OBDDs associated to R that only differ on their associated or-
derings. The construction of the top left OBDD using the algorithm Apply is given
in Figure 7 (with the appropriate atom substitutions). During a trial, the judge an-
swers the questions corresponding to the nodes of the OBDD in the order specified
by the ordering of the OBDD. However, this order could be changed automatically
thanks to the algorithms dedicated to OBDDs, if needed. He could also ‘navigate’
in the binary decision diagram to explore it without having to answer any question
node. Each time the judge answers a question, the OBDD is updated to a simpler
OBDD. This update is performed by the Restrict algorithm.
Example 7. A series of questions answering and updates is given in Figure 9 (with
the appropriate atoms substitutions). First, the judge answers ‘yes’ to question p
(alias LitR) because the plaintiff contests the criteria. The software tool then applies
the Restrict algorithm on the first OBDD of Figure 9 with the interpretation I1,
yielding the second OBDD of Figure 9. Then, the judge answers ‘yes’ again to the
question q (alias OldJugR) because an old judgement dealing with the criteria has
indeed already established its validity. The software tool then applies the Restrict
algorithm to the second underlying OBDD of Figure 9 with I2, yielding the third
OBDD of Figure 9. Then, he answers ‘yes’ to r (alias NewEltR) because new
elements have been brought to the fore that oblige to reconsider the old judgement,
yielding the fourth OBDD of Figure 9 by application of Restrict with I3. Finally,
he answers ‘no’ to s (alias Proof¬R) because these new elements do not invalidate
the old judgement establishing the validity of the criteria. The software tool finally
reaches the last elementary OBDD of Figure 9 by application of Restrict with I4,
stating that the criteria of ‘republican values’ is fulfilled in that particular litigation.

801

Aucher et al.

LitR

OldJugR

NewEltR

Proof¬R

T F

LitI

OldJugI

NewEltI

Proof¬I

T F

LitG

DecideG

Proof¬G

T F

LitG

DecideG

Proof¬G

T F

LitI

OldJugI

NewEltI

Proof¬I

LitR

OldJugR

NewEltR

Proof¬R

Figure 12: MOBDD of (!R∧(!I∧!G)) with ordering LitR < OldJugR < NewEltR <
Proof¬R < LitI < OldJugI < NewEltI < Proof¬I < LitG < OldJugG <
NewEltG < Proof¬G. The four OBDD are associated to R, I, G and (R∧ (I ∧G)),
the entry point is in dark gray.

4.3 A MOBDD for qualifying as a trade union

We have not considered the criteria of ‘Seniority’ until now and we will not deal
with it in order to ease the presentation and because it is more complex to repre-
sent than the other criteria, in the sense that many more atoms (questions) are
needed to deal with it. The MOBDD of (!R ∧ (!I∧!G)) with ordering LitR <
OldJugR < NewEltR < Proof¬R < LitI < OldJugI < NewEltI < Proof¬I <
LitG < OldJugG < NewEltG < Proof¬G is represented in Figure 12. It is simply
the disjoint union of the three OBDD associated to R, I, G and (R∧(I∧G)). Then,
it can be reduced equivalently thanks to the Algorithm Reduce of Figure 4 to the
MOBDD of Figure 13. Note that in this MOBDD, all the leaf nodes have been
merged into two nodes (obdd> and obdd⊥).

802

Principles for a Judgement Editor Based on BDD

T F

LitR

OldJugR

NewEltR

Proof¬R

LitI

OldJugI

NewEltI

Proof¬I

LitGLitG

DecideG

Proof¬G

LitI

OldJugI

NewEltI

Proof¬I

LitR

OldJugR

NewEltR

Proof¬R

Figure 13: MOBDD of (!R ∧ (!I∧!G)) of Figure 12 reduced.

5 Applications of BDD algorithms to legal reasoning
Because our solution is based on BDD, we inherit from the vast amount of work for
BDD a number of algorithms and software applications that can play an important
role in legal reasoning. Even if they were not initially intended to be used in the legal
domain, these algorithms and software applications turn out to be really relevant
for solving specific problems or answer specific queries of the judge. We list below
some of these algorithms (some of them have already been considered above) and
show how they can be used by a judge during, before or after a trial. We start with
the algorithms of this article:

• Algorithm Restrict. This algorithm can be used when the judge answer
questions: each question answered corresponds in fact to an application of the
algorithm Restrict. After each answer, the MBDD is instanciated and the
node corresponding to the question disappears (see Example 7).

• Algorithm Reduce. This algorithm can be used to determine whether two kinds

803

Aucher et al.

of legal reasoning represented by two different MBDD are in fact equivalent:
in case the MBDD returned by this algorithm is the same in both cases, then
they are indeed equivalent (see Theorem 2).

• Algorithm Apply. This algorithm can be used to construct a MOBDD corre-
sponding to a formula expressed in our language LM . It can also be used when
we want to combine two kinds of legal reasoning that deal with different but
complementary issues that have already been represented by two MOBDD.

Other algorithms based on BDD dealing with quantification over propositional
atoms can be used to solve the following tasks:

• Determine whether the answer to a specific question will allow the judge to
conclude about a litigation or a specific subproblem without having to examine
all the other questions exhaustively.

• Determine whether a question is redundant and can thus be removed from the
MBDD.

These algorithms are only a few among the large amount of algorithms for BDD
which are available. Many other algorithms can be used or designed or derived to
solve specific legal reasoning tasks.

6 Our prototype
In this section, we introduce the prototype that was developed during our project.
Our prototype does not use any BDD software library: we realized that the graphs
elaborated in collaboration with the jurists were in fact BDD at a rather well-
advanced stage of the project. The global architecture of the prototype is given in
Figure 14. The latest version of our prototype is available at the following address:

http://cassation.gforge.inria.fr/prototype-2015-06-08

To try it out, please contact one of the authors to obtain the access codes.
In Section 6.1, we describe the front-end graphical user interface. The develop-

ment process was iterative (inspired by the agile method) and Section 6.2 explains
how the graphs were designed interactively by the jurists and computer scientists for
creating the input graph. In Section 6.3, we introduce the architecture of the graph
generation from .doc and .dia files using MicrosoftTM Word and the software Dia.
In Section 6.4, we describe the architecture of the front-end that takes the graph as
input.

804

Principles for a Judgement Editor Based on BDD

.dia (diagrams).doc (text)

Generation

.xml (graph)

Front-end

Figure 14: Global architecture

6.1 Graphical user interface

The graphical user interface is represented in Figure 1 and the front-end is split up
into two parts. The left part proposes questions to be answered and the documen-
tation for helping the judge to make decisions. While the judge answers questions,
the right part shows the produced judgment text.

6.2 Iterative design method

During the project, computer scientists and jurists needed to find out a common
‘language’. Jurists first resorted to graphical representations of their reasonings
under the form of binary decision trees, which are more natural than the formulas
and truth tables of logic. At some point, to ease communication, we decided to adopt
a common code and use a software editor called Dia (http://dia-installer.de/).
The jurists had quite some flexibility and autonomy. For instance, they could decide
to adopt new symbols for new concepts whenever they felt that it was needed. It was
very instructive, both for computer scientists and jurists, to discuss and exchange
ideas based on these diagrams during several meetings. We agreed on a set of
graphical conventions. The textual documentation was already created by jurists
with informal structural conventions. It consisted in a collection of .doc files and
we decided to keep this format.

805

Aucher et al.

.dia (diagrams) .doc (text)

.xml (graph + texts)

.html

Converter

ParserParser

Generator

Semantic analysis

.html (simplified)
index

Pattern
match-
ing

errors.dia

graph

Figure 15: Graph generation architecture.

6.3 Graph generation architecture

Figure 15 represents the graph generation architecture. The input is divided in two
parts: diagrams in .dia and the documentation in .doc files. On the one hand,
BDD are represented by diagrams saved in .dia files. We used some graphical
conventions to encode the various elements (questions, answers, connectives). The
diagrams are parsed and a semantic analysis generates a graph from diagrams by
using the graphical conventions. On the other hand, .doc files are converted in
.html files, which are then parsed. We identify the different paragraphs in .html
files and we produce a single simplified .html file and an index identifies the sections
and the judgment paragraphs.

The last step generates a .xml file which merges the graph and the textual

806

Principles for a Judgement Editor Based on BDD

documentation (sections and judgment paragraphs). Errors are reported graphically
in a .dia file.

6.4 Front-end architecture
The front-end is implemented in Javascript and is fully executed in the web browser.
The front-end is based on a model-view-controller architecture. The model is dynam-
ically generated from the .xml file given as input. The generated .xml file contains
all the data for displaying questions and judgment paragraphs in the front-end. We
can export the produced judgment output as a text file.

7 Conclusion
One could argue that our proposed solution is not really suitable because it is merely
based on propositional logic and does not integrate non-classical reasoning such as
deontic, causal or defeasible reasoning, which has often been claimed to be more
appropriate to deal with legal reasoning (see the various references in Section 1.1
and [13]).5 As such, our work is only a first step and it is quite possible to extend
it to other kinds of reasoning hardly amenable to propositional reasoning. In fact,
even if we have not addressed in this article standard problems in AI and law such
as those related to ‘contrary to duties’ or exceptions, we did encounter such kinds
of exceptional reasoning in the course of our project. As it turns out, exceptions
could also be dealt with BDD and we actually introduced with that aim in view in
the course of our project an operator called “sinon” (“otherwise” in English) with
a semantics based on BDD. Our solution for handling exceptions based on BDD
turned out to be also very appealing to jurists.

This research was carried out from the outset hand in hand by both jurists
and computer scientists, with regular and numerous communications between both
parties. The graphical representation that we made up and shared for our common
work and formalization turned out in the end to correspond to BDD. This type
of representation was more along the lines of the actual practice of the jurists. In
particular, the procedural and temporal aspect of BDD was in fact very close to
their actual practice as lawyers or jurists: in a BDD, one has to answer one after
the other questions corresponding to the nodes of the BDD. This procedural and

5Quite different approaches based on neural networks and machine learning have been proposed
to justify a posteriori the reasoning of the judge, and also predict it, such as for example the work
of Borges and Bourcier [19]. However, these other kinds of models could not really be used to solve
the problems that concerned us here because they do not really provide means to help judges to
form their judgements: the crucial reasoning part is absent from these models.

807

Aucher et al.

temporal aspect of the legal practice cannot be captured by the usual syntactic
representation of propositional formulas. We made an experiment with law students
of the Ecole Normale Supérieure of Rennes to determine whether they prefer to
write the kind of meta-regulations that we use in the software tool with formulas of
(propositional) logic or with a graph-based representation like BDD. We designed
a kind of experimental protocol to figure this out. Even if the results were hard to
interpret because they had no prior teaching in logic or graph theory, it turns out
that they had somehow more facility to use the graph-based representation than the
formula-based representation.

Propositional logic is not intended to model the current state of legal texts and
regulations. It only serves here as a theoretical basis for the rewriting of most of legal
texts and regulations together with their dual representation in terms of BDD.6 In
fact, this graphical representation in terms of BDD could also be extended to more
complex kinds of legal reasoning, as mentionned above. Hence, criticisms regarding
the adequacy of propositional logic for legal reasoning do not really apply to our
work, especially in this specific context of the development of a judgement editor.
This rewriting of legal texts and regulations in logical terms can be viewed as a
new type of codification (see Section 1.2). This new codification would then provide
theoretical basis for the development of software tools that could be used by jurists
and lawyers, and probably change their actual practice of the law. If our proposal is
adopted, the current legal texts and regulations would have to be all rewritten and
adapted in order to fit the format based on BDD propounded in this article, as we
did during our project with the case study of the “French trade unions” (see Section
4). The rewriting and adaptation phase could start with small fragments of the law
and it could then be expanded step by step to all parts of the law.

From a theoretical point of view, we believe that our solution is the most promis-
ing and realistic approach to answer the needs and problems summarized in Section
1.2. Indeed, it is based on methods and techniques of logic that are very well under-
stood, worked out and applied and therefore provides a rigorous and solid foundation
to subsequent technological developments. Our approach has the advantage to pro-
vide a strong control over our representation of the legal reasoning and over the
changes that we may want to make to this reasoning. Moreover, BDD are very
well–studied and their associated algorithms are able to scale–up to a large number

6In [6, 8, 7], we propounded another rewriting of legal texts and regulations in logical terms
in order to deal with problems of privacy. The proposed reformulation was different from a logical
point of view, somehow more specific, because it was meant for other legal purposes in a particular
context, namely to check that the privacy policies declared by a company or organization are
compliant with respect to the privacy regulations of a given legislation and to check that the
company or organization does enforce its declared privacy policy over the internet.

808

Principles for a Judgement Editor Based on BDD

of nodes. Thus, using BDD is clearly a realistic solution to deal with the complexity
of the law and the large amount of texts and jurisprudences. Finally, our approach
is very flexible and can take into account the dynamism and unpredictable changes
of the law. Indeed, because it is based on propositional logic, the various changes
in the law, such as promulgation, abrogation and annulment can be modeled natu-
rally as update operations in propositional logic. Historically, the well-known AGM
theory of belief change [3] was propounded by three researchers whose one of them,
Alchourrón, was a jurist: AGM theory from his point of view was supposed to model
and deal with changes in the law, viewed as a theory of propositional logic, such as
promulgation and abrogation in an abstract way.7 As it turns out, dealing with dy-
namism and change has been at the core of most of the recent developments in logic
and artificial intelligence in the last decades and many extensions of propositional
logic with dynamic operators have been introduced (see for instance [23, 40, 41, 9]).
Hence, the dynamic character of the law could be dealt within the software by im-
porting, adapting and implementing the various methods and techniques which have
been developed in logic for dealing with dynamism and change.

Our case study based on the “French trade unions” (Section 4) shows that our
approach is feasible and can be extended to any kind of regulations, even if a tremen-
dous amount of work would need to be carried out by the jurists (in collaboration
with computer scientists and logicians) to rewrite and adapt all the existing texts
and regulations in order to define corresponding BDD. Our case study has been im-
plemented in a prototype in the course of our project (see Section 6). This prototype
was tried out by four judges of ‘tribunaux d’instance’ in France accustomed to our
case study. They were all rather impressed and satisfied with the prototype tool.
This said, the software tool introduced here is only the first part of a larger project
since this software tool would only use the BDD representing the legal reasoning
underlying specific litigations. But these BDD would first need to be defined and
created by a legal expert or a legislator. The second tool that complements the
software described in this article still has to be specified precisely. Its role would
be to create and edit these BDD that capture any other case studies. In particular,
this second software tool should provide mechanisms for modifying the graphs that
underly the BDD. From a theoretical point of view, graph modifications and change
is also an area of research that is currently very active in logic [5, 9, 24, 4, 12]. These
theoretical works could provide algorithms and associated software tools for check-
ing and verifying that a particular change or modification of the BDD has indeed
been made and that these changes do correspond to the idea and the intention of
the user/legislator who triggered them.

7Governatori & Al. [26, 25] attempt to model abrogation and annulment more realistically.

809

Aucher et al.

Finally, if such kinds of softwares would ever be developed and used by judges,
this would entail as a prerequisite that the jurists be trained and taught some rudi-
ments of logic, especially the law experts who would have to rewrite and adapt the
legal texts and regulations to create and edit the corresponding BDD. This would
also call for the enactement of regulations to determine in which kinds of legal con-
text and litigations these softwares can and should be used. Indeed, the novelty of
such softwares and their impact on society would raise a number of ethical issues that
would need to be harnessed by the law. This said, we want to stress that this work
will not replace by any means judges by ‘machines’, nor will suppress the responsi-
bility that judges endorse when they make decisions. In this article, we only propose
some theoretical foundations that could lead to the development of a software tool to
help judges to make fair, well-informed and maybe sometimes better decisions. This
software tool would also provide and recall judges some well–structured information
about the relevant legal texts and jurisprudence that they should not omit, together
with some crucial information about the legal procedure that should be followed in
order to deal with a specific litigation. If such a software tool were available some
day to judges, they should in any case remain fully responsible of their decisions and
they should not have the possibility to discharge the responsibility of their decisions
to that software tool.

Acknowledgments. The work reported in this article was carried out in the con-
text of a collaborative project with the Cour de cassation. The coordinator of
this project was Guillaume Aucher.8 We thank Anthony Baire, Annie Foret, Jean-
Baptiste Lenhof and François Schwarzentruber for their participation. We thank
François Schwarzentruber for developing the very first prototype and Anthony Baire
for developing the subsequent prototypes. We thank Marie-Pierre Lanoue, Daniel
Tardif, Eloi Buat-Menard, Laurence Pecaut-Rivolier, Llio Humphreys, Guido Boella
as well as Jean-Paul Jean, Damien Pons and Ronan Guerlot for their advices and
participation and for contributing to make this project happen. We thank Aude
Bubbe, Laurence Pecaut-Rivolier, Aurélie Police and Françoise Simond for trying
out our prototype. We thank Olivier Ridoux for carefully reading the article and
for proposing to use multi–BDD instead of three–valued OBDD.

References
[1] Ajani, G., Boella, G., Caro, L. D., Robaldo, L., Humphreys, L., Praduroux,

8Guillaume Aucher was interviewed at the outset of the project by Jean-Michel Prima: http:
//emergences.inria.fr/lettres2013/newsletter-n28/L28-OUTILDECISION.

810

Principles for a Judgement Editor Based on BDD

S., Rossi, P., and Violato, A. The European taxonomy syllabus: A multi-lingual,
multi-level ontology framework to untangle the web of european legal terminologyuro-
pean taxonomy syllabus: A multi-lingual, multi-level ontology framework to untangle
the web of european legal terminology. Applied Ontology 11, 4 (2016), 325–375.

[2] Alchourrón, C. E., and Bulygin, E. Normative systems. Springer-Verlag, Wien,
New York, 1971.

[3] Alchourrón, C. E., Gärdenfors, P., and Makinson, D. On the logic of theory
change: Partial meet contraction and revision functions. J. Symb. Log. 50, 2 (1985),
510–530.

[4] Areces, C., Fervari, R., and Hoffmann, G. Relation-changing modal operators.
Logic Journal of the IGPL 23, 4 (2015), 601–627.

[5] Aucher, G., Balbiani, P., Cerro, L. F. D., and Herzig, A. Global and local
graph modifiers. InMethods for Modalities 5 (M4M-5) (Cachan, France, 2007), ENTCS,
Elsevier.

[6] Aucher, G., Barreau-Saliou, C., Boella, G., Blandin-Obernesser, A.,
Gambs, S., Piolle, G., and Van Der Torre, L. The Coprelobri project : the
logical approach to privacy. In 2e Atelier Protection de la Vie Privée (APVP 2011)
(Sorèze, France, June 2011).

[7] Aucher, G., Boella, G., and van der Torre, L. Privacy policies with modal
logic: the dynamic turn. In Deontic Logic in Computer Science (DEON 2010) (2010),
G. Governatori and G. Sartor, Eds.

[8] Aucher, G., Boella, G., and van der Torre, L. A dynamic logic for privacy
compliance. Journal of artificial intelligence and law 19, 2–3 (2011), 187–231.

[9] Aucher, G., van Benthem, J., and Grossi, D. Modal logics of sabotage revisited.
J. Log. Comput. 28, 2 (2018), 269–303.

[10] Baier, C., and Katoen, J.-P. Principles of model checking. MIT press, 2008.
[11] Bainbridge, D. Case: Computer assisted sentencing in magistrates’ courts. In

BILETA Conference (1990).
[12] Balbiani, P., Echahed, R., and Herzig, A. A dynamic logic for termgraph rewrit-

ing. In ICGT (2010), pp. 59–74.
[13] Beierle, C., Freund, B., Kern-Isberner, G., and Thimm, M. Using defeasi-

ble logic programming for argumentation-based decision support in private law. In
COMMA (2010), vol. 216 of Frontiers in Artificial Intelligence and Applications, IOS
Press, pp. 87–98.

[14] Ben-Ari, M. Mathematical logic for computer science. Springer Science & Business
Media, 2012.

[15] Bench-Capon, T., and Prakken, H. Introducing the logic and law corner. Journal
of logic and computation 18, 1 (2008), 1–12.

[16] Boella, G., Caro, L. D., Humphreys, L., Robaldo, L., Rossi, P., and van der
Torre, L. Eunomos, a legal document and knowledge management system for the
web to provide relevant, reliable and up-to-date information on the law. Artif. Intell.

811

Aucher et al.

Law 24, 3 (2016), 245–283.
[17] Boella, G., Humphreys, L., Martin, M., Rossi, P., and van der Torre, L.

Eunomos, a legal document and knowledge management system to build legal services.
In International Workshop on AI Approaches to the Complexity of Legal Systems (2011),
Springer, pp. 131–146.

[18] Bongiovanni, G., Postema, G., Rotolo, A., Sartor, G., Valentini, C., and
Walton, D., Eds. Handbook of Legal Reasoning and Argumentation. Springer, 2018.

[19] Borges, F., Borges, R., and Bourcier, D. A connectionist model to justify the
reasoning of the judge. In Legal Knowledge and Information Systems. Jurix 2002: The
Fifteenth Annual Conference (Amsterdam, 2002), T. Bench-Capon, A. Daskalopulu,
and R. Winkels, Eds., IOS Press, pp. 113–122.

[20] Bryant, R. E. Graph-based algorithms for boolean function manipulation. Comput-
ers, IEEE Transactions on 100, 8 (1986), 677–691.

[21] Bryant, R. E. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv. 24, 3 (1992), 293–318.

[22] Gabbay, D., Horty, J., Parent, X., van der Meyden, R., and van der Torre,
L., Eds. Handbook of deontic logic and normative systems. College Publication, 2013.

[23] Gärdenfors, P. Knowledge in Flux (Modeling the Dynamics of Epistemic States).
Bradford/MIT Press, Cambridge, Massachusetts, 1988.

[24] Girard, P., Seligman, J., and Liu, F. General dynamic dynamic logic. In Advances
in Modal Logic (2012), pp. 239–260.

[25] Governatori, G., Padmanabhan, V., Rotolo, A., and Sattar, A. A defeasible
logic for modelling policy-based intentions and motivational attitudes. Logic Journal
of the IGPL 17, 3 (2009), 227–265.

[26] Governatori, G., and Rotolo, A. Changing legal systems: legal abrogations and
annulments in defeasible logic. Logic Journal of the IGPL 18, 1 (2010), 157–194.

[27] Grossi, D., and Rotolo, A. A New Survey of Active Directions in Modern Logic,
vol. 30 of Studies in Logic. College Publications London, 2011, ch. Logic in the Law:
A Concise Overview, pp. 251–274.

[28] Halpern, J., Harper, R., Immerman, N., Kolaitis, P., Vardi, M., and Vianu,
V. On the unusual effectiveness of logic in computer science. The Bulletin of Symbolic
Logic 7, 2 (2001), 213–236.

[29] Jones, A., and Sergot, M. Deontic logic in the representation of law: Towards a
methodology. Artificial Intelligence and Law 1, 1 (1992), 45–64.

[30] Leith, P. The rise and fall of the legal expert system. European Journal of Law and
Technology 1, 1 (2010).

[31] McCarty, L. A language for legal discourse i. basic features. In Proceedings of ICAIL
(1989), ACM, pp. 180–189.

[32] Moss, L. S. Applied logic: A manifesto. In Mathematical problems from applied logic
I. Springer, 2006, pp. 317–343.

[33] Prakken, H. Formal systems for persuasion dialogue. The Knowledge Engineering

812

Principles for a Judgement Editor Based on BDD

Review 21, 2 (2006), 163–188.
[34] Prakken, H., and Sartor, G. The role of logic in computational models of legal

argument: a critical survey. Computational Logic: Logic Programming and Beyond
(2002), 175–188.

[35] Rissland, E. L. A companion to cognitive science. Wiley-Blackwell, 1999, ch. Legal
Reasoning, pp. 722–733.

[36] Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y.,
Shirakawa, K., and Takano, C. Proleg: An implementation of the presupposed
ultimate fact theory of japanese civil code by prolog technology. In New Frontiers
in Artificial Intelligence: JSAI-isAI 2010 Workshops (2012), LNAI 6797, Springer,
pp. 153–164.

[37] Sergot, M. J., Sadri, F., Kowalski, R., Kriwaczek, F., Hammond, P., and
Cory, H. The british nationality act as a logic program. Communications of the ACM
29, 5 (1986), 370–386.

[38] Struillou, Y., Morin, M.-L., and Pécaut-Rivolier, L. Le guide des élec-
tions professionnelles 2016-2017 et des désignations de représentants syndicaux dans
l’entreprise. No. 3. Dalloz / Guides Dalloz, 11 2015.

[39] Thireau, J.-L. Introduction Historique au Droit. Champs Université. Flammarion,
2009.

[40] van Benthem, J. Exploring logical dynamics. CSLI publications Stanford, 1996.
[41] van Benthem, J. Logical Dynamics of Information and Interaction. Cambridge

University Press, 2011.
[42] Wagner, P. Machine en Logique. Presses Universitaires de France – PUF, 1998.

Received 16 December 2018813

Time and Compensation Mechanisms in
Checking Legal Compliance

Guido Governatori
CSIRO’s Data61, Dutton Park, Australia
guido.governatori@data61.csiro.au

Antonino Rotolo
CIRSFID, University of Bologna, Italy

antonino.rotolo@unibo.it

Abstract

In this paper we extend the logic of violation proposed by [23] with time,
more precisely, we temporalise that logic. The resulting system allows us to
capture many subtleties of the concept of legal compliance. In particular, the
formal characterisation of compliance can handle different types of legal obli-
gation and different temporal constraints over them. The logic is also able to
represent, and reason about, chains of reparative obligations, since in many
cases the fulfillment of these types of obligation still amounts to legally accept-
able situations.

1 Introduction
Developments in open MASs(Multi-Agent Systems) have pointed out that normative
concepts can play a crucial role in modelling agents’ interaction [38, 14, 3]. Like
in human societies, desirable properties of MAS can be ensured if the interaction
of artificial agents adopts institutional models whose goal is to regiment agents’
behaviour through normative systems in supporting coordination, cooperation and
decision-making. However, to keep agents autonomous it is often suggested that
norms should not simply work as hard constraints, but rather as soft constraints
[7]. In this sense, norms should not limit in advance agents’ behaviour, but would
instead provide standards which can be violated, even though any violations should
result in sanctions or other normative effects applying to non-compliant agents.
The detection of violations and the design of agents’ compliance can amount to a

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Governatori and Rotolo

relatively affordable operation when we have to check whether agents comply with
simple normative systems. However, things are tremendously harder when we deal
with realistic, large and articulated systems of norms such as the law. To the best of
our knowledge, no systematic investigation has been so far proposed in this regard
in the MAS field.

Among other things, the complexities behind the concept of legal compliance are
due to the following reasons:

Reparative Obligations Legal norms often specify obligatory actions to be taken
in case of their violation. Obligations in force after some other obligations have been
violated correspond in general to contrary-to-duty obligations (CTDs) (see [11] for
an overview). A peculiar subclass of CTDs is particularly relevant for the law: the
so-called reparative obligations. For instance, in contract and in tort law reparative
obligations protect individual legitimate interests by imposing actions that compen-
sate any damages following from non-compliance [19, 20]. These constructions affect
the formal characterisation of legal compliance since they identify situations that are
not ideal, but still legally acceptable. Consider the following example (where norms
have as usual a conditional structure: if the antecedents are jointly the case, then
the consequent is obligatory):

Invoice ⇒ OBLPayBy7days
OBLPayBy7days,¬PayBy7days ⇒ OBLPay5%Interest

OBLPay5%Interest,¬Pay5%Interest ⇒ OBLPay10%Interest

What about if a customer violates both the obligation to pay by seven days after
having received the invoice for her purchase, and the obligation to pay the 5% of
interest of the due amount, but she pays the total amount plus the 10% of interest?
In the legal perspective (which aims at protecting the rights of the vendor), the
customer is compliant.

If so, these constructions can give rise to very complex rule dependencies, because
we can have that the violation of a single rule can activate other (reparative) rules,
which, in case of their violation, refer to other rules, and so forth [24]. If we take the
above legal norms in isolation, the depicted situation is non-compliant, since two
applicable legal norms are violated. However, if we compensate for the violations,
then we are still in a “legal” situation.

Obligation and Time The law makes use of different types of obligations (see
Section 2) also depending on how legal effects are temporally qualified. A first basic
distinction is between those legal obligations which persist over time unless some

816

Time and Compensation Mechanisms

other and subsequent events terminate them (e.g., “If one causes damage, one has
to provide compensation”), and those that hold at a specific time on the condition
that the norm preconditions hold and with a specific temporal relationship between
such preconditions and the obligation (e.g., “If one is in a public building, one is
forbidden to smoke”).

Concerning the concept of compliance, it is worth noting that we may have
obligations requiring:

1. to be always fulfilled during a specified time interval;

2. that a particular condition must occur at least once before a certain deadline
and such that the obligations may, or may not, persist after this deadline if
they are not complied with;

3. that something is done at a precise time [21].

Things are definitely harder when these types of obligations occur in chains of
reparative obligations. For example, if the primary obligation is persistent and states
to pay before tomorrow, and the secondary (reparative) obligation is to pay a fine in
three days after the violation of the primary obligation, we are compliant not only
when we pay by tomorrow, but also when we do not meet this deadline and pay
both the due amount and the fine on the day after tomorrow.

Formal Requirements for Legal Compliance From a logical point of view,
a formal characterisation of the concept of legal compliance requires to address
the following related research tasks: (a) We need a logic able to handle different
types of legal obligation and different temporal constraints over them; (b) This
logic should be able to represent, and reason about, chains of reparative obligations.
In particular, we need a procedure for making hidden conditions and reparative
chains explicit; without this, we do not know whether a certain situation is legally
acceptable; (c) We have to embed into the logic aspects of time, such as persistence
and deadlines.

The paper is organised as follows: in Section 2 we informally discuss the types of
obligation we will handle in the proposed framework. Then, in Section 3 we formally
introduce the language of the framework, a set of inference rules to infer additional
norms/rules from the rules given in a (defeasible) theory (meant to correspond to
a normative system) and to remove rules subsumed by others in a given theory. In
Section 4 we provide the proof theory for inferring what obligations are in force and
when they are in force from a given theory. In Section 5 we provide a normalisation
procedure to be used to identify, given a defeasible theory what are the rules that

817

Governatori and Rotolo

have to be used to determine what are the obligations in force, and whether they
have been complied with. Finally, in Section 6 we provide some hints about future
directions of research and we shortly discuss some related works.

2 The Many Faces of Obligations
We can distinguish achievement from maintenance obligations [10, 21, 30]. For
an achievement obligation, a certain condition must occur at least once before a
deadline:

Example 1. Customers must pay within 7 days, after receiving the invoice.

The deadline refers to an obligation triggered by receipt of the invoice. After
that, the customer is obliged to pay. The fulfilment of the obligation by its deadline
terminates the persistence of the obligation.

For maintenance obligations, a certain condition must obtain during all instants
before the deadline:

Example 2. After opening a bank account, customers must keep a positive balance
for 30 days.

In Example 2 the deadline only signals that the obligation is terminated: a
violation occurs when the obliged state does not obtain at some time before the
deadline.

Finally, punctual obligations only apply to single instants:

Example 3. When banks proceed with any wire transfer, they must transmit a
message, via SWIFT, to the receiving bank requesting that the payment is made
according to the instructions given.

Punctual obligations apply to single instants; they can be thought of as mainte-
nance obligations in force in time intervals where the endpoints are equal. Typically
punctual obligations must occur at the same time of their triggering conditions.

Norms can be associated with an explicit sanction. For example,

Example 4. Customers must pay within 7 days, after receiving the invoice. Other-
wise, 10% of interest must be paid within 10 days.

Example 5. After opening a bank account, customers must keep a positive balance
for 30 days. Otherwise, their account must be immediately blocked.

818

Time and Compensation Mechanisms

A sanction is often implemented through a separate obligation, which is triggered
by a detected violation. Thus, different types of obligations can be combined in
chains of reparative obligations: in Example 4, the violation of the primary achieve-
ment obligation is supposed to be repaired by another achievement obligation; in
Example 5, the violation of a primary maintenance obligation is compensated by a
punctual obligation.

We introduced in [23] the non-boolean connective ⊗: a formula like a⊗ b means
that a is obligatory, but if the obligation a is not fulfilled, then the obligation b is
activated and becomes in force until it is satisfied or violated. However, the violation
condition of an obligation varies depending on the types of obligations used. In the
remainder, we will extend the approach of [23, 24] by adding temporal qualifications
to cover these cases.

Notice that the classification of obligation types given in [30], which is a com-
plete classification over the temporal, compliance and violation dimensions, provides
a more fine grained distinctions of the different types of normative requirements;
however, for space reasons, we restrict our analysis to the cases presented in this
section.

3 Temporalised Violation Logic
To start with, we consider a logic whose language is defined as follows:

Definition 1 (Language). Let T = (t1, t2, . . .) be a discrete linear order of instants
of time, Atm = {a, b, . . . } be a set of atomic propositions, and O be a deontic
operator.

• A literal is either an atomic proposition or the negation of an atomic proposi-
tion, that is: Lit = Atm ∪ {¬l : l ∈ Atm}.

• If l ∈ Lit and t ∈ T , then lt is a temporal literal; > and ⊥ are temporal
literals. TLit denotes the set of temporal literals.

• If lt is a temporal literal, then Olt and ¬Olt are deontic literals. The set of
deontic literals is denoted by DLit.

• If ata and btb are temporal literals, t ∈ T , and ta ≤ t, then ata ⊗xt btb (for
x ∈ {p,m, a}) is an ⊗-chain.

• If α is an ⊗-chain, ata is a temporal literal and t ∈ T , then α ⊗xt ata (for
x ∈ {p,m, a}) is an ⊗-chain.

819

Governatori and Rotolo

• Let α be either a temporal literal, or an ⊗-chain, t ∈ T , then ⊥, α ⊗ ⊥ and
α⊗t ⊥ are deontic expressions. Nothing else is a deontic expression. The set
of deontic expressions is denoted by DExp.

Let us explain the intuitive meaning of the various elements of the language. The
meaning of a temporal literal at is that proposition a holds at time t. The deontic
literal Oat means that we have the obligation that a holds at time t. The meaning of
> and ⊥ is that > is a proposition that is always complied with (or in other terms,
it is impossible to violate) and ⊥, on the other hand, is a proposition that is always
violated (or it is impossible to comply with). According to the intended meaning,it
is useless in the present context to temporalise them. ⊗ is a binary operator to
express complex normative positions. More specifically, the meaning of a deontic
expression like

α⊗xtα ata ⊗
y
t′a
btb

is that the violation of a triggers a normative position whose content is btb . What
counts as a violation of ata depends on the parameter x, encoding the type of
obligation whose content is a, and the two temporal parameters ta (the time when
the obligation enters in force) and t′a (the deadline to fulfil the obligation). The
nature of the normative position whose content is btb depends on ⊗y. The type
of obligation whose content is ata is determined by x. If x = p, then we have a
punctual obligation (in this case we require that ta = t′a), and this means that to
comply with this prescription a must hold at time ta. If x = a, then we have an
achievement obligation; in this case, a is obligatory from ta to t′a, and the obligation
is fulfilled if a holds for at least one instant of time in the interval [ta, t′a]. Finally,
if x = m, similarly to the previous case, a is obligatory in the interval [ta, t′a], but,
in this case, to comply with the prescription, a must hold for all the instants in
the interval. As we have said, the ⊗ operator introduces normative positions in
response to a violation of the formula on the left of the operator; thus this is a
contrary-to-duty operator. An important application of contrary-to-duties is that a
contrary-to-duty can be used to encode a sanction or compensation or reparation
for a violation. The focus of this paper is mostly on this type of contrary-to-duties.
What about DExp? The meaning of a DExp, in particular of ⊥ at the end of them,
is that we have reached a situation that cannot be compensated for, This means
that the penultimate element of a deontic expression identifies the ‘last chance’ to
be compliant. After that, the deontic expression results in a situation that cannot
be complied with anymore.

820

Time and Compensation Mechanisms

Definition 2 (Rules/norms1). A rule

r : Γ ↪→ α

is an expression where r is a unique rule label, Γ ⊆ TLit ∪ DLit, ↪→∈ {⇒x,;},
α ∈ DExp.

• If ↪→ is ⇒x, the rule is a defeasible rule;

• If ↪→ is ;, the rule is a defeater.

For defeasible rules x ∈ {a,m, p}, and:

• If x = a the rule is an achievement rule;

• If x = m the rule is a maintenance rule;

• If x = p the rule is a punctual rule.

For defeaters α ∈ TLit.

A rule is a relationship between a set of premises and a conclusion; thus we
use several types of rules to describe different types of relationships. We use the
distinction of the types of rules (defeasible and defeater) for the strength of the
relationship between the premises and the conclusion. The superscript x indicates
the mode of a rule. The mode of a rule tells us what kind of conclusion we can
obtain from the rule. In the context, the mode identifies the type of obligation we
can derive. The idea is that from a rule of mode a, an achievement rule, we derive
an achievement obligation.

A defeasible rule is a rule where when the body holds then typically the conclu-
sion holds too unless there are other rules/norms overriding it. For example, when
you receive an invoice, you have the obligation to pay for it:

r1 : invoicet ⇒a payt (1)

The meaning of the above rule is that if you received an invoice at time t, then you
have the obligation to pay for it, starting from time t.2

Defeaters are the weakest rules. They cannot be used to derive obligations, but
they can be used to prevent the derivation of an obligation. Hence, they can be used

1In the reminder, we will interchangeably use both the terms ‘norm’ and ‘rule’, but we will
prefer ‘norm’ whenever the usage of the term ‘rule’ may be confused with ‘inference rule’.

2We assume the usual inter-definability between obligations and prohibition, thus O¬ ≡ F , and
F¬ ≡ O.

821

Governatori and Rotolo

to describe exceptions to obligations, and in this perspective they can be used to
terminate existing obligations. For this reason, the arrow ; is not labeled by either
a, m, nor p. Continuing the previous example, paying for the invoice terminates the
obligation to pay for it:

r2 : paidt ; payt (2)

Rule r2 says that if you pay at time t then, from time t on, there is no longer the
obligation to pay. Notice that the defeater does not introduce the prohibition to pay
again.

Definition 3 (Defeasible Theory). A Defeasible Theory is a structure (F,R,�),
where

• F , the set of facts, is a set of temporal literals;

• R is a set of rules; and

• �, the superiority relation, is a binary relation over R.

A theory corresponds to a normative system, i.e., a set of norms, where every
norm is modelled by rules. The superiority relation is used for conflicting rules, i.e.,
rules whose conclusions are complementary literals, in case both rules fire. Notice
that we do not impose any restriction on the superiority relation, which is a binary
relation that just determines the relative strength of two rules. For example, if we
consider the two rules in (1) and (2), given an invoice, and that the invoice has been
paid the two rules alone cannot allow us to conclude anything due to the sceptical
nature of Defeasible Logic. But if we further establish that r2 � r1, then the second
rule prevails, and we will conclude that we are permitted not to pay.

Definition 4. Given an ⊗-chain α, the length of α is the number of elements in
it. Given an ⊗-chain α ⊗xt btb, the index of btb is n iff the length of α ⊗xt btb is n.
We also say that b appears at index n in α⊗xt btb.

Definition 5 (Notation). Given a rule r : Γ ↪→ α, we use A(r) = Γ to indicate the
antecedent or body of the rule, and C(r) = α for the consequent or conclusion or
head of r. Given a set or rules R:

• R⇒ is the set of defeasible rules in R;

• R; is the set of defeaters in R;

• Ra is the set of achievement rules in R;

• Rm is the set of maintenance rules in R;

822

Time and Compensation Mechanisms

• Rp is the set of punctual rules in R;

• R[at] is the set of rules whose head contains at.

• R[at, k] is the set of rules where at is at index k in the head of the rules.

To simplify and uniform the notation we can combine the above notations, and
we use subscripts and superscripts before the indication relative of the head. Thus,
for example, R;[p10] is the set of defeaters whose head is the temporal literal p10,
and the rule

r : at11 . . . , atnn ⇒p a10 ⊗m10 b
20

is in Rm⇒[b20], as well as in Rp[a10] and R⇒[b20, 2].
Finally, notice that we will sometimes abuse the notation and omit (a) the times-

tamp tl in the temporal literal ltl whenever it is irrelevant to refer to it in the specific
context, (b) the mode x in the rule arrow ⇒x when x can be instantiated with any
of a, m or p, (c) x and y in ⊗xy when x and y can be instantiated, respectively, with
any of a,m, p and with any time instants.

Properties of the ⊗ operator When we have a deontic expression α = a1⊗· · ·⊗
an we do not have information about the type of obligation for the first element.
This information is provided when we use the expression in a rule. In this section
we are going to investigate properties of ⊗, in particular when two (sub-)sequences
of deontic expression are equivalent and thus we can replace them preserving the
meaning of the whole expression (or rule). To simplify the notation, we introduce
the following conventions.

Definition 6. Let r : Γ ⇒x α be a rule, then xα is an ⊗-sequence. The empty
sequence is an ⊗-sequence. If α⊗xtα ata ⊗

y
t′a
β ⊗ztβ γ is an ⊗-sequence, where α, β, γ

are ⊗-sequences, then xata ⊗yt′a β is an ⊗-sequence.
Given a rule r : Γ ↪→x α ⊗yt β, α can be the empty ⊗-sequence, and if so, then

the rule reduces to r : Γ⇒y β.

From now on, we will refer to ⊗-sequences simply as sequences and we will
provide properties for sequences to be used in rules.

The first property we want to list is the commutativity of the ⊗ operator.

α⊗xt (β ⊗yt′ γ) ≡ (α⊗xt β)⊗yt′ γ. (3)

823

Governatori and Rotolo

We extend the language with > and ⊥. Given their meaning, those two propositions
can be defined in terms of the following sequence and equivalence3

pa0 ⊗p0 ¬a0 ≡ > ⊥ ≡ ¬>. (4)

The two new propositions are useful to define reduction rules for deontic expressions.
Let us start with equivalences for >.

>⊗ α ≡ >. (5)

This equivalence says that a violation of > can be compensated by α; however, > is a
proposition that cannot be violated. Thus, the whole expression cannot be violated.
What about when > appears as the last element of ⊗?

α⊗> ≡ >. (6)

The meaning of α ⊗ > is that > is the compensation of α, thus the violation of
α is sanctioned by >. This means that the violation of α is always compensated
for, thus we have a norm whose violation does not result in any effective sanction,
thus violating α does not produce any effect. Hence, we have two possibilities: to
reject (6) if we are interested to keep trace of violations, or to accept it if we want
to investigate the effects of violations. In this paper we take the first option and we
reject the equivalence of α⊗> and >. Notice that reducing α⊗> to α would change
the meaning, since this would mean that the violation of α cannot be repaired. To
see this we move to the properties involving ⊥.

pata ⊗xta ⊥ ≡ ata . (7)

The above equivalence specifies that if ⊥ is the compensation of a punctual obliga-
tion a at time t, then there is no compensation, since the compensation cannot be
complied with. The effect of the rules is that we can eliminate ⊥ from the deontic
expression and we maintain the same meaning. Notice, however, that the same is
not true for other types of obligations. For example, for x ∈ {a,m}, we cannot
eliminate ⊥ from rules like

Γ⇒x at ⊗mt′ ⊥
since the resulting expression would be Γ⇒x at and we would miss the information
about the deadline to comply with a. Nevertheless, the following equivalence states
that ⊥ can be safely eliminated if it is not the last element of a deontic expression,
or when it is the ‘compensation’ of a maintenance obligation without deadline.

α⊗xtα ⊥⊗
y
t β ≡ α⊗ytα β mata ⊗⊥ ≡ mata (8)

3In case one wants the temporalised version, >t ≡ pat ⊗pt ¬at, and ⊥t ≡ ¬>t.

824

Time and Compensation Mechanisms

To complete the description for the properties for ⊥, we need to specify when we
can generate a new rule introducing ⊥ from two other rules.

Γ⇒x α⊗ytα at ⊗ta ⊥ ∆ ↪→ ¬at′ ⊗t′′ ⊥
Γ,∆⇒x α⊗ytα at ⊗t′−1 ⊥

t < t′ and y ∈ {a,m}. (9)

The meaning of the above inference rule is that if we have a norm determining the
termination of an obligation, then we can encode the obligation, the time when the
obligation comes to force and the time when the norm terminates its normative
effect. The idea behind a norm like at ⇒x bt

′ is the obligation b enters into force
from time t′. Here we assume the intuition developed in [27] that a ‘new’ rule takes
precedence over a conclusion obtained in the past and carrying over to the current
moment by persistence. Thus if we have a rule ctc ⇒ ¬bt′′ with t′′ > t′ the rule
for ¬bt′′ effectively terminates the force of the obligation b. Consider the following
instance of the rule

r1 : a5 ⇒m b10 ⊗15 ⊥ c12 ⇒a ¬b12 ⊗20 ⊥
a5, c12 ⇒m b10 ⊗11 ⊥

.

In this case r1 puts the obligation of b in force in the interval from 10 to 15, and
r2 enforces ¬b from 12 to 20, thus when both conditions to apply, the effective time
when the obligation of b is in force is from 10 to 11 (after that the obligation ¬b
enters into force).

The ⊗ operator, introduced in [23], is a substructural operator corresponding
to the comma on the right hand side of a sequent in sequent system. In a classical
sequent system both the left hand side and right hand side of a sequent are set
of formulas, thus the order of the formulas does not matter, and properties like
contraction and duplication hold. In [23] we established the equivalence

α⊗ a⊗ β ⊗ a⊗ γ ≡ α⊗ a⊗ β ⊗ γ.

This states that if a literal occurs multiple times, we can remove all but the first oc-
currence. The different types of obligation and times make thing more complicated.
Thus we turn our attention to study conditions under which we have contraction for
the various (combination of) ⊗ operators we have.

Tables 1 and 2 give the conditions to remove duplicates of the same atom.
Consider for example, the instance pa10 ⊗m a0 ⊗20 ⊥ of the reduction Punctual-
Maintenance (P-M) in Table 1, where the primary obligation is to have a at time
10, and whose compensation is to maintain a from 0 to 20. To trigger the secondary
obligation we should have the violation of the primary obligation. This means that
∼ a holds at 10, but this implies that it is not possible to maintain a from 0 to 20,

825

Governatori and Rotolo

P-P pat ⊗xt β ⊗ptβ at
′ ⊗yt′ γ ≡p at ⊗xt β ⊗

p
tβ
⊥⊗y γ t = t′

P-A pat ⊗xt β ⊗atβ ats ⊗
y
te γ ≡p at ⊗xt β ⊗atβ ⊥⊗y γ t = ts = te

P-M pat ⊗xt β ⊗mtβ ats ⊗
y
te γ ≡p at ⊗xt β ⊗mtβ ⊥⊗y γ t ∈ [ts, te]

A-P aats ⊗xte β ⊗
p
tβ
at
′ ⊗yt′ γ ≡a ats ⊗xte β ⊗

p
tβ
⊥⊗y γ t′ = ts = te

A-A aats ⊗xte β ⊗atβ at
′
s ⊗yt′e γ ≡

a ats ⊗xte β ⊗atβ ⊥⊗y γ [t′s, t′e] ⊆ [ts, te]
A-M aats ⊗xte β ⊗mtβ at

′
s ⊗yt′e γ ≡

a ats ⊗xte β ⊗mtβ ⊥⊗y γ [ts, te] ∩ [t′s, t′e] 6= ∅
M-P mats ⊗xte β ⊗

p
tβ
at
′ ⊗yt′ γ ≡m ats ⊗xte β ⊗

p
tβ
⊥⊗y γ t′ = ts = te

M-A mats ⊗xte β ⊗atβ at
′
s ⊗yt′e γ ≡

m ats ⊗xte β ⊗atβ ⊥⊗y γ ts = te = t′s = t′e
M-M mats ⊗xte β ⊗mtβ at

′
s ⊗yt′e γ ≡

m ats ⊗xte β ⊗mtβ ⊥⊗y γ [ts, te] ⊆ [t′s, te]

Table 1: Reductions to ⊥ (P, A, M, stand respectively for Punctual, Achievement,
Maintenance)

P-P pat ⊗xt β ⊗ptβ ∼ at
′ ⊗yt′ γ ≡p at ⊗xt β ⊗

p
tβ
>⊗y γ t = t′

P-A pat ⊗xt β ⊗atβ ∼ ats ⊗
y
te γ ≡p at ⊗xt β ⊗atβ >⊗y γ t ∈ [ts, te]

P-M pat ⊗xt β ⊗mtβ ∼ ats ⊗
y
te γ ≡p at ⊗xt β ⊗mtβ >⊗y γ t = ts = te

A-P aats ⊗xte β ⊗
p
tβ
∼ at′ ⊗yt′ γ ≡a ats ⊗xte β ⊗

p
tβ
>⊗y γ t′ = ts = te

A-A aats ⊗xte β ⊗atβ ∼ at
′
s ⊗yt′e γ ≡

a ats ⊗xte β ⊗atβ >⊗y γ [ts, te] ⊆ [t′s, t′e]
A-M aats ⊗xte β ⊗mtβ ∼ at

′
s ⊗yt′e γ ≡

a ats ⊗xte β ⊗mtβ >⊗y γ [t′s, t′e] ⊆ [ts, te]
M-P mats ⊗xte β ⊗

p
tβ
∼ at′ ⊗yt′ γ ≡m ats ⊗xte β ⊗

p
tβ
>⊗y γ t′ = ts = te

M-A mats ⊗xte β ⊗atβ ∼ at
′
s ⊗yt′e γ ≡

m ats ⊗xte β ⊗atβ >⊗y γ [ts, te] ⊆ [t′s, t′e]
M-M mats ⊗xte β ⊗mtβ ∼ at

′
s ⊗yt′e γ ≡

m ats ⊗xte β ⊗mtβ >⊗y γ ts = te = t′s = te

Table 2: Reductions to >

thus it is not possible to compensate the violation of the primary obligation. Notice
that in several cases the reductions are possible only when the intervals are just
single instants.

Introduction Rules Besides the properties given so far the full meaning of the ⊗
operator is given by the rules to introduce (and modify) the operator. The general
idea of the introduction rules is to determine the conditions under which a norm is
violated. If these conditions imply a particular obligation then, then this obligation

826

Time and Compensation Mechanisms

can be seen as a compensation of the norm the conditions violate.

Γ⇒x α⊗ptα btb ⊗Ytb γ ∆,¬btb ↪→z δ

Γ,∆⇒x α⊗ptα btb ⊗ztb δ
⊗ Ip.

The punctual obligation Opbtb (implied by the first sequent) holds only at time tb
thus the only instant when the obligation can be violated is exactly tb.

Rule ⊗Ip is the standard rule to introduce a (novel) compensation or CTD (see
[23] for further discussion about it).

Γ⇒x α⊗mtα bts ⊗
y
te β ∆,Θ⇒z δ

Γ,∆⇒x α⊗mtα bt
′
s ⊗zt′e δ

⊗ Im where Θ = {∼ bt′ : ts < t′s ≤ t′ ≤ t′e ≤ te}.

The introduction rule for ⊗m defines a slice of the interval where a specific com-
pensation of the violation holds. This conditions requires a rule whose antecedent
contains the complement of a maintenance obligation in the head of the other rule,
such that the literal is temporalised with the last n consecutive instants. For example
given the rules

a10 ⇒m b10 ⊗20 ⊥ c15,¬b17,¬b18,¬b19 ⇒p d20 ⊗20 ⊥

we can derive the new rule

a10, c15 ⇒m b17 ⊗p19 d
20 ⊗20 ⊥.

The conditions to derive a new compensation rule for an achievement obligation
are more complicated. As we have seen from the previous two cases, the structure
of the introduction rules is that the negation of a consequent of a norm is a member
of the antecedent of another norm (with the appropriate time). This ensures that
the antecedent of the norm is a breach of the other one. The idea is the same for
achievement obligations, but now detecting a violation is more complex.

Γ⇒x α⊗atα at
s
a ⊗xtea β ∆, Oat′a ,∼ at′a ⇒z δ {∆,∼ at′′a ⇒z δ}∀t′′a :tsa<t′a≤t′′a≤tea

Γ,∆⇒x α⊗atα at
s
a ⊗zt′a δ

⊗ Ia.

The idea behind the introduction of a compensation for achievement obligation
is that we have to determine that the obligation has not been fulfilled at a time
before the deadline and for all instant greater or equal to it the complement is
required. Essentially, the ⊗Ia amounts to shortening the deadline for an achievement
obligation.

a1 ⇒a b5 ⊗10 ⊥ Ob8,¬b8 ⇒p c15 ⊗15 ⊥ ¬b9 ⇒p c15 ⊗15 ⊥ ¬b10 ⇒p c15 ⊗15 ⊥
a1 ⇒a b5 ⊗p8 c15 ⊗15 ⊥

.

827

Governatori and Rotolo

The first norm initially sets the deadline by when b has to be achieved to 10. The
last n norms, in this case n = 2, have as premises the opposite of an obligation of
the first norm covering the last n instant of the force period of the obligation and
the same conclusion. This means that refraining to fulfill the obligation in the last
n instants results in the same consequence. The last part is to assess that we have
a violation. This is achieved by the second norm; here, we have the obligation in
the antecedent (an achievement obligation is no longer in force in two cases: we
are after the deadline or the content of the obligation has been achieved), thus the
condition Ob8 and ¬b8 is to ensure that the obligation is still in force at the time, and
the combination of the norms ensures that from now on not fulfilling the obligation
results in the same compensation.

Subsumption The inference rules combine premises in such a way as the deontic
content of at least one of them is included by the conclusion. Consequently, some
original rules are no longer needed. To deal with this issue we introduce the notion
of subsumption. A norm subsumes a second when the behaviour of the second norm
(its compliance condition) is implied by the first one. Here below is an example
illustrating this idea.

Example 6. Consider the following norms:

r : Invoicet ⇒a Payt ⊗pt+6 PayInterestt+7 ⊗t+7 ⊥,
r′ : Invoicet, OPayt+6,¬Payt+6 ⇒a PayInterestt+7 ⊗t+8 ⊥.

The first norm says that after the seller sends the invoice, the buyer has the achieve-
ment obligation to pay within 7 days, otherwise immediately after the violation the
buyer has to pay the principal plus the interest (punctual obligation to pay at t+ 7).
According to the second norm, given the same set of circumstances Invoice at time
t, if we have still the obligation on the seventh day after the invoice receipt date and
the payment is not made yet, we have the achievement obligation to pay the interest
by the eighth day. However, (a) the primary obligation of r′ obtains when we have
a violation of the primary obligation of r; (b) after the primary obligation of r is
violated, complying with its secondary obligation entails complying with the primary
obligation of r′ (but not vice versa); (c) hence, r is more general than r′, and so the
latter can be discarded.

In what follows, Definition 10 characterizes the concept of subsumption that we
have informally illustrated in Example 6. Since we need to check whether the com-
pliance of a norm guarantees the compliance of another norm (the subsumed one),
we provide below the following auxiliary definitions to establish (a) Definition 7: the

828

Time and Compensation Mechanisms

modes with which the compliance conditions for one obligation covers the compli-
ance conditions of another one; (b) Definition 8: when the compliance conditions
of an ⊗-chain cover the compliance conditions of another ⊗-chain; (c) Definition 9:
the conditions under which a literal belonging to an ⊗-chains is violated (indeed,
subsumption allows to remove the norms whose applicability conditions require to
violate another norm, while these conditions are encoded in the ⊗-chain of the sub-
suming norm).

Definition 7. Let X,Y ∈ {a,m, p}. Then, Y v X iff

(i) if Y = a, then X ∈ {a,m, p};

(ii) if Y = m, then X = m;

(iii) if Y = p, then X ∈ {p,m}.

Definition 8. Let

γ =
x1
c
tc1
1 ⊗x2

t′c1
c
tc2
2 ⊗x3

t′c2
· · · ⊗xjt′cj−1

c
tcj
j β =

y1
b
tb1
1 ⊗y2

t′
b1
b
tb2
2 ⊗y3

t′
b2
· · · ⊗ykt′

bk−1
b
tbk
k

be ⊗-chains. The ⊗-chain γ d-includes the ⊗-chain β iff

1. j = k,

2. ci = bi,

3. yi v xi;

4. (a) if yi = a, then t′ci ≥ tbi when xi = m, otherwise tci = tbi and t′ci ≤ t′bi;
(b) if either yi = m or yi = p, then tci ≤ tbi and t′ci ≥ t′bi

where 1 ≤ i ≤ j, k.

Definition 9. Let
x1
c
tc1
1 ⊗x2

t′c1
c
tc2
2 ⊗x3

t′c2
· · · ⊗xjt′cj−1

c
tcj
j be any ⊗-chain. For any ci,

where 1 ≤ i ≤ j, a set X violates ci iff

1. if xi = a, then X = {Oct
′
ci
i ,∼ ct

′
ci
i };

2. if xi = m or xi = p, then X ⊆ {∼ cti|tci ≤ t ≤ t′ci}.

Definition 10. Let r1 : Γ⇒ α⊗ β ⊗ γ and r2 : ∆⇒ δ be two rules, where α, β, γ,
and δ are ⊗-chains such that γ =

z1
c
tc1
1 ⊗z2

t′c1
c
tc2
2 ⊗z3

t′c2
· · · ⊗zlt′cl−1

c
tcl
l .

Then r1 subsumes r2 iff

829

Governatori and Rotolo

1. Γ = ∆ and α d-includes δ; or

2. Γ ∪X = ∆, where X violates all elements in α, and β d-includes δ; or

3. Γ ∪ Y = ∆, where Y violates all elements in β, and α ⊗ z1
c
tc1
1 ⊗z2

t′c1
c
tc2
2 ⊗z3

t′c2

· · · ⊗znt′cn−1
c
tcn
n d-includes δ, where n ≤ l.

4 Proof Conditions
We introduce the conditions that allow us to determine whether an obligation is
in force at time t (and the type of obligation as well). The problem reduces to
determine whether a (temporalised) literal follows from a theory, in other terms
whether we can derive the (temporalised) literal. In addition the conditions al-
low us to establish whether a theory has been complied with. As we discussed in
the previous sections our language focuses on obligations as well as compensatory
obligations. Thus compliance amount to check that violated and not compensated
occurred (thus it is possible to have norms that have been violated, but they have
been compensated for).

In Definition 1 we stated that a deontic expression extends an ⊗-chain with ⊥ at
the end. Thus effectively the penultimate element of a deontic expression identifies
the ‘last chance’ to be compliant. After that the deontic expression results in a
situation that cannot be complied with anymore. Hence, checking whether a theory
is not compliant amounts to deriving ⊥.

Definition 11. A tagged literal is an expression #l, where # ∈
{+∂,−∂,+∂p,−∂p,+∂a,−∂a,+∂m,−∂m}.

Definition 12. A proof P is a sequence P (1) . . . P (n) of tagged literals satisfying
the proof conditions given in Definitions 15, 16, 17 and 18. Each P (i), 1 ≤ i ≤ n is
called a line of the proof. Given a proof P , P (1..n) denotes the first n lines of the
proof.

Definition 13. A rule r is applicable at index i in a proof P at line P (n+ 1) iff4

1. ∀a ∈ A(r):

(a) if a ∈ TLit, then a ∈ F , and

4In the following, if
x1

c
tc1
1 ⊗x2

t′c1
· · · ⊗xj

t′cj−1
c
tcj

j ⊗xj+1
t′

j
· · · ⊗t′n ⊥ is an ⊗-chain of length n + 1,

mode(cj) = xj , start(cj) = tcj , and end(cj) = t′cj
.

830

Time and Compensation Mechanisms

(b) i. if a = Olt, then +∂lt ∈ P (1..n),
ii. if a = ¬Olt, then −∂lt ∈ P (1..n); and

2. ∀cj ∈ C(r),1 ≤ j ≤ i:

(a) ∀t, start(cj) ≤ t ≤ end(cj) +∂ctj ∈ P (1..n) and
i. if mode(cj) = p, then ctj /∈ F or ∼ ctj ∈ F , start(cj) = t,
ii. if mode(cj) = a, then ∀t, start(cj) ≤ t ≤ end(cj), ctj /∈ F or ∼ ctj ∈ F ,
iii. if mode(cj) = m, then ∃t, start(cj) ≤ t ≤ end(cj), ctj /∈ F or ∼ ctj ∈

F .

Definition 14. A rule r is discarded at index i in a proof P at line P (n+ 1) iff

1. ∃a ∈ A(r):

(a) if a ∈ TLit, then a ∈ F ; or
i. if a = Olt, then −∂lt ∈ P (1..n),
ii. if a = ¬Olt, then +∂lt ∈ P (1..n); or

2. ∃cj ∈ C(r),1 ≤ j ≤ i:

(a) ∃t, start(cj) ≤ t ≤ end(cj) −∂ctj ∈ P (1..n) or
i. if mode(cj) = p, then ctj ∈ F , start(cj) = t,
ii. if mode(cj) = a, then ∃t, start(cj) ≤ t ≤ end(cj), ctj ∈ F ,
iii. if mode(cj) = m, then ∀t, start(cj) ≤ t ≤ end(cj), ctj ∈ F .

The intuition behind the definitions of applicable and discarded given above is
as follows: Let us start from the conditions for a rule to be applicable at index i at
line P (n + 1). First off all we have to ensure that all the elements of the body or
antecedent of the rule are already provable. If the element is a plain literal, then
it must be given as a fact, if it is a deontic literal, then if it is a positive deontic
modality, we have to have that we have already proved it positively in the previous
line of the derivation, if it is a negated deontic modality, it must be proved with −∂
(or in other words it has been rejected, meaning that we failed to prove that it is
obligatory). For the consequent of a rule, remember that the reading of the chain
x
at ⊗yt′ b is that the obligation of b is in force when we have the violation of a. This
means that Oat∗ has to be in force (+∂at∗) for the duration of the interval associated
to a and ¬at∗ must hold (i.e., at∗ ∈ F or alternatively there is no evidence that a
holds, at∗ /∈ F) at the appropriate times. The intuition for discarded is similar, for
the antecedent we have to determine that we cannot trigger the rule: thus some

831

Governatori and Rotolo

of the antecedents are rejected. For the consequent, we check that at least one of
the element preceding the element at index i is not violated, meaning that it is not
obligatory; or if it is, it has been complied with.

In the proof conditions below we will simply use applicable/discarded at index
i, instead of applicable/discarded at index i in the proof P at line P (n+ 1).

All proof tags presented in the paper will be defined according the principle of
strong negation [4]. According to it, the pairs of tag +# and −# are the strong
negations of each other, where the strong negation is a function replacing/exchang-
ing: ∀ and ∃, conjunctions and disjunctions, and ‘applicable’ and ‘discarded’. For
space reasons, we provide the definition of both the positive and negative proof tags
for punctual obligation (i.e., +∂p and −∂p), and only the positive definition of the
proof tags for achievement and maintenance obligations; the corresponding negative
proof tags can be derived using the above mentioned principle.

Definition 15 (Proof Conditions for ±∂p).

If P (n+ 1) = +∂ppt then
(1) ∃r ∈ Rp⇒[pt, i] r is applicable at index i and
(2) ∀s ∈ R[∼ pt, j], either

(2.1) s is discarded at index j or
(2.2) ∃w ∈ R[pt, k] such that w is applicable at k and w � s.

If P (n+ 1) = −∂ppt then
(1) ∀r ∈ Rp⇒[pt, i] either r is discarded at i, or
(2) ∃s ∈ R[∼ pt, j] such that

(2.1) r is applicable at index j and
(2.2) ∀w ∈ R[pt, k] either w is discarded at k or s 6� w.

The proof conditions above are essentially a simple combination of the condition
for ⊗ given in [19] and those for punctual obligation of [27]. To prove +∂pat, there
must be a rule for at such that all the antecedents have to be provable, and for
all elements preceding at in the head, we have to ensure that a violation occurred.
This means that we have to examine the mode of the conclusions at indexes lower
that the index of at, and then for a punctual obligation we have to see that the
content of the obligation did not happen at t. We have two cases: the first is that
we do not have at in the set of facts, and second we have the opposite, i.e., we have
∼ at. For an achievement obligation we have to check that for all instants in the
interval the same condition as that for a punctual obligation is satisfied, while for a
maintenance obligation, a violation occurs when the condition holds for at least one
instant of time in the interval. Condition (2.1) and (2.2) are the usual conditions of

832

Time and Compensation Mechanisms

Defeasible Logic, that is: we have to verify that rules for the opposite either do not
fire (2.1), they are not applicable, or (2.2) they are defeated by applicable rules for
the conclusion we want to prove.

Definition 16 (Proof Conditions for ±∂a).

If P (n+ 1) = +∂apt then
(1) ∃r ∈ Ra⇒[pt, i] r is applicable at index i and
(2) ∀s ∈ R[∼ pt, j], either

(2.1) s is discarded at index j or
(2.2) ∃w ∈ R[pt, k] such that w is applicable at k and w � s; or

(3) ∃x ∈ Ra⇒[pt′ , i], t′ < t, end(pt′) ≥ t and
(3.1) x is applicable at index i, and
(3.2) ∀y ∈ R[∼ pt′′ , j], t′ ≤ t′′ < t either

(3.2.1) y is discarded at j or
(3.2.3) ∃z ∈ R[pt′′ , k], z is applicable at k and z � y; and

(3.3) ∀t′′′, t′′ < t′′′ ≤ t, pt′′′ /∈ F .

The conditions for +∂apt are similar to those for punctual obligations. The
difference is that we have to consider persistence, clause (3). This means that we
could have derived the obligation in the past, let us say at time t′, and the obligation
has not been terminated since them. We have two ways to terminate it: there is
a rule for the opposite that is applicable between t and t′ (3.2) see [27], or the
obligation has been already fulfilled (3.3).

Definition 17 (Proof Conditions for ±∂m).

If P (n+ 1) = +∂mpt then
(1) ∃r ∈ Rm⇒[pt, i] r is applicable at index i and
(2) ∀s ∈ R[∼ pt, j], either

(2.1) s is discarded at index j or
(2.2) ∃w ∈ R[pt, k] such that w is applicable at k and w � s; or

(3) ∃x ∈ Rm⇒[pt′ , i], t′ < t, end(pt′) ≥ t and
(3.1) x is applicable at index i, and
(3.2) ∀y ∈ R[∼ pt′′ , j], t′ ≤ t′′ < t either

(3.2.1) y is discarded at j or
(3.2.3) ∃z ∈ R[pt′′ , k], z is applicable at k and z � y.

The conditions for maintenance obligations are the same as those for achievement
obligation with the difference that fulfilling the obligation does not terminate it.

833

Governatori and Rotolo

Definition 18 (Proof Condition for ±∂). If P (n+ 1) = +∂pt, then either +∂ppt ∈
P (1..n), or +∂apt ∈ P (1..n), or +∂mpt ∈ P (1..n).

If P (n+ 1) = −∂pt, then −∂ppt ∈ P (1..n), and −∂apt ∈ P (1..n), and −∂mpt ∈
P (1..n).

Definition 19. Given a theory D, the universe of D (UD) is the set of all the
atoms occurring in D. The extension ED of D is a structure (∂+, ∂−), where, for
X ∈ {p, a,m}:

∂+
D = {lt : D ` +∂X lt} ∂−D = {lt : D ` −∂X lt}.

Example 7. Consider the following theory:

F = {Invoicet,¬Payt,¬Payt+1,PayInterestt+2,Defectivet}
R = {r1 : Invoicet ⇒a Payt ⊗t+1 ⊥

r2 : Invoicet, OPayt+1,¬Payt+1 ⇒a PayInterestt+2 ⊗t+3 ⊥,
r3 : Defectivet ; ¬Payt}

�= {r1 � r3}.

The first two norms basically describe the same situation of Example 6: the only
difference is that here we have not yet applied any introduction rule for ⊗. r3 states
that, if the delivered good is defective, the customer is allowed not to pay. The facts
trigger r1, thus we derive the obligation to pay by t+ 1 (starting from t): also r3 is
triggered but is weaker than r1. The obligation to pay is however not fulfilled by F .
Since ¬Payt ∈ F , we obtain OPayt+1 from r1, which contributes to trigger r2, thus
obtaining the obligation to pay the interest by t+ 3 (starting from t+ 2). Since the
obligation to pay by t+ 1 is not fulfilled, the extension of the theory D contains ⊥:
r1 was not complied with.

5 Checking Compliance
If we work on the idea that a set of facts may fulfill a set of norms even when some
of these norms are violated (but such violations are always compensated), then the
following definition of compliance does not suffice:

Definition 20 (Theory compliance). A Defeasible Theory D is compliant iff ⊥ 6∈
∂+
D.

Definition 20 is very simple and exploits the basic properties of any temporalized
obligations: since all ⊗-chains have ⊥ as their last element, they have an ultimate

834

Time and Compensation Mechanisms

deadline beyond which we derive ⊥: this amounts to saying that after that deadline
we state that it is impossible to compensate. Since the proof conditions for our logic
establish that an obligation in an ⊗-chain is derived only if the previous obligations
in that chain are violated, if we have ⊥ in the positive extension of a theory, this
means that there is at least one obligation whose violation cannot be compensated.
For instance, if we consider Example 7, according to Definition 20 the theory D is
not compliant because the theory extension contains ⊥. However, such a theory
should be considered compliant, since norm r2, which provides a compensation for
the violation of r1, is indeed fulfilled.

Normalisation Process The inference rules (⊗Ip), (⊗Im), and (⊗Ia) provide
a method for representing the norms in a format that can be used to check the
compliance of a theory. In fact, they allow for making explicit the hidden reparative
relation between obligations. Once applied, the redundant rules can be removed.
For instance, in Example 7 above, we could apply (⊗Ia) to r1 and r2 and obtain the
new rule

r3 : Invoicet ⇒a Payt ⊗at+1 PayInterestt+2 ⊗t+3 ⊥.
Once r3 is obtained, since r2 is subsumed by r3, then r2 is deontically redundant
and can be removed from the theory.

Formally, this process is called normalisation of a theory. Before presenting
the process, some auxiliary notions are needed: (a) Definition 21 identifies all the
instances of inference rules we can obtain from a theory; (b) since such instances
allow to introduce new norms, we should establish when these norms can inherit
the same strength qualifications (via �) of previous norms; we should also remove
redundant norms and norm priorities (Definitions 22 and 23); (c) Definition 24
introduces the deductive closure of a theory under the inference conditions for ⊗.
Definition 21. Let D = (F,R �) be any defeasible theory. Any instance I of the
inference rules (⊗Ip), (⊗Im), and (⊗Ia) is based on D if each of the premises ri
and rj of I is either (a) in R (in which case, the instance is rooted), or (b) is the
conclusion of another instance of the inference rules (⊗Ip), (⊗Im), and (⊗Ia) based
on D.

The instances of the inference rules (⊗Ip), (⊗Im), and (⊗Ia) based on D are
also called D-⊗-instances.
Definition 22. Let D = (F,R �) be any defeasible theory. The superiority relation
�∞= ∪∞i=1 �i is recursively defined as follows:

• �0=� ∪{(j, k)| j (or k) is the conclusion of a rooted D-⊗-instance such that
k ∈ R (or j ∈ R) and, for any i ∈ R, (i, k) ∈� (or (j, i) ∈�) };

835

Governatori and Rotolo

• �i+1=�i ∪{(j, k)| j (or k) is the conclusion of a D-⊗-instance such that
(i, k) ∈�i (or (j, i) ∈�i) }.

The relation �∞ is called the D-saturation of �.

Definition 23. Let D = (F,R �) be any defeasible theory. Let S be an operation
over D defined as follows: if Π = {r|r ∈ R,∃r′ ∈ R : r′ subsumes r}, then

S(D) =

D′ where D′ = (F,R′,�′) such that
R′ = R−Π and
�′=�∞ −{(x, y) ∈� | either x ∈ Π or y ∈ Π}

D otherwise

(10)

Definition 24. If D = (F,R �) is any defeasible theory, let `⊗ be the conse-
quence relation defined by the inference rules (⊗Ip), (⊗Im), and (⊗Ia). The closure
(D,`⊗) of D under `⊗ is a theory D′ = (F,R′,�′) where (a) R′ is the smallest set
containing all elements of R and the conclusions of all D-⊗-instances; (b) �′ is the
D-saturation of �.

Definition 25 (Theory normalisation). The normalisation D∞ of a theory D is a
theory recursively obtained as follows: (a) D0 = D, (b) Di+1 = S(Di,`⊗).

Example 8. The inference rules and the rule removal via subsumption must be done
several times in the appropriate order. The normalised theory is the fixed-point of
the above constructions. At each step of the the procedure we have to first apply the
inference rules for ⊗ and then the subsumption: suppose we have a theory containing
the following three norms

r1 : f tf ⇒p ata ⊗pta gtg ⊗tg ⊥, r2 : ete ⇒p ata ⊗pta btb ⊗
p
tb
ctc ⊗ptc dtd ⊗td ⊥,

r3 : ete ,¬ata ,¬btb ⇒p ctc ⊗tc ⊥.

The normalisation process would consist here in a single cycle leading to apply (i)
(⊗Ip) to r1 and r3, thus producing

r4 : ete , f tf ,¬btb ⇒p ata ⊗pta ctc ⊗tc ⊥;

(ii) subsumption and remove r3. Notice that also r2 subsumes r3. However, if we
apply subsumption first on this basis we have to delete r3 and r4 would be no longer
derivable from r1 and r3 alone.

836

Time and Compensation Mechanisms

After a theory is normalised, Definition 20 can be safely applied, as all redundant
rules are removed and all hidden reparative connections between obligations are
made explicit.

Before proving some significant properties of the normalisation process, let us
state some preliminary lemmas and introduce some auxiliary concepts:

Lemma 1. For any defeasible theory D, its normalisation D∞ is also a defeasible
theory.

The proof of this first lemma is straightforward and is omitted.

Lemma 2. Any instance of the inference rules (⊗Ip), (⊗Im), and (⊗Ia) is such
that at least one premise is subsumed by the conclusion.

Proof. Consider the inference rule (⊗Ip) and let us introduce labels to denote the
premises and the conclusion:

p1 : Γ⇒x α⊗ptα btb ⊗Ytb γ p2 : ∆,¬btb ↪→z δ

c : Γ,∆⇒x α⊗ptα btb ⊗ztb δ
⊗ Ip.

The schema guarantees that, in all instances, c subsumes p2 since, Γ ∪ ∆ ∪ {¬btb}
violates btb in the head of c, thus satisfying condition 3 in Definition 10.

Consider (⊗Im):

p′1 : Γ⇒x α⊗mtα bts ⊗
y
te β p′2 : ∆,Θ⇒z δ

c′ : Γ,∆⇒x α⊗mtα bt
′
s ⊗zt′e δ

⊗ Im

where Θ = {∼ bt′ : ts < t′s ≤ t′ ≤ t′e ≤ te}. Since Θ contains ∼ bt′ , namely, ∼ b holds
at least one time between t′s and t′e, then Γ ∪ ∆ ∪ Θ violates bt′s in the head of c′,
thus satisfying condition 3 in Definition 10.

Finally, let us examine (⊗Ia):

p′′1 : Γ⇒x α⊗atα at
s
a ⊗xtea β p′′2 : ∆, Oat′a ,∼ at′a ⇒z δ p′′3,...,n : {∆,∼ at′′a ⇒z δ}

c′′ : Γ,∆⇒x α⊗atα at
s
a ⊗zt′a δ

⊗ Ia

where ∀t′′a : tsa < t′a ≤ t′′a ≤ tea. Consider in the body of p′′2 the set of antecedents
{Oat′a ,∼ at′a}: this set violates atsa in the head of c′′, thus satisfying condition 3 in
Definition 10. Also, ∼ at′′a in the antecedents of p′′3, . . . p′′n violates atsa in the head of
c′′, thus satisfying, too, condition 3 in Definition 10.

837

Governatori and Rotolo

Definition 26. Let D = (F,R �) be any defeasible theory. We associate D with an
operator ΘD defined as follows5:

ΘD(Rul,Sup) = (Rul′,Sup′) where
Rul′ = R ∪ {r|∃I : I is a D-⊗-instance s.t. r is the conclusion of I

and D = (F,R ∪Rul,� ∪Sup)}
Sup′ =� ∪{(j, k)| j (or k) is the conclusion of a D-⊗-instance

such that (i, k) ∈ Sup (or (j, i) ∈ Sup)}

The set of 2-tuples forms a complete lattice under pointwise containment order-
ing, where ⊥ = (∅, ∅) as its least element. The least upper bound operation is the
pointwise union ∪. The sequence of of repeated applications of ΘD to ⊥, i.e. the
Kleene sequence of ΘD is defined as follows:

• ΘD ↑ 0 = ⊥;

• ΘD ↑ (n+ 1) = ΘD(ΘD ↑ n);

• ΘD ↑ n = ⋃
x<n ΘD ↑ x if n is a limit ordinal.

Lemma 3. ΘD is monotonic and the Kleene sequence from ⊥ is increasing. Hence,
the limit F = (RulF ,SupF) of all finite elements in the sequence exists, and ΘD

has a least fixpoint L = (RulL,SupL). Since any theory D is a finite, F = L.

Proof. Let us prove by induction that ΘD is pointwise monotonic. The other prop-
erties follow as standard results from set theory.

Inductive base. The inductive base is trivial, since we have (∅, ∅).
Inductive step. We have two cases: (i) Ruln−1 ⊆ Ruln and (ii) Supn−1 ⊆ Supn.
Case (i). Let us examine why r ∈ Ruln. If r ∈ R, then ∀x : r ∈ Rulx and so

r ∈ Ruln+1. Otherwise, there is a Dn−1-⊗-instance I s.t. its premises p1, . . . pm ∈
Ruln−1 and r is the conclusion of I. By inductive hypothesis, p1, . . . pm ∈ Ruln, so
r ∈ Ruln+1.

Case (ii). Let us examine why (j, k) ∈ Supn. Again, if (j, k) ∈�, then ∀x :
(j, k) ∈ Supx and so (j, k) ∈ Supn+1. Otherwise: (a) there is a Dn−1-⊗-instance
I s.t. its conclusion is either j or k (suppose, without lack of generality, that the
conclusion of I is j); (b) one of the premises p of I is such that (p, k) ∈ Supn−1. By
inductive hypothesis, (a) and (b) should hold also for Supn, so (j, k) ∈ Supn+1.

We can now prove the following result:
5This construction recalls the one used in [5] to define theory extensions.

838

Time and Compensation Mechanisms

Theorem 4. The normalisation D∞ of any defeasible theory D exists and is unique.

Proof. The result follows from that fact any defeasible theory contains only finitely
many rules and each rule has finitely many elements. Since the construction of D∞
ensures to remove at each step the subsumed rules and, in each instance of (⊗Ip),
(⊗Im), and (⊗Ia) at least one premise is subsumed by the conclusion, then Lemmas
2 and 3 guarantee that R∞ ⊆ RulL. Analogously, since the definition of �∞ strictly
depends on how R∞ is built (all redundant rule priorities are removed when rules
are removed via subsumption), then �∞⊆ SupL. Hence, (F,R∞,�∞) exists and is
unique.

Definition 27. Let D = (F,R,�) any defeasible theory. We say that � is consistent
iff ∀x, y ∈ R : (x, y), (y, x) 6∈�.

The following result holds:

Theorem 5. For any defeasible theory D = (F,R,�), if � is consistent, then the
normalisation D∞ = (F,R∞,�∞) is such that �∞ is consistent.

Sketch. The proof is by induction on the construction of D∞ and is straightforward:
we omit the details. Just notice that, by construction, for each Dn leading to D∞,
(i) the operation in Definition 22 adds new elements in �n when a new rule in Dn

inherits a superiority that applied to another rule which appeared as a premise of
an instance of (⊗Ip), (⊗Im), or (⊗Ia) in Dn−1, and (ii) the operation in Definition
23 removes redundant elements in �n−1, because they applied to rules that are no
longer in Rn. Hence, the only case where, given (ri, rj) ∈�n−1, we could add (rj , ri)
to �n without removing (ri, rj) is when ri (or, respectively, rj) is the conclusion of
at least two instances of (⊗Ip), (⊗Im), or (⊗Ia), while rj (or, respectively, ri) is not
the premise of those two instances. More precisely, we should have the following
case: given rj ∈ Rn

rx ry
ri

(ry, rj) ∈�n
rw rz

ri
(rj , rz,) ∈�n .

However, a simple inspection of the definition of (⊗Ip), (⊗Im), and (⊗Ia) shows
that one rule ri cannot be derived by different sets of premises and different inference
rules. Hence, the only admissible case is when rw = rx and rz = ry, but this would
mean that (rj , ri), (ri, rj) ∈�n−1, contrary to the assumption in the proof (i.e., by
inductive hypothesis with respect to the inductive step n: recall that we build D∞
starting with a theory D where � is assumed to be consistent).

839

Governatori and Rotolo

6 Summary and Related Work
This paper extends the logic of violation proposed by [23] with time. This extension
introduces a temporal dimension to the language saying when a norm produces its
normative effects, or in other terms when the obligation (or, in general the normative
position) corresponding to the normative effect of the norm is in force. An immediate
consequence of the extended language is that it is possible to investigate the ‘lifecycle’
of obligations, and more precisely if there are deadlines to comply with an obligation.
The extension is done to properly deal with the concept of legal compliance. To do
this we argue that we have to handle different types of temporalised legal obligations
and devise a normalisation procedure for making hidden conditions and reparative
chains explicit. One open research issue is to investigate the complexity of this
procedure, which requires, several times and in the appropriate order, to apply the
inference rules for ⊗ and to remove redundant norms. Related to this is how to
implement the framework we present in an efficient way. Computing the extension
of the temporalised defeasible theory can be computed in time linear the size of a
theory and the time points present in the theory [26] and so is the computation of
the extension of a (non temporal) defeasible theory with compensation chains [22].
We expect that the complexity of computing the extension is polynomial. Consider
the transformation outlined below that takes a rule

r : a1, . . . , an ⇒x1 ct11 ⊗x2
t′1
ct22 ⊗t′2 · · · ⊗

xm
t′m−1

ctmm ⊗t′m ⊥ (11)

and produces following rules in the temporal defeasible logic of [26]

a1, . . . , an ⇒τ r (12)

a1, . . . , an ⇒τ c
t1,t′1
1 a1, . . . , an ⇒τ ∼ c̄t1,t∗1 (13)

r, cti,t
′
i

i ⇒π
O c

ti
i r, cti,t

′
i

i , tt′i ;O ∼ ct
′
i
i (14)

⇒ nafcti cti ⇒ ¬nafcti for ti ≤ t ≤ t′i (15)

where r, nafci, ct,t
′

i , c̄ti,ti∗i and tt are new literals corresponding, respectively, to
the rule r, the literal ci, and the interval of force of ci determined by r, that the
complement of ci is not in force in an interval starting from ti and the clock event
for the time instant t.

In addition we have the following rules depending on the mode of the literals in
the head of the rule. If xi = m, then, for 1 < i ≤ m and ti ≤ t ≤ t′i we have

r, cti,t
′
i

i , Octi,nafcti ⇒τ c
ti+1,t′i+1
i+1 (16)

r, cti,t
′
i

i , Octi,nafcti ⇒τ ∼ c̄ti+1,t∗
i+1 (17)

840

Time and Compensation Mechanisms

otherwise, 1 < i ≤ m, we have

r, cti,t
′
i

i , Octii ,nafctii , . . . Oc
t′i
i ,nafct

′
i
i ⇒τ c

ti+1,t′i+1
i+1 (18)

r, cti,t
′
i

i , Octii ,nafctii , . . . Oc
t′i
i ,nafct

′
i
i ⇒τ ∼ c̄ti+1,t∗

i+1 (19)

The intuition of the transformation above is as follows: rule (12) indicates that the
rule r is applicable; then the rules in (13) indicates that if the rules is applicable
the obligation of c1 (the first element in the chain in the head fo the rule) is in force
from t1 to t′1, but this means that the complement of c1 (c̄1) cannot be in force
in any interval starting from t1. Next, the rules in (14) specify that if the rule is
applicable and the interval of force holds then, the obligation of ci enters in force (at
the start of the interval), and, since the first rule is persistent, the rule remains in
force until it is terminated (explicitly by a rule for the opposite) or by its deadline.
The rule for the deadline is given by the second rules, and the deadline is indicated
by the clock literal tt′i . The rules in (15) are meant to represent negation as failure
for literal ci. Notice that the rules in (13) are specific for the first element of a
chain, for successive elements in the chain we have to use (16) and (17) in case of
the i-th element in a chain refers to a maintenance obligation, and (18) and (19)
for the other types of obligation. The difference from the case for the first element
of a chain is that we have to determine (1) that obligation for the previous element
holds and (2) that the obligation has been violated. For the violation we use the
negation as failure (for one instant in the interval for maintenance, for all elements
in the interval for achievement). The idea of using negation as failure corresponds
to have the condition of −∂ci in the proof conditions.

It is clear that the transformation above is linear in the number of rules, literals
appearing in the rules, and time instants, thus the computation of extension of a
theory is polynomial. However, the complexity of the normalisation procedure is
not know (though, the upper bound is limited by the number of permutations of
the literals in the head of the rules). Nevertheless, from a practical point of view
we do not expect the normalisation process to be a concern, given that in real
normative systems the number of possible combinations that are feasible is limited
(and in general it is specified in normative systems what are the penalties for specific
obligations).

The literature on norm compliance in MAS is large (see, e.g., [8, 16, 33, 17, 1, 18,
28, 6, 32, 13]). However, to the best of our knowledge no work in the field has so far
attempted to model legal compliance pertaining to realistic systems where complex
norm-enforcement mechanisms such as reparative chains are combined with a rich
ontology of obligations as the one described here. In the literature on deontic logic,
besides a few exceptions like [9], the research has mostly devoted extensive, but

841

Governatori and Rotolo

separate, efforts to the role of time for dealing with CTDs (since the seminal [39])
and on logical systems for modeling the concept deontic preference and CTDs (for
an overview, [37]). This paper combines the two perspectives: in this sense, it also
inherits from [23] the advantage of avoiding the most well-known CTD paradoxes.
In this sense, [9] shares with our paper the same general view, but time is captured
there at the semantic level and the language does not explicitly handle timestamps.
Another approach similar to our using timestamps, and somehow inspired by Event
Calculus is [35] with construction to check if norms have been complied with or
violated, however such an approach does not consider reparation clauses. Similarly,
[15] provides a survey of approaches to solve conflicts among norms, including ap-
proaches based on time and temporal logics, but the majority of such approaches
do not consider compensatory norms.

Combination of time and norms are not novel, as many combinations of temporal
(or tense) logic and deontic logic have been investigated. However, temporal logic
cannot handle specific times (or timestamps). Typically these logics can express
the temporal relationships between events (represented by propositions), or the re-
lationships between states. A possible solution to obviate this is to consider hybrid
logics using nominals to capture nominals [36]. A nominal represents a proposition
true only in one possible world. A temporal nominal represents a particular instant
of time. In most temporal logic it is possible to model branching of time, and the
meaning of nominals is not clear in this kind of situations (is the world corresponding
to a nominal the same in all the branches, or we have different copies of the same
instant of time?). On the other hand timestamps (and events) have been used in
the Event Calculus. Event Calculus has been used to model the interaction between
norms and time (see, e.g., [34, 12]). However, Event Calculus is a dialect of first-
order logic and Herrestad [31] has shown that these types of logic are not suitable
to model normative reasoning in presence of violations and reparative clause. In
addition systems to model temporal norms based on (standard) Event Calculus are
not able to handle delays between the trigger and when the obligations enter in force
(and similar temporal aspects) [2]. A deontic extension of Event Calculus sharing
many features with the present work, apart the normalisation process, and the han-
dling of conflicts provided by the defeasible logic, and addressing the shortcomings
of other Event Calculus approaches has been developed in [29].

Acknowledgements

The paper is an extended and revised version of [25] presented at CLIMA XII. This
work was partially supported by EU H2020 research and innovation programme un-

842

Time and Compensation Mechanisms

der the Marie Skłodowska-Curie grant agreement No. 690974 for the project MIREL:
MIning and REasoning with Legal texts.

We thank the anonymous referees for their valuable comments that help improv-
ing the paper.

References

[1] M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Torroni. Compli-
ance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence, 20(2-4):133–157, 2006.

[2] W. Alrawagfeh. Norm Representation and Reasoning: A Formalization in Event Cal-
culus. In G. Boella, E. Elkind, B. Savarimuthu, F. Dignum, and M. Purvis, editors,
Proceedings of the 16th International Conference on Principles and Practice of Multi-
Agent Systems (PRIMA 2013), pages 5–20. Springer, 2013.

[3] G. Andrighetto, G. Governatori, P. Noriega, and L. W. N. van der Torre, editors.
Normative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[4] G. Antoniou, D. Billington, G. Governatori, and M. Maher. A flexible framework for
defeasible logics. In Proc. AAAI-2000. AAAI Press, 2000.

[5] G. Antoniou, D. Billington, G. Governatori, and M. Maher. Embedding defeasible
logic into logic programming. Theory and Practice of Logic Programming, 6(6):703–
735, 2006.

[6] G. Boella, J. Broersen, and L. van der Torre. Reasoning about constitutive norms,
counts-as conditionals, institutions, deadlines and violations. In PRIMA. Springer,
2008.

[7] G. Boella and L. van der Torre. Fulfilling or violating obligations in multiagent systems.
In Procs. IAT04, 2004.

[8] E. Bou, M. López-Sánchez, and J. A. Rodríguez-Aguilar. Adaptation of autonomic
electronic institutions through norms and institutional agents. In Proc. ESAW’06.
Springer, 2006.

[9] J. Broersen and L. van der Torre. Conditional norms and dyadic obligations in time.
In Proc. ECAI 2008. IOS Press, 2008.

[10] J. M. Broersen. Strategic deontic temporal logic as a reduction to atl, with an appli-
cation to chisholm’s scenario. In L. Goble and J. C. Meyer, editors, Proc DEON 2006,
volume 4048 of Lecture Notes in Computer Science, pages 53–68. Springer, 2006.

[11] J. Carmo and A. Jones. Deontic logic and contrary to duties. In D. Gabbay and
F. Guenther, editors, Handbook of Philosophical Logic, 2nd Edition. Kluwer, 2002.

[12] F. Chesani, P. Mello, M. Montali, and P. Torroni. Representing and Monitoring Social
Commitments using the Event Calculus. Autonomous Agents and Multi-Agent Systems,
27(1):85–130, 2013.

843

Governatori and Rotolo

[13] M. Dastani, G. Governatori, A. Rotolo, and L. van der Torre. Programming cognitive
agents in defeasible logic. In G. Sutcliffe and A. Voronkov, editors, 12th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, volume
3835 of LNAI, pages 621–636, Heidelberg, 2005. Springer.

[14] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. Tinnemeier. Normative multi-agent
programs and their logics. In R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-
Seghrouchni, editors, Programming Multi-Agent Systems, number 08361 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

[15] J. S. dos Santos, J. de Oliveira Zahn, E. A. Silvestre, V. T. da Silva, and W. W.
Vasconcelos. Detection and resolution of normative conflicts in multi-agent systems:
a literature survey. Autonomous Agents and Multi-Agent Systems, 31(6):1236–1282,
2017.

[16] M. Esteva, B. Rosell, J. A. Rodríguez-Aguilar, and J. L. Arcos. Ameli: An agent-based
middleware for electronic institutions. In Proc. AAMAS 2004. ACM, 2004.

[17] R. A. Flores and B. Chaib-draa. Modelling flexible social commitments and their
enforcement. In Proc. Engineering Societies in the Agents World V. Springer, 2004.

[18] D. Gaertner, A. Garcia-Camino, P. Noriega, J.-A. Rodriguez-Aguilar, and W. Vas-
concelos. Distributed norm management in regulated multiagent systems. In Proc.
AAMAS ’07. ACM, 2007.

[19] G. Governatori. Representing business contracts in RuleML. International Journal of
Cooperative Information Systems, 14(2-3):181–216, 2005.

[20] G. Governatori. Thou shalt is not you will. In K. Atkinson, editor, Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Law, pages 63–68,
New York, 2015. ACM.

[21] G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo. Characterising deadlines in tem-
poral modal defeasible logic. In M. A. Orgun and J. Thornton, editors, 20th Australian
Joint Conference on Artificial Intelligence, volume 4830 of Lecture Notes in Artificial
Intelligence, pages 486–496, Heidelberg, 2007. Springer.

[22] G. Governatori, F. Olivieri, A. Rotolo, and S. Scannapieco. Computing strong and weak
permissions in defeasible logic. Journal of Philosophical Logic, 42(6):799–829, 2013.

[23] G. Governatori and A. Rotolo. Logic of violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215, 2006.

[24] G. Governatori and A. Rotolo. A conceptually rich model of business process com-
pliance. In S. Link and A. Ghose, editors, 7th Asia-Pacific Conference on Conceptual
Modelling, volume 110 of CRPIT, pages 3–12. ACS, 2010.

[25] G. Governatori and A. Rotolo. Justice delayed is justice denied: Logics for a tempo-
ral account of reparations and legal compliance. In J. Leite, P. Torroni, T. Ågotnes,
G. Boella, and L. van der Torre, editors, 12th International Workshop on Computa-
tional Logic in Multi-Agent Systems, volume 6814, pages 364–382, Heidelberg, 2011.
Springer.

844

Time and Compensation Mechanisms

[26] G. Governatori and A. Rotolo. Computing temporal defeasible logic. In L. Morgenstern,
P. S. Stefaneas, F. Lévy, A. Wyner, and A. Paschke, editors, RuleML 2013, volume 8035
of Lecture Notes in Computer Science, pages 114–128. Springer, 2013.

[27] G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative positions in de-
feasible logic. In 10th International Conference on Artificial Intelligence and Law
(ICAIL05), pages 25–34, 2005.

[28] D. Grossi, H. Aldewereld, and F. Dignum. Ubi lex, ibi poena: Designing norm enforce-
ment in e-institutions. In In Coordination, Organizations, Institutions, and Norms in
Multi-Agent Systems II. Springer, 2006.

[29] M. Hashmi, G. Governatori, and M. T. Wynn. Modeling Obligations with Event-
Calculus. In Proceedings of 8th International Web Rule Symposium (RuleML 2014),
pages 296–310, Prague, Czech Republic, Aug. 2014. Springer.

[30] M. Hashmi, G. Governatori, and M. T. Wynn. Normative requirements for regulatory
compliance: An abstract formal framework. Information Systems Frontiers, 18(3):429–
455, 2016.

[31] H. Herrestad. Norms and formalization. In ICAIL, pages 175–184, 1991.
[32] J. F. Hübner, O. Boissier, and R. Bordini. From organisation specification to normative

programming in multi-agent organisations. In CLIMA XI, 2010.
[33] F. López y López, M. Luck, and M. d’Inverno. Constraining autonomy through norms.

In Proc. AAMAS ’02. ACM, 2002.
[34] R. H. Marín and G. Sartor. Time and norms: a formalisation in the event-calculus. In

ICAIL, pages 90–99, 1999.
[35] Z. Shams, M. D. Vos, J. Padget, and W. W. Vasconcelos. Practical reasoning with

norms for autonomous software agents. Eng. Appl. of AI, 65:388–399, 2017.
[36] C. Smith, A. Rotolo, and G. Sartor. Temporal reasoning and mas. In SNAMAS 2010,

2010.
[37] J. Van Benthem, D. Grossi, and F. Liu. Deontics = betterness + priority. In Proc.

DEON’10. Springer, 2010.
[38] L. van der Torre, G. Boella, and H. Verhagen, editors. Normative Multi-agent Systems,

Special Issue of JAAMAS, vol. 17(1), 2008.
[39] J. van Eck. A system of temporally relative modal and deontic predicate logic and its

philosophical applications. Logique et Analyse, 25:339–381, 1982.

Received 27 December 2018845

Rights and Punishment:
The Hohfeldian theory’s applicability and

morals in understanding criminal law

Réka Markovich ∗
Computer Science and Communications Research Unit, University of Luxembourg
Department of Business Law, Budapest University of Technology and Economics

Department of Logic, Eötvös Loránd University
reka.markovich@uni.lu

Abstract

It is often suggested that criminal law is a limitation of the general applicability
of the Hohfeldian theory of rights and duties and their correlativity. The first
part of this paper shows how a formalization of normative positions and a clear
understanding of how rights work refuses this thesis. This part leads us to the
notion of sanction. The second part of the paper presents an analysis of sanction
in terms of rights and duties in order to resolve the seemingly paradoxical
situation of the legal systems in which one has the right to escape from the
prison.

1 The Hohfeldian Theory and Its Alleged Limitations
Wesley Newcomb Hohfeld’s analysis on the different types of rights and duties (Fun-
damental Legal Conceptions as Applied in Judicial Reasoning, 1913, 1917) is highly
influential and often discussed in analytical legal theory, and it is considered as a
fundamental theory in AI&Law and normative multi-agent systems. Yet a century
later, the formalization of this theory remains, in various ways, unresolved. The
classical formalization developed by Stig Kanger and Lars Lindahl [8, 9, 10, 12]
concentrating on computational features of duties has some well-known and docu-
mented limitations, for example in Makinson [14] and Sergot [18]. The theory of
∗Support provided by the research project K-116191 of the Hungarian Scientific Research Fund is

gratefully acknowledged. The research reported in this paper was supported by the Higher Educa-
tion Excellence Program of the Ministry of Human Capacities in the frame of Artificial Intelligence
research area of Budapest University of Technology and Economics (BME FIKP-MI/FM).

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Markovich

Hohfeld and its possible formal approaches have been commented on by many logi-
cians and legal theorists since then. Some—famously Hart in [4], but also Lyons et
al. [13], Sreenivasan [20], Kocourek [11]—argue against the general validity of the
Hohfeldian model: they say it might be valid in (some areas of) private law where
there are clearly (two) counterparties as the theory considers, but branches of law
where we deal with undirected, general or absolute duties/prohibitions, or rights
where there is no clear (one) other party obliged realize an obvious limitation of
the theory’s applicability. In the following I’m going to argue that if we understand
properly the Hohfeldian system, we might incline to admit that whatever relational
his system is, areas of law like criminal law—where we consider general obligations
(prohibitions)—do not serve as a counterargument of the theory’s general validity.

The well-known system of the correlative pairs of rights (upper line) and duties
(lower line) Hohfeld built in [7] can be reconstructed in the following diagram:1

duty

claim-right privilege

no-claim

co
rr
el
at
iv
es

co
rr
el
at
iv
es

opposites

liability

power immunity

disability

co
rr
el
at
iv
es

co
rr
el
at
iv
es

opposites

Hohfeld’s reason to distinguish these, as he calls them, fundamental legal conceptions
is that the word ‘right’ was overused in judicial reasoning. This overuse, though,
leads to conceptual problems, as he puts it: “even if the difficulty related merely
to inadequacy and ambiguity of terminology, its seriousness would nevertheless be
worthy of definite recognition and persistent effort toward improvement.”

Let’s see a complex—and complete—example from the reception to represent the
difference between the types of right behind the word ‘right’ and the necessity of
their conceptual clarification. We find it in Szabó [21]: the sentence “Peter has a
right to be in this house” can refer any of these types above depending where we say
it: if this house is a building rent by Peter then his right is a claim-right against the

1It is worth to note already at this point that while Hohfeld was precise in using the word
‘correlatives’ to describe the relation within the pairs below, the word ‘opposites’ is covering different
need to involve negation. See details in 2.1.

848

Rights and Punishment

owner to ensure his occupancy (which means that the owner has the duty to do so);
if this building is a public one then Peter’s right is a privilege to be within it as being
a citizen (which means other people have no claim-right against him not to do so);
if Peter is a detective dashing in a house with an official warrant for search in his
hand then he has a power (which means that the house’s owner has a liability to this
action of Peter, that is, Peter can impose a duty on her to let him in); but if Peter
chains himself to the radiator in his own house stressing that he is exempt from the
execution of the eviction, then what he refers to is his immunity (which also means
a referring to the person’s disability to conduct the eviction).2 These normative
positions have different computational properties, different consequences,3 handling
them and their difference properly both in legal theory and in logic representing law
is crucial. From the viewpoint of deontic logic (or other logics used to formalize
law) the virtue of this system is handling agency—this is the point of correlativity:
according to Hohfeld, someone’s right always involves someone else’s duty, and the
other way around. It is often discussed in legal theory whether this correlativity is
general, i.e. true everywhere in law, see for instance Hart [4] and Lyons et al. [13].

In what follows, I introduce a formalism in order to show how the Hohfeldian theory
can be used to describe rights and duties in criminal law. Please note that elements
of and arguments for this formalism have already been presented in Markovich [15]
and recently and most detailedly in Markovich [16]; the contribution of this paper, in
the first part, is justifying the validity of the Hohfeldian theory in areas like criminal
law using this formalism, and, in the second, showing what morals this theory and
its proper understanding has about a specific notion of criminal law: the sanction
or punishment.

2 Formalization of a “Resolutely Relational” Theory
If we consider the theory of normative positions presented by Kanger [8, 9, 10] as an
attempt to formally represent the Hohfeldian rights and duties, missing the represen-
tation of legal relations’s counterparties is a well-known limitation of it,4 meanwhile,
as Makinson stresses in [14], Hohfeld’s theory is “resolutely relational”. Makinson,

2Please note that it is not typical that the very same sentence can be interpreted in all the four
different ways. It is the word ‘right’ which can be interpreted in the four different ways in different
sentences, contexts.

3These different consequences is the central question of Markovich [16].
4It has been noted, for instance, in Hansson [3], in Makisnon [14], in Sergot [18]. Some consid-

erations has been made, though, on whether the intended reading of Kangerian formulae can count
as the representation of relationality, see in Makinson [14].

849

Markovich

therefore, deems it necessary to introduce some explicit indexing of counterparties
in the formal representation in order to properly capture the full relationality of
rights relationships—even if it can be redundant sometimes in certain contexts. The
notion of ‘directed obligation’ is explicitly introduced ten years later in Herrestad
and Krogh [5] to the notion of duty (being the correlative pair of claim-right) in
order to distinguish it from the general notion (standard) deontic logic uses. The
necessity of this introduction can be shown easily with a simple formal setup which
is used in rephrasing the classical formalizations in Makinson [14] and Sergot [18],
that is, standard deontic logic (SDL)5 with agent-indexed modal operators and a
simple action logic that Chellas [2] called ET (using the operator E in and agent-
indexed way with the intended meaning of Ex as x sees to it that, containing only
the axiom T in order have successful actions).

2.1 Language and Semantics
Let’s start with the following language set-up:

Definition 1. Our modal language is given by

p ∈ Φ | φ ∧ ψ | ¬φ | ⊥ | Eaφ | Oa→bφ

for a, b ∈ A set of agents, where Φ is the set of propositional letters.

Definition 2. Frames are given as the following: for a set W of possible worlds and
set A of agents write

F = 〈W, fa, ROa,b〉a,b∈A
where fa : ℘(W)→ ℘(W) is a function and ROa,b ⊆W 2 is a binary relation.
Models are structures

M = 〈W, fa, ROa,b, V 〉a,b∈A
where V is a valuation function for atomic propositions: V : Φ→ ℘(W)

Definition 3. For M = 〈W, fa, ROa,b, V 〉a,b∈A and w ∈W we let

• V (⊥) = ∅
• w |= p⇔ w ∈ V (p) for propositional letters p ∈ Φ.
• w |= ϕ ∧ ψ ⇔ w |= ϕ AND w |= ψ.

5The originally used deontic logic in the theory of normative positions is slightly differ what we
usually call SDL as does not contain the derivation rule of modal generalization, but this difference
has no effect on the current formalization

850

Rights and Punishment

• w |= ¬ϕ⇔ w 6|= ϕ.

It is convenient to extend the valuation V to arbitrary formulas:

V (ϕ) := {w : M, w |= ϕ}

and we add the following:

• w |= Eaϕ⇔ w ∈ fa(V (ϕ))

• w |= Oa→bϕ⇔ ∀w′(wROa,bw′ ⇒ w′ |= ϕ)

Constraints

• constraint on f : fa(X) ⊆ X for all X ⊆W , in particular fa(V (ϕ)) ⊆ V (ϕ)

• constraint on ROa,b: ∀w∃w′ wROa,bw′

In order to have the equivalence between the correlative pair of claim-right and duty
(as the Hohfeldian correlativity’s logical interpretation in the reception is unani-
mously equivalence6) we need to add the direction of the duty indicating the other
agent who has the claim-right:
(1) CRxEyF ⇔ Oy→xEyF

(where F is a propositional letter with the intended meaning of ‘given state of
affairs’).7 As claim-right is a so-called passive right as the right owner and the ac-
tor (the agent whose action is the subject of the normative position) are different,
the formalization presents both agent, while its correlative pair, duty is an active
positions having the same agent in the indices of the deontic and action operator
needs to made up with the direction to formally exhibit the counterparties making
the equivalence hold.
While the notion of duty as directed obligation is generally accepted in the literature,
the relationality of the other Hohfeldian conceptions as positions is practically over-
looked. But Hohfeld was very consequential in this directedness: all legal relations he
considers are two agents’—counterparties’—relation: the Hohfeldian privilege does
not mean being free from any claim-right, but only the freedom from the specific

6As it has been indicated above already, the Hohfeldian notion of ‘opposition’ is less precise in
the logical sense: while it means one negation considering claim-right and no-claim, we need two
negations for moving from duty to privilege: I have a privilege to see to it that A if and only if I
don’t have a duty not to see to it that A. It will be visible in the later formulae.

7Thanks to the equivalences, we don’t need to add CRx, neither the later modalities, to the
language.

851

Markovich

other party’s claim-right. This difference is formally visible if we want to formalize
the correlativity of privilege and claim-right: while PRxExF ⇔ NCy¬ExF does
not hold, the following does:

(2) PRx�yExF ⇔ NCy¬ExF 8

In this paper we won’t work with the second square of Hohfeld (containing the
so-called higher order modalities), but it needs to be told that the same is true for
the Hohfeldian power-liability and immunity-disability pairs, too.9 Power and dis-
ability are active positions: the right owner (and who lacks it in case of disability)
is the same as the acting agent, therefore the relationality needs to be indicated
formally, too:

(3) Px→yExF ⇔ LyExF
(4) IxEyF ⇔ Dy→xExF

2.2 Undirected rights and duties?
Does this mean that the Hohfeldian theory is designed to directed rights and duties
and, therefore, is indeed unable to grasp undirected rights and duties? Just the op-
posite: this resolutely relational structure enables us to clearly refer to those right
positions which seems to be—and often simply considered as—absolute. What does
it mean in terms of the formulae above? If we want to “generate” absolute or general
rights and duties we only need to take the conjunction of the given relations with
each other agent (given a finite set of agents). This formally looks like the following
in the case of active rights:

8The choice of the symbol � is intended to reflect the “similarity” between its form and the
notion being free from something; has no relation to the usual use of it.

9It may seem strange at first glance that power is a relational thing. This feeling might come
from that, in everyday life, we usually refer to power as something which is not relational: we
usually say the someone has the power to do something, that is, the only thing we mention is
the right-owner. But—as it has been emphasized above—the Hohfeldian system is consequently
relational: with power we can change someone’s rights or duties. If I go to the registrar in order to
get married, the question is not that whether she has the power to marry two people in general, the
real question is whether she has the power to marry us—which is not obvious since it can be the
question of jurisdiction restricted to a given district or state. Another source of considering power
general is that the point in the Searlian power in [17] is exactly the generally accepted feature, but
the Hohfeldian notion, while strongly connected, is different. But this discussion would lead us out
from the scope of this paper, for further arguments and details see Markovich [16]).

852

Rights and Punishment

(5) ∧
y∈A

Ox→yExF ⇔ OxExF

(6) ∧
y∈A

PRx�yExF ⇔ PRxExF

(7) ∧
y∈A

Px→yExF ⇔ PxExF

(8) ∧
y∈A

Dx→yExF ⇔ DxExF

Also in the case of passive rights, here, though, we need to interpret the action
operator slightly differently than we did above as we remove the agent-index, so EF
needs to be interpreted as ‘it is seen to it that F ’:

(9) CRx
∧
y∈A

EyF ⇔ CRxEF

(10) NCx
∧
y∈A

EyF ⇔ NCxEF

(11) Lx
∧
y∈A

EyF ⇔ LxEF

(12) Ix
∧
y∈A

EyF ⇔ IxEF

And this not just does not go against the Hohfeldian intentions, but perfectly fits.
Why we can be so sure?

There is a second part of the often cited famous essay Fundamental Legal Concep-
tion as Applied in Judicial Reasoning Hohfeld wrote three years later (both parts
can be found in Hohfeld [7]). This second part is not so well-known and much less
often cited (or even mentioned), while it is crucial in understanding Hohfeld’s inten-
tions and theory. In this second part he differentiates between the so-called paucital
and multital rights. This differentiation fits the classical one between ‘relations in
personam’ and ‘relations in rem’: renaming it happens exactly to emphasize that
the so-called ‘in rem’ legal relations are also between people so the classical name is
misleading. Nigel Simmonds picks two picturing examples in [19] of each category:
“Suppose that I have a contract with you whereby you are obliged to manufacture
a quantity of widgets. I have a claim-right against you and you have a correla-
tive duty to manufacture the widgets. I might have a similar contract with another
widget manufacturer, with similar consequences in terms of our claim-rights and du-
ties. However many such contracts I have, however, my claim-rights are essentially
limited to a definite number of persons. These are what Hohfeld calls ‘paucital’

853

Markovich

claim-rights. (...) Suppose on the other hand, that I am the owner of Blackacre. I
have a claim-right that you should not enter the land without my consent. I have
the identical claim-right against your mother, my employer, the Bishop of Ely, and
anyone else that you care to mention. Each of these claim-rights is a consequence
of my ownership of Blackacre. These are ‘multital rights’.”

Hohfeld gives a short summary description of each type’s features: “A paucital
right, or claim, is either a unique right residing in a person (or group of persons)
and availing against a single person (or single group of persons); or else it is a one
of a few fundamentally similar, yet separate, rights availing respectively against a
few definite persons. A multital right, or claim, is always one of a large class of
fundamentally similar yet separate rights, actual and potential, residing in a single
person (or single group of persons) but availing respectively against persons consti-
tuting a very large and indefinite class of people.” There is another good example
of Simmonds in [19]: “my claim-right that you should not assault me is a multital
right, since it is only one member of a large class of similar rights holding against an
indefinite number of people (i.e. I have a right that your mother should not assault
me, a right that the Bishop of Ely should not assault me, and so on)”, for which
Hohfeld would add the example of a patentee’s right that any other person shall not
manufacture articles covered by the patent.

That is, using the series (the conjunction) of a—directed—right, gives us a (seem-
ingly) undirected one. This is exactly what we did with the formulae above.

3 Meaning of Legal Rights
To understand what a right means in criminal law we first need to provide some
general description of what a legal right in general means. As it is suggested in
Markovich [15, 16], we can start from the intuitive sounding informal definition pro-
vided by Makinson in [14]:10

x bears an obligation to y that F under the system N of norms
iff
in the case that F is not true then y has the power under the code N to initiate
legal action against x for non-fulfillment of F

10Makinson aimed at defining the notion of the counterparty, but as we can see, this definition
is a definition of what a directed obligation (duty) is, that is—having the equivalence in (1)—also
a definition of what a claim-right is.

854

Rights and Punishment

Whatever intuitive it is, the right-to-left direction of the biconditional does not
work: the fact that I have the power to initiate a legal action against someone does
not imply that I had a claim-right against him (that is, he had a duty towards me).
If this was the case, the court would not need to carry out the proceeding: the fact of
initiating the legal action would mean winning it. But sometimes people lose their
cases and the reason is exactly that they did not have the claim-right originally.
Sergot in [18] suggests to add “with some expectation of success” to the definition.
Even if this approaches reality well, this amended definition still would not tell us
anything about what a claim-right is. The following biconditional, though, serves
well in terms of providing the sufficient and necessary conditions of talking about
a—legal—claim-right.11

(13) Ox→yExF ↔ 2(¬ExF → CRyEjExF)

that is, a directed duty to see to it that F (and because of the equivalence, its
correlative claim-right) means that if the duty bearer does not fulfill it then its
counterparty has a claim-right against the judiciary (indicated with the agent con-
stant j) to see to it that the original duty bearer see to it that F is the case. We
need to introduce and use a necessity operator to make the conditional strict in-
stead of material, it comes with the modal logic S512 and with the taste of talking
about legal metaphysics: this is how things are in law, this is what a right is in law.
This description in (13) is still based on the state enforcement but does not use the
notion of power. The reason is to keep two crucial notions distinct: these are the
ability/position to have rights and the ability/position of changing them. These two

11The formula in (13) is not a proper definition in terms of not having the definiendum at the
side of the definiens, but this practically follows from the Hohfeldian intentions: he considered these
conceptions sui generis, that is, he refused to reduce them to something else.

12This changes our language and models in the following way:

p ∈ Φ | ϕ ∧ ψ | ¬ϕ | ⊥ | Eaϕ | Oa→bϕ | 2ϕ

for a, b ∈ A, where Φ is the set of propositional letters.
Frames are now defined as it follows: for a set W of possible worlds and the set A of agents we
write

F = 〈W, fa, R
O
a,b, R

2〉a,b∈A

where fa : ℘(W)→ ℘(W) is a function and RO
a,b, R

2 ⊆W 2 are binary relations.

Models now are structures: M = 〈W, fa, R
O
a,b, R

2, V 〉a,b∈A where v is a valuation function
for atomic propositions: V : Φ→ ℘(W)
The truth conditions for 2: w |= 2ϕ⇔ ∀w′(wR2w′ ⇒ w′ |= ϕ)

855

Markovich

notions have clear terminology in languages of countries having continental legal sys-
tems (‘Rechtsfähigkeit’ and ‘Handlungsfähigkeit’ in German, or ‘zdolność prawna’
and ‘zdolność do czynności prawnych’ in Polish, ‘capcité juridique’ and ‘capacité
d’agir’ in French, ‘capacitá giuridica’ and ‘capacitá di agire’ in Italian, all respec-
tively), while the English terminology seems to be a bit loose in distinguishing them
(maybe ‘legal capacity’ is the best version to the first and ‘legal competence’ or ‘ca-
pacity to act’ to the second). Keeping them distinct is essential: every human has
the first one, but not the second (infants and people lacking mental soundness partly
or completely lack the capacity to act.) If we use the notion of power in defining
what a claim-right is (as it happened in the Makinsonian definition), these notions
collapse. It absolutely does not mean that the notion of power would be eliminable
or less important. It has a crucial role in legal systems, and Hohfeld was right to
take it as one of the fundamentals. The point here is only that we should not involve
it into defining claim-rights. Neither can be reduced to the other (just like Hohfeld
said: these are sui generis notions). Power is about the ability to change someone’s
rights (for instance, put a duty on him), and while we won’t analyze its notion in
this paper (neither conceptually, nor formally), we will refer to and rely on the role
it plays in legal systems.

3.1 Legal Rights in Private Law

The formula (13) is not perfect yet, it needs some refinement—which refinement
depends on the area of law in which we would like to use it. In private law (paradig-
matically, law of contracts) actually it is not the original duty whose fulfillment is
enforced by the judiciary: the original duty had a deadline which is per definitionem
over when the whole enforcment comes to the picture, so the description of the state
of affairs that needs to be seen to must differ at least in a date from the original
one. That is, the enforced state of affairs is a compensation (C) of (not fulfilling)
the original duty. Therefore, we need to refine the formula above:

(14) Ox→yExF ↔ 2(¬ExF → CRyEjExCF)

But at this point we stop and do not go into the details of what a compensation is,
how it behaves formally, as our topic here is not private law, but criminal law.

3.2 Legal Rights in Criminal Law

Considering rights that are handled, protected by the means of criminal law sheds
some light on further difficulties of a right-definition building on power to initiate

856

Rights and Punishment

a legal action. Consider, for instance, the right to physical integrity. There is a
crime called assault which is obviously about the violation of one’s right to physical
integrity. What happens after a serious assault (grievous body harm)? The police
starts investigation ex officio, the public prosecutor brings charges ex officio and
represents the prosecution. The person whose right to physical integrity has been
violated actually gives testimony but has no power to be considered. But, as we saw
above, a claim-right “definition” without involving power avoids the problem raised
by the ex officio steps of authorities, so for us, this won’t be a problem. It might
raise the question, though: why is it not the person with the violated right who
stands in front of the court opposing the perpetrator’s defense? This is something
we need to be able to answer if we want our model to work in criminal law.
Another right protected in criminal law makes the situation even more difficult: the
right to life. The obvious crime violating one’s right to life is murder after which the
person whose right has been violated is dead so it is problematic to speak about his
right against the judiciary as in the most legal systems we cannot even consider a
dead person’s rights. But the structure of rights that are handled and protected by
the means criminal law is different. In case of a criminal action it is not a specific
person who opposes the perpetrator: it is everyone in the given society. Just consider
what the court clerk says when trial starts: after naming the case with the name of
the accused person, he says ‘vs. the people of the given state’ (for instance, as it
happens in the movie Goodfellas: ‘Henry Hill. People of the State of New York vs.
Henry Hill’). This is because everyone’s right in that society (concerned by a given
legal system) has been violated: their right that no felony (murder, assault, etc.) be
committed. The right to life is a clear value whose legal form in criminal law is a
right of everyone that no one commit a murder. If we think about directed graphs
where the nods are agents and the edges are legal relations, for instance an agent a
has a claim-right against another agent b iff there is an edge going from a to b (of
course, the edge going the other way around would represent the correlative duty).
Figure 1 below shows a claim-right resulting from e.g. a contract between the people
it connects (on the left), and how a claim-right looks like in criminal law, e.g. the
right to life which actually means that everyone has a claim-right against everyone
else to that no one see to it that a murder is committed (on the right). That is,
rights in criminal law are complete directed graphs.
Putting this into the “definition” we provided above, we get the description of how
rights in criminal law work: all of us have a claim-right against everyone else that
no one commit a felony (murder) iff it is (necessarily) the case that if anyone does
commit a felony (murder) then all of use have a claim-right against the judiciary
that it punish (sanction, S) them for committing the felony. That is:

857

Markovich

Figure 1: The left graph shows the paradigmatic case of a Hohfeldian right relation
between agents (that he calls paucital right). The graph on the right hand side
shows what rights handled in criminal law look like (a case of the one Hohfeld called
multital right).

(15) ∧
x∈A

CRx¬
∨
y∈A

EyF ↔ 2
∧
y∈A

(EyF →
∧
x∈A

CRxEjSyF)

Please note that the sanction is considered not just as a punishment but also as
a tool of enforcing that the convicted person refrain from committing the felony
again—so we still build on enforcement. But what does a sanction mean?13 This is
what we pursue to answer in the second half of this paper.

4 Sanction in Terms of Rights and Duties
In order to get some insight what a sanction is it seems to be practical to check
what criminal codes declare to be a sanction. The Chapter 3 of German Criminal
Code says:
Title 1: Punishments:
a) imprisonment;

13The word ‘sanction’ is sometimes used to refer generally to the third part of a legal norm
(hypothesis, disposition, sanction), but in this paper it is to denote a narrower sense: the negative
legal consequence, the punishment (or penalty). These are used as synonyms here.

858

Rights and Punishment

b) fine
c) property fine;
d) driving ban;
e) loss of the capacity to hold, or be elected to public office and the right to vote.
Section 9 in the Dutch Criminal Code looks like:
The Punishments are:
a) Principal punishments
1. imprisonment;
2. detention;
3. community service;
4. fine.
Section 33 in the Hungarian Criminal Code lists the followings:
(1) Penalties are:
a) imprisonment;
b) custodial arrest;
c) community service work;
d) fine;
e) prohibition to exercise professional activity;
f) driving ban;
g) prohibition from residing in a particular area;
h) ban from visiting sport events;
i) expulsion.
The lists of these different countries are pretty similar, but what are these things
listed?

4.1 Punishment as Duties

What is sure that punishment comes with imposing a sentence: the judge (the
judiciary) has the power to change our rights and duties, and this is the tool of
enforcement. But what changes are these? In the case of driving ban it is clear
that the punishment is a prohibition: the convicted must not drive (which is an
obligation to refrain from driving). Same in the case of prohibition to exercise (a
given) professional activity. But there are noun phrases in the lists, too, where
there is no direct reference to the deontic nature. It seems obvious, though, that
in the case of a fine and community work it is also an obligation: an obligation
to pay and an obligation to conduct community work. It is general to consider the
sanction as an obligation, this is how it is carachterized in LegalRuleML, too, see [1].

This seems to be the most obvious interpretation of imprisonment, too: it is an

859

Markovich

obligation of the convicted person to go to prison (and stay there for a while). In
terms of duty, that is, a directed obligation, it seems to be reasonable to talk about
an “undirected", multital duty: a duty towards everyone else in the given society.
We, all of us, have a claim-right against convicted people that they stay in prison
while. It fits the image of prison break being a felony: all of us have a claim-right
against everyone else that no one escape from the prison, which also means according
to the description we gave above that it is necessary that if anyone escapes then all
of us will have a claim-right against the judiciary to sanction him or her. Checking
the Hungarian Criminal Code we find indeed that escaping from prison is a felony:
Section 283: Any person who escapes from the custody of the authority in the course
of criminal proceedings or from imprisonment or custodial arrest is guilty of a felony
punishable by imprisonment not exceeding three years.

4.2 Right to Freedom vs. Right to Escape
We might think at this point that all that have been said here is straightforward,
no wonder the presupposition that the imprisonment is a duty to go and stay in
prison works so well. But while—in accordance with this presupposition—it is a
felony to escape from the jail in most of the countries, there are some—Germany,
Belgium and the Netherlands, among others—in which prison break is not a crime.
These countries’ criminal codes do not declare prison break a felony. In some of
these countries the prisoners are punishable for causing any damage or committing
another felony while escaping—without which it is pretty difficult to manage an
escape of course, still: the escape itself is not penalized. The reason is: it is basic
human instinct to want to be free, so it should not be punished. Gold says in [22]
that this kind of regulation (she mentions the German one) reflects to the philosophy
of Hobbes according to which the law should not impose impossible obligations and
refraining from pursuing freedom is impossible (see [6]), being in accordance with
the Kantian principle of ‘ought implies can’.

Until a year ago, this was the case in Mexico, too, where the penal code not just
missed to list the prison break among the crimes, but directly declared in Section 154
that the person who escapes won’t be punished because of this action, and the ex-
planation referred to freedom as an ideal brought with the French Revolution.14 (In
2017, after 86 years, Mexico amended this section making the prison break punish-
able. While the official argument15 raises the question whether the earlier regulation
was justifiable at all—as an inmate who evades compliance with the punishment im-

14https://bit.ly/2R7vZxu
15https://bit.ly/2DSO27E

860

Rights and Punishment

posed on him by the State attacks the rule of law and goes against the sovereign
will—they refer to the direct reason leading to the amendment: the third—as the
document refers to it: shameful—escape of C. Joaquín Guzmán Loera.16) Some
online articles17 refer to this regulation as those in which one has the right to escape
from prison. Taking the Hohfeldian model, this is true: if we don’t have a duty to re-
frain from something, we have a privilege to do that, which a type of right at Hohfeld.

This means, though, that the presupposition that imprisonment means the duty
of the convicted person to go to and stay in prison cannot be upheld—given, of
course, that we would not like to consider these legal systems as contradictory ones.
What else the imprisonment as a sanction can then be? The answer is also in the
Hohfeldian system. All of us have a right to freedom. This right is a claim-right
normally: all of us have a claim-right toward everyone else that no one see to it
that our freedom is restricted (that is, that everyone refrain from restricting our
freedom)—this is why freedom restricting actions like illegal detention and kidnap-
ping are crimes: everyone has a duty toward everyone else (which we usually consider
it as a general obligation) to refrain from kidnapping. In case of imprisonment, this
claim-right to freedom turns—weakens—into a privilege: the convict still does not
have a duty to go and stay in prison but loses his claim-right against others that
they refrain from detaining him. At the same time (as this change in his right would
not ensure that the imprisonment will be, or at least pursued to be, realized), one—
practically the penal institution as such—has a change in their duties: concerning
the convict’s detention, their duty not to turns into a duty to. That is, while they,
like everyone else, had a duty to refrain from detaining the person, when this person
becomes a convict (getting imprisonment), they are going to have a duty to detain
him.18 And this duty remains until the end of the term of imprisonment, this is
why, basic instinct or not, once the convict is caught, he is put back to prison.

16Joaquín “El Chapo” Guzmán is a very powerful Mexican drug trafficker who first spent 20
years in prison, then escaped. He was captured and imprisoned in 2014, but in 2015 he escaped
again through a 1.5 km tunnel equipped with artificial light leading to a construction site. After
his third arrest, Mexico extradited him to the US—and changed the penal code.

17This phrasing appears on the Washington Post (https://wapo.st/2PMZzMf), and gives the
title on the Hungarian Index.hu (https://bit.ly/2R6je6i), what is more, in the text ‘human right’ is
mentioned.

18This duty, in practice, is of course a bundle of different duties and duty-bearers, e.g. it is the
duty of the police to caught and get the convict into the prison.

861

Markovich

5 Conclusion
Areas of law where we consider general or absolute rights and obligations do not fall
out of the scope of the Hohfeldian theory. The basis of this latter is the relationality,
the directedness, but handling this feature systematically enables us to talk about
and handle clearly the so-called absolute normative positions. An amended formal-
ism based on the one used by the classical formalizations can be easily used to show
this as interpreting the absolute position as a series, that is, a conjunction of each
directed one. In criminal law, the rights relations go from everyone to everyone else,
that is, they create a complete directed graph on the given society.
The Hohfeldian theory is also useful in understanding the notion of sanction or
punishment in terms of rights and duties: using the theory enables us to explain
how it can be the case that there are countries where it is not forbidden to escape
from the prison, that is, convicts have such a right. This can be so because this
kind of right is a weakened one: not a claim-right anymore protecting (that is, a
claim-right against everyone else not to interfere) my freedom, but only a privilege
in the Hohfeldian sense: there is no duty of the convicts to stay in the prison in these
countries. What still makes it realizing a punishment is a joint change in the penal
institutions’ duties: while they had a duty to not detain me, after my conviction,
they have a duty to do so.

References
[1] Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke,

and Adam Wyner. Oasis LegalRuleML. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Law, ICAIL ’13, pages 3–12, New York, NY,
USA, 2013. ACM.

[2] Brian F. Chellas. Modal Logic. An Introduction. Cambridge University Press, 1980.
[3] Bengt Hansson. Deontic logic and different levels of generality. Theoria, 36:241–248,

1970.
[4] H. L. A. Hart. Legal rights. In Essays on Bentham: Studies in Jurisprudence and

Political Theory, pages 162–193. Clarendon Press, Oxford, 1982.
[5] Henning Herrestad and Christen Krogh. Obligations directed from bearers to counter-

parties. In Proceedings of the International Conference on Artificial Intelligence and
Law, pages 210–218. ACM, 1995.

[6] Thomas Hobbes. Leviathan, parts I and II. Bobbs-Merrill, 1958.
[7] Wesley Newcomb Hohfeld. Fundamental legal conceptions applied in judicial reasoning.

In Walter Wheeler Cook, editor, Fundamental Legal Conceptions Applied in Judicial
Reasoning and Other Legal Essays, pages 23–64. New Haven : Yale University Press,
1923.

862

Rights and Punishment

[8] Stig Kanger. New foundations of ethical theory. In Risto Hilpinen, editor, Deontic
Logic: Introductory and Systematic Readings, pages 36–58. D. Reidel, Dordrecht, 1971.

[9] Stig Kanger. Law and logic. Theoria, 38:105–132, 1972.
[10] Stig Kanger. On realization of human rights. Acta Philosophica Fennica, 38, 1985.
[11] Albert Kocourek. Hohfeld system of fundamental legal concepts, the. Illinois Law

Review, 15, January 1920.
[12] Lars Lindahl. Stig Kanger’s Theory of Rights. In D. Werserstahl D. Prawitz, B. Skyrms,

editor, Logic, Methodology and Philosophy of Science IX, pages 889–911. Elsevier Sci-
ence Publsiher, New York, 1994.

[13] David Lyons, Marcus Singer, and David Braybrooke. The correlativity of rights and
duties. Noûs, 4(1), February 1970.

[14] David Makinson. On the formal representation of rights relations: Remarks on the
work of Stig Kanger and Lars Lindahl. Journal of Philosophical Logic, 15(4):403–425,
November 1986.

[15] Réka Markovich. No match-making but biconditionals: Agents and the role of the
state in legal relations. In Legal Knowledge and Information Systems - JURIX 2015:
The Twenty-Eighth Annual Conference, Braga, Portual, December 10-11, 2015, pages
161–164, 2015.

[16] Réka Markovich. Understanding Hohfeld and formalizing legal rights: the Hohfeldian
conceptions and their conditional consequences. Studia Logica, 2019, to appear.

[17] John R Searle. The construction of social reality. Penguin, London, 1996.
[18] Marek Sergot. Normative Positions. In Xavier Parent Ron van der Meyden Dov Gab-

bay, John Horty and Leendert van der Torre, editors, Handbook of Deontic Logic and
Normative Systems, pages 353–406. College Publications, 2013.

[19] Nigel Simmonds. Introduction. In Hohfeld: Fundamental legal conceptions as applied in
judicial reasoning, Classical Jurisprudence series. Ashgate, Aldershot, new ed. / edited
by David Campbell and Philip Thomas. edition, 2001.

[20] Gopal Sreenivasan. Duties and their direction. Ethics, 120(3):465–494, 2010.
[21] Miklós Szabó. A jogosultság logikai státusáról. In Györfi Tamás Ficsor Krisztina and

Szabó Miklós, editors, Jogosultságok: Elmélet és gyakorlat, pages 35–46. Miskolc: Bíbor
Kiadó, 2009.

[22] Judith Zubrin Gold. Prison escape and defenses based on conditions: A theory of social
preference. California Law Review, 67(5), 1979.

Received 17 January 2019863

Probabilistic legal decision standards
still fail

(at least when it comes to the difficulty about conjunction and
the gatecrasher paradox)

Rafal Urbaniak
University of Gdansk (Poland) & Ghent University (Belgium)

Abstract
Various probabilistic explications of the phrase the court’s decision regarding

a fact, given the evidence, is justified have been proposed. In this paper I eval-
uate them against two conceptual challenges: the difficulty about conjunction
and the gatecrasher paradox. I argue that despite arguments to the opposite,
all proposed models fail to solve these two problems.

1 Introduction
Imagine you are a trier of fact in a legal proceeding in which the defendant’s guilt
is identified as equivalent to a certain factual statement G and that somehow you
succeeded in properly evaluating P(G|E) – the probability of G given the total
evidence presented to you, E (and perhaps some other relevant probabilities). For
various reasons, some of which will be mentioned soon, this is an idealized situation.
One question that arises in such a situation is: when should you decide against the
defendant? when is the evidence good enough?

What we are after here is a condition Ψ, formulated in (primarily) probabilistic
terms, such that the trier of fact, at least ideally, should accept any relevant claim
(including G) just in case Ψ(A,E). The requirement that the condition should apply
to any relevant claim whatsoever (and not just a selected claim, such as G) will be
called the equal treatment requirement.1

This research has been funded by Narodowe Centrum Nauki (grant no. 2016/22/E/HS1/00304) and
Fonds Wetenschappelijk Onderzoek. The author would like to express his gratitude to Marcello Di
Bello, Pavel Janda, Alicja Kowalewska, and two anonymous referees for detailed comments on
earlier drafts of this paper.

1The requirement is not explicitly mentioned in the discussion, but it is tacitly assumed, so it is
useful to have a name for it. Moreover, it will turn out crucial when it comes to finding a resolution
of the difficulties, but further details need to wait till the last section of this paper.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Urbaniak

For instance, one straightforward attempt might be to say: convict if P(G|E)
is above a certain threshold, otherwise acquit. From this perspective, whether as-
sessment of facts leading to conviction is justified is a matter of whether the factual
statement corresponding to guilt is sufficiently probable given the evidence.

As it turns out, the idea that such a probabilistic explication Ψ can be given
does not play nicely with some other desiderata that we might want to put forward
for what a rational trier of fact should think about facts and evidence.

A large-scale attack on probabilistic approach to legal decisions has been
launched quite some time ago by [6], and some of the developments in probabilistic
evidence scholarship are to some extent a reaction to some of Cohen’s objections.
My goal here is to focus on two of them – the difficulty about conjunction and
the gatecrasher paradox. They correspond to two requirements. One, that Ψ
should be such that for any relevant A and B there should be no difference between
the trier’s acceptance A and B separately, and her acceptance of their conjunction,
A ∧B, that is, that Ψ(A,E) and Ψ(B,E) just in case Ψ(A ∧B,E). Two, that any
such explication should help us make sense of cases in which the probability of guilt
given the evidence is high, and yet, conviction is not justified.

I will argue that even most recent proposals of what such a Ψ should be have
failed to address these difficulties. This, however, does not mean that I side with
Cohen and claim that thinking of evidence in legal context in terms of probabilities
is doomed. Quite the contrary: probabilistic tools are highly useful, and their utility
can be increased (and defended) by addressing Cohen’s concerns properly. In this
paper, however, I leave this positive task for a later occasion, restricting myself to a
negative task of showing that legal probabilism so far has not reached this stage.

The paper is somewhat uneven: parts of it contain mostly philosophical discus-
sion, while some other parts get involved with rather detailed and lengthy math-
ematical arguments whose philosophical points can be summed up in one or two
sentences. To avoid discouraging the philosophically minded reader and disappoint-
ing the more mathematically oriented one, let me suggest three different reading
strategies.

A quick philosophical look You do not want to get bogged down in mathemat-
ical details, but you want to find out what the philosophical gist of the paper
is. In this case, after reading this section, read Section 3 to find out what the
basic variant of the view under criticism is, Section 4 for a description of the
difficulty about conjunction, Section 7 - which introduces the gatecrasher para-
dox, and Section 14 for an informal survey of the results and a philosophical
discussion thereof. This is the shortest strategy.

The middle way You want to understand the key mathematical aspects, but you

866

Probabilistic legal decision standards still fail

do not care too much about detailed arguments and digressions that can be
skipped. Read the whole paper, except for the parts marked in the following
manner.

Optional Content Starts

This is how inessential technicalities and longer side remarks are marked.
Optional Content Ends

The meticulous reader strategy Read everything. Or, start with a quick philo-
sophical look as described above, and then read everything.

The structure of this paper is as follows. I start with a more detailed discussion
of legal probabilism in Section 2. Then, I go through various ways legal probabilism
so far has tried to navigate around the difficulties that I am concerned with, each
time explaining why it failed. To illustrate the idea of a probabilistic model of a
decision standard, and to get considerations of conceptual difficulties started, in
Section 3 I move to the first and most straightforward candidate: Threshold-based
LP. In Section 4 I explain how this view falls prey to the difficulty about conjuntion.
Next, in Section 5 I look at an important attempt to save threshold-based legal
probabilism from the difficulty about conjunction, and in Section 6 I argue that it
fails. In Section 7 I introduce the other conceptual difficulty that will be used as a
measuring stick in the assessment of probabilistic models: the gatecrasher paradox.
In Section 8 I outline Cheng’s Relative LP. In Section 9 I explain how it is supposed
to handle DAC, and in section 10 I look at Cheng’s attempt to avoid the gatecrasher
paradox. In Section 11 I argue that the approach fails on both counts. In Section 12
I introduce the last candidate to be discussed, Kaplow’s Decision-Theoretic LP, and
in Section 13 I argue that it also cannot handle the difficulties. Section 14 contains
an informal overview and discussion.

2 Legal probabilism and its motivations
In multiple domains of applications, probabilistic methods have been exceedingly
successful. Some of the successful applications involve forensic and judiciary con-
texts.2 What they seem to have in common is that they pertain to the interpretation
or weighing of particular pieces of evidence, or an evaluation of a particular argument
involving probabilities or statistics.

What is somehow more contentious is whether a more general and all-encom-
passing probabilistic model of evidence evaluation and decision about conviction can

2See for instance [11, 1, 26, 19, 23].

867

Urbaniak

be successfully built: one which would explicate the phrase given the evidence, the
conviction is justified in probabilistic terms (where the claim under consideration is
a factual claim considered as equivalent to guilt according to the law). On one hand,
prima facie, what the judge or the jury seem to evaluate is the probability of guilt
given total available evidence and common sense knowledge, and so, probabilistic
tools seem fit to model, at least in abstraction, such phenomena. On the other hand,
particular pieces of forensic evidence aside, precise probabilities are hard to come
by, and conceptual and practical difficulties with developing such a model abound.

To avoid setting the bar too high, let me get clear on what, on the present
approach, a successful probabilistic model is not required to achieve. Namely, I am
putting aside most of the issues that have to do with practicality.3 I will not be
concerned with the lack of real data to support certain probability assessment, I
will not be concerned with people being bad at reasoning about probabilities, etc.
Basically, I will not be concerned with those practical issues that would arise if
one would like to deploy a probabilistic model directly, by writing down numerical
values for all the probabilities relevant in a given case and simply calculating the
probability of guilt. I will simply grant that at least for now, successful deployments
of this type are not viable.

This, however, does not mean that developing a general probabilistic model is
pointless. There are multiple ways in which such a model, even if unfit for direct
deployment, could be useful. Once we have a probabilistic model, a vast array of
mathematical results pertaining to probability can be used to deepen our under-
standing of the rationality of legal decisions. If at least in abstraction adequate,
the model could be useful for diagnosing various types of biases that humans are
susceptible to in such contexts; it could be useful as a measuring stick against which
various qualitative inference patterns are assessed, and it could be useful as a source
of insights about various aspects of legal decisions and evidence presentation meth-
ods. Just as understanding physics might be useful for deepening our understanding
of how things work, and for building things or moving them around without per-
forming direct exact calculations, a general probabilistic model – again, if adequate
– could help us get better at understanding and making legal decisions without its
direct deployment in practice.

Just because I put strong practicality requirements aside, it does not mean that
I put no constraints on the probabilistic model to be developed. While sufficient
conditions of adequacy of such a model are somewhat hard to explicate and I will not
get into a deeper discussion thereof, there is at least a fairly clear necessary condition.

3My impression is that with a few exceptions, most of the arguments about legal probabilism
in the early stage of the debate were concerned mostly with practicality. See [2, 14, 8, 24, 30, 28,
18, 16, 27].

868

Probabilistic legal decision standards still fail

A successful probabilistic model should either avoid or explain away what seem to
be important conceptual difficulties that it runs into. And this is what I will be
focusing on in this paper: investigating whether available probabilistic models of
legal decision standards avoid or explain away the conceptual difficulties that – it
seems – they should be able to handle. In particular, I will focus on two pieces of
paradoxical flavor, the difficulty about conjunction (DAC) and the paradox
of the gatecrasher.

One reason to choose these two is that they are easy to explain: and it would be
nice if we could handle basic conceptual difficulties before we move to more complex
issues. Another reason is that in some variant or another, these have been widely
discussed in literature. DAC has a very close cousin named the lottery paradox,
which occupied the minds of many, and the gatecrasher paradox and related thought
experiments and real cases have been extensively discussed by philosophers trying
to identify the factor that makes naked statistical evidence actionable.

Let us start with a very general assumption that all the approaches that will be
discussed in what follows share; we will call it Legal Probabilism (LP). It is the view
that the legal notion of probability is to be governed by the mathematical principles
of probability theory, and that the decision process in juridical fact-finding is to be
explicated by means of probabilistic tools. LP is fairly general: it does not tell us
how exactly the decision standards are to be explicated in probabilistic terms, it
only tells us that somehow they should.

3 Threshold-based legal probabilism (TLP)
LP comes in various shapes. It is one thing to say that the standards of juridical
proof are to be explicated in probabilistic terms, it is another to provide such an
explication. The threshold-based legal probabilism has it that once the probability of
guilt (or, to be more precise, the factual statement that according to law is equivalent
to guilt) given the total evidence available is assessed, conviction is justified just in
case this probability is above a certain threshold.4

Classical Legal Probabilism (CLP), stemming from [4], keeps the threshold con-
stant:5

4In the Anglo-Saxon tradition there is a distinction between decision standards in civil and in
criminal cases. In the former, decision is to be made on the preponderance of probability, and in
criminal cases, the guilt statement is supposed to be beyond reasonable doubt. Assuming these are
to be modeled by probability thresholds different from 1, there is no essential difference here as far
as the conceptual difficulties to be discussed in this paper are involved.

5Again, we are going to ignore the difference between civil and criminal litigation here. If one
wants to keep this distinction in mind, CLP can be easily revised by positing one threshold for

869

Urbaniak

(CLP) There is a certain probability of guilt threshold t, such that in any
particular case, if the probability of guilt conditional on all the evi-
dence is above t, convict; otherwise acquit.

A slightly weaker (and perhaps more common among evidence scholars) variant
of this view, let us call it the Sensitive Legal Probabilism (SLP), also embraces the
idea that what is to be evaluated is the probability of guilt given the evidence,
but abandons the requirement that there should be a single threshold for all cases;
rather, SLP suggests that the context of each particular case will determine which
threshold is appropriate for it.

(SLP) For any particular case, there is a contextually determined probability
threshold t such that if the probability of guilt conditional on all the
evidence is above t, convict; otherwise acquit.

Before we move to the discussion of the two key difficulties that we will be
interested in, let me briefly mention one issue about TLP that I will not be concerned
with. A careful reader might already have the following complaint: if you are saying
that there is a conviction probability threshold, what exactly is it and why? And
indeed, it seems quite difficult to point to any particular choice of value and argue
that the choice is not to a large extent arbitrary.

One reason why I will not be concerned with this problem is that this is an issue
that seems to pertain to TLP only, while I would like to focus on problems that
seem to be more general.

Another reason is that once decision-theoretic tools are allowed, there might
be reasons to think that the choice of threshold is not that arbitrary [17]. Say the
probability of guilt (or responsibility) is p, the disutility of acquitting a guilty person
is dg, and the disutility of convicting an innocent person is di. From the perspective
of minimalization of expected disutility, we would like to convict, or find for the
plaintiff, just in case the expected disutility of a mistaken acquittal is greater than
the expected disutility of an incorrect conviction:

pdg > (1− p)di

criminal cases, and one for civil ones.

870

Probabilistic legal decision standards still fail

Now, solving for p gives us:
pdg > di − pdi

pdg + pdi > di

p(dg + di) > di

p >
di

dg + di

So, as long as you can quantify these disutilities, the probability threshold can be
determined. But since I want to focus on probabilistic considerations, I will not
pursue this discussion.

Finally, as practice (such as conviction decisions based on DNA identification)
indicates, there are probabilities of guilt clearly considered high enough for convic-
tion, and there are ones which clearly are not high enough for conviction. Perhaps,
there are some borderline cases, but these are not too many. From this perspective,
the phrase probability of guilt sufficient for conviction can be argued to be vague,
but the vagueness does not seem too damaging in practice (at least, not more than
the vagueness that is already there, even without probabilistic tools). Moreover, it is
a rather common practice to theorize about notions which in practice are somewhat
vague using idealized mathematical tools which do not tolerate vagueness. As long
as the results obtained hold independently of any particular choice of the precisifi-
cation of a given vague notion, the initial vagueness is not a deep obstacle to the
utility of these theoretical considerations.

Now that we know what the first explication is, let us move to the first of the
two conceptual difficulties that we actually will be concerned with – the difficulty
about conjunction.

4 The difficulty about conjunction
The Difficulty About Conjunction (DAC) proceeds as follows. Say we focus on a civil
suit where a plaintiff is required to prove their case on the balance of probability,
which for the sake of argument we construe as passing the 0.5 probability threshold.6
Suppose the plaintiff’s claim to be proven based on total evidence E is composed
of two elements, A and B, independent conditionally on E.7 The question is, what
exactly is the plaintiff supposed to establish? It seems we have two possible readings:

6This is a natural choice given that the plaintiff is supposed to show that their claim is more
probable than the defendant’s. The assumption is not essential. DAC can be deployed against any
6= 1 guilt probability threshold.

7These assumptions, again, are not too essential. In fact, the difficulties become more severe as
the number of elements grows, and, extreme cases aside, do not tend to disappear if the elements

871

Urbaniak

Requirement 1 P(A ∧B|E) > 0.5
Requirement 2 P(A|E) > 0.5 and P(B|E) > 0.5

Requirement 1 says that the plaintiff should show that their whole claim is
more likely than its negation. There are strong intuitions that this is what they
should do. But the problem is, this requirement is not equivalent to Requirement
2. In fact, if we need P(A ∧B|E) = P(A|E)× P(B|E) > 0.5 (the identity being jus-
tified by the independence assumption), satisfying Requirement 2 is not sufficient
for this purpose. For instance, if P(A|E) = P(B|E) = 0.51, P(A|E)×P(B|E) ≈ 0.26,
and so the plaintiff’s claim as a whole still fails to be established. This means that
requiring the proof of A∧B on the balance of probability puts an importantly higher
requirement on the separate probabilities of the conjuncts.

Moreover, what is required exactly for one of them depends on what has been
achieved for the other. If I already established that P(A|E) = 0.8, I need P(B|E) ≥
0.635 to end up with P(A ∧B|E) ≥ 0.51. If, however, P(A|E) = 0.6, I need P(B|E) ≥
0.85 to reach the same threshold. This would mean that standards of proof for a
given claim could vary depending on how well a different claim has been argued for
and on whether it is a part of a more complex claim that one is defending, and this
does not seem very intuitive. At least, this goes strongly against the equal treatment
requirement mentioned already in the introduction.

Should we then abandon Requirement 1 and remain content with Require-
ment 2? Cohen [6, 66] convincingly argues that we should not. Not evaluating a
complex civil case as a whole is the opposite of what the courts themselves normally
do. There are good reasons to think that every common law system subscribes to
a sort of conjunction principle, which states that if A and B are established on the
balance of probabilities, then so is A ∧B.

So, on one hand, if we take our decision standard from Requirement 2, our
acceptance standard will not involve closure under conjunction, and might lead to
conviction in cases where P(G|E) is quite low, just because G is a conjunction of
elements which separately satisfy the standard of proof – and this seems unintu-
itive. On the other hand, following Cohen, if we take our decision standard from
Requirement 1, we will put seemingly unnecessarily high requirements sensitive to
fairly contingent and irrelevant facts on the prosecution, and treat various elements
to be proven unevenly. Neither seems desirable.

are dependent.

872

Probabilistic legal decision standards still fail

5 Dawid’s likelihood strategy
One well-known attempt to handle DAC from the probabilistic perspective without
any drastic changes to the probabilistic model is due to Dawid [9]. Here is how it
proceeds (the considerations that follow apply to other sorts of uncertain evidence;
we’ll focus on witnesses for the sake of simplicity). Imagine the plaintiff produces two
independent witnesses: WA attesting to A, andWB attesting to B. Say the witnesses
are regarded as 70% reliable and A and B are probabilistically independent, so we
infer P(A) = P(B) = 0.7 and P(A ∧B) = 0.72 = 0.49.

But, Dawid argues, this is misleading, because to reach this result we misrep-
resented the reliability of the witnesses: 70% reliability of a witness, he continues,
doesn’t mean that if the witness testifies that A we should believe that P(A) = 0.7.
To see his point, consider two potential testimonies:

A1 The sun rose today.
A2 The sun moved backwards through the sky today.

Intuitively, after hearing them, we would still take P(A1) to be close to 1 and P(A2)
to be close to 0, because we already have fairly strong convictions about the issues
at hand. In general, how we should revise our beliefs in light of a testimony depends
not only on the reliability of the witness, but also on our prior convictions.8 And
this is as it should be: as indicated by Bayes’ Theorem, one and the same testimony
with different priors might lead to different posterior probabilities.

So far so good. But how should we represent evidence (or testimony) strength
then? Well, one pretty standard way to go is to focus on how much it contributes
to the change in our beliefs in a way independent of any particular choice of prior
beliefs. Let a be the event that the witness testified that A. It is useful to think
about the problem in terms of odds, conditional odds (O) and likelihood ratios (LR):

O(A) = P(A)
P(¬A)

O(A|a) = P(A|a)
P(¬A|a)

LR(a|A) = P(a|A)
P(a|¬A) .

8An issue that Dawid does not bring up is the interplay between our priors and our assessment
of the reliability of the witnesses. Clearly, our posterior assessment of the credibility of the witness
who testified A2 will be lower than that of the other witness. But a deeper discussion goes beyond
the scope of this paper.

873

Urbaniak

Suppose our prior beliefs and background knowledge, before hearing a testimony,
are captured by the prior probability measure Pprior(·), and the only thing that we
learn is a. We’re interested in what our posterior probability measure, Pposterior(·),
and posterior odds should then be. If we’re to proceed with Bayesian updating, we
should have:

Pposterior(A)
Pposterior(¬A) = Pprior(A|a)

Pprior(¬A|a) = Pprior(a|A)
Pprior(a|¬A) ×

Pprior(A)
Pprior(¬A)

that is,

Oposterior(A) = Oprior(A|a) = LRprior(a|A)︸ ︷︷ ︸
conditional likelihood ratio

× Oprior(A) (1)

The conditional likelihood ratio seems to be a much more direct measure of the
value of a, independent of our priors regarding A itself. In general, the posterior
probability of an event will equal to the witness’s reliability in the sense introduced
above only if the prior is 1/2.

Optional Content Starts

Dawid gives no general argument, but it is not too hard to give one. Let rel(a) =
P(a|A) = P(¬a|¬A). We have in the background P(a|¬A) = 1 − P(¬a|¬A) = 1 −
rel(a).

We want to find the condition under which P(A|a) = P(a|A). Set P(A) = p and
start with Bayes’ Theorem and the law of total probability, and go from there:

P(A|a) = P(a|A)
P(a|A)p

P(a|A)p+ P(a|¬A)(1− p) = P(a|A)

P(a|A)p = P(a|A)[P(a|A)p+ P(a|¬A)(1− p)]
p = P(a|A)p+ P(a|¬A)− P(a|¬A)p
p = rel(a)p+ 1− rel(a)− (1− rel(a))p
p = rel(a)p+ 1− rel(a)− p+ rel(a)p

2p = 2rel(a)p+ 1− rel(a)
2p− 2rel(a)p = 1− rel(a)
2p(1− rel(a)) = 1− rel(a)

2p = 1

First we multiplied both sides by the denominator. Then we divided both sides
by P(a|A) and multiplied on the right side. Then we used our background nota-
tion and information. Next, we manipulated the right-hand side algebraically and

874

Probabilistic legal decision standards still fail

moved −p to the left-hand side. Move 2rel(a)p to the left and manipulate the result
algebraically to get to the last line last line (naturally, we assume rel(a) 6= 1).

Optional Content Ends

But how does our preference for the likelihood ratio as a measure of evidence
strength relate to DAC? Let’s go through Dawid’s reasoning.

A sensible way to probabilistically interpret the 70% reliability of a witness who
testifies that A is to take it to consist in the fact that the probability of a positive
testimony if A is the case, just as the probability of a negative testimony (that is,
testimony that A is false) if A isn’t the case, is 0.7:9

Pprior(a|A) = Pprior(¬a|¬A) = 0.7.

Pprior(a|¬A) = 1− Pprior(¬a|¬A) = 0.3, and so the same information is encoded in
the appropriate likelihood ratio:

LRprior(a|A) = Pprior(a|A)
Pprior(a|¬A) = 0.7

0.3

Let’s say that a provides (positive) support for A in case

Oposterior(A) = Oprior(A|a) > Oprior(A)

that is, a testimony a supports A just in case the posterior odds of A given a are
greater than the prior odds of A (this happens just in case Pposterior(A) > Pprior(A)).
By (1), this will be the case if and only if LRprior(a|A) > 1.

One question that Dawid addresses is this: assuming reliability of witnesses 0.7,
and assuming that a and b, taken separately, provide positive support for their
respective claims, does it follow that a ∧ b provides positive support for A ∧B?

Assuming the independence of the witnesses, this will hold in non-degenerate
cases that do not involve extreme probabilities, on the assumption of independence
of a and b conditional on all combinations: A∧B, A∧¬B, ¬A∧B and ¬A∧¬B.10, 11

9In general setting, these are called the sensitivity and specificity of a test (respectively), and
they don’t have to be equal. For instance, a degenerate test for an illness which always responds
positively, diagnoses everyone as ill, and so has sensitivity 1, but specificity 0.

10Dawid only talks about the independence of witnesses without reference to conditional inde-
pendence. Conditional independence does not follow from independence, and it is the former that
is needed here (also, four non-equivalent different versions of it).

11In terms of notation and derivation in the optional content that will follow, the claim holds if
and only if 28 > 28p11 − 12p00. This inequality is not true for all admissible values of p11 and p00.
If p11 = 1 and p00 = 0, the sides are equal. However, this is a rather degenerate example. Normally,
we are interested in cases where p11 < 1. And indeed, on this assumption, the inequality holds.

875

Urbaniak

Optional Content Starts

Let us see why the above claim holds. The calculations are my reconstruction
and are not due to Dawid. The reader might be annoyed with me working out the
mundane details of Dawid’s claims, but it turns out that in the case of Dawid’s
strategy, the devil is in the details. The independence of witnesses gives us:

P(a ∧ b|A ∧B) = 0.72 = 0.49
P(a ∧ b|A ∧ ¬B) = 0.7× 0.3 = 0.21
P(a ∧ b|¬A ∧B) = 0.3× 0.7 = 0.21

P(a ∧ b|¬A ∧ ¬B) = 0.3× 0.3 = 0.09

Without assuming A and B to be independent, let the probabilities of A∧B, ¬A∧B,
A ∧ ¬B, ¬A ∧ ¬B be p11, p01, p10, p00. First, let’s see what P(a ∧ b) boils down to.

By the law of total probability we have:

P(a ∧ b) = P(a ∧ b|A ∧B)P(A ∧B)+ (2)
+ P(a ∧ b|A ∧ ¬B)P(A ∧ ¬B)
+ P(a ∧ b|¬A ∧B)P(¬A ∧B)+
+ P(a ∧ b|¬A ∧ ¬B)P(¬A ∧ ¬B)

which, when we substitute our values and constants, results in:

= 0.49p11 + 0.21(p10 + p01) + 0.09p00

Now, note that because piis add up to one, we have p10 + p01 = 1 − p00 − p11. Let
us continue.

= 0.49p11 + 0.21(1− p00 − p11) + 0.09p00

= 0.21 + 0.28p11 − 0.12p00

Next, we ask what the posterior of A ∧B given a ∧ b is (in the last line, we also
multiply the numerator and the denominator by 100).

P(A ∧B|a ∧ b) = P(a ∧ b|A ∧B)P(A ∧B)
P(a ∧ b)

= 49p11
21 + 28p11 − 12p00

In this particular case, then, our question whether P(A ∧B|a ∧ b) > P(A ∧B)
boils down to asking whether

49p11
21 + 28p11 − 12p00

> p11

876

Probabilistic legal decision standards still fail

that is, whether 28 > 28p11 − 12p00 (just divide both sides by p11, multiply by the
denominator, and manipulate algebraically).

Optional Content Ends

Dawid continues working with particular choices of values and provides neither
a general statement of the fact that the above considerations instantiate nor a proof
of it. In the middle of the paper he says:

Even under prior dependence, the combined support is always positive,
in the sense that the posterior probability of the case always exceeds its
prior probability. . .When the problem is analysed carefully, the ‘paradox’
evaporates [pp. 95-7]

where he still means the case with the particular values that he has given, but he
seems to suggest that the claim generalizes to a large array of cases.

The paper does not contain a precise statement making the conditions required
explicit and, a fortriori, does not contain a proof of it. Given the example above
and Dawid’s informal reading, let us develop a more precise statement of the claim
and a proof thereof.

Fact 1. Suppose that rel(a), rel(b) > 0.5 and witnesses are independent conditional
on all Boolean combinations of A and B (in a sense to be specified), and that none
of the Boolean combinations of A and B has an extreme probability (of 0 or 1). It
follows that P(A ∧B|a ∧ b) > P(A ∧B). (Independence of A and B is not required.)

Roughly, the theorem says that if independent and reliable witnesses provide
positive support of their separate claims, their joint testimony provides positive
support of the conjunction of their claims.

Optional Content Starts

Let us see why the claim holds. First, we introduce an abbreviation for witness
reliability:

a = rel(a) = P(a|A) = P(¬a|¬A) > 0.5
b = rel(b) = P(b|B) = P(¬b|¬A) > 0.5

Our independence assumption means:

P(a ∧ b|A ∧B) = ab
P(a ∧ b|A ∧ ¬B) = a(1− b)
P(a ∧ b|¬A ∧B) = (1− a)b

P(a ∧ b|¬A ∧ ¬B) = (1− a)(1− b)
Abbreviate the probabilities the way we already did:

877

Urbaniak

P(A ∧B) = p11 P(A ∧ ¬B) = p10
P(¬A ∧B) = p01 P(¬A ∧ ¬B) = p00

Our assumptions entail 0 6= pij 6= 1 for i, j ∈ {0, 1} and:
p11 + p10 + p01 + p00 = 1 (3)

So, we can use this with (2) to get:

P(a ∧ b) = abp11 + a(1− b)p10 + (1− a)bp01 + (1− a)(1− b)p00 (4)
= p11ab + p10(a − ab) + p01(b− ab) + p00(1− b− a + ab)

Let’s now work out what the posterior of A ∧B will be, starting with an appli-
cation of the Bayes’ Theorem:

P(A ∧B|a ∧ b) = P(a ∧ b|A ∧B)P(A ∧B)
P(a ∧ b)

= abp11
p11ab + p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) (5)

To answer our question we therefore have to compare the content of (5) to p11 and
our claim holds just in case:

abp11
p11ab + p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) > p11

ab
p11ab + p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) > 1

p11ab + p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) < ab (6)

Proving (6) is therefore our goal for now. This is achieved by the following reason-
ing:12
1. b > 0.5, a > 0.5 assumption
2. 2b > 1, 2a > 1 from 1.
3. 2ab > a, 2ab > b multiplying by a and b respectively
4. p102ab > p10a, p012ab > p01b multiplying by p10 and p01 respectively
5. p102ab + p012ab > p10a + p01b adding by sides, 3., 4.
6. 1− b− a < 0 from 1.
7. p00(1− b− a) < 0 From 6., because p00 > 0
8. p102ab + p012ab > p10a + p01b + p00(1− b− a) from 5. and 7.
9. p10ab + p10ab + p01ab + p01ab + p00ab− p00ab > p10a + p01b + p00(1− b− a) 8., rewriting left-hand side
10. p10ab + p01ab + p00ab > −p10ab− p01ab + p00ab + p10a + p01b + p00(1− b− a) 9., moving from left to right
11. ab(p10 + p01 + p00) > p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) 10., algebraic manipulation
12. ab(1− p11) > p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) 11. and equation (3)
13. ab− abp11 > p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) 12., algebraic manipulation
14. ab > abp11 + p10(a − ab) + p01(b− ab) + p00(1− b− a + ab) 13., moving from left to right

12Thanks to Pawel Pawlowski for working on this proof with me.

878

Probabilistic legal decision standards still fail

The last line is what we have been after.
Optional Content Ends

Now that we have as a theorem an explication of what Dawid informally sug-
gested, let’s see whether it helps the probabilist handling of DAC.

6 Troubles with the likelihood strategy
Recall that DAC was a problem posed for the decision standard proposed by TLP,
and the real question is how the information resulting from Fact 1 can help to avoid
that problem. Dawid does not mention any decision standard, and so addresses
quite a different question, and so it is not clear that “the ‘paradox’ evaporates”, as
Dawid suggests.

What Dawid correctly suggests (and we establish in general as Fact 1) is that
the support of the conjunction by two witnesses will be positive as soon as their
separate support for the conjuncts is positive. That is, that the posterior of the
conjunction will be higher that its prior. But the critic of probabilism never denied
that the conjunction of testimonies might raise the probability of the conjunction
if the testimonies taken separately support the conjuncts taken separately. Such a
critic can still insist that Fact 1 does nothing to alleviate her concern. After all, at
least prima facie it still might be the case that:

• the posterior probabilities of the conjuncts are above a given threshold,

• the posterior probability of the conjunction is higher than the prior probability
of the conjunction,

• the posterior probability of the conjunction is still below the threshold.

That is, Fact 1 does not entail that once the conjuncts satisfy a decision standard,
so does the conjunction.

At some point, Dawid makes a general claim that is somewhat stronger than the
one already cited:

When the problem is analysed carefully, the ‘paradox’ evaporates: suit-
ably measured, the support supplied by the conjunction of several inde-
pendent testimonies exceeds that supplied by any of its constituents.
[p. 97]

This is quite a different claim from the content of Fact 1, because previously the
joint probability was claimed only to increase as compared to the prior, and here it

879

Urbaniak

is claimed to increase above the level of the separate increases provided by separate
testimonies. Regarding this issue Dawid elaborates (we still use the pij-notation
that we’ve already introduced):

“More generally, let P(a|A)/P(a|¬A) = λ, P(b|B)/P(b|¬B) = µ, with
λ, µ > 0.7, as might arise, for example, when there are several available
testimonies. If the witnesses are independent, then

P(A ∧B|a ∧ b) = λµp11/(λµp11 + λp10 + µp01 + p00)

which increases with each of λ and µ, and is never less than the larger of
λp11/(1− p11 + λp11), µp11/(1− p111 + µp11), the posterior probabilities
appropriate to the individual testimonies.” [p. 95]

This claim, however, is false.
Optional Content Starts

Let us see why. The quoted passage is a bit dense. It contains four claims for
which no arguments are given in the paper. The first three are listed below as (7), the
fourth is that if the conditions in (7) hold, P(A ∧B|a ∧ b) > max(P(A|a), P(B|b)).
Notice that λ = LR(a|A) and µ = LR(b|B). Suppose the first three claims hold,
that is:

P(A ∧B|a ∧ b) = λµp11/(λµp11 + λp10 + µp01 + p00) (7)

P(A|a) = λp11
1− p11 + λp11

P(B|b) = µp11
1− p11 + µp11

Is it really the case that P(A ∧B|a ∧ b) > P(A|a), P(B|b)? It does not seem so. Let
a = b = 0.6, pr = 〈p11, p10, p01, p00〉 = 〈0.1, 0.7, 0.1, 0.1〉. Then, λ = µ = 1.5 > 0.7
so the assumption is satisfied. Then we have P(A) = p11 + p10 = 0.8, P(B) =
p11 + p01 = 0.2. We can also easily compute P(a) = aP(A) + (1 − a)P(¬A) = 0.56
and P(b) = bP(B) + (1− b)P(¬B) = 0.44. Yet:

880

Probabilistic legal decision standards still fail

P(A|a) = P(a|A)P(A)
P(a) = 0.6× 0.8

0.6× 0.8 + 0.4× 0.2 ≈ 0.8571

P(B|b) = P(b|B)P(B)
P(b) = 0.6× 0.2

0.6× 0.2 + 0.4× 0.8 ≈ 0.272

P(A ∧B|a ∧ b) = P(a ∧ b|A ∧B)P(A ∧B)
P(a ∧ b|A ∧B)P(A ∧B) + P(a ∧ b|A ∧ ¬B)P(A ∧ ¬B)+

+ P(a ∧ b|¬A ∧B)P(¬A ∧B) + P(a ∧ b|¬A ∧ ¬B)P(¬A ∧ ¬B)

= abp11
abp11 + a(1− b)p10 + (1− a)bp01 + (1− a)(1− b)p00

≈ 0.147

The posterior probability of A∧B is not only lower than the larger of the individual
posteriors, but also lower than any of them!

So what went wrong in Dawid’s calculations in (7)? Well, the first formula is
correct. However, let us take a look at what the second one says (the problem with
the third one is pretty much the same):

P(A|a) =
P(a|A)

P(¬a|A) × P(A ∧B)

P(¬(A ∧B)) + P(a|A)
P(¬a|A) × P(A ∧B)

Quite surprisingly, in Dawid’s formula for P(A|a), the probability of A ∧ B plays a
role. To see that it should not take any B that excludes A and the formula will
lead to the conclusion that always P(A|a) is undefined. The problem with Dawid’s
formula is that instead of p11 = P(A ∧B) he should have used P(A) = p11 + p10, in
which case the formula would rather say this:

P(A|a) =
P(a|A)

P(¬a|A) × P(A)

P(¬A) + P(a|A)
P(¬a|A) × P(A)

=
P(a|A)P(A)

P(¬a|A)
P(¬a|A)P(¬A)

P(¬a|A) + P(a|A)P(A)
P(¬a|A)

= P(a|A)P(A)
P(¬a|A)P(¬A) + P(a|A)P(A)

Now, on the assumption that witness’ sensitivity is equal to their specificity, we have

881

Urbaniak

P(a|¬A) = P(¬a|A) and can substitute this in the denominator:

= P(a|A)P(A)
P(a|¬A)P(¬A) + P(a|A)P(A)

and this would be a formulation of Bayes’ theorem. And indeed with P(A) = p11+p10
the formula works (albeit its adequacy rests on the identity of P(a|¬A) and P(¬a|A)),
and yields the result that we already obtained:

P(A|a) = λ(p11 + p10)
1− (p11 + p10) + λ(p11 + p10)

= 1.5× 0.8
1− 0.8 + 1.5× 0.8 ≈ 0.8571

The situation cannot be much improved by taking a and b to be high. For
instance, if they’re both 0.9 and pr = 〈0.1, 0.7, 0.1, 0.1〉, the posterior of A is ≈ 0.972,
the posterior of B is ≈ 0.692, and yet the joint posterior of A ∧B is 0.525.

The situation cannot also be improved by saying that at least if the threshold
is 0.5, then as soon as a and b are above 0.7 (and, a fortriori, so are λ and µ),
the individual posteriors being above 0.5 entails the joint posterior being above 0.5
as well. For instance, for a = 0.7 and b = 0.9 with pr = 〈0.1, 0.3, 0.5, 0.1〉, the
individual posteriors of A and B are ≈ 0.608 and ≈ 0.931 respectively, while the
joint posterior of A ∧B is ≈ 0.283.

Optional Content Ends

The situation cannot be improved by saying that what was meant was rather
that the joint likelihood is going to be at least as high as the maximum of the
individual likelihoods, because quite the opposite is the case: the joint likelihood is
going to be lower than any of the individual ones.

Optional Content Starts

Let us make sure this is the case. We have:

LR(a|A) = P(a|A)
P(a|¬A)

= P(a|A)
P(¬a|A)

= a
1− a .

where the substitution in the denominator is legitimate only because witness’ sensi-
tivity is identical to their specificity.

With the joint likelihood, the reasoning is just a bit more tricky. We will need
to know what P(a ∧ b|¬(A ∧B)) is. There are three disjoint possible conditions in

882

Probabilistic legal decision standards still fail

which the condition holds: A∧¬B,¬A∧B, and ¬A∧¬B. The probabilities of a∧ b
in these three scenarios are respectively a(1− b), (1− a)b, (1− a)(1− b) (again,
the assumption of independence is important), and so on the assumption ¬(A ∧B)
the probability of a ∧ b is:

P(a ∧ b|¬(A ∧B)) = a(1− b) + (1− a)b + (1− a)(1− b)
= a(1− b) + (1− a)(b + 1− b)
= a(1− b) + (1− a)
= a − ab + 1− a = 1− ab

So, on the assumption of witness independence, we have:

LR(a ∧ b|A ∧B) = P(a ∧ b|A ∧B)
P(a ∧ b|¬(A ∧B))

= ab
1− ab

With 0 < a,b < 1 we have ab < a, 1− ab > 1− a, and consequently:

ab
1− ab <

a
1− a

which means that the joint likelihood is going to be lower than any of the individual
ones.

Optional Content Ends

Fact 1 is so far the most optimistic reading of the claim that if witnesses are
independent and fairly reliable, their testimonies are going to provide positive sup-
port for the conjunction,13 and any stronger reading of Dawid’s suggestions fails.
But Fact 1 is not too exciting when it comes to answering the original DAC. The
original question focused on the adjudication model according to which the deciding
agents are to evaluate the posterior probability of the whole case conditional on all
evidence, and to convict if it is above a certain threshold. The problem, generally,
is that it might be the case that the pieces of evidence for particular elements of the
claim can have high likelihood and posterior probabilities of particular elements can
be above the threshold while the posterior joint probability will still fail to meet the
threshold. The fact that the joint posterior will be higher than the joint prior does
not help much. For instance, if a = b = 0.7, pr = 〈0.1, 0.5, 0.3, 0.1〉, the posterior of

13And this is the reading that Dawid in passing suggests: “the combined support is always
positive, in the sense that the posterior probability of the case always exceeds its prior probability.”
[9, 95]

883

Urbaniak

A is ≈ 0.777, the posterior of B is ≈ 0.608 and the joint posterior is ≈ 0.216 (yes, it
is higher than the joint prior = 0.1, but this does not help the conjunction to satisfy
the decision standard).

To see the extent to which Dawid’s strategy is helpful here, perhaps the following
analogy might be useful. Imagine it is winter, the heating does not work in my office
and I am quite cold. I pick up the phone and call maintenance. A rather cheerful
fellow picks up the phone. I tell him what my problem is, and he reacts:

— Oh, don’t worry.
— What do you mean? It’s cold in here!
— No no, everything is fine, don’t worry.
— It’s not fine! I’m cold here!
— Look, sir, my notion of it being warm in your office is that

the building provides some improvement to what the situa-
tion would be if it wasn’t there. And you agree that you’re
definitely warmer than you’d be if your desk was standing
outside, don’t you? Your, so to speak, posterior warmth is
higher than your prior warmth, right?

Dawid’s discussion is in the vein of the above conversation. In response to
a problem with the adjudication model under consideration Dawid simply invites
us to abandon thinking in terms of it and to abandon requirements crucial for the
model. Instead, he puts forward a fairly weak notion of support (analogous to a fairly
weak sense of the building providing improvement), according to which, assuming
witnesses are fairly reliable, if separate fairly reliable witnesses provide positive
support to the conjuncts, then their joint testimony provides positive support for
the conjunction.

As far as our assessment of the original adjudication model and dealing with
DAC, this leaves us hanging. Yes, if we abandon the model, DAC does not worry
us anymore. But should we? And if we do, what should we change it to, if we do
not want to be banished from the paradise of probabilistic methods?

Having said this, let me emphasize that Dawid’s paper is important in the devel-
opment of the debate, since it shifts focus on the likelihood ratios, which for various
reasons are much better measures of evidential support provided by particular pieces
of evidence than mere posterior probabilities.

Before we move to another attempt at a probabilistic formulation of the decision
standard, let us introduce the other hero of our story: the gatecrasher paradox. It
is against DAC and this paradox that the next model will be judged.

Optional Content Starts

In fact, Cohen replied to Dawid’s paper [7]. His reply, however, does not have

884

Probabilistic legal decision standards still fail

much to do with the workings of Dawid’s strategy, and is rather unusual. Cohen’s
first point is that the calculations of posteriors require odds about unique events,
whose meaning is usually given in terms of potential wagers – and the key criticism
here is that in practice such wagers cannot be decided. This is not a convincing
criticism, because the betting-odds interpretations of subjective probability do not
require that on each occasion the bet should really be practically decidable. It rather
invites one to imagine a possible situation in which the truth could be found out
and asks: how much would we bet on a certain claim in such a situation? In some
cases, this assumption is false, but there is nothing in principle wrong with thinking
about the consequences of false assumptions.

Second, Cohen says that Dawid’s argument works only for testimonial evidence,
not for other types thereof. But this claim is simply false – just because Dawid
used testimonial evidence as an example that he worked through it by no means
follows that the approach cannot be extended. After all, as long as we can talk
about sensitivity and specificity of a given piece of evidence, everything that Dawid
said about testimonies can be repeated mutatis mutandis.

Third, Cohen complaints that Dawid in his example worked with rather high
priors, which according to Cohen would be too high to correspond to the presumption
of innocence. This also is not a very successful rejoinder. Cohen picked his priors
in the example for the ease of calculations, and the reasoning can be run with
lower priors. Moreover, instead of discussing the conjunction problem, Cohen brings
in quite a different problem: how to probabilistically model the presumption of
innocence, and what priors of guilt should be appropriate? This, indeed, is an
important problem; but it does not have much to do with DAC, and should be
discussed separately.

Optional Content Ends

7 The gatecrasher paradox
Here’s another problem with TLP, the paradox of the gatecrasher [6, 21]. A variant
of the paradox goes as follows:

Suppose our guilt threshold is high, say at 0.99. Consider the situation
in which 1000 fans enter a football stadium, and 991 of them avoid
paying for their tickets. A random spectator is tried for not paying. The
probability that the spectator under trial did not pay exceeds 0.99. Yet,
intuitively, a spectator cannot be considered guilty on the sole basis of
the number of people who did and did not pay.14

14The thought experiment that in the absence of any other evidence, the only source of proba-

885

Urbaniak

The thought experiment can be adapted to match any particular threshold that a
proponent of TLP might suggest, as long as it is < 1. For any such a choice of a
threshold, it seems, we can think of a situation where all available evidence increases
the probability of guilt above it, and yet, conviction seems unjustified.

The problem is not only that TLP leads to a conviction that intuitively seems
unjustified and might be wrong. Once we notice that our evidence about each
spectator is exactly the same, TLP seems to commit us to the conclusion that all of
them should be punished, including the nine that actually paid, as long as we can’t
tell them apart. And arguably, there is something disturbing in the idea of a system
of justice which pretty much explicitly admits that some innocent people should be
punished.

The gatecrasher paradox can be considered (or at least has been considered
by some scholars) illustrative of a wider phenomenon. According to at least some
approaches, there is an important distinction between naked statistical evidence, such
as the evidence involved in the Gatecrasher Paradox, and individualized evidence
(such as, say, eyewitness testimony) [13]. Seemingly, judges and human subjects are
less willing to convict based on naked statistical evidence than when individualized
evidence is available, despite the subjective probability of guilt being the same [31].

Philosophers accepting this distinction have proposed many different explications
of what this supposed difference consists in exactly, without much agreement being
reached.15 However, the underdevelopment of philosophical theories aside, as the
gatecrasher paradox and some real cases based solely on DNA cold hits that got
thrown away indicate, there are at least some cases in which the probability of guilt
given the evidence might be high, and the conviction still is not justified. Arguably,
a probabilistic explication of judiciary decision standard should at least allow for
this possibility and specify the conditions under which this might happen.

8 Cheng’s Relative Legal Probabilism (RLP)
Let us think about juridical decisions in analogy to statistical hypothesis testing.
We have two hypotheses under consideration: defendant’s H∆ and plaintiff’s HΠ,
and we are to pick one: D∆ stands for the decision for H∆ and DΠ is the decision
that HΠ. If we are right, no costs result, but incorrect decisions have their price.
Let us say that if the defendant is right and we find against them, the cost is c1,

bilistic information is the statistics, and so that the probability of guilt corresponds to the frequency
of unpaid admissions. If the reader does not agree, I ask her to play along, and to notice that in
such a case a principled story of what the probability of guilt is and why is needed.

15See [22] for a critical survey and [10] and [25] for more recent proposals.

886

Probabilistic legal decision standards still fail

and if the plaintiff is right and we find against them, the cost is c2:

Decision
D∆ DΠ

Truth H∆ 0 c1
HΠ c2 0

Arguably, we need a decision rule which minimizes the expected cost. Say that given
our total evidence E we have the corresponding probabilities:

p∆ = P(H∆|E)
pΠ = P(HΠ|E)

where P stands for the prior probability (this will be the case throughout our dis-
cussion of Cheng). The expected costs for deciding that H∆ and HΠ, respectively,
are:

E(D∆) = p∆0 + pΠc2 = c2pΠ

E(DΠ) = p∆c1 + pΠ0 = c1p∆

so, assuming that we are minimizing expected cost, we would like to choose HΠ just
in case E(DΠ) < E(D∆). This condition is equivalent to:

c1p∆ < c2pΠ

c1 <
c2pΠ
p∆

c1
c2
<
pΠ
p∆

(8)

[5, 1261] insists:

At the same time, in a civil trial, the legal system expresses no preference
between finding erroneously for the plaintiff (false positives) and finding
erroneously for the defendant (false negatives). The costs c1 and c2 are
thus equal. . .

If we grant this assumption, (8) reduces to:

1 < pΠ
p∆

pΠ > p∆ (9)

887

Urbaniak

That is, in standard civil litigation we are to find for the plaintiff just in case HΠ
is more probable given the evidence than H∆, which doesn’t seem like an insane
conclusion.16

So on this approach, rather than directly evaluating the probability of HΠ given
the evidence and comparing it to a threshold, we compare the support that the evi-
dence provides for alternative hypotheses HΠ and H∆ (where, let’s emphasize again,
the latter doesn’t have to be the negation of the former), and decide for the bet-
ter supported one. Let’s call this decision standard Relative Legal Probabilism
(RLP).17

9 RLP vs. DAC
How is RLP supposed to handle DAC? Consider an imaginary case, used by Cheng
to discuss this issue. In it, the plaintiff claims that the defendant was speeding (S)
and that the crash caused her neck injury (C). Thus, HΠ is S ∧ C. Suppose that
given total evidence E, the conjuncts, taken separately, meet the decision standard
of RLP:

P(S|E)
P(¬S|E) > 1 P(C|E)

P(¬C|E) > 1

The question, clearly, is whether P(S∧C|E)
H∆|E > 1. But to answer it, we have to decide

what H∆ is. This is the point where Cheng’s remark that H∆ isn’t normally simply
¬HΠ. Instead, he insists, there are three alternative defense scenarios: H∆1 =
S ∧ ¬C, H∆2 = ¬S ∧ C, and H∆3 = ¬S ∧ ¬C. How does HΠ compare to each of
them? Cheng (assuming independence) argues:

P(S ∧ C|E)
P(S ∧ ¬C|E) = P(S|E)P(C|E)

P(S|E)P(¬C|E) = P(C|E)
P(¬C|E) > 1 (10)

P(S ∧ C|E)
P(¬S ∧ C|E) = P(S|E)P(C|E)

P(¬S|E)P(C|E) = P(S|E)
P(¬S|E) > 1

P(S ∧ C|E)
P(¬S ∧ ¬C|E) = P(S|E)P(C|E)

P(¬S|E)P(¬C|E) > 1

16Notice that this instruction is somewhat more general than the usual suggestion of the pre-
ponderance standard in civil litigation, according to which the court should find for the plaintiff
just in case P(HΠ|E) > 0.5. This threshold, however, results from (9) if it so happens that H∆ is
¬HΠ, that is, if the defendant’s claim is simply the negation of the plaintiff’s thesis. By no means,
Cheng argues, this is always the case: often the defendant offers a story which is much more than
simply the denial of what the opposite side said.

17I was not aware of any particular name for Cheng’s model so we came up with this one. We’re
not particularly attached to it, and it is not standard terminology.

888

Probabilistic legal decision standards still fail

It seems that whatever the defense story is, it is less plausible than the plaintiff’s
claim. So, at least in this case, whenever elements of a plaintiff’s claim satisfy the
decision standard proposed by RLP, then so does their conjunction.

10 RLP vs. the Gatecrasher Paradox
Similarly, RLP is claimed to handle the gatecrasher paradox. It is useful to think
about the problem in terms of odds and likelikoods, where the prior odds (before
evidence E) of HΠ as compared to H∆, are P(HΠ)

P(H∆) , the posterior odds of H∆ given

E are P(HΠ|E)
P(H∆|E) , and the corresponding likelihood ratio is P(E|HΠ)

P(E|H∆) .
Now, with this notation the odds form of Bayes’ Theorem tells us that the

posterior odds equal the likelihood ratio multiplied by prior odds:

P(HΠ|E)
P(H∆|E) = P(E|HΠ)

P(E|H∆) ×
P(HΠ)
P(H∆)

[5, 1267] insists that in civil trials the prior probabilities should be equal. Granted
this assumption, prior odds are 1, and we have:

P(HΠ|E)
P(H∆|E) = P(E|HΠ)

P(E|H∆) (11)

This means that our original task of establishing that the left-hand side is greater
than 1 now reduces to establishing that so is the right-hand side, which means that
RLP tells us to convict just in case:

P(E|HΠ) > P(E|H∆) (12)

Thus, (12) tells us to convict just in case LR(E) > 1.
In the case of the gatecrasher paradox, our evidence is statistical. In our variant

E=“991 out of 1000 spectators gatecrashed”. Now pick a random spectator, call
him Tom, and let HΠ=“Tom gatecrashed.” [5, 1270] insists:

But whether the audience member is a lawful patron or a gatecrasher
does not change the probability of observing the evidence presented.

So, on his view, in such a case, P(E|HΠ) = P(E|H∆), the posterior odds are, by
(11), equal to 1, and conviction is unjustified.

889

Urbaniak

11 Troubles with RLP
There are various issues with how RLP has been deployed to resolve the difficulties
that CLP and TLP run into. First of all, to move from (8) to (9), Cheng assumes
that the costs of wrongful decision is the same, be it conviction or acquittal. This is
by no means obvious. If a poor elderly lady sues a large company for serious health
damage that it supposedly caused, leaving her penniless if the company is liable is
definitely not on a par with mistakenly making the company lose a small percent
of their funds. Even in cases where such costs are equal, careful consideration and
separate argument is needed. If, for instance, c1 = 5c2, we are to convict just in case
5 < pΠ

p∆
. This limits the applicability of Cheng’s reasoning about DAC, because his

reasoning, if correct (and I will argue that it is not correct later on), yields only the
result that the relevant posterior odds are greater than 1, not that they are greater
than 5. The difficulty, however, will not have much impact on Cheng’s solution of
the gatecrasher paradox, as long as c1 ≤ c2. This is because his reasoning, if correct,
establishes that the relevant posterior odds are below 1, and so below any higher
threshold as well.

Secondly, Cheng’s resolution of DAC uses another suspicious assumption. For
(10) to be acceptable we need to assume that the following pairs of events are inde-
pendent conditionally on E: 〈S,C〉, 〈S,¬C〉, 〈¬S,C〉, 〈¬S,¬C〉. Otherwise, Cheng
would not be able to replace conditional probabilities of corresponding conjunctions
with the result of multiplication of conditional probabilities of the conjuncts. But it
is far from obvious that speeding and neck injury are independent. If, for instance,
the evidence makes it certain that if the car was not speeding, the neck injury was
not caused by the accident, P(¬S ∧ C|E) = 0, despite the fact that P(¬S|E)P(C|E)
does not have to be 0!

Without independence, the best that we can get, say for the first line of (10), is:

P(S ∧ C|E) = P(C|E)P(S|C ∧ E)
P(S ∧ ¬C|E) = P(¬C|E)P(S|¬C ∧ E)

and even if we know that P(C|E) > P(¬C|E), this tells us nothing about the com-
parison of P(S ∧ C|E) and P(S ∧ ¬C|E), because the remaining factors can make
up for the former inequality.

Perhaps even more importantly, much of the heavy lifting here is done by the
strategic splitting of the defense line into multiple scenarios. The result is rather
paradoxical. For suppose P(HΠ|E) = 0.37 and the probability of each of the defense
lines given E is 0.21. This means that HΠ wins with each of the scenarios, so,
according to RLP, we should find for the plaintiff. On the other hand, how eager

890

Probabilistic legal decision standards still fail

are we to convict once we notice that given the evidence, the accusation is rather
false, because P(¬HΠ|E) = 0.63?

The problem generalizes. If, as here, we individualize scenarios by boolean com-
binations of elements of a case, the more elements there are, into more scenarios
¬HΠ needs to be divided. This normally would lead to the probability of each of
them being even lower (because now P(¬HΠ) needs to be “split” between more dif-
ferent scenarios). So, if we take this approach seriously, the more elements a case
has, the more at disadvantage the defense is. This is clearly undesirable.

In the process of solving the gatecrasher paradox, to reach (11), Cheng makes
another controversial assumption: that the prior odds should be one, that is, that
before any evidence specific to the case is obtained, P(HΠ) = P(H∆). One problem
with this assumption is that it is not clear how to square this with how Cheng handles
DAC. For there, he insisted we need to consider three different defense scenarios,
which we marked as H∆1 , H∆2 and H∆3 . Now, do we take Cheng’s suggestion to be
that we should have

P(HΠ) = P(H∆1) = P(H∆2) = P(H∆3)?

Given that the scenarios are jointly exhaustive and pairwise exclusive this would
mean that each of them should have prior probability 0.25 and, in principle that
the prior probability of guilt can be made lower simply by the addition of elements
under consideration. This conclusion seems suboptimal.

If, on the other hand, we read Cheng as saying that we should have P(HΠ) =
P(¬HΠ), the side-effect is that even a slightest evidence in support of HΠ will make
the posterior probability of HΠ larger than that of ¬HΠ, and so the plaintiff can win
their case way too easily. Worse still, if P(¬HΠ) is to be divided between multiple
defense scenarios against which HΠ is to be compared, then as soon as this division
proceeds in a non-extreme fashion, the prior of each defense scenario will be lower
than the prior of HΠ, and so from the perspective of RLP, the plaintiff does not have
to do anything to win (as long as the defense does not provide absolving evidence),
because his case is won without any evidence already!

Finally, let us play along and assume that in the gatecrasher scenario the con-
viction is justified just in case (12) holds. Cheng insists that it does not, because
P(E|HΠ) = P(E|H∆). This supposedly captures the intuition that whether Tom
paid has no impact on the statistics that we have.

But this is not obvious. Here is one way to think about this. Tom either paid the
entrance fee or did not. Consider these two options, assuming nothing else about
the case changes. If he did pay, then he is among the 9 innocent spectators. But
this means that if he had not paid, there would have been 992 gatecrashers, and so

891

Urbaniak

E would be false (because it says there was 991 of them). If, on the other hand,
Tom in reality did not pay (and so is among the 991 gatecrashers), then had he paid,
there would have been only 990 gatecrashers and E would have been false, again!

So whether conviction is justified and what the relevant ratios are depends on
whether Tom really paid. Cheng’s criterion (12) results in the conclusion that Tom
should be penalized if and only if he did not pay. But this does not help us much
when it comes to handling the paradox, because the reason why we needed to rely
on E was exactly that we did not know whether Tom paid.

If you are not buying into the above argument, here is another way to state the
problem. Say your priors are P(E) = e, P(HΠ) = π. By Bayes’ Theorem we have:

P(E|HΠ) = P(HΠ|E)e
π

P(E|H∆) = P(H∆|E)e
1− π

Assuming our posteriors are taken from the statistical evidence, we have P(HΠ|E) =
0.991 and P(H∆|E) = 0.009. So we have:

LR(E) = P(HΠ|E)e
π

× 1− π
P(H∆|E)e (13)

= P(HΠ|E)− P(HΠ|E)π
P(H∆|E)π

= 0.991− 0.991π
0.009π

and LR(E) will be > 1 as soon as π < 0.991. This means that contrary to what
Cheng suggested, in any situation in which the prior probability of guilt is less than
the posterior probability of guilt, RLP tells us to convict. This, however, does not
seem desirable.

12 Kaplow’s Decision-Theoretic LP (DTLP)
On RLP, at least in certain cases, the decision rule leads us to (12), which tells us
to decide the case based on whether the likelihood ratio is greater than 1. Quite
independently, Kaplow [15] suggested another approach to juridical decisions which
focuses on likelihood ratios, of which Cheng’s suggestion is only a particular case.18

18Again, the name of the view is by no means standard, it is just a term I coined to refer to
various types of legal probabilism in a fairly uniform manner.

892

Probabilistic legal decision standards still fail

While Kaplow did not discuss DAC or the gatecrasher paradox, it is only fair to
evaluate Kaplow’s proposal from the perspective of these difficulties.

Let LR(E) = P(E|HΠ)/P(E|H∆). In whole generality, DTLP invites us to con-
vict just in case LR(E) > LR?, where LR? is some critical value of the likelihood
ratio.

Say we want to formulate the usual preponderance rule: convict iff P(HΠ|E) >
0.5, that is, iff P(HΠ|E)

P(H∆|E) > 1. By Bayes’ Theorem we have:

P(HΠ|E)
P(H∆|E) = P(HΠ)

P(H∆) ×
P(E|HΠ)
P(E|H∆) > 1⇔

⇔ P(E|HΠ)
P(E|H∆) >

P(H∆)
P(HΠ)

So, as expected, LR? is not unique and depends on priors. Analogous reformulations
are available for thresholds other than 0.5.

However, Kaplow’s point is not that we can reformulate threshold decision rules
in terms of priors-sensitive likelihood ratio thresholds. Rather, he insists, when we
make a decision, we should factor in its consequences. Let G represent potential gain
from correct conviction, and L stand for the potential loss resulting from mistaken
conviction. Taking them into account, Kaplow suggests, we should convict if and
only if:

P(HΠ|E)×G > P(H∆|E)× L (14)

Now, (14) is equivalent to:

P(HΠ|E)
P(H∆|E) >

L

G

P(HΠ)
P(H∆) ×

P(E|HΠ)
P(E|H∆) >

L

G

P(E|HΠ)
P(E|H∆) >

P(H∆)
P(HΠ) ×

L

G

LR(E) > P(H∆)
P(HΠ) ×

L

G
(15)

This is the general format of Kaplow’s decision standard. Now, let us see how it
fares when it comes to DAC and the gatecrasher paradox.

893

Urbaniak

13 Troubles with DTLP
Kaplow does not discuss the conceptual difficulties that we are concerned with, but
this will not stop us from asking whether DTLP can handle them (and answering
to the negative). Let us start with DAC.

Say we consider two claims, A and B. Is it generally the case that if they
separately satisfy the decision rule, then so does A∧B? That is, do the assumptions:

P(E|A)
P(E|¬A) >

P(¬A)
P(A) ×

L

G

P(E|B)
P(E|¬B) >

P(¬B)
P(B) ×

L

G

entail

P(E|A ∧B)
P(E|¬(A ∧B)) >

P(¬(A ∧B))
P(A ∧B) × L

G
?

Alas, the answer is negative.
Optional Content Starts

This can be seen from the following example. Suppose a random digit from 0-9
is drawn; we do not know the result; we are told that the result is < 7 (E =‘the
result is < 7’), and we are to decide whether to accept the following claims:

A the result is < 5.
B the result is an even number.
A ∧B the result is an even number < 5.

Suppose that L = G (this is for simplicity only — nothing hinges on this, coun-
terexamples for when this condition fails are analogous). First, notice that A and
B taken separately satisfy (15). P(A) = P(¬A) = 0.5, P(¬A)/P(A) = 1 P(E|A) = 1,
P(E|¬A) = 0.4. (15) tells us to check:

P(E|A)
P(E|¬A) >

L

G
× P(¬A)

P(A)
1

0.4 > 1

so, following DTLP, we should accept A. For analogous reasons, we should also
accept B. P(B) = P(¬B) = 0.5, P(¬B)/P(B) = 1 P(E|B) = 0.8, P(E|¬B) = 0.6, so

894

Probabilistic legal decision standards still fail

we need to check that indeed:

P(E|B)
P(E|¬B) >

L

G
× P(¬B)

P(B)
0.8
0.6 > 1

But now, P(A ∧B) = 0.3, P(¬(A ∧B)) = 0.7, P(¬(A ∧B))/P(A ∧B) = 21
3 ,

P(E|A ∧B) = 1, P(E|¬(A ∧B)) = 4/7 and it is false that:

P(E|A ∧B)
P(E|¬(A ∧B)) >

L

G
× P(¬(A ∧B))

P(A ∧B)
7
4 >

7
3

The example was easy, but the conjuncts are probabilistically dependent. One
might ask: are there counterexamples that involve claims which are probabilistically
independent?19

Consider an experiment in which someone tosses a six-sided die twice. Let the
result of the first toss be X and the result of the second one Y . Your evidence is
that the results of both tosses are greater than one (E =: X > 1∧ Y > 1). Now, let
A say that X < 5 and B say that Y < 5.

The prior probability of A is 2/3 and the prior probability of ¬A is 1/3 and so
P(¬A)
P(A) = 0.5. Further, P(E|A) = 0.625, P(E|¬A) = 5/6 and so P(E|A)

P(E|¬A) = 0.75
Clearly, 0.75 > 0.5, so A satisfies the decision standard. Since the situation with B
is symmetric, so does B.

Now, P(A ∧B) = (2/3)2 = 4/9 and P(¬(A ∧B)) = 5/9. So P(¬(A ∧B))
P(A ∧B) = 5/4.

Out of 16 outcomes for which A∧B holds, E holds in 9, so P(E|A ∧B) = 9/16. Out
of 20 remaining outcomes for which A∧B fails, E holds in 16, so P(E|¬(A ∧B)) =
4/5. Thus, P(E|A ∧B)

P(E|¬(A ∧B)) = 45/64 < 5/4, so the conjunction does not satisfy the
decision standard.

Optional Content Ends

Let us turn to the gatecrasher paradox.
Suppose L = G and recall our abbreviations: P(E) = e, P(HΠ) = π. DTLP tells

us to convict just in case:

LR(E) > 1− π
π

19Thanks to Alicja Kowalewska for pressing me on this.

895

Urbaniak

From (13) we already now that

LR(E) = 0.991− 0.991π
0.009π

so we need to see whether there are any 0 < π < 1 for which

0.991− 0.991π
0.009π >

1− π
π

Multiply both sides first by 009π and then by π:

0.991π − 0.991π2 > 0.09π − 0.009π2

Simplify and call the resulting function f :

f(π) = −0.982π2 + 0.982π > 0

The above condition is satisfied for any 0 < π < 1 (f has two zeros: π = 0 and
π = 1). Here is a plot of f :

Similarly, LR(E) > 1 for any 0 < π < 1. Here is a plot of LR(E) against π:

896

Probabilistic legal decision standards still fail

Notice that LR(E) does not go below 1. This means that for L = G in the gate-
crasher scenario DTLP wold tell us to convict for any prior probability of guilt
π 6= 0, 1.

One might ask: is the conclusion very sensitive to the choice of L and G? The
answer is, not too much.

Optional Content Starts

How sensitive is our analysis to the choice of L/G? Well, LR(E) does not change
at all, only the threshold moves. For instance, if L/G = 4, instead of f we end up
with

f ′(π) = −0.955π2 + 0.955π > 0

and the function still takes positive values on the interval (0, 1). In fact, the decision
won’t change until L/G increases to ≈ 111. Denote L/G as ρ, and let us start with

897

Urbaniak

the general decision standard, plugging in our calculations for LR(E):

LR(E) > P(H∆)
P(HΠ)ρ

LR(E) > 1− π
π

ρ

0.991− 0.991π
0.009π >

1− π
π

ρ

0.991− 0.991π
0.009π

π

1− π > ρ

0.991π − 0.991π2

0.009π − 0.009π2 > ρ

π(0.991− 0.991π)
π(0.009− 0.009π) > ρ

0.991− 0.991π
0.009− 0.009π > ρ

0.991(1− π)
0.009(1− π) > ρ

0.991
0.009 > ρ

110.1111 > ρ

Optional Content Ends

So, we conclude, in usual circumstances, DTLP does not handle the gatecrasher
paradox.

Optional Content Starts

There is another, recent approach due to Miller [20].20 Instead of using P(H|E),
he introduces a new function, Q, which he calls contrapositive probability, and defines
it as:

Q(H|E) = P(¬E|¬H)

According to a theorem that Miller stated without a proof, if these assumptions hold

Q(H1|E) > Q(¬H1|E)
Q(H2|E) > Q(¬H2|E)

20The idea is not developed in any of his papers. What follows is an account based on his lecture
at the UNILOG ’18 conference.

898

Probabilistic legal decision standards still fail

then it follows that:

Q(H1 ∧H2|E) > Q(¬(H1 ∧H2)|E).

Full assessment of this approach will have to wait for a more complete develop-
ment of the strategy. Note however, that it is far from clear that the above theorem
solves the issue. It only applies to cases in which the threshold is 0.5 and says that
if conjuncts are above it, then so is the conjunction. It still might be the case that
the conjunction has lower “score” than any of the conjuncts, and if so, shifting the
threshold might not preserve the value of the theorem.

Moreover, the measure has very unintuitive properties. Consider a single toss
of a die and its result. P(< 2| < 3) (that is, the probability that the result is 1
given it is less than 3) is 1/2, and so Q(≥ 3| ≥ 2) = 1/2. So, on this approach,
the evidence that the result is one of 2, 3, 4, 5, 6 supports the claim that it is one of
3, 4, 5, 6 only at the level of 1/2, despite the corresponding probability being 4/5.
Similarly, P(< 3| < 5) = 1/2 and so Q(≥ 5| ≥ 3) = 1/2 (the same level as before),
despite the corresponding probability this time being 1/4.

Optional Content Ends

14 Informal overview
Where are we, how did we get here, and where can we go from here? We were
looking for a probabilistically explicated condition Ψ such that the trier of fact, at
least ideally, should accept any relevant claim (including G) just in case Ψ(A,E).

From the discussion that transpired it should be clear that we were looking for
a Ψ satisfying the following desiderata:

conjunction closure If Ψ(A,E) and Ψ(B,E), then Ψ(A ∧B,E).

naked statistics The account should at least make it possible for convictions based
on strong, but naked statistical evidence to be unjustified.

equal treatment the condition should apply to any relevant claim whatsoever (and
not just a selected claim, such as G).

Throughout the paper we focused on the first two conditions (formulated in terms
of the difficulty about conjunction (DAC), and the gatecrasher paradox), going over
various proposals of what Ψ should be like and evaluating how they fare. The results
can be summed up in the following table:

899

Urbaniak

View Convict iff DAC Gatecrasher

Threshold-based LP
(TLP)

Probability of
guilt given the
evidence is above
a certain thresh-
old

fails fails

Dawid’s likelihood
strategy

No condition
given, focus on
P(H|E)

P(H|¬E)

- If evidence is fairly reliable,
the posterior of A∧B will be
greater than the prior.
- The posterior of A∧B can
still be lower than the poste-
rior of any of A and B.
- Joint likelihood, contrary
do Dawid’s claim, can also
be lower than any of the in-
dividual likelihoods.

fails

Cheng’s relative LP
(RLP)

Posterior of guilt
higher than the
posterior of any
of the defending
narrations

The solution assumes equal
costs of errors and indepen-
dence of A and B condi-
tional on E. It also relies on
there being multiple defend-
ing scenarios individualized
in terms of combinations of
literals involving A and B.

Assumes that the
prior odds of guilt
are 1, and that the
statistics is not sen-
sitive to guilt (which
is dubious). If the
latter fails, tells to
convict as long as
the prior of guilt
< 0.991.

Kaplow’s decision-
theoretic LP (DTLP)

The likelihood of
the evidence is
higher than the
odds of innocence
multiplied by the
cost of error ratio

fails convict if cost ratio <
110.1111

Thus, each account either simply fails to satisfy the desiderata, or succeeds on
rather unrealistic assumptions. Does this mean that a probabilistic approach to
legal evidence evaluation should be abandoned? No. This only means that if we
are to develop a general probabilistic model of legal decision standards, we have
to do better. One promising direction is to go back to Cohen’s pressure against
Requirement 1 and push against it. A brief paper suggesting this direction is [3],
where the idea is that the probabilistic standard (be it a threshold or a comparative
standard wrt. defending narrations) should be applied to the whole claim put forward
by the plaintiff, and not to its elements. In such a context, DAC does not arise, but
equal treatment is violated. Perhaps, there are independent reasons to abandon
it, but the issue deserves further discussion. Another strategy might be to go in the
direction of employing probabilistic methods to explicate the narration theory of

900

Probabilistic legal decision standards still fail

legal decision standards [29], but a discussion of how this approach relates to DAC
and the gatecrasher paradox lies beyond the scope of this paper.

References
[1] Aitken, C. and Taroni, F. (2004). Statistics and the evaluation of evidence for forensic

scientists, volume 16. Wiley Online Library.
[2] Ball, V. C. (1960). The moment of truth: probability theory and standards of proof.

Vanderbilt Law Review, 14:807–830.
[3] Bello, M. D. (2019). Plausibility and probability in juridical proof. The International

Journal of Evidence & Proof, doi 10.1177/1365712718815355.
[4] Bernoulli, J. (1713). Ars conjectandi.
[5] Cheng, E. (2012). Reconceptualizing the burden of proof. Yale LJ, 122:1254.
[6] Cohen, J. (1977). The probable and the provable. Oxford University Press.
[7] Cohen, J. (1988). The difficulty about conjunction in forensic proof. Journal of the

Royal Statistical Society: Series D (The Statistician), 37(4-5):415–416
[8] Cullison, A. D. (1969). Probability analysis of judicial fact-finding: A preliminary outline

of the subjective approach. Toledo Law Review, 1:538–598.
[9] Dawid, A. P. (1987). The difficulty about conjunction. The Statistician, pages 91–97.
[10] Enoch, D. and Fisher, T. (2015). Sense and sensitivity: Epistemic and instrumental

approaches to statistical evidence. Stan. L. Rev., 67:557.
[11] Finkelstein, M. O. and Levin, B. (2001). Statistics for lawyers. Springer.
[12] Haack, S. (2014a). Evidence Matters: Science, Proof, and Truth in the Law. Cambridge

University Press.
[13] Haack, S. (2014b). Legal probabilism: an epistemological dissent. In [12], pages 47–77.
[14] Kaplan, J. (1968). Decision theory and the factfinding process. Stanford Law Review,

20:1065–1092.
[15] Kaplow, L. (2014). Likelihood ratio tests and legal decision rules. American Law and

Economics Review, 16(1):1–39.
[16] Kaye, D. (1979). The paradox of the gatecrasher and other stories. Arizona State Law

Journal, pages 101–110.
[17] Kaye, D. H. (1986). Do we need a calculus of weight to understand proof beyond a

reasonable doubt? Boston University Law Review, 66(3-4).
[18] Lempert, R. O. (1977). Modeling relevance. Michigan Law Review, 75:1021–1057.
[19] Lucy, D. (2013). Introduction to statistics for forensic scientists. John Wiley & Sons.
[20] Miller, D. (2018). Cohen’s criticisms of the use of probability in the law. Lecture at

the Sixth World Congress on Universal Logic, Vichy.
[21] Nesson, C. R. (1979). Reasonable doubt and permissive inferences: The value of com-

plexity. Harvard Law Review, 92(6):1187–1225.
[22] Redmayne, M. (2008). Exploring the proof paradoxes. Legal Theory, 14(4):281–309.

901

Urbaniak

[23] Robertson, B., Vignaux, G., and Berger, C. (2016). Interpreting evidence: evaluating
forensic science in the courtroom. John Wiley & Sons.

[24] Simon, R. J. and Mahan, L. (1970). Quantifying burdens of proof-a view from the
bench, the jury, and the classroom. Law and Society Review, 5(3):319–330.

[25] Smith, M. (2017). When does evidence suffice for conviction? Mind.
[26] Taroni, F., Biedermann, A., Bozza, S., Garbolino, P., and Aitken, C. (2006). Bayesian

networks for probabilistic inference and decision analysis in forensic science. John Wiley
& Sons.

[27] Tillers, P. and Green, E. D., editors (1988). Probability and Inference in the Law of
Evidence. The Uses and Limits of Bayesianism, volume 109 of Boston studies in the
philosophy of science. Springer.

[28] Tribe, L. H. (1971a). A further critique of mathematical proof. Harvard Law Review,
84:1810–1820.

[29] Urbaniak, R. (2018). Narration in judiciary fact-finding: a probabilistic explication.
Artificial Intelligence and Law, 26(4):345-376.

[30] Tribe, L. H. (1971b). Trial by mathematics: Precision and ritual in the legal process.
Harvard Law Review, 84(6):1329–1393.

[31] Wells, G. (1992). Naked statistical evidence of liability: Is subjective probability
enough? Journal of Personality and Social Psychology, 62(5):739–752.

Received 3 August 2018902

A DEONTIC ARGUMENTATION FRAMEWORK

TOWARDS DOCTRINE REIFICATION

RÉGIS RIVERET

CSIRO, Australia
regis.riveret@data61.csiro.au

ANTONINO ROTOLO

University of Bologna, Italy
antonino.rotolo@unibo.it

GIOVANNI SARTOR

European University Institute, Italy
giovanni.sartor@eui.eu

Abstract

A modular rule-based argumentation system is proposed to represent and reason
upon conditional norms featuring obligations, prohibitions, and (strong or weak) per-
missions. The approach is based on common constructs in computational models of
argument: rule-based arguments, argumentation graphs, argument labelling semantics
and statement labelling semantics. Deontic reasoning patterns are captured with defea-
sible rule schemata to the greatest extent, towards the reification of doctrinal pieces.
We show then that bivalent statement labellings can fall short to address normative
completeness, and for this reason, we propose to use trivalent labelling semantics.
Given an argumentation graph, deontic statuses can be computed efficiently. The sys-
tem is illustrated with a scenario featuring a violation and a contrary-to-duty obligation.

Keywords: Knowledge representation and reasoning, computational argumentation, legal
reasoning, normative systems.

We would like to thank anonymous reviewers for their remarks, and Guido Governatori for discussions on the
work reported here.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

RIVERET et al.

1 Introduction

There exist multiple formalisms to capture deontic reasoning [20, 35]. As deontic reasoning
is often embedded into legal reasoning, and because legal reasoning is naturally formalised
in formal models of arguments, deontic argumentation frameworks can be elegant and
convenient formalisms to capture arguments in favour or against deontic statements. Yet,
argumentation is more generally used to address defeasible claims raised on the basis of
partial and conflicting pieces of information, that is, defeasible claims in uncertain contexts.
Hence, argumentation may be well suited to reason upon deontic statements in uncertain
contexts.

As interests in deontic systems can vary, diverse requirements or considerations can be
put forward to build deontic argumentation frameworks. For example, some emulation of
human discourses may be a key desideratum, while computational complexity may be a
requisite for practical applications. For our purposes, we will pay attention to human inter-
face (explainability, emulation and isomorphism), as well as more technical considerations
(parsimony, modularity and computational efficiency), and a legit requirement regarding
normative completeness. These design considerations are exposed in more detail later in the
paper.

Bearing in mind specific design considerations, we explore a modular argumentation
system. The argumentation system amounts to a knowledge-based system where conditional
norms and common sense knowledge are represented as object rules into a knowledge base.
The argumentation process then runs in three stages. In the first stage, arguments are built
from object rules in the knowledge base by using some inference apparatus. In the second
stage, arguments are labelled to reflect their acceptance. In the final stage, statements are
labelled at their turn and normative completeness ensured.

To build such a knowledge-based system, we can roughly state that two main approaches
can be taken: a knowledge-based (KB) approach and an inference-based (IB) approach.
In the KB approach, maximum knowledge is expressed in the knowledge base, while the
inference apparatus is restricted and not domain-specific. Possibly, inference schemata too
are included in the knowledge base. Archetypes of the KB approach are Hilbert-style systems
which usually code knowledge in axioms and axiom schemata with a few inference rules. In
contrast, the IB approach tends to capture portions of knowledge in the inference apparatus
which handles the knowledge base. Examples of the IB approach are Gentzen-style systems
where the number of inference rules is typically larger than in Hilbert-style systems. Thus,
we can say that in general the KB approach limits the number of inference patterns, while
the IB approach favours a diversity of inference patterns.

Both approaches have strengths and weaknesses. If something cannot be achieved with
the KB approach (e.g. the pursuit of some natural reasoning patterns, specific inferences or
features such as some quantitative assessment, or a certain computational complexity), then

904

A DEONTIC ARGUMENTATION FRAMEWORK

one can take the IB approach and attempt to devise some specific inference patterns. Some
trade-off may be obtained, for example by devising systems with an ‘inference knowledge
base’ storing a diversity of inference patterns. This approach may be called here the inference-
knowledge-based (IKB) approach. The advantage of the IKB approach in automated systems
is that designers and users can have an easy and direct access to reasoning patterns which
would be otherwise hidden in the implemented inference machinery.

Any of these options can be adopted to build a computational system where norms are
represented as rules from which arguments are formed to decide about the status of deontic
statements. Within the IB approach, deontic reasoning is captured with specific inference
patterns (e.g. deontic detachment). Examples of such an approach in deontic argumentation
are [7, 47]. Within the KB approach, deontic reasoning is written as object rules in the
knowledge base with no specific inference patterns. For example, a weak permission can be
supported by some arguments built out from object rules (instead of hard-coding its support
from the absence of prohibitions). These object rules may be seen as a reification of inference
rules into the language of the knowledge base, but they are not inference rules because they
are part of the object knowledge base. If the inference rules for deontic reasoning are part of
an inference knowledge base, then we have a deontic IKB approach. An example of the IKB
approach is [48] which uses ASPIC+ framework [37] and where inference rules are tuned
for deontic reasoning.

In this paper, we explore a hybrid approach: first, we use defeasible rule schemata to
account for deontic reasoning, towards doctrine reification. In particular, we investigate the
reification of the principle of prohibition to address normative completeness. In that sense,
we adopt a KB approach. However, for aspects of normative completeness we could not
cover with defeasible rule schemata, we exploit the inference apparatus through labelling
semantics, and thus we complete our KB approach with labelling inferences.

Contribution. A modular rule-based argumentation system is proposed to capture
normative knowledge and reason upon it. To do so, we adopt a KB approach to the greatest
extent through defeasible rule schemata, towards doctrine reification. In particular, we
explore the reification of the principle of prohibition to address normative completeness.
Then, for aspects of normative completeness not covered by defeasible rules schemata,
we exploit the inference apparatus through labelling semantics. The system is actually
constructed on quite common definitions of rule-based arguments, argumentation graphs,
argument and statement labelling semantics. By doing so, we aim at showing that deontic
argumentation frameworks can be devised on the basis of common argumentation constructs,
with little modifications to standard inference apparatus. As a consequence, the system
inherits the modularity of labelling argumentation systems, as it can be tuned to capture
diverse refinements on argument and statement labellings; each refinement variant leading to
a specific deontic argumentation framework. In that regard, we will see that standard bivalent

905

RIVERET et al.

statement labellings are not sufficient to achieve normative completeness, and for this reason,
we propose to use a trivalent labelling semantics. Through this journey, we will retrieve three
possible interpretations of the principle of prohibition.

Outline. In Section 2, some design considerations are exposed to build the computational
system. In Section 3, we present a simple argumentation setting which is our basis of our
deontic argumentation system. In Section 4, deontic knowledge is captured in deontic
defeasible theories, from which argumentation graphs are produced, and deontic statements
are labelled. Section 5 illustrates the overall approach. Section 6 evaluates the system with
respect to the elicited design considerations. We discuss related work in Section 7, before
concluding.

2 Some Design Considerations

Some design considerations may be useful to guide the construction of deontic argumentation
systems. We will develop our system by bearing in mind ‘human interface’ and ‘inference’
issues, and a ‘legit’ requirement concerning normative completeness.

Interface considerations regard human-centric requirements to facilitate user interactions
with the system, and we will value explainability, emulation, and isomorphism.
Explainability Computation of normative accounts should be explainable. Yet, the question
‘What is a good explanation?’ is quite elusive and goes far beyond the present work, see
diverse conceptions in philosophy e.g. [5, 26, 31] or psychology [28, 32]. Here we focus
on a specific aspect of explainability, namely, the explanation of why a certain argument is
accepted or rejected, in the context of all relevant arguments. Thus, explainability means for
our purposes that the output acceptance labelling of statements (i.e. conclusions) should be
easily explainable to humans (-in-the-loop) by the interplay of arguments.
Emulation Computational models of argument are often inspired by argumentation as
practised by humans. Following this line, argumentation for deontic reasoning should
somehow emulate the way humans argue about deontic statements. In particular, we would
like to account for full-fledged arguments built from doctrinal pieces, for example those
arguments supporting permissions which are implicit in normative systems.
Isomorphism A well-established principle to build knowledge-based systens in the legal
domain states that there should be an ‘isomorphic’ correspondence between the knowledge
base and the sources [8]. Isomorphism can facilitate the development, verification, validation
and maintenance of the knowledge base, and the provision of more intelligible explanations
to end-users. Isomorphism implies here that we have constructs to account for conditional
norms featuring obligations, prohibitions and permissions.

Inference considerations are more technical, and we will focus on parsimony, modularity
and efficiency.

906

A DEONTIC ARGUMENTATION FRAMEWORK

Parsimony As various deontic argumentation formalisms can be proposed to meet our
needs, we shall prefer the simplest or most parsimonious formalisms, that is formalisms
where unnecessary elements and constructions are excluded. Beyond formal elegance, a
parsimonious deontic formalism is important because of its greater falsifiability, and because
it can ease integration with other endeavours in argumentation, such as e.g. judgement aggre-
gation, probabilistic, strategic or machine learning undertakings [9, 40, 41, 43]. Parsimony
can be analysed in various ways – we will appreciate it at the level of inference machinery
and the knowledge base.
Modularity To facilitate semantics variants, verification, validation and maintenance of
eventual ‘argument-based software systems’, the deontic argumentation system may be, so to
say, modular by design. This can be achieved, for example, by developing a module for each
labelling stage, such that every module can be tuned. In this view, we prefer to investigate a
deontic argumentation system from which various deontic argumentation frameworks can be
drawn.
Efficiency Concerning computational complexity, one may seek for systems which can
operate efficiently for practical ends, and thus argumentation semantics which can be accom-
panied with efficient algorithms. Following computational complexity theory, an algorithm
is efficient if it can be performed in polynomial time.

Finally, beyond consistency according to which incompatible (deontic) statements should
not be accepted together, the legit requirement regards the normative completeness of our
formal system.

Completeness We are after deontic argumentation frameworks which are complete. Pre-
scriptions may be such that there exist ‘normative gaps’ (or ‘legal gaps’ in legal systems), i.e.,
in some cases, something is neither explicitly obligatory, permitted nor prohibited. Normative
completeness refers here to the completeness quality of the deontic argumentation system: a
system is complete if, and only if, anything is eventually obligatory, permitted or prohibited,
even though, for example, something is not regulated by any primary norms. To address
normative completeness, the ‘principle of prohibition’, according to which everything that is
not prohibited is permitted, can be put forward, and we will do so. Yet, such a principle can
be interpreted in various ways, see e.g. [1], which should be accounted for.

Many argumentation settings in the literature cater for various human interface and
inference aspects in a way or another. We are thus greatly inspired from these systems to build
our deontic argumentation system in the next sections. However, normative completeness
has attracted less attention. and we shall thus pay particular attention to it. Above-mentioned
design considerations will be used to evaluate the system later in Section 6.

907

RIVERET et al.

3 Argumentation System

This section presents a lightweight ASPIC+-like argumentation system along with a com-
mon sequential model consisting of the following stages [4]: definition of the language,
defeasible theories and argumentation graph production, argument acceptance/justification
and statement acceptance/justification. These stages are developed in the remainder of the
section.

3.1 Language

Building blocks of the formalism are so-called ‘literal statements’ (which are later further
specified to cater for deontic modalities).

Definition 3.1. A literal statement is either a plain literal statement or a modal literal
statement, where
• a plain literal statement is either an atomic proposition p or the negation of an atomic

proposition, i.e. ¬p, and
• a modal literal statement is a statement of the form �γ or ¬�γ , such that � is a place-

holder for any modal operator and γ is a plain literal statement.

Notation 3.1. For any plain literal statement γ , its complement is written γ . Hence, if γ is p
then γ is ¬p, and if γ is ¬p then γ is p.

Literal statements can be put in relation through defeasible rules. Defeasible rules
represent conditionals of the form ‘if . . . then . . . unless . . .’. For the sake of simplicity, we
deal with defeasible rules only, i.e. rules that can be defeated by other rules.

Definition 3.2. A defeasible rule over a set of literal statements S is a construct of the form
r : ϕ1, . . . ,ϕn,∼ ϕ ′1, . . . ,∼ ϕ ′m⇒ ϕ with 0≤ n and 0≤ m, and where
• r is the unique identifier of the rule, and
• for any 0≤ i≤ n and 0≤ j ≤ m, ϕi,ϕ ′j,ϕ ∈S are all literal statements.

Given a rule as in Definition 3.2, the set {ϕ1, . . . ,ϕn,∼ ϕ ′1, . . . ,∼ ϕ ′m} is the body of the
rule. The singleton {ϕ} is the head of the rule.

Notation 3.2. Given a rule r as in Definition 3.2,
• the body of r is denoted Body(r), i.e. Body(r) = {ϕ1, . . . ,ϕn,∼ ϕ ′1, . . . ,∼ ϕ ′m},
• the head of r is denoted Head(r), i.e. Head(r) = {ϕ},
• the set of propositions of r is denoted Prop(r), i.e. Prop(r) = {p | p,¬p,∼ p,∼
¬p,�p,¬�p,�¬p,¬�¬p,∼�p,∼ ¬�p,∼�¬p,∼ ¬�¬p ∈ Body(r)∪Head(r)}.

The set of propositions of a set of rules Rules is denoted Prop(Rules), i.e. Prop(Rules) =⋃
r∈Rules Prop(r).

908

A DEONTIC ARGUMENTATION FRAMEWORK

A defeasible rule r : ϕ1, . . . ,ϕn,∼ ϕ ′1, . . . ,∼ ϕ ′m⇒ ϕ can be roughly read as follows: ‘if ϕ1
and . . . and ϕn are supported then ϕ is defeasibly supported, unless ϕ ′1 is supported or . . .
or unless ϕ ′m is supported’. We specify later what ‘supported’ means here. The symbol ∼
can be viewed as a sort of negation as failure, but it may be rather understood as a point of
attack (as we will see soon) to avoid any confusion with formal semantics from the literature
on the concept of negation as failure.

Rules may head to incompatible statements. Incompatibilities amongst statements are
captured in a conflict relation defined as a binary relation over literal statements.

Definition 3.3. A conflict relation ‘Conflicts’ over a set of literal statements S is a binary
relation over S , i.e. Conflicts⊆S ×S .

Notation 3.3. The set propositions of a conflict relation ‘Conflicts’ is de-
noted Prop(Conflicts), i.e. Prop(Conflicts) = {p | (ϕ,ϕ ′) ∈ Conflicts : ϕ =
p,¬p,�p,¬�p,�¬p,¬�¬p, or ϕ ′ = p,¬p,�p,¬�p,�¬p,¬�¬p}.

The relation is meant to be ‘well-formed’. For example, we may constrain conflicts such that
for any literal statement γ and its complement γ we have Conflicts(γ,γ). Well-formedness is
left unspecified at this stage, it will be specified in the deontic development of the relation.
We may also further refine the relation with asymmetric and symmetric conflicts to deal with
contrary or contradictory statements, but such sophistications are not necessary for our ends.

When two rules have conflicting heads, one rule may prevail over another one. To
possibly disentangle such cases, we use a superiority relation � over rules. Informally, s� r
states that rule s prevails over rule r.

Definition 3.4. A superiority relation � over a set of rules Rules is an antireflexive and
antisymmetric binary relation over Rules, i.e. �⊆ Rules×Rules.

As the superiority relation is antireflexive and antisymmetric, for any rule r it does not hold
that r � r, and for two distinct rules r and r′ we cannot have both r � r′ and r′ � r.

3.2 Defeasible theories and argumentation graphs

A defeasible theory lists a set of rules, a conflict relation and a superiority relation.

Definition 3.5. A defeasible theory is a tuple 〈Rules,Conflicts,�〉 where
• Rules is a set of rules, and
• Conflicts is a conflict relation, and
• � is a superiority relation over Rules.

909

RIVERET et al.

Notation 3.4. Given a defeasible theory T = 〈Rules,Conflicts,�〉,
• the set of rules Rules, the relation Conflicts, and the relation � are denoted Rules(T),

Conflicts(T), and � (T) respectively,
• the set propositions of T is denoted Prop(T), i.e. Prop(T) = Prop(Rules) ∪

Prop(Conflicts).

By chaining rules of a defeasible theory, we can build arguments. Arguments are captured
by the following definition, which is much inspired from other rule-based argumentation
frameworks as exposed for example in [11, 37].

Definition 3.6. An argument A constructed from a defeasible theory 〈Rules,Con f licts,�〉
is a finite construct of the form: A : A1, . . .An,∼ ϕ1, . . . ,∼ ϕm⇒r ϕ with 0≤ n and 0≤ m
and such that
• A is the unique identifier of the argument, and
• A1, . . . ,An are arguments constructed from the defeasible theory 〈Rules,Con f licts,�〉,

and
• ϕ is the conclusion of argument A; the conclusion of an argument A is denoted conc(A),

i.e. conc(A) = ϕ , and
• there exists a rule r ∈ Rules such that r : conc(A1), . . . ,conc(An),∼ ϕ1, . . . ,∼ ϕm⇒ ϕ .

Definition 3.7. Given an argument A : A1, . . .An,∼ ϕ1, . . . , ∼ ϕm⇒r ϕ , the set of its sub-
arguments Sub(A), the set of its direct subarguments DirectSub(A), the last inference rule
TopRule(A), and the set of all the rules in the argument Rules(A) are defined as follows:
• Sub(A) = Sub(A1)∪ . . .∪Sub(An)∪{A},
• DirectSub(A) = {A1, . . . ,An},
• TopRule(A) = (r : conc(A1), . . . ,conc(An),∼ ϕ1, . . . ,∼ ϕm⇒ ϕ),
• Rules(A) = Rules(A1)∪ . . .∪Rules(An)∪{TopRule(A)}.

According to Definition 3.6, an argument without direct subarguments has thus the form
A :∼ ϕ1, . . . ,∼ ϕm ⇒r ϕ with 0 ≤ m. Arguments may be infinite, and we may have an
infinite set of arguments constructed from a defeasible theory, however, we will work with
finite sets of finite arguments.

Last item in Definition 3.6 asserts that arguments are built using one single implicit
inference rule, namely (defeasible) modus ponens of the form

r : ϕ1, . . . ,ϕn,∼ ϕ ′1, . . . ,∼ ϕ ′m⇒ ϕ
ϕ1, . . . ,ϕn

ϕ

By using this simple and single inference rule pertaining to common sense reasoning, our
intention is to build arguments through reasoning steps which come ‘as close as possible to

910

A DEONTIC ARGUMENTATION FRAMEWORK

actual reasoning’. Yet, by contrast to Gentzen-style calculi (sequent calculus and natural
deduction) which have a minimal number of axioms and multiple inference rules, we propose
to have one single inference rule, namely a defeasible modus ponens to meet our parsimony
requirement. If one wants to bring the framework closer to actual reasoning, then the
framework can be certainly developed in that direction by including sundry inference rules
to build arguments.

Arguments may conflict and thus attacks between arguments may appear. We reckon two
types of attacks: rebuttals (clash of incompatible conclusions) and undercuttings1 (attacks
on negation as failure premises). In regard to rebuttals, we assume a preference relation
over arguments determining whether two rebutting arguments mutually attack each other or
only one of them (being preferred) attacks the other. The preference relation over arguments
can be defined in various ways on the basis of the preference over rules. We adopt a simple
last-link ordering (back to e.g. [38]), according to which an argument A is preferred over
another argument B, denoted as A � B, if, and only if, the rule TopRule(A) is superior to
the rule TopRule(B), i.e. TopRule(A)� TopRule(B). This leads us to adopt the following
definition of attack relation, cf. other formulations e.g. in [37].

Definition 3.8. An attack relation ; over a set of arguments A is a binary relation over A ,
i.e. ;⊆A ×A . An argument B attacks an argument A, i.e. B;A, iff B rebuts or undercuts
A, where
• B rebuts A (on A′) iff ∃A′ ∈ Sub(A) such that conc(B) and conc(A′) are in conflict, i.e.

Conflicts(conc(B),conc(A′)), and A′ 6� B;
• B undercuts A (on A′) iff ∃A′ ∈ Sub(A) such that ∼ conc(B) belongs to the body of

TopRule(A′), i.e. (∼ conc(B)) ∈ Body(TopRule(A′)).

Arguments and attack relations can be then captured in Dung’s abstract argumentation
graphs, originally called abstract argumentation frameworks in [16].

Definition 3.9. An argumentation graph is a pair 〈A ,;〉 where A is a set of arguments,
and ; ⊆A ×A is a binary relation of attack.

Notation 3.5. Given an argumentation graph G = 〈A ,;〉, we may denote A as AG and
; as ;G.

Definition 3.10. An argumentation graph 〈A ,;〉 is an argumentation graph constructed
from a defeasible theory iff A is the set of all arguments constructed from the defeasible
theory.

1The term undercutting is overloaded in argumentation literature and is used with different meanings in
different contexts, cf. [37].

911

RIVERET et al.

Clearly, the number of arguments in an argumentation graph constructed from a defeasible
theory may not be polynomial in the number of rules of the theory. As complexity matters, we
may focus on those theories from which argumentation graphs can be constructed efficiently.
However, we may also be given an argumentation graph, and check its ‘well-formedness’,
presumably against some theory. Anyhow, given an argumentation graph built (possibly
efficiently) from a defeasible theory, we can then label arguments following argument
labelling semantics.

3.3 Labelling semantics

Given an argumentation graph, the sets of arguments that are accepted or rejected, that is,
those arguments that will survive or not to possible attacks, are computed using some seman-
tics. For our purposes, we resort to labelling semantics as reviewed in [2,3]. Accordingly, we
endorse {IN,OUT,UND}-labellings where each argument is associated with one label which
is either IN, OUT, or UND, respectively meaning that the argument is accepted, rejected, or
undecided.

Definition 3.11. A {IN,OUT,UND}-labelling of an argumentation graph G is a total function
L : AG→{IN,OUT,UND}.
Notation 3.6. A {IN,OUT,UND}-labelling L may be represented as a tuple
〈IN(L),OUT(L),UND(L)〉 where IN(L) stands for {A | L(A) = IN}, OUT(L) for
{A | L(A) = OUT}, and UND(L) for {A | L(A) = UND}.

Most argument labellings studied in the literature are complete labellings [2]. An
argumentation graph may have several complete {IN,OUT,UND}-labellings, we will focus
on the unique complete labelling with the smallest set of labels IN, namely the grounded
{IN,OUT,UND}-labelling.

Definition 3.12. Let G denote an argumentation graph. A complete {IN,OUT,UND}-
labelling of G is a {IN,OUT,UND}-labelling such that for every argument A in AG:
• A is labelled IN iff all attackers of A are labelled OUT,
• A is labelled OUT iff A has an attacker labelled IN.

Definition 3.13. A complete {IN,OUT,UND}-labelling L is a grounded {IN,OUT,UND}-
labelling of an argumentation graph G if IN(L) is minimal (w.r.t. set inclusion) amongst all
complete {IN,OUT,UND}-labellings of G.

Since complete or grounded {IN,OUT,UND}-labellings are total functions, if an argument is
not labelled IN or OUT, then it is labelled UND.

The reason to focus on the grounded {IN,OUT,UND}-labelling is that it is unique and it
can be computed in a polynomial time, using e.g. Algorithm 1 [36]. The algorithm begins

912

A DEONTIC ARGUMENTATION FRAMEWORK

by labelling IN all arguments not being attacked or whose attackers are OUT (line 4), and
then it iteratively labels OUT any argument attacked by an argument labelled IN (line 5). The
iteration continues until no more arguments can be labelled IN or OUT (line 6); and if the
argumentation graph is finite, then it terminates by labelling UND unlabelled arguments (line
7).

Algorithm 1 Computation of a grounded {IN,OUT,UND}-labelling.

1: input An argumentation graph G,
2: L0 = (/0, /0, /0),
3: repeat
4: IN(Li+1)← IN(Li)∪{A | A ∈AG is not labelled in Li, and ∀B ∈AG : if B attacks A

then B ∈ OUT(Li)}
5: OUT(Li+1)← OUT(Li)∪{A | A ∈AG is not labelled in Li, and ∃B ∈AG : B attacks A

and B ∈ IN(Li+1)}
6: until Li = Li+1
7: return (IN(Li),OUT(Li),AG\(IN(Li)∪OUT(Li)))

Algorithm 1 is given here to show that the computation of the grounded labelling of an
argumentation graph can be performed in polynomial time. It does not pre-empt the use of
more efficient algortihms, see e.g. [14, 15].

Given a set of statements, a labelling of this set is a (preferably total) function associating
any statement with a label. Different specifications for statement labellings are possible, see
e.g. [4] where statement acceptance labellings are distinguished from statement justification
labellings. For our purposes, we will work with acceptance labellings, and we first turn
to the acceptance labelling semantics which is perhaps the simplest in a meaningful way,
namely bivalent labelling semantics, according to which a statement is either accepted or not,
without further sophistication. If a statement is accepted then it is labelled ‘in’, otherwise
it is labelled ‘ni’. As statements are labelled relatively to so-called argument acceptance
labelling semantics, we have acceptance bivalent {in,ni}-labellings, but we will simply call
them bivalent {in,ni}-labellings.

Definition 3.14. Let L be a set of {IN,OUT,UND}-labellings, S a set of literal statements.
A bivalent {in,ni}-labelling of S and from L is a total function K : L,S → {in,ni} such
that for any argument labelling L ∈ L and ϕ ∈S :
• K(L,ϕ) = in iff ∃A ∈ IN(L) : conc(A) = ϕ ,
• K(L,ϕ) = ni otherwise.

We can also take statement labellings which better exploit statuses of {IN,OUT,UND}-
labellings [4]. For our very investigation into deontic argumentation, we consider trivalent

913

RIVERET et al.

{in,und,niund}-labellings which reckon undecided statements.

Definition 3.15. Let L be a set of {IN,OUT,UND}-labellings, S a set of literal statements.
A trivalent {in,und,niund}-labelling of S and from L is a total function K : L,S →
{in,und,niund} such that for any argument labelling L ∈ L and ϕ ∈S :
• K(L,ϕ) = in iff ∃A ∈ IN(L) : conc(A) = ϕ , and
• K(L,ϕ) = und iff ∃A ∈ UND(L) : conc(A) = ϕ and 6 ∃A ∈ IN(L) : conc(A) = ϕ , and
• K(L,ϕ) = niund otherwise.

Notation 3.7. A bivalent {in,ni}-labelling or a trivalent {in,und,niund}-labelling K may
be represented as a tuple 〈in(K),ni(K)〉 and 〈in(K),und(K),niund(K)〉 respectively, with
the obvious meaning.

For the sake of simplicity, since we will work with grounded {IN,OUT,UND}-labelling
semantics and because every argumentation graph has a unique grounded {IN,OUT,UND}-
labelling, we assume that any statement justification labelling simply corresponds to a
statement acceptance labelling which can be a bivalent {in,ni}-labelling or a trivalent
{in,und,niund}-labelling. The distinction between bivalent and trivalent labellings is later
exploited in our deontic setting, in particular to address normative completeness.

4 Deontic Argumentation System

Having laid out a simple rule-based argumentation system, we can now specify a deontic
version of it. To do so, we first specify our deontic statements, and then adopted labelling
semantics are discussed.

4.1 Deontic language

Legal and deontic reasoning expose varied concepts – ranging from basic obligations and
permissions to liberties and rights. For our purposes, we focus on basic concepts in deontic
reasoning, namely obligations, prohibitions, and permissions.

Obligations are at the core of our deontic system, and prohibitions are viewed as a
by-product of obligations: ‘something is prohibited’ is equivalently expressed by stating
that its opposite is obligatory. Permissions can be understood in terms of obligations too: a
permission for something expresses that the opposite is not obligatory.

Accordingly, and for the sake of simplicity, the attention is restricted to a propositional
language which is supplemented with a single deontic operator O which indicates an obliga-
tion. Hence, we assume a language LD whose literal statements are defined as follows, cf.
Definition 3.1.

914

A DEONTIC ARGUMENTATION FRAMEWORK

Definition 4.1. A literal statement of a language LD is either a plain literal statement or a
deontic literal statement, where:
• a plain literal statement is either an atomic proposition p or the negation of an atomic

proposition, i.e. ¬p, and
• a deontic literal statement is a statement of the form Oγ or ¬Oγ such that γ is a plain

literal statement.

Prohibitions and permissions are captured by assuming that a prohibition Fγ is equiv-
alently expressed by the obligation Oγ , and a permission Pγ is syntactically equivalent to
¬Oγ .

Notation 4.1. As syntactic sugar, we may write Oγ as Fγ , and ¬Oγ as Pγ (and vice versa).
Accordingly, Op stands for F¬p, O¬p for Fp, Pp for ¬O¬p, and P¬p for ¬Op.

Anything is meant to be either obligatory, prohibited or permitted. However, in practice,
and as remarked by legal scholars, there can be gaps (see e.g. [1]), i.e. in some cases,
something is neither obligatory, permitted nor prohibited. Normative completeness refers
here to the completeness quality of the deontic argumentation system: a system is complete
if, and only if, anything is eventually obligatory, permitted nor prohibited, even though, for
example, something is not regulated by any primary norms.

To address normative completeness, we will exploit the well-established principle of
prohibition, which can be formulated as follows: ‘everything that is not prohibited is
permitted’. The principle is shared by various legal systems (for instance it corresponds to
the ‘norma generale exclusiva’ or ‘principio di libertá’ in Italian system); however, we have
to note that the principle does not apply in all legal systems.

In criminal law for example (in civil law systems), if being permitted to do an action
means not being subject to sanction for it, then there is the idea that every criminal sanction
must be explicitly stated by positive law (the sanction cannot be obtained by analogy). This
principle, according to European Court of Human Rights (case Ozturk v. Germany, 1984),
goes beyond criminal law strictly understood, applying to any sanction having punitive char-
acter, namely, going beyond compensation of damage (e.g. administative fines). Therefore if
an action is not punished by a norm (it is not prohibited), one can conclude that the legal
system is committed not to punish (the judge should not punish it), so that the action is
definitely permitted, as long as the explicit rules remain the same (the law says implicitly
that the action is subject to no sanction) according to criminal law. The idea can be retrieved
in the principle ‘nullum crimen sine lege’ (no crime without law), i.e. everything that is not
explicitly prohibited should be considered as permitted.

In private law, on the contrary, it is possible for the judge to establish a sanction (com-
pensation for damages) using analogy or other legal constructions even for actions that are
not explicitly prohibited by the law. In civil law, the fact that no norm explicitly establishes a

915

RIVERET et al.

sanction for an action does not ensure that the action will not be sanctioned, there is just a
gap: we do not know what will happen. For instance, in many legal systems, before consumer
protection laws were enacted, judges started to condemn producers to compensate damages
caused by defective products. This required overcoming, in the absence of an explicit rule,
the idea that producers owned no duty of care to consumers.

Hence, in general, the principle of prohibition and our upcoming account of it apply to
normative systems where it makes sense to use it.

Besides, the principle can be diversely interpreted. In a first interpretation, the principle
can be read to stress a mere tautology: no prohibition (¬Oγ) is equivalent to a permission
(Pγ). Such a tautology can be, for example, syntactically captured by writing ¬Oγ as Pγ and
vice versa (as we do in Notation 4.1), but this will not appear to successfully fill any gaps
in our formal framework. In a second interpretation, we can adopt the reading according to
which a thing is permitted unless it is prohibited. Following this interpretation the principle
of prohibition is not a tautology anymore, but rather a normative principle included in the
normative system being considered, to effectively fill gaps by producing permissions.

In this context, we may distinguish strong and weak permissions (similarly as notably
retained by G. H. von Wright [49]), where a strong permission is a permission derived from
permissive norms, and a weak permission for ϕ is a permission which is accepted if the
prohibition of or on ϕ is not accepted. This conception makes reference, for example, to C.E.
Alchourrón and E. Bulygin who state: ‘Weak permission differs from strong permission in
an important way: strong permission expresses a positive fact (the existence of a permissive
norm), whereas weak permission refers to a negative fact: the non-existence of a prohibitive
norm’ [1], see also [33,45,46]. In this view, a strong permission does not fully correspond to
what we may call an ‘explicit permission’ (i.e. a permission which is explicitly formulated
in a permissive norm): for example, if one derives in the system the acceptance of Pp and
Pq, one might infer P(p and q), which is not explicit in the sense that it is derived, but is
nevertheless strong. The strengths of permissions are not exclusive: we can have a strong
and weak permission for the same thing, the two permissions would not be incompatible.
In our framework, the strengths of permissions are not directly represented in the language,
essentially because laypersons or jurists do not usually specify the strength of permissions
in their discourses. In this view, a weak or a strong permission is seen as a permission tout
court.

A defeasible rule can specify varied relationships amongst (deontic) literal statements of
a given language LD. Such rules are called normative defeasible rules.

Definition 4.2. Given a language LD, a normative defeasible rule is a defeasible rule over
a set of literal statements in LD.

Normative rules are partitioned into foreground rules and background rules. Foreground
rules provide substantive legal regulations, for particular domains of the law, while back-

916

A DEONTIC ARGUMENTATION FRAMEWORK

ground rules express deontic assumptions underlying the normative system being dealt
with.

Foreground rules are domain-dependent rules. They are meant here to represent primary
norms, and thus they can be classified as either constitutive rules or regulative rules. The
effect of a constitutive rule is to define a term as understood in a given situation or to ‘create’
an institutional entity from a set of brute or institutional facts. A regulative rule, on the other
hand, triggers a ‘deontic’ effect (obligation, prohibition, permission) when certain conditions
are established. While constitutive and regulative norms have been formally approached in
various (and sometimes sophisticated) ways in the literature [20], the distinction is simply
addressed in the present system: the consequent of the rule is a plain literal for constitutive
rules, and a deontic literal for regulative rules. In that regard, we can note that a regulative
rule heading to a (strong) permission would typically specify an exception to an obligation,
as notably discussed by A. Ross [44], but such a rule can also be used to stress a permission
and clarify its conditions.

Background rules are domain-independent. They underpin core deontic reasoning. These
background rules can be viewed as defeasible rule schemata which are isomorphic to some
pieces of (possibly very basic) legal doctrines. Instead of giving a formal definition of
background defeasible rules, we give here some examples of such schemata:

d_γ :Oγ ⇒ Pγ An obligation Oγ implies a permission Pγ
(cf. Axiom ‘D’ in deontic logics).

p_γ : ⇒ Pγ Anything is permitted prima facie.

k_γ :∼ Oγ⇒ Pγ Anything that is not prohibited is permitted.

These background rules can be essentially employed to build arguments supporting permis-
sions. In particular, the second and third rules can be used to derive permissions even if
there are no applicable foreground permissive rules heading to such permissions. As to the
terminology, although such permissions are the consequent of some rules, we may say for
now that these background rules head to weak permissions because these rules are meant
to ensure that a permission can be accepted if any contrary prohibition is non-existent or
rejected, and even though there is no foreground permissive rule heading to such a permission
(as we will see later).

Given some background rules, sets of background rules can be formed, possibly to
account for various doctrinal systems. In our case, and for our purposes, we will work with
the sets {d_γ,p_γ} and {d_γ,k_γ}.

Definition 4.3. A set of background defeasible rule schemata B is
• a permissive by default set of background defeasible rule schemata iff B = {d_γ,p_γ};

917

RIVERET et al.

• a Kelsenian permissive set of background defeasible rule schemata iff B = {d_γ,k_γ};
• a permissive set of background defeasible rule schemata iff B = {d_γ,p_γ} or B =
{d_γ,k_γ}.

A permissive by default set or a Kelsenian permissive set indicates that anything is
defeasibly permitted. They are distinct in that a Kelsenian permissive set may better reflect
the principle of prohibition as exposed by Kelsen (thus its name)2. Moreover, this set may
appear weaker than the permissive by default set because the rule k_γ features a point of
attack ∼ Oγ which rule p_γ does not present. We will use in this paper this permissive set of
background defeasible rules for our illustrations. For both sets, although one may presuppose
that their rules can be used to fill normative gaps, we will see that such background rules
are actually not enough to obtain normative completeness when using bivalent statement
labelling semantics. Our solution to this issue will turn out to yield the same results for both
sets when determining acceptance statuses of statements.

Whatever the set of background defeasible rules, we will ground the rules over a set of
propositions. For our purposes, we do so over propositions of an input (domain-dependent)
defeasible theory.

Definition 4.4. A set of rules is a set of background rules with respect to a defeasible theory
T and a set of background defeasible rule schemata B, denoted BackRules(T,B), iff
• BackRules(T,B) = {d_γ,d_γ,p_γ,p_γ | γ ∈ Prop(T)} if B is a permissive by default set of

background defeasible rule schemata;
• BackRules(T,B) = {d_γ,d_γ,k_γ,k_γ | γ ∈ Prop(T)} if B is a Kelsenian permissive set of

background defeasible rule schemata.

For the sake of simplicity, norms potentially captured by ‘modalised rules’ (e.g, rules of
the form O(r : ϕ1, . . . ,ϕn,∼ ϕ ′1, . . . ,∼ ϕ ′m⇒ ϕ)) are not accounted for in this paper. Such
constructs and their meanings are left to possible developments of the system, towards for
example secondary norms as ‘meta-rules’.

Background rules are at the domain-independent core of deontic reasoning, and they are
employed to background sets of rules.

Definition 4.5. A set of rules Rules is a backgrounded set of rules with respect to a
defeasible theory T and a set of background defeasible rule schemata B iff Rules =
Rules(T)∪BackRules(T,B).

2‘As a sanction-prescribing social order, the law regulates human behavior in two ways: in a positive sense,
commanding such behavior and thereby prohibiting the opposite behavior; and, negatively, by not attaching
a coercive act to a certain behavior, therefore not prohibiting this behavior and not commanding the opposite
behavior. Behavior that legally is not prohibited is legally permitted in this negative sense.’ [29].

918

A DEONTIC ARGUMENTATION FRAMEWORK

Example 1. Let us adapt H.L.A Hart’s hypothetical [25] for our purposes: assume a policy
stating that it is forbidden to enter in a park with a vehicle, unless there is an emergency.
This policy may be formalised by the (foreground) defeasible theory 〈{r}, /0, /0〉 where

r : vehi, ∼ emer⇒ Fenter

The Kelsenian permissive set of background rules with respect to the theory 〈{r}, /0, /0}〉
includes all the following rules.

d_vehi : Ovehi ⇒ Pvehi d_¬vehi : O¬vehi ⇒ P¬vehi
k_vehi : ∼ Fvehi ⇒ Pvehi k_¬vehi : ∼ F¬vehi ⇒ P¬vehi
d_emer : Oemer ⇒ Pemer d_¬emer : O¬emer ⇒ P¬emer
k_emer : ∼ Femer ⇒ Pemer k_¬emer : ∼ F¬emer ⇒ P¬emer
d_enter : Oenter ⇒ Penter d_¬enter : O¬enter ⇒ P¬enter
k_enter : ∼ Fenter ⇒ Penter k_¬enter : ∼ F¬enter ⇒ P¬enter

�
As a set of background rules is defined with respect to a defeasible theory T and a set

of background defeasible rule schemata B, the cardinality of the set of background rules
is 2 · |B| · |Prop(T)| (as illustrated in Example 1). Yet, for practical matters and especially
implementation matters, we may employ only background defeasible rule schemata which
are instantiated where necessary for the considered computation.

Concerning conflicts, we distinguish foreground conflicts and background conflicts.
Foreground conflicts can be any kind of conflicts of the form (γ,γ) or (Oγ,Oγ) or (¬Oγ,Oγ)
or (Oγ,¬Oγ); deontic conflicts can be visualised in the deontic square drawn in Figure 1.

Definition 4.6. A conflict is a foreground conflict iff it is of the form (γ,γ) or (Oγ,Oγ) or
(¬Oγ,Oγ) or (Oγ,¬Oγ).

¬Oγ

Oγ Oγ

¬Oγ

in
co

m
pa

tib
le

incompatible

in
co

m
pa

tib
le

com
pat

ible
compatible

compatible

Figure 1: Deontic square of compatibility relation.

919

RIVERET et al.

Foreground conflicts allow a knowledge engineer to specify particular conflicts between
literal statements. However, specified foreground conflicts may appear incomplete in that
inevitable conflicts may not be included in the foreground set. To ensure completeness of
conflicts, we assume thus background conflicts.

Definition 4.7. A set of conflicts is a set of background conflicts with respect
to a defeasible theory T , denoted BackConflicts(T), iff BackConflicts(T) =
{(γ,γ),(γ,γ),(Oγ,Oγ),(Oγ,Oγ),(Oγ,¬Oγ),(¬Oγ,Oγ),(Oγ,¬Oγ),(¬Oγ,Oγ) | γ ∈
Prop(T)}.

Background conflicts are, so to say, domain-independent in deontic reasoning, and a
conflict relation is backgrounded by such conflicts if, and only if, they are included in the
relation.

Definition 4.8. A conflict relation Con f licts is a backgrounded conflict relation with re-
spect to a defeasible theory T iff Con f licts = Conflicts(T)∪BackConflicts(T).

Example 1 (continued). The background conflict pairs are as follows.
(vehi,¬vehi) (emer,¬emer) (enter,¬enter)
(¬vehi,vehi) (¬emer,emer) (¬enter,enter)
(Ovehi,O¬vehi) (Oemer,O¬emer) (Oenter,O¬enter)
(O¬vehi,Ovehi) (O¬emer,Oemer) (O¬enter,Oenter)
(Ovehi,¬Ovehi) (Oemer,¬Oemer) (Oenter,¬Oenter)
(¬Ovehi,Ovehi) (¬Oemer,Oemer) (¬Oenter,Oenter)
(O¬vehi,¬O¬vehi) (O¬emer,¬O¬emer) (O¬enter,¬O¬enter)
(¬O¬vehi,O¬vehi) (¬O¬emer,O¬emer) (¬O¬enter,O¬enter)

�

We can remark that, given any defeasible theory T where conflicts are foreground or back-
ground conflicts, we have that Conflicts(T)⊆ BackConflicts(T). Consequently, a conflict
relation Con f licts is a backgrounded conflict relation with respect to a defeasible theory T if,
and only if, Con f licts = BackConflicts(T). Thus, if one works with backgrounded conflicts
of a defeasible theory, as we will do, then foreground conflicts may appear unnecessary. The
definition of foreground conflicts is nevertheless formally necessary to constrain conflicts
which can be given when specifying any foreground theories (as defined soon).

Similarly as background rules, a background conflict relation is defined with respect
to a defeasible theory T , and the cardinality of the relation is 8 · |Prop(T)| (as illustrated
in Example 1). However, and again, we may only need background conflict schemata
relationships instantiated where required.

920

A DEONTIC ARGUMENTATION FRAMEWORK

Foreground and background deontic rules may have conflicting heads, and to ensure
correct reasoning patterns, background superiorities can be proposed. At first sight, back-
ground rule d_γ could be viewed as a very strong rule, that is, in our context a defeasible
rule which is superior to any other rule and such that there exist no superior foreground rules.
However, such a superiority setting does not fit well with the adopted last-link preference
over arguments, as some anomalies may appear. For example, if d_γ is superior to any
foreground rules, then any argument C whose top rule is d_γ could defeat any arguments
defeating the direct subargument of C.

Example 2. For instance, suppose the following arguments:
O1 : ⇒r Oa O2 : ⇒r′ O¬a
P1 : O1 ⇒d_a Pa P2 : O2 ⇒d_¬a P¬a
W1 : ∼ Fa ⇒k_a Pa W2 : ∼ F¬a ⇒k_¬a P¬a

Let us assume that rule r′ is superior to r, i.e. r′ � r, so that argument O2 attacks O1.
Consequently, argument O2 rebuts P1 (on O1). Moreover, if rule d_γ has superior or equal
strength to any foreground rules, then argument P1 rebuts O2 and P2 (on O2), and P2 rebuts
O1 and P1 (on O1). As a result, all arguments would be labelled UND as illustrated in Figure
2 on the left, but this labelling is not satisfactory. Instead, if d_γ has inferior strength to any
foreground rules, then we have the argumentation graph as illustrated in Figure 2 on the
right, whose grounded {IN,OUT,UND}-labelling is more satisfactory.

O2

UND

P2

UND

O1

UND

P1

UND

W2

UND

W1

UND

O2

IN

P2

IN

O1

OUT

P1

OUT

W2

IN

W1

OUT

Figure 2: Grounded {IN,OUT,UND}-labellings.

�

Example 2 shows that background rule d_γ should not be viewed as a strong rule. On the
contrary, it should be conceived as a very weak rule, so that arguments with such a top rule
attack no foreground arguments. In general, we assume in this paper that background rules
are inferior to any foreground rules.

921

RIVERET et al.

Definition 4.9. A background superiority relation is a background superiority relation with
respect to a defeasible theory T and a set of background defeasible rule schemata B, denoted
BackSup(T,B), iff BackSup(T,B) = {(s,r) | s ∈ Rules(T),r ∈ BackRules(T,B)}.
Definition 4.10. A superiority relation � is a backgrounded superiority relation with re-
spect to a defeasible theory T and a set of background defeasible rule schemata B iff
�=� (T)∪BackSup(T,B).

The definition of a backgrounded superiority relation might be simplified if strict rules
were employed. However, the use of strict rules can be quite elusive [11,17], and would requi-
site a larger inference apparatus which would not be congruent with our design consideration
on parsimony.

Example 1 (continued). The background pairs in the superiority relation are as follows.
(r,d_vehi) (r,d_emer) (r,d_enter)
(r,k_vehi) (r,k_emer) (r,k_enter)
(r,d_¬vehi) (r,d_¬emer) (r,d_¬enter)
(r,k_¬vehi) (r,k_¬emer) (r,k_¬enter)

�

A background superiority relation is defined with respect to a defeasible theory T and a
set of background defeasible rule schemata B, thus the cardinality of the relation is greater
than |B| · |Prop(T)| · |Rules(T)|. However, similarly as background rules and background
conflicts, we may only need background superiority schemata which are instantiated where
necessary.

4.2 Deontic defeasible theory and argumentation graphs

We now can propose to ‘background’ defeasible theories where rules, conflicts and superi-
ority relationships are backgrounded with respect to any foreground theory. A foreground
defeasible theory is here a defasible theory where rules are not background rules, i.e. rules
whose identifiers are not identifiers of any background rules.

Definition 4.11. A defeasible theory 〈Rules,Conflicts,�〉 is a foreground defeasible theory
iff
• every defeasible rule in Rules is a (foreground) normative defeasible rule which is not a

background defeasible rule, and
• every conflict in Conflicts is a foreground conflict.

Definition 4.12. A defeasible theory 〈Rules,Conflicts,�〉 is a backgrounded defeasible
theory of a foreground defeasible theory T with a set of background defeasible rule schemata
B iff

922

A DEONTIC ARGUMENTATION FRAMEWORK

• Rules is a backgrounded set of rules with respect to T and B, and
• Conflicts is a backgrounded conflict relation with respect to T , and
• � is a backgrounded superiority relation with respect to T and B.

In practice, we will first write a foreground defeasible theory to then hold a backgrounded
defeasible theory. In the remainder, we assume that any defeasible theory is backgrounded
with a permissive set of background defeasible rule schemata, to obtain a permissive defeasi-
ble theory.

Definition 4.13. A defeasible theory is a permissive defeasible theory iff it is a backgrounded
defeasible theory with a permissive set of background defeasible rule schemata.

From a backgrounded defeasible theory, we can build arguments. When building ar-
guments, chaining rules implicitly uses the detachment of the consequent of rules. In that
regard, we can note that deontic studies usually distinguish factual detachments and deontic
detachments. For our purposes, we consider factual detachments only, leaving (defeasible)
deontic detachments (if accepted) to future developments.

Once arguments are built, we can form an argumentation graph, and then label arguments
and (deontic) statements to determine their statuses, as discussed next.

4.3 Deontic labelling semantics

On the basis of an argumentation graph built from a backgrounded defeasible theory, we
can now look at semantics for (deontic) literal statements. By semantics, we mean labelling
semantics as put forward in the previous section so that acceptance labellings of (deontic)
literal statements are defined with respect to acceptance labellings of arguments in terms of
‘if, and only if’.

First, we have to note that, sometimes, imperatives are deemed to bear no truth values,
and thus no semantics in terms of truth values can be devised [27]. For instance, there is
no truth value in an imperative such as ‘Do not enter!’. Alternatively, however, we may
evaluate the acceptance of normative statements with respect to the normative system. For
example, we can evaluate whether an obligation holds in particular situation. We adopt such
an epistemic view in the rest of the paper by labelling arguments and statements.

To label deontic arguments and statements, we first resort to labelling semantics as previ-
ously exposed. Hence, given the argumentation graph built from a backgrounded defeasible
theory, arguments are labelled according to the grounded {IN,OUT,UND}-labelling semantics.
Then, literal statements are labelled with statement acceptance labelling semantics. Such la-
bellings are thus a straightforward application of standard labelling semantics corresponding
to some common sense reasoning.

As such, the labelling framework satisfies some intuitive properties pertaining to deontic
consistency. Let us first observe that if two arguments A and B have conflicting conclusions

923

RIVERET et al.

and A is labelled IN then argument B is labelled OUT. Thus, for instance, if an IN-labelled
argument has an obligation Oγ or a permission Pγ for conclusion, then any argument whose
conclusion is a prohibition Fγ is labelled OUT.

Lemma 4.1. Let L be a grounded {IN,OUT,UND}-labelling of an argumentation graph G con-
structed from a permissive defeasible theory 〈Rules,Conflicts,�〉, and A,B any arguments
in AG such that Conflicts(conc(A),conc(B)). If L(A) = IN then L(B) = OUT.

It follows that the bivalent {in,und,niund}-labelling and trivalent {in,und,niund}-
labelling semantics trivially imply that two conflicting deontic statements cannot be labelled
in: if a deontic statement is labelled in then any conflicting statement is labelled ni or niund
depending on the selected statement labelling semantics.

Proposition 4.1. Let L be a grounded {IN,OUT,UND}-labelling of an argumentation graph
constructed from a permissive defeasible theory T , and S a set of literal statements such
that S = {p,¬p | p ∈ Prop(T)}.
• Let K be a bivalent {in,ni}-labelling of S and from {L}. For any γ ∈S :

– if K(L,Oγ) = in then K(L,Oγ) = ni;
– if K(L,¬Oγ) = in then K(L,Oγ) = ni;
– if K(L,Oγ) = in then K(L,¬Oγ) = ni;

• Let K be a trivalent {in,und,niund}-labelling of S and from {L}. For any γ ∈S :
– if K(L,Oγ) = in then K(L,Oγ) = niund;
– if K(L,¬Oγ) = in then K(L,Oγ) = niund;
– if K(L,Oγ) = in then K(L,¬Oγ) = niund.

Proof. Let us provide the proof for the first item only in the case of bivalent {in,ni}-labellings
(proofs for the other items follow the same structure). If K(L,Oγ) = in then there exists an
argument A ∈AG such that conc(A) = Oγ and L(A) = IN. Two cases: Oγ is the conclusion
of an argument, or not. In the first case, by Lemma 4.1, for any argument B ∈ AG such
that conc(B) = Oγ , if L(A) = IN then L(B) = OUT, and thus K(L,Oγ) = ni. In the second
case, if Oγ is not the conclusion of any argument in AG, then K(L,Oγ) = ni. Therefore, if
K(L,Oγ) = in then K(L,Oγ) = ni.

We can also remark that if an obligation Oγ is labelled in then the implied permission
¬Oγ (i.e. Pγ) is also labelled in.

Proposition 4.2. Let L be a grounded {IN,OUT,UND}-labelling of an argumentation graph
constructed from a permissive defeasible theory T , S a set of literal statements such that
S = {p,¬p | p∈ Prop(T)}, and K a bivalent {in,ni}-labelling or trivalent {in,und,niund}-
labelling of S and from {L}. For any γ ∈S : if K(L,Oγ) = in then K(L,¬Oγ) = in.

924

A DEONTIC ARGUMENTATION FRAMEWORK

Proof. Given an argumentation graph G constructed from a permissive defeasible theory, if
K(L,Oγ) = in, then there exist an argument A∈AG and B∈AG such that conc(A) = Oϕ and
B : A⇒d_γ Pγ . Let A ; ⊆AG be the set of attackers of A, A ;⊆AG the set of arguments
attacked by A, and B; ⊆AG the set of attackers of B. We have that B; ⊆A ;∪A ;.
By Definition 3.12, if L(A) = IN then for any argument C ∈ A ; ∪A ;L(C) = OUT.
Since B; ⊆ A ; ∪A ;, for any argument C ∈ B; L(C) = OUT, and thus L(B) = IN.
Therefore, if L(A) = IN then L(B) = IN, and thus if K(L,Oγ) = in then K(L,Pγ) = in, i.e. if
K(L,Oγ) = in then K(L,¬Oγ) = in.

Legal scholars, however, may argue that bivalent {in,ni}-labellings are not satisfac-
tory. Such labellings are not legally satisfactory, because, given an argumentation graph
from any backgrounded defeasible theory, and though we have arguments supporting weak
permissions thanks to background rules, it may the case that all arguments are labelled
UND and consequently, using a bivalent {in,ni}-labelling, deontic statements Oγ , Fγ and
Pγ may be labelled ni, see Example 3. Such labelling outcomes of common sense appear
thus inappropriate to address normative completeness. For this reason, we discard bivalent
{in,ni}-labelling semantics and put forward trivalent {in,und,niund}-labelling to cater for
deontic reasoning and in particular normative completeness.

Example 3. Let us consider the following arguments, along with the associated argumenta-
tion graph and grounded {IN,OUT,UND}-labelling drawn in Figure 3.

O1 : ⇒r Oa O2 : ⇒r′ O¬a
P1 : O1 ⇒d_a Pa P2 : O2 ⇒d_¬a P¬a
W1 : ∼ Fa ⇒k_a Pa W2 : ∼ F¬a ⇒k_¬a P¬a

O2

UND

P2

UND

O1

UND

P1

UND

W2

UND

W1

UND

Figure 3: Grounded {IN,OUT,UND}-labelling.

First, a naive common sense bivalent reasoning can be captured by the acceptance biva-
lent {in,ni}-labelling 〈 /0,{Oa,Pa,O¬a,¬Pa}〉 . However, this bivalent labelling is prob-

925

RIVERET et al.

lematic from a legal stance because statement a is here neither obligated, nor permitted
nor prohibited. To address this gap, we can employ a trivalent {in,und,niund}-labelling
〈 /0,{Oa,Pa,O¬a,¬Pa}, /0〉 according to which the deontic status of a is undecided. �

More formally, the definition of normative gaps, as we may conceive it in terms of state-
ment labellings, depends on whether bivalent {in,ni}-labellings or trivalent {in,und,niund}-
labellings are employed.

Definition 4.14. Let L be a grounded {IN,OUT,UND}-labelling of an argumentation graph
constructed from a permissive defeasible theory T , and the set of literal statements S =
{p,¬p | p ∈ Prop(T)}.
• Let K denote a bivalent {in,ni}-labelling of S and from {L}. There is a {in,ni}-labelling

normative gap iff there exists a literal γ ∈S such that

K(L,Oγ) = ni and K(L,Oγ) = ni and K(L,¬Oγ) = ni.

• Let K′ denote a trivalent {in,und,niund}-labelling of S and from {L}. There is a
{in,und,niund}-labelling normative gap iff there exists a literal γ ∈S such that

K′(L,Oγ) = niund and K′(L,Oγ) = niund and K′(L,¬Oγ) = niund.

As illustrated in Example 3, bivalent {in,ni}-labellings may lead to {in,ni}-labelling
normative gaps, whereas trivalent {in,und,niund}-labellings can address normative com-
pleteness. To understand why, we can first observe that any backgrounded defeasible theory
along with a trivalent labelling semantics lead to a third interpretation of the principle of
prohibition in terms of labelling: if something is not prohibited (the prohibition is labelled
niund) then it is permitted (the permission is labelled in).

Proposition 4.3. Let L be a grounded {IN,OUT,UND}-labelling of an argumentation graph
constructed from a permissive defeasible theory T , S a set of literal statements such that
S = {p,¬p | p ∈ Prop(T)}, and K a trivalent {in,und,niund}-labelling of S and from
{L}. For any γ ∈S : if K(L,Fγ) = niund then K(L,Pγ) = in.

Proof. Given an argumentation graph constructed from a permissive defeasible theory T ,
for any γ ∈S = {p,¬p | p ∈ Prop(T)}, there exists a unique argument W : ∼ Fγ ⇒k_γ Pγ
or (W : ⇒p_γ Pγ). All attackers of W are arguments whose conclusion is Fγ (i.e. Oγ).
If K(L,Oγ) = niund then all attackers of W are OUT, and thus W is labelled IN, and Pγ is
labelled in. i.e. K(L,¬Oγ) = in. Therefore, if K(L,Fγ) = niund then K(L,Pγ) = in.

On the basis of this interpretation in terms of labelling of the principle of prohibition, we
now can easily show that trivalent {in,und,niund}-labellings address normative complete-
ness.

926

A DEONTIC ARGUMENTATION FRAMEWORK

Theorem 4.1. Let L be a grounded {IN,OUT,UND}-labelling of an argumentation graph
constructed from a permissive defeasible theory T , S a set of literal statements such that
S = {p,¬p | p ∈ Prop(T)}, and K a trivalent {in,und,niund}-labelling of S and from
{L}. For any γ ∈S :

K(L,Oγ) 6= niund or K(L,Oγ) 6= niund or K(L,¬Oγ) 6= niund.

Proof. There are three cases: 1. K(L,Oγ) = in, 2. K(L,Oγ) = und, and 3. K(L,Oγ) = niund.
In this last case, by Proposition 4.3, K(L,Pγ) = in, i.e. K(L,¬Oγ) = in. Therefore in any
case, K(L,Oγ) 6= niund or K(L,Oγ) 6= niund or K(L,¬Oγ) 6= niund.

Hence, trivalent {in,und,niund}-labellings address normative completeness by means
of the status ‘undecided’ for deontic statements. Eventually, we can remark that such cases
of undecidedness can be disentangled in various ways, typically by a competent authority,
e.g. a judge.

Above results hold for any permissive theory. Consequently, they hold for backgrounded
defeasible theory of any (foreground) defeasible theory with a permissive by default set of
background defeasible rule schemata, or with a Kelsenian permissive set of background
defeasible rule schemata. In general, it turns out that both sets yield the same trivalent
{in,und,niund}-labelling.

Theorem 4.2. Let
• T be a (foreground) defeasible theory;
• U be the backgrounded defeasible theory of T with a permissive by default set of back-

ground defeasible rule schemata;
• V be the backgrounded defeasible theory of T with a Kelsenian permissive set of back-

ground defeasible rule schemata;
• LU the grounded {IN,OUT,UND}-labelling of the argumentation graph constructed from

U;
• LV the grounded {IN,OUT,UND}-labelling of the argumentation graph constructed from V ;
• S a set of literal statements such that S = {p,¬p | p ∈ Prop(T)}, and K a trivalent
{in,und,niund}-labelling of S and from {L}.

For any γ ∈S :

K(LU ,γ) = K(LV ,γ) and K(LU ,Oγ) = K(LV ,Oγ) and K(LU ,¬Oγ) = K(LV ,¬Oγ).

Proof. Let GU (GV resp.) denote the argumentation graph constructed from U (V resp.).
Let f be the bijection such that f : AGU →AGV and f(A) = B iff
• if A is of the form A : ⇒p_γ Pγ then B is of the form B : ∼ Fγ ⇒k_γ Pγ , and
• if A is of the form A : A1, . . .An,∼ ϕ1, . . . ,∼ ϕm ⇒r ϕ (r 6= p_γ) then B is of the form

B : f(A1), . . . f(An),∼ ϕ1, . . . ,∼ ϕm⇒r ϕ .

927

RIVERET et al.

In addition, (A,A′) ∈;GU iff (f(A), f(A′)) ∈;GV , and thus (GU and GV are isomorphic
and) LU(A) = LV (f(A)). Then, as conc(A) = conc(f(A)), for any γ ∈ S : K(LU ,γ) =
K(LV ,γ), K(LU ,Oγ) = K(LV ,Oγ), and K(LU ,¬Oγ) = K(LV ,¬Oγ).

Hence, the adoption of the principle of prohibition ‘anything that is not prohibited is
permitted’ as a schema k_γ :∼ Oγ ⇒ Pγ or the use of a statement such as ‘anything is
permitted prima facie’ as a schema p_γ : ⇒ Pγ are two alternatives to cater for normative
completeness, and both alternatives actually lead to the same results in terms of statement
labellings.

Finally, concerning weak and strong permissions, the reification of doctrinal pieces into
defeasible theories blurs somewhat the distinction based on conventional definitions. For
example, a permission Pγ which is the conclusion of an IN-labelled argument W : ⇒p_γ Pγ
is necessarily labelled in. Consequently we may say that such a permission is derived from a
rule and thus, it is a strong permission by definition, whereas it is a weak permission from
its conception. For this reason, a third kind of permission may be introduced, which we
may call ‘doctrinal permission’, since such a doctrinal permission for something is derived
from the non-existence or rejection of its prohibition and on the basis of reified doctrinal
principles.

5 Illustration

To illustrate our system, let us reappraise the policy stating that it is forbidden to enter in a
park with a vehicle, unless there is an emergency. This policy and the assumptions may be
formalised in different ways. We illustrate our system with one option which is developed in
the remainder of the section.

5.1 Backgrounded defeasible theory

We assume that there is a vehicle at the entrance of the park, and that there may be an
emergency, maybe not (in the Hart-Fuller debate [19, 25], uncertainty was originally about
what can be classified as a vehicle). Let us capture this with the foreground defeasible theory
〈{rv, re, re, r}, /0, /0〉 where

rv ⇒ vehi
re ⇒ emer
re ⇒¬emer
r : vehi, ∼ emer⇒ Fenter

928

A DEONTIC ARGUMENTATION FRAMEWORK

Let us adopt a Kelsenian permissive set of background defeasible rule schemata. The
foreground theories can be then backgrounded to yield a backgrounded theory featuring,
amongst others, background rules as exposed in Example 1.

5.2 Argument and argumentation graph construction

We can construct the following arguments from background rules:

W1 : ∼ Fvehi ⇒k_vehi Pvehi W4 : ∼ F¬vehi ⇒k_¬vehi P¬vehi
W2 : ∼ Femer ⇒k_emer Pemer W5 : ∼ F¬emer ⇒k_¬emer P¬emer
W3 : ∼ Fenter ⇒k_enterPenter W6 : ∼ F¬enter ⇒k_¬enter P¬enter

In addition, we can build the following arguments from the foreground rules and rule
d_¬enter:

A1 : ⇒rv vehi B1 ⇒re emer
A2 : A1,∼ emer ⇒r Fenter C1 ⇒re ¬emer
A3 : A2 ⇒d_¬enter P¬enter

Consequently, we can form the argumentation graph G such that: AG = {A1, A2, A3,
B1, C1, W1, W2, W3, W4, W5, W6}, and ;G = {(B1,C1),(C1,B1),(B1, A2), (B1,A3),
(A2,W3)}, see Figure 4.

We can note that we have built arguments to support weak/doctrinal permissions, thus
we can argue and present full-fledged arguments about such permissions.

5.3 Argument and statement labellings

Let L1 denote the grounded {IN,OUT,UND}-labelling of argumentation graph G (as illus-
trated in Figure 4). Accordingly, we can lay the bivalent {in,ni}-labelling and trivalent
{in,und,niund}-labelling as in Table 1.

A1
IN

A2
UND

A3
UND

B1
UND

C1
UND

W1
IN

W2
IN

W3
UND

W4
IN

W5
IN

W6
IN

Figure 4: Grounded {IN,OUT,UND}-labelling of argumentation graph G.

929

RIVERET et al.

vehi emer ¬emer enter ¬enter
K(L1, ·) in ni ni ni ni
K(L1, ·) in und und niund niund

Ovehi Oemer O¬emer Oenter O¬enter
K(L1, ·) ni ni ni ni ni
K(L1, ·) niund niund niund niund und

Pvehi Pemer P¬emer Penter P¬enter
K(L1, ·) in in in ni in
K(L1, ·) in in in und in

Table 1: Bivalent {in,ni}-labelling and trivalent {in,und,niund}-labelling.

The {in,no}-bivalent labelling results into a normative gap (the statement enter is neither
obligatory nor prohibited nor permitted), whereas the trivalent {in,und,niund}-labelling fills
the gap by labelling the permission to enter as undecided.

5.4 Violation and contrary-to-duty obligation

Let us extend the illustration with the formalisation of a violation and a contrary-to-duty
obligation. Contrary-to-duty obligations can be a pitfall for deontic formalisms which
have a more sophisticated conception of deontic modalities [13, 35], and we would like to
illustrate how such obligations can be handled in our argumentation formalism within our
KB approach.

Let us suppose that the park policy also states that a violation of the prohibition would
be sanctioned by a fine (the amount does not matter for our purposes). To capture such a
policy, we can add the following rules.

v : Fenter, enter⇒ violation v′ : ⇒¬violation
f : violation⇒ fine f ′ : ⇒¬fine

such that v� v′ and f � f ′. Rules v′ and f ′ specify that, by default, we can derive that there is
neither violation nor fine, unless the contrary is shown.

Furthermore, a new park management can add a contrary-to-duty obligation: if the
prohibition is violated then one should stop driving in the park. We can thus add the
following rule.

s : violation⇒ Ostop

930

A DEONTIC ARGUMENTATION FRAMEWORK

A sequence of compensatory obligations can be added along similar lines. Eventually, we
also assume that the vehicle enters in the park:

e : ⇒ enter

Let L2 denote the grounded {IN,OUT,UND}-labelling of the implied argumentation graph.
The acceptance {in,no}-bivalent labelling and trivalent {in,und,niund}-labelling of new
statements are exposed in Table 2.

violation ¬violation fine ¬fine stop ¬stop
K(L2, ·) ni ni ni ni ni ni
K(L2, ·) und und und und niund niund

Oviolation O¬violation Ofine O¬fine Ostop O¬stop
K(L2, ·) ni ni ni ni ni ni
K(L2, ·) niund niund niund niund und niund

Pviolation P¬violation Pfine P¬fine Pstop P¬stop
K(L2, ·) in in in in in ni
K(L2, ·) in in in in in und

Table 2: Bivalent {in,ni}-labelling and trivalent {in,und,niund}-labelling.

Again, we can see that the {in,no}-bivalent labelling leads to a normative gap (¬stop
is neither obligatory nor prohibited nor permitted), whereas the trivalent {in,und,niund}-
labelling fills the gap by labelling the permission to not stop (i.e. the permission to drive
through the park) as undecided.

6 Some Design Evaluation

Let us briefly discuss to what extent the framework meets the design considerations given in
Section 2, that is, considerations on human interface (explainability, emulation, isomorphism),
and inference (parsimony, modularity and computational efficiency), and a legit requirement
regarding normative completeness.

Explainability An argumentation framework can inherently ease explanations of accep-
tance statuses of statements by presenting relevant arguments. The acceptance labelling of
arguments is then exposed by the grounded labelling, possibly through a relatively simple
algorithm (Algorithm 1) and resulting appealing graphical representations. A distinctive
feature of the proposed system is that arguments can be built in support or against permissions
and in particular weak/doctrinal permissions.

931

RIVERET et al.

Emulation The system emulates the way humans argue about norms to the extent that
modus ponens is endorsed as a natural reasoning step to build arguments, that attacks
amongst arguments are meaningful, and that the sequential multi-labelling model featuring
argument and argumentation graph production, argument acceptance/justification, statement
acceptance/justification reflects a well-ordered reasoning based on arguments. Beyond that,
emulation is further met in that the proposal employs the grounded semantics for which there
exist simple dialogical argument games, see e.g. [12,36,38], in which full-fledged arguments
supporting weak/doctrinal permissions can be put forward.
Isomorphism The system allows an isomorphic representation of normative systems as long
as norms can be isomorphically represented by (foreground) defeasible rules. In that regard,
we have proposed to have both the ‘unless’ conjunction (∼) and a superiority relation over
rules to get more flexibility to represent norms, thereby yielding a fine-grained expressiveness
(as illustrated in Section 5). Furthermore, background rules can be viewed isomorphic to
some (possibly very basic) deontic doctrine. The system can be critised too. For example,
criminal codes usually do not hold norms with explicit expressions of conditional prohibitions:
they usually directly express sanctions with regard to certain conducts, while our system
would typically require the expression of prohibitions for automated reasoning.

Parsimony Parsimony can be evaluated at the levels of the inference machiney and knowl-
edge representation. At the level of knowledge representation, parsimony is affected in that
core deontic reasoning have been captured by background rules, conflicts and superiority
relation to background theories. Deontic reasoning is also captured at the level of statement
labellings to address normative gaps, without any impacts on the knowledge representation.
At the inference level, the system is parsimonious in that arguments are built with defeasible
rules and factual detachment only. Of course, other constructs such as strict rules, ‘defeaters’
or facts might bring a gain of expressiveness to the framework; the evaluation of such gain is
left to further investigations. The system is also parsimonious in that argument acceptance
and justification stages coincide, essentially because grounded {IN,OUT,UND}-labelling is
used. Importantly, parsimony was required to ease combination with other developments in
argumentation. In that respect, the setting can be straightforwardly subject to probabilistic
enhancements through, for example, probabilistic labellings, and thus machine learning
endeavours, see e.g. [42, 43].
Modularity The modularity of the system is largely based on (the instantiation of) the
multi-labelling model for argumentation. At a theoretical level, we can use variants in
argument and statement labelling semantics, as evidenced by our use of bivalent and trivalent
labellings. At a more practical level, as the multi-labelling model supports a separation of
concerns corresponding to different stages of the argumentation process, we can decompose
an ‘argument-based software system’ into well-defined independent modules, for example
by developing a module for each labelling stage, thereby easing verification, validation and

932

A DEONTIC ARGUMENTATION FRAMEWORK

maintenance of such a system.
Efficiency Concerning computationtal complexity, the reason to focus on the grounded
{IN,OUT,UND}-labelling is that it is unique and it can be computed in a polynomial time,
see Algorithm 1. Once the grounded {IN,OUT,UND}-labelling is computed, one can trivially
compute any acceptance trivalent {in,und,niund}-labellings and other statement labellings.
Hence given the argumentation graph built from a permissive defeasible theory, the overall
time complexity to compute the labelling over a set of statements is polynomial. However,
as previously mentioned, the number of arguments in an argumentation graph constructed
from a defeasible theory may not be polynomial in the number of rules of the theory. If
we focus on those theories from which argumentation graphs can be constructed efficiently,
then argumentation graphs construction, argument labellings and statement labellings can be
achieved efficiently, and thus the overall system is efficient in such cases.

Completeness Normative completeness has been primarily addressed by endorsing the
principle of prohibition. The principle has been interpreted in three different ways. First,
an interpretation has been given as a blunt syntactical equivalence between ¬Oγ and Pγ
(Notation 4.1). Second, the principle has been read as a background rule k_γ : ∼Oγ ⇒ Pγ .
Finally, the principle has been interpreted in terms of statement labellings (Proposition 4.3).
As bivalent statement labellings are not sufficient to obtain normative completeness through
the principle, we have supplemented it with a trivalent labelling semantics to deal with cases
of undecidedness. Eventually, we have to note that the principle is shared by various legal
systems, however the way completeness is resolved depends much on the considered legal
system.

This brief evaluation is inherently partial as it is limited to the elicited requirements, see
e.g. [18] for some formal issues. A more complete evaluation is left to future investigations,
possibly in light of a comparison with related implementations. An overview of related work
is given next.

7 Related Work

There exists an increasing amount of work to capture normative reasoning through argumen-
tation or non-monotonic frameworks akin to argumentation, see [10] for a systematic account
of legal reasoning and argumentation from a logical, philosophical and legal perspective. Let
us focus on some formal works related to our undertaking,

ASPIC+ argumentation framework has first been exploited to express arguments about
norms as the application of argument schemes to knowledge bases of facts and norms
[39]. However, in [39], norms are expressed without any deontic operators for specifying
obligations, permissions and prohibitions. The work was thereupon reappraised by L. van der
Torre and S. Villata in [48] to integrate deontic modalities, by adopting input/output logic [34]

933

RIVERET et al.

for the analysis. Despite appearances, there are many differences with our undertaking: the
most obvious are briefly exposed here. Conditional obligations and conditional permissions
are represented by rules of the form L1∧ . . .∧Ln ; OL and L1, . . . ,Ln ; ¬OL respectively,
where L’s are literals. Thus, obligations and permissions do not appear in the antecedents
of norms. Moreover, the system in [48] does not deal with weak permissions. Furthermore,
the conjunction ‘unless’ (∼) is not used in conditionals. Eventually, neither argument nor
statement labelling semantics are specified in [48], though such semantics could be easily
integrated in the system.

In another line of research, Beirlaen et al. presents in [6] a formal argumentation system
for dealing with the detachment of prioritised conditional obligations and permissions.
To do so, Beirlaen et al. devise an argumentation framework where arguments are proof
sequences, and they employ Dung’s grounded semantics to determine accepted arguments.
Again, there are many differences with our work, we expose the most obvious here. A first
difference concerns the language. In [6], the language pertains to a modal extension of
propositional classical logic, whereas our language is restricted to literals supplemented
by deontic operators. Conditional obligations and conditional permissions are denoted by
formulas A⇒O B and A⇒P B respectively, where A and B are propositional formulas.
Consequently, neither obligations nor permissions can appear in the antecedents of norms
in [6]. Moreover, conditionals in [6] do not cater for the conjunction ‘unless’ as we do. Then,
a major difference holds in that conditional obligations and conditional permissions in [6]
are associated with a degree of priority, which is taken into account to define defeats between
arguments. In our work, conditionals are directly prioritised through a superiority relation.
Beirlaen et al. focus on extension-based grounded semantics, whereas we employ grounded
labelling semantics to obtain more refined argument labellings which allow us to implement
trivalent statement labellings. Computation complexity is not considered in [6], whereas we
have restricted our framework on labellings possibly computed with efficient algorithms.

Another endeavour in defeasible normative reasoning rests on variants of Defeasible
Logic (DL), see e.g. [23, 24]. The work includes rich deontic constructs such as temporal
deontic modalities and sequence of compensatory obligations. However, DL is not without
weaknesses. For example, DL features strict rules, but does not satisfy closure under strict
rules [11]. In that regard, our work solves the issue by simply discarding strict rules. DL
also features so-called ‘defeaters’, i.e. rules which cannot be used in arguments supporting a
conclusion, and it can be challenging to find succinct counterparts in natural languages for
such defeaters. Isomorphism can thus be questioned in DL. Compared to the work reported
here, a major difference holds in that DL variants capture legal reasoning patterns in proof
theories and thus at the inference level. In that regard, we can say that the loss of parsimony at
the knowledge representation level in the framework reported here has been compensated by
a gain of parsimony at the inference model. Concerning semantics, a substantial difference
with our work holds in that there is no ‘undecided’ status to tag statements. For example, if a

934

A DEONTIC ARGUMENTATION FRAMEWORK

defeasible theory comprises two rules r : ⇒O c and s : ⇒O ¬c (capturing that c and ¬c
are both obligatory) with no superiority relations and no facts, then the deontic development
of DL in [22] does not tag the obligations of c and ¬c as undecided but tags c and ¬c as not
obligatory (−∂Oc and −∂O¬c), and eventually it derives c and ¬c as permitted (+∂Pc and
+∂P¬c). However, such tagging would be inappropriate in applications where permissions
are not entailed from conflicting obligations. Eventually, argumentation semantics exist for
DL [21,30] (with no status for ‘undecidedness’) but no counterparts have been developed for
deontic variants.

In comparison to the above-mentioned works, substantial differences hold in that we
have reified doctrinal prices to build our deontic rule-based argumentation system. We have
shown that standard bivalent statement labelling semantics fall short to deal with normative
completeness, and we have proposed a trivalent statement labelling semantics to address this
point.

8 Conclusion

A deontic rule-based argumentation system has been devised to represent and reason upon
conditional norms featuring obligations, prohibitions and (strong or weak) permissions. To
do so, we have proposed the use of defeasible rule schemata to the greatest extent to capture
deontic patterns. By doing so, we could straighforwardly adopt a common model consist-
ing of three stages [4], namely argument and argumentation graph production, argument
acceptance/justification and statement acceptance/justification. More specifically, given an
argumentation graph, we have proposed to label arguments using grounded {IN,OUT,UND}-
labelling semantics, and given the grounded {IN,OUT,UND}-labelling of the graph then we
have proposed to simply label (deontic) statements using a trivalent labelling semantics.

We have learnt that it is possible to build deontic argumentation frameworks capturing
conditional norms on the basis of common constructs from the literature on argumentation.
In particular, the system uses (two possible sets of) inference rule schemata, and only one
single (implicit) inference rule, namely (defeasible) modus ponens. In this setting, we
have learnt that a standard bivalent labelling may appear insufficient to cover aspects of
normative completeness, and that this issue can be addressed by using a trivalent labelling.
Through our KB approach, we have retrieved three possible interpretations of the principle
of prohibition: as a syntactical equivalence, as a defeasible rule, and as a proposition on
the labelling of deontic statement labellings. We have also shown that the adoption of the
principle of prohibition ‘anything that is not prohibited is permitted’ as a schema or the use of
a statement such as ‘anything is permitted prima facie’ as another schema are two alternatives
to address normative completeness, and both alternatives actually lead to the same results
in terms of statement labellings. Eventually, concerning weak and strong permissions, the

935

RIVERET et al.

reification of doctrinal pieces into defeasible theories blurs somewhat the distinction based
on conventional definitions. We have thus introduced a third kind of permission, called
doctrinal permission: a doctrinal permission for something is derived from the non-existence
or rejection of its prohibition and on the basis of reified doctrinal principles.

Multiple developments are possible. Firstly, the principle of prohibition is not applicable
in any normative system. Consequently, the framework can be further developed where
the principle cannot/should not be applied. Secondly, in order to enrich the framework,
other normative constructs and reasoning patterns may be integrated to build arguments, and
labelling variants can be explored. Finally, the system is meant to be combined with other
developments in argumentation, ranging from probabilistic argumentation to argumentation
in (normative) multi-agent systems.

References

[1] Carlos E. Alchourrón and Eugenio Bulygin. Normative systems. Springer-Verlag, 1971.
[2] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation

semantics. Knowledge Eng. Review, 26(4):365–410, 2011.
[3] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Abstract Argumentation Frame-

works and Their Semantics. In P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, editors,
Handbook of Formal Argumentation, pages 159–236. College Publications, 2018.

[4] Pietro Baroni, Guido Governatori, and Régis Riveret. On labelling statements in multi-labelling
argumentation. In Proc. of the 22nd Euro. Conf. on Artificial Intelligence, pages 489–497. IOS
Press, 2016.

[5] William Bechtel and Adele Abrahamsen. Explanation: A mechanist alternative. Studies in
History and Philosophy of Biol and Biomed Science, 36(2):421–441, 2005.

[6] Mathieu Beirlaen, Jesse Heyninck, and Christian Straßer. Structured argumentation with
prioritized conditional obligations and permissions. Journal of Logic and Computation, page
exy005, 2018.

[7] Mathieu Beirlaen and Christian Straßer. A structured argumentation framework for detaching
conditional obligations. CoRR, abs/1606.00339, 2016.

[8] Trevor J. M. Bench-Capon and Frans Coenen. Isomorphism and legal knowledge based systems.
Artificial Intelligence and Law, 1(1):65–86, 1992.

[9] Gustavo Adrian Bodanza, Fernando Tohmé, and Marcelo Auday. Collective argumentation:
A survey of aggregation issues around argumentation frameworks. Argument & Computation,
8(1):1–34, 2017.

[10] G. Bongiovanni, G. Postema, A. Rotolo, G. Sartor, C. Valentini, and D Walton, editors. Hand-
book of Legal Reasoning and Argumentation. Springer, 2018.

[11] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms. Artificial
Inteligence, 171(5-6):286–310, 2007.

936

A DEONTIC ARGUMENTATION FRAMEWORK

[12] Martin Caminada and Mikolaj Podlaszewski. Grounded semantics as persuasion dialogue. In
Proc. of 4th Conf. on Computational Models of Argument, pages 478–485. IOS Press, 2012.

[13] José Carmo and Andrew J. I. Jones. Deontic logic and contrary-to-duties. In Handbook of
Philosophical Logic: Volume 8, pages 265–343. Springer, 2002.

[14] Federico Cerutti, Sarah A. Gaggl, Matthias Thimm, and Johannes P. Wallner. Foundations of
implementations for formal argumentation. IfCoLog Journal of Logics and their Applications,
4(8):2623–2706, 2017.

[15] Günther Charwat, Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wallner, and Stefan Woltran.
Methods for solving reasoning problems in abstract argumentation – a survey. Artificial
Intelligence, 220:28 – 63, 2015.

[16] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.

[17] Phan Minh Dung and Phan Minh Thang. Closure and consistency in logic-associated argumen-
tation. Journal of Artificial Intelligence Research, 49:79–109, 2014.

[18] Phan Minh Dung, Francesca Toni, and Paolo Mancarella. Some design guidelines for practical
argumentation systems. In In Proc. of the 3rd Conf. on Computational Models of Argument,
pages 183–194. IOS Press, 2010.

[19] Lon L. Fuller. Positivism and fidelity to law: A reply to professor hart. Harvard Law Review,
71(4):630–672, 1958.

[20] Dov Gabbay, John Horty, Xavier Parent, Ron van der Meyden, and Leendert van der Torre,
editors. Handbook of Deontic Logic and Normative Systems. College Publications, 2013.

[21] Guido Governatori, Michael J. Maher, David Billington, and Grigoris Antoniou. Argumentation
semantics for defeasible logics. Journal of Logic and Computation, 14(5):675–702, 2004.

[22] Guido Governatori, Francesco Olivieri, Antonino Rotolo, and Simone Scannapieco. Computing
strong and weak permissions in defeasible logic. Journal of Philosophical Logic, 42(6):799–829,
2013.

[23] Guido Governatori and Antonino Rotolo. BIO logical agents: Norms, beliefs, intentions in
defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1):36–69, 2008.

[24] Guido Governatori, Antonino Rotolo, Régis Riveret, Monica Palmirani, and Giovanni Sartor.
Variants of temporal defeasible logics for modelling norm modifications. In Proc. of the 11th
Int. Conf. on Artificial Intelligence and Law, pages 155–159. ACM, 2007.

[25] H. L. A. Hart. Positivism and the separation of law and morals. Harvard Law Review,
71(4):593Ð629, 1958.

[26] Carl G. Hempel and Paul Oppenheim. Studies in the logic of explanation. Philosophy of Science,
15(2):135–175, 1948.

[27] Jörgen Jörgensen. Imperatives and logic. Erkenntnis, 7(1):288–296, 1937.
[28] Frank Keil. Explanation and understanding. Annual review of psychology, 57:227–254, 2005.
[29] Hans Kelsen. Pure Theory of Law. Translated from the 2nd (Revised and Enlarged) German

Edition by Knight M. Berkeley: University of California Press, 1967.
[30] Ho-Pun Lam, Guido Governatori, and Régis Riveret. On ASPIC+ and Defeasible Logic. In

Proc. of 6th Int. Conf. on Computational Models of Argument, Amsterdam, 2016. IOS Press.

937

RIVERET et al.

[31] Peter Lipton. What good is an explanation? In Explanation: Theoretical Approaches and
Applications, pages 43–59. Springer, 2001.

[32] Tania Lombrozol. The structure and function of explanations. Trends in Cognitive Sciences,
10(10):464–470, 2006.

[33] David Makinson and Leendert van der Torre. Permission from an input/output perspective.
Journal of Philosophical Logic, 32(4):391–416, 2003.

[34] David Makinson and Leendert W. N. van der Torre. Input/output logics. Journal of Philosophical
Logic, 29(4):383–408, 2000.

[35] Paul McNamara. Deontic logic. In Dov M. Gabbay and John Woods, editors, Logic and the
Modalities in the Twentieth Century, volume 7 of Handbook of the History of Logic, pages 197 –
288. North-Holland, 2006.

[36] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumentation
frameworks. In Argumentation in Artificial Intelligence, pages 105–129. Springer, 2009.

[37] Sanjay Modgil and Henry Prakken. The ASPIC+ framework for structured argumentation: a
tutorial. Argument & Computation, 5(1):31–62, 2014.

[38] Henry Prakken and Giovanni Sartor. Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-Classical Logics, 7(1-2):25–75, 1997.

[39] Henry Prakken and Giovanni Sartor. Formalising arguments about norms. In Proc. of the 26th
Annual Conf. on Legal Knowledge and Information Systems, pages 121–130. IOS Press, 2013.

[40] Régis Riveret, Alexander Artikis, Jeremy V. Pitt, and Erivelton G. Nepomuceno. Self-
governance by transfiguration: From learning to prescription changes. In Proc. of 8th Int.
Conf. on Self-Adaptive and Self-Organizing Systems, pages 70–79. IEEE Computer Society,
2014.

[41] Régis Riveret, Pietro Baroni, Yang Gao, Guido Governatori, Antonino Rotolo, and Giovanni
Sartor. A labelling framework for probabilistic argumentation. Annals of Mathematics and
Artificial Intelligence, 83(1):21–71, 2018.

[42] Régis Riveret, Yang Gao, Guido Governatori, Antonino Rotolo, Jeremy Pitt, and Giovanni
Sartor. A probabilistic argumentation framework for reinforcement learning agents - towards
a mentalistic approach to agent profiles. Autonomous Agents and Multi-Agent Systems, 33(1-
2):216–274, 2019.

[43] Régis Riveret and Guido Governatori. On learning attacks in probabilistic abstract argumentation.
In Proc. of the 15th Int. Conf. on Autonomous Agents & Multiagent Systems, pages 653–661.
ACM, 2016.

[44] Alf Ross. Directives and Norms. Humanities Press, 1967.
[45] Giovanni Sartor. Legal Reasoning: A Cognitive Approach to the Law. Springer, 2005.
[46] Audun Stolpe. A theory of permission based on the notion of derogation. Journal of Applied

Logic, 8(1):97–113, 2010.
[47] Christian Straßer and Ofer Arieli. Normative reasoning by sequent-based argumentation. Journal

of Logic and Computation, page exv050, 2015.
[48] Leendert W. N. van der Torre and Serena Villata. An ASPIC-based legal argumentation

framework for deontic reasoning. In Proc. of 5th Int. Conf. on Computational Models of

938

A DEONTIC ARGUMENTATION FRAMEWORK

Argument, pages 421–432. IOS Press, 2014.
[49] Georg Henrik von Wright. Norm and Action: A Logical Enquiry. Routledge and Kegan Paul,

1963.

Received 4 October 2018939

Two Limitations
in Legal Knowledge Base Constructing and

Formalizing Law

Réka Markovich∗

Computer Science and Communications Research Unit, University of Luxembourg
Department of Business Law, Budapest University of Technology and Economics

Department of Logic, Institute of Philosophy, E’́otv’́os Loránd University
reka.markovich@uni.lu

Abstract

Extracting norms from legislative texts confronts us many tasks and requires de-
cisions about approaches, methods, tools, and legal theoretical presuppositions.
In this paper I present some examples from the Hungarian legislation showing
how challenging sometimes the wording of these texts is from the viewpoint of
norm extracting, then I present two limitations we need to face when dealing
with this task. On the one hand, I argue that isomorphism cannot be upheld,
but it is not necessary to have a faithful formalization. On the other, I argue that
however appealing to base on constitutive norms is when formalizing—in order
to avoid the necessity of normative reasoning, for instance—the consequential
application of their theory in the approach leads us to a very controversial
situation.

1 Introduction
In this paper some considerations of information extracting and formalizing law will
be presented. The focus of this investigation is on some of the phenomena of law

I am grateful for the comments on my preliminary thoughts expanded in this paper for Trevor
Bench-Capon, Marek Sergot, István Szakadát, Gábor Hamp and Csaba Oravecz.

∗Support provided by the research project K-116191 of the Hungarian Scientific Research Fund is
gratefully acknowledged. The research reported in this paper was supported by the Higher Education
Excellence Program of the Ministry of Human Capacities in the frame of Artificial Intelligence
research area of Budapest University of Technology and Economics (BME FIKP-MI/FM) and the
Higher Education Institutional Excellence Grant Autonomous Vehicles, Automation, Normativity:
Logical and Ethical Issues at ELTE BTK.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Markovich

and legislative texts we face and need to deal with if we want to extract norms from
the legislative texts and how these influence the methods we need to apply when
constructing our knowledge base system and formal setup.1 The examples used here
come from Hungarian law,2 but we have no reason to suppose that the phenomena
their structure and linguistic surface confront us would be particular.

I have no intention to argue for the legal positivist approach in the sense of advertis-
ing the absolute primacy of written law, but I restrict this examination to the legisla-
tive texts and the linguistic-legal information that can be extracted from them—by
human or machine tools (semi-automatized or automatized way). There are several
reasons for doing so. One is the Hungarian—and, in general, the continental—legal
system’s tacit relying on this approach in the sense of requiring clear legislative
texts free from ambiguities—as this is what people can access and according to
which they are required to behave, and the law has to be understandable by those
who are subjects of it. The decree regulating the legislative drafting in the Hungar-
ian legal system (61/2009. (XII. 14.) decree of the Minister of Justice) says: “Legal
regulation drafts should be drawn according to the rules of Hungarian language, in
a clear, comprehensive, consistent way” (Section 2). The reason because of which
the examination in this paper concerns not only the human understanding but the
formal representation of laws too in order to prepare “machine understanding” is
the amount of laws: at the time of writing these lines there are 7156 statues in force,
the (parallel) process of which is way beyond human capacity. We need to consider
how (and whether) the (semi-)automated formalization of legislative texts can be
managed: how (and whether) the (normative) content of a legislative text is clearly
detectable and identifiable.

Obviously, such a topic involves considerations not only from legal theory, but also
from computer science, natural language processing (hereafter, NLP) and logic. Nev-
ertheless, in this paper I do not suggest or even consider tools or methodologies
for NLP solutions for moving towards a (semi-)automated interpretation of legal
texts, as it happened—among many others—in [11], [9], [14], [13] (for project re-
sults see Legivoc—[18], Openlaws—[42], EUCases—[8], MIREL, and the most recent
DAPRECO—[3] aiming at translating the GDPR into a deontic logic specifically de-

1This paper is not self/contained in the sense of referring many existing and often discussed
issues without introducing or explaining them in detail. Therefore, the intended audience is the
audience of this special issue having background in and experience in mining and reasoning with
legal texts.

2The examples will be presented both in Hungarian and in—as faithfully to the original Hun-
garian texts’ wording as possible—English translation.

942

Two Limitations

signed for natural language semantics in [31]—also related to ProLeMAS), neither
will consider specific formalisms—listing of which works would far exceed the limits
and scope of this paper;3 and from the knowledge base constructing issues I only
will address those that directly relate to the topics discussed here.

The methodology of this paper is presenting real legislative examples to show that
why and how seemingly basic steps of formalizing law and constracting legal knowl-
edge base can be difficult, especially if we consider automated analysis—which, as
I argued above, can easily made desirable by the amount of norms of a given legal
system. The investigation of the examples will show why the popular and intuitive
requirement of isomorphism cannot be upheld, and I will present arguments why
should not it even be necessarily pursued. The examples and arguments above will
also continuously reflect upon the semantics of legal norms and the differentiation
between constitutive and regulative ones, trying to find solutions to the difficulties
presented by the examples. This interaction between the examples and the argu-
ments will lead us to another limitation: the limitation of extensively formalizing
law in terms of constitutive norms.

2 Approach and Presuppositions
Let’s suppose: we are looking for norms in legislative texts. In agreement with the
approach of [41] as “a norm must convey information to fulfil its function of commu-
nicating standards of behaviour; the way in which one is expected to behave must
be clear from the norm”, we are looking for the way this can be extracted from the
legislative texts (presupposing that they contain this information as we think about
them as sets of norms). The paper of [41] refers to [10] when listing five questions
to be answered if we want to have a complete norm:
(1) Who is obliged or permitted to do something?
(2) Is there an obligation or a permission to do something or to leave something
undone?
(3) What must be done or forborne?
(4) Where must something be done or forborne?
(5) When must something be done or forborne?
These elements more or less correspond to the factors most authors count with
when discussing norms. In von [43], the “father of deontic logic” adds the authority
to the elements above when talks about the parts or components of norms that are

3By no means this implies the claim that one or another specific formalism could not be better in
dealing with the issues presented in this paper, but here the focus is on preliminary considerations.

943

Markovich

prescriptions—as von Wright differentiates between three type of norms: rules (rules
of a game), directives (like technical norms of an instruction manual) and prescrip-
tions (commands, permissions, and prohibitions, which are given or issued to agents
concerning their conduct. “The laws of states are prescriptions”, declares von Wright.

Let’s restrict our investigation to the character or deontic status (whether something
is obligatory, permitted or prohibited), the action (what is obligatory, permitted or
prohibited) and the agent (the subject or addressee of the norm: for whom it is
obligatory, permitted or prohibited the given action). The importance of agents is
often tacitly underestimated: it is pretty general to discuss deontic logic in an imper-
sonal way, that is, discuss obligations without agents, but in law there is always an
addressee of the given norm. And if we take the expectation in [41] above seriously
accepting that a norm must convey how one is expected to behave, extracting who
that ‘one’ is a fundamental requirement of the whole process. Let’s start with the
character or deontic status, though, as it is reasonable to suppose that this compo-
nent is the most salient of the norms—and as we will see, the question of the actions
and agents come with it anyway.

3 Language of Legislative Texts: Deontic Character and
Linguistic Modalities in Law

The language use in legislation is more formal and bound than other registers of
natural language (whether necessarily or not is often discussed, see the Plain En-
glish Movement, [7] vs. for instance [12]), even more than other registers in legal
language (for instance compared to the language of judgements, contracts or expla-
nations).4 As we saw above, the legislator itself has formed requirements concerning
the legislative language use in a decree on legislative drafting. There are a lot of
features of the legal language use in Hungarian (for instance the high proportion of
nominal structures) discussed often by linguists and lawyers (this is, of course, is not
a specifically Hungarian issue, for English see e.g. [28], [37], for a comparative study
to English, French, German, and Latin see [27]), but now we only consider those
that are related to the expression of linguistic modality as these are by which we
can identify the deontic character of a norm: what is obligatory, what is forbidden
and what is permitted.
In the Hungarian language, modalities can be expressed in different ways (not only
in Hungarian, of course, for a foundational entry see [23]): the most typical ways

4Most of the comparative studies of a recent Hungarian project on this topic are only available
in Hungarian, see: [35], but one of them will be available in English soon: [44].

944

Two Limitations

are participles, auxiliary verbs with infinitives, and suffixes at the end of the verbs.
For instance, obligatory can be expressed with saying that something is ‘kötelező’
(which is the literal translation of ‘obligatory’), or ‘szükséges’ (which is the literal
translation of ‘necessary’)—in its deontic reading, with using the auxiliary verb ‘kell’
(which means what ‘must’ or ‘shall’ means in deontic sense), or with the derivational
suffix ‘-andó, -endő’ at the end of the verb denoting the action (for instance, the
translation of the word ‘fizetendő’ is ‘is to be paid’). Permission can be expressed
with the adverb/adjective ‘megengedett’ (which is the literal translation of ‘permit-
ted’) or using the adjective ‘szabad’ (literally meaning ‘free to’), but most frequently
happens with the inflectional suffix ‘-hat, -het’ attached to the verb which describes
the action, or with the derivational suffix ‘-ható, -hető’ attached to the verb (in the
predicate place of the sentence) with a—tacit—copula: in this case the translation of
the word e.g. ‘fizethető’ ‘it may be paid’ or ‘it can be paid’ with the deontic reading
of ‘can’. That is, in the Hungarian legal language, these suffixes play the role that
in English is played by modal verbs ‘may’ and ‘can’ in their deontic reading. These
suffixes also have other readings (just like the word ‘szükséges’, that is, ‘necessary’,
obviously has), but in a legislative text the deontic context is given—or, as [23] calls
it, the conversational background is bound: it is literally is ‘what the law provides’
as we are reading the law itself. Forbidden can be expressed with the adjective ‘tilos’
(which is the closest version to the translation of ‘forbidden’), with the negation of
permitted, that is, any of the indicated possibilities above with a declarative use of
‘no’ (‘nem’ in Hungarian).

3.1 False Friends and Missing Modalities in Legislative Texts

Sometimes, though, other ways of expressing modalities can be faced with: ones that
might mislead the reader, both human and computer ones.

In [25] the language of the Hungarian Criminal Code is discussed: as a criminal
code lists the actions a society (a legislator) considers the less desired, one would
expect to meet the linguistic signs of forbidden several times—but would disappoint
as the only deontic modality that can be detected in this legislative text is obliga-
tory. The dominant form of sections in the Hungarian Criminal Code’s special part
(listing the felonies) is the following:

Example (1) “Aki mást megöl, bűntett miatt öt évtől tizenöt évig terjedő szabad-
ságvesztéssel büntetendő.” (Any person who kills another human is to be punished
for five to fifteen years of imprisonment due to having committed a felony.) [Act C
of 2012 on the Criminal Code]

945

Markovich

As we see, the command to the judge to punish the perpetrator of a forbidden
act is not attached to the prohibition: it is itself the expression of the act being
forbidden. Of course, the human interpretator understands that this realizes what
we usually refer to as ‘forbidden’, but the automated processing needs some input in
order to properly classify these norms—which, at least in Hungarian—could be the
string ‘büntetendő’ (is to be punished) as these norms are very regular: whenever
the computer finds this word, the declarative form verb of the given sentence will
provide the action to which we need to assign the deontic status of being forbidden.

A more surprising set of examples can one find in the Hungarian Highway Code.
There are several sentences in it like the following ones:

Example(s) (2)
”A fényjelző készülék folyamatos zöld fény jelzésnél kiegészítő hangjelzést is adhat”
(The light-signalling device may additionally beep while green.)
”A fény kibocsátására alkalmas jelzőtáblán a jelzőtábla fehér és fekete jelzései egy-
mással felcserélt színekkel is megjelenhetnek.” (The white and black markings on the
light signal board may appear with commuted colors.)
”A jelzőtábla alatt kiegészítő tábla adhat útmutatást a jelzőtábla jelzésének értelme-
zésére.” Under the traffic sign, an additional sign may give guidance how to interpret
the traffic sign.
”Az út mellett vagy közelében lévő egyes létesítményekről kék vagy barna alapszín?
jelzőtáblák adhatnak tájékoztatást.” (Information about the facilities passed by the
road may be given by blue or brown signposts.)
”Az (1) bekezdésben említett jelzőtáblák alatt elhelyezett kiegészítő táblán nyíl
jelezheti, hogy a tilalom hatálya a táblától kezdődően vagy a tábláig áll fenn.” (Ad-
ditional signpost with an arrow under the traffic signs mentioned in (1) may indicate
whether the prohibition starts or ends with the traffic sign.)

These ‘may’-s (the ‘-hat’, ‘-het’ suffixes in Hungarian) might seem permission at
first sight. We, of course, know that ‘may’, just like the given Hungarian suffixes,
can be used with other modal tastes—e.g. alethic or metaphysical, but before facing
these examples we did not expect to meet with them in legislative texts since, as it
was mentioned above, here the context is bound, or, as [23] says, the conversational
background is given since the resolving deontic reading can paraphrased as ‘in view
of what law provides’—which is tacitly the case as we are reading the law itself.
But the modalities in examples (2) do not really make sense as permissions: the
legislator does not give a permission to the light-signalling device to beep. These

946

Two Limitations

rather seem alethic possibilities. Does this mean that we need to introduce a new
modality into our formalization? I don’t think so. If we consider descriptive propo-
sitions, these possibilities can be expressed with a disjunction: the light-signalling
device beeps or it does not. But what is the deontic character of this rule then? Well,
it is an obligation to people using public roads to consider a light-signalling device
as such—both if it beeps and if it does not. So we found a conjunction of obligations
where the first impression—and the trained machine’s result would have—suggested
permission. Not an easy tension to resolve with automatic tools.

It also happens that there is no linguistic sign of any modality in a sentence. In
[23] we find an example of a sentence missing any linguistic sign of a modality: the
explanation Kratzer gives to “The car goes twenty miles an hour” is that “the modal-
ity may be inherent in the verb” (p. 639). She does not mention cases, though, where
the deontic modality is present inherently in a verb. In legislative texts, actually,
we often find seemingly declarative sentences lacking any linguistic sign of modality.
The reader probably says promptly: of course, those are constitutive rules. Indeed,
in case of constitutive rules, the lack of ‘shall’ or other phenomenon expressing nor-
mativity is not surprising, this is part of the description we got in [33] describing
constitutive rules as mostly expressed in non-imperative, ‘counts-as’ rules. We also
can take a step back in history and check what an earlier author whom Searle also
leans on: [30] describes practice rules as definitive ones, which definitive feature is so
strong that if we don’t follow these rules, we don’t engage in the given action they
define.

If we want to explain the using of indicative mood with this distinction, we need
to understood broadly the word ‘definition’, at least this is how it seems from the
Hungarian legislative language use. Let’s see the following examples:

Example (3) “Szünetel a biztosítás a fizetés nélküli szabadság ideje alatt.” (The
insurance intermits during the unpaid leave.) [Act LXXX of 1997 on Social Security]

We might say that the definition of insurance as an institution can be paraphrased
in a way it contains this aspects of intermitting. Maybe, we can also say something
similar in case of the following rule:

Example (4) “Ha leszármazó és szülő nincs vagy nem örökölhet, az örökhagyó háza-
stársa egyedül örököl.” (If there is no descendant or parent, or if they are excluded
from succession, the surviving spouse inherits the entire estate.) [Act V of 2013 on
the Civil Code]

947

Markovich

What does this mean in terms of the norm elements we are looking for? Just to
start with the first element we look for: what is the deontic character of these norms?
Is there one at all? Constitutive norms are usually something which help us avoid
dealing with deontic notions—and therefore deontic logic or normative reasoning.
But should we really lean on this option when constructing our knowledge base and
formalizing law? Actually, Searle never said that there is no obligation in counts-as
norms (what is more, speaks about deontic power in their case)—(even if this is
typically not the case) they might be expressed imperative. (And there are several
critiques of the theories of the whole differentiation between constitutive and reg-
ulative norms, see for instance [16], [24], [15], [39], [38]). For instance rules listing
the required elements of an official document to count as an official document is a
paradigmatic case what we usually consider a constitutive rule. Still, the phrasing
of the following sentence suggests an obligation:

Example (5) “A meghatalmazás képviseleti jogot létesítő egyoldalú jognyilatkozat.
A meghatalmazást a képviselőhöz, az érdekelt hatósághoz, bírósághoz vagy ahhoz a
személyhez kell intézni, akihez a meghatalmazás alapján a képviselő jognyilatkozatot
jogosult tenni.” (A power of attorney is a unilateral act granting the right of rep-
resentation. The power of attorney shall be addressed to the agent, the competent
authority or court, or any person to whom the agent is authorized to make a legal
statement.)[Act V of 2013 on the Civil Code]

In von [43] we also find a clear claim about the laws of the state being prescrip-
tions, per se, but let’s see what the strictly legal approach says.

Legislation as such is subject of a discipline called legistics or legistica taught at
law schools. Hungarian legistics textbooks—obviously—often discuss Hungarian leg-
islative language use, both in descriptive and prescriptive way (discussing how the
language should be used when phrasing legal norms). Considering our topic, we
can find the following in [40]: “In legal norms indicative mood is dominant. Thus
the norm text shuns expressions like ‘should’, ‘ought’, ‘necessary’, since the indica-
tive mood is imperative for the authorities, government agencies (e.g. rules of com-
petence, authorizing rules, rules of procedure); while, less often, to put emphasis,
norms expressing obligation literally too may occur—e.g. when the obliged agents
are directly citizens, business organizations.”5 Unfortunately, the parsing tools for

5”A jogi normákban egyeduralkodó a kijelentő mód. Ezért a norma szövege kerüli a “kell”,
“köteles”, “szükséges” kifejezést, mert a hatóságok, állami szervek számára a kijelentő mód imper-
atív (pl. hatásköri szabályok, felhatalmazó szabályok, eljárási szabályok), míg nyomatékosításként

948

Two Limitations

the Hungarian language does not provide the possibility to check the correlation
between the addressees (personal scope) and the linguistic mood of expressing obli-
gations, the claim is still worth to deeper analysis. On the one hand it corresponds
nicely with the foundations of the regulative–constitutive rules distinction: as it is
often referred, the activities defined by constitutive rules are logically dependent on
the rules constituting them, so it is not strange if agents created by the law con-
ducting activities created by the law get their commands from rules having the same
linguistic features as the ones created them and their activities. On the other hand,
this claim of [40] says this indicative mood is imperative to them, that is, sounds
constitutive or not, these rules bear normativity, they convey imperatives. This is
confirmed by another textbook of legistics: [36] says that “in Hungarian legislative
texts the indicative mood means imperatives or obligation. (...) The predicate in
norms’ text is always a command, even if it has no linguistic sign.”6 This means that
we need to look for and identify deontic character in all the laws’ sentences. The
correlation indicated above might help is, but there are cases, where this correlation
between the official addressee and the phrasing does not hold, like in the following
example:

Example (6) “...a vállalkozás egyértelműen és jól látható módon felhívja a fogyasztó
figyelmét a 11.§-ban meghatározott információkra” (...the company calls the con-
sumer’s attention to the information detailed in section 11 in an univoque and visible
way) [45/2014 (II. 26.) Government decree on Detailed Rules of Contracts between
Consumer and Company]

Here the obliged agent is a company, that is, not an authority, the mood is still
indicative representing no modality. We might be appealed to conclude that all in-
dicative mood predicates cover obligations in legislative texts. For these cases the
NLP considerations can be made up with saying that in legislative texts all the verbs
in indicative mood—except for the ones in the antecedents of conditional rules7—
should be detected as obligatory. That is, in the case of example (6) finding ‘felhívja’
(‘calls’) should be translated to a formal representation of ‘it is obligatory to call’.
But this solution does not help in examples above: in example (4) the verb is ‘in-
termits’ and the deontic content as ‘it is obligatory to intermit’ sounds strange, the

ritkábban előfordulhat a kötelezést nyelvileg is kifejező norma, (...) például akkor, ha a kötelezettek
közvetlenül magányszemélyek, gazdálkodó szervezetek.”

6”Magyar nyelvű normaszövegekben a kijelentő mód felszólítást vagy kötelezést jelent. (...) A
normatív állítmány mindig rendelkezés, akkor is, ha nyelvileg nem az.”

7About the automated identifiability of the antecedent of conditional sentences in legislative
texts in Hungarian see [26]

949

Markovich

‘it is obligatory to inherit’ even more does so. The reason is that inheriting and
intermitting are not actions to which oblige someone—or something—would make
sense: the spouse has no influence on whether (s)he inherits, the insurance has even
less whether it intermits. The principle along which this problem might be solved in
NLP and ((semi-)automated) formalization is that instead of acts, we put proposi-
tions in the argument of the deontic operators at this level: ‘it is obligatory that the
insurance intermit’ and ‘it is obligatory that the spouse inherit’ makes much more
sense. The satisfaction is temporary, though, as this solution does not provide some
crucial information of compliance: whose obligation is that to make things so? In
example (6) we see the agent, but in example (3) and (4) the real agent is not in
the given sentence or section, and the extraction of this information sometimes is
not easy to the human reader either: it requires some legal knowledge where to look
for the answer. That is, constructing the knowledge base requires that legal knowl-
edge. Before going further with this direction, note that we already lose something:
isomorphism.

4 Isomorphism and its limitation

At the end of the eighties, the term ‘isomorphism’ has been introduced into the
discussion of legal knowledge based systems and formalizing law. In [22] we find five
conditions that have been listed in [5] as the following:
(i) Each legal source is presented separately.
(ii) The representation preserves the structure of each legal source.
(iii) The representation preserves the traditional mutual relation, references and con-
nections between the legal sources.
(iv) The representation of the legal sources and their mutual relations (...) is sepa-
rate from all other parts of the model, notably representation of queries and facts
management.
(v) If procedural law is part of the domain of the model then the law module will
have representation of material as well as procedural rules and it is demanded that
the whole system functions in accordance with and in the order following the pro-
cedural rules.

Practically, (ii) is what matters the most, the short or narrow references at least
refer to isomorphism mainly covering that: [5] sum up presenting the rules above
with saying that “the important demand made by isomorphism is that there is a
clear correspondence between items to be found in the source material and items
to be found in the knowledge base. (...) Where one to one correspondence is not

950

Two Limitations

achieved, however, it is important to relax the constraint only so that one source
item corresponds to several knowledge base items and maintain the prohibition on
a single knowledge base item capturing the material from several source items.” The
definition we see in [29] is quite similar: “the situation that one source unit is for-
malised in one knowledge base unit. By source unit we mean the smallest identifiable
unit of the source from which a norm can be extracted. In general this will be a sec-
tion or a subsection of a code.”

[5] convincingly argue that following these rules greatly help to satisfy the concerns
of well engineered knowledge systems presented in [19]: verification, validation, and
maintenance. They argue that isomorphic formalization also helps the user: “Many
of the problems with experts systems come from a mismatch between the rule based
conceptualisation of the expert system and the conceptualisation of the user.” (Here
the authors do not discuss the potential users of expert systems but Bench-Capon
does so in [4].) We come back later to the question of users and mismatches between
concept structures.

But not only software engineering considerations serve arguments for isomorphism.
In [17] and [6] we find legal theoretical considerations on legistics about reasons be-
hind the typical structure of laws providing the general rule first and then a number
of specific exceptions. According to the authors, this structure reflects on a need
coming from the addressees’ side. As [17] says: “This [structure] facilitates the nor-
mative function of the law; the law would have little effect on social behaviour if its
rules were so convoluted that persons could only with great difficulty, if at all, predict
the legal consequences of their actions.” According to [6], this presentation structure
of general rules and exceptions helps achieve “ease of application, ease of under-
standing, and the possibility of allocating the burden of proof”—points that can be
upheld with keeping on isomorphism when formalizing. In [29] a few years before,
the structure above is yet presented as a threat to, or a limitation of isomorphism,
which, however, can be overcome (building up formalization upon nonmonotonic
reasoning or conflict solving metarules), as it is presented in the paper.

There are other limitations brought up in the literature, though. [5] refer to [34]
as latently raising objections against isomophism. It is the critique of isomorphism
which is latent in [34] as it is not even mentioned literally since the paper is about
following a top down development of logic programming when formalizing the Indian
pension rules, but the criticism of the isomorphic approach can be read clearly from
it. As [5] rephrase it: “the isomorphism approach is very well if the legislation is itself
well stuctured. In such a case, the structure of the problem, the structure of the legis-

951

Markovich

lation, and the structure of an isomorphic knowledge base would all be in harmony. It
is, however, often the case that the legislation is not well structured. Often repeated
amendments and ‘patching’ mean that the legislation is itself a complete mess, and
fails to reflect the real structure of the domain. In such a case, basing the structure
of the knowledge base on legislation would lead to a poorly structured knowledge
base, which fails to correspond to the ‘real world’ problem.” With [34] own words: “in
common with many other examples of legislation and regulations, especially those
that refer to periods of time, the Pension Rules are imprecise and very casual about
many of the key concepts. They are certainly not precise enough to be formulated
directly as an executable program, and they are arguably not precise enough to be
applied by a human agent either.” At their reaction, [5] put a light on the question
what is meant by ‘poorly structured’—a point to which we come back soon—, and
argue by turning the objection into a good argument for isomorphism: a poorly
structured legislative text very likely becomes subject of amendment, which requires
maintenance of our knowledge base—which something that can be efficiently done
if we previously followed the isomorphic approach.

At this point, accepting [5]’s reply (and original arguments above), one might be
convinced that isomorphism is an obviously advantageous approach when formaliz-
ing legal rules, one definitely to pursue, and this whole problem urging us to give it
up only came up because we wanted to extract real (regulative) norms from consti-
tutive ones, so we should not do so; examples (3) and (4) refer to actions of official
agents/government organizations, so if we would like to help people to comply with
law, these can be kept as they are: in descriptive form about what happens in law.
In total agreement with the first part of this conclusion, getting rid of the intention
to change constitutive into regulative norms won’t solve the problem: we encounter
it in case of clearly regulative rules, too. Let’s have a look at an example looking for
a norm in clearly regulative rules.

Rules on advertising (Hungarian Act XLVIII of 2008 on advertising and parts of
the Act LVII of 1997 on Fair Competition—which parts earlier were parts of the Act
XLVIII of 2008) are full of rules like the following ones:

Example(s) (7)
”Advertising is prohibited for goods whose production or marketing is forbidden.”
”Advertisements inciting violent, or personal or public security threatening behav-
ior, are prohibited.”
”Comparative advertising may not injure the reputation of another company or the
name, merchandise, brand name and other marking of such company.”

952

Two Limitations

From the first two, we cannot identify any subject (addressee), from the third,
linguistically, we can: the advertising itself. But the advertising or advertisement is
clearly not an agent in the sense of being capable of conducting actions, therefore one
whose behaviour could be ruled or influenced by imposing a prohibition. Therefore,
the advertising (or advertisement) itself cannot be the addressee. But then who is it?
Who should see to it that a comparative advertisement does not injure the reputa-
tion of other companies? There are several general laws in a society—a phenomenon
because of which the harmfulness of the tendency of forgetting about the addressee
is not so conspicuous—, the criminal code or the civil code are ones concerning all
members of a given society. Is this Act on advertising is one of those? Obviously not,
as most people of a given society have absolutely no influence on what happens in
advertising. Fortunately, the—overwhelming majority of—legislative texts provide
their personal scope in one of the first sections, that is, they denote the agents who
shall comply with them. In case of the Act on advertising this section declaring the
personal scope does not provide the final solution yet since there are three agents
denoted: the advertiser (the company whose product/service the advertisement is
about), the advertising service providers (practically the agencies), and the publish-
ers of advertising (the TV and radio companies, the publishers, etc.). From this we
could conclude that there are three agents on whom the duties above are imposed.
This is not far from the truth, but the situation is a bit more complicated: after
checking the beginning of the Act in order to find the agents and put them into the
norms we would like to extract, we need to check some sections at the end of the
Act, too. After providing the rules in the above form, the legislator put a subtitle
(which is one of the possible units of Hungarian legislative texts), the ‘Vested re-
sponsibility’. This part tells us which addressee will be liable for the violation of a
given prohibition above (listed protractedly in the Act)—which practically means
that the given agent is the one which is obliged to obey the rule (sometimes the
three addressee have joint and several liability—which is a specific problem in terms
of formalization, one which we do not discuss here, though—, some rules need to
be complied with by one or another of the agents (aligning the reasonable aspect of
which phase can be influenced of creating and publishing an advertisement)). If we
want to have proper complete norms containing the addressee too (which would be
nice considering the information need to be extracted for compliance), we need to
get that information from another parts of the Act, not the one where the “main
rule” can be found.

We, of course, could say that, in order to keep isomorphism, we formalize them
separately when the prohibitions above (let’s call (any of) them Rule Nr. N):

953

Markovich

Rule Nr. N: ’it is obligatory that action A is executed / that C is the case’
and then the “rules” in the section on vested responsibility in a way that:
’it is obligatory to subject S to comply with the rule Nr. N ’, that is,
’it is obligatory to subject S to fulfil the obligation in rule Nr. N ’
but this result is rather redundant.

But then what could we do with the laws similar to the Act on advertising (of
which there are a lot) in “ruling” the agents in separate norms? Annotating the
knowledge base slots with the locution in the source (legislative) text could serve
as a solution. Do we lose isomorphism? It depends on how strictly we interpret its
definition. As it is mentioned above, in [29] we see one saying that we need to con-
sider one source unit (whose correspondence with one knowledge base unit should
be upheld) as the smallest identifiable unit of the source from which a norm can
be extracted. Well, in this case it is the whole Act itself—a “structural unit” that
authors would scarcely accept as such: representing the whole Act in one unit of the
knowledge base would completely contradict to what we consider as one unit. We,
therefore, seem to be in the need of loosen up the requirement. A requirement of
an algorithmizable correspondence would still be considerable as substantial help in
pursuing the software engineering concerns of verification, validation, and mainte-
nance.

One could say that the Act on advertising is a good example of the poorly struc-
tured legislative texts [34] talk about. It is important to emphasize: this is not the
case. Of course, it depends on, as [5] note, what we call ‘poor structure’, but in the
case of the original example of being poorly structured, the Indian pension rules,
the authors found that the same word was used to refer to slightly different things,
sometimes even in the same sentence, while in other cases the key concepts were
really casually phrased. In the Act on advertising there is no such problem. There
is nothing ‘poor’ from a legal point of view or, specifically, from the viewpoint of
legistics in this Act’s structure. It is, actually, a well structured law. What is behind
the structure of this Act then? From legal theoretical point of view we can call the
attention to the fact that advertising law is an area of law aiming at the protection
of consumers and fair competition. The legislator’s view reflects on this aim and the
viewpoint of the consumer/other companies, thus, instead of concentrating on the
obligations of each concerned agent, the legislator ends up in listing the situations
that should not be realized (as for the consumer it does not make a difference which
agent is responsible for a given undesirable situation).

We need to distinguish two phenomena [34] talk about, at least we need to reflect

954

Two Limitations

more precisely their relationship. The—clearly problematic—practice of handling
concepts and terminology poorly is a sufficient condition of not having matching
with the real world problem structure, but far from being necessary. The legal (more
precisely, legislative) mapping of the world is not isomorphic with the world itself.
In [44] we find an—experiment-supported—analysis of the comprehensibility of le-
gal texts. The author’s conclusion is that changing the often scolded legal language
would not solve the problem that people find it difficult to understand the legal (not
just legislative) texts. Offering a classification of three kinds of pragmatic situations
where laymen meet legal texts, Ződi points out that the difficulties in understanding
legal texts should be investigated together with these situations and not just the
syntactical and semantical features of legal texts. He emphasizes: “the texts of legal
sources are not organized around everyday problems—they follow a different logic.
(...) The texts of legal sources are mainly organized around theoretical legal ‘fields’,
and try to avoid redundancies. Therefore, even for a very simple contractual problem
the answer will lie in many places. (...) One is involved in a car accident: there are the
rules of the traffic code, rules of the penal law (code), rules of obligatory third-party
insurance, and rules for the whole procedure, including the usage of forms, and so
on. And even if texts are found, circumstances are fixed, and proper interpretation is
in place, the question still remains: What follows from all these rules? What should
I do? Where should I go? What should I write down, fill out, submit? Who should
I inform, call? And so on.”

In an ideal case, a knowledge base system can mediate between the two: faith-
fully represents the law (where faithfulness, as we saw, does not necessarily mean
isomorphism, especially not verbatim as [20] advocate), and is built up in a way that
with normative reasoning can help people find answers to their question in a real
life problem. Expecting that the law itself is structured in a way that its verbatim
formalizing (if it makes sense at all in terms of feasibility) provides all the answers to
real life problems would be reasonable if we thought the legislative texts themselves
as doing so. But according to [44]—and the experience—this is not the case. This
mediating task is exactly something because of which building legal knowledge base
systems would provide a real contribution. This requires legal theoretical knowledge
(and of course knowledge of the given legal domain) when constructing. Again, this
is the ideal case, presupposing that we want a system for information extraction use-
ful to laymen (too). It can be the case that our target audience is different: specific
types of adjudicators. About this case, see [4].

One might feel at this point that the requirement of extracting (regulative) norms
demands too many sacrifices, so we should be satisfied with constitutive norms in

955

Markovich

their “normal, descriptive form”, what is more, regulative norms should be rephrased
as constitutive ones, too, in order to avoid any complication. Unfortunately, from a
legal theoretical or philosophical point of view, consequentially leaning on constitu-
tive rules also has a strong limitation.

5 Dealing with Constitutive Norms in Law and Its Lim-
itation

As it has been mentioned earlier in this paper, there is a view advocating that there
is no real difference between these two types of the norms. It might mean that what
we call regulative norms, can be rephrased in the way ‘constitutive ones’ are phrased,
that is, exactly in the other way around than we have pursued in this paper so far.

The possibility is appealing: we don’t need to deal with normative reasoning or
deontic logic, we have simple descriptive propositions. We cannot even argue with
calling attention to the presence of deontic mo dalities since Searle only said that
constitutive rules are mostly phrased in indicative mood, did not say that this hap-
pens always: the fact that we find rules using ‘ought to’ and ‘obligatory’ in the law
of contracts supports this thesis: we all know that if we infringe some of this rule,
what comes is not a punishment, but the nullity of the contract—which is actually
not a contract then. And the solution of resolving regulative norms into constitutive
norms seems to be easy: an obliging norm can be translated into a conditional sen-
tence saying that if the given action is not conducted, then it is a violation.8 Saying
so we already have a paradigmatic constitutive rule: not performing the given action
counts as a violation. If it is so easy to lean on constitutive rules when formalizing
law, what is the problem?

Let’s see a new example. The Hungarian traffic rules are a set of norms—we can call
their set as the Highway Code, in Hungarian we use the acronym KRESZ—that look
like the classical examples of constitutive rules: the rules of a game. Some rules are
general during “playing” (participating in public road use), but the obliging rules
are mostly given in a very similar way it happens in board games: if you land on
this and that square, you have to do this and that—if you see this and that sign (an
octagon with the string ‘STOP’, down triangle with red edge, circle with red edge
and a number in it, etc.), you have to (or should not) do this and that (stop, give
priority, go with a specific speed, etc.). This and that (things in the world) count

8This approach is used when defining specifications for instance in LegalRuleML, see [2] and
this thought was the basis of the Andersonian-Kangerian reduction of deontic logic, see [1] and [21].

956

Two Limitations

as this and that (pedestrian way, public road, traffic sign). Even the topographical
feature comes, and given situations result in a situation when you miss a (or more)
turn(s): your driving license is taken. For a moment we might become uncertain if
we thought to ‘walking’ and ‘going by car’ as actions that we do anyway, that is,
are not defined by these rules. Sure, we can do these: in our home or at our land,
we can walk and use our car in any way we would like to, but the whole system of
public road use is defined by these rules. In Hungary, traffic rules are contained in
the 1/1975 (II.5.) joint decree of Minister of Traffic and Minister of Internal Affairs
on public road traffic rules, and this statute—not like others—does not contain any-
thing about the consequences of infringing the rules it sets. In Roman law this was
called ‘lex imperfecta’: a law imposing no consequence on its breaching cannot fulfil
its role, it is not a proper law. It of course does not mean that in Hungary, breach-
ing traffic rules have no consequences: it has, but these consequences are handled in
another law (mostly in the Act on misdemeanors). This structure strengthens the
feeling that the traffic rules are just a specific set of rules of a game—the game called
public road use.

But we should be cautious with this conclusion. This constitutive rules approach
of law has an unwanted consequence: as it has been already referred above, consti-
tutive rules have a definition in [30] according to which if we do not follow these
rules, we do not engage with the action itself. But having said that, with breaching
the traffic rules, we getting out of the scope of the given law (in case of KRESZ the
decree above)—but then what serves as a basis to the policeman to impose a fine?
Paying money is something that has nothing to do with the “game rules”: we work,
earn and spend money independently from the public road use, the word ‘money’
does not even appear in the text of the decree. It’s clearly something that is out of
the frame imposed by the traffic rules, we are still exposed to it by breaching them.
It is because the system of law is not something discerptible from our life like football
or chess is. It provides the structure of our life and—especially—our society in many
ways, so thinking about its rules as merely constitutive rules just because there are
institutions created by it comes with a controversial consequence. I don’t claim that
constitutive rules as such make no sense in law: they do—especially the approach
we find in [32] about constitutive rules as a manageable and effective technique of
presentation of a system of norms as we can connect a set of concrete circumstances
to a set of legal consequences by them. But there are always legal consequences.

957

Markovich

6 Conclusion

Pursuing extracting norms from legislative text is a reasonable task, just like the
presupposition that it can be conducted. As we saw, at least in the Hungarian leg-
islation, there are challenging examples of identifying and extracting the deontic
character of the legal norms we would like to have in our knowledge base systems,
especially if we would like to use (semi-)automatized methods. This task becomes
even more challenging with that, as I argued, it is not reasonable to take isomor-
phism as a general requirement that should be met, as it not always can be met,
even in the case of well structured legislative texts. The strength of this conclusion,
of course, might vary according to the goal pursued by the formal representation,
but in the case of extracting norms in a way it serves a legal knowledge base which
faithfully represents the law and, at the same time, which might be subject of nor-
mative reasoning helping for example compliance of agents, being faithful probably
won’t (cannot be) be equal with insisting isomorphism—even in the case of well
structured norms. This good structure, though—having a labelled section providing
the agents for instance—gives the opportunity to have another requirement some-
what looser than isomorphism, the algorithmizable correspondence using solutions
like annotating the knowledge base slots with the locution in the source (legislative)
text. Clusters of different—more specific—technical solutions might be developed ac-
cording (and corresponding) to different legislative techniques. I also argued in this
paper that leaning on constitutive norms—especially in their Rawlsian definition—
when formalizing law brings very problematic result as breaching a rule would end
up in getting out of the scope of the law, that is, per definitionem not being liable
for breaching it.

References

[1] Alan Ross Anderson. A reduction of deontic logic to alethic modal logic. Mind,
67(265):100–103, 1958.

[2] Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke,
and Adam Wyner. Oasis legalruleml. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Law, ICAIL ’13, pages 3–12, New York, NY,
USA, 2013. ACM.

[3] Cesare Bartolini, Andra Giurgiu, Gabriele Lenzini, and Livio Robaldo. Towards legal
compliance by correlating standards and laws with a semi-automated methodology. In
BNCAI, volume 765 of Communications in Computer and Information Science, pages
47–62. Springer, 2016.

958

Two Limitations

[4] Trevor J. M. Bench-Capon. Deep models, normative reasoning and legal expert systems.
In Proceedings of the Second International Conference on Artificial Intelligence and
Law, ICAIL ’89, Vancouver, BC, Canada, June 13-16, 1989, pages 37–45, 1989.

[5] Trevor J. M. Bench-Capon and Frans Coenen. Isomorphism and legal knowledge based
systems. Artif. Intell. Law, 1(1):65–86, 1992.

[6] Trevor J. M. Bench-Capon and Thomas F. Gordon. Isomorphism and argumentation.
In The 12th International Conference on Artificial Intelligence and Law, Proceedings
of the Conference, June 8-12, 2009, Barcelona, Spain, pages 11–20, 2009.

[7] Robert W. Benson. The end of legalese: The game is over. New York University Review
of Law & Social Change, 13:519, 1985.

[8] Guido Boella, Luigi Di Caro, Michele Graziadei, Loredana Cupi, Carlo Emilio
Salaroglio, Llio Humphreys, Hristo Konstantinov, Kornel Marko, Livio Robaldo, Clau-
dio Ruffini, Kiril Simov, Andrea Violato, and Veli Stroetmann. Linking legal open data:
Breaking the accessibility and language barrier in european legislation and case law.
In Proceedings of the 15th International Conference on Artificial Intelligence and Law,
ICAIL ’15, pages 171–175, New York, NY, USA, 2015. ACM.

[9] Guido Boella, Luigi Di Caro, and Livio Robaldo. Semantic relation extraction from leg-
islative text using generalized syntactic dependencies and support vector machines. In
Proceedings of the 7th International Conference on Theory, Practice, and Applications
of Rules on the Web, RuleML’13, pages 218–225, Berlin, Heidelberg, 2013. Springer-
Verlag.

[10] P.W. Brouwer. Samenhang in Recht: een analytische studie. PhD thesis, University of
Twente, 6 1990.

[11] John J. Camilleri, Normunds Gruzitis, and Gerardo Schneider. Extracting formal mod-
els from normative texts. CoRR, abs/1706.04997, 2017.

[12] David Crump. Against plain english: The case for a functional approach to legal doc-
ument preparation. Rutgers Law Journal, 33:713, 2002.

[13] Emile de Maat and Radboud Winkels. A next step towards automated modelling
of sources of law. In Proceedings of the 12th International Conference on Artificial
Intelligence and Law, ICAIL ’09, pages 31–39, New York, NY, USA, 2009. ACM.

[14] Emile de Maat, Radboud Winkels, and Tom van Engers. Automated detection of
reference structures in law. In Proceedings of the 2006 Conference on Legal Knowledge
and Information Systems: JURIX 2006: The Nineteenth Annual Conference, pages 41–
50, Amsterdam, The Netherlands, The Netherlands, 2006. IOS Press.

[15] J. Garcia. Constitutive rules. Philosophia, 17(3):251–270, 1987.
[16] Anthony Giddens. The constitution of society : outline of the theory of structuration.

Social and political theory from Polity Press. Polity Press, Cambridge, 1984.
[17] T. F. Gordon. Oblog-2: A hybrid knowledge representation system for defeasible rea-

soning. In Proceedings of the 1st International Conference on Artificial Intelligence and
Law, ICAIL ’87, pages 231–239, New York, NY, USA, 1987. ACM.

[18] Pierre Jouvelot Hughes-Jehan Vibert and Benoit Pin. Legivoc—connectings laws in a

959

Markovich

changing world. Journal of Open Access to Law, 1(1), 2013.
[19] M. A. Jackson. Principles of Program Design. Academic Press, Inc., Orlando, FL,

USA, 1975.
[20] Peter Johnson and David Mead. Legislative knowledge base systems for public adminis-

tration: Some practical issues. In Proceedings of the Third International Conference on
Artificial Intelligence and Law, ICAIL ’91, Oxford, England, June 25-28, 1991, pages
108–117, 1991.

[21] Stig Kanger. New foundations of ethical theory. In Risto Hilpinen, editor, Deontic
Logic: Introductory and Systematic Readings, pages 36–58. D. Reidel, Dordrecht, 1971.

[22] Jorgen Karpf. Quality assurance of legal expert systems. In Proceedings of the Third
International Conference on "Logica, Informatica, Diritto", pages 411–440, 1989.

[23] Angelika Kratzer. Modality. In Arnim Stechow and Dieter Wundelrlich, editors, Hand-
book of Semantics, pages 639–650. de Gruyter, New York, 1991.

[24] Eerik Lagerspetz. The opposite mirrors : an essay on the conventionalist theory of
institutions. Law and philosophy library ; v. 22. Kluwer, Dordrecht ; Boston, 1995.

[25] Réka Markovich. Order of Norms and Deontic Modality. South American Journal of
Logic, 1:435?445, 2015.

[26] Réka Markovich, Gábor Hamp, and Syi. A kondicionálisok problémája jogsz-
abályszövegekben [Conditionals in legislative texts]. In Proceedings of Hungarian Nat-
ural Language Processing Conference 2014, pages 295–302, Szeged, 2014. University of
Szeged.

[27] Heikki Mattila. Comparative Legal Linguistics. Ashgate Publishing, Aldershot, 2006.
[28] David Mellinkoff. The Language of the Law. Resource Publications, Eugene, Oregon,

2004.
[29] Henry Prakken and Joost Schrickx. Isomorphic models for rules and exceptions in

legislation. In Legal knowledge based system JURIX 91: Model-based legal reasoning,
pages 17–27. The Foundation for Legal Knowledge System, 1991.

[30] John Rawls. Two concepts of rules. The Philosophical Review, 64, January 1955.
[31] L. Robaldo and X. Sun. Reified input/output logic: Combining input/output logic and

reification to represent norms coming from existing legislation. The Journal of Logic
and Computation, 7, 2017.

[32] Alf Ross. Tu-tu. Harvard Law Review, 70(5), March 1957.
[33] John R Searle. The construction of social reality. Penguin, London, 1996.
[34] M. J. Sergot, A. S. Kamble, and K. K. Bajaj. Indian central civil service pension rules:

A case study in logic programming applied to regulations. In Proceedings of the 3rd
International Conference on Artificial Intelligence and Law, ICAIL ’91, pages 118–127,
New York, NY, USA, 1991. ACM.

[35] Miklós Szabó, editor. A törvény szavai [Words of the Law]. Bíbor Kiadó, Miskolc, 2018.
[36] András Tamás. Legistica. Szent Istvn Társulat, Budapest, 2009.
[37] Peter M. Tiersma and Lawrence M. Solan. The Oxford Handbook of Language and Law.

960

Two Limitations

Oxford University Press, 2012.
[38] Luca Tummolini and Cristiano Castelfranchi. The cognitive and behavioral mediation

of institutions: Towards an account of institutional actions. Cognitive Systems Research,
7(2):307–323, 2006.

[39] Raimo Tuomela. The philosophy of social practices : a collective acceptance view. Cam-
bridge University Press, Cambridge, 2002.

[40] Judit Tóth. Jogalkotástan [The Lore of Legislation]. Corvinus University, Budapest,
2011.

[41] Robert W. van Kralingen, Pepijn R. S. Visser, Trevor J. M. Bench-Capon, and H. Jaap
van den Herik. A principled approach to developing legal knowledge systems. Int. J.
Hum.-Comput. Stud., 51(6):1127–1154, 1999.

[42] Radboud Winkels, editor. The OpenLaws project: Big Open Legal Data. Internationales
Rechtsinformatik Symposion IRIS 2015: 26.-28. Februar, Universität Salzburg, Wien:
Österreichische Computer Gesellschaft, 2015.

[43] G. H. von (Georg Henrik) Wright. Norm and Action : a Logical Enquiry. International
library of philosophy and scientific method. Routledge and Kegan Paul, London, 1963.

[44] Zsolt Ződi. The limits of plain legal language – understanding the comprehensible style
in law. International Journal of Law in Context, 15 (to appear), 2019.

Received 15 October 2018961

EFFICIENT FULL COMPLIANCE CHECKING OF

CONCURRENT COMPONENTS FOR BUSINESS PROCESS

MODELS

SILVANO COLOMBO TOSATTO

Data61, CSIRO
silvano.colombotosatto@data61.csiro.au

GUIDO GOVERNATORI

Data61, CSIRO
guido.governatori@data61.csiro.au

NICK VAN BEEST

Data61, CSIRO
nick.vanbeest@data61.csiro.au

FRANCESCO OLIVIERI

Data61, CSIRO
francesco.olivieri@data61.csiro.au

Abstract

Business process compliance checking is an NP-complete problem, due to con-
currency and different mutually exclusive execution paths. Although the complexity
of real life process models usually allows for a brute force approach, environments
with limited resources or computational power (like for instance blockchain environ-
ments) cannot rely on brute force approaches due to the computational complexity of
the problem. In this paper, we present an approach to efficiently check a subclass
of problems involving concurrent sub-processes. Our approach reduces the compu-
tational complexity of concurrent sub-processes from combinatorial to exponential.
We prove the correctness of the approach, we experimentally validate the results and
evaluate the scalability of the approach. We show that our approach is a significant im-
provement for highly concurrent processes and easily outperforms existing brute force
approaches.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

TOSATTO ET AL.

1 Introduction

One of the aspects related to legal reasoning concerns verifying whether a given behaviour
complies with a set of given regulations. These so-called Compliance Checking procedures
can be applied to sets of behaviours, like for instance a model describing the possible be-
haviours of an agent. The advantage of verifying models describing possible behaviours
is that it ensures that all behaviour allowed by the model is proven to be compliant with a
given set of regulations. This approach is also referred to as Compliance by Design [17],
as it ensures that a model contains, by design, only or at least some compliant behaviours.
Compliance by design is also known as forward compliance, referring to the techniques
focused on preventing compliance breaches, which differ from backward compliance, as
these techniques focus on identifying compliance breaches after they have happened.

Business Process Models are originally designed to formally represent the possible se-
quences of activities to be executed by an organisation to achieve a certain business goal.
In addition to their utility in a legal setting, where they can be used to automatically ver-
ify compliance breaches, these models can potentially be used to represent collections of
agent’s plans and be automatically verified with respect to some given constraints (as as
shown by Governatori and Rotolo [11]).

However, proving compliance by design of business process models is in general NP-
complete, as shown by Colombo Tosatto et al. [6]. Accordingly, no polynomial solutions
are possible for the general problem of proving compliance of business process models.
Most of the current solutions for the problem, like for instance Regorous [12], adopt a
brute force approach over the possible executions of a business process model to prove
its compliance. Despite the high theoretical complexity of the problem, solutions like the
aforementioned Regorous, still seem to offer practical solutions to some real life instances.
Nevertheless, in a number of cases the size of the problem grows enough to not be solvable
by brute force approaches, or in others, the environment may be providing only a limited
amount of computational resources, such as for instance a blockchain. As a result, a more
efficient use of these resources becomes desirable. Part of the complexity of the problem
lies in the process model structure, where even compact structures can potentially represent
an exponential number of possible executions. Within a business process model, certain
sequences of activities can be mutually exclusive, while other activities are concurrent.
Concurrency allows for a combinatorial number of possible execution orders of the activities
involved, as it considers all possible interleaving of the activities unrestricted by explicit
ordering constraints.

To address this issue, we propose an efficient algorithm to prove full compliance of
business process models with respect to a set of given regulations, by verifying whether
a counter-example exists. As such, we provide an approach to resolve compliance over
concurrent paths, such that the computational complexity of verifying compliance is re-

964

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

duced from combinatorial to exponential. To keep the theoretical complexity of the solution
tractable, we restrict the expressivity of the regulations being checked to literals and with no
compensations for eventual violations. Furthermore, we restrict our approach to structured
process models [26], as they allow to verify their soundness and correctness in polynomial
time with respect to the size of the model.

The remainder of the paper is structured as follows: Section 2 discusses the related
work. Section 3 introduces the classic regulatory compliance problem, and provides a high-
level overview of the proposed solution. Section 4 describes the process models and the
decomposition procedure. Section 5 describes the regulations and how ∆-constraints1 are
generated. Section 6 defines full compliance and how it can be proven through decomposed
processes and ∆-constraints. Section 7 empirically evaluates the approach against a set of
highly complex models. Finally, Section 8 concludes the paper.

2 Related Work

While the area of business process compliance received substantial research interest the past
decade (Hashmi et al. [17] identify over 180 research papers between 2000 and 2015 spe-
cific to business process regulatory compliance), the study of the computational complexity
properties (and solutions to reduce the search space) and whether the proposed techniques
offer practical solutions has been largely neglected.

For example, Pulvermüller et al. [27] directly verify temporal logic based specifications
on a process, without proper support for different branching options through gateways,
and Awad et al. [2] utilise a reduction technique, which results in an incomplete model.
Ramezani et al. [28] provide a set of generic compliance patterns, but do not offer the same
expressivity as other approaches using defeasible logic or even temporal logic.

Other approaches introduce a large amount of overhead in the state space of the model
encoding the process, which is often the result of ignoring the effect of encoding on the
internal state machine of the model checker (see e.g. Latvala and Heljanko [23], Bianculli
et al. [4], Kherbouche et al. [20], and Kheldoun et al. [19]). In particular, parallel branching
constructs may cause a state space explosion, which only few approaches have successfully
addressed. Some approaches, like the one proposed by Feja et al. [10] simply disregard par-
allel information entirely, such that full compliance cannot be ensured. Other approaches,
such as Liu et al. [24], do interleave parallel branches correctly, but interleave to such an
extent that concurrent executions are linearised entirely, resulting in a state explosion.

Another direction of research has focused on conformance checking, such as for in-
stance van der Aalst et al. [30], where they analyse techniques to verify whether executions

1We discuss the reasoning behind the name used for the alternative representation of the regulation in
Section 3.2.

965

TOSATTO ET AL.

actually belong to the allowed behaviour specified in the business process model. Confor-
mance checking is an orthogonal discipline when compared to compliance by design, as
the latter focuses on verifying properties of future executions of business process models,
while the former focuses on verifying properties of existing executions compared to their
corresponding process models. As such, an execution may be conformant (i.e. it matches
an allowed execution specified in the model), but not compliant (i.e. it violates a regula-
tion). Similarly, an execution can be non-conformant (i.e. its behaviour is not specified in
the model), but it is compliant (i.e. it does not violate any regulation).

Although solutions based on temporal logic benefit from the optimisation and efficiency
of modern model checkers (e.g. Awad et al. [3], Elgammal et al. [9], and Pesic et al. [25]),
such approaches do not address the reduction of the search space. Moreover Governatori
and Hashmi [13] show that given certain circumstances, like requiring compensatory obliga-
tions2 and permissions determining whether an obligation is in force, do not allow temporal
logic to soundly model regulatory requirements.

Some solutions have tried to address the complexity of the problem by reducing the
required search space. Groefsema et al. [16], for example, propose a solution using Kripke
structures to reduce the state explosion derived from concurrency components. However,
this approach first creates a full state space, followed by a reduction. In contrast, the ap-
proach presented in this paper does not require a subsequent reduction to be feasible for
model checking, as it directly allows for efficient compliance checking of concurrent pro-
cess constructs.

3 Regulatory Compliance Problem and Our Approach

In this section, we first introduce the classic regulatory compliance problem. Subsequently,
we introduce the idea behind the proposed approach in this paper. The formal details of
both the regulatory compliance problem and the approach are discussed later in the paper.

3.1 The Regulatory Compliance Problem

The regulatory compliance problem is concerned with verifying whether a business process
model is compliant with a given set of regulations. The problem contains two separate
components: the business process model, describing a set of possible executions capable of
achieving the business goal pursued by the model, and the set of regulations defining the
constraints that are required to be fulfilled by each execution in the model.

2A type of obligation that become in force in response to another obligation being violated, and its fulfil-
ment compensates the triggering violation.

966

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

Business Process Models

Business process models are formal representations capable of compactly representing mul-
tiple executions achieving a particular goal. In order to achieve their compactness, business
process models use coordinators ([29]) to specify that some of the executions in the model
have some parts in common, which the model needs to represent only once. These coordi-
nators are capable of representing e.g. mutually exclusive or concurrent paths of executions.
As such, they are based on the semantics of exclusive and parallel gateways as defined in
BPMN 2.0, with the restriction of structuredness as described in Definition 2.

The coordinators allow to compactly represent multiple distinct executions within a
single business process model. More precisely, a business process model can potentially
contain a combinatorial number of executions with respect to the elements composing it.
As a result, brute force approaches are potentially impractical as they require the generation
and analysis of each possible execution contained within a model.

Regulations

The second component of a regulatory compliance problem concerns the regulations defin-
ing the regulatory requirements. These regulations determine which obligations are required
to be fulfilled in each possible execution in the business process model.

Given an execution of a business process model and a regulation, the regulation defines
a triggering condition, which (if satisfied by the execution) sets an obligation in force that
is then required to be fulfilled. Additionally, the regulation also determines a deadline
condition, expressing that when the obligation is in force, it must be fulfilled before or
until the execution satisfies the deadline. This is illustrated graphically in Figure 1. We can
consider an execution to be a sequence of activities each occurring at a distinct point in time.
The interval between the point in time satisfying the triggering condition of a regulation and
the point in time satisfying the corresponding deadline determines the in force interval of
an obligation.

Execution:

Trigger Deadline

Obligation in force

Figure 1: Obligation in force

We consider two types of obligations, achievement and maintenance, each of which
having different properties [6]:

967

TOSATTO ET AL.

Achievement When this type of obligation is in force, the fulfilment condition specified by
the regulation must be satisfied by the execution in at least one point in time before
the deadline is satisfied. When this is the case, the obligation in force is considered
to be satisfied, otherwise it is violated.

Maintenance When this type of obligation is in force, the fulfilment condition must be
satisfied continuously until the deadline is satisfied. Again, if this is the case, the
obligation in force is then satisfied, otherwise it is violated.

Types of Compliance

Given an execution and a regulation, if each in force interval determined by the obligation
is satisfied by the regulation, then we can say that this particular execution complies with
the regulation. Similarly, when considering a set of regulations instead of a single one,
an execution is considered to comply with the set, if and only if it satisfied every in force
interval of the obligations determined by the set of regulations.

However, when verifying whether a business process model is compliant with respect
to a set of regulations, different types of compliance can be considered. A business process
model can be either, fully compliant, partially compliant, or not compliant with respect
to a set of regulations. This distinction between the different levels of business process
compliance have been already introduced by Governatori and Rotolo [15].

Fully Compliant A business process model is considered fully compliant, if and only if
each of its possible executions complies with the set of regulations.

Partially Compliant A business process model is considered partially compliant, if and
only if there exists an execution of the business process model that complies with the
set of regulations.

Not Compliant A business process model is considered not compliant, if and only if none
of its possible execution complies with the set of regulations.

3.2 Approach Overview

We now provide an overview of the solution proposed in this paper. First, the solution
focuses on proving whether a business process model is fully compliant with respect to a
given set of regulations.

As we formally define in Section 4, mutual exclusion coordinators in a business pro-
cess model are also referred to as XOR Blocks. Our proposed approach verifies whether

968

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

Process Model

decompose

Decomposed
XOR-free

Process Model

Decomposed
XOR-free

Process Model
∆-constraint

check
∆-constraint

check

Sub-result Sub-result

Compliance
Result

Figure 2: Approach Overview.

a business process model is compliant with a set of regulations as follows: first, it de-
composes the full business process model into a set of XOR-free Process Models3, which
maintain the expressivity of the original process. That is, the set of executions available in
the original process is the same as the sum of the executions of the set of XOR-free Pro-
cess Models. Second, we represent the set of regulations as ∆-constraints, allowing us to
verify whether an XOR-free Process Model violates a given regulation. This allows us to
prove full compliance for the verified process in case a violation is not found. We adopt
the name ∆-constraint to refer to the alternative representation of the regulations, as the new
representation focuses on the differences between subsequent process states introduced by
the execution of tasks (as described in Definition 8, and updated in accordance to the an-
notation of a task being executed as described in Definition 9), which can be understood as
the ∆ between such process states. Finally, the compliance results relative to the XOR-free
Process Models are aggregated, in order to decide whether the original business process
model is fully compliant with the given regulations. The procedure is graphically illustrated
in Figure 2.

4 Business Process Models and Decomposition

In this section, we first introduce the formal syntax and semantics of business process mod-
els. Before introducing the decomposition procedure, we briefly discuss how the structural

3A set of process models not containing mutual exclusion coordinators.

969

TOSATTO ET AL.

components of a business process model contribute to the computational complexity of the
problem. Finally, we define the decomposition procedure transforming a generic process
model in a set of process models free of mutually exclusive choices, such that they can be
handled by the solution proposed in this paper.

There exist multiple mainstream business process modelling notations, which include
(among others) BPMN, EPC, and Petri nets. The mapping between these different for-
malisms has been extensively studied and described [31, 8, 22]. Although each of these
graph-oriented formalisms allows to model structured business processes, they require a
formal definition of the restriction to structured processes on top of the definition of the re-
spective modelling notation itself. Therefore, we adopted a formal description that captures
the structured nature of the business process by design, in order to provide a shorter and
more intuitive notation throughout the remainder of this paper.

4.1 Business Process Models

We focus on a particular subclass of processes: Structured Business Processes, which are a
class of processes similar to the structured workflows defined by Kiepuszewski et al. [21].
These processes are defined as a recursive nesting of their components, where each nesting
structure is defined as a process block, as well as the process itself and its atomic compo-
nents, the tasks.

The models used in the sub-problem are both structured and acyclic, such that each
execution in the process model is guaranteed to terminate.

Definition 1 (Process Block). A process block B is a directed graph: the nodes are called
elements and the directed edges are called arcs. The set of elements of a process block are
identified by the function V (B) and the set of arcs by the function E(B). The set of elements
is composed of tasks and coordinators. The coordinators are of 4 types: and_split, and_join,
xor_split and xor_join. Each process block B has two distinguished nodes called the initial
and final element. The initial element has no incoming arc from other elements in B and is
denoted by b(B). Similarly the final element has no outgoing arcs to other elements in B
and is denoted by f (B).

A directed graph composing a process block is defined inductively as follows:

• A single task constitutes a process block. The task is both initial and final element of
the block.

• Let B1, . . . ,Bn be distinct process blocks with n > 1:

– SEQ(B1, . . . ,Bn) denotes the process block with node set
⋃n

i=0V (Bi) and edge
set
⋃n

i=0(E(Bi)∪{(f (Bi),b(Bi+1)) : 1≤ i < n}).
The initial element of SEQ(B1, . . . ,Bn) is b(B1) and its final element is f (Bn).

970

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

– XOR(B1, . . . ,Bn) denotes the block with vertex set
⋃n

i=0V (Bi)∪{xsplit,xjoin}
and edge set

⋃n
i=0(E(Bi)∪ {(xsplit,b(Bi)),(f (Bi),xjoin) : 1 ≤ i ≤ n}) where

xsplit and xjoin respectively denote an xor_split coordinator and an xor_join
coordinator, respectively. The initial element of XOR(B1, . . . ,Bn) is xsplit and
its final element is xjoin.

– AND(B1, . . . ,Bn) denotes the block with vertex set
⋃n

i=0V (Bi)∪{asplit,ajoin}
and edge set

⋃n
i=0(E(Bi)∪ {(asplit,b(Bi)),(f (Bi),ajoin) : 1 ≤ i ≤ n}) where

asplit and ajoin denote an and_split and an and_join coordinator, respectively.
The initial element of AND(B1, . . . ,Bn) is asplit and its final element is ajoin.

By enclosing a process block as defined in Definition 1 along with a start and end task
in a sequence block, we obtain a structured process model.

Definition 2 (Structured Process Model). A structured process model P is a directed graph
composed of a process block B called the main process block. The process P is represented
as a sequence block, as follows: SEQ(start,B,end), where the vertex set of P is V (P) =
V (B)∪{start;end} and its edge set is E(P) = E(B) ∪ {(start, b(B)), (f (B), end)}. The
initial element of a structured process model is the pseudo-task start and its final element is
the pseudo-task end.

Example 1 (Structured Process Model). Fig. 3 shows a structured business process contain-
ing four tasks labelled t1, t2, t3, t4. The structured process contains an XOR block delimited
by the xor_split and the xor_join. The XOR block contains the tasks t1 and t2. The XOR
block is itself nested inside an AND block with the task t3. The AND block is preceded by
the start and followed by task t4 which in turn is followed by the end task.

t1

t2

t3

t4

Figure 3: Example of a structured business process.

Considering the structured process in Figure 3 as a sequence block, it can be repre-
sented as follows:

P = SEQ(start,AND(XOR(t1, t2), t3), t4,end)

.
Note that for the process model P, SEQ(AND(XOR(t1, t2), t3), t4) represents the main

process block. The external sequence block of B is absorbed by the sequence block of
process model itself, resulting in the final representation.

971

TOSATTO ET AL.

Business Process Executions

In a structured process model, a valid execution identifies a path from the pseudo-task start
to the pseudo-task end, and follows the semantics of the traversed coordinators. An execu-
tion is represented as a sequence of a subset of the tasks belonging to the process.

The possible executions allowed by a process model can be represented using partially
ordered sets, where the ordering constraints represent the structure of the model. Thus a
linear order of tasks following the partially ordered set ordering constraints represents a
valid execution.

Definition 3 (Partially Ordered Set). A partially ordered set P = (S ,≺s) is a tuple where
S is a set of elements and≺s is a set of ordering relations between two elements of S such
that ≺s⊆S ×S and for which transitivity and antisymmetry4 hold.

Let P1 = (S1,≺s1) and P2 = (S2,≺s2) be partially ordered sets, we define the following
four operations:

• Union: P1∪P P2 = (S1∪S2,≺s1 ∪ ≺s2), where ∪ is the disjoint union.

• Concatenation: P1 +P P2 = (S1∪S2,≺s1 ∪ ≺s2 ∪{s1 ≺ s2|s1 ∈S1 and s2 ∈S2}).

• Linear Extensions: I (P1) = {(S ,≺s)|S = S1,(S , ≺s) is a totally ordered se-
quence and ≺s1 ⊆ ≺s}.

The associative property holds for Union, and Concatenation.

A serialisation of a process block is a totally ordered sequence of a subset of the tasks.
The sequence must follow the semantics of the coordinators contained in the block, and start
with the block initial element and finish with its final element. Notice that the definition of
serialisation is given as a byproduct of Definition 4.

Definition 4 (Process Block Serialisations). Given a process block B, the set of seriali-
sations of B, written Σ(B) = {ε|ε is a serialisation of B}. The function Σ(B) is defined as
follows:

1. If B is a task t, then Σ(B) = {({t}, /0)}

2. if B is a composite block with sub-blocks B1, . . . ,Bn let εi be the projection of ε on
block Bi (obtained by ignoring all tasks which do not belong to Bi)

(a) If B = SEQ(B1, . . . ,Bn), then Σ(B) = {ε1 +P · · ·+P εn|εi ∈ Σ(Bi)}
(b) If B = XOR(B1, . . . ,Bn), then Σ(B) = Σ(B1)∪·· ·∪Σ(Bn)

4Antisymmetry: if a≺s b and b≺s a, then a = b.

972

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

(c) If B = AND(B1, . . . ,Bn), then Σ(B) = {ε|ε ∈I (ε1∪P · · ·∪P εn|∀εi ∈ Σ(Bi))}.

A serialisation of a process model corresponds to one of its executions, hence the set of
serialisations of a business process model corresponds to the set of possible executions of
the model itself.

Definition 5 (Execution). Given a structured process P whose main process block is B, an
execution of P corresponds to a serialisation of B including the pseudo-tasks start and end.

Σ(P) = {Pstart +P ε +P Pend|ε ∈ Σ(B)}

Example 2 (Execution). Consider a business process model P, like the one shown in Ex-
ample 1:

P = SEQ(start,AND(XOR(t1, t2), t3), t4,end)

The corresponding possible executions of P, Σ(P), are as follows:

ε1 : start, t1, t3, t4,end,

ε2 : start, t3, t1, t4,end,

ε3 : start, t2, t3, t4,end,

ε4 : start, t3, t2, t4,end

Annotations

The state of a process is represented using a set of literals. We assume that executing a task
can alter the state of the process, represented using annotations, as described by Governatori
et al. [14]. The state consists of sets of literals associated to the tasks, where a literal is
either an atomic proposition or its negation. A task’s annotation describes the changes in
the process state when the associated task is executed.

Both the state of a process and the annotations of the tasks are represented by sets of
literals, which are required to be consistent.

Definition 6 (Consistent literal set). A set of literals L is consistent if and only if it does not
contain both l and ¬l.

An annotated process is a process whose tasks are associated with consistent sets of
literals.

973

TOSATTO ET AL.

t1

t2

t3

t4
¬c ¬t ¬d

c

t

d

Figure 4: Example of an annotated business process.

Definition 7 (Annotated process). Let P be a structured process and let T be the set of
tasks in P. An annotated process is a pair: (P,ann), where ann is a function associating a
consistent set of literals ann : T 7→ L to each task in T .

Definition 8 (State). Let ti be a task, and L is a consistent literal set. A state is a tuple
σ = (ti,L), and represents the state holding after executing ti.

The state of a process is updated by each task’s execution through an update operator.
This operator is inspired by the AGM belief revision operator [1].

Definition 9 (Literal set update). Let l be the complementary literal as follows:

• l = ¬α if l = α

• l = α if l = ¬α

Given two consistent sets of literals L1 and L2, the update of L1 with L2 (denoted by
L1⊕L2) is a set of literals defined as follows:

L1⊕L2 = L1 \{l | l ∈ L2}∪L2

Finally, a trace represents the evolution of the state of a process during one of its exe-
cutions.

Definition 10 (Trace). Given an annotated process (P,ann) and an execution sequence
ε = (t1, . . . , tn) such that ε ∈ Σ(P), a trace θ is a finite sequence of states: (σ1, . . . ,σn).
Each state of σi ∈ θ contains a set of literals Li capturing what holds after the execution of
a task ti. Each Li is a set of literals such that:

1. L1 = ann(t1);

2. Li+1 = Li⊕ann(ti+1), for 1≤ i < n.

We use Θ(B,ann) to denote the set of possible traces resulting from an annotated pro-
cess block (B,ann), where B is a process block and ann is an annotation function.

974

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

Example 3 (Trace). Consider the annotated structured process in Figure 4, containing the
following annotations:

start : {¬c,¬t,¬d}

t1 : {c}

t3 : {t}

end : {d}

The following traces correspond to the executions of P, as illustrated in Example 2, written
Θ(P):

θ1 : (start;¬c,¬t,¬d),(t1;c,¬t,¬d),(t3;c, t,¬d),(t4;c, t,¬d),(end;c, t,d),

θ2 : (start;¬c,¬t,¬d),(t3;¬c, t,¬d),(t1;c, t,¬d),(t4;c, t,¬d),(end;c, t,d),

θ3 : (start;¬c,¬t,¬d),(t2;¬c,¬t,¬d),(t3;¬c, t,¬d),(t4;¬c, t,¬d),(end;¬c, t,d),

θ4 : (start;¬c,¬t,¬d),(t3;¬c, t,¬d),(t2;¬c, t,¬d),(t4;¬c, t,¬d),(end;¬c, t,d)

4.2 On the Computational Complexity

Colombo Tosatto et al. [6] have shown that the problem of proving whether a business
process model complies with a given set of regulations is an NP-complete problem, when
structured business process models containing both concurrent components and mutually
exclusive ones are used, and the regulations are expressed using literals. The structural
components of business process models contribute to the computational complexity of the
problem. In particular, two major contributors can be identified: XOR and AND process
blocks, each of which will be discussed below.

XOR Blocks

XOR blocks contribute to the computational complexity of the problem by allowing the
representation of multiple possible executions within a single business process model.

An XOR block allows us to represent possible branches in the executions within a
model. The branching factor in an XOR block, represented by the sub-blocks contained,
determines the amount of different possible executions obtainable by executing the block,
as described in Definition 5.

A single XOR block does not substantially contribute to the computationally complexity
of the problem, as it increases the amount of execution available within the model by the

975

TOSATTO ET AL.

number of sub-blocks contained. However, nesting XOR blocks does increase the number
of possible executions, as it is no longer polynomial with respect to the business process
structure. Let n be the number of sub-blocks in an XOR block and l be the nesting level.
Then the amount of possible executions in the worst case scenario, where each branch of an
XOR block contains a nested XOR block with n branches, up to a nesting level l, is:

nl

In general, when the branching factor of properly nested XOR blocks is not constant
and not every branch necessarily nests another XOR block, then the number of possible
executions deriving from this structure is calculated by counting the number of branches in
the structure not containing a nested XOR block.

Example 4. Considering the business process model illustrated in Figure 5. The model
contains 3 XOR blocks nested within 2 levels, and each block contains 2 branches. Given
the structure, we can then calculate the number of possible executions of the model, which
is 22 = 4.

t1

t2

t3

t4

t5

t6

Figure 5: Executions in a model containing nested XOR blocks.

In constrast, when multiple XOR blocks are used sequentially, the amount of possible
executions becomes exponential with respect to the number of XOR blocks. Let n be the
number of sub blocks in an XOR block and k the number of XOR blocks. Then in the worst
case scenario, where each block has the same branching factor, the number of possible
executions in a business process model is:

nk

Note that in the general case, where the number of branches in the different XOR blocks
of a model is not the same, assuming that k is the number of XOR blocks in the model and
ni is the number of branches in the block i for some 1≤ i≤ k, the number of executions in
the model is calculated as follows:

k

∑
i=1

(ni)

976

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

Example 5. Consider the business process model illustrated in Figure 6. The model con-
tains 2 XOR blocks with 2 branches each. Given the structure, we can then calculate the
number of possible executions of the model, which is 22 = 4.

t1

t2

t3

t4

Figure 6: Executions in a model containing sequential XOR blocks.

Given the amount of possible executions with respect to the size of the model in the
worst case scenario, a brute force analysis of each execution is theoretically intractable. In
other words, it means that the time required to find a solution would exponentially increase
with the size of the problem, hence practically making big enough problems unsolvable
using brute force approaches.

AND Blocks

Similar to XOR blocks, AND blocks contribute to the computational complexity by allowing
a compact representation of multiple different possible executions within a single business
process model.

Contrary to XOR blocks, however, the positioning of AND blocks in the model does
not strongly influence the amount of possible executions available in the business process
model. Let k be the number of AND blocks, n the number of branches in an AND block,
and m the length of the branches of the block in term of executable tasks. The amount of
possible executions in a business process model is combinatorial with respect to the model
structure:

(
(n×m)!
(m!)n

)k

In the general case, where ni is the number of branches of the block i for 1≤ i≤ k, and
mi j is the length of the jth branch of block i for 1 ≤ j ≤ ni, the number of executions in a
business process model with k AND blocks is calculated as follows:

k

∏
i=1

(
(∑ni

j=1(mi j))!

∏ni
j=1(mi j !)

)

Example 6. Consider the business process model illustrated in Figure 7. The model con-
tains a single AND block with 3 branches of size 2 each. Given the structure, we can then

977

TOSATTO ET AL.

calculate the number of possible executions of the model, which is (2+2+2)!
(2!)3 = 90. However,

if we increase the length of each branch by 1 (adding only 3 activities in total), the number
of possible executions of the model is (3+3+3)!

(3!)3 = 1680.

t1 t2

t3 t4

t5 t6

Figure 7: Executions in a model containing AND blocks.

Note that, as this brief analysis suggests, AND blocks contribute more heavily to the
computational complexity of the problem than XOR blocks.

Complexity of Real-life Business Process Models

Consider for example the SAP R/3 collection of business process models, used by SAP to
customize their R/3 ERP product as documented in [7]. As shown in Table 1, the structural
complexity is reasonable with the most complex model having 86 activities and 6 AND
splits. However, even when selecting the set of sound workflow models, the complexity
in terms of total possible executions can grow as large as 1.76 · 1010. This shows that the
incentive for a more efficient algorithm is not just academic, but a necessity imposed by
real-life model complexities.

Metric Min Max Mean
Activities 3 86 15.98
XOR splits 0 6 0.64
Outdegree XOR 2 9 2.73
AND splits 0 6 1.14
Outdegree AND 2 18 3.14

Table 1: Statistics on SAP R/3 model complexity.

4.3 Process Model Decomposition.

A business process model can be decomposed by splitting each of the XOR blocks within
the process representation in n different processes, where n corresponds to the branches in
the XOR block and each of the new processes contains exactly one of the branches. This
procedure is recursively applied until no XOR blocks are left.

978

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

The decomposition can potentially lead to an exponential number of decomposed pro-
cesses, as can be inferred from the contribution of the XOR components to the compu-
tational complexity. However, the presence of AND blocks still allows a combinatorial
amount of possible executions within the decomposed models. Therefore, a solution is re-
quired to prevent analysis of each possible execution to verify the regulatory compliance of
the model.

Example 7 (Decomposition). Consider the business process model described in Example 1:

P = SEQ(start,AND(XOR(t1, t2), t3), t4,end)

Given that P contains a single XOR block with 2 branches, application of the decompo-
sition procedure leads to the following decomposed processes:

1. P′ = SEQ(start,AND(t1, t3), t4,end)

2. P′′ = SEQ(start,AND(t2, t3), t4,end)

A process block serialisation (cf. Definition 4) is constructed through partially ordered
sets operations depending on the type of process blocks, as described in Definition 3. Sub-
sequently, a decomposed process can be represented as a partially ordered set by a recursive
transformation closely following Definition 4, as reported in Definition 11 below:

Definition 11 (Decomposed Process as Partially Ordered Set). A decomposed process P
can be represented as a partially ordered set by applying the following recursive procedure,
P(B), to each of its process blocks in (B):

1. If B is a task t, then P(B) = {({t}, /0)}

2. if B is a composite block with subblocks B1, . . . ,Bn:

(a) If B = SEQ(B1, . . . ,Bn), then P(B) = {P(B1)+P · · ·+P P(Bn)}
(b) If B = AND(B1, . . . ,Bn), then P(B) = {P(B1)∪P · · ·∪P P(Bn)}.

Example 8 (Decomposed Partially Ordered Sets). Given the two decomposed processes
from Example 7:

1. P′ = SEQ(start,AND(t1, t3), t4,end)

2. P′′ = SEQ(start,AND(t2, t3), t4,end)

The corresponding partially ordered sets for the two decomposed processes are the
following:

979

TOSATTO ET AL.

1. P(P′) = ({start, t1, t3, t4,end},{start≺ t1,start≺ t3, t1 ≺ t4, t3 ≺ t4, t4 ≺ end})

2. P(P′′) = ({start, t2, t3, t4,end},{start≺ t2,start≺ t3, t2 ≺ t4, t3 ≺ t4, t4 ≺ end})

Each decomposed process contains the possible executions given the same choices in
the XOR blocks, and the execution set of a decomposed process is disjoint from any other
decomposed process obtained. The union of the execution sets of the decomposed processes
is exactly the execution set of the original process model.

5 Regulations and ∆-Constraints

In this section, we introduce the regulations that the process model must fulfil, along with
an alternative representation of the regulations used by our solution which we refer to as
∆-constraints.

5.1 Regulations

The regulations are defined as conditional obligations. This kind of obligations consists
of three conditions: a trigger defining when the obligation becomes in force, a deadline
defining when its in force period terminates, and a condition defining the requirement in the
in force period.

A conditional obligation can be either of the achievement or maintenance type, as rep-
resented in Definition 12 by o ∈ {a,m} respectively. The notion of achievement and main-
tenance obligations are inspired by the notion of achievement and maintenance goals in-
troduced by Cohen and Levesque [5], while the full semantics of such notions have been
discussed by Hashmi et al. [18].

Definition 12 (Conditional Obligation). A local obligation ω is a tuple 〈o,c, t,d〉, where
o ∈ {a,m} represents the type of the obligation. The elements c, t and d are propositional
literals in L . c is the condition of the obligation, t is the trigger of the obligation and d is
the deadline of the obligation.

We use the notation ω = Oo〈c, t,d〉 to represent a conditional obligation.

Definition 13. Given an obligation Oo〈c, t,d〉, the annotation of start is assumed to contain
the negation of each literal in the obligation tuple. The annotation of end is assumed to
contain the literal referring to the deadline.

Definition 13 provides an initial process state where none of the literals defining an
obligation hold. In addition, it ensures that the in force interval of an obligation always
terminates when the process execution ends. Note that obligations are evaluated one at a
time, hence the annotation of start and end depends on the obligation being evaluated.

980

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

Limiting the Expressivity to Literals

Given our goal to reduce the computational complexity of solving sub-problems of verifying
the compliance of business process models, we limit the expressivity of the obligations
defining the requirements to simple propositional literals instead of propositional formulae.
As we discuss later in Section 6, our solution manages to provide a more efficient solution
for the sub-problem considered by avoiding to explicitly analyse each possible execution of
a business process model, which would otherwise lead to a search state explosion.

The advantage of limiting the expressivity of the obligations by including only proposi-
tional literals allows to directly associate the interaction between the obligation’s elements
to tasks in the business process model. This implies that executing one of such tasks would
immediately satisfy one of the elements of the obligation, like the condition, trigger or
deadline.

Such direct association would not be possible if these elements in the obligations were
to be expressed using propositional formulae. In that case, the satisfaction of an obliga-
tion’s element can be potentially influenced by a combination of tasks being executed. For
instance, assuming that the trigger of an obligation to be the formula α ∧β , its satisfaction
can be achieved by executing two tasks, one introducing α in the process state, and another
introducing β . Moreover, we would also need to track whether no other tasks are executed
between those and removing such literals from the process state, which would not lead to
the satisfaction of the formula when the second task would be executed. The complication
brought by allowing formulae in the obligation’s elements would require knowing the exact
execution order of the tasks in order to determine whether an obligation is fulfilled. Fur-
thermore, this would be required for each possible execution order of the business process
model, which potentially leads to a intractability problem, as the number of executions of a
business process model is in general combinatorial with respect to the number of elements
composing the model.

Fulfilling Obligations

Before proceeding with the formal introduction of the different obligations, we first intro-
duce two syntactical shorthands to keep the subsequent definitions more compact.

Definition 14 (Syntax Shorthands). To avoid cluttering, we adopt the following shorthands:

• σ ∈ θ such that σ |= l is abbreviated as: σl

• A task-state pair appearing in a trace: (t,σ) such that l ∈ ann(t), is abbreviated as:
contain(l,σ)

Note that an in force interval instance of an obligation, having l as trigger, is always
started from a state σ , where contain(l,σ) is true. Therefore, multiple in force intervals

981

TOSATTO ET AL.

of an obligation can co-exist at the same time. However, multiple in force intervals can be
fulfilled by a single event happening in a trace, as shown in the following definitions.

An achievement obligation is fulfilled by a trace if the fulfilment condition holds at least
in one of the trace states when the obligation is in force.

Definition 15 (Comply with Achievement). Given an achievement obligation Oa 〈c, t, d〉
and a trace θ , θ is compliant with Oa〈c, t,d〉 if and only if: ∀σt , ∃σc|contain(t,σt) and σt �
σc and ¬∃σd |σt � σd ≺ σc.

A maintenance obligation, on the other hand, is fulfilled if the condition holds in each
of the states where the obligation is in force.

Definition 16 (Comply with Maintenance). Given a maintenance obligation Om 〈c, t, d〉
and a trace θ , θ is compliant with Om〈c, t,d〉 if and only if: ∀σt , ∃σd |contain(t,σt) and
σt � σd and ∀σ |σt � σ � σd ,c ∈ σ .

The two types of obligations considered in this paper allow to represent a variety of obli-
gations existing in real world scenarios, like e.g requirements to achieve a certain condition
before a deadline, or maintaining a condition for a period of time. We do not claim that
the formalism adopted is sufficient to capture each possible requirement behaviour in real
world scenarios, such as for example an obligation whose applicability condition is related
to another obligation. In this paper, we do not consider these more complex behaviours,
as the additional behavioural complexity would require to explicitly analyse each possible
execution of a business process model in order to verify its compliance state.

5.2 On the Computational Complexity

Previously, we have discussed how the structural components of a business process model
contribute to the computational complexity of the problem of proving regulatory compli-
ance of business process models. In this subsection, we briefly discuss the impact of the
regulatory requirements on the computational complexity of the problem.

Regulatory Complexity

The amount of expressivity allowed into describing the regulatory requirements to be ver-
ified directly influences the computational complexity of the problem. The use of logical
formulae to represent the components of the regulatory requirements significantly influ-
ences the difficulty of finding a solution. As the components of the regulatory requirements
need to be checked against the process state, the use of logical formulae to represent such
components requires the exact execution history leading to a particular state, as any differ-
ence in the execution order can potentially lead to a different state and, hence, a differently
evaluated formula.

982

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

However, relying on literals to represent the components of a regulations lifts the re-
quirement of having to know the exact execution history. As a consequence, the verification
can potentially be performed over the structure of the business process model, instead of the
full list of possible executions.

In this paper, we adopt regulatory requirements restricted to be represented using lit-
erals instead of formulae, which allows to focus on the structural components contributing
to the computational complexity of the problem. Despite the simplified regulatory require-
ments, however, Colombo Tosatto et al. [6] have shown that proving partial compliance5 of
a business process model against a set of regulatory requirements is still an NP-complete
problem.

5.3 Translating the Obligations

Instead of checking all subsequent literals over each possible path in the process to ensure
full compliance, we propose to verify whether a trace violates a given achievement obliga-
tion. The main advantage is that the conditions can then be verified directly on the process
model, so that it is no longer required to generate and analyse all possible traces. The failure
condition for achievement obligations is equivalent to the complement of Definition 15, as
shown formally below:

Definition 17 (Achievement Failure). Given an achievement obligation Oa〈c, t,d〉 and a
trace θ , θ is not compliant with Oa〈c, t,d〉 if and only if: ∃σt , σd |contain(t,σt) and σt �
σd and ¬∃σc|σt � σc � σd .

In order to compare the failure conditions and the business process model, we need
to standardise the two representations. As such, we transform the failure conditions into
so-called ∆-constraints, referring to the state update requirements ensuring that a given
obligation is violated when such constraints are met. Therefore, ∆-constraints only require
to prove the existence of a trace failing the fulfilment requirements, instead of proving that
each possible trace fulfils them.

Translation for Achievement

The following definition translates Definition 17 into its ∆-constraints representation, de-
scribing the required order of state updates proving that a process model contains an execu-
tion violating the given obligation. For convenience, we use tl to denote a task t such that
l ∈ ann(t).

5Proving partial compliance requires to prove that a business process model contains at least one execution
that is compliant with a set of regulatory requirements.

983

TOSATTO ET AL.

Definition 18 (Achievement Failure ∆-constraints). Given an achievement obligation
Oa〈c, t,d〉 and an execution ε , ε is not compliant with Oa〈c, t,d〉, if and only if one of the
following conditions is satisfied:

1. ∃tt such that:

∃t¬c, td |t¬c � tt � td and

¬∃tc|t¬c � tc � td and

∃t¬d ,¬∃td |t¬d � td � tt

2. ∃tt such that:

∃t¬c,¬∃tc|t¬c � tc � tt and

∃td ,¬∃t¬d |td � t¬d � tt

t
¬d

¬c d
c

d
6

6

66

t
d

¬c

¬d

c

6
6

6
6

A∆1 constraints A∆2 constraints
Figure 8: Achievement constraints

Figure 8 provides a graphical representation of the ∆-constraints for achievement obli-
gations. The nodes represent annotations in the tasks and the arrows represent the ordering
relations that must be fulfilled by an execution of the process model to fulfil the ∆-constraint.
A slashed arrow denotes the required absence of the respective element in the interval iden-
tified by the surrounding elements.

Lemma 1. Given an achievement obligation, executing a task having the obligation’s trig-
ger annotated always results in the obligation being in force in the state after the task’s
execution, where the obligation can be potentially fulfilled or violated.

Proof. Sketch
Either the execution changes the previous state where t was not holding to one where it

is, or t had been holding already.
In the first case, the execution brings a new in force period for the obligation.
In the second case, either the obligation is in force and not fulfilled in the previous state,

or it becomes fulfilled in the previous state. In both cases, the execution of the task brings
the obligation in force again and requires to be fulfilled. �

984

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

Theorem 1. Given an execution ε , represented as a sequence of tasks, if ε satisfies either
of the Achievement Failure ∆-Constraints (Definition 18), then ε violates the obligation
related to the Achievement Failure ∆-Constraints.

Proof. Soundness:
First case: Achievement Failure ∆-Constraint 1

1. From the hypothesis, and Definition 18, it follows that ε satisfies the following con-
ditions:

(a) ∃tt |∃t¬c, td |t¬c � tt � td
(b) ∃tt |¬∃tc|t¬c � tc � td
(c) ∃tt |∃t¬d ,¬∃td |t¬d � td � tt

2. From 1.(a), and Lemma 1, it follows that: t holds and c does not, in the state holding
after the execution of the task tt .

3. From 2., and 1.(b), it follows that: there is no state included between the state after
executing the task tt and one where d starts holding, where c holds.

4. From 3. and Definition 17, it follows that ε would violate the obligation related to the
Achievement Failure ∆-Constraints.

Second case: Achievement Failure ∆-Constraint 2

1. From the hypothesis, and Definition 18, it follows that ε satisfies the following con-
ditions:

(a) ∃tt |∃t¬c,¬∃tc|t¬c � tc � tt
(b) ∃tt |∃td ,¬∃t¬d |td � t¬d � tt

2. From 1.(a), and Lemma 1, it follows that t holds and c does not, in the state holding
after the execution of the task tt .

3. From 1.(b), it follows that t holds and d holds, in the state holding after the execution
of the task tt .

4. From 2. and 3., it follows that after executing the task tt , t and d hold and c does not
hold.

5. From 4. and Definition 17, it follows that ε would violate the obligation related to the
Achievement Failure ∆-Constraints.

985

TOSATTO ET AL.

Completeness:

1. Given a trace violating a given achievement obligation.

2. From 1. and Definition 17 it follows that ∃σt ,σd |contain(t,σt) and σt � σd and
¬∃σc|σt � σc � σd .

3. From 2., it follows that a task with t annotated is executed.

4. From 2., it follows that a task with d annotated is executed.

5. From 2., it follows that ¬c holds and no task with c annotated is executed between
the one with t and the one with d.

6. Following from 3., 4., and 5. two cases are possible:

td � tt this case is covered by the second set of conditions in Definition 18.

tt � td this case covered by the first set of conditions in Definition 18.

7. Thus, all cases are covered and a violating trace is always identified by the Achieve-
ment Failure ∆-constraints. �

Translation for Maintenance
The translation is also applied to maintenance obligations. Definition 19 describes the fail-
ure condition for maintenance obligations, which is the complement of Definition 16. Def-
inition 20 describes the corresponding ∆-constraints.

Definition 19 (Maintenance Failure). Given a maintenance obligation Om〈c, t,d〉 and a
trace θ , θ is not compliant with Om〈c, t,d〉 if and only if:

∃σt∀σd |contain(t,σt) and σt � σd and ∃σ¬c|σt � σ¬c � σd

Definition 20 (Maintenance Failure ∆-constraints). Given an achievement obligation
Om〈c, t,d〉 and an execution ε , ε is not compliant with Om〈c, t,d〉 if and only if one of the
following conditions is satisfied:

1. ∃tt such that:

∃t¬c,¬∃tc|t¬c � tc � tt

2. ∃tt such that:

∃tc,¬∃t¬c|tc � t¬c � tt and

∀td(∃t¬c|tt � t¬c ≺ td)

986

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

t

c

¬c
66

t

¬c

c

¬c

d
66

∀

M∆1 constraints M∆2 constraints
Figure 9: Maintenance constraints

Theorem 2. Given an execution ε , represented as a sequence of tasks, if ε satisfies either
of the Maintenance Failure ∆-Constraints (Definition 20), then ε violates the obligation
related to the Maintenance Failure ∆-Constraints.

Proof. Soundness:
First case: Maintenance Failure ∆-Constraint 1

1. From the hypothesis, and Definition 20, it follows that ε satisfies the following con-
dition:

(a) ∃tt |∃t¬c,¬∃tc|t¬c � tc � tt

2. From 1.(a), and Lemma 1, it follows that: t holds and c does not, after the execution
of the task tt annotated.

3. From 2. and Definition 19, it follows that ε would violate the obligation related to the
Maintenance Failure ∆-Constraints.

Second case: Maintenance Failure ∆-Constraint 2

1. From the hypothesis, and Definition 20, it follows that ε satisfies the following con-
dition:

(a) ∃tt |∃tc,¬∃t¬c|tc � t¬c � tt and

(b) ∃tt |∀td(∃t¬c|tt � t¬c ≺ td)

2. From 1.(a), and Lemma 1, it follows that t holds and c holds, in the state holding after
executing tt .

3. From 1.(b), and Lemma 1, it follows that after executing the tt , t it is always the case
that in the following states c stops holding before d starts holding.

4. From 2. it follows that after the execution of the task tt , c holds due to the constraint
preventing a task having ¬c annotated to be executed and cancelling c from the pro-
cess state, which is already holding due to the execution of a task with c annotated.

987

TOSATTO ET AL.

5. From 3. it follows before the execution of any task having d in its annotation, a task
having ¬c annotated is executed, leading to the removal of c from the process state.

6. From 4. and 5. and Definition 19, it follows that ε would violate the obligation related
to the Maintenance Failure ∆-Constraints.

Completeness:

1. Given a trace violating a given maintenance obligation.

2. From 1. and Definition 19 it follows that ∃σt ∀σd | contain(t,σ) and σt � σd and
∃σ¬c|σt � σ¬c � σd .

3. From 2., it follows that a task with t annotated is executed.

4. From 2., it follows that a task with ¬c annotated is executed.

5. Following from 3., and 4. two cases are possible:

t¬c � tt case covered by the first set of conditions in Definition 20.

tt � t¬c case covered by the second set of conditions in Definition 20.

6. Thus, all cases are covered and a violating trace is always identified by the Mainte-
nance Failure ∆-constraints.

�

Verifying ∆-constraints

Verifying whether a business process model satisfies a ∆-constraint instead of the original
regulation is equivalent to looking for a counter-example falsifying whether a model is fully
compliance. Thus, if such an example cannot be found in any possible execution, then the
business process model is proven to be fully compliant. Note that every possible execution
is implicitly checked by analysing the decomposed business processes as partially ordered
sets, as discussed in Section 4.3.

Translation Complexity

Translating a given obligation in the corresponding set of ∆-constraints can be done in
constant time, since depending on the type of obligations, the ∆-constraints need to be
instantiated with the parameters of the obligation.

988

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

6 Verifying Full Compliance

In this section, we show how full compliance is verified for a process model with respect to
a given regulation, by proving that the ∆-constraints are consistent with the set of partially
ordered set representations of a decomposed process.

In addition, we argue that extending the procedure to prove full compliance against a
set of regulations only requires to iterate the process over each obligation in the set, thus
increasing the complexity of proving compliance for a single regulation by a polynomial
factor.

6.1 Full Compliance

A trace is compliant with a set of obligations if it fulfils all obligations belonging to the set.
Note that according to Definitions 15 and 16 an obligation that is never activated by a trace
is considered to be fulfilled by such a trace.

Definition 21 (Set Fulfilment). Given a trace θ and a set of obligations O= {ω1, . . . , ωn},
θ `O, iff:

∀ωi ∈O,(θ ` ωi)

Otherwise θ 6`O.

Finally, a process model is said to be fully compliant with a set of obligations, if and
only if each of its executions fulfils each of the obligations belonging to the given set.

Definition 22 (Process Full Compliance). Given a process (P,ann) and a set of obligations
O.

• Full Compliance: (P,ann) `F O
iff ∀θ ∈Θ(P,ann),θ `O.

6.2 ∆-constraints Verification

Given a partially ordered set representation of a decomposed business process model and
the ∆-constraints representation of a given obligation, we illustrate how the constraints can
be verified in the partially ordered sets, signifying that the original business process model
contains at least one execution failing the original obligation.

Relevant Tasks

The first step of the verification consists of populating the sets of relevant tasks. Each set
of relevant tasks contains the tasks having annotated a parameter of the obligation being

989

TOSATTO ET AL.

checked. For instance, the set of relevant tasks for d contains every task in the business
process model having d annotated.

From Definition 18 and Definition 20, it follows that viable task sets are required for:
t, c, ¬c, d, and ¬d. These viable task sets are respectively represented as follows: T, C,
antiC, D, antiD. It follows from Definition 13 that the end task always belongs to D.

Algorithm

Intuitively, to prove whether a process model is not fully compliant with a given regulation,
we have to show that there exists a task in the process model having t annotated, and that
it is possible to find instantiations of the relevant tasks for the existential quantifiers6 in the
∆-constraints satisfying their ordering conditions.

input : Relevant tasks: T, antiC, C, D, antiD and a partially ordered set representation of a decomposed business
process model P(P′)

output: Whether a partially ordered representation P contains an execution violating ω by a trigger of t
1 for tt ∈ T do
2 for t¬c ∈ antiC do
3 for td ∈ D do
4 if t¬c � tt � td compatible with P(P′) then
5 good = true;
6 for tc ∈ C do
7 if t¬c � tc � td compatible with P(P′) then
8 good = false;

end
end

9 if good then
10 for t¬d ∈ antiD do
11 if t¬d � tt then
12 good = true;
13 for t2d ∈ D do
14 if t¬d � t2d � tt compatible with P(P′) then
15 good = false;

end
end

16 if good then
17 return true;

end
end

end
end

end
end

end
end

18 return false;
Algorithm 1: Achievement ∆-constraint 1 (A∆1)

Algorithm 1 illustrates how to verify whether a partially ordered set representation of a

6In Definition 20, the universal quantifier can be understood as it is referring to the earliest happening
element quantified.

990

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

decomposed business process model satisfies the first ∆-constraint for achievement obliga-
tions. Note that checking whether a given ordering of tasks is compatible with the ordering
of a partially ordered set, appearing in Algorithm 1 in lines 4, 7, and 14, can be done in
polynomial time.

Complexity of Algorithm 1

Let X be the number of tasks in P, and assuming the worst case scenario, where the car-
dinality of each relevant set is X. The computational complexity of Algorithm 1 is the
following:

O(|X|2× (|X|+ |X|2))
Thus the computational complexity of Algorithm 1 is polynomial in time with respect to

the size of the process model. Algorithms to verify the other ∆-constraints closely resemble
Algorithm 17, hence we do not explicitly illustrate and discuss them in this paper. More-
over, as Achievement Failure ∆-Constraint 1 is the one containing more ordering conditions
(as shown in Definition 18 and Definition 20), the computational complexity of the other
algorithms not explicitly discussed is at most as high as Algorithm 1.

6.3 Proving Full Compliance

Algorithm 2 shows how the algorithms verifying whether the ∆-constraints are satisfied in a
decomposed business process model can be used to prove whether a business process model
is fully compliant with a given obligation.

input : An obligation ω , a set of decomposed processes P and its viable task sets with respect to the obligation
output: Whether the process model corresponding to P is fully compliant with ω
foreach decomposed process P′ ∈ P do

if ω is achievement then
if A∆1(T, antiC, C, D, antiD, P(P′)) then return false;
if A∆2(T, antiC, C, D, antiD, P(P′)) then return false;

else
if M∆1(T, antiC, C, D, antiD, P(P′)) then return false;
if M∆2(T, antiC, C, D, antiD, P(P′)) then return false;

end
end
return true;

Algorithm 2: Proving Full Compliance

7Other ∆-constraints checking algorithms would be structurally equivalent to Algorithm 1, with the only
difference that the instantiations of the relevant tasks would be done on the ordering conditions of the other
∆-constraints.

991

TOSATTO ET AL.

Complexity of Algorithm 2

Let P be the set of the decomposed representations of the original process. The computa-
tional complexity of proving whether the process is compliant with a given regulation is the
following:

O(|P|× (O(A∆1)+O(A∆2)+O(M∆1)+O(M∆2)))

As P can be potentially exponential in size with respect to the size of the original pro-
cess, we cannot claim that the complexity of Algorithm 2 is polynomial. However, as the
computational complexity of any brute force approach to solve regulatory compliance is
combinatorial with respect to the size of the problem (see Example 6), the proposed solu-
tion represents a more efficient approach as its computational complexity is exponential in
time with respect to the size of the problem.

Illustrating the Verification

Examples 9 and 10 show how the ∆-constraints allow to identify fully compliant processes
by analysing their executions. However, note that the thorough analysis of the executions
is given only for illustration purposes, reminding that the proposed approach in the paper
verifies the ∆-constraints directly on the partially ordered sets, as show by Algorithm 1.

Example 9 (Non-compliance). Consider the annotated business process depicted in Fig-
ure 3 and its corresponding partially ordered sets of Example 8. P′ denotes a concurrent
execution of t1 and t3 after start, followed by t4.

P′ allows two valid executions: ε1: start, t1, t3, t4,end and ε2: start, t3, t1, t4,end. We
substitute the task’s labels with their annotations, making it easier to observe whether the
∆-constraints are fulfilled.
ε1: (¬c,¬t,¬d), (c), (t), (), (d)
ε2: (¬c,¬t,¬d), (t), (c), (), (d)

Similarly, P′′ denotes a concurrent execution of t2 and t3 after start, followed by t4. As
such, P′′ allows two valid executions:
ε3: (¬c,¬t,¬d), (), (t), (), (d)
ε4: (¬c,¬t,¬d), (t), (), (), (d)

Given an obligation Oa〈c, t,d〉, applying the achievement patterns to ε1, it is easy to
see that c exists before d. As such, Achievement Failure ∆-Constraint 1 fails, as it requires
the absence of c before d. Equivalently, there exists no d before t and Achievement Failure
∆-Constraint 2 fails immediately as well. Similarly for ε2.

For ε3, there exists no d before t, as in ε1 and ε2. From start ¬c holds, continues to hold
through t2, and still holds when t occurs in t3. As t1 is not part of the trace, c does not occur
before d. Therefore, ε3 fulfils the Achievement Failure ∆-Constraint 1 pattern and is, as a

992

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

result, not compliant. This is similar for ε4. Consequently, the process of Figure 3 is not
fully compliant.

Example 10 (Full compliance). Consider the following annotated business process model:

t1

t2 t3

t4
¬c ¬t ¬d

d

c t

d

Figure 10: Example of a compliant process

This process can be decomposed as follows:

1. P′ = SEQ(start,AND(t1,SEQ(t2, t3)), t4,end)

2. P′′ = SEQ(start,AND(/0,SEQ(t2, t3)), t4,end)

The corresponding partially ordered sets for the two decomposed processes are the follow-
ing:

1. P′ = ({start, t1, t2, t3, t4,end},{start≺ t1,start≺ t2, t1 ≺ t4, t2 ≺ t3, t3 ≺ t4, t4 ≺ end})

2. P′′ = ({start, t2, t3, t4,end},{start≺ t2, t2 ≺ t3, t3 ≺ t4, t4 ≺ end})

P′ allows three valid executions8:
ε1: (¬c,¬t,¬d), (d), (c), (t), (), (d)
ε2: (¬c,¬t,¬d), (c), (d), (t), (), (d)
ε3: (¬c,¬t,¬d), (c), (t), (d), (), (d)
P′′ allows only one valid execution:
ε4: (¬c,¬t,¬d), (c), (t), (), (d).

All four executions have c before t. Given two obligations: Oa〈c, t,d〉 and Om〈c, t,d〉,
the respective ∆-constraints Achievement Failure ∆-Constraint 1, Achievement Failure ∆-
Constraint 2 and Maintenance Failure ∆-Constraint 1 fail, as they require the absence of
c before t. Maintenance Failure ∆-Constraint 2 does have c before t, but also requires ¬c
between t and d for every d and fails, therefore, as well for all executions. As none of the
patterns apply to the process, we can conclude that the process is fully compliant.

993

TOSATTO ET AL.

Nesting
Level 1 Level 2 Level 3 Executions Dec. Time Check T. Total Time

1 1 · AND2×5 – – 252 1 0.08 ms 0.04 ms 0.12 ms
2 1 · AND4×5 – – 1.17E+10 1 0.08 ms 0.05 ms 0.12 ms
3 2 · AND2×5 – – 63 504 1 0.07 ms 0.04 ms 0.11 ms
4 2 · AND4×5 – – 1.38E+20 1 0.08 ms 0.20 ms 0.29 ms
5 1 · AND2×5 1 · XOR2×5 – 194 480 4 0.06 ms 0.30 ms 0.36 ms
6 1 · AND4×5 1 · XOR4×5 – 3.43E+20 256 3.13 ms 2.21 ms 5.34 ms
7 1 · AND2×5 1 · AND2×5 – 2.55E+12 1 0.05 ms 0.14 ms 0.19 ms
8 1 · AND4×5 1 · AND4×5 – 1.27E+95 1 0.42 ms 2.85 ms 3.27 ms
9 1 · AND2×5 1 · XOR2×5 1 · AND2×5 2.30E+15 4 0.18 ms 0.85 ms 1.02 ms

10 1 · AND4×5 1 · XOR4×5 1 · AND4×5 1.11E+107 256 11.88 ms 120.50 ms 132.38 ms

Table 2: Evaluation models and performance.

7 Evaluation

We implemented the proposed method as a standalone Java tool. We tested our approach
over a set of synthetic process models of increasing complexity, up to the point where the
amount of concurrency is well beyond realistic business scenarios. The models consist of
a set of nested process constructs, which are either a structured AND-block or structured
XOR-block with n branches of m activities long. Each of the synthetic models is randomly
annotated, which ensures that one every three tasks in the model is annotated with a ran-
domly selected set of literals. Figure 11 shows the basic structure of the models.

CONSTRUCT
n×m

CONSTRUCT
n×m1

CONSTRUCT
n×mn

CONSTRUCT
n×m1

CONSTRUCT
n×mn

. . .

1 . . .

n
t1 tm

. . .

tm

Nesting
level 1

Nesting
level 2

Nesting
level 3

m

m

Figure 11: Synthetic process structure.

All tests were performed on a computer equipped with a quad core Intel R© Core
TM

i7-
7700HQ CPU @ 3.80GHz, 16GB RAM, running Ubuntu 16.10 and Java 1.8.0_131. To
eliminate load times, each test was executed five times, where the average time of three
executions was recorded while removing the fastest and the slowest.

8We use again the tasks’ annotation instead of their labels to clearly show whether a ∆-constraint is satisfied.

994

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

The results are shown in Table 2. The first three columns of the table contain details
about the process structure. The columns under Nesting contain information on the process
structure, by depicting for each nesting level the number of blocks, their type, the number
of branches, and the length of each branch. As such, the column Level 2 describes the
blocks nested in each branch of each block described in Level 1. Similarly, Level 3 contains
information of the blocks nested in each branch of each block in Level 2. The fourth col-
umn, Executions, describes how many different executions are hypothetically possible in the
given model when linearising the concurrent paths to indicate the theoretical complexity of
the models when adopting a brute force approach. The simplest model (1) has 252 possible
executions, while the most complex model (10) has 1.11E+107 possible executions.

The column Dec. contains the number of decomposed processes generated from the
original process and Time contains the time required for their generation. Finally, Check
T. contains the time required to solve all decomposed processes, and Total Time contains
the total time required by the procedure to obtain a result concerning the compliance of the
process. That is, it records the total time required for decomposition and evaluation of the
decomposed processes.

Existing approaches, such as Regorous [12], use brute force, thereby evaluating all pos-
sible executions. Regorous is able to solve the first process and third process from Table 2
in 23 seconds and 47 seconds, respectively. For the other processes, we stopped Regorous
after 10min, without being able to decide on the solution within the given time.

8 Conclusion

In this paper, we proposed an approach capable of efficiently verifying whether process
models comprising concurrency are fully compliant with a set of obligations. Some of the
key contributions of the proposed approach are the introduction of ∆-constraints, an alter-
native representation of the obligations used to specify the compliance requirements, and
the ability to verify whether a business process model is fully compliant directly analysing
its structure, without explicitly generating its executions. Compared to other approaches
trying to solve the compliance problem through brute force or using heuristics, our pro-
posed approach reduces the overall computational complexity of solving a sub-problem of
the compliance problem by using a divide an conquer approach, while still steering clear
from approximate solutions.

Although theoretically exponential in complexity (due to exclusive paths), we have em-
pirically shown that the combined approach is capable of solving highly complex processes
that are otherwise infeasible using existing brute force approaches. Even processes with
more than 250 possible paths and 1.11E+107 possible executions were checked within
132ms.

995

TOSATTO ET AL.

However, the demonstrated performance gain does come at a tradeoff, as brute force
based approaches are capable of solving more expressive instances of the problem than our
approach, as we allow only literals and not formulae. While this limitation prevents us
from compliance checking with full regulatory specifications, it can be successfully used
for many aspects of structural compliance (i.e. conditions about the tasks appearing and
their mutual relationships). Despite the structural limitations over the process model, we
show how our solution can be combined with additional procedures in order to solve more
generic problems.

As future work, we plan to improve the current solution in order to be able to resolve
some of the current limitations. We reckon that a possibility to improve the current approach
is to investigate how the ∆-constraints introduced in the solution can be generalised, and
potentially reused in a more modular fashion to create efficient solutions for more generic
sub-problems of business process compliance.

Acknowledgments

This research is supported by the science and industry endowment fund.

References

[1] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory change:
Partial meet contraction and revision functions. J. of Symbolic Logic, 50(2):510–530, 1985.

[2] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking using bpmn-q
and temporal logic. In BPM 2008, pages 326–341. Springer, 2008.

[3] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Visually specifying compliance rules
and explaining their violations for business processes. J. Vis. Lang. Comput., 22(1):30–55,
2011.

[4] Domenico Bianculli, Carlo Ghezzi, and Paola Spoletini. A model checking approach to verify
bpel4ws workflows. In Service-Oriented Computing and Applications, 2007. SOCA’07. IEEE
International Conference on, pages 13–20, 2007.

[5] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artif. Intell.,
42(2-3):213–261, 1990.

[6] Silvano Colombo Tosatto, Guido Governatori, and Pierre Kelsen. Business process regulatory
compliance is hard. IEEE Transactions on Services Computing, 8(6):958–970, 2015.

[7] Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business Blueprint: Understand-
ing the Business Process Reference Model. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1998.

[8] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of business
process models in bpmn. Information and Software Technology, 50(12):1281–1294, 2008.

996

EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

[9] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and Mike Papazoglou. For-
malizing and Applying Compliance Patterns for Business Process Compliance. Software &
Systems Modeling, pages 1–28, 2014.

[10] Sven Feja, Andreas Speck, and Elke Pulvermüller. Business process verification. In GI
Jahrestagung, pages 4037–4051, 2009.

[11] G. Governatori and A. Rotolo. How do agents comply with norms? In 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol-
ume 3, pages 488–491, Sept 2009.

[12] Guido Governatori. The Regorous approach to process compliance. In 2015 IEEE 19th Inter-
national EDOC Workshop, pages 33–40. IEEE Press, 2015.

[13] Guido Governatori and Mustafa Hashmi. No time for compliance. In Sylvain HallÃl’ and
Wolfgang Mayer, editors, 2015 IEEE 19th Enterprise Distibuted Object Computing Confer-
ence, pages 9–18. IEEE, 2015.

[14] Guido Governatori, Jörg Hoffmann, Shazia Wasim Sadiq, and Ingo Weber. Detecting reg-
ulatory compliance for business process models through semantic annotations. In Business
Process Management Workshops, volume 17 of LNBIP, pages 5–17. Springer, 2008.

[15] Guido Governatori and Antonino Rotolo. An algorithm for business process compliance. In
Enrico Francesconi, Giovanni Sartor, and Daniela Tiscornia, editors, The Twenty-First Annual
Conference on Legal Knowledge and Information Systems, volume 189 of Frontieres in Artifi-
cial Intelligence and Applications, pages 186–191. IOS Press, 2008.

[16] Heerko Groefsema, Nick R T P van Beest, and Marco Aiello. A formal model for compliance
verification of service compositions. IEEE Transactions on Services Computing, 11:466 – 479,
2018.

[17] Mustafa Hashmi, Guido Governatori, Ho-Pun Lam, and Moe Thandar Wynn. Are we done
with business process compliance: State-of-the-art and challenges ahead. Know. and Inf. Sys.,
2018.

[18] Mustafa Hashmi, Guido Governatori, and Moe Thandar Wynn. Normative requirements
for regulatory compliance: An abstract formal framework. Information Systems Frontiers,
18(3):429–455, 2016.

[19] Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. Specification and verification of
complex business processes - a high-level petri net-based approach. In Business Process Man-
agement, volume 9253 of LNCS, pages 55–71. Springer International Publishing, 2015.

[20] Oussama M. Kherbouche, Adeel Ahmad, and Henri Basson. Using model checking to control
the structural errors in bpmn models. In Research Challenges in Information Science (RCIS),
2013 IEEE Seventh International Conference on, pages 1–12, 2013.

[21] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler. On structured work-
flow modelling. In Proceedings of the 12th International Conference on Advanced Information
Systems Engineering, pages 431–445, London, UK, UK, 2000. Springer-Verlag.

[22] Marcello La Rosa, Hajo A Reijers, Wil M P Van Der Aalst, Remco M Dijkman, Jan Mendling,
Marlon Dumas, and Luciano García-Bañuelos. Apromore: An advanced process model repos-
itory. Expert Systems with Applications, 38(6):7029–7040, 2011.

997

TOSATTO ET AL.

[23] Timo Latvala and Keijo Heljanko. Coping with strong fairness. Fundamenta Informaticae,
43(1-4):175–193, 2000.

[24] Ying Liu, Samuel Müller, and Ke Xu. A static compliance-checking framework for business
process models. IBM Systems Journal, 46:335–361, 2007.

[25] M. Pesic, H. Schonenberg, and Wil van der Aalst. DECLARE: Full Support for Loosely-
Structured Processes. In Procedings of 11th IEEE International Conference on Enterprise
Distributed Object Computing (EDOC’07), pages 287–287, 2007.

[26] Artem Polyvyanyy, Luciano García-Bañuelos, and Marlon Dumas. Structuring acyclic pro-
cess models. In International Conference on Business Process Management, pages 276–293.
Springer, 2010.

[27] Elke Pulvermüller, Sven Feja, and Andreas Speck. Developer-friendly verification of process-
based systems. Knowl.-Based Syst., 23(7):667–676, 2010.

[28] Elham Ramezani, Dirk Fahland, and Wil MP van der Aalst. Supporting domain experts to
select and configure precise compliance rules. In International Conference on Business Process
Management, pages 498–512. Springer, 2013.

[29] Shazia Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control objectives for
business process compliance. In International conference on business process management,
pages 149–164. Springer, 2007.

[30] van der Aalst Wil, Adriansyah Arya, and van Dongen Boudewijn. Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

[31] Boudewijn F van Dongen, Wil M P Van der Aalst, and Henricus M W Verbeek. Verifica-
tion of epcs: Using reduction rules and petri nets. In International Conference on Advanced
Information Systems Engineering, pages 372–386. Springer, 2005.

Received 27 September 2018998

