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Editorial

Artur d’Avila Garcez

Tarek R. Besold

This special issue of the Journal of Applied Logics contains original contributions
which have been presented at the Thirteenth International Workshop on Neural-
Symbolic Learning and Reasoning (NeSy’18), part of Human-Level Artificial Intel-
ligence, HLAI 2018, which took place in Prague, CZ, in August 23-24, 2018. All
papers included here are extended versions of workshop papers which were revised
thoroughly according to the rules of the Journal.

The NeSy workshop series started at the International Joint Conference on Arti-
ficial Intelligence, IJCAI 2005 (please visit www.neural-symbolic.org for more infor-
mation about the workshop series). NeSy seeks to integrate well-founded symbolic
Artificial Intelligence and Computer Science Logic with robust Neural Network learn-
ing systems. It is intended to create an atmosphere of exchange of ideas, providing a
forum for the presentation and discussion of the following key topics of AI today: the
representation of symbolic knowledge by deep networks and connectionist systems
in general, semi-supervised and relational learning in neural networks, reasoning and
logical inference using recurrent networks, distilling and knowledge extraction from
neural networks, integrated and hybrid neural-symbolic AI approaches, integration
of logic and probabilities in neural networks, knowledge-based transfer learning us-
ing neural networks, verification of neural networks and reasoning about time, deep
symbolic reinforcement learning and planning, biologically-inspired neural-symbolic
architectures, neural-symbolic cognitive models and systems, and applications in
robotics, simulation, fraud prevention, language processing, semantic web, software
engineering, fault diagnosis, bioinformatics and visual intelligence.

In Neural-Symbolic Computing: An effective methodology for principled integra-
tion of machine learning and reasoning, Artur d’Avila Garcez, Marco Gori, Luis
Lamb, Luciano Serafini, Michael Spranger and Son Tran revisit some of the early
work on the integration of neural and symbolic approaches before placing the more
recent work on end-to-end reasoning and learning in context within neural-symbolic
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integration. In Semi-supervised learning using differentiable reasoning, Emile van
Krieken, Erman Acar and Frank van Harmelen introduce a differentiable reasoning
approach to improve the performance of semi-supervised learning using relational
background knowledge. The approach is based on Real Logic and when applied to
semantic image interpretation, it highlights the difficulty of neural networks at learn-
ing contrapositives. In High-order networks that learn to satisfy logic constraints,
Gadi Pinkas and Shimon Cohen show that symmetric networks can learn in unsuper-
vised fashion to solve planning problems described in first-order logic. Higher-order
networks and sigma-pi networks are also investigated in the context of the satis-
fiability problem. In Learning representation of relation dynamics with delays and
refining with prior knowledge, Yin Jun Phua, Tony Ribeiro and Katsumi Inoue study
relational learning using recurrent networks in the presence of insufficient data as
part of an application in biology inspired by earlier work in Inductive Logic Pro-
gramming and Statistical Relational Learning. In Compositionality for recursive
nural networks, Martha Lewis investigates the relationship between recursive neural
tensor networks and category theory with examples from language modelling. The
paper also suggests a number of lines of research taking advantage of the proposed
categorical compositionality of embeddings. In Towards fuzzy neural conceptors, Till
Mossakowski, Razvan Diaconescu and Martin Glauer investigate fuzzy conceptors.
Conceptors describe the dynamics of recurrent neural networks, with conceptor logic
forming the basis of a class of neural-symbolic approaches. The paper introduces a
fuzzy subconceptor relation and a fuzzy logic for conceptors. In Modelling identity
rules with neural networks, Tillman Weyde and Radha Manisha Kopparti revisit
Gary Marcus’s identity rules to show that recurrent networks including GRUs and
LSTMs fail to learn basic sequence patterns requiring the notion of equality. By
contrast, when constrained with an appropriate pre-defined structure to start with,
simple networks can achieve perfect recall on the same tasks.

London and Barcelona, May 2019
Artur d’Avila Garcez and Tarek R. Besold

Received May 2019610
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Abstract
Current advances in Artificial Intelligence and machine learning in general,

and deep learning in particular have reached unprecedented impact not only
across research communities, but also over popular media channels. However,
concerns about interpretability and accountability of AI have been raised by in-
fluential thinkers. In spite of the recent impact of AI, several works have identi-
fied the need for principled knowledge representation and reasoning mechanisms
integrated with deep learning-based systems to provide sound and explainable
models for such systems. Neural-symbolic computing aims at integrating, as
foreseen by Valiant, two most fundamental cognitive abilities: the ability to
learn from the environment, and the ability to reason from what has been
learned. Neural-symbolic computing has been an active topic of research for
many years, reconciling the advantages of robust learning in neural networks
and reasoning and interpretability of symbolic representation. In this paper,
we survey recent accomplishments of neural-symbolic computing as a princi-
pled methodology for integrated machine learning and reasoning. We illustrate
the effectiveness of the approach by outlining the main characteristics of the
methodology: principled integration of neural learning with symbolic knowl-
edge representation and reasoning allowing for the construction of explainable
AI systems. The insights provided by neural-symbolic computing shed new
light on the increasingly prominent need for interpretable and accountable AI
systems.

1 Introduction
Current advances in Artificial Intelligence (AI) and machine learning in general,
and deep learning in particular have reached unprecedented impact not only within
the academic and industrial research communities, but also among popular media
channels. Deep learning researchers have achieved groundbreaking results and built
AI systems that have in effect rendered new paradigms in areas such as computer
vision, game playing, and natural language processing [27, 45]. Nonetheless, the
impact of deep learning has been so remarkable that leading entrepreneurs such as
Elon Musk and Bill Gates, and outstanding scientists such as Stephen Hawking have
voiced strong concerns about AI’s accountability, impact on humanity and even on
the future of the planet [40].

Against this backdrop, researchers have recognised the need for offering a better
understanding of the underlying principles of AI systems, in particular those based
on machine learning, aiming at establishing solid foundations for the field. In this
respect, Turing Award Winner Leslie Valiant had already pointed out that one of
the key challenges for AI in the coming decades is the development of integrated
reasoning and learning mechanisms, so as to construct a rich semantics of intelligent
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cognitive behavior [54]. In Valiant’s words: “The aim here is to identify a way of
looking at and manipulating commonsense knowledge that is consistent with and can
support what we consider to be the two most fundamental aspects of intelligent cog-
nitive behavior: the ability to learn from experience, and the ability to reason from
what has been learned. We are therefore seeking a semantics of knowledge that can
computationally support the basic phenomena of intelligent behavior." In order to
respond to these scientific, technological and societal challenges which demand reli-
able, accountable and explainable AI systems and tools, the integration of cognitive
abilities ought to be carried out in a principled way.

Neural-symbolic computing aims at integrating, as put forward by Valiant, two
most fundamental cognitive abilities: the ability to learn from experience, and the
ability to reason from what has been learned [2, 12, 16]. The integration of learning
and reasoning through neural-symbolic computing has been an active branch of AI
research for several years [14, 16, 17, 21, 25, 42, 53]. Neural-symbolic computing aims
at reconciling the dominating symbolic and connectionist paradigms of AI under a
principled foundation. In neural-symbolic computing, knowledge is represented in
symbolic form, whereas learning and reasoning are computed by a neural network.
Thus, the underlying characteristics of neural-symbolic computing allow the princi-
pled combination of robust learning and efficient inference in neural networks, along
with interpretability offered by symbolic knowledge extraction and reasoning with
logical systems.

Importantly, as AI systems started to outperform humans in certain tasks [45],
several ethical and societal concerns were raised [40]. Therefore, the interpretability
and explainability of AI systems become crucial alongside their accountability.

In this paper, we survey the principles of neural-symbolic integration by high-
lighting key characteristics that underline this research paradigm. Despite their dif-
ferences, both the symbolic and connectionist paradigms, share common characteris-
tics offering benefits when integrated in a principled way (see e.g. [8, 16, 46, 53]). For
instance, neural learning and inference under uncertainty may address the brittleness
of symbolic systems. On the other hand, symbolism provides additional knowledge
for learning which may e.g. ameliorate neural network’s well-known catastrophic
forgetting or difficulty with extrapolating. In addition, the integration of neural
models with logic-based symbolic models provides an AI system capable of bridg-
ing lower-level information processing (for perception and pattern recognition) and
higher-level abstract knowledge (for reasoning and explanation).

In what follows, we review the important and recent developments of research on
neural-symbolic systems. We start by outlining the main important characteristics
of a neural-symbolic system: Representation, Extraction, Reasoning and Learning
[2, 17], and their applications. We then discuss and categorise the approaches to

613



Garcez, Gori, Lamb, Serafini, Spranger and Tran

representing symbolic knowledge in neural-symbolic systems into three main groups:
rule-based, formula-based and embedding-based. After that, we show the capabil-
ities and applications of neural-symbolic systems for learning, reasoning, and ex-
plainability. Towards the end of the paper we outline recent trends and identify a
few challenges for neural-symbolic computing research.

2 Prolegomenon to Neural-Symbolic Computing

Neural-symbolic systems have been applied successfully to several fields, including
data science, ontology learning, training and assessment in simulators, and mod-
els of cognitive learning and reasoning [5, 14, 16, 34]. However, the recent impact
of deep learning in vision and language processing and the growing complexity of
(autonomous) AI systems demand improved explainability and accountability. In
neural-symbolic computing, learning, reasoning and knowledge extraction are com-
bined. Neural-symbolic systems are modular and seek to have the property of com-
positionality. This is achieved through the streamlined representation of several
knowledge representation languages which are computed by connectionist models.
The Knowledge-Based Artificial Neural Network (KBANN) [49] and the Connec-
tionist inductive learning and logic programming (CILP) [17] systems were some of
the most influential models that combine logical reasoning and neural learning. As
pointed out in [17] KBANN served as inspiration in the construction of the CILP
system. CILP provides a sound theoretical foundation to inductive learning and
reasoning in artificial neural networks through theorems showing how logic program-
ming can be a knowledge representation language for neural networks. The KBANN
system was the first to allow for learning with background knowledge in neural net-
works and knowledge extraction, with relevant applications in bioinformatics. CILP
allowed for the integration of learning, reasoning and knowledge extraction in re-
current networks. An important result of CILP was to show how neural networks
endowed with semi-linear neurons approximate the fixed-point operator of proposi-
tional logic programs with negation. This result allowed applications of reasoning
and learning using backpropagation and logic programs as background knowledge
[17].

Notwithstanding, the need for richer cognitive models soon demanded the rep-
resentation and learning of other forms of reasoning, such as temporal reasoning,
reasoning about uncertainty, epistemic, constructive and argumentative reasoning
[16, 54]. Modal and temporal logic have achieved first class status in the formal
toolboxes of AI and Computer Science researchers. In AI, modal logics are amongst
the most widely used logics in the analysis and modelling of reasoning in distributed
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multiagent systems. In the early 2000s, researchers then showed that ensembles of
CILP neural networks, when properly set up, can compute the modal fixed-point
operator of modal and temporal logic programs. In addition to these results, such
ensembles of neural networks were shown to represent the possible world semantics of
modal propositional logic, fragments of first order logic and of linear temporal logics.
In order to illustrate the computational power of Connectionist Modal Logics (CML)
and Connectionist Temporal Logics of Knowledge (CTLK) [8, 9], researchers were
able to learn full solutions to several problems in distributed, multiagent learning
and reasoning, including the Muddy Children Puzzle [8] and the Dining Philosophers
Problem [26].

By combining temporal logic with modalities, one can represent knowledge and
learning evolution in time. This is a key insight, allowing for temporal evolution
of both learning and reasoning in time (see Fig. 1). The Figure represents the
integrated learning and reasoning process of CTLK. At each time point (or one
state of affairs), e.g. t2, knowledge which the agents are endowed with and what the
agents have learned at the previous time t1 is represented. As time progresses, linear
evolution of the agents’ knowledge is represented in time as more knowledge about
the world (what has been learned) is represented. Fig. 1 illustrates this dynamic
property of CTLK, which allows not only the analysis of the current state of affairs
but also of how knowledge and learning evolve over time.

Modal and temporal reasoning, when integrated with connectionist learning pro-
vide neural-symbolic systems with richer knowledge representation languages and
better interpretability. As can be seen in Fig. 1, they enable the construction of
more modular deep networks. As argued by Valiant, the construction of cognitive
models integrating rich logic-based knowledge representation languages, with robust
learning algorithms provide an effective alternative to the construction of semanti-
cally sound cognitive neural computational models. It is also argued that a language
for describing the algorithms of deep neural networks is needed. Non-classical logics
such as logic programming in the context of neuro-symbolic systems, and functional
languages used in the context of probabilistic programming are two prominent can-
didates. In the coming sections, we explain how neural-symbolic systems can be
constructed from simple definitions which underline the streamlined integration of
knowledge representation, learning, and reasoning in a unified model.

3 Knowledge Representation in Neural Networks

Knowledge representation is the cornerstone of a neural-symbolic system that pro-
vides a mapping mechanism between symbolism and connectionism, where logical
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Figure 1: Evolution of Reasoning and Learning in Time

calculus can be carried out exactly or approximately by a neural network. This way,
given a trained neural network, symbolic knowledge can be extracted for explain-
ing and reasoning purposes. The representation approaches can be categorised into
three main groups: rule-based, formula-based and embedding, which are discussed
as follows.

3.1 Propositional Logic

3.1.1 Rule-based Representation

Early work on representation of symbolic knowledge in connectionist networks fo-
cused on tailoring the models’ parameters to establish an equivalence between input-
output mapping function of artificial neural networks (ANN) and logical inference
rules. It has been shown that by constraining the weights of a neural network, in-
ference with feedforward propagation can exactly imitate the behaviour of modus
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(a) KBANN (θ denotes a threshold). (b) CILP.

Figure 2: Knowledge representation of ϕ = {A← B ∧ C,B← C ∧ ¬D ∧ E,D← E}
using KBANN and CILP.

ponens [49, 7]. KBANN [49] employs stack of perceptrons to represent the inference
rule of logical implications. For example, given a set of rules:

ϕ = {A← B ∧ C,B← C ∧ ¬D ∧ E,D← E} (1)

an ANN can be constructed as in Figure 2a. CILP then generalises the idea
by using recurrent networks and bounded continuous units [7]. This representation
method allows the use of various data types and more complex sets of rules. With
CILP, knowledge given in Eq. (1) can be encoded in a neural network as shown in
Figure 2b. In order to adapt this system to first-order logic, CILP++ [15] makes use
of techniques from Inductive Logic Programming (ILP). In CILP++, examples and
background knowledge are converted into propositional clauses by a bottom-clause
propositionalisation technique, which are then encoded into an ANN with recurrent
connections as done by CILP.

3.1.2 Formula-based Representation

One issue with KBANN-style rule-based representations is that the discriminative
structure of ANNs will only allow a subset of the variables (the consequent of the
if-then formula) to be inferred, unless recurrent networks are deployed, with the
other variables (the antecedents) being seen as inputs only. This would not repre-
sent the behaviour of logical formulas and does not support general reasoning where
any variable can be inferred. In order to solve this issue, generative neural net-
works can be employed as they can treat all variables as non-discriminative. In this
formula-based approach, typically associated with restricted Boltzmann machines
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(a) Higher-order network for Penalty
Logic. (b) RBM with confidence rules.

Figure 3: Knowledge representation of ϕ = {w : A← B∧C, w : B← C∧¬D∧E, w :
D← E} using Penalty logic and Confidence rules

(RBMs) as a building block, the focus is on mapping logical formulas to symmetric
connectionist networks, each characterised by an energy function. Early work such
as penalty logic [35] proposes a mechanism to represent weighted formulas in energy-
based connectionist (Hopfield) networks where maximising satisfiability is equivalent
to minimising energy function. Suppose that each formula in the knowledge base
(1) is assigned a weight w. Penalty logic constructs a higher-order Hopfield network
as shown in Figure 3a. However, inference with such type of network is difficult,
while converting the higher-order energy function to a quadratic form is possible
but computationally expensive. Recent work on confidence rules [51] proposes an
efficient method to represent propositional formulas in restricted Boltzmann ma-
chines and deep belief networks where inference and learning become easier. Figure
3b shows an RBM for the knowledge base (1). Nevertheless, learning and reason-
ing with restricted Boltzmann machines are still complex, making it more difficult
to apply formula-based representations than rule-based representations in practice.
The main issue has to do with the partition functions of symmetric connectionist
networks which cannot be computed analytically. This intractability problem, for-
tunately, can be ameliorated using sum-product approach as has been shown in [38].
However, it is not yet clear how to apply this idea to RBMs.
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3.2 First-order Logic

3.2.1 Propositionalisation

Representation of knowledge in first-order logic in neural networks has been an on-
going challenge, but it can benefit from studies of propositional logic representation
3.1 using propositionalisation techniques [30]. Such techniques allow a first-order
knowledge base to be converted into a propositional knowledge base so as to pre-
serve entailment. In neural-symbolic computing, bottom clause prositionalisation
(BCP) is a popular approach because bottom clause literals can be encoded directly
into neural networks as data features while at the same time presenting semantic
meaning.

Early work from [11] employs prositionalisation and feedforward neural networks
to learn a clause evaluation function which helps improve the efficiency in exploring
large hypothesis spaces. In this approach, the neural network does not work as a
standalone ILP system, instead it is used to approximate clause evaluation scores to
decide the direction of the hypothesis search. In [36], prositionalisation is used for
learning first- order logic in Bayesian networks. Inspired by this work, in [15], the
CILP++ system is proposed by integrating bottom clauses and rule-based approach
CILP [17], referred to in Section 3.1.1.

The main advantage of propositionalisation is that it is efficient and it fits neural
networks well. Also, it does not require first-order formulas to be provided as bottom
clauses. However, propositionalisation has serious disadvantages. First, with func-
tion symbols, there are infinitely many ground terms. Second, propositionalization
seems to generate lots of irrelevant clauses.

3.2.2 Tensorisation

Tensorisation is a class of approaches that embeds first-order logic symbols such as
constants, facts and rules into real-valued tensors. Normally, constants are repre-
sented as one-hot vectors (first order tensor). Predicates and functions are matrices
(second-order tensor) or higher-order tensors.

In early work, embedding techniques were proposed to transform symbolic rep-
resentations into vector spaces where reasoning can be done through matrix com-
putation [4, 47, 48, 42, 41, 6, 14, 57, 13, 39]. Training embedding systems can be
carried out as distance learning using backpropagation. Most research in this direc-
tion focuses on representing relational predicates in a neural network. This is known
as "relational embedding" [4, 41, 47, 48]. For representation of more complex logical
structures, i.e. first order-logic formulas, a system named Logic Tensor Network
(LTN) [42] is proposed by extending Neural Tensor Networks (NTN) [47], a state-
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Figure 4: Logic tensor network for P (x, y) → A(y) with G(x) = v and G(y) = u;
G are grounding (vector representation) for symbols in first-order language; and the
tensor order in this example is 2 [42].

of-the-art relational embedding method. Figure 4 shows an example of LTN for
P (x, y) → A(y). Related ideas are discussed formally in the context of constraint-
based learning and reasoning [19]. Recent research in first-order logic programs has
successfully exploited the advantages of distributed representations of logic sym-
bols for efficient reasoning [6], inductive programming [14, 57, 13], and differentiable
theorem proving [39].

3.3 Temporal Logic
One of the earliest works on temporal logic and neural networks is CTLK, where
ensembles of recurrent neural networks are set up to represent the possible world
semantics of linear temporal logics [8]. With single hidden layers and semi-linear
neurons, the networks can compute a fixed-point semantics of temporal logic rules.
Another work on representation of temporal knowledge is proposed in Sequential
Connectionist Temporal Logic (SCTL) [5] where CILP is extended to work with the
nonlinear auto-regressive exogenous NARX network model. Neural-Symbolic Cog-
nitive Agents (NSCA) represent temporal knowledge in recurrent temporal RBMs
[34]. Here, the temporal logic rules are modelled in the form of recursive conjunc-
tions represented by recurrent structures of RBMs. Temporal relational knowledge
embedding has been studied recently in Tensor Product Recurrent Neural Network
(TPRN) with applications to question-answering [32].
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4 Neural-Symbolic Learning

4.1 Inductive Logic Programming

Inductive logic programming (ILP) can take advantage of the learning capability
of neural-symbolic computing to automatically construct a logic program from ex-
amples. Normally, approaches in ILP are categorised into bottom-up and top-down
which inspire the development of neural-symbolic approaches accordingly for learn-
ing logical rules.

Bottom-up approaches construct logic programs by extracting specific clauses
from examples. After that, generalisation procedures are usually applied to search
for more general clauses. This is well suited to the idea of propositionalisation
discussed earlier in Section 3.2.1. For example, CILP++ [15] employed a bottom
clause propositionalisation technique to construct CILP++. In [52], a system called
CRILP is proposed by integrating bottom clauses generated from [15] with RBMs.
However, both CILP++ and CRILP learn and fine-tune formulas at a propositional
level where propositionalisation would generate a large number of long clauses re-
sulting in very large networks. This leaves an open research question of generalising
bottom clauses within neural networks that scale well and can extrapolate.

Top-down approaches, on the other hand, construct logic programs from the most
general clauses and extend them to be more specific. In neural-symbolic terms, the
most popular idea is to take advantage of neural networks’ learning and inference
capabilities to fine-tune and test the quality of rules. This can be done by replacing
logical operations by differentiable operations. For example, in Neural Logic Pro-
gramming (NLP) [57], learning of rules are based on the differentiable inference of
TensorLog [6]. Here, matrix computations are used to soften logic operators where
the confidence of conjunctions and confidence of disjunctions are computed as prod-
uct and sum, respectively. NLP generate rules from facts, starting with the most
general ones. In Differentiable Inductive Logic Programming (∂ILP) [14], rules are
generated from templates, which are assigned to parameters (weights) to make the
loss function between actual conclusions and predicted conclusions from forward
chaining differentiable. In [39], Neural Theorem Prover (NTP) is proposed by ex-
tending the backward chaining method to be differentiable. It shows that latent
predicates from rule templates can be learned through optimisation of their dis-
tributed representations. Different from [57, 14, 39] where clauses are generated and
then softened by neural networks, in Neural Logic Machines (NLM) [13] the rela-
tion of predicates is learned by a neural network where input tensors represent facts
(predicates of different arities) from a knowledge base and output tensors represent
new facts.
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4.2 Horizontal Hybrid Learning

Effective techniques such as deep learning usually require large amounts of data to
exhibit statistical regularities. However, in many cases where collecting data is dif-
ficult a small dataset would make complex models more prone to overfitting. When
prior knowledge is provided, e.g. from domain experts, a neural-symbolic system
can offer the advantage of generality by combining logical rules/formulas with data
during learning, while at the same time using the data to fine-tune the knowledge.
It has been shown that encoding knowledge into a neural network can result in
performance improvements [7, 12, 49, 52]. Also, it is evident that using symbolic
knowledge can help improve the efficiency of neural network learning [7, 15]. Such
effectiveness and efficiency are obtained by encoding logical knowledge as controlled
parameters during the training of a model. This technique, in general terms, has
been known as learning with logical constraints [19]. Besides, in the case of lacking
prior knowledge one can apply the idea of neural-symbolic integration for knowledge
transfer learning [51]. The idea is to extract symbolic knowledge from a related do-
main and transfer it to improve the learning in another domain, starting from a
network that does not necessarily have to be instilled with background knowledge.
Self-transfer with symbolic-knowledge distillation [23] is also useful as it can enhance
several types of deep networks such as convolutional neural networks and recurrent
neural networks. Here, symbolic knowledge is extracted from a trained network
called “teacher” which then would be used to encoded as regularizers to train a
“student” network in the same domain.

4.3 Vertical Hybrid Learning

Studies in neuroscience show that some areas in the brain are used for processing
input signals e.g. visual cortices for images [20, 37], while other areas are responsible
for logical thinking and reasoning [43]. Deep neural networks can learn high level
abstractions from complex input data such as images, audio, and text, which should
be useful at making decisions. However, despite that optimisation process during
learning being mathematically justified, it is difficult for humans to comprehend
how a decision has been made during inference time. Therefore, placing a logic
network on top of a deep neural network to learn the relations of those abstractions,
can help the system to be able to explain itself. In [12], a Fast-RCNN [18] is used
for bounding-box detection of parts of objects and on top of that, a Logic Tensor
Network is used to reason about relations between parts of objects and types of
such objects. In such work, the perception part (Fast-RCNN) is fixed and learning is
carried out in the reasoning part (LTN). In a related approach, called DeepProbLog,
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end-to-end learning and reasoning have been studied [28] where outputs of neural
networks are used as "neural predicates" for ProbLog [10].

5 Neural-symbolic Reasoning
Reasoning is an important feature of a neural-symbolic system and has recently
attracted much attention from the research community [14]. Various attempts have
been made to perform reasoning within neural networks, both model-based and
theorem proving approaches. In neural-symbolic integration the main focus is the
integration of reasoning and learning, so that a model-based approach is preferred.
Most theorem proving systems based on neural networks, including first-order logic
reasoning systems such as SHRUTI [56], have been unable to perform learning as
effectively as end-to-end differentiable learning systems. On the other hand, model-
based approaches have been shown implementable in neural networks in the case
of nonmonotonic, intuitionistic and propositional modal logic, as well as abductive
reasoning and other forms of human reasoning [2, 5]. As a result, the focus of
neural-symbolic computation has changed from performing symbolic reasoning in
neural networks, such as for example implementing the logical unification algorithm
in a neural network, to the combination of learning and reasoning, in some cases
with a much more loosely-defined approach rather than full integration, whereby a
hybrid system will contain different components which may be neural or symbolic
and which communicate with each other.

5.1 Forward and Backward chaining
Forward chaining and backward chaining are two popular inference techniques for
logic programs and other logical systems. In the case of neural-symbolic systems
forward and backward chainings are both in general implemented by feedforward
inference.

Forward chaining generates new facts from the head literals of the rules using
existing facts in the knowledge base. For example, in [34], a “Neural-symbolic Cog-
nitive Agent” shows that it is possible to perform online learning and reasoning in
real-world scenarios, where temporal knowledge can be extracted to reason about
driving skills [34]. This can be seen as forward chaining over time. In ∂ILP [14], a
differentiable function is defined for each clause to carry out a single step of forward
chaining. Similar to this, NLM [13] employs neural networks as a differentiable chain
for forward inference. Different from ∂ILP, NLM represent the outputs and inputs
of neural networks as grounding tensors of predicates for existing facts and new facts
respectively.
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Backward chaining, on the other hand, searches backward from a goal in the
knowledge base to determine whether a query is derivable or not. This form a tree
search starts from the query and expands further to the literals in the body of the
rules whose heads match the query. TensorLog [6] implements backward chaining
using neural networks as symbols. The idea is based on stochastic logic programs
[31], and soft logic is applied to transform the hypothesis search into a chain of
matrix operations. In NTP, a neural system is constructed recursively for backward
chaining and unification where AND and OR operators are represented as networks.
In general, backward (goal-directed) reasoning is considerably harder to achieve in
neural networks than forward reasoning. This is another current line of research
within neuro-symbolic computation and AI.

5.2 Approximate Satisfiability

Inference in the case of logic programs with arbitrary formulas is more complex.
In general, one may want to search over the hypothesis space to find a solution
that satisfies (mostly) the formulas and facts in the knowledge base. Exact infer-
ence, that is, reasoning maximising satisfiability, is NP-hard. For this reason, some
neural-symbolic systems offer a mechanism of approximate satisfiability. Tensor logic
networks are trained to approximate the best satisfiability [42] making inference effi-
cient with feedforward propagation. This has made LTNs applicable successfully to
the Pascal data set and image understanding [12]. Penalty logic shows an equivalence
between minimising violation and minimising energy functions of symmetric connec-
tionist networks [35]. Confidence rules, another approximation approach, shows the
relation between sampling in restricted Boltzmann machines and search for truth-
assignments which maximise satisfiability. The use of confidence rules also allows
one to measure how confident a neural network is in its own answers. Based on that,
neural-symbolic system “confidence rule inductive logic programming (CRILP)” was
constructed and applied to inductive logic programming [52].

5.3 Relationship reasoning

Relational embedding systems have been used for reasoning about relationships be-
tween entities. Technically, this has been done by searching for the answer to a
query that gives the highest grounding score [4, 3, 47, 48]. Deep neural networks
are also employed for visual reasoning where they learn and infer relationships and
features of multiple objects in images [41, 58, 29].
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6 Neural-symbolic Explainability

The (re)emergence of deep networks has again raised the question of explainability.
The complex structure of a deep neural network turns them into a powerful learning
system if one can correctly engineer its components such as type of hidden units,
regularisation and optimization methods. However, limitations of some AI applica-
tions have heightened the need for explainability and interpretability of deep neural
networks. More importantly, besides improving deep neural networks for better ap-
plications one should also look for the benefits that deep networks can offer in terms
of knowledge acquisition.

6.1 Knowledge Extraction

Explainability is a promising capability of neural-symbolic systems where the be-
haviour of a connectionist network can be represented in a set of human-readable
expressions. In early work, the demand for solving “black-box” issues of neural
networks has motivated a number of rules extraction methods. Most of them are
discussed in the surveys [1, 24, 55]. These attempts were to search for logic rules
from a trained network based on four criteria: (a) accuracy, (b) fidelity, (c) consis-
tency and (d) comprehensibility [1]. In [17], a sound extraction approach based on
partially ordered sets is proposed to narrow the search of logic rules. However, such
combinatorial approaches do not scale well to deal with the dimensionality of current
networks. As a result, gradually less attention has been paid to knowledge extrac-
tion until recently when the combination of global and local approaches started to be
investigated. The idea here is either to create modular networks with rule extraction
applying to specific modules or to consider rule extraction from specific layers only.

In [50, 51], it has been shown that while extracting conjunctive clauses from the
first layer of a deep belief network is fast and effective, extraction in higher layers
results in a loss of accuracy. A trained deep network can be employed instead for
extraction of soft-logic rules which is less formal but more flexible [23]. Extraction
of temporal rules have been studied in [34] and generated semantic relations of
domain variables over time. Besides formal logical knowledge, hierarchical Boolean
expressions can be learned from images for object detection and recognition [44].

6.2 Natural Language Generation

For explainability purposes, another approach couples a deep network with sequence
models to extract natural language knowledge [22]. In [4], instead of investigating
the parameters of a trained model, relational knowledge extraction is proposed where
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predicates are obtained by performing inference of a trained embedding network on
text data.

6.3 Program Synthesis
In the field of Program Induction, neuro-symbolic program synthesis (NSPS) has
been proposed to construct computer programs on an incremental fashion using
a large amount of input-output samples [33]. A neural network is employed to
represent partial trees in a domain-specific language are tree nodes, symbols and
rules are vector representations. Explainability can be achieved through the tree-
based structure of the network. Again, this shows that the integration of neural
networks and symbolic representation is indeed a solution for both scalability and
explainability.

7 Conclusions
In this paper, we highlighted the key ideas and principles of neural-symbolic comput-
ing. In order to do so, we illustrated the main methodological approaches which allow
for the integration of effective neural learning with sound symbolic-based, knowledge
representation and reasoning methods. One of the principles we highlighted in the
paper is the sound mapping between symbolic rules and neural networks provided by
neural-symbolic computing methods. This mapping allows several knowledge repre-
sentation formalisms to be used as background knowledge for potentially large-scale
learning and efficient reasoning. This interplay between efficient neural learning and
symbolic reasoning opens relevant possibilities towards richer intelligent systems.
The comprehensibility and compositionality of neural-symbolic systems, offered by
building networks with a logical structure, allows for integrated learning and rea-
soning under different logical systems. This opens several interesting research lines,
in which learning is endowed with the sound semantics of diverse logics. This, in
turn, contributes towards the development of explainable and accountable AI and
machine learning-based systems and tools.
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Abstract

We introduce Differentiable Reasoning (DR), a novel semi-supervised learning
technique which uses relational background knowledge to benefit from unlabeled
data. We apply it to the Semantic Image Interpretation (SII) task and show
that background knowledge provides significant improvement. We find that
there is a strong but interesting imbalance between the contributions of updates
from Modus Ponens (MP) and its logical equivalent Modus Tollens (MT) to the
learning process, suggesting that our approach is very sensitive to a phenomenon
called the Raven Paradox [10]. We propose a solution to overcome this situation.

1 Introduction
Semi-supervised learning is a common class of methods for machine learning tasks
where we consider not just labeled data, but also make use of unlabeled data [2].
This can be very beneficial for training in tasks where labeled data is much harder
to acquire than unlabeled data.
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One such task is Semantic Image Interpretation (SII) in which the goal is to
generate a semantic description of the objects on an image [7]. This description is
represented as a labeled directed graph, which is known as a scene graph [13]. An
example of a labeled dataset for this problem is VisualGenome [15] which contains
108,077 images to train 156,722 different unary and binary predicates. The binary
relations in particular make this dataset very sparse, as there are many different
pairs of objects that could be related. However, a far larger, though unfortunately
unlabeled, dataset like ImageNet [24] contains over 14 million different pictures.
Because it is so much larger, it will have many examples of interactions that are not
present in VisualGenome. We show that it is possible to improve the performance of a
simple classifier on the SII task significantly by adding the satisfaction of a first-order
logic (FOL) knowledge base to the supervised loss function. The computation of this
satisfaction uses an unlabeled dataset as its domain.

For this purpose, we introduce a statistical relational learning framework called
Differentiable Reasoning (DR) in Section 2, as our primary contribution. DR uses
simple logical formulas to deduce new training examples in an unlabeled dataset.
This is done by adding a differentiable loss term that evaluates the truth value of
the formulas.

In the experimental analysis, we find that the gradient updates using the Modus
Ponens (MP) and Modus Tollens (MT) rules are disproportionate. That is, MT often
strongly dominates MP in the learning process. Such behavior suggests that our
approach is highly sensitive to the Raven Paradox [10]. It refers to the phenomenon
that the observations obtained from “All ravens are black” are dominated by its
logically equivalent “All non-black things are non-ravens”. Indeed, this is closely
related to the material implication which caused a lot of discussion throughout
the history of logic and philosophy [8]. Our second main contribution relies on its
investigation in Section 2.4, and our proposal to cope with it. Finally, we show results
on a simple dataset in Section 3 and analyze the behavior of the Raven Paradox in
Section 4. Related works and conclusion closes the paper.

2 Differentiable Reasoning
2.1 Basics and Notation
We assume a knowledge base K is given in a relational logic language, where a
formula ϕ ∈ K is built from predicate symbols P ∈ P, a finite set D of objects (also
called constants) o ∈ Rm with m ∈ Z+, and variables x ∈ V, in the usual way (see
[28]). We also assume that every ϕ ∈ K is in Skolem normal form. For a vector of
objects and variables, we use boldfaced o and x, respectively. A ground atom is
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Figure 1: The Bayesian network describing the joint probability
p(Wl,Wu,K|Ol,Ou,θ). The left plate is the supervised classification likeli-
hood and the right plates the unsupervised part in which we calculate the probability
of the formulas K. The parameters θ are shared in both parts.

a formula with no logical connective and no variables, e.g., partOf(cushion, chair)
where partOf ∈ P and cushion, chair ∈ D. Given a subset Di ⊆ D, a Herbrand base
Ai corresponding to Di is the set of all ground atoms generated from Di and P. A
world (often called a Herbrand interpretation) wi for Di assigns a binary truth value
to each ground atom P(o) ∈ Ai i.e., wi(P(o)) ∈ {0, 1}.

Each predicate P has a corresponding differentiable function fθ
P(o) ∈ Rα(P)×m →

[0, 1] parameterized by θ (a vector of reals) with α(P) being the arity of P, which
calculates the probability of P(o). This function could be, for instance, a neural
network.

Next, we define a Bernouilli distribution function over worlds as follows

p(wi|θ, Di) =
∏

P(o)∈Ai

fθ
P(o)wi(P(o)) · (1− fθ

P(o))1−wi(P(o)) (1)

where wi(P(o)) (similarly, 1−wi(P(o))) refers to the exponent. Given some world
wi, the valuation function v(ϕ,wi) is 1 if ϕ is true in that world, that is, wi |= ϕ,
and 0 otherwise.

Next, we explain the domain we use in this article. We have a dataset D
partitioned into two parts: a labeled dataset Dl = 〈Ol,Wl〉 and an unlabeled dataset
Du = 〈Ou, ∅〉 where both Ol and Ou are sets of finite domains Di, and Wl is a set
containing the correct world wl∗

i for all pictures i.
In Figure 1 we illustrate the Bayesian network associated with this problem. The

left plate denotes the usual supervised data likelihood p(Wl|Ol,θ) and the right
plates denote the probabilities of the truth values of the formulas ϕ ∈ K using
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p(K|Ou,θ).
It is important to note that the true worlds wu∗

i of the unlabeled dataset are not
known, that is, they are latent variables and they have to be marginalized over. The
formulas in knowledge base K are all assumed to be true. We can now obtain the
optimization problem that we can solve using gradient descent as

θ∗ = arg max
θ

p(Wl|Ol,θ) · p(K|Ou,θ) (2)

= arg max
θ

|Ol|∏

i=1
p(wl∗

i |Dl
i,θ) ·

|Ou|∏

i=1

∑

wu
i

p(wu
i |Du

i ,θ) ·
∏

ϕ∈K
v(ϕ,wu

i ) (3)

= arg min
θ

−
|Ol|∑

i=1
log p(wl∗

i |Dl
i,θ)

−
|Ou|∑

i=1
log


∑

wu
i

p(wu
i |Du

i ,θ) ·
∏

ϕ∈K
v(ϕ,wu

i )




(4)

where in the last step we take the log and minimize with respect to the negative
value. The optimization problem in Equation 4 consists of two terms. The first is
the cross-entropy loss for supervised labeled data. The second can be understood as
follows: A world entails a (full) knowledge base (i.e., w |= K) if w |= ϕ holds for all
ϕ ∈ K (that is, the product of their valuations is 1). For each domain Di, we then
find the sum of the probabilities of worlds that entail the knowledge base. This is an
example of what we call the differentiable reasoning loss. The general differentiable
reasoning objective is given as

θ∗ = arg min
θ

−
|Ol|∑

i=1
log p(wl∗

i |Dl
i,θ) + LDR(θ;K,Ou). (5)

2.2 Differentiable Reasoning Using Product Real Logic

The marginalization over all possible worlds wu
i requires 2|Ai| combinations, so it is

exponential in the size of the Herbrand base. Therefore, the problem of finding the
sum of the probabilities p(wi|θ) for all worlds wi that entail the knowledge base K
is #P-complete [23] Instead, we shall perform a much simpler computation defined
over logical formulas and the parameters θ as follows:
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LDR(θ;K,Ou) =
∑

ϕ∈K
L(θ;ϕ,Ou) (6)

L(θ;∀xφ,Ou) = −
∑

D∈Ou,o∈D
log p̂(φ|x = o,θ) (7)

p̂(P(x1, ..., xα(P))|x = o,θ) = fθ
P(o1, ..., oα(P)) (8)

p̂(¬φ|x = o,θ) = 1− p̂(φ|x = o,θ) (9)
p̂(φ ∧ ψ|x = o,θ) = p̂(φ|x = o,θ) · p̂(ψ|x = o,θ) (10)
p̂(φ ∨ ψ|x = o,θ) = p̂(¬(¬φ ∧ ¬ψ)|x = o,θ) (11)
p̂(φ→ ψ|x = o,θ) = p̂(¬φ ∨ ψ|x = o,θ) (12)

where α : P → Z+ is the arity function for each predicate symbol, and φ and ψ are
subformulas of ϕ. p̂ computes the fuzzy degree of truth of some formula ϕ using
the product norm and the Reichenbach implication [1], which makes our approach
a special case of Real Logic [26] that we call Product Real Logic. The ∀ quantifier
is interpreted in Equation 7 by going through all instantiations, which in this case
is all n-tuples in the domain Di, and also looping over all domains Di in the set of
domains (i.e., pictures) Oi.

Example 1. The loss term associated with the formula ϕ = ∀x, y chair(x) ∧
partOf(y, x)→ cushion(y) ∨ armRest(y) is computed as follows:

L(θ;ϕ,Ou) = −
∑

D∈O,o1,o2∈D
1− fθ

chair(o1) · fθ
partOf(o2, o1)·

(1− fθ
cushion(o2)) · (1− fθ

armRest(o2))

Say Ou contains the picture in Figure 2 whose domain is {a, b} and the model
predicts the following distribution over worlds:

fθ
chair(a) = 0.9 fθ

chair(b) = 0.4
fθ

cushion(a) = 0.05 fθ
cushion(b) = 0.5

fθ
armRest(a) = 0.05 fθ

armRest(b) = 0.1
fθ

partOf(a, a) = 0.001 fθ
partOf(b, b) = 0.001

fθ
partOf(a, b) = 0.01 fθ

partOf(b, a) = 0.95

The model returns high values for fθ
chair(a) and fθ

partOf(b, a) but it is not confident
of fθ

cushion(b), even though it is clearly higher than fθ
armRest(b). We can decrease
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∀xypartOf(a, a) ∧ → partOf(b, b)∧→

partOf(b, a)

∧ →

partOf(a, b)

∧→
cushion(a)

chair(a)

chair(b)

cushion(b)

Figure 3: The Bayesian network associated with grounding of the formula
∀x, y chair(x) ∧ partOf(y, x) → cushion(y) on the domain from Figure 2. We treat
connectives and quantifiers as binary random variables (which correspond to subfor-
mulas through their parents) of which the conditional probabilities are computed
using truth tables.

L(θ;ϕ,Ou) = 0.612 simply by increasing fθ
cushion(b), since fθ

cushion is a differentiable
function with respect to θ.

This example shows that we can find a new instance of the cushion predicate
using reasoning on an unlabeled dataset. This process uses both statistical reasoning
and symbolic rules. As more data improves generalization, those additional examples
could help reducing the sparsity of the SII problem. Furthermore, [7] showed that it
is also possible to correct wrong labels due to noisy data when these do not satisfy
the formulas.

Figure 3 shows the Bayesian Network for this formula on the picture from Figure
2, illustrating the computation path. We treat each subformula as a binary random
variable of which the conditional probabilities are given by truth tables. Because the
graph is not acyclic, we can use loopy belief propagation which is empirically shown to
often be a good approximation of the correct probability [18]. In fact, Product Real
Logic can be seen as performing a single iteration of belief propagation. However,
this can be problematic. For example, the degree of truth of the ground formula
chair(o)∧chair(o) would be computed using fθ

chair(o)2 instead of the probability of this
statement, fθ

chair(o) [22]. We show in Appendix A that Product Real Logic computes
the correct probability p(K|Ou,θ) for a corpus K under the strong assumption that,
after grounding, each ground atom is used at most once.

An interesting and useful property of our approach is that it can perform multi-
hop reasoning in an iterative, yet extremely noisy, manner. In one iteration it might,
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for instance, increase fθ
cushion(o). And since fθ

cushion(o) will return higher values in
future iterations, it can be used to prove that the probability of other ground atoms
that occur in formulas with cushion(o) should also be increased or decreased.

Figure 2: We can deduce that b
is a cushion if we are confident
about the truth value of chair(a)
and partOf(b, a) using the formula
∀x, y chair(x) ∧ partOf(y, x) →
cushion(y).

A convenient property of the SII task is that
we consider just binary relations between objects
appearing on the same pictures. The Herbrand
base then contains O(|P| · |Di|2) ground atoms,
which is feasible as there are often not more than
a few dozen objects on an image. This property
also holds in natural language to some degree in
the following way: only the words appearing in
the same paragraph can be related. This is in
contrast to the knowledge base completion task
where we have a single graph with many objects
and predicates [27].

2.3 Implementation

We optimize the negative logarithm of the likeli-
hood function given in Equation 4. In particular,
we use minibatch gradient descent to decrease
the computation time both for the supervised
part of the loss and the unsupervised part. We
turn the unsupervised loss into minibatch gradient descent by approximating the
computation of the ∀ quantifier: instead of summing over all n-tuples and all domains,
we randomly sample from these n-tuples independently from the domain it belongs
to.

2.4 The Material Implication

To provide a better understanding of the inner machinery of our approach, we will
elaborate on some interesting partial derivatives. Say, we have a formula ϕ of the form
∀xφ(x)→ ψ(x), where φ(x) is the antecedent and ψ(x) the consequent of ϕ. First,
we write out the partial derivative of L(θ;ϕ,Ou) with respect to the consequent,
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where we make use of the chain rule:

dMP
ϕ (o) := ∂ log p̂(ϕ|Ou,θ)

∂p̂(ψ|o,θ) =
∂

∑
o∈D,D∈Ou

log p̂(φ→ ψ|o,θ)
∂p̂(ψ|o,θ) (13)

=
∂

∑
o∈D,D∈Ou

log(1− p̂(φ|o,θ) · (1− p̂(ψ|o,θ)))
∂p̂(ψ|o,θ) (14)

= p̂(φ|o,θ)
1− p̂(φ|o,θ) · (1− p̂(ψ|o,θ))) = p̂(φ|o,θ)

p̂(φ→ ψ|o,θ) (15)

dMP
ϕ (o) mirrors the application of the Modus Ponens (MP) rule using the im-

plication φ → ψ for the assignment of o to x. The MP rule says that if φ is true
and φ→ ψ, then ψ should also be true. Similarly, if φ(o) is likely and φ→ ψ, then
ψ(o) should also be likely. Indeed, notice that dMP

ϕ (o) grows with p̂(φ|o,θ). Also,
dMP
ϕ (o) is largest when p̂(φ|o,θ) is high and p̂(ψ|o,θ) is low as it then approaches a

singularity in the divisor. We next show the derivation with respect to the negated
antecedent:

dMT
ϕ (o) := ∂ log p̂(ϕ|Ou,θ)

∂p̂(¬φ|o,θ) = p̂(¬ψ|o,θ)
p̂(φ→ ψ|o,θ) (16)

Similarly, it mirrors the application of the Modus Tollens (MT) rule which says
that if ψ is false and φ→ ψ, then φ should also be false. Again, realize that dMT

ϕ (o)
grows with p̂(ψ|o,θ).

It is easy to see that dMP
ϕ (o) > dMT

ϕ (o) whenever p̂(φ|o,θ) > p̂(¬ψ|o,θ). Fur-
thermore, the global minimum of L(θ;ϕ,Ou) is some parameter value θ∗ so that
p̂(φ|Ou,θ∗) = 0 and p̂(ψ|Ou,θ∗) = 1 for all o, which corresponds to the material
implication.

Next, we show how these quantities are used in the updating of the parameters θ
using backpropagation and act as mixing components on the gradient updates:

log p̂(ϕ|Ou,θ)
∂θ

=
∑

o∈D,D∈Ou

dMP
ϕ (o) · ∂p̂(ψ|o,θ)

∂θ
+ dMT

ϕ (o) · ∂p̂(¬φ|o,θ)
∂θ

(17)

2.5 The Raven Paradox
In our experiments, we have found that this approach is very sensitive to the raven
paradox [10]. It is stated as follows: Assuming that observing an example of a
statement is evidence for that statement (i.e., the degree of belief in that statement
increases), and that evidence for a sentence also is evidence for all the other logically

640



Differentiable Reasoning

p(phi)
0.0

0.2
0.4

0.6
0.8

1.0

p(p
si)

0.0

0.2

0.4

0.6

0.8

1.0

log dM
P

−6

−4

−2

0

2

4

p(phi)
0.0

0.2
0.4

0.6
0.8

1.0

p(p
si)

0.0

0.2

0.4

0.6

0.8

1.0

log dM
P

−6

−4

−2

0

2

4

p(phi)
0.0

0.2
0.4

0.6
0.8

1.0

p(p
si)

0.0

0.2

0.4

0.6

0.8

1.0

log dM
T

−6

−4

−2

0

2

4

p(phi)
0.0

0.2
0.4

0.6
0.8

1.0

p(p
si)

0.0

0.2

0.4

0.6

0.8

1.0

log dM
T

−6

−4

−2

0

2

4

Figure 4: Plots of dMP
ϕ (o) (Equation 15) and dMT

ϕ (o) (Equation 16). Note that the y
axis is using a log scale.

equivalent sentences, then our belief in “ravens are black” increases when we observe
non-black non-raven, by the contrapositive “non-ravens are non-black”. Equation
17 shows however that the gradient is equally determined by positive evidence
(observing black ravens) as by contrapositive evidence (observing non-black non-
ravens). Because in the real world there are far more ravens than non-black objects,
optimizing p̂(∀o raven(o)→ black(o)|Ou,θ) amounts to recognizing that something
is not a raven when it is not black. However, Machine Learning models tend to be
biased when the class distribution is unbalanced during training [30].

Figure 4 shows plots of dMP
ϕ (o) and dMT

ϕ (o) for different values of p̂(φ|o,θ) and
p̂(ψ|o,θ). In practice, for many formulas of this form, the most common case will be
that the model predicts ¬φ(o)∧¬ψ(o). Then, dMP

ϕ (o) approaches 0 and dMT
ϕ (o) will

be around 1. For instance, the average value of dMP
ϕ (o) for the problem in Example

1 is 0.214, while the average value of dMT
ϕ (o) is 0.458.

We analyze a naive way of dealing with this phenomenon. We normalize the
contribution to the total gradient of MP and MT reasoning by replacing the loss
function L of rules of the form ∀xφ(x)→ ψ(x) as follows:

L(θ;K,Ou) = −
∑

ϕ∈K

∑

o∈D,D∈Ou

µ · dMP
ϕ (o)

∑
o′∈D,D∈Ou

dMP
ϕ (o′) · p̂(ψ|o,θ)

+
(1− µ) · dMT

ϕ (o)
∑

o′∈D,D∈Ou
dMT
ϕ (o′) · p̂(¬φ|o,θ)

(18)
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where µ is a hyperparameter that assigns the relative importance of Modus
Ponens with respect to Modus Tollens updates. We are then able to control how
much either contributes to the training process. We experiment with different values
of µ and report our findings in the next section.

3 Experiments
We carried out simple experiments on the PASCAL-Part dataset [3] in which the
task is to predict the type of the object in a bounding box and the partOf relation
which expresses that some bounding box is a part of another. For example, a tail
can be a part of a cat. Like in [7], the output softmax layer over the 64 object
classes of a Fast R-CNN [9] detector is used for the bounding box features. Note
that this makes the problem of recognizing types very easy as the features correlate
strongly with the true output types. Therefore, to get a more realistic estimate, we
randomly split the dataset into only 7 labeled pictures for Dl and 2128 unlabeled
pictures for Du. Additionally, we only consider 11 (related) types out of 64 due to
computational constraints. As there is a large amount of variance associated with
randomly splitting in this way, we do all our experiments on 20 random splits of the
dataset. The results are evaluated on a held-out validation set of 200 images. We
compare the accuracy of prediction of the type of the bounding box and the AUC
(area under curve) for the partOf relationship.

We model fθ
typei

(o) using a single Logic Tensor Network (LTN) layer [7] of width
10 followed by a softmax output layer to ensure mutual exclusivity of types. The term
fθ

partOf(o1, o2) is modeled using an LTN layer of width 2 and a sigmoid output layer.
The loss function is then optimized using RMSProp over 6000 iterations. We use the
same relational background knowledge as [7] which are rules like the following:

∀x, y chair(x) ∧ partOf(y, x)→ cushion(y) ∨ armRest(y)
∀x, y cushion(x) ∧ partOf(x, y)→ chair(y) ∨ bench(y)
∀x ¬partOf(x, x)
∀x, y partOf(x, y)→ ¬partOf(y, x)
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Precision types
Supervised 0.440± 0.0013
Unnormalized 0.455± 0.0014
Normalized µ = 0 0.454± 0.0015
Normalized µ = 0.1 0.505± 0.0014
Normalized µ = 0.25 0.517± 0.0013
Normalized µ = 0.5 0.510± 0.0013
Normalized µ = 0.75 0.496± 0.0012
Normalized µ = 1 0.435± 0.0015

Table 1: Results of the experiments. 20
runs using random splits of the data are
averaged alongside 95% confidence intervals.
All results are significant.

We compare three methods. In the
first one we train without any rules,
which forms the supervised baseline.
In the second, unnormalized, we add
the rules to the unlabeled data. This
does not use any technique for dealing
with the raven paradox. In the last
one called normalized, we normalize
MP and MT reasoning using Equation
18 for several different values of µ. The
results in Table 1 are statistically sig-
nificant when using a paired t-test.

4 Analysis
Our experiments show that we can significantly improve on the classification of the
types of objects for this problem. The normalized method in particular outperforms
the unnormalized method, suggesting that explicitly dealing with the raven paradox
is essential in this problem.

4.1 Gradient Updates
We analyze how the different methods handle the implication using the quantities
dMP
ϕ and dMT

ϕ defined in Section 2.4. Figure 5 shows the average magnitude of dMP
ϕ

and dMT
ϕ in the unnormalized model, which is computed by averaging over all training

examples and formulas. This shows that the average MT gradient update is, in this
problem, around 100 times larger than the average MP gradient update, i.e., it uses
far more contrapositive reasoning. The unnormalized method acts very similar to
the normalized one with µ ≈ 0.01.
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Figure 5: The average magnitude of Modus
Ponens and Modus Tollens gradients.

Next, we will analyze how accurate
our approach is at reasoning by compar-
ing its ’decisions’ to what should have
been the correct ’decision’. We sam-
ple 2000 pairs of bounding boxes from
the PASCAL-Part test set 〈Ot,Wt〉.
We consider a pair of bounding boxes
o from an image i in the test set Ot.
dMP
ϕ (o) is a correctly reasoned gradient

if both φ(o) and ψ(o) are true in wt
i.

Likewise, dMT
ϕ (o) is a correctly reasoned

gradient if ¬ψ(o) and ¬φ(o) are true in
wt
i. Furthermore, we say that dMP

ϕ (o)
is a correctly updated gradient if at least
ψ(o) is true in wt

i, and that dMT
ϕ (o) is

correctly updated when ¬φ(o) is true in wt
i. Then the correctly reasoned ratios are

computed using

crMP =
∑
ϕ∈K

∑
o∈Di,Di∈Ot

v(φ,wt
i) · v(ψ,wt

i) · dMP
ϕ (o)

∑
ϕ∈K

∑
o′∈Di,Di∈Ot

dMP
ϕ (o′) (19)

crMT =
∑
ϕ∈K

∑
o∈Di,Di∈Ot

v(¬φ,wt
i) · v(¬ψ,wt

i) · dMT
ϕ (o)

∑
ϕ∈K

∑
o′∈Di,Di∈Ot

dMT
ϕ (o′) . (20)

The definition of the correctly updated ratios (cuMP and cuMT) are nearly the
same. cuMP is found by removing the v(φ,wt

i) term from Equation 19, and cuMT by
removing the v(¬ψ,wt

i) term from Equation 20.
Figure 6 shows the value of these ratios during training. The dotted lines

that represent MT reasoning shows a convenient property, namely that is nearly
always correct because of the large class imbalance. This could be the reason there
is a significant benefit to adding contrapositive reasoning. Both normalized and
unnormalized at µ = 1 seems to get ’better’ at reasoning during training, as the
correctly updated ratios go up. After training for some time, the unnormalized
method seems to be best at reasoning correctly for both MP and MT. Another
interesting observation is the difference between crMP and cuMP. At many points,
about half of the gradient magnitude correctly increases p̂(ψ|o,θ) because the model
predicts a high value for p̂(φ|o,θ), even though φ(o) is not actually in the test labels.
It is interesting to see that, this kind of faulty reasoning which does lead to the right
conclusion is actually beneficial for training.

Furthermore, disabling MT completely by setting µ to 1 seems to destabilize the
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Figure 6: The left plot shows crMP and crMT and the right plot cuMP and cuMT for
the Unnormalized method (denoted as Unnorm) and the Normalized methods with
µ = 0.25 and µ = 1.

reasoning. This is also reflected in the validation accuracy that seems to decline when
cuMP declines. This suggests that contrapositive reasoning is required to increase
the amount of correct gradient updates.

5 Related work

5.1 Injecting Logic into Parameterized Models

Our work follows the recent works on Real Logic [26, 7], and the method we use is
a special case of Real Logic with some additional changes. A particular difference
is that the logic we employ has no function symbols, which was due to simplicity
purposes. Injecting background knowledge into vector embeddings of entities and
relations has been studied in [5, 6, 20, 21]. In particular, [22] has some similarities
with Real Logic and our method. However, this method is developed for regularizing
vector embeddings instead of any parameterized model. In this sense, it can also
be seen as a special case of Real Logic. Semantic Loss [31] is a very similar semi-
supervised learning method. This loss is essentially Equation 4, which makes it more
accurate than Product Real Logic, but also exponential in runtime. To deal with
this, they compile SDD’s [4] to make the computation tractable. A recent direction
is DeepProbLog [17], a probabilistic version of Prolog with neural predicates that
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also uses SDD’s. [11] also injects rules into a general model with a framework that
transfers the logic rules using a so-called teacher network. This model is significantly
different from the aforementioned ones, as it does not add a loss for each rule.

5.2 Semi-Supervised Learning

There is a large body of literature on semi-supervised methods [19, 2]. In particular,
recent research on graph-based semi-supervised learning [14, 32, 33] relates unlabeled
and labeled data through a graph structure. However, they do not use logically
structured background knowledge. It is generally used for entity classification,
although in [25] it is also used on link prediction. [16] introduced the surprisingly
effective method Pseudo-Label that first trains a model using the labeled dataset,
then labels the unlabeled dataset using this model and continues training on this
newly labeled dataset. Our approach has a similar intuition in that we use the
current model to get an estimation about the correct labels of the labeled dataset,
and then use those labels to predict remaining labels, but the difference is that we
use background knowledge to choose these labels.

6 Conclusion and Future Work

We proposed a novel semi-supervised learning technique and showed that it is possible
to find labels for samples in an unlabeled dataset by evaluating them on relational
background knowledge. Since implication is at the core of logical reasoning, we
analyzed this by inspecting the gradients with respect to the antecedent and the
consequent. Surprisingly, we discovered a strong imbalance between the contributions
of updates from MP and MT in the induction process. It turned out that our approach
is highly sensitive to the Raven paradox [10] requiring us to handle positive and
contrapositive reasoning separately. Normalizing these different types of reasoning
yields the largest improvements to the supervised baseline. Since it is quite general,
we suspect that issues with this imbalance could occur in many systems that perform
inductive reasoning.

We would like to investigate this phenomenon with different background knowledge
and different datasets such as VisualGenome and ImageNet. In particular, we are
interested in other approaches for modelling the implication like different Fuzzy
Implications [12] or by taking inspiration from Bayesian treatments of the Raven
paradox [29]. Furthermore, it could be applied to natural language understanding
tasks like semantic parsing.
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Appendices
A Conditional Optimality of Product Real Logic

Considering only a single domain D of objects x ∈ RD, we have the Herbrand base A.
Let ϕ ∈ K be a set of function-free FOL formulas in Skolem-normal form. Furthermore,
let P = {P1, ...,PK} be a set of predicates which for ease of notation and without loss of
generality we assume to all have the arity α.

Each ground atom P(o) ∼ Bern(fθ
P (o)) is a binary random variable that denotes the

binary truth value. It is distributed by a Bernoulli distribution with mean fθ
P ∈ Rα×D → [0, 1].

For each formula ϕ, we have the set of ground atoms Aϕ ⊆ A appearing in the
instantiations of ϕ. Likewise, the assignment of truth values of Aϕ is wϕ, which is a subset
of the world w. We can now express the joint probability, using Equation 1 and the valuation
function defined in Section 2.1:

p(K,w|D,θ) = p(w|θ) ·
∏

φ∈K
v(φ,wϕ) (21)

We will first show that Product Real Logic is equal to this probability with two strong
assumptions. The first is that the sets of ground atoms Aϕ are disjoint for all formulas in
the corpus, i.e. if

⋃

ϕ∈K
Aϕ = ∅ (22)

The second is that the set of ground atoms used in two children (a direct subformula) of
some subformula of a formula in K are disjoint. If pa(φ) returns the parent of φ and r(φ)
returns the root of φ (the formula highest up the tree), then

Aφ ∪Aψ = ∅,∀{φ, ψ|pa(φ) = pa(ψ) ∧ r(φ) ∈ K} (23)
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First, we marginalize over the different possible worlds:

p(K|D,θ) =
∑

w
p(w|θ) ·

∏

ϕ∈K
v(φ,wϕ) (24)

=
∑

wϕ1

p(wϕ1 |θ) ·


... ·

∑

wϕ|K|

p(wϕ|K| |θ) ·
∏

ϕ∈K
v(φ,wϕ)


 (25)

=
∑

wϕ1

p(wϕ1 |θ) · v(ϕ1,wϕ1) ·


... ·

∑

wϕ|K|

p(wϕ|K| |θ) · v(ϕ|K|,wϕ|K|)


 (26)

=
∏

ϕ∈K

∑

wϕ

p(wϕ|θ) · v(φ,wϕ) (27)

where we make use of Equation 22 to join the summations, the independence of the prob-
abilities of atoms from Equation 1 and marginalization of the atoms other than those in
Aϕ.

We denote the set of instantiations of ϕ by Sϕ, and a particular instance by s. As ⊆
Aϕ then is the set of ground atoms in s (and respectively for ws. Next we show that∑

wϕ
p(wϕ|θ) · v(ϕ,wϕ) =

∏
s∈Sϕ p̂(ϕ|s,θ). As the formulas are in prenex normal form,

ϕ = ∀x1, ..., xαφ. We find that, using Equation 23 and the same procedure as in Equations
24-27

∑

wϕ

p(wϕ|θ) · v(ϕ,wϕ) =
∑

wϕ

p(wϕ|θ) ·
∏

s∈Sϕ
v(φ,ws) (28)

=
∏

s∈Sϕ

∑

ws

p(ws|θ) · v(φ,ws). (29)

Then, it suffices to show that
∑

ws
p(ws|θ) · v(φ,ws) = p̂(φ|s,θ). This is done using

recursion. For brevity, we will only proof it for the ¬ and ∧ connectives, as we can proof the
others using those.

Assume that φ = P(x1, ..., xn). Then if ws(P(x1, ..., xn)) is the binary random variable
of the ground atom P(x1, ..., xn) under the instantiation s,

∑

ws

p(ws|θ) · v(P(x1, ..., xn),ws) (30)

=
∑

ws\{ws(P(x1,...,xn))}
p(ws\{ws(P(x1, ..., xn))}|θ)· (31)

∑

ws(P(x1,...,xn))

p(ws(P(x1, ..., xn))|θ) · ws(P(x1, ..., xn)) (32)

=p(ws(P(x1, ..., xn))|θ) = p̂(P(x1, ..., xn)|s,θ). (33)

Marginalize out all variables but ws(P(x1, ..., xn)). v(P(x1, ..., xn),ws) is 1 if ws(P(x1, ..., xn))
is, and 0 otherwise.

650



Differentiable Reasoning

Next, assume φ = ¬ψ. Then
∑

ws

p(ws|θ) · v(¬ψ,ws) (34)

=
∑

ws

p(ws|θ) · (1− v(ψ,ws)) (35)

=
∑

ws

p(ws|θ)−
∑

ws

p(ws|θ) · v(ψ,ws) (36)

=1−
∑

ws

p(ws|θ) · v(ψ,ws) = p̂(¬ψ|s,θ) (37)

Finally, assume ϕ = φ ∧ ψ. Then
∑

ws

p(ws|θ) · v(φ ∧ ψ,ws) (38)

=
∑

ws

p(ws|θ) · v(φ,ws) · v(ψ,ws) (39)

=
∑

wφs

∑

wψs

p(wφs |θ) · p(wψs |θ) · v(φ,wφs) · v(ψ,wψs)· (40)

∑

ws\(wφs∪wψs )

p(ws\ (wφs ∪wψs) |θ) (41)

=
∑

wφs

p(wφs |θ) · v(φ,wφs) ·
∑

wψs

p(wψs |θ) · v(ψ,wψs) (42)

=
∑

ws

p(ws|θ) · v(φ,ws) ·
∑

ws

p(ws|θ) · v(ψ,ws) (43)

=p̂(φ|s,θ) · p̂(ψ|s,θ) = p̂(φ ∧ ψ|s,θ) (44)

Using this result and equations 27 and 29, we find that

p(K|D,θ) =
∏

ϕ∈K

∑

wϕ

p(wϕ|θ) · v(φ,wϕ) (45)

=
∏

ϕ∈K

∏

s∈Sϕ

∑

ws

p(ws|θ) · v(φ,ws) (46)

=
∏

ϕ∈K

∏

s∈Sϕ
p̂(φ|s,θ) (47)
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Abstract

Logic-based problems such as planning, formal verification and inference,
typically involve combinatorial search and structured knowledge representation.
Artificial neural networks (ANNs) are very successful statistical learners; how-
ever, they have been criticized for their weaknesses in representing and in pro-
cessing complex structured knowledge which is crucial for combinatorial search
and symbol manipulation. Two high-order neural architectures are presented
(Symmetric and RNN), which can encode structured relational knowledge in
neural activation, and store bounded First Order Logic (FOL) constraints in
connection weights. Both architectures learn to search for a solution that satis-
fies the constraints. Learning is done by unsupervised “practicing” on problem
instances from the same domain, in a way that improves the network-solving
speed. No teacher exists to provide answers for the problem instances of the
training and test sets. However, the domain constraints are provided as prior
knowledge encoded in a loss function that measures the degree of constraint
violations. Iterations of activation calculation and learning are executed until a
solution that maximally satisfies the constraints emerges on the output units.
As a test case, block-world planning problems are used to train flat networks
with high-order connections that learn to plan in that domain, but the tech-
niques proposed could be used more generally as in integrating prior symbolic
knowledge with statistical learning.
Keywords: artificial neural networks, planning as SAT, constraint satisfaction,
unsupervised learning, logic, neural-symbolic integration, high-order neural con-
nections

1 Introduction
The use of symbol processing and knowledge representation is fundamentally es-
tablished in the field of Artificial Intelligence as a tool for modelling intelligent
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behaviour and thought. Specifically, logic-based systems have been used for years
to model behaviour and cognitive processes. Nevertheless, it is believed that pure
symbolic modelling is not enough to capture the adaptivity, sub-symbolic compu-
tation, robustness, and parallelism of the kind demonstrated by neural networks in
the brain [20, 34].

ANNs are used today mainly for statistical pattern recognition, classification,
and regression, and have been criticized for their weakness in representing, manipu-
lating, and learning complex structured knowledge. citeFodor:1988,McCarthy:1988.
For example, in areas such as vision and language processing, ANNs excel as clas-
sifiers and predictors. However, they are not very successful in recognizing and
manipulating complex relationships among objects in a visual scene or in processing
complex sentence structures governed by non-trivial semantic and syntactic con-
straints.

The main motivation of this paper is therefore to enable ANNs to have learnable
combinatorial search and relational representation capabilities while using “prac-
ticing” to speed-up the search. Having such capabilities without sacrificing their
statistical learning abilities will allow integration of the symbolic and statistical ap-
proaches for performing high-level cognitive tasks as motivated in previous research
[3, 10, 11, 29, 34].

Several fundamental questions arise in the effort to represent and process complex
knowledge using ANNS. First, there is a problem of representation and coding:
How can objects and complex relational structures be encoded in the activation of
neurons? This should be done without exponential explosion of network size, [7]
and without losing accuracy as structural complexity grows [28]. Then, there is
the problem of encoding learnable relational knowledge in connection weights. Also
puzzling is the way to dynamically translate between the two forms of knowledge, i.e.,
retrieving structured relational knowledge from connection weights into activation
encoding and in the opposite direction, storing new and revised active memories
in the connection weights for later use. Finally, how can learning to search be
done without the presence of a teacher who knows the correct answer for the search
problem at hand?

The network architectures proposed, “Recurrent Network for Constraint Satis-
faction” (CONSRNN) and “Symmetric Network for Constraint Satisfaction” (CON-
SyN), enable compact encoding of attributes and relationships in neural activation
and storage of long-term relational constraints in connection weights. When pro-
vided with a problem to solve, such networks can execute iterative cycles of unit
activation and learning, until a satisfying solution emerges on the output units. By
unsupervised practicing on a training set composed of a few problem instances, the
network can learn and improve its speed at solving unseen instances from a test set.
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The two neural architectures are described, theoretically analysed, and empiri-
cally tested. In the implementations presented, flat networks with high-order mul-
tiplicative connections (sigma-pi units) are used with standard activation functions:
sigmoidal in CONSRNN and binary-threshold in CONSyN.

The proposed ANNs facilitate learning by minimizing a loss function that is
based on the domain constraints, which are provided as prior knowledge. When the
loss is minimized, it means that the output activation values encode a solution that
minimizes the constraint violation.

The paper is organized as follows: Section 2 illustrates an example of a simple
block-world planning problem that will be learned and searched by the proposed
ANNs. In section 3, we show how to represent the inputs and the solution output
of the planning problem in activation of the network’s visible units. Section 4 illus-
trates two different neural architectures for constraint satisfaction: CONSRNN, a
network based on simple recurrence loop, and CONSyN, based on symmetric con-
nections. Thereafter, sigma-pi units are reviewed, and two types of loss functions are
introduced which measure how well a solution satisfies the constraints of the prob-
lem. The detailed activation-learning algorithm of CONSyN and its mathematical
derivation are described in Section 5, while Section 6 describes the algorithm devel-
oped for CONSRNN. Section 7 describes the experimental framework and results.
Section 8 discusses related disciplines, offers conclusions, and suggests directions for
future research.

2 A Simple Planning Problem and Its Constraints

Although this article is about a general technique to learn logic constraints, for
illustration, we have chosen the well-known problem of planning in block-world with
a simple yet non-standard reduction to grounded FOL along the lines of “Planning
as SAT” [18].

Consider a world of blocks, where some blocks happen to be on the floor, while
other blocks are arranged“above" others. A planning agent has the task of arranging
the blocks by a series of moves, so that a certain “goal” configuration of blocks is
reached. The block-world changes with time, as the agent moves “cleared” blocks
and puts them either on the floor or on top of other blocks. The result of the planning
process is a “solution plan” which details a series of block-world configurations which
are the result of corresponding moves. A solution plan therefore, is a series of
configurations, that starts with the initial block configuration at time t = 0, ends in
the goal configuration at time t = K, while each intermediate configuration at time
t = 1 . . .K is a result of valid moves executed on the previous configuration at time
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Figure 1: A planning problem instance: a) initial block configuration, b) goal con-
figuration

t−1. A valid move of block i to block j at time t, requires both blocks to be cleared
at t; i.e there are no block above i, and no blocks above j at t unless it is the floor.

The relation Above(i, j, t) specifies that block i is above block j at time step
t. Note that although the Above relation completely specifies the world states and
the plan, for ease of understanding and rule simplification, few other relations are
added:

Move(i, t) // block i moves at time t
Cleared(i, t) // block i at time t is cleared (nothing on top)1

Floor(i) // object i is a floor

A planning problem instance is specified by an initial configuration of blocks and a
goal configuration. Figure 1a is an example of an initial configuration which includes
four blocks. The goal configuration is to build a modified tower as in Figure 1b.

The plan that the agent must generate is a valid series of up to K block config-
urations in the “Above” relation, which by a series of corresponding valid “moves”,
gradually changes the initial configuration until the goal configuration is reached.
Formally, a valid plan is specified by the “Above” relation if the logic constraints
outlined in Table 1 hold. Though it is not the classic formulation of a planning
problem, satisfying the constraints of table 1 is sufficient to produce classic block
plans. For example, the Move(i, t) relation is non-orthodox one as most other for-

1The Clear relation sometimes behaves rather unintuitively. For example, even when a block
has no other block above it, it is not always cleared. Only when we move a block from block i
to block j do these blocks need to be cleared just before the move. The cleared behavior can be
“fixed” by adding more constraints, but this is unnecessary in our formalism.
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1) (∀ i, j, k, t > 0) Above(i, k, t)→
Above(i, k, t− 1) ∨Move(i, t− 1)

If one object is above another at
time t, it must be above that ob-
ject in the previous step or have
been moved in the previous step.

2) (∀ i 6= j, k, t) Above(i, k, t) ∧
Above(j, k, t)→ Floor(k)

If two objects are above an object
then that one object is the floor.

3) (∀ i, t) ¬Above(i, i, t) No object can be above itself.
4) (∀ i, t, k 6= i) Above(i, j, t)→
¬Above(i, k, t)

An object cannot be above more
than one object.

5) (∀ i, j, t) Floor(j)→ ¬Above(j, i) The floor cannot be above any ob-
ject

6) (∀ i, j, t) ¬Floor(j) ∧
Above(i, j, t)→ ¬Cleared(j, t)

If an object is above a second ob-
ject that is not floor, then the sec-
ond is not cleared.

7) (∀ i, t) Move(i, t < K)→
Cleared(i, t) ∧ Cleared(i, t+ 1)

If an object is moved at time t,
then it is cleared at time t and at
time t+ 1.

8) (∀ i, t) Move(i, t < K) ∧
Above(i, j, t+ 1)→ Cleared(j, t)

If an object was moved at time t
to be above a 2nd block, then the
2nd was cleared at time t.

9) (∀ i, t, ∃j) Move(i, t)→
Above(i, j, t)

If an object was moved, then it
was above something.

Table 1: Constraints of a simple block-world planning problem

mulations use a more explicit two-object “from-to” moves. The advantage of the
shorter formulation is in a reduced network complexity; i.e., the less explicit move
relation is more compact in terms of high-order connections, while the target object
can be inferred from the above relation at t + 1. Every valid plan must satisfy the
above hard constraints and every solution to this constraint satisfaction problem
can be proved to have the block plan properties; i.e. every configuration at time t is
valid (e.g., a block is above only one other block) and a result of a valid move on the
previous configuration). Nevertheless, we can add soft, non-monotonic rules [26].
Thus, for example, adding soft (∀i, t) (Cleared(i, t)) clears all blocks unless there
is something above them; and adding (∀i, t) ¬(Move(i, t)) minimizes the number of
moves, thus produces parsimonious plans. These soft rules are not mandatory for
valid plan generation in our particular planning example; however, can save in rules
and network connections, when for example, we wish to enforce frame axioms or
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parsimonious plans.
In a more general formulation, each constraint may be augmented by a positive

number, called alternately “penalty,” [26] “weight” in Markov Logic networks, [5] or
“confidence” [33, 4]. A satisfying solution in our case is a solution that minimizes
the sum of penalties of the violated constraints, when they are transformed into
augmented CNF form as specified next. In our simple block-world planning domain,
a penalty of 1000 is used to specify hard constraints, and a penalty of 1 is used for
soft constraints.

In block-world planning of bounded length, the size of the maximal plan is re-
stricted (K) and so is the maximal number of objects (N). These bounds are
necessary in our architectures, as the full solution output should be encoded using a
finite set of network units. These bounds are also used for reducing the above FOL
expressions into propositional Conjunctive Normal Form (CNF), by replicating the
constraints according to the indices specified. The reduction into propositional logic
uses standard grounding. Thus for example, (∀i, t,∃j) Move(j, t)→ Above(i, j, t) is
translated into a CNF by replicating:

for i = 1 to N
for t = 1 to K
AssertClause (“¬Move(i, t) ∨ Above(i, 1, t) Above(i, 2, t) . . .∨ Above(i,N, t)′′)

All planning instances including those of size (t) and object cardinality (n) smaller
that the bounds (n ≤ N and t ≥ K), share the same propositions and the same
hard and soft constraints specifying what a valid plan is, yet each planning instance
is different in its initial and goal states. These initial and goal states are considered
the inputs of the planning problem and can also be stated as simple conjunctive
constraints. For example, the following conjunctions specify the initial configuration
of Figure 1a:

Floor(1)∧Above(2, 4, 0)∧Above(4, 5, 0)∧Above(5, 1, 0)∧Above(5, 1, 0)∧Above(3, 1, 0)

where t = 0 is the first time step. The goal configuration at the final step of the
plan, as in Figure 1b, is specified by:

Above(3, 5,K) ∧Above(5, 4,K) ∧Above(4, 1,K) ∧Above(2, 1,K),

where t = K is the final state.
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Figure 2: The solution plan to the planning instance of Figure 1

A valid solution for the planning instance of Figure 1 is illustrated in Figure 2.
It consists of a series of valid block configurations in the “Above” relation which is
the result of a series of valid moves in time:

Move(2, 0), Move(4, 1), Move(5, 2), Move(3, 3).

The block configurations at each time step is valid in the sense that it is consis-
tent with all the hard constraints specified in Table 1. In Figure 2 at time 0, the
initial block configuration holds, and only Blocks 2 and 3 are cleared. By moving
Block 2 onto the floor, the configuration at t = 1 is created, where all blocks are
cleared except block 5. At t = 1 Block 4 is moved onto the floor. At t = 2, the
large green Block 5 is moved, and at t = 3 Block 3 is moved to create the desired
goal configuration at time t = 4. No block moves further, so that the same block
configuration remains static until the last time slot. The configuration of the last
step therefore satisfies the goal constraints.

Randomly generated planning instances are used for training and testing. Each
problem instance differs from others only in the initial and goal configurations;
the rest of the constraints (enforcing plan validity) are shared among the different
instances. A single ANN is created for solving any such planning instance of up to
N blocks and up to K steps.

This architecture is independent of the specific constraints that will be learned
and be stored as weights. The generated ANN will start solving a planning instance
problem by first clamping the Boolean values of the Initial-Goal input onto the
visible units of the network. In the following section, the structure of the visible
units of such ANN is described.
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3 Representing Relational Knowledge in Unit
Activation

To attach attributes to objects and to represent relationships among them, a repre-
sentation is needed. We base our representation on the binding mechanism published
in Pinkas et al. (2013). Its dynamic capabilities are, however, not exploited in the
simple planning example presented in this paper.

3.1 Forming Bindings to Represent Object to Object and Object
to Property Relations

In the block-world planning problem of the figures above, the number of block objects
is bound to N = 5 and the number of maximal planning steps to K = 6. To
provide a “glue” that will allow the binding of objects with their properties, or with
other objects collections of units called binders (b1 . . . b5) are allocated to each of the
objects that might participate in the plan. The network visible units consist of a pool
of such multi-unit binders. In the general binding framework, [27] the binders from
the pool are allocated dynamically to functions, constants and variables representing
predicate logic formulae; however in our simple example, the object variables are
grounded by attaching each object with a static binder. For example, binder b3
is a collection of units that was statically allocated block object 3. Binder b1 was
allocated to the floor object. More generally, b5 could bind multiple properties (e.g.,
color, size) and k-tuple relation. In our experiments we have generated blocks with
random colors and sizes, but no constraints were imposed on these properties.

In the block-world example, the binders are organized in 2D and 3D matrices of
units called crossbars. Each unit has an activation function and depending on the
network architecture, the activation value can be interpreted as either a Boolean
value or a probability of being True. Although in the general binding framework,
two crossbars are enough to represent any FOL formula, in our example, we use
multiple crossbars, to encode several properties and relationships.

3.1.1 Using multi-dimensional Crossbars

The rows in a crossbar may also reference other binders, thus forming relationships
among objects. For our planning example, the Above relationship should be 3D to
capture the fact that the object configurations change over time. Therefore, the
Above(N,N,K) crossbar is used, where the object dimensions are bounded by N
and the time dimension is bounded by K. Thus, Above(i, j, t) means that object
i is directly above object j at time t. Figure 3 illustrates the 3D Above crossbar
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Above t0 t1 t2 t3 t4 t5 

b1       

b2 4 1 1 1 1 1 

b3 1 1 1 1 5 5 

b4 5 5 1 1 1 1 

b5 1 1 1 4 4 4 

 

b5 

b2 
b1 

b3 
b4 

Figure 3: The Above crossbar encodes the relationships between objects at each
time step. The value j in cell Above(i, k) means: Above(i, j, k) = True. The bold
numbers represent clamped inputs.

encoding the changes in the Above relation over time in the solution plan of Figure
2, starting at the initial configuration and ending at the goal configuration. The
input to the planner consists of the initial and goal configurations (in bold), which
are clamped on the Above crossbar at t0 and t5, respectively. The configurations
encoded at time steps t1 to t4 are generated by the planning agent and represent
the solution found. In the example, at time t1, the Above crossbar encodes the
configuration after moving the block of Binder 2 onto the floor. At t2, as a result of
moving Block 5, all blocks are directly above the floor and all are cleared. The goal
is reached at t4 after moving Block 3 above Block 5. At time t4 no move is made,
so the configuration remains static at t5.

In Figure 4, the moves that should be executed by the plan are reflected within
the 2D crossbar, Move(N,K); the block referenced by Binder 2 is moved at t0,
creating the configuration encoded by Above(, , t1). The block referenced by binder
4 is moved at t1, creating the configuration of Above(, , t2). Block 5 is moved at t2
and finally, Block 3 is moved at t3, generating the desired goal at Above(, , t5). The
Move crossbar is not mandatory for representing the plan, as it can be deduced
from the Above(i, j, t) crossbar, yet its existence helps to specify shorter and more
intuitive constraints. Note also that unlike classical SAT reductions of planning
problem, Move(i, t) does not specify where the object 1 is moved to.
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 Move t0 t1 t2 t3 t4 

b1      

b2 1         

b3       1   

b4   1       

b5      1     

 

Figure 4: The Move(N,K) relation encodes which objects are moved at each time.

Similarly, the 2D and 1D crossbars Clear(N,K) and Floor(N) are not manda-
tory but are also added for convenience. The Clear crossbar describes which blocks
are cleared at the various time steps, while the Floor crossbar specifies which binder
represents the floor object.

The visible units of the planning ANN are made of the set of crossbars: Above,
Move, Clear, and Floor. These visible units consist of input units, which are clamped
per planning instance according to the desired initial-goal configurations, and the
output units, which encode the solution plan to be generated. Thus, the clamped
inputs are the units of Above, Clear and Floor crossbars at t0 (for the initial config-
uration) and at t5 (for the goal configuration). The output units consist of crossbar
units Move and Above(, , t), where K > t > 0.

Note that the Above relation, in this simple planning example, is a one-to-one
relationship (per time instance): at time t, a block cannot be above two blocks
and no two blocks can be above a single block. It is interesting to note that after
these constraints are learned in the proposed symmetric architecture, the rows and
columns of such crossbars turn to be “winner-takes-all” units, similar to the wiring
suggested by Hopfield and Tank (1985).

3.2 Using Compact Distributed Representations
The encoding of the blocks used in this paper is one-hot encoding. If we allow
distributed representations of the binders, binary relationships that are many-to-one
may be represented compactly by using N log(N) units. Thus, the Above relation,
which allows only one object to be above another single object, could be represented
by NK log(N) units only. Similarly, an embedded representation for the blocks
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could also be used but is out of the scope of this paper.
Theoretically, this compact embedded representation reduces the search space.

However, it may generate a biased input representation and may necessitate higher-
order connections or deeper networks as the complexity of the constraints grows.
Due to their complexity, the more compact representations were not tested experi-
mentally.

4 ANN Architectures for Constraint Satisfaction

In this section, two different types of ANN architectures are sketched for solving con-
straint satisfaction problems. The first uses a symmetric matrix of weights and is
based on the energy minimization paradigm, citeHopfield:1982,Peterson:1987 Boltz-
mann Machines, [1, 13] and Belief Networks [14]. The second architecture is a based
on Recurrent Neural Networks (RNN) [35].

Both architectures have almost identical sets of visible units, where input values
are clamped and where the output solution emerges as a satisfying solution. The
rest of the units are hidden units, which, as shown later, can be traded with high-
order connections. The visible units are directly mapped onto the problem’s Boolean
variables and should maximally satisfy the problem constraints. In the block-world
example, the visible units are the units of the crossbars described earlier; the input
units are those clamped by the initial and goal configurations, and the output units
are those crossbars that at the end of the process encode the generated plan.

In order to solve a specific problem instance clamped on the input units, both
network architectures iterate between activation calculation and learning phases.
Activation calculation (with some stochasticity) computes the activation function of
each of the units, while learning changes the connection weights, trying to minimize
a loss function that relates to constraint violations. The iterations stop when a
measure of the violation is “small enough,” indicating that the process continues
until all the hard constraints are satisfied and the number of violated soft constraints
is less than a given parameter.

The idea is that practicing on solving training problem instances from the same
domain will speed-up the solving of unseen instances; i.e., while solving several prob-
lem instances from the same domain, weights are learned that “better” enforce the
domain constraints, thus decreasing the number of activate-learn iterations needed
to solve test instances from the same domain.

Figures 5 and 6 illustrate the two architectures. Despite their similarities, the two
architectures are very different in their dynamics and in their learning procedures.
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Visible layer:  
Clamped Input 

Emerging solution 

 Optional hidden units  

Figure 5: CONSyN architecture. The visible units are capable of encoding both the
input and the desired solution. The hidden units are optional and may be traded
with high-order connections.

4.1 Energy Minimization Symmetric Architecture

Figure 5 illustrates a symmetric ANN architecture for constraint satisfaction (CON-
SyN). The visible units consist of the problem crossbars and allow the encoding of
both the input and the output. The input (init-goal) configuration is clamped onto
the input part of the visible units while at a fixed point; the non-clamped (output)
visible units get activations that ideally max-satisfy the constraints. Symmetric
(possibly high-order) weighted connections and (optional) hidden units enforce the
problem constraints on the visible units.

Whenever, the network reaches a unit-configuration that is a stable fixed, a

Algorithm 1 Activate-Learn iterations in CONSyN

Given a set of constraints, a problem instance input and a CONSyN network:
a. Clamp the input (e.g. initial and goal configuration).
b. Set random initial activation values to all non-clamped input units.
c. Until a fixed point is reached, unsynchronously calculate activations of the

non-clamped units.
d. While violation loss is not “small” enough, do:

i. CONSyN learning (Algorithm 3).
ii. Until a fixed point is reached, calculate activations of the non-clamped

units (Algorithm 4).
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check is made to determine whether constraints are still violated. If that happens,
a learning step is made, and the weights are updated in a way that increases the
energy of the unwanted unit configuration.

Algorithm 1 describes in high-level the iterative procedure of activation calcula-
tion and learning until a “good enough” solution is found. When the activate-learn
loop ends, the visible units have a violation measure that at least satisfy all the hard
constraints.

The learning in the symmetric case (see next section) may be viewed as increasing
the “importance” of the violated constraints. Such change in constraint importance
is translated to Hebbian connection weight changes that in turn increase the energy
of that violating state. Thus, learning is actually re-shaping of the energy function by
incrementally lifting the energy of violating local minima. The result of the training
is a network with an energy function that resembles a violation loss function.

4.2 Recurrent Network Architecture (CONSRNN)

The RNN in Figure 6 uses directed connections. The input layer consists of crossbar
units capable of encoding both the clamped problem input (e.g. initial-goal config-
urations) and activation states copied from a feedback layer in previous recurrence.
The output layer consists of crossbar units capable of encoding the generated plan.
In our implementation, a simple feedback loop connects the output units to the non-
clamped input units. However, the architecture is not limited to this simple form of

 

 

 

 

 

 

Hidden layers (optional) 

Input layer: 
Random/copied values 

Emerged solution Output layer: 

Random/Copied values 

Figure 6: The CONSRNN architecture consists of a feedforward network with simple
feedback loop. Activations from the feedback layer are copied onto the nonclamped
input layer.
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recurrence and future implementations could feed-back hidden units through time
in a more standard way.

After clamping the inputs, the activation of the output layer is calculated by for-
ward propagation. The output layer units together with the clamped input units fed
into a loss function that measures constraint violations. If the violation of the output
units is not “small enough,” learning is done by truncated backpropagation through
time, and the states of the output units are copied back into the non-clamped inputs
(possibly with added noise) for another iteration of forward activation and learn-
ing. The clamped inputs stay clamped as in the previous iteration, and the process
continues until a “good enough” solution emerges on the output units.

Algorithm 2 Activate-learn iterations in CONSRNN

Given a set of constraints, a problem instance input values and a CONSRNN net-
work:

a. Clamp the input values on the input units.
b. Set random initial activation values to all non-clamped input units.
c. Compute the activation of the output layer (by performing feed-forward cal-

culation).
d. While the violation loss is not “small enough,” do:

i. Back-propagate the gradient of a violation loss function through time.
ii. Copy the feedback layer onto the (non-clamped) input layer.
iii. Add noise to the non-clamped input units.
iv. Compute the activation of the output layer.

As in the symmetric architecture, the search involves iterations of activation,
violation check and learning. Algorithm 2 describes the iterative search for a “good
enough” solution at a high level (see Algorithm 5 for detailed implementation).

4.3 Sigma-Pi Units with High-Order Connections and their Trade-
off with Hidden Units

Unlike the classic units and pairwise synapses that are mainstream for many cur-
rent neural models, the output of a sigma-pi unit is based on the sum of weighted
contributions from multiplicative subsets of input values [6, 30, 36]. A sigma-pi unit
is a generalization of a “classic” unit that uses high-order connections in addition to
biases and pairwise connections. A k-order connection connects a set S of k units
using a single weight. It can be a directed high-order connection (as in the feed-
forward network of Figure 7) or a symmetric connection (Figure 8). Sigma-pi units
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Figure 7: High-order feed-forward network for XOR: Unit B is a sigma-pi unit with
a bias, 2 pairwise connections and a third-order connection.

calculate the weighted sum of products of the input units as in Equation 1.

zi =
∑

Sj,i

wsj

∏

k∈Sj,i−{i}
Xk (1)

To calculate the activation value for unit i, the weighted sum (zi, ) of the con-
nection products directing to i is computed. After calculating zi, unit i calculates
its activation value yi using an activation function σ as in Equation 2.

yi = σ(zi) (2)

Although a variety of activation functions could be used, the binary threshold
activation function was used in our implementation of CONSyN, whereas sigmoidal
activation was used in CONSRNN. In Figure 7, an example of a high-order feed-
forward network for XOR is shown with a third-order directed connection {A,B}C
that connects the product of Units A and B with Unit C and uses a single weight of
-4. Unit C also has a bias of -1 (first-order connection) and 2 pair-wise connections
{A}C , {B}C (second-order) with weights of -2. Unit C therefore is a sigma-pi unit
which calculates the weighted sum of input products: ZC = −4AB + 2A+ 2B − 1:

In the symmetric architecture, a k-order connection Si is treated as if there were k
such connections directing to each member of Si, all with the same weight. Figure 8,
illustrates an example of such high-order symmetric network. The network consists
of four symmetric connections: A single third-order connection that connects all
three units with weight of -2; two standard pairwise connections that connect units
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Figure 8: A symmetric third-order network with three sigma-pi units and a single
third-order connection, searching to satisfy C → (A XOR B).

A with B and B with C with weight of 1 and a negative bias for Unit B. Unit A
computes therefore ZA = C− 2BC, Unit B computes ZB = −2AC+C, and Unit C
computes ZC = −2AB+A+B− 1. The network happens to search for a satisfying
solution to C → (A XOR B) as when C = 1, either A or B must be 1 exclusively.

Standard (pairwise) symmetric networks may be viewed as searching for a min-
imum of a quadratic energy function that is directly related to the weighted con-
nections and may be written as a weighted sum of up to two variable products.
Similarly, high-order symmetric networks minimize higher-order energy functions
that sum the weighted products of the units in each of the connection subsets.
Thus, the network shown in Figure 8 minimizes the third-order energy function:
E(A,B,C) = C −AC −BC + 2ABC.

The connections are symmetric in the sense that a k-order connection is an
undirected hyper-arc with a single weight, i.e. the tensor of weights is invariant
under all permutations of its unit arguments. For example, in Figure 8, a single
weight is attached to all connection permutations: w{A,B}C = w{A,C}B = w{B,A}C =
w{B,C}A = w{C,A}B = w{C,B}A = −2.

High-order connections can be traded with Binary hidden units. Trivially so, in
feed-forward networks, a directed k-order connection that adds w∏k∈S Xk to the
sum of weighted inputs z, can be replaced by a single hidden unit that performs an
AND on the inputs using standard pairwise connections and a bias. Similarly, but
not as trivially, symmetric k-order connections in the energy minimization paradigm
can be replaced by at most k units with an equivalent energy function [24].
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In the implementations of the two architectures described in this paper, high-
order connections are used instead of hidden units. The lack of hidden units sim-
plifies analysis of the network dynamics and reduces the search space hyper param-
eters. On the other hand, high-order connections may easily cause overfitting, and
this may explain the degradation in network performance which was occasionally
observed. Nevertheless, future implementations may choose to trade the high-order
connections with deep layers of hidden units and thus will not need sigma-pi units.

4.3.1 Loss Functions

ANNs typically use loss functions to measure their functional error. The gradient
of this loss function is used to incrementally update the connection weights of the
network so that gradually, the error is minimized. Both suggested architectures use
loss functions that measure the degree of constraint violation of activation values
of the visible units. In both implementations, learning is done using Stochastic
Gradient Descent (SGD).

To calculate the loss, we assume that the domain constraints are provided as
a CNF input. Each literal in the CNF corresponds to a visible unit. The CNF
violation is measured therefore with respect to the array of activation values of the
output units. A clause is satisfied if at least one of its positive literals refers to a
unit activation that is interpreted as “True” or at least one of its negative literals
refers to a unit with “False” activation. The Violation Loss function (Vloss) in
Equation 3 is a non-negative function that measures how “far” the activation values
are from perfectly satisfying all the CNF clauses. A zero Vloss means that all clauses
are perfectly satisfied, and a positive Vloss means that some clauses are violated, at
least to a degree. More generally, in order to accommodate soft and hard constraints,
as well as other probabilistic and non-monotonic logic systems, [26, 5] each of the
clauses in the CNF is augmented by a positive penalty (αc), which specifies the
“strength” (or “confidence”) of the constraint. The violation of an augmented CNF
is the sum of the penalties of the violated clauses.

The activation values are in [0, 1], thus enabling logics with probabilistic or belief
interpretations.

V loss(CNF, y) = 1∑
c∈CNF αc

∑

c∈CNF

αc ClauseLoss(c, y) (3)

4.4 Log-Satisfaction Loss
The function ClauseLoss(c, y), described in the following sections, measures the
degree of violation of a single clause c with respect to an activations array y. Note,

669



Pinkas and Cohen

that ClauseLoss() has a probabilistic interpretation when y is assigned probabilities.
Equation 3 provides the Vloss function for measuring the violation of a given

augmented CNF. From Equation 3, it follows that the gradient of the total Vloss is
the average of the gradients per clause. In the following, two different formulations
of the ClauseLoss function are provided: Vprob and LogSat.

4.4.1 Vprob ClauseLoss

The Vprob of a clause c with respect to activation array y is the product of the
distances of the actual values yl of the literals l in the clause from the desired values
of that literals (Equation 4). The Vprob ClauseLoss function outputs a real number
in the range [0,1], where 1 means perfect violation, and 0 means perfect satisfaction.

V prob(c, y) =
∏

l∈c

(1− Lprob(l, c, yl)) (4)

The Lprob function of Equation 5 measures the degree[0-1] to which the literal is
satisfied. If probabilistic meaning is assigned to the unit activation, Lprob represents
the probability of satisfying the literal l in c.

Lprob(l, c, v) =
{
v if l is a positive literal in c
1− v else

(5)

When all the activation values y corresponding to the clause variables are op-
posing their desired literal signs, the clause is violated and the Vprob is exactly 1.
If at least one of the variables has an activation that is exactly the desired value,
the clause is satisfied and the product of the distances is 0. When the activa-
tion values are given probabilistic interpretation, the Vprob function outputs a real
number in (0,1) which could be interpreted as the probability of the clause to be
violated (under literal independence assumption). For example, consider a clause
c = (A ∨B ∨ ¬C ∨ ¬D) and activation array y = [0.1, 0.2, 0.6, 0.7] corresponding to
the truth probabilities of the units A,B,C,D, then

V prob(c, y) = (1− 0.1)(1− 0.2)(0.6)(0.7) = 0.3024

The Vprob Vloss of a multi-clause CNF is the (weighted) average of the Vprob
ClauseLosses per clause (Equations 3 and 4) and can be brought into a sum-of-
weighted-products form. For example, assuming penalties of 1, the Vprob Loss of
the two-clause CNF, (A∨B ∨¬C ∨¬D)∧ (¬C ∨D), is the average of the two Vprob
ClauseLoss functions: 1

2((1−A)(1−B)CD+C(1−D)) = 1
2((CD−ACD−BCD+

ABCD) + (C − CD)) which may be re-written as the weighted sum of products:
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0.5C − 0.5ACD − 0.5BCD + 0.5ABCD. The Vprob Vloss is differentiable and its
gradient with respect to the activation values is specified by Equation 6:

∂V prob(c, y)
∂v

=
{
−∏l∈c∧l 6=v(1− Lprob(l, c, yl)) if v is a positive literal in c
∏

l∈c∧l 6=v(1− Lprob(l, c, yl)) else
(6)

For example, given c = (A∨B ∨¬C ∨¬D), the partial derivative of Vprob with
respect to a positive literal A is:

· · · = ∂(1−A)(1−B)CD
∂A = −(1−B)CD = CD −BCD

Whereas the partial derivative with respect to a negative literal is:

· · · = (1−A)(1−B)D = D −AD = BD +ABD

Notice that the partial derivative of the Vprob Loss is the average of the partial
derivatives per clause and therefore also has the form of a sum of weighted products.
A sigma-pi unit can therefore calculate the partial derivative of the Vprob loss using
multiplicative connections. This ability of direct gradient computation by sigma-pi
units enables the Vprob function to act as an energy function which is minimized by
a symmetric architecture, rather than just as a loss function to guide learning.

Note also that when the chain rule is used (as in backpropagation) in conjunction
with sigmoidal-like activation functions with input z, the Vprob ClauseLoss gradient
is multiplied by v(1 − v), which is the derivative of the sigmoid. Equation 7 shows
the partial derivative of the Vprob ClauseLoss with respect to z.

∂V prob(c, y)
∂z

= · · ·

∂V prob(c, y)
∂v

∂v

∂z
= v(l − v)

{
−∏l∈c∧l 6=v(1− Lprob(l, c, y)) if l is a positive in c
∏

l∈c∧l 6=v(1− Lprob(l, c, y)) else
(7)

This may cause gradients to diminish when the units approach their extreme 0 or
1 values. Empirically this phenomenon was hardly observed in the implementation.

4.4.2 Log-Satisfaction loss

In another single-clause loss function, the log of the satisfaction degree is measured
using Equation 8. The LogSat ClauseLoss returns therefore values between 0 (satis-
faction) to infinity (violation) and may be interpreted as log likelihood under literal
dependency assumptions.
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logSat(c, y) = −log(maxl∈c{Lprob(l, c, y)} (8)

Intuitively, when one of the literals is in close proximity to its desired value in the
clause, the clause is “almost” satisfied. When this happens, the max returns a value
near 1 and the “log” therefore is near 0. When the y values are near the opposite
of their desired values, the “max” returns a value near 0, and the “–log” value
approaches infinity. When probabilistic interpretation is taken, logSat computes the
probability of satisfying a clause assuming literal dependencies such as p(A|B) = 1
or p(B|A). The partial derivative of LogSat(c, y) with respect to a variable v in y
is given in Equation 9 (ignoring non-differentiable points).

∂logSat(c, y)
∂v

=





− 1
v if v is a positive literal in c and has maximal Lprob

1
1−v if v is a negative literal in c and has maximal Lprob
0 else (Lprob is not maximal)

(9)

Equation 10 is a result of using the chain rule for calculating the LogSat partial
derivative with respect to z, assuming sigmoidal-like activations are used. Note that
the result of multiplying Equation 9 by v(1− v) has no diminishing terms problem.

∂logSat(c, y)
∂z

= · · ·

∂logSat(c, y)
∂v

∂v

∂z
= v(l − v)





v − 1 if y is positive and has maximal Lprob
v if y is negative and has maximal Lprob
0 else

(10)

When using SGD, the update step becomes proportional to (1−v) for a positive
literal and (−v) for a negative one. This is intuitive, since it means that in a
violated clause, the variable closest to its desired value should be incremented if
it is a positive literal and decremented otherwise. The update step size should be
proportional to the proximity (1−Lprob). For example, when c = (A∨B∨¬C∨¬D)
and y = [0.1, 0.2.0.6.0.7] the gradient of the LogSat ClauseLoss with respect to z’s is
the array [0,0, 0.6,0], as C is the variable with maximal Lprob to its desired value,
and is a negative literal in c. To compute the Vloss gradient when the CNF contains
several clauses augmented by penalties, the gradients are computed for each clause
and then averaged according to the penalties. Similar yet different log-likelihood
loss which assumes literal independence, is possible but was not implemented.
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5 Algorithms Implemented for Flat High-order
CONSyN

In the CONSyN architecture, theVprob Loss function is used for two purposes: In the
first, it is used as a base for a high-order energy function that controls the dynamics
of the network and is gradually modified by the learning process. In the second, the
Vprob loss is used to guide the learning process, thus shaping the energy surface in
order to find solutions faster. Although several symmetric ANN paradigms could be
used (e.g., RBM, Belief Networks, MFT), a Hopfield-style network was implemented
with no hidden units at all but with high-order connections instead.

When the units of the CONSyN are activated asynchronously, the network may
be viewed as minimizing a high-order energy function using SGD. The units reverse
their activations in a direction opposite to the direction of the energy gradient.
Learning in this paradigm means that small changes are made to the energy surface
when the network settles on a violating local minimum, so that the energy of vio-
lating states is “lifted” while the energy of non-violating states remains unchanged.

5.1 Vprob Loss as an energy function
The energy function that is being learned is specified in Equation 11. It is very
similar to the Vprob loss function; however, there is no need to average and the
weights (β) are learned and need not be identical to the preset penalties (α) of the
loss function.

ECNF (y) =
∑

c∈CNF

βcV prob(c, y) =
∑

c∈CNF

βc

∏

l∈c

(1− Lprob(l, c, y)) (11)

The minimizing network consists of visible Hopfield-like sigma-pi units that cor-
respond to the variables y of the energy, symmetric high-order connections that
correspond to the product terms of the energy and connection weights which are
the coefficients of the products terms. This network can be initialized automatically
from the CNF with penalties that are preset (β = α). For example, the network
in Figure 9 is a result of pre-assigning a penalty of β1, β2 for the two clauses in
the CNF β1(A ∨B ∨ ¬C) and β2(¬A ∨B). The energy minimized by that network
is ECNF (A,B,C) = β1(1 − A)(1 − B)C + β2(A − AB) = β1C − β1BC − β1AC +
β1ABC + β2A − β2AB, while the network’s weights (Figure 9) are the coefficients
of the energy terms with opposite signs.

The units of Figure 9 compute (asynchronously) the energy gradient and reverse
their activations away from the gradient direction, thus performing SGD down the
energy.
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Figure 9: A high-order symmetric network that searches for a satisfying solution for
(A ∨B ∨ ¬C) ∧ (¬A ∨B) with corresponding learnable penalties β1 and β2.

When the β-penalties are all positive, Equation 11 is globally minimized in ex-
actly the satisfying solutions of the CNF. When the CNF could not be satisfied, the
global minima are those solutions with minimum violation.

In the experiments of the next section, an initial network has been generated in
two varieties: The first is a “compiled” network generated using connections derived
from the Vprob function with pre-set weights β = α. The second is a “random”
weight network where only the connection products are derived from the Vprob,
while the weights are initialized randomly in [-1,1].

5.2 Searching for Satisfying Solutions in an Energy Minimization
Network

As shown, by assigning positive penalties (β) in the energy of Equation 11, the
generated CONSyN network searches for solutions with minimal violation, yet it
may be plagued by local minima that only partially satisfy the CNF. The task
of learning, therefore, is to adjust the connection weights to avoid local minima.
The hope is that by using this kind of energy re-shaping, some local minima will
disappear and the average time required to find a satisfying solution will be reduced.
Although the learning process changes the energy surface, the β-penalties remain
positives, and it is therefore guaranteed that the satisfying solutions of the CNF
(if any) are equal to the global minima of the energy. The following is a specific

674



High-order Networks that Learn to Satisfy Logic Constraints

implementation of Algorithm 1 for solving a problem instance using a flat high-order
CONSyN network with Hopfield-like activations where SGD is used both during
learning (weight gradient) and during activation (state gradient):

Algorithm 3 Implemented CONSyN constraint solver

Given:
– Augmented CNF - constraints augmented with penalties
– Inputs for clamping - a set of literals to be clamped for a particular problem

instance
– CONSyN - with symmetric connections supporting the Vprob loss product

terms
Hyper-parameters:
– SelectedVClauses - the number of violated clauses to learn from
– WeightBound - a bound on the maximal connection weight allowed
– MaxSoft - specifying the maximal number of soft constraint violations

allowed
a. Clamp Inputs onto the input units.
b. Set random Binary activation values to all non-clamped units.
c. Calculate Activation until Convergence (Algorithm 4).
d. While (some hard constraints or more than MaxSoft soft constraints) are vio-

lated, do Learn-Activate:
i. CONSyN learning:

Randomly select violated clauses c (up to SelectedV Clauses such clauses)
For each selected c, do SGD using Generalized Anti-Hebb Learning:

for each connection s containing the negative literals of c,
– If the number of zero units in s is even, decrement weight ws

else increment ws

(no need for learning rate as the weight change is scaled so
that at least one clause unit flips value).

– If |ws| > WeightBound, downscale all weights
by a factor of 0.01.

ii. Calculate Activation until Convergence.

5.3 The Activation Calculation Process
In the activation step, the network sigma-pi units are asynchronously activated using
the binary threshold function of Equation 12, until an energy minimum is obtained.
Algorithm 4 describes the way activation fixed-point was implemented.
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y =





1 if z > 0
0 if z < 0
Flip else

(12)

Algorithm 4 Activation until Convergence calculation - Hopfield–like

Given:
– Symmetric network (CONSyN) and unit activations array
– MaxRandmFlips: the maximal number of consecutive random flips (hyper-

parameter)
Repeat loop:

a. Must flips: While there exists an unstable unit i; i.e. (yi = 1 ∧ zi < 0) or
(yi = 0 ∧ zi > 0), randomly select such unit i and flip its value.

b. Random Flips: if there exist unit i with zi = 0, then randomly select such unit
i and flip its value.

c. If MaxRandomFlips consecutive random flips were done, exit loop.

The activation values y at the end of the loop are considered the local minimum
of the energy function, despite the fact that the random walk in a plateau (Step b)
may have been terminated too early (by Step c).

5.4 A Generalized Anti-Hebb Learning Rule for k-order Connec-
tions

In SGD, when clauses are violated, the weights of the network change in a direction
opposite to the gradient of the Vprob Loss. This update step can be simplified into
a Hebbian rule that is generalized to high-order connections (see Equation 16).

Intuitively, activations that violate constraints should be “unlearned,” so that
the energy associated with such activations is increased. This is done by weakening
“supporting” connections and strengthening “unsupporting” connections in a process
which reminds the “sleep” phase in “wake-sleep” algorithms [14].

In the following, we provide mathematical justification for this generalized anti-
Hebb rule.

∆βc = −λ∂PropV loss(cnf, y)
∂βc

= −λ
∑

v

αc
∂ProP (c, y)

∂v

∂v

∂zv

∂zv

∂βc
(13)

The only learnable parameters in the energy of Equation 11 are the βc’s which
“weigh” each clause. Therefore, when performing SGD down Vprob Loss, the update
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rule for βc is obtained using the chain rule, where λ is the learning rate and αc is
the preset penalty of the augmented clause c (Equation 13). Notice however, that
in the symmetric paradigm, each unit v, computes (zv) which is (minus) the partial
derivative of the energy function as in Equation 14(a). Therefore, when computing
the partial derivative of z with respect to βc, Equation 14(b) is obtained. Combining
Equations 13 and 14(b) results in Equation 15.

(a)

zv = −
∑

c

βc
∂V prob(c, y)

∂v

(b)

∂zv

∂βc
= −∂V prob(c, y)

∂v
(14)

∆βc = λ
∑

v

αcβc

(
∂V prob(c, y)

∂v

)2∂v

∂z
(15)

From Equation 15 and knowing that ∂v
∂z ≥ 0, it follows that the β-weight of a

violated clause should always increase while executing SGD down the Vprob Loss.
Although somewhat surprising, this result is quite intuitive; whenever the network
falls into a local minimum that violates a clause, the learning process changes the
connection weights in order to strengthen the β-weight for the violated constraints
and therefore “lifts” the energy of the violating state.

A single clause may affect many connections, thus incrementing the penalty is
not a local weight change as one would wish for a neural network learning. Luckily,
from observing the Vprob ClauseLoss function, it is possible to deduce how each of
the weights involved will change when increasing the β-penalty as follows.

Looking at the Vprob Loss of Equations 4 and 5, one can observe that the sum
of products, that is the result of multiplying the proximities, consists of positive and
negative product terms. Each relevant product term includes the negative literals of
the clause, while its sign depends on the number of positive literals in the product.
The sign is positive when the product involves an even number of positive literals
and is negative when an odd number of positive literals are involved. For example,
for Clause c1: (A∨B ∨¬C), the Vprob product terms are: +C−AC−BC +ABC,
and all include the negative literal C. Product terms with an even number of
positive literals (such as ABC or C) are positive, and those with an odd number of
positive literals (such as −AC −BC) are negative terms. When these energy terms
are translated into connections, the signs are reversed for SGD. In the example,
the weight of the third-order connection ABC, should decrease because it includes
an even number of positive literals (A,B). Similarly, the weight of the pairwise
connection BC increases because it consists of an odd number of positive literals
(B).
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Fortunately, the parity of the positive literals can be sensed from the activation
of the units when the clause is violated. Upon violation of the clause, the unit
values corresponding to the positive literals are 0s (representing Boolean “false”)
while those corresponding to the negative literals are 1s (representing “true”). It is
therefore only necessary to compute the parity of the “false” units. If the number of
“false” units in a connection related to a violated clause is even, the weight should
decrease, otherwise, the weight should increase (Algorithm 3-i). This parity rule may
be put elegantly when the Boolean values of the units have bipolar representation
(1 for true, -1 for false) as in Equation 16:

∆ws = −λ
∏

yj∈S

yj (16)

where S is a symmetric connection of bi-polar units. When clause c is violated, a
relevant connection includes all the negative literals which are all ones, whereas the
positive literals are all -1. By multiplying the unit values, the parity of the number
of -1s is calculated.

Intuitively, the anti-Hebb rule means that whenever a clause c is violated, its
related connections are “unlearned” in the following way: if the number of false units
in a connection is even, the connected units “excite” each other and therefore, to
unlearn the connection should be weaken. Otherwise, when the number of false units
is odd, the units “inhibit” each other. Thus, the connection should be strengthen.

To see that this is an extension of the familiar anti-Hebb rule, consider a pairwise
connection (second-order). If the two units “fire” together (or “silent” together),
then they should be “unwired,” and the connection weight should weaken. If one
of the neurons fires and the other is silent, there is an odd number of false units,
and the “wiring” between them should be strengthened. Similarly, bias unlearning
is modeled as a 1-order connection.

Note that in implementing Algorithm 3, the learning rate λ is determined auto-
matically per each clause that is violated; i.e., for each violated clause, λ is set to
be the minimal value that would cause at least one unit within the violated clause
to flip its value.

6 Algorithms Implemented for High-order CONSRNN
Architecture

As seen in Figure 6, the RNN architecture consists of a feed forward network for
mapping the input layer into the output layer with a feedback loop. Although hidden
units and deep architecture may be used, high-order connections are implemented
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instead, with no hidden layers at all. Thus, in our implementation, the output layer
is then copied (with some noise added) back into the input layer. Algorithm 5 is
the more detailed implementation of Algorithm 2, using flat sigma-pi output units,
no hidden layers and truncated back propagation of only a single time step. The
connections that are used in the implementations are those specified by the product
terms of the Vprob Loss with the addition of full pairwise connectivity (input layer
to output layer) and biases in the output layer.

Algorithm 5 Implemented CONSRNN

Given:
– Augmented CNF
– Inputs for clamping
– CONSRN network - with connections at least supporting the Vprob Loss prod-

uct terms
Hyper-parameters:
– Batch: the number of learnings iterations before weight update is actually

made
– NoiseLevel: probability of randomizing a non-clamped input unit after

each iteration
– NoImprove: the number of non-improving iterations before reinitializing

inputs
– MaxSoft: the maximal number of soft constraints allowed in a solution

a. Clamp inputs.
b. Set random (0-1) initial activation values to the non-clamped input units.
c. Feed-forward computation: calculate activations for the output layer.
d. While (some hard constraints or more than MaxSoft soft constraints are vio-

lated), do (Learn-Activate iteration):
i. CONSRNN learning: weight changes using the noisy-δ-rule (Algorithm

6),
ii. Every Batch iterations, average the changes and update the weights.
iii. If there is no improvement in violation for NoImprove iterations, restart

by assigning random (0-1) values to the non-clamped input units
iv. else, copy the output layer onto the non-clamped inputs, while random-

izing (with probability NoiseLevel) the values of the non-clamped inputs.
v. Feed forward computation,

Learning using backpropagation involves computing the gradient of the Vloss
with respect to the weights, using the chain rule as in Equation 17, where Sv is a
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directed connection from a set S of input units to output unit v.

∆ws = −λ∂V loss(cnf, y)
∂ws,v

= −λ∂V loss(cnf, y)
∂zv

∂zv

∂ws,v
= λδv

∂zv

∂ws,v
(17)

The partial derivative of the −V loss(cnf, y) function with respect to zv, is the
error (δv) per unit v. Equation 18 provides the δ-error for unit v as a weighted
average of the errors per clause:

δv = −∂V loss(cnf, y)
∂zv

= − 1∑
c αc

∑

c

αc
∂ClauseLoss(c, y)

∂zv
(18)

Algorithm 6 Noisy δ calculation

Given a CNF and an activation array y Given hyper-parameters:
– NoisyGradProb: The probability of selecting a clause for random error calcu-

lation
– LearningRate: a positive real
– Mode = V probV loss/LogSatV loss: The specific type of Vloss function to be

used
a. For each violated clause c in the CNF calculate the clause error:

i. With NoisyGradProb probability, select a random unit v from clause c
and compute its error to be 1− v if v is positive in c and −v otherwise.

ii. Else (1−NoiseyGradProb probability), If Mode = LogSatV loss, select
the variable with maximal Lprob among the clause variable. Calculate
its -error using Equation 10;
else, (Mode = V probV loss) for each unit v in the clause:
calculate its -error using Equation 7.

b. The total error δv is the weighted average of the clause-errors for v (Equation
18).

The update rule for a weight is derived the usual way (from Equation 17) and is
provided in Equation 19: the delta rule for a high-order connection.

∆ws,v = λδv
∂zv

∂ws,v
= λδv

∏

yj∈S

yj (19)
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7 Experimental Results

Both proposed architectures share the same experimental framework: A weighted
CNF was generated from the block planning constraint specifications (Table 1) al-
lowing up to six blocks of up to three colors and three sizes and a maximum of
seven step plans. The CNF uses 385 variables and 5,832 clauses. Hard clauses were
augmented with α = 1000 penalties, and soft clauses with α = 1 penalties. Follow-
ing the CNF generation, a network (either CONSRNN or CONSyN) was generated
with visible units corresponding to the CNF variables and connections derived from
the V prob(CNF, y) V loss function. The generated network was given a training
set of planning instances to solve. Each training instance was solved by the net-
work, and the weights learned during the solving were carried to the next training
instance. Every 10 training instances, the network was tested by solving a set of 50
test instances.

The weights of the CONSRNN were randomly initialized, while in the CONSyN
architecture, a comparison was made between the performance of random weight
initialization and the performance of compiled weights initialization (β = α). Al-
gorithm 3 (for CONSyN) and Algorithm 5 (for CONSRNN) were used for both
training and testing instances. However, during testing, the learned weights were
not transferred from one instance to the next.

7.1 Generation of Train and Test Planning Instances

Random block-world instances were generated (450 instances) in three different levels
of difficulty: 150 3-block problems (easy), 150 4-block problems (medium), and 150
5-block problems (difficult). Each problem instance included a random initial block
arrangement, and a random goal arrangement. For each level of difficulty, 100
instances were used as a training set, and 50 different instances were used as a
test set. A set of 50 3-block instances was used as validation to select some of the
hyper-parameters.

As a proxy for performance, for each test instance, the number of steps required
to obtain a satisfying solution was measured. In the CONSyN architecture, the
number of unit flips was measured, whereas in the CONSRNN case, the number of
activate-learn iterations was measured.

In each experiment, the test set was tried prior to training (point 0 in all graphs)
and then again every 10 training instances. Each experiment was repeated 10 times,
each time with a different (randomized) order of the training instances. The per-
formance measured was averaged across the 50 test instances and then across 10
different experiments (with different randomization).
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Figure 10: Performance (in flips) starting with compiled weights

7.2 Results for the CONSyN Architecture

The experiments of the symmetric network were conducted using Algorithm 3 and
4 running on a symmetric network generated with connections that correspond to
the Vprob Loss terms of the CNF. Performance of a test instance was measured
by the number of unit flips that were made until a solution was found. Figure
10 shows the average performance of a compiled CONSyN trained using training
sets of various difficulty levels. Hyper-parameters used: SelectedV Clauses = 1,
WeightBound = 200, 000, and MaxSoft = 100.

The C3×3 graph shows the test performance prior and during a training session
of 100 3-block instances. The untrained (compiled) network starts at an average of
about 1,400 flips per instance. However, after 10 training instances, the network
gains speed (average flips is 385) and after just 20 training instances, the average
number of flips for solving a 3-block test problem is stabilized around 250 flips.

The rest of the graphs in Figure 10 are tested on more difficult (5-block) in-
stances. The C5 × 5, C4 × 5, and C3 × 5 graphs show the result of a 5-block test
performance while practicing on 5, 4, and 3 blocks respectively. Not surprisingly,
training on difficult (5-block) problems gives the best result. Surprisingly, the net-
work is capable of generalizing from practicing on easy problems when tested on the
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more difficult 5-block training set. Training using four blocks speeds-up better than
training on three blocks. However, training first on 20 easy (3-block) instances and
then on the more difficult four blocks achieved the performance of 5-block training
after about 60 trainings (see C34×5 graph). However, when continued with 4-block
trainings, the test performance degraded and approached the speed of the C4 × 5
graph.

In Figure 11, the performance of compiled networks on 5-block test problems
is compared with randomly initiated networks (Rand). The random networks are
extremely slow just prior to training, but after few training instances, performance
is accelerated and approaches that of the compiled network.

In Figure 12, the performance of a compiled CONSyN network of 5-block train-
ing and 5-block testing was measured using the average number of “activation-learn”
iterations instead of the number of flips. The shapes of the graphs measuring it-
erations seem to resemble those measuring flips. Prior to the training, it took an
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average of 170 iterations to solve a 5-block test instance and after just 20 training
instances, the number of trainings needed dropped to about 50 iterations on average.
This may signal that the number of interfering local minima drops.

7.3 Results for the CONSRNN Architecture

The experiments of the CONSRNN were conducted using Algorithm 5 running on an
RNN with high-order connections and no hidden units. The connections generated
included all pairwise connections between the input and output layers, as well as
all higher-order directed connections that corresponded to all permutations of the
Vprob Loss product terms. For example, if ABC is a term in the Vprob Loss, then
three directed 3-order connections are generated corresponding to the permutations
of this particular term: A,BC ; A,CB; B,CA. The weights were initialized with
uniform random real values in (−1, 1).

The performance of the CONSRNN was tested using the same methodology.
However, the number of “activate-learn” iterations was measured instead of the
number of flips. As in the CONSyN case, each experiment was replicated 10 times
with different randomizations, and the performance measured was averaged across
the test instances.

Figure 13 shows the average number of iterations needed for solving 3-block
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instances while training on 3-block instances. The graph compares the result of using
the Vprob Loss vs the LogSat Loss and shows similar speedups. In these experiments
hyper parameters were selected using the 3-block validation set: NoiseLevel = 0.15,
NoisyGradProb = 0.06, LearningRate = 0.06. Similarly, Figure 14 shows the
performance speed-up when testing and training 4-block problems, while Figure 15
shows testing and training of 5-block problems.
Empirically, on this set of experiments, the Vprob Loss provided better performance
than the logSat loss and was less prone to over-fitting.

In Figure 16, the effect of various noisy gradient probabilities on generalization
after just 10 training instances are shown on 3-block training and testing.

Noisy gradient probabilities between 0.07 and 0.23 were tried; when the gradient
noise level was too small (< 0.12), practicing was ineffective and even worsened the
performance (0.07). Best performance and generalization were observed with noisy
gradient probabilities of 0.16-0.18. Higher noise levels (e.g., NoisyGradProb = 0.23)
seemed to be able to speed up performance but also led to overall inferior solving
abilities.

In Figure 17, the effect of various noisy gradient probabilities is shown on a
5-block test set, while training used 4-block instances. Significant speed-up was
observed immediately after the first 10 training instances. However, the test per-
formance deteriorated when training continued as if the network was over-learning.
With further training though, this deterioration was corrected in some experiments.
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8 Related work
Planning problems have been stated as logic deductions since the early days of
artificial intelligence [8]. The idea of reducing planning problems into satisfiability
(SAT) was first introduced by Kautz and Selman (1992) [18]. SAT solvers are used
today for a variety of applications from planning to program verification and are
considered among the fastest solutions for applied np-hard problems [12]. Some
sophisticated SAT solvers learn on the fly while solving a specific problem instance,
yet to the best of the authors’ knowledge, SAT solvers currently do not carry learned
knowledge from one problem instance to another. The ANNs proposed in this paper
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may be viewed as SAT solvers that learn a particular application domain and adapt
to it by transferring the learned weight from one problem instance to the next. It
is thus interesting to note that the iterative loop in both CONSRNN and CONSyN
have some resemblance to the basic loop of local search techniques such as GSAT
and WALKSAT [31, 19]. In some sense, both architectures perform a strategy that
may remind the local search greedy heuristics used by such SAT solvers. Unlike
these solvers, though, the heuristic is learned by the ANNs and can be integrated
easily with statistical learning.

In our example of planning, we did not use the well-established “planning as
SAT” specification [18]. The specification used (Table 1) was chosen because it is
consistent with the previously published binding mechanism and because it generates
a more compact representation in terms of the order of connections and their number
[27].

In the area of neuro-symbolic integration, [10, 11] emphasis has been given on
how symbolic knowledge can be extracted from and injected into ANNs. The CON-
SyN architecture is similar in its nature to a more general architecture designed to
find proofs in bounded FOL ANNs [25, 21]. Adding learning ability on top of such
systems is a key contribution of this article. In Tran and Garcez (2018), [33] aug-
mented conjunctive rules were compiled prior to learning, and this was empirically
shown to speed-up learning. However, the rules are limited in their structure and
must be hierarchical in their nature. In the architectures proposed, augmented logic
expressions with no structure limitations could be injected by either pre-compiling
them (as in compiled CONSRNN) or by learning them using a Vloss function. Thus,
prior knowledge can be injected before, during, and even after doing statistical learn-
ing.

8.1 Discussion and Summary

Two ANN architectures have been introduced that learn to search in a combinatorial
search space, which is restricted by a set of logic constraints expressed using bounded
FOL. The iterative activate-learn process employed by both architectures may be
viewed as a parallel constraint satisfaction, using an adaptive learnable heuristic.
The constraints are activated by the inputs) and are learned upon failing to satisfy
them. After several iterations of activation and learning, a solution emerges on the
output units, which satisfies the hard constraints with no more than a pre-specified
number of soft constraint violations. The learned constraints may be viewed as
long-term knowledge for solving a problem, which is stored in connection weights
and retrieved when there is a need to solve an instance of the problem.

The learning process is guided by a loss function that measures the degree of
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constraint violation of the visible unit activations. Unsupervised learning is used
to speed-up network performance by “practicing” on training problem instances.
Significant speed-up is observed in the simple block planning domain after practicing
on just 10 training problems when testing on unseen problem instances. Speedup is
also observed when training is made on “easy” problems, while testing is done on
more “difficult” problems.

Two loss functions have been proposed for measuring the degree of constraint
violation. Empirically, a slight advantage has been observed for the Vprob Loss over
the LogSat Loss in the CONSRNN architecture in some experiments. Nevertheless,
we still consider both functions as valid implementation options. In the CONSyN
architecture, only the Vprob Loss was implemented, as it naturally fits the energy
minimization paradigm. The Vprob Loss was used both to pre-compile the network
and to reshape the energy function while learning. The compiled network performs
much faster than a randomly initialized network prior to training. However, the
random network catches-up rapidly and obtains the performance of the compiled
network after just a few training instances. In some experiments, it has been ob-
served that the network slows-down when learning continues past a certain point.
This may suggest “over-fitting” and therefore, the future use of strategies such as
early-termination, drop-out, or regularization.

8.2 Some Notes and Insights

During the experimentation, we noticed that the networks did not find the obvious
two step strategy of disassembling all blocks on the floor and then using them to
construct the goal. A variety of different plans were generated as solutions with no
noticeable bias towards the floor. Here are some informal insights on this behaviour:
• As far as problem specifications, there is almost no difference between a floor

and a cleared block. Therefore, there was no bias towards using the floor for
disassembling.

• The disassemble strategy is not always the most efficient one. As there is a
bound K on the length of the plan, there are solvable instances which cannot
be solved using this strategy.

• As both network architectures are designed to learn just greedy heuristics, the
stochastic components of the network are important parts of its ability to solve
the problem. As a by-product, solving the same problem again and again may
result in a variety of solutions.

In theory, every search problem that can be reduced to SAT can be implemented
in the proposed architectures, yet learning by practicing may only be useful if the
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problem instances (train and test sets) share many of the constraints, so that the
learned constraints could be transferred from one instance to another.

8.3 Future Directions

There are plenty of technical variations yet to be explored in both architectures.
Only a few of them have actually been implemented thus far. In the implementa-
tions presented here, no hidden units were used in a simple vanilla RNN. However,
since high-order connections could be traded with layers of hidden, deep networks
can be used instead of (or in conjunction with) high-order connections [2]. Thus,
adding hidden units and extending the depth of the unfolding may enable the net-
work to discover features related to the search history. The ample existing research in
deep learning could be useful. For example, LSTMs could be used to learn strategies
spanning longer iterations [15]. Convolution nets and inception nets may use vari-
able size filters to detect certain local clause features within the multi-dimensional
crossbars [32].

The computational mechanism demonstrated in this paper may be adapted for
a variety of other logic or symbol-driven applications, such as verification and lan-
guage processing. However, it is important to note that, in their current state, our
simulated ANN implementations are not a match for the efficient state of the art cur-
rent SAT solvers. The potential of this ANN approach may come from its domain
adaptively and in its integration with statistical learning. Integrating supervised
learning with prior knowledge could be executed before, after, or in conjunction
with constraint learning. This could be done by combining familiar loss functions
with Vloss functions.

For illustration, consider a network trained with a loss function that integrates
Vloss with cross-entropy classification using a weighted average of the two functions.
Such an approach would allow the mixing of symbolic constraint processing and sta-
tistical classification at the same time with varying confidence levels on the data and
on the constraints. Thus, for a visual scene to be analyzed, objects and relationships
could be classified while at the same time, the classification results should satisfy
certain domain and physical world constraints. Both the data and the constraints
may be augmented with varying confidence levels. The error, computed by the gra-
dient of such integrated loss function will encapsulate both the statistical error and
the prior knowledge violation error.
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Abstract

Real world data are often noisy and fuzzy. Most symbolic methods cannot
deal with such data, which often limit their application to real world data.
Symbolic methods also have a problem of being unable to generalize beyond
the training dataset. As such, it is very difficult to apply such methods in fields
like biology where data is rare and fuzzy. On the other hand, neural networks
are robust to fuzzy data and can generalize very well. In this paper, we propose
a method utilizing neural networks, that could learn the representation of the
relational dynamics of systems with delays. By training a recurrent neural
network that learns the general pattern of several n-variable systems, it is able
to produce a useful representation of another unseen n-variable system. This
representation can then be used to predict the next state of the system when
given k previous states. We show that our method is robust to fuzzy data,
and also show that it can generalize to data that are not in the training data.
Further, we also show that by giving prior knowledge to the model, we are able
to improve the prediction accuracy of the model.
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1 Introduction
Learning the relational dynamics of a system has many applications. For example,
in multi-agent systems where learning other agents’ behavior without direct access
to their internal state can be crucial for decision making [6]. In system biology,
learning the interaction between genes can greatly help in the creation of drugs to
treat diseases [12].

Having an understanding of the dynamics of a system allows us to produce
predictions of the system’s behavior. Being able to produce predictions means that
we can weigh between different options and evaluate their outcome from a given
state without taking any action. In this way, learning about the dynamics of a
system can aid in planning [8].

In most real world systems, we do not have direct access to the rules that govern
the systems. What we do have, however, is the observation of the systems’ state at
a certain time step, or a series of observations if we look long enough. Therefore,
the problem is to learn the dynamics of systems purely from the observations that
we are able to obtain.

Several learning algorithms have been proposed. One such algorithm is the
Learning from Interpretation Transition (LFIT) algorithm [5]. The LFIT algorithm,
when given a series of state transitions, outputs a normal logic program (NLP) that
describes and realizes the given transitions.

The LFIT algorithm has largely been implemented in two different methods,
the symbolic method [10] and the neural network (NN) method [14]. The symbolic
method utilizes logical operations to learn and induce logic programs. One of the
main flaws of the symbolic method, is that the logic program it produces cannot
be generalized to transitions that are not present in the training dataset. It can
sometimes be very expensive or impossible to obtain new observations. Thus, this
flaw limits the possible application of this method. Another problem is that any
noise present in the dataset, is reflected directly in the logic program. If the dataset
is noisy and ambiguous, the algorithm will not be able to learn the logic program
that is actually intended. Most observations obtained from the real world are fraught
with unwanted noises, thus this problem also limits the application of the symbolic
method.

On the other hand, the NN method trains a NN that models the target system,
and then utilizes analytical methods to extract the logic program. The NN method
described in [14] solves the flaw of being unable to generalize to unseen transitions
in the symbolic method. However, the method in [14] does not deal with systems
that contain delays. Most biological systems contain delays, therefore the logic
program learned by [14] does not reflect the true relation of the system. Also, NN
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methods have no way of incorporating background knowledge. In cases where having
background knowledge is useful for obtaining the intended model, this method does
not provide an easy method to do that.

In this paper, we propose a method that utilizes NNs to learn the representation
of the relational dynamics of systems with delays. This method aims to solve the
problem of symbolic method not being able to generalize to unseen data, while also
handling delays in the systems. It has the added advantage of being robust to
noisy and ambiguous data, and generalizing well from very few training data. The
representation produced by this method can also be used for prediction in a very
scalable way. In particular, a prediction can be obtained by performing a matrix
multiplication of the produced representation and an encoded vector of up to k
previous states.

The rest of the paper is organized as follows. We cover some of the prior re-
searches in Section 2, following by introducing the logical background required in
Section 3. Then we present our representation learning approach in Section 4. We
pursue by presenting an experimental evaluation demonstrating the validity of an
approach in Section 5 before concluding the paper in Section 6.

2 Related Work

In this section, we survey several recent related work involving both neural and
symbolic methods of learning relational dynamics. There are work in this area
that learns probabilistic models. Here, we focus on deterministic approaches and
specifically on methods that output logic programs.

2.1 Standard LFIT

One way of implementing the LFIT algorithm is by relying on a purely logical
method. In [5], such an algorithm is introduced. It constructs an NLP by doing
bottom-up generalization for all the positive examples provided in the input state
transition. A method for learning smaller, much more interpretable NLP was intro-
duced in [10]. In [11], an algorithm that learns delayed influences, that is cause/effect
relationship that may be dependent on the previous k time steps, is introduced. An-
other recent development in the prolongation of the logical approach to LFIT is the
introduction of an algorithm which deals with continuous values [13].

This class of algorithms that utilizes logical methods, are proven to be complete
and sound, however a huge disadvantage with these methods is that the resulting
NLP is only representable of the observations that have been fed to the algorithm
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thus far. Any observations that did not appear in the input, will be predicted as
either to be always true or always false depending on the algorithm used.

2.2 NN-LFIT
To deal with the shortcomings stated in the previous paragraph, an algorithm that
utilizes NN was proposed [14]. This method starts by training a feed-forward NN to
model the system that is being observed. The NN, when fully trained, should predict
the next state of the system when provided with the current state observation. Then,
there is a pruning phase where weak connections inside the NN are removed in a
manner that doesn’t affect the prediction accuracy. After the pruning phase, the
algorithm extracts rules from the network based on the remaining connections within
the NN. To do so, a truth table is constructed for each variable. The truth table
contains variables only based on observing the connections from the outputs to the
inputs of the trained and pruned NN. A simplified rule is then constructed from each
truth table. In [14], it is shown that despite reducing the amount of training data,
the resulting NLP is still surprisingly accurate and representative of the observed
system. However, this approach does not deal with systems that have inherent
delays.

2.3 RNN-LFkT
In order to deal with systems that contains delay, and also to use NN in order to
avoid the shortcomings of the logical method, a method that utilizes recurrent neu-
ral network (RNN) was proposed in [9]. This method trains a model that learns
to extract general features from various systems, and provides a logic program rep-
resentation that is distinct for separate systems but are the same for distinct state
transitions from the same system. One shortcoming of this method is the inability to
provide background knowledge to refine the logic program representation produced.
Our work described in this paper is based on this method, attempting to overcome
the shortcoming of being unable to provide background knowledge.

2.4 Other NN-based Approaches
There are also several other approaches attempting to tie NNs with logic program-
ming [3, 4]. In [3], the authors propose a method to extract logical rules from trained
NNs. The method proposed deals directly with the NN model, and thus imposes
some restrictions on the NN architecture. In particular, it was not made to handle
delayed influences in the system. In [4], a method for constructing NNs from logic
program is proposed, along with a method for constructing RNNs. However this
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approach requires background knowledge, or a certain level of knowledge about the
observed system (such as an initial NLP to improve on) before being applicable.

In [7], the authors proposed a method for constructing models of dynamical
systems using RNNs. However, this approach suffers from its important need of
training data, which increases exponentially as the number of variables grow. This
is a well-known computational problem called the curse of dimensionality [2].

3 Background
The main goal of LFIT is to learn an NLP describing the dynamics of the observed
system. An NLP is a set of rules of the form

A← A1 ∧A2 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai are propositional atoms, n ≥ m ≥ 0. ¬ and ∧ are the symbols
for logical negation and conjunction. For any rule R of the form (1), the atom A
is called the head of R and is denoted as h(R). The conjunction to the right of
← is called the body of R. We represent the set of literals in the body of R as
b(R) = {A1, . . . , Am,¬Am+1, . . . ,¬An}. The positive literals in the body is denoted
as b+(R) = {A1, . . . , Am}, while the negative literals in the body is denoted as
b−(R) = {Am+1, . . . , An}. The set of all propositional atoms that appear in a
particular Boolean system is denoted as the Herbrand base B.

An Herbrand interpretation I is a subset of B. For a logic program P and an
Herbrand interpretation I, the immediate consequence operator (or TP operator) is
the mapping TP : 2B 7→ 2B:

TP (I) = {h(R) | R ∈ P, b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2)

Given a set of Herbrand interpretations E and {TP (I) | I ∈ E}, the LFIT algorithm
outputs a logic program P which completely represents the dynamics of E.

To describe the dynamics of a system changing with respect to time, we can use
time as an argument. In particular, we will consider the state of an atom A at time
t as A(t). Thus, we can rewrite the form (1) into a dynamic rule as follows:

A(t + 1)← A1(t) ∧A2(t) ∧ · · · ∧Am(t) ∧ ¬Am+1(t) ∧ · · · ∧ ¬An(t). (3)

Rule (3) means that, when A1, . . . , Am is true at time t and Am+1, . . . , An is false at
time t, then the head A will be true at time t + 1. By describing all rules in an NLP
in the form (3), we can simulate the state transition of a dynamical system with the
TP operator.
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In [11], the LFIT framework has been extended to deal with systems that contain
delays. Systems with delays can be considered as a Markov(k) system, in which the
next state depends on up to k previous states. To represent rules in such systems,
we can use the form (3) and substitute the argument t in the body as t − j where
0 ≤ j ≤ k.

4 Proposed Method
In this section, we describe our method of learning the representation of relational
dynamics. In our model, we don’t learn the representation directly. An optimal
representation is obtained by training the model on a separate task, mainly the
regression of the next state. Intuitively, by learning the regression on the next state,
the NNs can focus on learning the abstract features of the particular system.

On a high level, we want to abstract the information represented in the logical
space, into a more compact linear space. By abstracting and thus avoiding the need
to deal with information in the lower level logical space, we are able to handle the
fuzziness and ambiguity of the data. Our model thus can be thought of as first
encoding information in the logical space, into the representation space. We then
perform the TP operator, that will give us the next state, in the representation space.
Once we obtain the next state in the representation space, we can then map it back
into the logical space.

Given an Herbrand interpretation I, we can define a vector ~v that represents
the interpretation by setting each element in the vector vi as 1 if Ai ∈ I and 0
otherwise. Since we are dealing with a delayed system setting, we can consider a
matrix Mk = [~vt · · ·~vt−k] that contains up to k states.

We want to calculate the next state of the system given past k′ states. Note that
k′ ≥ k can be greater than or equal to the true maximum delay of the Markov(k)
system. For abbreviation purposes, we will refer to this k′ as k, and will explicitly
state the true delay of the system when required. When only looking at k-step
state transitions, they can be produced by two totally different systems. In order
to make distinction, we require some a priori knowledge about the system in order
to distinguish between them. In the LFIT framework, this can be done by sup-
plying an initial NLP. The equivalent in our model is done by supplying an initial
representation L0 ∈ Rd×d.

Thus, our model can be defined as calculating the following
~vt+1 = fdecode(frepresentation(M ′

k, L0)× fencode(Mk)>) (4)
where M ′

k can be equal or different from Mk, L0 is an initial representation, fdecode :
Rd 7→ {0, 1}|B|, frepresentation : {0, 1}|B|×k × Rd×d 7→ Rd×d, fencode : {0, 1}|B|×k 7→
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Figure 1: A visualization of our model

Rd, d is the dimension of the learned representation. All of fdecode, frepresentation
and fencode are differentiable, × represents the matrix-vector multiplication, and
therefore this entire model is end-to-end differentiable.

Learning is performed by minimizing the mean squared loss defined as follows

loss = 1
|B|

|B|∑

i=1
(vt+1,i − yi)2 (5)

where yi is the true label.
The fdecode function can be thought of as converting state vectors in the repre-

sentation space, back into the logical space. The fencode function does the opposite
of converting state vectors in the logical space into the representation space.

The frepresentation function takes 2 parameters. Namely, they are the past k states
that provides the abstract feature to extract from, and an initial representation that
is the a priori knowledge. With these 2 parameters, the function outputs a matrix
that is the representation of the dynamics of the system.

Implementation-wise, all of the above functions can be implemented with any
non-linear function with parameters that can be trained by performing gradient de-
scent. In our implementation, the fdecode and the fencode functions are implemented
with a multi-layer perceptron. The frepresentation function is implemented with LSTM
(Long-Short Term Memory).
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5 Experiments
We first verify that our model is capable of performing the designated task of pre-
dicting the next state. Next, we perform several experiments that exposes mainly
the weaknesses of symbolic methods, namely inability to handle noisy and fuzzy
data, and also being unable to generalize from the training dataset.

We implemented our model in Tensorflow [1]. Next, we performed the following
experiments: first, the model is given discrete, error-free data, then we test the
model on data that is fuzzy and ambiguous, lastly we test the model and data that
are erroneous. As far as we are aware, there are no other works that perform such
tests, particularly in delayed setting. Therefore we did not perform any comparisons
but rather show the precise results in the experiments.

5.1 Hyperparameters
We did not perform too much tuning on the hyperparameters, mainly because the
initial hyperparameters that we chose (rather randomly), worked well for most of the
experiments. Here are the hyperparameters chosen when performing the following
experiments:

• Training epochs: 3

• Batch size: 64

• Gradient descent optimizer: Adam, learning rate is set to 0.01

• All parameters are initialized randomly by the default initialzer in Tensorflow
r1.5.

• No dropout or other regularization method is used.

• The MLP for fencode consists of 1 hidden layer with 10 hidden nodes.

• The MLP for fdecode has 2 hidden layers, each with 10 hidden nodes.

• The implementation for frepresentation function is a 4-layer LSTM, each with 32
units.

• The representation dimension d is set to 4.

• The output threshold is set to 0.5.

In our experience, we did not find that tuning the above hyperparameters affect the
experimental results by a huge margin.
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5.2 Experimental Method

To train the model, we used a randomly generated dataset. Recall that our model
aims to extract features of any given system. In particular, the constraint of the
system is such that the system can be described by an NLP. Therefore, it is to our
advantage that we can randomly generate a huge amount of data based on that
constraint, and then train the model to extract common features of systems with
such constraint.

Data generation works by first randomly generating an NLP, then generating
state transitions that start from all possible initial states. However, if we purely
randomly generate an NLP, we might not be able to generate good quality NLPs
that allows the model to learn. Therefore, we limit ourselves to only generating
NLPs with several properties. First, the body of each rules in the NLP should not
be too long. We perform a random exponential cut-off for the length of the body,
so there are cases where the body is long, but that should not be too often. Second,
the state transitions generated from the NLP needs to have high variation. State
transitions that are in the middle of an attractor are excluded from the training
data. If there are too few state transitions from the NLP, then the NLP is also
excluded from the training data.

During the experiment performed below, we generated 30,000 different NLPs.
Then from each NLP, we obtained a maximum of 500 samples, each sample con-
taining state transition for 10 timesteps. This gave us 150,000 samples to train the
model.

Based on our experience, generating training data that has sufficient variance
hugely affects the performance of the model. When we tried purely randomly gen-
erating NLPs and their corresponding states, we got transitions that are zero for
most of the time or are constantly at the same state, and the model was unable to
learn any useful features.

5.3 LFIT Benchmarks

We tested our model on 4 LFIT benchmarks. These are the same benchmarks that
were also used in [5] and [10]. Note that these benchmarks do not contain any delays,
but the results here will serve as a reference on how well our model is working on
standard tasks.

We generated a series of 10 transitions from all possible initial states for each
benchmark. The model is then asked to predict the next state based on these
10 transitions. We first ran all the benchmarks without providing any background
knowledge, that is supplying the 0 matrix for L0 in equation 4. Next, for predictions
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Method Mammalian (10) Fission (10) Budding (12) Arabidopsis (16)
Without L0 0.224 0.063 0.218 0.146
With L0 0.184 0.062 0.199 0.128

Fuzzy data (25%) 0.209 0.062 0.206 0.134
Fuzzy data (50%) 0.243 0.072 0.215 0.238

Error (10%) 0.223 0.081 0.198 0.157
Error (20%) 0.249 0.101 0.211 0.201
Error (30%) 0.287 0.129 0.227 0.230
Error (40%) 0.334 0.182 0.250 0.251
Error (50%) 0.379 0.250 0.288 0.263
Error (60%) 0.418 0.324 0.318 0.274
Error (70%) 0.435 0.363 0.341 0.280
Error (80%) 0.466 0.406 0.353 0.300
Error (90%) 0.490 0.469 0.355 0.317

Table 1: The MAE of the prediction performed by our model on 4 separate bench-
marks.

that are wrong by 1 or more variables, we obtained new L matrix by calculating
frepresentation by supplying different state transitions than Mk, and then using that
as L0 for Mk to calculate the predictions again. The results are shown in table
1. We calculated the mean absolute error (MAE) as the metric for accuracy. An
MAE of 0.2 for a 10 variable benchmark means that the model predicted 2 of the
10 variables wrong. As can be seen from the results, we were able to improve the
predictions when providing L0, except in the case of the fission benchmark where
the model was already doing very well.

Next, we added fuzziness to the data by mapping each element in the state vector
{0, 1} 7→ [0, 1]. When a particular variable is 1, the value is fuzzed into a range of
[0.5, 1], and when it is 0 it is mapped into the range [0, 0.5]. The results of this is
indicated by the row fuzzy data (50%). For fuzzy data (25%), we mapped 1 to the
range of [0.75, 1] and 0 to [0, 0.25]. In this experiment, whenever the model made
wrong predictions, we provided L0 that is calculated based on discrete error-free
data. This is done under the assumption that in a real world scenario, the prior
knowledge provided is usually considered as a fact. Therefore we did not do any
fuzziness test on L0.

We then tested the model’s ability to handle erroneous data. For 10%, we flipped
10% of the variable states that we provide as input to the model. As can be seen
from table 1, by providing prior knowledge to the model we are able to maintain
fairly high accuracy for data with errors up to 50%.
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Method 10 12 16
Baseline 0.065 0.078 0.086

Fuzzy data (25%) 0.090 0.153 0.094
Fuzzy data (50%) 0.135 0.160 0.131

Error (10%) 0.084 0.101 0.119
Error (20%) 0.114 0.136 0.148
Error (30%) 0.141 0.185 0.197
Error (40%) 0.182 0.230 0.237
Error (50%) 0.224 0.246 0.261
Error (60%) 0.236 0.274 0.283
Error (70%) 0.266 0.287 0.311
Error (80%) 0.283 0.292 0.330
Error (90%) 0.299 0.297 0.338

Table 2: The MAE of the prediction performed by our model in systems with delays,
for 10, 12 and 16 variables.

5.4 Systems with Delays
To test the ability of our model to handle delays, we randomly generated 200 NLPs
with delays up to k = 5, which are different from the training dataset, and performed
experiments based on that. The results of the experiments are shown in table 2. All
experiments include supplying the model with additional L0 when the model fails
to predict perfectly.

As evident from the results, our model is able to perform predictions under
delayed setting. When we fuzz the data at about 25%, the prediction accuracy did
not change by much, showing that the model is robust against fuzzy data. Also note
that the model is still showing good prediction accuracy even when the error in the
data is high. By providing additional background knowledge, the model is able to
perform reasonable prediction even when the amount of error in the data is as high
as 90%.

5.5 Discussion
Our model’s main goal is to learn the logic program representation given a state
transition. In figure 2, we show 2 separate logic program representations learned
from 2 distinct state transitions that came from the fission benchmark. We can
see that both of them share very similar features, and can confirm that our model
did indeed manage to extract some high level features based on the input state
transitions.

During the experiment above, we can confirm that providing background knowl-
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(a) Logic program representation A

(b) Logic program representation B

Figure 2: Two logic program representations learned from different state transitions
from the fission benchmark

edge improves the model’s prediction accuracy most of the time. There are times
when adding background knowledge does not improve the prediction at all, such
as when the transitions provided to obtain the background knowledge, already ex-
ists within the input transitions. This signifies a problem in which the background
knowledge that we need to provide is not actually constructable by hand.

In addition, while performing the experiment, we trained separate models for
dealing with NLPs with different number of variables. We did some preliminary
testing and found that it is possible to train a model under larger number of vari-
ables, and then use it to predict systems with smaller number of variables. Since
training separate models to work with different number of variables is extremely
time consuming, this might open up the possibility of training the model just once
and using it everywhere.

6 Conclusion
This paper’s main contribution is the proposal of a method that allows us to provide
background knowledge to the model in order to refine its predictions. This model
works well in systems with delay setting, and can also deal well with fuzzy and
erroneous data. In addition to that, this model also achieves an effect similar to
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one-shot learning, in which the model is given only 1 sample and it produces a good
enough prediction result. Also, the representation learned can be transferred to a
separate learning setting to further refine the results.

We performed experiments on 4 LFIT benchmarks, and showed that the model
was able to perform the tasks at a similar level as its symbolic counterpart. We
also showed that by providing background knowledge, the model was able to further
refine its predictions and improve. We also tested the model on fuzzy and erroneous
data, showing that the model is robust against both situation.

However there are still several shortcomings that we will like to address in fu-
ture works. First, the output of the model being a matrix representation is not
interpretable nor human-readable. We would like to be able to obtain the NLP in
the symbolic form in order to interpret what the model was able to learn. Second,
background knowledge supplied is limited in the form of either directly providing
the matrix representation, or providing a separate state transition in order to obtain
the matrix representation. Both of these methods are undesirable and we would like
to be able to supply background knowledge in symbolic form.
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Abstract

Modelling compositionality has been a longstanding area of research in the
field of vector space semantics. The categorical approach to compositionality
maps grammar onto vector spaces in a principled way, but comes under fire
for requiring the formation of very high-dimensional matrices and tensors, and
therefore being computationally infeasible. In this paper I show how a linear
simplification of recursive neural tensor network models can be mapped directly
onto the categorical approach, giving a way of computing the required matrices
and tensors. This mapping suggests a number of lines of research for both
categorical compositional vector space models of meaning and for recursive
neural network models of compositionality.

1 Introduction
Vector space semantics represents the meanings of words as vectors, learnt from text
corpora. In order to compute the meanings of multi-word phrases and sentences, the
principle of compositionality is invoked. This is that for a sentence s = w1w2...wn

there should be a function fs that when applied to representations of the words wi,
will return a representation of the sentence s:

s = fs(w1, w2, ...wn)

One way to model meanings in a vector space is to use co-occurrence statistics
[4]. The meaning of a word is identified with the frequency with which it appears
near other words. A drawback of this approach is that antonyms appear in similar
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contexts and hence are indistinguishable. Another related difficulty is that vector
spaces are notoriously bad for representing basic propositional logic. Nonetheless,
the vector space model is highly successful in NLP. To model how words compose,
a number of proposals have been made. These range from the simpler additive or
multiplicative models given in [13] to full-blown tensor contraction models [7, 11].
In between is the Practical Lexical Function model of [14] which uses matrices to
form function words such as adjectives and verbs.

The categorical compositional distributional model of [7] implements composi-
tionality by mapping each grammatical type to a corresponding vector space. Gram-
matical reductions between types are modelled as linear maps between these vector
spaces. Well-typed sentences reduce to vectors in the sentence space S. Vectors for
nouns are learnt using cooccurrence statistics in corpora. Adjectives and verbs can
be learnt using multilinear regression [1, 9], via a form of extensional composition
[8], or by using techniques that reduce the size of the vector space [10].

Another way of building word meanings is via neural embeddings [12]. This
strategy trains a network to predict nearby words by maximizing the probability
of observing words in the neighbourhood of another. This is similar to the distri-
butional idea, but rather than counting words, they are predicted. The prediction
can happen in two directions: either a word is predicted from its context, called the
continuous bag-of-words model, or the context is predicted from the word, called
the skip-gram model. This method can then be extended to give a notion of compo-
sitionality. Recursive neural networks as used in [17] and [3] use a ‘compositionality
function’ that computes the combination of two word vectors. This pairwise combi-
nation is applied recursively in a way that follows the parse structure of the phrase.
The compositionality function has the structure of a feedforward neural network
layer, possibly with additions such as a tensor layer. The parameters for the compo-
sitionality function and for the vectors themselves are trained using backpropagation.

The categorical approach maps nicely to formal semantics approaches. The role
of verbs and adjectives as functions from the noun space to other spaces is clearly
delineated. Words such as relative pronouns, whose meanings are not well mod-
elled by distributional approaches, can be given a purely mathematical semantics.
However, the representations of functional words soon become extremely large, so
that learning, storing, and computing with these representations becomes infeasible.
Another difficulty with this framework is that word types are fixed, so that there is
no easy way to move between, say, noun meanings and verb meanings.

Neural network approaches in general do not have an explicit connection with
formal semantics. In the case of recursive neural networks there is some connection,
since the structure of the network respects the parse structure, but there is limited
consideration of different grammatical types and how these might be used. Different
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grammatical types are all represented within the same vector space. Words that
arguably have more of an ‘information routing’ function (such as pronouns, coordi-
nators and so on) are also represented as vectors. However, these approaches are
extremely successful. The word representations and the compositionality functions
are more tractable than those of the full-blown tensor approach, and it is easy to
consider a word vector as representing a number of different grammatical types -
the same vector can be used to represent the noun ‘bank’ in ‘financial bank’ and the
verb ‘bank’ in ‘bank winnings’.

This paper shows how to understand a simplification of recursive neural networks
within the categorical framework, namely, when the compositionality function is
linear. Understanding recursive neural networks within this framework opens the
door for us to use methods from formal semantics together with the neural network
approach. I give an example of how we can express relative pronouns (words such as
‘who’) and reflexive pronouns (‘himself’) within the framework. This mapping also
benefits the categorical approach. The high-order tensors needed for the categorical
approach can be dispensed with, and word types can be made more fluid.

In the following, I firstly (section 2) give a description of categorical composi-
tional vector space semantics. I go on to describe recursive neural networks and
recursive neural tensor networks (section 3). In section 4 I show how linear recur-
sive (tensor) networks can be given exactly the same structure as the categorical
compositional model. Sections 5 and 6 outline the benefits of this analysis for each
approach, and discuss how we can take the analysis further. In particular the possi-
bility of reintroducing the non-linearity in recursive neural networks is considered.

2 Categorical Compositional Vector Semantics
In this section I describe elements of the category-theoretic compositional approach
to meaning, as given in [7], and show the general method by which the grammar
category induces a notion of concept composition in the semantic category. An
introduction to the kind of category theory used here is given in [6]. The outline of
the general programme is as follows [2]:

1. (a) Choose a compositional structure, such as a categorial grammar.
(b) Interpret this structure as a category, the grammar category.

2. (a) Choose or craft appropriate meaning or concept spaces, such as vector
spaces.

(b) Organize these spaces into a category, the semantics category, with
the same abstract structure as the grammar category.
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3. Interpret the compositional structure of the grammar category in the semantics
category via a functor preserving the type reduction structure.

4. This functor maps type reductions in the grammar category onto algorithms
for composing meanings in the semantics category.

This paper describes one instantiation of this approach, using pregroup grammar
and the category FVect of vector spaces and linear maps. This paper will use
pregroup grammar, but it is also possible to use other approaches such as other
categorial grammars, described in [5].

2.1 Pregroup grammar
The description of pregroup grammars given follows that of [15]. Whilst the de-
tails are slightly technical, the form of the grammar is very intuitive. Essentially
we require a category that has types for nouns and for sentences, together with
adjoint types, which are similar to inverses, a method for concatenating them, and
morphisms that correspond to type reductions. The structure we desire for this
category is termed compact closed. Details are given in [7] and [15].

The category G used for grammar is roughly as follows. The grammar is built
over a set of types. We consider the set containing just n for noun and s for sentence.
Each type has two adjoints xr and xl. Complex types can be built up by concate-
nation of types, for example x · yl · zr, and we often leave out the dot so xy = x · y.
There is also a unit type such that x1 = 1x = x. Types and their adjoints interact
via the following morphisms:

εrx : x · xr → 1, εlx : xl · x→ 1
ηr

x : 1→ xr · x, ηl
x : 1→ x · xl

The morphisms εrx and εlx can be thought of as type reduction and the morphisms
ηr

x and ηl
x can be thought of as type introduction. A string of grammatical types

t1, ...tn is then said to be grammatical if it reduces, via the morphisms above, to the
sentence type s.

Example 1. Consider the sentence ‘dragons breathe fire’. The nouns dragons and
fire are of type n, and the verb breathe is given the type nrsnl. ‘dragons breathe
fire’ therefore has type n(nrsnl)n. Then we have the following type reductions:

(εrn · ids · εln)(n(nrsnl)n) = (εrn · ids · εln)((nnr)s(nln))
→ (ids · εln)s(nln)→ s
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The above reduction can be given a neat graphical interpretation as follows:

n nrsnl n

dragons breathe fire

This diagrammatic calculus is fully explained in [7], amongst others. Essentially we
can think of the u-shaped ‘cups’ as type reductions, and calculations can be made
by manipulating the diagrams as if they lie on a flat plane, maintaining numbers of
inputs and outputs.

2.2 Mapping to vector spaces
We use the category FVect of finite dimensional vector spaces and linear maps,
which is also compact closed. We describe a functor F : G → FVect that maps
the noun type n to a vector space N , the sentence type s to S, the unit 1 to R,
concatenation maps to ⊗, i.e., the tensor product of vector spaces, adjoints are lost,
εrp and εlp map to tensor contraction, and ηr

p and ηl
p map to identity maps.

Example 2. Consider again the sentence ‘dragons breathe fire’. The nouns dragons
and fire have type n and so are represented in some vector space N of nouns. The
transitive verb breathe has type nrsnl and, hence, is represented by a vector in the
vector space N ⊗ S ⊗ N where S is a vector space modelling sentence meaning.
The meaning of ‘dragons breathe fire’ is the outcome of applying the type reduction
morphisms given in

εN ⊗ 1S ⊗ εN : N ⊗ (N ⊗ S ⊗N)⊗N → S (1)

i.e. sequences of tensor contractions, to the product
−−−−−→dragons ⊗−−−−→breathe ⊗−→fire (2)

This nicely illustrates the general method. The meaning category supplies vec-
tors for dragons, breathe, and fire. The grammar category then tells us how to stitch
these together. The essence of the method should be thought of as the diagram

dragons breathe fire

N NS
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where we think of the words as meaning vectors (2) and the wires as the map (1).
Again, the ‘cups’ can be thought of as type reductions. Linear-algebraically, the
map (1) and the diagram above are equivalent to the following. Suppose we have a
set of basis vectors {−→e i}i. Define
−−−−−→dragons =

∑

i

di
−→e i,

−−−−→breathe =
∑

ijk

bijk
−→e i ⊗−→e j ⊗−→e k,

−→fire =
∑

i

fi
−→e i

Then
−−−−−−−−−−−−−−→dragons breathe fire = (εN ⊗ 1S ⊗ εN )−−−−−→dragons ⊗−−−−→breathe ⊗−→fire

= (εN ⊗ 1S ⊗ εN )


∑

i

di
−→e i ⊗

∑

jkl

bjkl
−→e j ⊗−→e k ⊗−→e l ⊗

∑

m

fm
−→e m




= (1S ⊗ εN )


∑

ijkl

dibjkl
−→e j ⊗−→e k ⊗

∑

m

fm
−→e m


 =

∑

ijk

dibijkfk
−→e j

where this last expression is a single vector in the sentence space.

3 Neural Network Models
Neural networks are used both as a way of building meaning vectors and as a way of
modelling compositionality in meaning spaces. Mikolov et al. [12] describes a pair
of methods that build vectors by using context windows, and making predictions
about the likely content of either the context window or the word itself. Phrases
and sentences are represented in the same space as the words. To compute vectors for
multi-word sentences and phrases, [17] use tree-structured recursive neural networks.
The phrases and sentences output by the network can then be used for various tasks,
notably sentiment analysis. The sections below summarise recursive neural networks
and recursive tensor neural networks. In the following sections we assume that words
are represented as vectors in Rn.

3.1 Recursive neural networks
Recursive neural networks (TreeRNNs) have a tree-like structure. When applied to
sentences, the tree represents the syntactic structure of the sentence. A schematic
of a recursive neural network is given in Figure 1. The words of a sentence are
represented as vectors. Words can be combined via the compositionality function
g to form a parent vector. In the networks we discuss here, the parent vectors are
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−→p2 = g(−−−−−→dragons,−→p1)

−−−−−→dragons

−→p1 = g(−−−−→breathe,−→fire)

−−−−→breathe −→fire
Figure 1: Schematic of an TreeRNN. Word vectors and/or parent vectors pi are
combined using the compositionality function g according to the parse tree. The
vector ~p1 corresponds to the verb phrase breathe fire and the vector ~p2 corresponds
to the whole sentence dragons breathe fire.

of the same dimensionality as the input vectors, meaning that the compositionality
function can be applied recursively according to the parse tree. The compositionality
function and the input vectors themselves are learnt by error backpropagation.

The compositionality function for a TreeRNN is usually of the form

gTreeRNN : Rn × Rn → Rn :: (−→v1 ,
−→v2) 7→ f1

(
M ·

[−→v1−→v2

])

where −→vi ∈ Rn,
[
−
−

]
is vertical concatenation of column vectors, M ∈ Rn⊗R2n,

and (−·−) is tensor contraction. f1 is a squashing function that is applied pointwise
to its vector argument, for example f = tanh. The parent vector that forms the
root of the tree is the representation of the whole sentence. Parent vectors within
the tree represent subphrases of the sentence. The matrix M and the input vectors
are learnt during training.

3.2 Recursive neural tensor networks
Recursive neural tensor networks (TreeRNTNs) are similar to TreeRNNs but differ
in the compositionality function g. The function g is as follows:

gTreeRNTN : Rn × Rn → Rn :: (−→v1 ,
−→v2) 7→ gT reeRNN (−→v1 ,

−→v2) + f2
(−→v1
> · T · −→v2

)

where −→vi and (− · −) are as before, T ∈ Rn ⊗ Rn ⊗ Rn and f2 is a squashing
function. Again, the input vectors, matrixM and tensor T are learnt during training.
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4 Mapping between categorical and TreeRNN compo-
sitionality

It is now possible to model a simplifed version of TreeRNNs within the categorical
vector space semantics of [7]. I show show how a linearized version can be modelled
within FVect using pregroup grammar as the grammar category.

With a (drastic) simplification of the compositionality function gTreeRNTN there
is an immediate correspondence between the TreeRNTN model and a simplified
version of the categorical model. We drop both the non-linearity and the matrix
part of the function g, giving:

gLin : Rn × Rn → Rn :: (−→v1 ,
−→v2) 7→

(−→v1
> · T · −→v2

)

Now the tensor T is just a multilinear map, i.e., morphism in FVect, and we can
therefore describe a direct translation between linear TreeRNTNs and categorical
compositional vector space semantics with pregroups.

Recall that in the categorical model we had a nice diagrammatic calculus to rep-
resent the calculations we were making. We also had a schematic for the TreeRNNs.
With the simplified compositionality function, we can translate that schematic into
the diagrammatic calculus, shown in figures 2, 3, and 4.

−→p2 = g(−−−−−→dragons,−→p1)

−−−−−→dragons

−→p1 = g(−−−−→breathe,−→fire)

−−−−→breathe
−→fire

Figure 2: The TreeRNN schematic turned upside down and one edge lengthened

These diagrams show how the interior of the verb has been has been analysed into
two instances of the compositionality function wired together, with the verb vector−−−−→breathe as input. This means that rather than learn large numbers of parameters for
each word in the lexicon, just one tensor comprising the compositionality function
needs to be learnt, together with vectors in N for each word. This mapping can
be carried out for other parts of speech. The representations of adjectives and
intransitive verbs are given in figures 6 and 7, each requiring just one instance of
the compositionality function. In section 5.2, we discuss how we can analyze other
sorts of words such as relative pronouns and reflexive pronouns.
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dragons breathe fire

gLin

gLin

−→p1 = gLin(−−−−→breathe,−→fire)

−→p2 = gLin(−−−−−→dragons,−→p1)

Figure 3: The schematic translated into the diagrammatic calculus. The composi-
tionality function gLin is just a tensor with no nonlinearity applied.

dragons

breathe

fire
gLin

gLin

Figure 4: The diagram in figure 3 with wires bent. This is allowed since we are now
working in the category FVect.
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dragons breathe fire

N NS

Figure 5: We can therefore see the case in 4 as an instance of the categorical method,
where the interior of the tensor is created using two instances of the compositionality
function gLin

gLin

Figure 6: Adjective formed from part of a TreeRNTN.

gLin

Figure 7: Intransitive verb formed from part of an TreeRNTN.

5 Benefits

In outlining this comparison a number of benefits arise. This section outlines benefits
for the categorical model and then for RNN models.
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5.1 Categorical models

One of the main charges levelled at the categorical compositional distributional
semantics mode is that the dimensionality of the tensors required is too high, and
that training is too expensive. The correspondence I have outlined here gives an
approach where the number of high-dimensional tensors to train is limited.

In the simplest case, one linear compositionality function could be learned, to-
gether with vectors for each word. The learning algorithm for this approach will
be similar to strategies used for training recursive neural networks. The networks
will therefore be as easy, or easier, to train than the TreeRNNs used by [17] and [3].
However, since the compositionality functions to train are now linear, the results
obtained are unlikely to be as good as those obtained using full TreeRNNs. One
strategy to alleviate this is as follows. Different compositionality functions could be
used for different word types. So, for example, we would have functions gadj for an
adjective, giv and gtv for a transitive verb. For example, the functions for the adjec-
tive is gadj(−→v n) = −→v >a Tadj

−→v n, and for an intransitive verb is giv(−→v n) = −→v >n Tiv
−→v i,

where −→v a is the vector of the adjective, −→v i is the vector of the intransitive verb, and−→v n is the vector of the noun. Using this strategy, the noun space and the sentence
space can now be separated so that sentences no longer have to inhabit the same
space as nouns.

A further benefit for the categorical model is that this approach alleviates the
brittleness of the representations learnt. Rather than learning individual tensors for
each functional word, we are simply learning a small number of compositionality
functions. This means that we can switch between the noun ‘bank’ and the verb
‘bank’ simply by plugging the word vector bank into the relevant function.

Furthermore, since this approach is a simplification of the model of [7], extensions
of that model can also be applied. In particular, information-routing words like
relative pronouns can be modelled using the approaches outlined in [16]. This is
discussed further in the next section.

5.2 TreeRNN models

Although TreeRNNs have fewer parameters and more flexibility than the categorical
vector space models, the compositional mechanism they use is ‘one size fits all’.
The TreeRNN approach as elaborated so far does not distinguish between content
words such as ‘dog’, ‘brown’, and information routing words such as pronouns and
logical words. The approach outlined here makes an explicit connection between
formal semantics approaches in the form of pregroup grammars on the one hand,
and neural network approaches for composition on the other. This means that we
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can use strategies from formal semantics to represent the meaning of information
routing words. The benefit of doing so is two-fold. Firstly, it may improve training
time, since the compositionality function will not have to encompass this aspect of
composition. Secondly, by separating out some of the compositional mechanism, we
make the behaviour of the network more transparent. The roles of certain words will
be modelled as functions that do not need to be learnt. I give below two examples:
relative pronouns as analysed in [16] and reflexive pronouns.

5.2.1 Relative pronouns

[16] analyze relative pronouns by using the Frobenius algebra structure available on
finite-dimensional vector spaces. Full details of how Frobenius algebras are defined
and used are given in those papers, but briefly, we can consider these to introduce
copying, merging, and deleting mechanisms into the semantics.

In FVect, any vector space V with a fixed basis {−→ei }i has a Frobenius algebra
over it, explicitly given by:

∆ :: −→ei 7→ −→ei ⊗−→ei ι :: −→ei 7→ 1 (3)
µ :: −→ei ⊗−→ei 7→ −→ei ζ :: 1 7→ −→ei (4)

Linear-algebraically, the ∆ morphism takes a vector and embeds it into the diagonal
of a matrix. The µ morphism takes a matrix z ∈ W ⊗ W and returns a vector
consisting only of the diagonal elements of z. If the matrix z is the tensor product
of two vectors z = −→v ⊗ −→w , then µ(v ⊗ w) = v � w where (− � −) corresponds to
pointwise multiplication. These operations extend to higher-order tensors.

In pregroup grammar, the word ‘who’ is given the type nrnsln. Rather than
learn parameters for an order 4 tensor, [16] show how it can be given a purely
mathematical meaning. This is shown diagrammatically below:

dragons breathe firewho

=

dragons breathe fire

The word ‘who’ is equivalent to discarding the sentence part of the verb and point-
wise multiplying the vectors for dragons and breathe fire.
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5.2.2 Reflexive Pronouns

Reflexive pronouns are words such as ‘himself’. These words also have an information
routing role. In a sentence like John loves himself, we want the content of John to be
copied out and routed to the object of the verb. The pregroup type of the pronoun
‘himself’ can be given as nsrnrrnrs. We can give the reflexive pronoun a purely
mathematical semantics as follows:

John loves himself

=

John loves

The reflexive pronoun takes in the noun, copies it, and plugs it into both the
subject and the object of the verb, and returns the resulting sentence.

This treatment of reflexive and relative pronouns is part of a larger programme,
relating vector space models of meaning and formal semantics. The idea is that some
words can be thought of as ‘information routing’ - they move information around
a sentence, and at least part, if not all, of their meaning should be purely math-
ematical. In contrast, information-carrying words like nouns and adjectives, have
meaning determined by co-occurrence, rather than by a mathematical function. In
the TreeRNN approach, this distinction is not made, meaning that the composition-
ality function learnt must take into account both statistical and information-routing
kinds of meaning. The proposal here is that information-routing words can be un-
derstood as part of the structure of the tree, rather than as vectors.

6 Conclusions and Further Work
The aim of this paper is to set out a mapping between the categorical compositional
vector space semantics of [7] and the recursive neural network (TreeRNN) models of
[17] and [3]. I have shown how a linear version of TreeRNNs can be modelled directly
within the categorical model. This gives a strategy for simplifying the training for
the categorical model, and also means that the categorical model is more flexible
in its word representations. Since a linearized neural network is not going to be
as successful as a standard network, I have also suggested learning individual net-
works for individual grammatical types, as a way of improving performance whilst

721



Lewis

still requiring many fewer parameters than the standard categorical model. Mod-
elling TreeRNNs within the categorical framework means that we can use ideas from
formal semantics to simplify networks. I have shown how relative pronouns and re-
flexive pronouns can be analysed as having a purely mathematical semantics. This
means that the networks learnt do not need to take this sort of compositionality
into account. Furthermore, using the purely mathematical semantics when avail-
able means that the networks are more transparent. With analysis of these words,
the compositionality function learnt can specialise to contentful words, rather than
information routing words.

6.1 Further work

Section 4 showed how we can express a linear version of TreeRNTNs within the
categorical compositional vector space model. However, using only linear trans-
formations limits what these networks can do. Ongoing work is to examine how
non-linearity can be reintroduced, by changing the categorical framework in which
we work. The most promising avenue seems to be to change to monoidal biclosed
categories and Lambek categorial grammar.

There are a number of other avenues for further work to be considered. On the
implementation side:

• The performance of linear TreeRNNs can be tested against the usual categor-
ical apporaches to learning words.

• The performance of linear TreeRNNs with specialised word-type networks can
be tested against standard TreeRNNs.

• The performance of TreeRNNs with formally analyzed information-routing
words can be tested.

• The effects of switching between word types can be investigated.

On the theoretical side:

• The analysis of reflexive pronouns can be extended to other pronouns and
anaphora.

• Investigating meanings of logical words and quantifiers.

• Extending the analysis to other types of recurrent neural network such as long
short-term memory networks or gated recurrent units.
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Abstract
Conceptors are an approach to neuro-symbolic integration based on recur-

rent neural networks. Jaeger has introduced two-valued logics for conceptors.
We observe that conceptors are essentially fuzzy in nature, and hence develop
a fuzzy subconceptor relation and a fuzzy logic for conceptors.

1 Introduction
Neural networks have been successfully used for learning tasks [14], but they exhibit
the problem that the way they compute their output generally cannot be interpreted
or explained at a higher conceptual level [15]. The field of neuro-symbolic integra-
tion [2] addresses this problem by combining neural networks with logical methods.
However, most approaches in the field (like e.g. logic tensor networks [4]) are localist,
that is, predicates or other symbolic items are represented in small sub-networks.
This contrasts with the distributed representation of knowledge in (deep learning)
neural networks, which seems to be much more flexible and powerful.

Jaeger’s conceptors [10, 11, 12, 8] provide such a distributed representation while
simultaneously providing logical operators and concept hierarchies that foster ex-
plainability. The basic idea is to take a recurrent neural network and not use it for
learning through back-propagation, but rather as a reservoir, i.e. a network with
fixed randomly created connection weights. The reservoir feed it with input signals,
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leading to a state space that can be captured as a certain ellipsoid using a conceptor
matrix. Conceptor matrices are positive semi-definite matrices with singular values
(which represent the lengths of the ellipsoid axes) ranging in [0,1]. Details will be
given below.

In [11], Jaeger introduces and studies algebra of conceptors, providing the quasi-
Boolean operations “and”, “or” and “not” (which however satisfy only part of the
laws of Boolean algebra), as well as a scaling operation called aperture adaption, and
an interpolation operation. A crucial advantage of conceptors over ordinary neural
networks is that using the algebra of conceptors, training examples can easily be
added to conceptors, without the need of re-training with the whole sample. This
also has been applied to deep learning [8] in order to avoid catastrophic forgetting.
Moreover, the Löwner ordering on conceptor matrices expresses a concept hierar-
chy. For reasoning about conceptors, two logics are introduced, an extrinsic and an
intrinsic one.

We here argue that both of these logics are not adequate for reasoning about
conceptors, because they both can ultimately speak only about the Löwner ordering,
i.e. crisp statements that can be either true or false. We propose that a more
promising approach is to view conceptors as a kind of fuzzy sets. Indeed, their quasi-
Boolean operators satisfy the (appropriate generalisation of) T-norm and T-conorm
laws, and form a (generalised) De Morgan Triplet [18, 7]. This is remarkable, because
conceptors have not been introduced as a neuro-fuzzy approach (and note that neuro-
fuzzy approaches generally are localist in the above sense, while conceptors provide
a global distributed representation of knowledge).

We argue that an appropriate conceptor logic should not have crisp but fuzzy
statements as its atomic constituents. The main reason is that conceptors are built
from signals, which typically are noisy to some degree. Hence, we expect that a
subconceptor relation should be immune to small disturbances and noise in signals.
This cannot be achieved with the Löwner ordering. Hence, we introduce a fuzzy
variant of the Löwner ordering that can be used as a fuzzy subconceptor relation.
This is also in accordance with the finding that conceptors behave like fuzzy sets.

Our proposed conceptor logic hence includes all what Jaeger has in his logic:
formation of conceptors from signals, the quasi-Boolean logical operations, aperture
scaling and interpolation. This is extended with a fuzzy subconceptor relation,
as well as a classification of signals (which can be seen as fuzzy set membership).
On this basis, we develop a fuzzy logic for conceptors. Concept hierarchies can
be obtained using hierarchical clustering. Note that our approach is different from
combinations of machine learning and fuzzy methods in the literature [9], where the
basic relations that are learned are fuzzified. By contrast, our approach incorporates
fuzzy logic on top of neural networks. This is also the reason why we use non-fuzzy
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Figure 1: Structure of the recurrent neural network

hierarchical clustering.

2 Conceptors

In this section, we recall some basic notions and definitions from [11]. Conceptors
arise from observing the dynamics of randomly created recurrent neural networks
(RNNs). The latter are also called reservoirs. An input signal p drives this network.
For time steps n = 0, 1, 2, . . . L, the system is governed by the equation

x(n+ 1) = tanh(W x(n) +W inp(n+ 1) + b)

see also Fig. 1. Here,

• p(n) is a K-dimensional input vector at time step n

• x(n) is the N -dimensional state vector at time step n

• W is an N ×N matrix of reservoir-internal connection weights

• W in is an N ×K vector of input connection weights

• b is a N × 1 bias vector

• tanh is the hyperbolic tangent.
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Note that W , W in and b are randomly created.
If such a network of dimension N is observed for L steps, the state vectors

x(0), . . . x(L) can be collected into an N × L matrix X representing the cloud of
visited states in the N -dimensional reservoir state space. From this, the reservoir
state correlation matrix is computed as

R = XXT /L

This is comparable to a covariance matrix in statistics. Rij is a measure for how
much the x(n)i relate to the x(n)j over all time steps n = 0, 1, 2, . . . L.

2.1 From Correlation Matrices to Conceptors
A conceptor C is a normalised ellipsoid (inside the unit sphere) that (like the state
correlation matrix R) represents the cloud of visited states. It can be computed
from state correlation matrix R via the following normalisation:

C(R,α) = R(R+ α−2I)−1 = (R+ α−2I)−1R (1)

where α ∈ (0,∞) is a scaling factor called aperture. Conversely, given a conceptor
C, the state correlation matrix can be computed via

R(C,α) = α−2(I − C)−1C = α−2C(I − C)−1

A conceptor forms an ellipsoid that can be seen as a “fingerprint” of the activity
the RNN. It can also be seen as a polarisation filter that filters out certain dimensions
(which means that Cx ≈ 0 for vectors x that live only in these dimensions) and
leaves through others (which means that Cx ≈ x for vectors x that live only in
these dimensions). Fig. 2 shows four sample input signals, their behaviour on two
neurons, as well as the singular values of the state correlation matrix R and those of
the conceptor C. The singular value decomposition (SVD) of R and C can be seen
as a principal component analysis, where the singular values represent the different
relevant dimensions of the ellipsoid. While the singular values of R are arbitrary,
those of C are not. Equation (1) always leads to matrices with normalised singular
values. This leads to:

Definition 1 ([11]). Given a dimension M ∈ N, a conceptor is a positive semi-
definite real-valued M ×M -matrix with singular values ranging in [0,1].

Recall that an eigenvalue of a matrix M is a value λ ∈ R such that Mv = λv for
some vector v, and that a matrix is positive semi-definite iff it is symmetric and all
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input signal two neurons SVD (R) SVD (C)

Figure 2: Different input signals (two sine and two sawtooth waves) and the singular
value decompositions of their state correlation matrices R and their conceptors C.
Image from [11]

of its eigenvalues are non-negative. Moreover, for such matrices, singular values and
eigenvalues coincide. Hence, a conceptor can be equivalently defined as a symmetric
matrix whose eigenvalues range in [0,1].

A conceptor is hard, if all singular values are in {0, 1}. A conceptor is a conception
vector, if at most the diagonal is nonzero [11]. Jaeger shows that with an embedding
into a higher dimension, conception vectors (in this higher dimension) can have
capabilities resembling those of conceptors (in the lower dimension).

2.2 Quasi-Boolean Operations on Conceptors

A crucial feature of conceptors that logical and other operations are available for
them. Logical disjunction can be used for adding more training examples gradu-
ally, without catastrophic forgetting (known from deep learning approaches) taking
place, see [8] and Sect. 2.3 below (where also negation is used). Aperture adaption
can change the scaling parameter α discussed above, and is needed to keep con-
ceptors between de-differentiation and over-excitement (see [11] for explanations).
Interpolation can be used to smoothly move from one conceptors to another one.
Jaeger illustrates this with motions of a human skeleton, where walking is smoothly
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transformed into running, dancing or sitting etc1.

Definition 2 (Quasi-Boolean operations [11]). On conceptors, we can define the
following quasi-Boolean operations, as well as operations of aperture adaption and
interpolation:

• ¬C := 1− C

• C ∨D := C(R(C, 1) +R(D, 1), 1)

• C ∧D := ¬(¬C ∨ ¬D)

• ⊥ = 0 (zero matrix, plays the role of false)

• > = I (identity matrix, plays the role of true)

• ϕ(C, γ) = C/(C + γ−2(I − C)) for 0 < γ <∞ (aperture adaption)

• βb(C,B) = bC + (1− b)B (interpolation)

In [11], it is shown that these quasi-Boolean operations satisfy some useful laws
like associativity and commutativity of disjunction and conjunction, and De Mor-
gan’s laws. However, disjunction and conjunction are not idempotent, nor does a
distributive law hold. This means that conceptors do not form a Boolean algebra.
On the other hand, the subalgebra of hard conceptors do form a Boolean algebra
[11].

2.3 Application of Conceptors to Japanese Vowel Classification
Jaeger [11] uses conceptors to learn and classify audio signals for Japanese vowels
obtained from nine different speakers. Classification of a recording using a conceptor
Cj (for speaker j) is done with the quadratic form2

xTCjx

where x is an observation of the reservoir state, while the reservoir is fed with the
input signal.

Beyond this positive classification, using the logical operations for conceptors,
one can also do a negative classification in the sense of “this speaker is not any of
the other eight speakers”. This negative classification of x is done using

xT¬(C1 ∨ · · · ∨ Cj−1 ∨ Cj+1 ∨ · · · ∨ Cn)x
1See https://www.youtube.com/watch?v=DkS_Yw1ldD4.
2Cf. the formula zT C+

j z on p.75 [11].
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Jaeger used 12-channel recordings of short utterance of 9 male Japanese speakers.
There are 270 training recordings and 370 test recordings. After forming conceptors
using the training data, speaker recognition on the test data could be done with
an error rate of less than 1%. Moreover, using the quasi-Boolean operations, an
incremental extension of the model is possible, while avoiding catastrophic forgetting
that occurs with other approaches.

2.4 The Subconceptor Relation, and Conceptor Logic
Conceptors can be partially ordered, providing a concept hierarchy, as it is known
from ontologies and other knowledge representation formalisms. In [11], a partial
order on conceptors is given by C ≤ D iff D−C is positive semi-definite (this is the
so-called Löwner ordering).

In [11], it is shown that C ≤ D iff there is some E with C ∨ E = D iff there is
some conceptor E with C = D∧E. However, the usual definition of the partial order
in a lattice via C ≤ D iff C = C ∧D does not work. This shows that the Löwner
ordering ≤ does not form a lattice with the above operations.3 Fig. 3 shows the
Löwner ordering among all 2× 2 conceptors that use multiples of 1

4 for their entries.
Note that for conception vectors, the ordering is just component-wise. Using some
simple calculations on eigenvalues, we can characterise 2 × 2 conceptors as those

matrices
(
a b
c d

)
with a, d ∈ [0, 1], b = c and

|b| ≤
√

min(ad, ad− a− d+ 1),

and the Löwner ordering as given by
(
a1 b1
b1 d1

)
≤
(
a2 b2
b2 d2

)
iff a1 ≤ a2, d1 ≤ d2 and |b2 − b1| ≤

√
(a2 − a1)(d2 − d1).

While it is clear that the Löwner ordering does not form a lattice with the above
Quasi-Boolean operations, in principle, there could be other operations turning it
into a lattice. However, this is not the case, as our following example shows:

3Indeed, on all symmetric matrices, the Löwner ordering forms an anti-lattice: any two matrices
have a supremum only if they are already comparable (and hence one of them is the supremum)
[17]. However note that a lattice can be simultaneously an anti-lattice, e.g. in the case of a total
order. For conceptors, this happens iff the dimension M is 1.
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Figure 3: The Löwner ordering for some 2 × 2 conceptors. Conception vectors are
show in grey, and hard conceptors with a thick borderline.
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Example 1. The Löwner ordering ≤ on conceptors is not a lattice, because we have
a pair of conceptors with three incomparable common upper bounds:
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For reasoning about the subconceptor relation, Jaeger defines two logics for con-
ceptors, an extrinsic and intrinsic one. Both logics feature conceptor terms using
the above defined operations, and feature subconceptor relations (i.e. the Löwner
ordering) between such conceptor terms as atomic formulas. We will briefly recall
the extrinsic logic in simplified form4, the intrinsic logic not being so relevant to our
topic. Extrinsic conceptor logic builds a first-order logic on top of the subconceptor
relation. This means that algebraic laws for the conceptor operations or properties
of the Löwner ordering can be formally studied in this logic.

Definition 3 (Extrinsic conceptor logic [11]). Extrinsic conceptor logic is parame-
terised over a dimension M ∈ N. Signatures consist of a set of constants. Models
interpret these as M -dimensional conceptors in [0, 1]M . Conceptor terms are formed
from constants c from the signature, the constants 0 and 1, conceptor variables,
quasi-Boolean operations, aperture adaption, and interpolation:

C ::= c | x | ⊥ | > | ¬x | C1 ∨ C2 | C1 ∧ C2 | ϕ(C, r) | βb(C1, C2)

The above definition of quasi-Boolean operations, aperture and interpolation for con-
ceptors leads to an interpretation of terms in a model and a variable valuation.
Atomic formulas C1 ≤ C2 are inequalities between conceptor terms C1, C2. They
are interpreted using the Löwner ordering. Complex formulas are formed from these
using the standard first-order Boolean connectives and quantifiers:

F ::= C1 ≤ C2 | ¬F | F1 ∨ F2 | F1 ∧ F2 | ∀x.F | ∃x.F
Their interpretation follows that in standard first-order logic.

Note that extrinsic conceptor logic features two levels of (quasi-)Boolean connec-
tives: one level inside conceptor terms, not satisfying the laws of Boolean algebra,
and one level within formulas, satisfying the laws of Boolean algebra.

4For simplicity, we here omit signature morphisms.
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3 A Fuzzy Logic for Conceptors
Both extrinsic and intrinsic conceptor logic have the drawback that they are based
on crisp statements C1 ≤ C2 that can be either true or false. However, conceptors
(and conceptors) abstract, classify and reconstruct signals not in a precise and crisp
manner, but are rather fuzzy in nature. Hence, the central thesis of this paper is:

Conceptors and conceptors behave like fuzzy sets, and their logic should
be a fuzzy logic.

3.1 A Generalised De Morgan Triplet
This thesis is backed up by the observation that conceptors satisfy the usual algebraic
laws for fuzzy sets, namely that of a De Morgan triplet — here generalised from the
laws for fuzzy truth values, as follows:

Definition 4 (strong negation [1]). Let (X,≤) be a partial order with minimum 0
and maximum 1. A function N : X → X is called a generalised5 strong negation, if

• N(0) = 1, N(1) = 0

• x < y implies N(x) > N(y) (strict anti-monotonicity)

• N(N(x)) = x (involution)

Definition 5 (t-norm, t-conorm [1]). A function T : X2 → X is called a generalised
t-norm, if it satisfies the following properties:

• T1: T (x, 1) = x (identity)

• T2: T (x, y) = T (y, x) (commutativity)

• T3: T (x, T (y, z)) = T (T (x, y), z) (associativity)

• T4: If x ≤ u and y ≤ v then T (x, y) ≤ T (u, v) (monotonicity)

A function S : X2 → X is called a generalised t-conorm, if it satisfies T2-T4 above
(adapted to S) and

• S1: S(x, 0) = x (identity)

5Generalised from [0, 1] to an arbitrary partial order (X, ≤).
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Definition 6 (De Morgan triplet [1]). A triplet (S : X2 → X,T : X2 → X,N :
X → X) is called a generalised De Morgan triplet if T is a generalised t-norm, S is
a generalised t-conorm, N is a generalised strong negation, such that De Morgan’s
law is satisfied:

S(x, y) = N(T (N(x), N(y)))
Proposition 1. conceptors and their quasi-Boolean operations form a generalised
De Morgan triplet (∨,∧,¬) when the minimum 0 is the zero matrix 0, and 1 the
unit matrix I.
Proof. Follows from proofs in [11] and straightforward calculations.

3.2 A Fuzzy Subconceptor Relation
The crisp subconceptor relation makes rather sharp distinctions. For example,(

0.9 0.001
0.001 0.9

)
6≤
(

0.9 0
0 0.9

)
, although both conceptors differ only minimally, and

for classification purposes, there would be not much difference between them (of
course, realistic classification examples like in the Japanese vowel example need
much larger conceptors). We generally expect that a subconceptor relation should
be immune to small disturbances and noise in signals. This can be achieved with
a fuzzy subconceptor relation, which also would be in accordance with the finding
that conceptors behave like fuzzy sets.

Therefore, an important question is how the Löwner ordering generalises to the
fuzzy setting. The resulting truth value will then not be true or false, but will be
a member of [0, 1], the space of fuzzy truth values. Note that the crisp Löwner
ordering is defined as C ≤ D iff D−C is positive semi-definite, which in turn holds
iff all eigenvalues of D − C are non-negative, i.e. eig(D − C) ⊆ R+

0 . Our fuzzy
generalisation of the Löwner ordering is defined as:
Definition 7.

C � D = 1 +mean(nullify_positives(eig(D − C)))
where

nullify_positives(x) =
{

0 x ≥ 0
x otherwise

Note that eig(D − C) is considered as multiset (that is, an eigenvalue occurring
multiple times counts multiply in the mean).
Furthermore, fuzzy equivalence is defined as

C ∼= D = min(C � D,D � C)
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Proposition 2. C � D ∈ [0, 1], hence this is indeed a fuzzy truth value.

Proof. Since C and D are conceptors, all their eigenvalues are in [0, 1]. By Weyl’s in-
equality, for the minimal eigenvalues, we have λmin(D−C) ≥ λmin(D)+λmin(−C) ≥
0−1 = −1 and for the maximal ones λmax(D−C) ≤ λmax(D)+λmax(−C) ≤ 1+0 =
1. Hence, the eigenvalues of D − C are in [−1, 1]. Therefore, eig(D − C) ∩ R−0 ⊆
[−1, 0], and 1 +mean(nullify_positives(eig(D − C))) ∈ [0, 1].

The relation of this fuzzy ordering to the crisp one is as follows:

Proposition 3.
C � D = 1 iff C ≤ D

Proof. C � D = 1 iff mean(nullify_positives(eig(D−C))) = 0 iff all eigenvalues of
D − C are non-negative iff C ≤ D.

Example 2 (Examples for the fuzzy subconceptor relation). We illustrate the fuzzy
subconceptor relation using some simple 2× 2 matrices:

•
(

0.9 0.1
0.1 0.9

)
6≤
(

0.9 0
0 0.9

)

•
(

0.9 0.1
0.1 0.9

)
�
(

0.9 0
0 0.9

)
is 0.9

•
(

1 0
0 1

)
6≤
(

0.9 0.1
0.1 0.9

)

•
(

1 0
0 1

)
�
(

0.9 0.1
0.1 0.9

)
is 0.8

Example 3. We can also set a threshold, e.g. 0.85, and ask whether conceptors
relate fuzzily with a value above this threshold. With threshold 0.85, we have

∼= and ∼=

but

neither � nor �
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For the Japanese vowel speakers, we need a different threshold, e.g. 0.9. Then
two speakers are equivalent iff they are identical. By contrast, with threshold 0.7, all
Japanese vowel speakers are equivalent (∼=), showing that the sensor data allows no
easy discrimination of the speakers.

Proposition 4. C � D = ¬D � ¬C
How close is a conceptor to the top element of the Löwner ordering, the unit

matrix? Using the fuzzy subconceptor relation, the weight of a conceptor C can be
defined as

w(C) = > � C
and by Prop. 4, this is equal to ¬C � ⊥.

Example 4. • w( ) ≈ 0.05

• w( ) ≈ 0.2

• w(JPj) ≈ 0.2 for j = 1, . . . , 9

• w(¬(JP1 ∨ · · · ∨ JPj−1 ∨ JPj+1 ∨ · · · ∨ JPn)) ≈ 0.6 for j = 1, . . . , 9

Jaeger introduces the quota of a conceptor as the mean value of the singular
values. The quota is a measure for the conceptor to learn new information (e.g. by
taking disjunctions with other conceptors). A quota near 1 means that the capacity
of the conceptor is nearly exceeded. See [11] for discussion and examples.

Proposition 5. Weight and quota coincide.

Proof. We have

w(C) = > � C = I � C
= 1 +mean(nullify_positives(eig(C − I)))
∗= 1 +mean(eig(C − I))
∗∗= 1 +mean(eig(C))− 1
= mean(eig(C))
∗∗∗= mean(svd(C))
= quota(C).

Equation * holds because I−C is a conceptor and thus has no negative eigenvalues.
Hence, C−I does not have positive eigenvalues. Equation ** can be seen as follows:
(C−I)v = (λ−1)v iff ((C−I)−(λ−1)I)v = 0 iff (C−λI)v = 0 iff Cv = λv. Equation
*** holds because for conceptors, eigenvalues and singular values coincide.
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Figure 4: Dendrogram for Japanese speakers

This result is an indicator that the fuzzy conceptor relation � has a natural
definition.

Coming back to the Japanese vowels example, we can use the fuzzy conceptor
equivalence relation to create a dissimilarity matrix for the nine Japanese speakers.
As distance between two speakers, we use negation (via 1−x) of the fuzzy equivalence
between the corresponding conceptors. When feeding this dissimilarity matrix into
a simple hierarchical clustering algorithm [6], we obtain the dendrogram shown in
Fig. 4.

Now the added value of using conceptors compared to mere clustering is that
we can easily build conceptors from clusters, using disjunction (which can also be
used in the agglomeration process when updating the dissimilarity matrix while
merging clusters). For example, from the clusters in Fig. 4, we can choose to build
e.g. three conceptors JP1 ∨ JP9, JP2 ∨ JP6 and JP3 ∨ JP4 ∨ JP5 ∨ JP7 ∨ JP8.
These conceptors then will capture little “dialects” that can be used for further
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classification and clustering. The resulting concept hierarchy is crisp:

•

��

(( •

�� ++
JP1 ∨ JP9 JP2 ∨ JP6 JP3 ∨ JP4 ∨ JP5 ∨ JP7 ∨ JP8

3.3 Fuzzy Conceptor Logic
In the previous section, we have defined distance between speakers as

1−min(C � D,D � C),

which in terms of fuzzy logic can be rewritten as

¬(C � D ∧D � C).

That is, we have used propositional logic on top of the fuzzy subconceptor relation.
We now extend this to fuzzy first-order logic. We also add fuzzy membership as
atomic statements. This means that we can use fuzzy conceptor logic for reasoning
about concept hierarchies formed by conceptors, but also about specific signals and
their membership in these conceptors.

Definition 8 (Fuzzy conceptor logic). Fuzzy conceptor logic is parameterised over
a dimension M ∈ N. The logic is two-sorted, distinguishing individuals and concep-
tors. Signatures consist of a set of constants for individuals and one for conceptors.
Conceptor terms are formed from constants from the signature, the constants ⊥ and
>, conceptor variables, quasi-Boolean operations, and aperture adaption:

C ::= c | x | ⊥ | > | ¬x | C1 ∨ C2 | C1 ∧ C2 | ϕ(C, r) | βb(C1, C2)

Complex formulas are formed from the following atomic formulas: (1) ordering re-
lations C1 � C2 between conceptor terms and (2) memberships i ∈ C of individual
constants in conceptors. Complex formulas may use the standard Boolean connec-
tives and first-order quantifiers:

F ::= i ∈ C | C1 � C2 | ¬F | F1 ∨ F2 | F1 ∧ F2 | F1 → F2
| ∀xi.F | ∀xc.F | ∃xi.F | ∃xc.F

Here, xi denotes a variable ranging over individuals, and xc one ranging over con-
ceptors.
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The semantics of fuzzy conceptor logic is as follows. Models interpret constants
for individuals as vectors in [0, 1]M and constants for conceptors as conceptor ma-
trices in [0, 1]M×M . Conceptor terms are evaluated as for extrinsic conceptor logic
(i.e. using the operations on conceptors, see Def. 2).

The two types of atomic formulas have the following semantics, giving a fuzzy
truth value in [0, 1]:

[[C1 � C2]]M = [[C1]]M � [[C2]]M

[[i ∈ C]]M = 1
M ([[i]]M )T [[C]]M [[i]]M

Note that the latter formula is a quadratic form. Quadratic forms have been used by
Jaeger for classification of utterances of Japanese speakers (see the discussion at the
end of Sect. 2) and also in [16]. We need to show that the quadratic form has range
[0, 1]. Since [[C]]M is a positive semi-definite, we have that ([[i]]M )T [[C]]M [[i]]M ≥ 0.
Moreover, we have 1

M ([[i]]M )T [[C]]M [[i]]M ≤ 1
M ·

∥∥∥[[i]]M
∥∥∥

2
·λmax([[C]]M ) ≤ 1

M

√
M

2 ·1 =
1.

Interpretation of complex formulas follows that for fuzzy first-order logic. We
need to interpret logical connectives and quantifiers as fuzzy operations on [0, 1] We
use min as conjunction, max as disjunction and 1−x as negation, and use infimum
for universal quantification and supremum for existential quantification. Moreover,
it is standard to define residual implication as:

R(x, y) = sup{t ∈ X | x ∧ t ≤ y}

Proposition 6. For the conjunction ∧ defined as min on [0, 1], residual implication
amounts to

R(x, y) =
{

1 x ≤ y
y otherwise

In particular, x ≤ y iff R(x, y) = 1.

Proof. If x ≤ y, the inequation min(x, t) ≤ y even holds for t = 1. If not, t = y is
the largest value for which it holds.

Residual implication is illustrated in Fig. 5. Note that it is discontinuous at
(x, x).

In fuzzy conceptor logic, we now can express dissimilarity between two conceptors
C and D (used for clustering, see Fig. 4) as

¬(C � D ∧D � C)

740



Towards Fuzzy Neural Conceptors

Figure 5: Residual implication R(c, b).

Using the quantification capabilities of fuzzy conceptor logic, we can define two
“subset” relations, namely 1) C � D and 2) the definition from classical set theory:
∀xi.(xi ∈ C → xi ∈ D). We then have
Proposition 7. If [[C]]M ≤ [[D]]M , then [[∀xi.(xi ∈ C → xi ∈ D)]]M = 1.
Proof. If [[C]]M ≤ [[D]]M , then by monotonicity of the scalar product, [[xi ∈ C]]M ≤
[[xi ∈ D]]M . Hence, by Prop. 6, [[xi ∈ C → xi ∈ D]]M = 1.

Example 5. The converse does not hold: consider [[C]]M =
(

0.9 −0.1
−0.1 0.9

)
and

[[D]]M =
(

0.9 0
0 0.9

)
, we have [[C]]M 6≤ [[D]]M . However, still [[∀xi.(xi ∈ C → xi ∈

D)]]M = 1. This is because for x = [[xi]]M , [[xi ∈ C]]M = 0.9(x2
1 + x2

2) − 0.1x1x2,
while [[x ∈ D]]M = 0.9(x2

1 + x2
2). Hence [[xi ∈ C → xi ∈ D]]M = 1.

For conception vectors, we have a stronger property:
Proposition 8. For conception vectors [[C]]M , [[D]]M ,

[[∀xi.(xi ∈ C → xi ∈ D)]]M =
{

1 [[C]]M ≤ [[D]]M

0 otherwise

741



Mossakowski, Glauer and Diaconescu

Proof. One direction is Prop. 7. Concerning the other direction, if [[C]]M 6≤ [[D]]M ,
then pick some j ∈ {1, . . . , n} with [[C]]Mj > [[D]]Mj . Let ej be the j-th unit vector.
Then for all r ≥ 0, r · eT

j [[C]]Mr · ej > r · eT
j [[D]]Mr · ej , and limr→0R(r · eT

j [[C]]Mr ·
ej , r · eT

j [[D]]Mr · ej) = 0. Therefore, [[∀xi.(xi ∈ C → xi ∈ D)]]M = 0.

Corollary 1. For conception vectors [[C]]M , [[D]]M ,

[[[∀xi.(xi ∈ C → xi ∈ D)]→ C � D]]M = 1

The corollary does not hold for conceptors in general, as Example 5 shows.

4 Conclusion
Our central thesis is that Jaeger’s conceptor logic is best formalised as a fuzzy logic.
We have shown that this fuzzy logic smoothly extends Jaeger’s crisp logic. In partic-
ular, we have generalised his subconceptor relation (which is the Löwner ordering) to
a fuzzy subconceptor relation. A potential application of this logic is the extended
classification of speech signals. Based on Jaeger’s organisation of vowel utterances
by nine different Japanese speakers, we have used the fuzzy subconceptor relation
to cluster these speakers. The advantage of our framework is that the can build
conceptors from these clusters (using disjunction). The resulting conceptors corre-
spond to little “dialects”, and they can themselves directly be used for classification,
but also for further clustering into taxonomies. Moreover, new (sensor) data can
be integrated without re-training, again using conceptor disjunction. If several such
taxonomies have to be merged, it is unlikely that conceptors match exactly, or a
in the crisp subconceptor relation. Here, our fuzzy subconceptor relation could be
useful for taxonomy (ontology) alignment [5].

In order to extend this approach to a framework for creating and maintaining
ontologies based on sensor data, more research is needed. Conceptors are essentially
modelling concepts (formally: unary predicates). For ontological modelling that
extends mere taxonomies, an important question is: is it possible to model binary
(or even n-ary) predicates in a similar way? If yes, then can we model quantifiers as
projections, like in description logics? This could have advantages over the current
formalisation of quantifiers, which behave in rather crisp way when interacting with
membership, cf. Prop. 8. Moreover, currently, the domain of discourse for individuals
consists of all vectors in [0, 1]M . Would it be useful to restrict this to a subspace,
such that e.g. vectors that would represent nonexistent objects can be excluded?

A peculiarity of the fuzzy conceptor logic that we have introduced is the difference
between x ∈ (C ∨ D) and x ∈ C ∨ x ∈ D. It is unclear how these two formulas
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relate, but it seems that the latter formula leads to a loss of information in some
sense. A similar phenomenon arises with the formulas ∀xi.(xi ∈ C → xi ∈ D) and
C � D. intuitively, they both express a form of fuzzy subconceptor relation, but
further study is needed to understand the subtle differences.

Various algebraic and order-theoretic properties should be studied. We conjec-
ture that � is a fuzzy partial order in the sense of [13].

Furthermore, future work should provide proof support for fuzzy conceptor logic
and study the integration of inductive learning from examples and deductive reason-
ing. It should be straightforward to organise fuzzy conceptor logic as an L-institution
in the sense of [3]. Then, for obtaining a proof calculus, the very general results of
[3] can be applied, because our space of truth value forms a residuated lattice.

Finally, it will be crucial to study more application scenarios of conceptors in
the rich field of time series. For example, we are currently working with weather
data and energy data for modelling renewable energies.
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Abstract
In this paper, we show that standard feed-forward and recurrent neural

networks fail to learn abstract patterns based on identity rules. We propose
Relation Based Pattern (RBP) extensions to neural network structures that
solve this problem and answer, as well as raise, questions about integrating
structures for inductive bias into neural networks.

Examples of abstract patterns are the sequence patterns ABA and ABB
where A or B can be any object. These were introduced by Marcus et al (1999)
who also found that 7 month old infants recognise these patterns in sequences
that use an unfamiliar vocabulary while simple recurrent neural networks do
not. This result has been contested in the literature but it is confirmed by our
experiments. We also show that the inability to generalise extends to different,
previously untested, settings.

We propose a new approach to modify standard neural network architec-
tures, called Relation Based Patterns (RBP) with different variants for classi-
fication and prediction. Our experiments show that neural networks with the
appropriate RBP structure achieve perfect classification and prediction per-
formance on synthetic data, including mixed concrete and abstract patterns.
RBP also improves neural network performance in experiments with real-world
sequence prediction tasks.

We discuss these finding in terms of challenges for neural network models and
identify consequences from this result in terms of developing inductive biases
for neural network learning.
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1 Introduction

Despite the impressive development of deep neural networks over recent years, there
has been an increasing awareness that there are some tasks that still elude neural
network learning or need unrealistic amounts of data. Humans, on the other hand,
are remarkably quick at learning and abstracting from very few examples. Marcus
[1] showed in an experiment that 7-month old infants already recognise sequences
by identity rules, i.e. which elements are repeated, after just two minutes of famil-
iarization. In that study a simple recurrent neural network model was also tested
and it failed to generalise these identity rules to new data.

In this study, we re-visit this problem and evaluate the performance of frequently
used standard neural network models in learning identity rules. More specifically,
we find that feed-forward and recurrent neural networks (RNN) and their gated
variants (LSTM and GRU) in standard set-ups clearly fail to learn general identity
rules presented as classification and prediction tasks.

We tackle this problem by proposing Relation Based Patterns (RBP), which
model identity relationships explicitly as extensions to neural networks for classifi-
cation and prediction. We show experimentally that on synthetic data the networks
with suitable RBP structures learn the relevant rules and generalise with perfect
classification and prediction. We also show that this perfect performance extends
to mixed rule-based and concrete patterns, and that RBP improves prediction on
real-world language and music data.

Identity rules are clearly in the hypothesis space of the neural networks, but
the networks fail to learn them by gradient descent. We identify that both the
comparison of related input neurons and of input tokens needs to be predefined in
the network to learn general rules from data. The RBP structures introduce this
inductive bias in the neural networks and thus enable the learning of identity rules
by standard neural networks.

Our contributions in this paper are specifically:

• we evaluate several common NN architectures: feed-forward networks, RNN,
GRU, and LSTM, in novel settings, and find that they fail to learn general
identity rules;

• we identify reasons that prevent the learning process from being successful in
this context;

• we propose the Relation Based Patterns, a new method to enable the learning
of identity rules within the regular network structure;
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• we show in experiments that identity rules can be learnt with RBP structure
on artificial data, including mixed rule-based and concrete patterns, and that
they improve performance in real-world prediction tasks;

The remainder of this paper is structured as follows. Section 2 introduces related
work on modelling identity rules. Section 3 presents results of our experiments
with standard neural network architectures. Section 4 presents our RBP model
and its different variants. Section 5 presents the results of experiments using RBP
structures. Section 6 addresses the application of RBP to mixed patterns and real
data. Section 7 discusses the implications of the presented experimental results and
Section 8 concludes this paper.

2 Related work

Our task is the learning of rules from sequential data. This is often seen as grammar
learning, on which there have been many studies in psychology. [2] made an early
contribution on implicit learning and generalisation. Subsequently, [3, 4] studied
specifically the knowledge acquired during artificial grammar learning tasks. ]

The specific problem we are addressing in this study is the recognition of abstract
patterns that are defined by the identity relation between tokens in a sequence. In
the well-known experiments by [1], infants were exposed to sequences of one of the
forms ABA or ABB, e.g. ‘la di la’ or ‘la di di’, for a few minutes in the familiarisation
phase.

In the test phase the infants were exposed to sequences with a different vocabu-
lary (e.g. ‘ba tu ba’ and ‘ba tu tu’) and they showed significantly different behaviour
depending on whether the sequences exhibited the form they were familiarised with
or not.

This type of pattern only depends on the equality between elements of the se-
quence and after successful learning it should be recognisable independently of the
vocabulary used. However, [1] also showed that simple recurrent Elman networks
were not able to perform this learning task. This finding sparked an exchange about
whether human speech acquisition is based on rules or statistics and the proposal
of several neural networks models that claimed to match the experimental results.
[5] and [6] proposed a solution based on a distributed representation of the input
and on pre-training where the network is first trained to recognise repeated items
in a sequence. The network is subsequently trained on classifying ABA vs ABB
patterns. Only [6] reports specific results and has only 4 test data points, but 100%
accuracy. However, [7] reported that they could not recreate these results.
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[8] and [9] suggested solutions which are based on modified network architectures
and training methods. [10] could not replicate the results by [9] and found that
the models by [8] do not generalise. The claims by [10] were again contested by
[11]. A number of other methods were suggested that used specifically designed
network architectures, data representations, and training methods, such as [12, 13,
14, 15]. More recent work by [16] suggests that prior experience or pre-defined
context representation (“pre-training” or “pre-wiring”) is necessary for the network
to learn general identity rules when using echo state networks. While these works are
interesting and relevant, they do not answer our question whether more commonly
used network architectures can learn general identity rules.

The discussion of this problem is part of a wider debate on the systematicity
of language learning models, which started in the 1980s and 1990s [17, 18]. This
debate, like the more specific one on identity rules, has been characterised by claims
and counter-claims [19, 20, 21, 22, 23, 24], which, as stated by [25], often suffer from
a lack of empirical grounding. Very recently, the work in [26] has defined a test of
systematicity in a framework of translation, applied it to standard seq2seq neural
network models [27]. They found that generalisation occurs in this setting, but it
depends largely on the amount and type of data shown, and does not exhibit the
extraction and systematic application of rules in the way a human learner would.

In most of the studies above, the evaluation has mostly been conducted by testing
whether the output of the network shows a statistically significant difference between
inputs that conform to a trained abstract pattern and those that do not. From a
machine learning perspective, this criterion is not satisfactory as we, like [26], would
expect that an identity rule should always be applied correctly once if it has been
learned from examples, at least in cases of noise-free synthetic data. We are therefore
interested in the question whether and how this general rule learning can be achieved
with common neural network types for sequence classification.

This question also relates to recent discussions sparked by [28] about deep neural
networks’ need for very large amounts of training data, lack of robustness and lack
of transparency as also expressed, e.g., by [29, 30, 31]. We surmise that these issues
relate to the lack of generalisation beyond the space covered by the input data, i.e.
extrapolation, which is generally seen as requiring an inductive bias in the learning
system, but there is no general agreement about the nature or implementation of
inductive biases for neural networks, e.g. [32, 33]. In recent years, there was a trend
to remove human designed features from neural networks, and leave everything
to be learned from the data [34]. We follow here the inverse approach, to add
a designed internal representation, as we find that for the given problem standard
neural network methods consistently fail to learn any suitable internal representation
from the data.
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3 Experiment 1: standard neural networks
We test different network architectures to evaluate if and to what extent recurrent
and feed-forward neural networks can learn and generalise abstract patterns based
on identity rules.

3.1 Supervised learning of identity rules
The problem in the experiment by [1] is an unsupervised learning task, as the infants
in the experiments were not given instructions or incentives. However, most common
neural network architectures are designed for supervised learning and there are also
natural formulations of abstract pattern recognition as supervised learning task in
the form of classification or prediction.

In our case, abstract patterns are defined by identity relations. Expressed in
logic, they can be described using the binary equality predicate eq(·, ·). For a se-
quence of three tokens α, β, γ the rule-based patterns ABA and ABB can be de-
scribed by the following rules:

ABA : ¬eq(α, β) ∧ eq(α, γ) (1)
ABB : ¬eq(α, β) ∧ eq(β, γ). (2)

These rules are independent of the actual values of α, β, and γ and also called ab-
stract patterns. Concrete patterns, on the other hand, are defined in terms of values
of from a vocabulary a, b, c, ... . E.g., sequences a ∗ ∗, i.e. beginning with ‘a’, or ∗bc,
ending with ‘bc’, can be formulated in logic as follows:

a** : α = ‘a’ (3)
*bc : β = ‘b’ ∧ γ = ‘c’. (4)

For the remainder of this article we use the informal notations ABA and a ∗ ∗ as far
as they are unambiguous in their context.

For classification, the task is to assign a sequence to a class, i.e. ABA or ABB,
after learning from labelled examples. For prediction, the task is to predict the
next token given a sequence of two tokens after exposure to sequences of one of the
classes (e.g. only ABA, or ABB respectively). These tasks are suitable for the most
commonly used neural network architectures.

3.2 Experimental set-up
Network set-up We use the Feed-forward Neural Network (FFNN) (also called
Multi-layer Perceptron) [35], the Simple Recurrent Neural Network (RNN, also
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called Elman network [36]), the Gated Recurrent Unit (GRU) network [37], and
the Long Short Term Memory (LSTM) network [38]. For Prediction we only use the
RNN and its gated variants GRU and LSTM.

The input to the networks is a one-hot encoded vector representing each token
with n neurons, where n is the size of the vocabulary. In the case of the FFNN,
we encode the whole sequence of 3 tokens as a vector of size 3n. For the recurrent
models, we present the tokens sequentially, each as an n-dimensional vector. We set
the number of neurons in each hidden layer to (10, 20, 30, 40, 50), using 1 or 2 hidden
layers. We use Rectified Linear Units (ReLUs) for the hidden layers in all networks.
The output layer uses the softmax activation function. The number of output units
is 2 for classification and the size of the vocabulary for prediction. We train with the
Adam optimisation method [39], using initial learning rates of 0.01, 0.1, 0.2, 0.4, and
train with the synthetic datasets in one batch. We use regularisation with Dropout
rates of 0.1, 0,2, 0.4 and set the number of epochs to 10, within which all trainings
converged.

We conduct a full grid search over all hyperparameters using four-fold cross-
validation to optimise the hyperparameters and determine test results. We run a
total of 10 simulations for each evaluation and average the results. All experiments
have been programmed in PyTorch and the code is publicly available.1

Datasets For performing the rule learning experiments, we artificially generate
data in the form of triples for each of the experiments. We consider our sample
vocabulary as a...l (12 letters) for both prediction and classification tasks. We
generate triples in all five abstract patterns: AAA, AAB, ABA, ABB, and ABC
for the experiments. The sequences are then divided differently for the different
cases of classification. For all the experiments we use separate train, validation,
and test sets with 50%, 25%, and 25% of the data, respectively. All sampling
(train/test/validation split, downsampling) is done per simulation.

3.3 Classification
First we test three different classification tasks as listed below. We use half the
vocabulary for training and the other half for testing and validation (randomly
sampled). We divide the sequences into two classes as follows, always maintaining
an equal size of both classes:

1) ABA/ABB vs other: In task a) class one contains only pattern ABA while the
other contains all other possible patterns (AAA, AAB, ABB, ABC) downsam-

1https://github.com/radhamanisha1/RBP-architecture
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pled per pattern for class balance. The task is to detect whether eq(α, γ) ∧
¬eq(α, β) is true or false. Analogously, the task in b) ABB vs other is to
detect eq(β, γ) ∧ ¬eq(α, β). This case corresponds to the experiment in [1],
where only one rule-based pattern type is used for familiarisation.

2) ABA vs ABB: This task is like task 1 above, but only pattern ABB occurs
in the second class, so that this task has less variance in the second class.
We expected this task to be easier to learn because two equality predicates
eq(α, γ), eq(β, γ) change their values between the classes and are each sufficient
to indicate the class.

3) ABC vs other: In this case, class one (ABC) has no pair of equal tokens, while
the other class has at least one of eq(α, β), eq(α, γ), eq(β, γ) as true, i.e. de-
tecting equalities without localising them is sufficient for correct classification.

In our experiments, the training converged quickly in all cases and the classification
accuracy on the training data was 100%. The results on the test set are shown in
Table 1. In all cases the baseline, corresponding to random guessing is 50%. This
baseline is only exceeded for task 1) by the RNNs and their gated variants, and even
then the accuracy is far from perfect at 55%.

Classification task FFNN RNN GRU LSTM
1a) ABA/other 50% 55% 55% 55%
1b) ABB/other 50% 55% 55% 55%
2) ABA/ABB 50% 50% 50% 50%
3) ABC/other 50% 50% 50% 50%

Table 1: Three classification tasks based on abstract patterns over 10 simulations.
The numbers show test set accuracy after a grid search and cross validation as
described in section 3.2. All values are rounded to the next percentage point.

3.4 Prediction
We performed prediction experiments on two tasks. In task 1) we train and test on
ABA patterns and in task 2) on ABB. Training and test/validation set use different
vocabularies. The training converged quickly in less than 10 epochs, and after
training the classification accuracy on the training set is 100%.

The results on the test set are shown in Table 2. The baseline is 8.3 . . .% as
we have a vocabulary size of 12. We use again half the vocabulary (6 values) for
training and half for validation/testing. The results show that the tested networks
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fail completely to make correct predictions. They perform below the baseline at
0% accuracy, which is mostly because they predict only tokens that appear in the
training set but not in the test set.

Prediction task RNN GRU LSTM
1) ABA 0% 0% 0%
2) ABB 0% 0% 0%

Table 2: Prediction results for two different abstract patterns. The numbers show
test set prediction accuracy after a grid search and cross validation as described in
section 3.2.

3.5 Discussion
The results show clearly that FFNNs, RNNs, GRUs and LSTMs do not learn general
abstract patterns based on identity rules. This agrees with the previously reported
experiments by [1]. However, since there was some conflicting evidence in the liter-
ature, the clarity of the outcome was not expected.

Questions raised This result raises the question of why these neural networks do
not learn to generalise abstract patterns from data. There are two aspects worth
considering for an explanation: the capacity of the network and the necessary infor-
mation for the network to solve the problem.

Regarding the capacity: the solution to the task is in the hypothesis space of
the neural networks, since proofs exist of universal approximation properties for
feed-forward networks with unbounded activation functions [40] and of Turing-
completeness for recurrent networks [41]. We will present a constructive solution
below, putting that result into practice, with a design of network instances that
solve the problem.

The relevant question, as has been pointed out by [16], is therefore why learning
with backpropagation does not lead to effective generalisation here. There are three
different steps that are necessary to detect identity rules: a comparison of input
neurons, a comparison of tokens, represented by multiple neurons, and a mapping
of comparison results to classes or predictions.

Vocabulary hypothesis A possible reason for the failure of the networks to gen-
eralise what we call the vocabulary hypothesis. It is based on the separated vocabu-
lary in one-hot encoded representation. This leads to some input neurons only being
activated in the training set and some only in the validation and test sets.
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In order to learn suitable weights for an input comparison, there would have to
be a suitable gradient of the weights of the outgoing connections from these inputs.
If parts of the vocabulary do not appear in the training data, i.e. the activation of
the corresponding input neurons is always zero during training, the weights of their
outgoing connections will not be adapted. We therefore expect that the separation of
the vocabulary prevents generalisation from the training to the test set as the weights
going out from neurons that are used during testing have not been adapted by the
gradient descent. Based on this consideration we conducted another experiment
with a shared vocabulary.

This experiment is called ABA-BAB vs other. We again represent our vocabulary
as a...l (12 letters) for this task with train/validation/test split as 50%/25%/25%.
Now we use the same vocabulary for training, validation, and testing, but we separate
different sequences of the form ABA that use the same tokens between the training
and validation/test sets. E.g., if ded is in the test set, then ede is in the training
or validation set, so that there is no overlap in terms of actual sequences. Like
in classification experiment 1), training converged quickly and resulted in perfect
classification performance on the training set.

Classification task FFNN RNN GRU LSTM
ABA-BAB vs other 50% 50% 50% 50%

Table 3: Classification results on test sets with the same vocabulary used in test,
validation and training set.

The results on the test set presented in Table 3 show performance at the baseline
with no evidence of generalisation. This shows that activating all inputs by using a
shared vocabulary is not sufficient to enable generalisation in the learning process.

Other explanations A second potential problem is which neurons should be com-
pared. The FFNN has no prior information about neurons belonging to the same or
different tokens or about which input neurons correspond to the same token values.
In the RNN, one token is presented per time step, so that a comparison between
the previous hidden state and the current input is possible as the same neurons
are activated. However, with a full set of connections between the previous hidden
layer and the current, there is no reason that relations between the same neurons at
different time steps would be processed differently from different neurons.

On the other hand, if we had a representation that includes the information
of which tokens are identical or different, then we would have all the information
we need for a mapping, as these are the relations in which our defining rules are
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formulated (e.g. ABA is defined as eq(α, γ) ∧ ¬eq(α, β)). This idea has led to the
Relation Based Pattern (RBP) model that we introduce in the next section and then
evaluate with respect to its effect on both abstract and concrete pattern learning.

4 Design of Relation Based Pattern models
To address the inability of neural networks to generalise rules in neural network
learning, we developed the Relation Based Pattern (RBP) model as a constructive
solution, where the comparisons between input neurons and between tokens and the
mappings to outputs are added as a predefined structure to the network. The pur-
pose of this structure is to enable standard neural networks to learn abstract patterns
based on the identity rules over tokens while retaining other learning abilities.

In the RBPmodel there are two major steps. The first step is defining comparison
units for detecting identity relations, called DR units, and the second step is adding
the DR units to the neural network.

4.1 Comparison units
Comparing neurons We assume, as before, that input is a one-hot encoded
vector of the current token along with the n− 1 previous vectors for a given context
length n (in this study context length 3 for classification and 2 for prediction).
We use comparison units, called DR units (differentiator-rectifier). As the name
suggests, they apply a full wave rectification to the difference between two inputs:
f(x, y) = |x−y|. The first level of DR units are DRn units that are applied to every
pair of corresponding input neurons (representing the same value) within a token
representation, as shown in Figure 1.

Comparing tokens The next level of DR units are the DRp units that sum the
activations of the DRn values that belong to one pair of tokens. Based on the
sequence length n and vocabulary size a we create k = a × n(n − 1)/2 DRn units
for all the possible pairs of tokens and i.e. in our classification example, we have
a sequence of 3 tokens and a vocabulary size of 12, i.e. 12 × 3(3 − 1)/2 = 36 × 3
DRn units. All the DRn units for a pair of tokens are then summed in a DRp unit
using connections with a fixed weight of +1. E.g. we have 5× (5− 1)/2 = 10 DRp

units for a context of length 5. Figure 2a shows the network structure with DRn

and DRp units.
For the prediction case, we also use the same approach to represent the difference

between each input token and the next token (i.e., the target network output).
We create n DRpout units that calculate the difference between each input in the
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Figure 1: DRn units comparing related inputs with an absolute of difference acti-
vation function. In one-hot encoding, there are k DRn units for every pair of input
tokens, where k is the vocabulary size.

given context and the next token. There are k × n DRnout units that compare the
corresponding neurons for each pair of input/output tokens, in the same way as for
the pairs of input tokens. The overall network structure is shown in Figure 2b.

4.2 Neural network integration

We combine the DR units (DRn and DRp) with the neural network models in early,
mid and late fusion approaches we call RBP1, RBP2 and RBP3, as outlined below.
The weights that connect DRn units to input and output, and the DRn to DRp

units and the offset layer are fixed, all other weights that appear in the following
models are trainable with backpropagation.

Early Fusion (RBP1n/p) In this approach, DRn or DRp units are added as
additional inputs to the network, concatenated with the normal input. In Figure 3,
the RBP1n/p structure is depicted. We use early fusion in both the prediction and
classification tasks.

Mid Fusion (RBP2) The DRp units are added to the hidden layer. Figure 4a
shows the mid fusion structure for the feed-forward network and Figure 4b for the
recurrent network respectively. The RBP2 approach is used for classification and
prediction tasks.
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(a) The DRp and DRn units that
are used in the RBP1 and RBP2
structures with 3 × k DRn and 3
DRp units for a vocabulary size k
and sequence length 3.

(b) The DRout structure for detecting
identity relations between input and tar-
get. The DRpout values are calculated at
training time and a model is trained to
predict them conditional on DRpin (see
Figure 5).

Figure 2: DRn and DRp units for inputs (all RBP) and outputs (RBP3).

Figure 3: Overview of the RBP1n/RBP1p structure.
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(a) RBP2a (b) RBP2b

Figure 4: Overview of RBP2 approaches, where the DRpout units are concatenated
to the hidden layer.

Late Fusion (RBP3) In this approach, we use the same structure as in RBP2
(we call it DRnin and DRpin in this context), and in addition we estimate the
probability of identity relations between the input and the output, i.e., that the
token in the current context is repeated as the next token. We use a structure called
DRpout for this, and from there we project back to the vocabulary, to generate a
probability offset for the tokens appearing in the context.

Figure 5 gives an overview of the RBP3 late fusion scheme. The DRpin units
detect identities between the input tokens in the current context as before. The
DRpout units model the identities between the context and the next token, as shown
in the Figure 4b, where a repetition is encoded as 1, and a non-repeated token
as a −1. During training we use teacher-forcing, i.e., we set the values of the
DRpout units to the true values. We use a feed-forward neural network with one
hidden layer to learn a mapping from the DRin to the DRout. This gives us an
estimate of the DRout units given the DRin units. The DRout values are then
normalised subtracting the mean, and then mapped back to the output space (the
one-hot vocabulary representation), using a zero value for the output values that
don’t appear in the input. These output offsets are then combined in a weighted sum
(mixture of experts) with the output distribution estimated by the standard neural
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Figure 5: Overview of the RBP3 approach. The DRpin values are calculated as in
RBP2. From there, we use a fully connected layer to predict DRpout (trained with
teacher-forcing). The predicted DRpout values are mapped back to the vocabulary
(based on the context tokens) and used as probability offsets in a mixture of experts
with the standard neural network in the left part of the diagram. All connections
are trainable except Input to DRpin and DRpout to Output offsets (dotted arrows).

network (on the left side in Figure 5). The weights in the mixture are trainable. The
outputs from the combined distribution of mixture of experts are clipped between
[0,1] and renormalised. The final output distribution is a softmax layer providing
the probability distribution over the vocabulary for the next token.

5 Experiment 2: neural networks with RBP structures

In the following we repeat the experiments from section 3 but also test networks
with added RBP structures. For convenience we repeat the previous results in the
tables in this section.
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5.1 Classification experiments
This experiment is analogous to the first classification experiment. In the case of
the feed-forward network, RBP2(a) was used in the mid fusion approach and for
recurrent network, RBP2(b) was used. We trained again for 10 epochs and all
networks converged to perfect classification on the training set. Table 4 provides
the overall test accuracy for the three approaches.

Task RBP FFNN RNN GRU LSTM

1a) ABA vs other

- 50% 55% 55% 55%
RBP1n 50% 55% 55% 55%
RBP1p 65% 70% 70% 70%
RBP2 100% 100% 100% 100%

1b) ABB vs other

- 50% 55% 55% 55%
RBP1n 50% 55% 55% 55%
RBP1p 65% 70% 70% 70%
RBP2 100% 100% 100% 100%

2) ABA vs ABB

- 50% 50% 50% 50%
RBP1n 50% 60% 65% 65%
RBP1p 75% 75% 75% 75%
RBP2 100% 100% 100% 100%

3) ABC vs other

- 50% 50% 50% 50%
RBP1n 55% 65% 65% 65%
RBP1p 55% 70% 70% 70%
RBP2 100% 100% 100% 100%

4) ABA-BAB vs other

- 50% 50% 50% 50%
RBP1n 55% 72% 75% 75%
RBP1p 69% 74% 75% 76%
RBP2 100% 100% 100% 100%

Table 4: Classification experiments with RBP: test accuracy for the different models
and tasks, as explained above. Results with ‘-’ in the RBP column are the same as
in section 3 and shown here again for comparison.

The results with RBP1n models already show some improvement over the base-
line in most configurations, but the result are only slightly above the standard net-
works, with RNNs, GRUs and LSTMs benefiting more than FFNN. This supports
our hypothesis that learning to compare corresponding input neurons is a challenging
task for neural networks. However, the results show that providing that comparison
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is not sufficient for learning identity rules.
RBP1p structures also aggregate all the l DRn neurons that belong to a pair of

input tokens. The results show that providing that information leads to improved
accuracy and provide evidence that this aggregation is another necessary step that
the networks do not learn reliably from the data.

The RBP2 models enable the neural networks to make predictions and classifica-
tions that generalise according to identity rules that it learns from data. The RBP2
leads to perfect classification for all network types tested. This confirms the design
consideration that comparing pairs of tokens provides the relevant information in
the form required for classification, as the classes are defined by equals relations, so
that the activations of the DRp units are directly correlated with the class labels.

A surprising result is the big difference between the generalisation using the
RBP1p and the RBP2 structures. They both provide the same information, only in
different layers of the network, but RBP1p only reaches at most 75% with a 50%
baseline. We hypothesize that the additional expressive power provided by the non-
linearities in the hidden layer here hinders effective learning. This effect deserves
further investigation.

5.2 Prediction experiments

Here we performed two experiments separately on ABA and ABB patterns as in
experiment 1 on prediction. The tasks are the same as previously and we trained
again for 10 epochs after which all networks had converged to perfect prediction
accuracy on the training data. Table 5, summarises the accuracy for RNN, GRU
and LSTM without RBP, and with RBP1n, 1p, 2, and 3.

Overall, we observe that only the LSTM benefits from RPB1n, RBP1p, and
RBP2 structures, all other networks can apparently not make use of the information
provided. The RBP3 model, on the other hand, leads to perfect classification on
our synthetic dataset.

Our interpretation is that standard recurrent networks do not learn the more
complex mapping that prediction requires, as not only recognition of a pattern but
also selecting a prediction on the basis of that pattern is required. The somewhat
better results of the LSTM networks are interesting. In the RBP3 model, the map-
ping between the identity patterns and back to the vocabulary adds considerable
prior structure to the model and it is very effective in achieving the generalisation
of rule-based patterns.
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Pattern RBP RNN GRU LSTM

1) ABA

- 0% 0% 0%
RBP1n 0% 0% 16%
RBP1p 0% 0% 18%
RBP2 0% 0% 20%
RBP3 100% 100% 100%

2) ABB

- 0% 0% 0%
RBP1n 0% 0% 17%
RBP1p 0% 0% 20%
RBP2 0% 0% 22%
RBP3 100% 100% 100%

Table 5: Test set accuracy in prediction experiments for patterns ABA and ABB. As
before, results are averaged over 10 simulations and rounded to the nearest decimal
point. Results with ‘-’ in the RBP column are the same as in section 3 and shown
here again for comparison.

6 Experiment 3: mixed tasks and real data
The results presented here were all obtained with synthetic data where classification
was exclusively on rule-based abstract patterns. This raises the question whether the
RBP will impede recognition of concrete patterns in a mixed situation. Furthermore,
we would like to know whether RBP is effective with real data where the abstract
and concrete patterns may interact.

6.1 Mixed abstract and concrete patterns
We conducted an experiment where the classes were defined by combinations of ab-
stract and concrete patterns. Specifically we defined 4 classes based on the abstract
patterns ABA and ABB combined with the concrete patterns a ∗ ∗ and b ∗ ∗. E.g.,
the class ABA, a ∗ ∗ can be expressed logically as

eq(α, γ) ∧ ¬eq(α, β) ∧ α = ‘a’. (5)

We use a vocabulary of 18 characters, out of which 12 are used for training and 6
are used for validation/testing in addition to ‘a’ and ‘b’, which need to appear in
all sets because of the definition of the concrete patterns. For class 1/3 and class
2/4, abstract patterns ABA and ABB are used respectively. Class 1/2 and 3/4 start
with tokens ‘a’ and ‘b’ respectively. The train, validation and test split is 50%, 25%,
and 25% respectively. We trained the network for 10 epochs, leading to perfect
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classification on the training set. A total of 10 simulations has been performed. We
test a feed forward and a recurrent neural network without and with RBP1p and
RBP2. The results are shown in Table 6.

RBP FFNN RNN
- 23% 42%
RBP1p 49% 57%
RBP2 100% 100%

Table 6: Test set accuracy for mixed abstract/concrete pattern classification.

As in the previous experiments, networks without RBP fail to generalise the
abstract patterns. The results for RBP1p and RBP2 show, that the ability to learn
and recognise the concrete patterns is not impeded by adding the RBP structures.

6.2 Language models with RBP
In order to test the capability of networks with RBP structure, we use them in two
language modelling tasks. One is to predict characters in English text, and one is
to predict the pitch of the next note in folk song melodies. We selected both tasks
because of the prevalence of repetitions in the data, as notes in music and characters
in English tend to be repeated more than words. Our RBP structures are designed
to model identity-rules and we therefore expect them to be more effective on tasks
with more repetitions.

Character prediction We conducted a character prediction experiment on a sub-
set of the Gutenberg electronic book collection2, consisting of text with the dataset
size of 42252 words. We used 2 hidden layers with 50 neurons each. In the RBP2
model, the DRp units were concatenated with the first hidden layer. The learning
rate is set to 0.01 and the network training converged after 30 epochs. Each char-
acter is predicted without and with the RBP variants using a context size of 5. The
prediction results are summarized in Table 7.

Pitch prediction In another experiment we applied RBP to pitch prediction in
melodies [42] taken from the Essen Folk Song Collection [43]. We performed a grid
search for each context length for hyper parameter tuning, with [10,30,50,100] as
the size of the hidden layer and [30,50] epochs with learning rate set to 0.01 with
one hidden layer. The results for context length 5 are summarized in Table 8. RBP

2https://www.gutenberg.org/
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RBP RNN GRU LSTM
- 3.8281 3.8251 3.8211
RBP1p 4.4383 4.4368 4.4321
RBP2 3.7512 3.7463 3.7448
RBP3 3.4076 3.4034 3.4012

Table 7: Character prediction task. The numbers show the average cross entropy
loss per character on the test set (lower is better, best values are set in bold), without
and with RBP structures using context length 5.

improved the network performance for RNN, GRU, and LSTM. Overall, LSTM
with late fusion produces the best result and also improves over the best reported
performance in pitch prediction with a long-term model on this dataset with a cross-
entropy of 2.547, which was achieved with a feature discovery approach by [44].

RBP RNN GRU LSTM
- 2.6994 2.5702 2.5589
RBP1p 2.6992 2.5714 2.5584
RBP2 2.6837 2.5623 2.5483
RBP3 2.6588 2.5549 2.5242

Table 8: Pitch prediction task on the Essen Folk Song Collection. The numbers
show the average cross entropy per note (lower is better, best values are set in
bold), without and with RBP using context length 5.

Results In both character and pitch prediction, the addition of RBP3 structures
improves the overall results consistently. RBP1n leads to a deterioration in character
prediction and to inconsistent effect on pitch prediction, while RBP2 leads to a slight
but consistent improvement in both tasks. This provides further evidence that the
RBP structure enables the learning of relevant patterns in the data.

7 Discussion
7.1 Standard neural networks
The results of the experiments described above confirm the results of [1] and others
that standard recurrent (and feed-forward) neural networks do not learn generalis-
able identity rules. From the tested models and settings of the task we can see that
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the lack of activation of input neurons impedes learning, but avoiding this lack is not
sufficient. The task assumes that the identity of input tokens is easy to recognise,
classify and base predictions on, but the models we tested do not learn to generalise
in this way. These results confirm our view that in order to generalise it is necessary
to know which input neurons are related, similarly on the next level, which compar-
isons of input belong to a pair of tokens so that they can be aggregated per token.
The structure of neural networks does not provide any prior preference for inputs
that are related in this way over any other combinations of inputs. This makes it
seem plausible that the solutions by [5, 6, 9] could not be replicated by [7, 10].

7.2 Constructive model with RBP

The RBP model addresses the learning of identity rules by adding neurons and
connections with fixed weights. From the input neurons we add connections to a DR
(differentiator-rectifier) unit from each pair of corresponding input neurons within
any pair of tokens (represented in one-hot encoding). These DR units calculate the
absolute of the difference of the activations of the two input neurons. They are
followed by DRp units that aggregate by taking the sum of the DR unit activations
for each pair of tokens. The fact that the DRp units relate to the difference between
each pair of neurons makes the learning task for classification much simpler, as has
been confirmed by our results. An open question in this context is why the RBP2 is
so much more effective than RBP1p for classification, although the only difference
is the layer in which the information is added into the network.

For prediction, we need a more complex structure, as beyond recognition of
identity, also the selection of the token to predict is required, that depends on the
tokens in the context and their similarity relations. The constructive RBP solution
requires a transformation into a representation of identity relations in the input that
is mapped to identities between input and output and that is mapped back to the
token space by adding prediction probability to the tokens that are predicted to be
identical between input and output. This created a complex predefined structure,
but without it even the models that achieved prefect classification failed to make
correct predictions with new data. Only the LSTM models could use the RPB1
and RBP2 information to make prediction above the baseline (22% vs 8.3%). We
hypothesise that the gating structure of the LSTMs enables at least some effec-
tive mapping. The 100% correct predictions by all models using RBP3 shows the
effectiveness of this structure.
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7.3 Applications

Adding a bias into the network with a predefined structure such as RBP raises the
question whether there is a negative effect on other learning abilities of the network
and whether interactions between the abstract and concrete tasks can be learnt. In
the mixed pattern experiment, RBP is still effective and showed no negative effect.
In experiments with real language and music data we found that RBP3 has a positive
effect on the prediction of characters in language and pitches in folk song melodies.
The small negative effect of RBP1 on character prediction seems to indicate that
there may be confounding effect where identity rules are less relevant. This effect
did not appear in melody prediction, where repetition is more important.

7.4 Extrapolation and inductive bias

The results in this study confirm that an inductive bias is needed for extrapolation,
in the terminology of [28], in order to generalise in some sense outside the space
covered by the training data. This general challenge has recently attracted some
attention. E.g., [45] provided several solutions to the related problem of learning
equality of numbers (in binary representation), which does not generalise from even
to odd numbers as pointed out already by [46]. As the authors point out in [45],
an essential question is which biases are relevant to the domain and problem. The
identity problem addressed here is in itself fundamental to learning about relations
[47], as relations depend on object identity. This further raises the question what is
needed to enable more complex concepts and rules to be learnt, such as more general
logical concepts and rules.

The identity rules also point to the lower-level problem that the natural relations
of position and belonging to objects are not naturally addressed in neural networks.
Other tasks may require different structures, relating for example to arithmetics,
geometry or physics [48]. We therefore see as an important task the definition or
predefined structures in neural networks, so that they create useful inductive bias,
but do not prevent learning of functions that do not conform to that bias.

8 Conclusions
Our experiments show that the observation by [1], that neural networks are unable
to learn general identity rules, holds for standard feed-forward networks, recurrent
neural networks, and networks of GRUs and LSTMs. The solution we propose
here, the Relation Based Patterns (RBP), introduce an additional structure with
fixed weights into the network. Our experiments confirm that the RBP structures
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enable the learning of abstract patterns based on identity rules in classification and
prediction as well as in mixed abstract and concrete patterns. We have further found
that adding RBP structures improves performance in language and music prediction
tasks.

Overall, we find that standard neural networks do not learn identity rules and
that adding RBP structure creates an inductive bias which enables this extrapolation
beyond training data with neural networks. This outcome raises the question on how
to develop further inductive biases for neural networks to improve generalisation of
learning on other tasks and more generally.
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