
Journal of applied logics (Print) ISSN 2631-9810
Journal of applied logics (Online) ISSN 2631-9829

Contents
Articles
New Foundations for Imperative Logic IV: Natural Deduction
Peter B. M. Vranas 431
Formal Periodic Steady-State Analysis of Power
Converters in Time-Domain
Asad Ahmed, Osman Hasan and Ammar Hasan 447
Probabilistic Analysis of Dynamic Fault Trees using
HOL Theorem Proving
Yassmeen Elderhalli, Waqar Ahmad, Osman Hasan
and Sofi ène Tahar 467
A Novel Criterion for Rejecting the Non-Inductive Method
Ruurik Holm 511
Adaptive Deontic Logics: A Survey
Frederik Van De Putte, Mathieu Beirlaen and Joke Meheus 521

Volume 6 Issue 3 May 2019

Journal of
Applied Logics
The IfCoLog Journal of Logics and their Applications

Available online at
www.collegepublications.co.uk/journals/ifcolog/

Free open access

Published by
Sponsored by

V
o
lu

m
e
 6

 Is

s
u
e
 3

 M

a
y 2

0
1
9

Journal of Applied Logics The IfCoLog Journal of Logics and their Applications

Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications

Volume 6, Number 3

May 2019

Disclaimer
Statements of fact and opinion in the articles in Journal of Applied Logics - IfCoLog Journal of
Logics and their Applications (JALs-FLAP) are those of the respective authors and contributors and
not of the JALs-FLAP. Neither College Publications nor the JALs-FLAP make any representation,
express or implied, in respect of the accuracy of the material in this journal and cannot accept any
legal responsibility or liability for any errors or omissions that may be made. The reader should
make his/her own evaluation as to the appropriateness or otherwise of any experimental technique
described.

c© Individual authors and College Publications 2019
All rights reserved.

ISBN 978-1-84890-305-0
ISSN (E) 2631-9829
ISSN (P) 2631-9810

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk

Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
David Fernandez Duque
Jan van Eijck
Marcelo Falappa
Amy Felty
Eduaro Fermé

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Pavlos Peppas
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

iii

iv

Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief change/revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

v

jane.spurr@kcl.ac.uk

vi

Contents

ARTICLES

New Foundations for Imperative Logic IV: Natural Deduction 431
Peter B. M. Vranas

Formal Periodic Steady-State Analysis of Power Converters in
Time-Domain . 447
Asad Ahmed, Osman Hasan and Ammar Hasan

Probabilistic Analysis of Dynamic Fault Trees using
HOL Theorem Proving . 469
Yassmeen Elderhalli, Waqar Ahmad, Osman Hasan and Sofiène Tahar

A Novel Criterion for Rejecting the Non-Inductive Method 513
Ruurik Holm

Adaptive Deontic Logics: A Survey . 523
Frederik Van De Putte, Mathieu Beirlaen and Joke Meheus

vii

viii

New Foundations for Imperative Logic IV:
Natural Deduction

Peter B. M. Vranas
University of Wisconsin-Madison, USA

vranas@wisc.edu

Abstract

Sentential Pure Imperative Logic (SPIL) deals with arguments from imperative
premises to imperative conclusions (i.e., pure imperative arguments) that do not con-
tain quantifiers or modal operators. I introduce a formal language and a natural deduc-
tion system for SPIL. I provide the formal language with a semantics, and I prove that
the natural deduction system is sound and complete with respect to that semantics.

1 Introduction

In this paper, I present a sound and complete natural deduction system for Sentential Pure
Imperative Logic (SPIL), which deals with arguments from imperative premises to impera-
tive conclusions but does not include quantifiers or modal operators. I provide an imperative
formal language, as well as replacement and inference rules that can be used to derive a
conclusion from a set of premises. The replacement and inference rules are intended to rep-
resent natural patterns of reasoning, but their justification is not limited to intuitions about
naturalness. The justification relies crucially on the result—which I prove—that derivability
by those rules corresponds to a semantic definition of argument validity that I have devel-
oped at length in previous papers ([10, 12]; see also [8, 9, 11]) and that I develop further

I am grateful to John Mackay, Michael Titelbaum, Berislav Žarnić, several anonymous reviewers, and especially
Aviv Hoffmann and an editor of the Journal of Applied Logics for comments, and to Jeremy Avigad, David
Makinson, and especially Jörg Hansen for help. Thanks also to Fabrizio Cariani, Hannah Clark-Younger, Kit
Fine, Malcolm Forster, Casey Hart, Daniel Hausman, Blake Myers, David O’Brien, Brian Skyrms, and Elliott
Sober for interesting questions, and to my mother and Jane Spurr for typing the bulk of the paper. Material from
this paper was presented at the University of Wisconsin-Madison (Department of Mathematics, April 2014, and
Department of Philosophy, May 2014), the Madison Informal Formal Epistemology Meeting (April 2014),
the 12th International Conference on Deontic Logic and Normative Systems (DEON 2014), the New York
University Workshop “Imperatives and Deontic Modals” (March 2016), and the 13th International Conference
on Deontic Logic and Normative Systems (DEON 2016).

Vol. 6 No. 3 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Vranas

here by introducing interpretations of imperative formal languages. I do not presuppose
any familiarity with the previous papers.1

2 Syntax

The (imperative formal) language of SPIL has the following symbols: the connectives ‘∼’,
‘&’, ‘∨’, ‘→’, and ‘↔’, the punctuation symbols ‘(’ and ‘)’, the imperative operator ‘!’ (“let
it be the case that”), and the (infinitely many) sentence letters ‘A’, ‘B’, . . . , ‘Z’, ‘A′’, ‘B′’,
. . . , ‘Z′’, ‘A′′’, ‘B′′’, . . . (One could also define languages of SPIL with different sentence
letters or with only finitely many sentence letters, but for simplicity I define only a single
language of SPIL.) The declarative sentences of SPIL can be built up from sentence letters
as in classical sentential logic. The imperative sentences of SPIL are all and only those
finite strings of symbols (understood as ordered n-tuples of symbols) that can be built up
from declarative sentences by applying the following formation rules (R1 must be applied
at least once):

(R1) If p is a declarative sentence, then p!pq is an imperative sentence.

(R2) If i and j are imperative sentences, then p∼ iq, p(i & j)q, and p(i ∨ j)q are also imper-
ative sentences.

(R3) If p is a declarative sentence and i is an imperative sentence, then p(p → i)q, p(i →
p)q, p(p↔ i)q, and p(i↔ p)q are imperative sentences.

A sentence (of SPIL) is either a declarative sentence or an imperative sentence. It fol-
lows from these definitions that a sentence is imperative iff it contains at least one occur-
rence of ‘!’ and is declarative iff it contains no occurrence of ‘!’ (so no sentence is both
declarative and imperative). Throughout this paper, I use the following notation: (1) ϕ and
ψ are (declarative or imperative) sentences, (2) p, q, r, p′, . . . are declarative sentences, (3)
i, j, k, i′, . . . are imperative sentences, and (4) e is a sentence letter. For simplicity, I usually
omit outermost parentheses.

1 There is hardly any previous work on this subject. To my knowledge, only two logic textbooks cover
symbolization of imperative English sentences and natural deduction for imperative logic: [2] (a descendant
of [1]) and [6] (a descendant of [4]; see also [5, pp. 181–6]. These textbooks, however, rely on inadequate
definitions of validity (see [10, 12]). Relying on my definition of validity for arguments with only imperative
premises and conclusions [10], Hansen [7] has provided sound and complete sets of inference rules for a formal
language with only one imperative connective. See also [3, pp. 625–6].

432

New Foundations for Imperative Logic IV

3 Semantics

An interpretation of the language of SPIL is an ordered pair m = 〈S,F〉, where S is a set
of sentence letters and F is a favoring relation, namely a three-place relation on declarative
sentences that satisfies two conditions. First, the intensionality condition: for any p, q, and r
and any p′, q′, and r′ interderivable in classical sentential logic with p, q, and r respectively,
〈p, q, r〉 ∈ F iff 〈p′, q′, r′〉 ∈ F. Second, the asymmetry condition: for any p, q, and r, it is not
the case that both 〈p, q, r〉 ∈ F and 〈p, r, q〉 ∈ F. Informally, a favoring relation corresponds
to comparative reasons (e.g., reasons for you to marry Hugh rather than Hugo), so the
asymmetry condition corresponds to the claim that nothing can be a reason both for q rather
than r and for r rather than q. The favoring relation is used in §5 to define semantic validity.

On a given interpretation m, a declarative sentence p is true (m � p) or not (m 2 p), and
an imperative sentence i is satisfied (m �s i) or not (m 3s i); if i is not satisfied, then it is
either violated (m �v i) or avoided (m �a i). Specifically:

Truth of a declarative sentence on an interpretation

(C1) m � e iff e ∈ S.

(C2) m � p∼ pq iff m 2 p.

(C3) m � pp & qq iff both m � p and m � q.

(C4) m � pp ∨ qq iff either m � p or m � q (or both).

(C5) m � pp→ qq iff either m 2 p or m � q.

(C6) m � pp↔ qq iff either both m � p and m � q or both m 2 p and m 2 q.

Satisfaction, violation, and avoidance of an imperative sentence on an interpre-
tation

(C7) m �s p!pq iff m � p, and m �v p!pq iff m 2 p.

(C8) m �s p∼ iq iff m
v i, and m �v p∼ iq iff m �s i.

(C9) m �s pi & jq iff either both m �s i and m 3v j or both m �s j and m 3v i, and
m �v pi & jq iff either m �v i or m �v j.

(C10) m �s pi ∨ jq iff either m �s i or m �s j, and m �v pi ∨ jq iff either both m �v i and
m 3s j or both m �v j and m 3s i.

433

Vranas

(C11) m �s pp → iq iff both m � p and m �s i, and m �v pp → iq iff both m � p and
m �v i.

(C12) m �s pi → pq iff both m 2 p and m �v i, and m �v pi → pq iff both m 2 p and
m �s i.

(C13) m �s pp ↔ iq iff either both m � p and m �s i or both m 2 p and m �v i, and
m �v pp↔ iq iff either both m � p and m �v i or both m 2 p and m �s i.

(C14) m �s pi↔ pq iff m �s pp↔ iq, and m �v pi↔ pq iff m �v pp↔ iq.

(C15) m �a i iff both m 3s i and m 3v i.

Note that, for any m and i, m �s i only if m 3v i. See [8, pp. 532–45] for a detailed
defense of C7–C15. A contradiction is either a declarative sentence that is false (i.e., not
true) on every interpretation or an imperative sentence that is violated on every interpreta-
tion. Sentences ϕ and ψ are logically equivalent (i.e., ϕ ⇔ ψ) only if either they are both
declarative or they are both imperative. For declarative sentences p and q, p⇔ q iff, for any
m,m � p iff m � q. (Equivalently, p⇔ q iff p and q are interderivable in classical sentential
logic.) For imperative sentences i and j, i ⇔ j iff, for any m, both (1) m �s i iff m �s j and
(2) m �v i iff m �v j.

Theorem 3.1 (Semantic Replacement). For any imperative sentence i and any sentences ϕ
and ψ, if ϕ is a subsentence of i and ϕ⇔ ψ, then i⇔ i(ϕ/ψ) — where i(ϕ/ψ) is any sentence
that results from replacing in i at least one occurrence of ϕ with ψ.

Proof. The proof is by induction on the number of occurrences of connectives in i. For the
base step, take any i in which no connectives occur. Then, for some e, i is p!eq. So if, for
some p, e⇔ p, then i(e/p), namely p!pq, is logically equivalent to p!eq: for any m,m �s p!pq
iff m � p iff m � e iff m �s p!eq (and similarly m �v p!pq iff m �v p!eq). For the inductive
step, take any natural number n and suppose (induction hypothesis) that, for any i with at
most n occurrences of connectives, and any ϕ and ψ such that ϕ is a subsentence of i and
ϕ ⇔ ψ, i ⇔ i(ϕ/ψ). To complete the proof, take any i with at most n + 1 occurrences of
connectives and any ϕ and ψ such that ϕ is a proper subsentence of i (the case in which ϕ is
i is trivial) and ϕ⇔ ψ. To prove that i⇔ i(ϕ/ψ), there are eight cases to consider.

Case 1: i is p!pq. Then ϕ is a subsentence of p, and i(ϕ/ψ) is p!p(ϕ/ψ)q. By classical
sentential logic, p(ϕ/ψ)⇔ p. It follows, similarly to the base case, that i⇔ i(ϕ/ψ).

Case 2: i is p∼ jq. Then ϕ is a subsentence of j, and i(ϕ/ψ) is p∼ j(ϕ/ψ)q. By the induction
hypothesis, j ⇔ j(ϕ/ψ) (because j has at most n occurrences of connectives). It follows
that i ⇔ i(ϕ/ψ): for any m, m �s i iff m �v j iff m �v j(ϕ/ψ) iff m �s p∼ j(ϕ/ψ)q iff
m �s i(ϕ/ψ) (and similarly m �v i iff m �v i(ϕ/ψ)).

434

New Foundations for Imperative Logic IV

Case 3: i is p j & kq. Then ϕ is a subsentence of j or of k (or both). Suppose it is only of j (if
it is only of k, or of both j and k, the proof proceeds similarly). Then i(ϕ/ψ) is p j(ϕ/ψ) & kq.
By the induction hypothesis, j ⇔ j(ϕ/ψ) (because j has at most n occurrences of connec-
tives). It follows that i ⇔ i(ϕ/ψ): for any m,m �s i iff (either both m �s j and m 3v k
or both m �s k and m 3v j) iff (either both m �s j(ϕ/ψ) and m 3v k or both m �s k and
m 3v j(ϕ/ψ)) iff m �s p j(ϕ/ψ) & kq iff m �s i(ϕ/ψ) (and similarly m �v i iff m �v i(ϕ/ψ)).

The proof proceeds similarly in the remaining five cases, namely the cases in which i is
pp ∨ jq, pp→ jq, p j→ pq, pp↔ jq, or p j↔ pq, so I omit those cases for the sake of
brevity. �

4 Replacement interderivability

In this section, I define replacement derivations, and I prove that there is a replacement
derivation of j from i iff i⇔ j.

Definition 4.1. For any imperative sentences i and j:

1. A replacement derivation of j from i is a finite sequence of imperative sentences (called
the lines of the derivation) such that (a) the last line is j, (b) the first line is i, and (c)
each line except the first can be obtained from the previous line by applying once a
replacement rule from Table 1.

2. i and j are replacement interderivable (i.e., i a` j) iff there is a replacement derivation
of j from i.

In Table 1, and in what follows, ‘p a`CS L q’ abbreviates “p and q are interderivable in
classical sentential logic”, and for any sentences ϕ and ψ, ‘ϕ Z ψ’ abbreviates “from any
imperative sentence k, one can obtain k(ϕ/ψ) if ϕ is a subsentence of k, and one can obtain
k(ψ/ϕ) if ψ is a subsentence of k”. For simplicity, I omit corner quotes in tables.

Theorem 4.2 (Soundness of Replacement Rules). For any imperative sentences i and j, if
i Z j according to a replacement rule in Table 1, then i⇔ j.

Proof. For the sake of brevity, I examine only EX, ME, and IC; the proof is similar for the
other replacement rules.

Exportation: For any m, m �s pp→ (q→ i)q iff — by C11 — (both m � p and m �s

pq→ iq) iff (m � p,m � q, and m �s i) iff — by C3 — (both m � pp & qq and m �s i) iff
m �s p(p & q)→ iq (and similarly m �v pp→ (q→ i)q iff m �v p(p & q)→ iq).

435

Vranas

Name of rule and
abbreviation

Rule

Declarative
Replacement

DR If p a`CS L q, then p Z q

Transposition TR i→ p Z ∼ p→∼ i
Negated Con-
ditional

NC ∼ (p→ i) Z p→ ∼ i

Exportation EX p→ (q→ i) Z (p & q)→ i
Commutativity CO p↔ i Z i↔ p
Material
Equivalence

ME p↔ i Z (p→ i) & (i→ p)

Absorption AB p→ !q Z p→ !(p & q)
Tautologous
Antecedent

TA (p ∨ ∼ p)→ i Z i

Unconditional
Negation

UN ∼!p Z ! ∼ p

Imperative
Conjunction

IC (p→ !q) & (p′ → !q′) Z (p ∨ p′)→ !((p→ q) & (p′ → q′))

Imperative
Disjunction

ID (p→ !q) ∨ (p′ → !q′) Z (p ∨ p′)→ !((p & q) ∨ (p′ & q′))

Table 1: Replacement rules

Material Equivalence: Note first that, (1) if m �s pp→ iq (i.e., both m � p and m �s i),
then m 3v pi→ pq (i.e., it is not the case that both m 2 p and m �s i). Similarly, (2) if m �s

pi→ pq, then m 3v pp→ iq. Now, for any m: m �s pp↔ iq iff — by C13 — (either both
m � p and m �s i or both m 2 p and m �v i) iff — by C11 and C12 — (either m �s pp→ iq
or m �s pi→ pq) iff — by (1) and (2) — (either both m �s pp→ iq and m 3v pi→ pq
or both m �s pi→ pq and m 3v pp→ iq) iff — by C9 — m �s p(p→ i) & (i→ p)q (and
similarly m �v pp↔ iq iff m �v p(p→ i) & (i→ p)q).

Imperative Conjunction: Note first that m �s pp→ !qq iff (both m � p and m �s!q) iff (both
m � p and m � q) iff m � pp & qq. Similarly, m �v pp→ !qq iff m � pp & ∼ qq. Now,
for any m: m �s p(p→ !q) & (p′ → !q′)q iff — by C9 — (either both m �s pp→ !qq and
m 3v pp′ → !q′q or both m �s pp′ → !q′q and m 3v pp→ !qq) iff (either both m � pp & qq
and m 2 pp′ & ∼ q′q or both m � pp′ & q′q and m 2 pp & ∼ qq) iff m � p((p & q) & ∼
(p′ & ∼ q′)) ∨ ((p′ & q′) & ∼ (p & ∼ q))q iff — by classical sentential logic —
m � p(p ∨ p′) & ((p → q) & (p′ → q′))q iff m �s p(p ∨ p′)→ !((p→ q) & (p′ → q′))q
(and similarly for violation). �

436

New Foundations for Imperative Logic IV

Theorem 4.3 (Syntactic Replacement). For any imperative sentences i, j, and k, if j is a
subsentence of i and j a` k, then i a` i(j/k).

Proof. Suppose j a` k. The proof is by induction on the number of lines of a replacement
derivation. For the base step, suppose there is a one-line replacement derivation of k from
j. Then j is the same sentence as k and thus i a` i(j/k). For the inductive step, take any
non-zero natural number n and suppose (induction hypothesis) that, if there is a replace-
ment derivation with n lines of k from j, then i a` i(j/k). To complete the proof, take any
replacement derivation with n + 1 lines of k from j. Then k can be obtained from the n-th
line k′ by applying once a replacement rule, so k is k′(ϕ/ψ), where ϕ is a subsentence of
k′ and ψ is a sentence such that ϕ Z ψ. Let i′ be the sentence that results from replacing
with k′ in i exactly those occurrences of j that are replaced with k in i to get i(j/k). By the
induction hypothesis, (1) i a` i′. Since k is k′(ϕ/ψ), i(j/k) results from replacing in i′ some
occurrences of ϕ with ψ. So i(j/k) is i′(ϕ/ψ), and thus — since ϕ Z ψ — (2) i(j/k) can be
obtained from i′ by applying once a replacement rule. By (1) and (2), i a` i(j/k). �

Theorem 4.4 (Canonical Form). For any imperative sentence i, there are declarative sen-
tences p and q such that i a` pp→ !qq.

Proof. The proof is by induction on the number of occurrences of connectives in i. For the
base step, take any i in which no connectives occur. Then, for some e, i is p!eq, and then, by
TA (see Table 1), i a` p(e ∨ ∼ e)→ !eq. For the inductive step, take any natural number n
and suppose (induction hypothesis) that, for any i with at most n occurrences of connectives,
there are p and q such that i a` pp→ !qq. To complete the proof, take any i with at most
n + 1 occurrences of connectives. There are eight cases to consider.

Case 1: i is p!pq. Then, by TA, i a` p(p ∨ ∼ p)→ !pq.

Case 2: i is p∼ jq. Then j has at most n occurrences of connectives and thus, by the induc-
tion hypothesis, j a` pp→ !qq (for some p and q; I omit such remarks in what follows).
Then, by Theorem 4.3, i a` p∼ (p→ !q)q, and then, by NC and UN, i a` pp→ ! ∼ qq.

Case 3: i is p j & kq. Then j has at most n occurrences of connectives and thus, by the
induction hypothesis, j a` pp→ !qq. Similarly, k a` pp′ → !q′q. So, by Theorem 4.3,
i a` p(p→ !q) & (p′ → !q′)q, and thus, by IC, i a` p(p ∨ p′)→ !((p→ q) & (p′ → q′))q.

Case 4: i is p j ∨ kq. Then, similarly to case 3, i a` p(p→ !q) ∨ (p′ → !q′)q, and thus, by
ID, i a` p(p ∨ p′)→ !((p & q) ∨ (p′ & q′))q.

Case 5: i is pp→ jq. Then, by the induction hypothesis, j a` pq→ !rq. So, by Theorem
4.3, i a` pp→ (q→ !r)q, and thus, by EX, i a` p(p & q)→ !rq.

Case 6: i is p j→ pq. Then, similarly to case 5, i a` p(q→ !r)→ pq, and thus, by TR, NC,
EX, and UN, i a` p(∼ p & q)→ ! ∼ rq.

437

Vranas

Case 7: i is pp↔ jq. Then, similarly to case 5, i a` pp↔ (q→ !r)q, and thus, by ME,
i a` p(p→ (q→ !r)) & ((q→ !r)→ p)q. So, by the replacement rules used in case 6,
i a` p((p & q)→ !r) & ((∼ p & q)→ ! ∼ r)q, and thus, by IC, i a` p((p & q)∨(∼ p & q))→
!(((p & q)→ r) & ((∼ p & q)→ ∼ r))q.

Case 8: i is p j↔ pq. Then, by CO, i a` pp↔ jq, and the proof proceeds as in case 7. �

Theorem 4.5 (Soundness and Completeness for Replacement Interderivability). For any
imperative sentences i and j, i⇔ j if (soundness) and only if (completeness) i a` j.

Proof. Proof of Soundness. Suppose i a` j. The proof is by induction on the number of
lines of a replacement derivation. For the base step, suppose there is a one-line replacement
derivation of j from i. Then i is the same sentence as j and thus i⇔ j. For the inductive step,
take any non-zero natural number n and suppose (induction hypothesis) that, if there is a
replacement derivation with n lines of j from i, then i⇔ j. To complete the proof, take any
replacement derivation with n + 1 lines of j from i. Then j can be obtained from the n-th line
k by applying once a replacement rule, so j is k(ϕ/ψ), where ϕ is a subsentence of k and ψ is
a sentence such that ϕ Z ψ. By the induction hypothesis, (1) i⇔ k. By Theorem 4.2, ϕ⇔ ψ

if ϕ and ψ are imperative sentences; if they are declarative, then j can be obtained from k by
applying once DR, so ϕ a`CS L ψ and thus again ϕ⇔ ψ. By Theorem 3.1, k ⇔ k(ϕ/ψ); i.e.,
(2) k ⇔ j. By (1), (2), and the transitivity of logical equivalence (which follows from its
definition in §3), i⇔ j.

Proof of Completeness. Suppose i ⇔ j. By Theorem 4.4, there are p, q, p′, and q′ such
that (1) i a` pp→ !qq and thus (by soundness) i ⇔ pp→ !qq, and (2) j a` pp′ → !q′q
and thus j ⇔ pp′ → !q′q. Then (3) pp→ !qq ⇔ pp′ → !q′q. It follows that p ⇔ p′: for
any m,m � p iff (either both m � p and m � q or both m � p and m 2 q) iff — by C11
— (either m �s pp→ !qq or m �v pp→ !qq) iff — by (3) — (either m �s pp′ → !q′q or
m �v pp′ → !q′q) iff (either both m � p′ and m � q′ or both m � p′ and m 2 q′) iff m � p′.
Since p ⇔ p′, (4) p a`CS L p′. One can show similarly that pp & qq ⇔ pp′ & q′q, so
(5) pp & qq a`CS L pp′ & q′q. To conclude: i is replacement interderivable, by (1), with
pp→ !qq, and thus also, by AB, with pp→ !(p & q)q, and thus also, by (4) and DR, with
pp′ → !(p & q)q, and thus also, by (5) and DR, with pp′ → !(p′ & q′)q, and thus also, by
AB, with pp′ → !q′q, and thus finally, by (2), with j. �

Corollary 4.6 (of Theorems 4.4 and 4.5). For any imperative sentence i, there are declar-
ative sentences p and q such that i⇔ pp→ !qq.

Corollary 4.7 (of Theorems 4.4 and 4.5). For any imperative sentence i, there are declar-
ative sentences s and v such that, for any m, m � s iff m �s i and m � v iff m �v i.

438

New Foundations for Imperative Logic IV

Proof. By Corollary 4.6, there are p and q such that i⇔ pp→ !qq. Then, for any m,m �s i
iff m �s pp→ !qq iff (by C11, C7, and C3) m � pp & qq, so take s to be pp & qq. Similarly,
take v to be pp & ∼ qq. �

5 Strong and weak semantic validity

A pure imperative argument (of the language of SPIL) is an ordered pair 〈Γ, i〉, where Γ

is a non-empty finite set of imperative sentences (the premises of the argument) and i is
an imperative sentence (the conclusion of the argument). In this paper, I do not examine
arguments whose premises and conclusions include both declarative and imperative sen-
tences (e.g., the argument 〈{A→!B, A}, !B〉). Building on previous work [10, 12], I say that
(roughly) a pure imperative argument is semantically valid when, on every interpretation,
its conclusion is “supported” by everything that supports its premises. Also building on pre-
vious work, I distinguish strong from weak support — and, correspondingly, strong from
weak semantic validity — as follows:

Definition 5.1. For any declarative sentence p, any imperative sentence i, and any inter-
pretation m:

1. p strongly supports i on m iff (a) m � p, (b) i is not a contradiction, and (c) 〈p, q, r〉 ∈ F
for any q and r that are not both contradictions and are such that, for any m′, both (i)
m′ � q only if m′ �s i and (ii) m′ � r only if m′ �v i.

2. p weakly supports i on m iff p strongly supports on m some j such that, for any m′,
both (a) m′ �s j only if m′ �s i and (b) m′ �a i iff m′ �a j.

Definition 5.2. A pure imperative argument 〈Γ, i〉 is (1) strongly semantically valid (i.e.,
Γ
s i) iff, for any m, every p that strongly supports on m every conjunction2 of all members
of Γ also strongly supports i on m, and is (2) weakly semantically valid (i.e., Γ
w i) iff,
for any m, every p that weakly supports on m every conjunction of all members of Γ also
weakly supports i on m.

It follows from Definition 5.1 that, if p strongly supports i on m, then p also weakly
supports i on m. Informally, the distinction between strong and weak semantic validity

2 See [10, pp. 396–8] for an explanation of why I define semantic validity in terms of supporting conjunc-
tions of all premises and not in terms of supporting every premise. Given the intensionality condition (§3) and
the logical equivalence of any two conjunctions of all premises of an argument, supporting (strongly or weakly,
on an interpretation) some conjunction of all premises of an argument amounts to supporting every conjunction
of all premises of the argument. Because sentences are finite strings of symbols, I do not define conjunctions
of infinitely many sentences (contrast [12, p. 1706, n. 1]; this is why I defined an argument as having finitely
many premises.

439

Vranas

captures a conflict of intuitions about whether, for example, “sign the letter” entails “sign or
burn the letter”: one can show that the pure imperative argument 〈{!S }, !(S ∨ B)〉 is weakly
but not strongly semantically valid.3

Theorem 5.3 (Semantic Equivalence). For any imperative sentences i and j:

1. i
s j (i.e., {i}
s j) iff either i is a contradiction or, for any m, both (a) m �s j only if
m �s i and (b) m �v j only if m �v i;

2. i
w j iff, for any m, both (a) m �a i only if m �a j and (b) m �v j only if m �v i.

Proof. The theorem provides necessary and sufficient conditions for strong and for weak
semantic validity. The proof has four parts, and is similar to the proof in Appendix A of
[10].

First part: Sufficient condition for strong semantic validity. If i is a contradiction, then (by
Definition 5.1) no p strongly supports i on any m, and then (by Definition 5.2) i
s j. If, for
any m′, both (a) m′ �s j only if m′ �s i and (b) m′ �v j only if m′ �v i, take any m = 〈S,F〉
and any p. Suppose that (1) p strongly supports i on m. Then (2) m � p (by Definition 5.1)
and (3) j is not a contradiction (because, by Definition 5.1, i is not a contradiction; so, for
some m′,m′ 3v i, and thus — by (b) — m′ 3v j). Moreover, (4) for any q and r, if q and r
are not both contradictions and are such that, for any m′, both (i) m′ � q only if m′ �s j and
(ii) m′ � r only if m′ �v j, then 〈p, q, r〉 ∈ F (by (1) and Definition 5.1, because (by (i) and
(a)) m′ � q only if m′ �s i and (by (ii) and (b)) m′ � r only if m′ �v i). By (2), (3), (4), and
Definition 5.1, p strongly supports j on m, so (by Definition 5.2) i
s j.

Second part: Necessary condition for strong semantic validity. By Corollary 4.7, there are
declarative sentences s and v such that, for any m, m � s iff m �s i and m � v iff m �v i,
and declarative sentences s′ and v′ that satisfy the corresponding conditions with respect
to j. Suppose, for reductio, that (1) i
s j but (2) i is not a contradiction and (3) it is not
the case that, for every m, both (a) m �s j only if m �s i and (b) m �v j only if m �v i.

3Defending the above definitions lies beyond the scope of this paper: I have extensively defended in previ-
ous work [10, 12] an account of validity on which the definitions are based. I say that the definitions are “based”
on my previously defended account of validity because that account is about “arguments” whose premises and
conclusions are not sentences of a formal language, but are instead what imperative and declarative sentences of
natural languages typically express, namely prescriptions (i.e., commands, requests, instructions, suggestions,
etc.) and propositions respectively. Deviating slightly from previous work in order to keep my definition of an
interpretation (§3) simple, I formulated Definition 5.1 so that it has as consequences two claims corresponding
to what in previous work I understood as assumptions about favoring, namely the claims that (1) no declarative
sentence strongly supports on any interpretation an imperative sentence which is a contradiction (cf. Assump-
tion 1 in [10, p. 433]) and (2) every declarative sentence that is true on an interpretation strongly supports on
that interpretation any semantically empty imperative sentence (cf. [12, p. 1708, n. 6]), namely any imperative
sentence that is avoided on every interpretation.

440

New Foundations for Imperative Logic IV

Consider an interpretation m = 〈S,F〉, where S = {e} for some e (so (4) m � e) and F is the
set of ordered triples 〈p, q, r〉 such that (i) p ⇔ e, (ii) q `CS L s (i.e., s is derivable from q
in classical sentential logic; equivalently, for any m′,m′ � q only if m′ �s i), (iii) r `CS L v
(equivalently, for any m′,m′ � r only if m′ �v i), and (iv) q and r are not both contradictions.
F satisfies the asymmetry condition (§3): if one supposes for reductio that both 〈p, q, r〉 ∈ F
and 〈p, r, q〉 ∈ F, then one gets that q and r are both contradictions (contradicting (iv)): q
is a contradiction because, for any m′, if m′ � q, then both m′ �s i and m′ �v i (which
is impossible), and similarly for r. The intensionality condition (§3) is also satisfied. By
(2), (4), the definition of F, and Definition 5.1, e strongly supports i on m. Then, by (1)
and Definition 5.2, (5) e also strongly supports j on m. Let q be ps′ & ∼ sq and r be
pv′ & ∼ vq. By (3), q and r are not both contradictions. Moreover, for any m′, m′ � q only
if m′ �s j, and m′ � r only if m′ �v j. Then, by (5) and Definition 5.1, 〈e, q, r〉 ∈ F. By
(ii), ps′ & ∼ sq `CS L s, so (there is no interpretation on which p(s′ & ∼ s) & ∼ sq is true,
and thus) s′ `CS L s; equivalently, (6) for any m, m �s j only if m �s i. Similarly, by (iii),
pv′ & ∼ vq `CS L v, so v′ `CS L v; equivalently, (7) for any m, m �v j only if m �v i. But (6)
and (7) together contradict (3), and the reductio is complete.

Third part: Sufficient condition for weak semantic validity. Suppose that, for any m, both
(a) m �a i only if m �a j and (b) m �v j only if m �v i. Take any m and any p that weakly
supports i on m. By Definition 5.1, (1) p strongly supports on m some imperative sentence
i∗ such that, for any m′, both (i) m′ �s i∗ only if m′ �s i and (ii) m′ �a i iff m′ �a i∗. Let k
be p(s′ ∨ v′)→ !(s∗ & s′)q, where s′ and v′ are as in the second part of the proof and s∗ is a
declarative sentence such that, for any m′, m′ � s∗ iff m′ �s i∗ (see Corollary 4.7). Then, (2)
for any m′, m′ �s k only if m′ � ps∗ & s′q, and thus, (3) for any m′,m′ �s k only if m′ �s i∗.
Moreover, (4) for any m′, m′ �v k only if m′ �v i∗ (as one can show by using (a), (b), (i), and
(ii); see [10, p. 436, n. 68]). By (3), (4), and the first part of the proof, (5) i∗
s k. By (1),
(5), and Definition 5.2, (6) p strongly supports k on m. But, (7) for any m′, m′ �s k only if
m′ �s j (by (2)), and, (8) for any m′, m′ �a j iff m′ �a k (because m′ �a k iff m′ 2 ps′ ∨ v′q).
By (6), (7), (8), and Definition 5.1, p weakly suports j on m, so (by Definition 5.2) i
w j.

Fourth part: Necessary condition for weak semantic validity. Suppose, for reductio, that
(1) i
w j but (2) either (a) for some m, both m �a i and m 3a j, or (b) for some m, both
m �v j and m 3v i (i.e., it is not the case that, for every m, both (a′) m �a i only if m �a j
and (b′) m �v j only if m �v i). By (2), i is not a contradiction (i.e., for some m,m 3v i; this
is immediate if (b) is true, and follows from m �a i if (a) is true). Consider an interpretation
m = 〈S,F〉 defined as in the second part of the proof. As in that part, e strongly supports
i on m, so e also weakly supports i on m. Then, by (1) and Definition 5.2, e also weakly
supports j on m. Then, by Definition 5.1, (3) e strongly supports on m some i∗ such that, for
any m′, both (i) m′ �s i∗ only if m′ �s j and (ii) m′ �a j iff m′ �a i∗. By (2), for some m,
m 3a j (this is immediate if (a) is true, and follows from m �v j if (b) is true). Then, by (ii),

441

Vranas

for some m,m 3a i∗, so s∗ and v∗ are not both contradictions — where s∗ is as in the third
part of the proof and v∗ is a declarative sentence such that, for any m, m � v∗ iff m �v i∗ (see
Corollary 4.7). Then, by (3) and Definition 5.1, 〈e, s∗, v∗〉 ∈ F, and by the definition of F in
the second part of the proof, (4) s∗ `CS L s and (5) v∗ `CS L v. But then (a) is false: for any
m, if m 3a j and thus (by (ii)) m 3a i∗, then m 3a i (because either m �s i∗, and then by (4)
m �s i and thus m 3a i, or m �v i∗, and then by (5) m �v i and thus m 3a i). Moreover, (b)
is false: for any m, if m �v j (and thus (6) m 3s j and (7) m 3a j), then m �v i (because
m 3s i∗, by (i) and (6), and m 3a i∗, by (ii) and (7), so m �v i∗ and, by (5), m �v i). The
falsity of (a) and (b) contradicts (2), and the reductio is complete. �

Corollary 5.4 (of Theorem 5.3). For any imperative sentences i and j, (1) i
s j only if
i
w j, and (2) i⇔ j iff (both i
s j and j
s i) iff (both i
w j and j
w i).

6 Strong and weak derivability

In this section, I define strong and weak derivations, and I prove that there is a strong (or
weak) derivation of i from Γ iff the argument 〈Γ, i〉 is strongly (or weakly) semantically
valid.

Definition 6.1. For any pure imperative argument 〈Γ, i〉:
1. A strong derivation of i from Γ is a finite sequence of imperative sentences (called

the lines of the derivation) such that (a) the last line is i and (b) each line either is a
conjunction of all members of Γ or can be obtained from a previous line by applying
once either a replacement rule from Table 1 or a pure imperative inference rule (other
than ICE) from Table 2.

2. A weak derivation of i from Γ is a finite sequence of imperative sentences (called
the lines of the derivation) such that (a) the last line is i and (b) each line either is
(a member or) a conjunction of members of Γ or can be obtained from a previous
line by applying once either a replacement rule from Table 1 or a pure imperative
inference rule from Table 2.

3. 〈Γ, i〉 is (a) strongly syntactically valid (i.e., Γ `s i) iff there is a strong derivation of i
from Γ, and is (b) weakly syntactically valid (i.e., Γ `w i) iff there is a weak derivation
of i from Γ.

In Table 2, and in what follows, for any imperative sentences i and j, ‘i . j’ abbreviates
“from i, one can obtain j”. It follows from Definition 6.1 that every strong derivation is a
weak derivation, so Γ `s i only if Γ `w i. Moreover, since replacement rules may be applied
in strong derivations, j a` i only if j `s i (i.e., { j} `s i). Note two differences between

442

New Foundations for Imperative Logic IV

Name of rule and abbreviation Rule
Ex Contradictione Quodlibet ECQ !(p & ∼ p) . i
Declarative Antecedent Introduction DAI i . p→ i
Imperative Conjunction Elimination ICE i & j . i

Table 2: Pure imperative inference rules

weak and strong derivations. First, all pure imperative inference rules in Table 2 may be
applied in a weak derivation, but Imperative Conjunction Elimination (ICE) may not be
applied in a strong derivation. The motivation behind this difference is that, for example,
the argument 〈{!A & !B}, !A〉 is (weakly but) not strongly semantically valid (as one can
show by using Theorem 5.3), but strong derivations are intended to correspond to strong
semantic validity. Second, any single premise can be the first line of a weak derivation, but
no single premise (as opposed to a conjunction of all premises) can be the first line of a
strong derivation (unless there is only one premise). The motivation behind this difference
is that, for example, the argument 〈{!A, !B}, !A〉 is (weakly but) not strongly semantically
valid (see [10, p. 397]).4

Theorem 6.2 (Soundness of Inference Rules). For any declarative sentence p and any im-
perative sentences i and j: (1) p!(p & ∼ p)q
s i; (2) i
s pp→ iq; (3) pi & jq
w i.

Proof. (1) Since p!(p & ∼ p)q is a contradiction, p!(p & ∼ p)q
s i by Theorem 5.3. (2)
For any m, both (a) m �s pp→ iq only if m �s i (by C11) and (b) m �v pp→ iq only if
m �v i (by C11), so i
s pp→ iq by Theorem 5.3. (3) For any m, both (a) m �a pi & jq
only if m �a i (by C9 and C15) and (b) m �v i only if m �v pi & jq (by C9), so pi & jq
w i
by Theorem 5.3. �

Theorem 6.3 (Strengthening the Antecedent and Weakening the Consequent). For any
declarative sentences p, p′, q, and q′, and any imperative sentence i: (1) if p′ `CS L p,
then pp→ iq `s pp′ → iq; (2) if q `CS L q′, then pp→ !qq `w pp→ !q′q.

Proof. (1) pp→ iq `s pp′ → (p→ i)q (by DAI), and pp′ → (p→ i)q `s p(p′ & p)→ iq
(by EX). But if p′ `CS L p, then pp′ & pq a`CS L p′, and then p(p′ & p)→ iq `s pp′ → iq

4DAI is redundant given ICE, AB, IC, and EX. Indeed, pp→ iq can be obtained by ICE from
p(p→ i) & (∼ p→ i)q, which is replacement interderivable with i: i is replacement interderivable with
pq→ !rq (for some q and r, by Theorem 4.4), and thus also with pq→ !(q & r)q (by AB), and thus also
with pq→ !(q & (q→ r))q (by DR, since pq & rq a`CS L pq & (q→ r)q), and thus also with pq→ !(q→ r)q
(by AB), and thus also with p((p & q) ∨ (∼ p & q))→ !(((p & q)→ r) & ((∼ p & q)→ r))q (by DR, since
q a`CS L p(p & q) ∨ (∼ p & q)q and pq→ rq a`CS L p((p & q)→ r) & ((∼ p & q)→ r)q), and thus also with
p((p & q)→ !r) & ((∼ p & q)→ !r)q (by IC), and thus also with p(p→ (q→!r)) & (∼ p→ (q→ !r))q (by
EX), and thus finally with p(p→ i) & (∼ p→ i)q (by Theorem 4.3). It does not follow, however, that DAI
is redundant in strong derivations: ICE may not be applied in strong derivations.

443

Vranas

(by DR). (2) If q `CS L q′, then pq′ & qq a`CS L q. Then there is a weak derivation from
pp→ !qq of pp→ !(q′ & q)q (by DR), and thus also of pp→ !(p & (q′ & q))q (by AB),
and thus also of p(p ∨ p)→ !((p ∨ p) & ((p→ q′) & (p→ q)))q (by DR, since p a`CS L

pp ∨ pq and pp & (q′ & q)q a`CS L p(p ∨ p) & ((p→ q′) & (p→ q))q), and thus also of
p(p ∨ p) → !((p → q′) & (p → q))q (by AB), and thus also of p(p→ !q′) & (p→ !q)q (by
IC), and thus finally of pp→ !q′q (by ICE). �

Theorem 6.4 (Soundness and Completeness for Strong and Weak Derivability). For any
pure imperative argument 〈Γ, i〉, (1) Γ
s i if (soundness) and only if (completeness) Γ `s i,
and (2) Γ
w i if (soundness) and only if (completeness) Γ `w i.

Proof. Proof of Soundness. The proof is by induction on the number of lines of a strong
or weak derivation. For the base step, suppose there is a one-line strong (case 1) or weak
(case 2) derivation of i from Γ. In case 1, i is a conjunction of all members of Γ and thus
(by Definition 5.2) Γ
s i. In case 2, i is (a member or) a conjunction of members of Γ;
so, if i is not a conjunction of all members of Γ (if it is, the proof proceeds as in case 1),
there is a conjunction j of the remaining members of Γ, and pi & jq is a conjunction of all
members of Γ. Then Γ
w i because, by Definition 5.2, Γ
w pi & jq, and by Theorem
6.2, pi & jq
w i. For the inductive step, take any non-zero natural number n and suppose
(induction hypothesis) that: (case 1) if there is a strong derivation with at most n lines of i
from Γ, then Γ
s i; (case 2) if there is a weak derivation with at most n lines of i from Γ,
then Γ
w i. To complete the proof, take any strong (case 1) or weak (case 2) derivation with
at most n + 1 lines of i from Γ. Suppose that i is not a conjunction of all (case 1) or some
(case 2) members of Γ (if it is, the proof proceeds as in the base step). Then i can be obtained
from an n′-th line j (n′ ≤ n) by applying once (case 1) ECQ, DAI, or a replacement rule, or
(case 2) any inference or replacement rule. Then (1s) j
s i in case 1 (by Theorem 6.2) and
(1w) j
w i case 2 (by Theorem 6.2 and Corollary 5.4). By the induction hypothesis and the
fact that the sequence of the first n′ lines of the strong (case 1) or weak (case 2) derivation
of i from Γ is a strong (case 1) or weak (case 2) derivation with at most n lines of j from Γ,
(2s) Γ
s j in case 1, and (2w) Γ
w j in case 2. By (1s), (2s), and the transitivity of strong
semantic validity (which follows from Definition 5.2), Γ
s i in case 1. Similarly, by (1w),
(2w), and the transitivity of weak semantic validity, Γ
w i in case 2.

Proof of Completeness. Take any pure imperative argument 〈Γ, i〉 and any conjunction
i′ of all members of Γ. By Theorem 4.4, there are p, q, p′, and q′ such that (1) i a`
pp→ !qq and (2) i′ a` pp′ → !q′q. By (1), (2), and Theorem 4.5: (3) for any m, m �s i
iff m � pp & qq, m �s i′ iff m � pp′ & q′q, m �v i iff m � pp & ∼ qq, and m �v i′

iff m � pp′ & ∼ q′q (see the proof of Corollary 4.7). Case 1: Γ
s i. Then (4) i′
s i
(by Definition 5.2). Case 1a: i′ is a contradiction. Then, for any r, i′ ⇔ p!(r & ∼ r)q
(since i′ and p!(r & ∼ r)q are both violated on every m) and thus (by Theorem 4.5) i′ a`

444

New Foundations for Imperative Logic IV

p!(r & ∼ r)q, so i′ `s p!(r & ∼ r)q. Then there is a strong derivation of i from i′ (and
thus from Γ), since i can be obtained from p!(r & ∼ r)q by ECQ. Case 1b: i′ is not a
contradiction. Then, by (4) and Theorem 5.3: (5) for any m, m �s i only if m �s i′, and
(6) for any m, m �v i only if m �v i′. By (3) and (5): (7) pp & qq `CS L pp′ & q′q. By (3)
and (6): (8) pp & ∼ qq `CS L pp′ & ∼ q′q. By using (7), (8), and classical sentential logic,
one can show that (9) p `CS L p′ and (10) pp & (p′ & q′)q a`CS L pp & qq. To conclude:
there is a strong derivation from Γ of i′ (by Definition 6.1), and thus also of pp′ → !q′q
(by (2)), and thus also of pp′ →!(p′ & q′)q (by AB), and thus also of pp→ !(p′ & q′)q (by
(9) and Theorem 6.3), and thus also of pp→ !(p & (p′ & q′))q (by AB), and thus also of
pp→ !(p & q)q (by (10) and DR), and thus also of pp→ !qq (by AB), and thus finally of
i (by (1)). Case 2: Γ
w i. Then i′
w i (by Definition 6.1 and the observation that any
member or conjunction of members of Γ can be obtained from i′ by applying replacement
rules or ICE or both). Then, by Theorem 5.3: (11) for any m, m
a i′ only if m �a i, and
(12) for any m, m �v i only if m �v i′. By (3) and (11): (13) p `CS L p′. By (3) and (12): (14)
pp & ∼ qq `CS L pp′ & ∼ q′q. By (14) and classical sentential logic: (15) pp & q′q `CS L q.
To conclude: there is a weak derivation from Γ of i′ (by Definition 6.1), and thus also of
pp′ → !q′q (by (2)), and thus also of pp→ !q′q (by (13) and Theorem 6.3), and thus also of
pp→ !(p & q′)q (by AB), and thus also of pp→ !qq (by (15) and Theorem 6.3), and thus
finally of i (by (1)).5 �

7 Conclusion

I conclude by noting that in future work I plan to address some of the limitations of SPIL
by presenting sound and complete natural deduction systems for three further logics: (1)
First-Order Pure Imperative Logic (FOPIL), which includes quantifiers and identity but
no modal operators; (2) Sentential Modal Imperative Logic (SMIL), which includes modal
operators but no quantifiers or identity and deals with arguments from declarative or imper-

5Hansen [7] provides an alternative sound and complete natural deduction system for SPIL. More precisely,
Hansen considers a language of SPIL in which every imperative sentence is either of the form p!qq or of
the form pp→ !qq (Hansen uses ‘⇒’ instead of ‘→’). This limitation is not crucial: by Theorem 4.4, every
imperative sentence of the language of SPIL is inderderivable with a sentence of the form pp→ !qq by using
only replacement rules (which Hansen does not introduce, although in effect he relies on TA and one of his
inference rules corresponds to IC). Hansen’s system has six inference rules; five of them correspond to (special
cases of) ECQ, IC, Strengthening the Antecedent, and Weakening the Consequent, but the remaining rule is new.
(Only the rule that corresponds to a special case of Weakening the Consequent may not be applied in Hansen’s
“strong deductions”, which roughly correspond to strong derivations.) Here is the new rule (which Hansen calls
“Contextual Extensionality”) in my notation: if p `CS L pq↔ rq, then pp→ !qq . pp→ !rq. Although this rule
has no analog in my system, its effects can be simulated by using only replacement rules: if p `CS L pq↔ rq,
then pp & qq a`CS L pp & rq, and then pp→ !(p & q)q and pp→ !(p & r)q are replacement interderivable (by
DR), and thus so are also pp→ !qq and pp→ !rq (by AB).

445

Vranas

ative premises (or both) to declarative or imperative conclusions; and (3) First-Order Modal
Imperative Logic (FOMIL), which combines (1) and (2).

References
[1] Clarke, David S., Jr. (1973). Deductive Logic: An Introduction to Evaluation Techniques and

Logical Theory. Carbondale, IL: Southern Illinois University Press.
[2] Clarke, David S., Jr., & Behling, Richard (1998). Deductive Logic: An Introduction to Evalu-

ation Techniques and Logical Theory (2nd ed.). Lanham, MD: University Press of America.
[3] Fine, Kit (2018). Compliance and command I—Categorical Imperatives. The Review of Sym-

bolic Logic, 11, 609–633.
[4] Gensler, Harry J. (1990). Symbolic Logic: Classical and Advanced Systems. Englewood Cliffs,

NJ: Prentice-Hall.
[5] Gensler, Harry J. (1996). Formal Ethics. New York: Routledge.
[6] Gensler, Harry J. (2002). Introduction to Logic. New York: Routledge.
[7] Hansen, Jörg (2014). Be nice! How simple imperatives simplify imperative logic. Journal of

Philosophical Logic, 43, 965–977.
[8] Vranas, Peter B. M. (2008). New foundations for imperative logic I: Logical connectives, con-

sistency, and quantifiers. Noûs, 42, 529-572.
[9] Vranas, Peter B. M. (2010). In defense of imperative inference. Journal of Philosophical Logic,

39, 59–71.
[10] Vranas, Peter B. M. (2011). New foundations for imperative logic: Pure imperative inference.

Mind, 120, 369–446.
[11] Vranas, Peter B. M. (2013). Imperatives, logic of. In H. LaFollette (Ed.), International Ency-

clopedia of Ethics (Vol. 5, pp. 2575–2585). Oxford: Blackwell.
[12] Vranas, Peter B. M. (2016). New foundations for imperative logic III: A general definition of

argument validity. Synthese, 193, 1703–1753.

Received 13 June 2018446

Formal Periodic Steady-State Analysis of
Power Converters in Time-Domain

Asad Ahmed
School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Islamabad, Pakistan
asad.ahmed@seecs.nust.edu.pk

Osman Hasan
School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Islamabad, Pakistan
osman.hasan@seecs.nust.edu.pk

Ammar Hasan
School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Islamabad, Pakistan
ammar.hasan@seecs.nust.edu.pk

Abstract
Time-domain based periodic steady-state analysis is an indispensable com-

ponent to analyze switching functionality and design specifications of power
electronics converters. Traditionally, paper-and-pencil proof methods and com-
puter-based tools are used to conduct the time-domain based steady-state anal-
ysis of these converters. However, these techniques do not provide an accurate
analysis due to their inability to model and analyze continuous behaviors ex-
hibited by the power electronics converters. On the other hand, an accurate
analysis is direly needed in many safety and cost-critical power electronics appli-
cations, such as biomedical, hybrid electric vehicles, and aerospace engineering.
To alleviate the issues pertaining to the above-mentioned techniques, we pro-
pose a methodology, based on higher-order-logic theorem proving, to conduct
the time-domain based steady-state analysis of power electronics converters
in this paper. The proposed methodology is primarily based on a formalized
switching function analysis technique, ordinary linear differential equations and
steady-state conditions of the systems. To illustrate the usefulness of proposed
formalization, we present the formal time-domain steady-state analysis of a
commonly used DC-DC Buck converter.

Vol. 6 No. 3 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Ahmed, O. Hasan and A. Hasan

1 Introduction

Power electronics converters are an integral part of, almost, every realizable electri-
cal/electronics system, as a power processing stage, to meet their power requirements
[10]. These systems are typically composed of semiconductor devices, like switches,
energy storage and dissipative elements, i.e., inductors, capacitors, and resistors, and
integrated circuits for control. Generally, periodic steady-state analysis is a manda-
tory preprocessing step for the small-signal analysis, which is used to evaluate the
performance of the converter. Moreover, time-domain based analysis is necessary for
the study of the switching functionality, which is central to the power conversion op-
eration of the converters [10]. However, switching is a highly non-linear phenomenon
and therefore leads to significant modeling, analysis and design challenges of these
systems.

Traditionally, paper-and-pencil proof methods or computer-based numerical tec-
hniques are used to perform the time-domain based steady-state analysis of the
power electronics systems. The paper-and-pencil proofs are usually based on many
assumptions, such as small-ripple approximations, and averaging techniques to lin-
earize the nonlinear behavior of the systems to analyze the systems in steady-state
[10]. These linearized models, expressed as ordinary linear differential equations, are
then simulated using a variety of computer based simulation tools, such as MATLAB
Simulink, Saber, PSpice, to evaluate the performance of the power electronics sys-
tems. Generally, these computer based simulation tools use discretized time or fre-
quency domain models of the systems and numerical integration methods [7] for solv-
ing the differential equations of the converters [8]. Therefore, the above-mentioned
techniques cannot ascertain an accurate and reliable analysis of the power convert-
ers due to inherent approximation based nature of these techniques. For example,
the accuracy of paper-and-pencil proof methods is usually limited by the underly-
ing approximate linearized model. On the other hand, the nonlinear analysis is,
mathematically, not tractable and due to human involvement is highly likely error
prone. Similarly, the numerical methods employed in the simulation techniques,
based upon the discretization of time or frequency, lead to truncation errors and
also cannot accurately model the hybrid behavior, i.e., continuous behavior driven
by discrete events, exhibited by power converters [22]. To address this issue, com-
puter algebra systems, which are software programs for the symbolic processing of
mathematical expressions, are also employed for the analysis of such systems [16].
However, the symbolic processing is based on the unverified program codes, and
therefore prone to bugs [21]. Thus, given the aforementioned inaccuracies, these
traditional techniques should not be relied upon for the analysis of power electronics
systems, especially when they are used in safety-critical areas, such as implantable

448

Formal Periodic Steady-State Analysis of Power Converters

medical devices [3] and automotive industry [9], and mission-critical areas, such as
aerospace engineering [13], where bugs may lead to heavy monetary or human life
loss.

In recent years, formal methods have been extensively employed for the accurate
analysis of a variety of hardware and software systems. The transfer function of DC-
DC converters has been verified [6] in the frequency domain using higher-order-logic
theorem proving based on the signal flow graph and Mason’s gain formula. The
transfer function is then used to reason about the efficiency, stability and resonance
of pulse width modulation push-pull DC-DC converter and 1-boost cell DC-DC
converter. However, the nature of formalization does not permit to reason about the
interesting features of switch, which is a key element of power electronic converters.
Model checking has also been used for the analysis of the DC-DC Buck circuit [18]
[20] using a hybrid automaton equivalent model of circuit to verify the reachability
and safety properties of the circuit. However, the state-based modeling of the circuit
does not allow to describe the exact continuous behavior of power converters circuits.
Moreover, the state-space explosion issues also limit the scope of model checking for
the verification of continuous and hybrid systems. To the best of our knowledge,
there is no formal approach in the literature that explicitly allows us to verify the
nonlinear aspects pertaining to the modeling and time-domain based steady-state
analysis of power electronics systems.

The main motivation of this paper is to develop a formal logical framework for the
time-domain based steady-state analysis of power converters. The main challenge
in this direction is to be able to model and analyze the continuous structural or
topological changes under the switching action [5], which are usually modeled using
the Heaviside step function [1], i.e.,

u(t) =





1 0 < t

1/2 t = 0
0 t < 0

(1)

The topological changes deter the explicit use of conventional circuit analysis tech-
niques, such as mesh and node analysis, for investigating the implementation of the
circuit by using the behavior of its individual components and its overall behavior
[17]. Another notable consequence is that the switching action introduces piecewise
functions, which are also expressed in terms of the Heaviside step function, in the
analysis that in turn cannot be analyzed using linear mathematical techniques based
on the Riemann integral theory, such as differential chain rule and integration by
part. To tackle the former issue, we propose to use the switching function technique
[17], which is a commonly used circuit analysis technique that allows to incorpo-
rate the topological changes of the circuit in the analysis. We tackled the piecewise
nature of the functions in our formal framework by using the Gauge or Henstock-

449

Ahmed, O. Hasan and A. Hasan

Kurzweil integral [15]. The Gauge integral is characterized by the Gauge function
for the tagged division of an interval over which the function is to be integrated.
This simple, but novel, alteration allows us to integrate the functions with countable
singularities or the functions that are continuous but not differentiable everywhere
on the given interval. It, particularly, supported us in the formal verification of an
interesting notion of the Heaviside step function as a generalized function [14] which
is widely used to describe discontinuous phenomena in physics and engineering dis-
ciplines. As a generalized function, the Heaviside step function acts as an operator
on a test function f(x), which needs to be smooth everywhere, as:

∫ b

a

h(x− c)f(x) =
∫ b

c

f(x) ∀ a b c. a < c < b (2)

The smoothness of test function also plays a pivotal role in the differentiation of the
piecewise functions involving the Heaviside step function in the formal time-domain
based periodic steady-state analysis of power converters.

Besides these foundations, the proposed formalization is based on the formal-
izations of linear ordinary differential equations and steady-state conditions. The
homogeneous linear differential equations using real analysis have been formalized
in HOL to model the cyber-physical systems [19]. In this paper, we have extended
the logical framework, presented in [19], to the non-homogeneous linear differen-
tial equations using complex analysis to formally model the dynamic behavior of
the power converters. We have used the multi-variable integral, differential, tran-
scendental and topological theories to define the steady-state conditions due to the
piecewise nature of the functions involved in the analysis.

The formalization in this paper is done using the HOL-Light theorem prover
[11], which supports formal reasoning about higher-order logic. The main motiva-
tion behind this choice is the availability of reasoning support about multi-variable
integral, differential, transcendental and topological theories [12], which are the fore-
most foundations required for the formalization of time-domain based steady-state
analysis of power electronics systems.

The rest of the paper is organized as follows: We describe some preliminaries
regarding the periodic steady-state analysis of power electronics converters in Sec-
tion 2. In Section 3, we present the proposed methodology. The formalization of the
switching function technique, ordinary differential equations and steady-state condi-
tions in Section 4. We utilize this formalization to formally verify a Power converter
circuit, i.e., DC-DC buck converter in Section 5. Finally, Section 6 concludes the
paper.

450

Formal Periodic Steady-State Analysis of Power Converters

2 Periodic Steady-state Analysis of Power Converters

Power converter circuits use continuous switching among different circuit configura-
tions to achieve the desired power conversion, such as dc-dc, dc-ac, ac-dc and ac-ac.
In each circuit configuration, also called mode or state of the converter, the behavior
of the circuit variables can be expressed as differential equations with initial con-
ditions from the previous mode at the switching instance. Therefore, the standard
approach for the time-domain analysis of these converters consists of developing the
differential equations for each mode of the circuit based on the Kirchoff’s voltage or
current laws to describe the dynamic behavior of these circuits.

Mathematically, the behavior of these systems can be described as:

H(t, y1, y
1
1 , ..., y

mn
n) = p(t) t ∈ [tn−1, tn] , n,mn ∈ N

yk
n(tn) = yk

n−1(tn−1) k ∈ N
y1

0(t0) = 0
(3)

Where, H and p are functions of an independent variable t, a dependent variable
yn and its mn-th order derivative in the corresponding n-th mode, respectively. In
power converters, the time is considered as an independent variable, whereas, the
voltage or current of the energy storage components is considered as a dependent
variable. The order, i.e., mn, of an ordinary differential equation of the power con-
verter, in the n-th mode, is determined by the number of energy storage elements
constituting the mode. The function p(t) is referred to as a non-homogeneous term,
which can be zero or non-zero in the n-th mode, depending upon the presence of
source in the n-th mode of a power converter. Initially, the value of dependent
variable is considered zero, i.e., y1

0(t0) = 0, however, later on the value of the
dependent variable in one mode becomes an initial value for the next mode, i.e.,
yk

n(tn) = yk
n−1(tn−1), when switching instance occurs. Whereas, k is the order of the

derivative of the dependent variable evaluated at a specific time instance.

For the brevity of the notion, transient and steady-state time-domain behavior
of a DC-DC power converter is presented in Fig. 1, base on the above-mentioned
standard approach. DC-DC power converter circuits are designed to step-up or
step down the dc voltage levels applied at their input. Fig. 1 shows the output
behavior, yt, of a DC-DC power converter under the switching action represented
by a rectangular switch wave form, Sw.

In periodic steady-state, the dependent variables of a power converter circuit
attain an equilibrium and repeat the behavior over a time period, Tp, constituting
l modes. Mathematically, the periodic steady-state behavior of a power converter

451

Ahmed, O. Hasan and A. Hasan

Sw

Transient

Sw

Periodic steady-state

Sw

t

y(t)

t0
t

mode1 mode2 mode3 n − 2
mode

n − 1
mode

n
mode

n + 1
mode

t1

y1

t2

y2

t3

y3

tn−3

yn−2

tn−2 tn−1 tn

yn−1

tn+1

yn yn+1

H(t, y1, y1
1 , .., ym1

1) = p(t) H(t, yn, y1
n, .., ymn

n) = p(t)

Figure 1: Dynamic behavior of the output, y(t), of a DC-DC power con-
verter under switching action, represented by the switching wave form,
Sw.

over one time period, when t→∞, can be represented as:

H(t, yn, y
1
n, ..., y

mn
n) = p(t) t ∈ T, T ∈

l⋃

i=1

[
t

′
i−1, t

′
i

]
,mn, n, l ∈ N

yk(t
′
0) = yk(t

′
0 + Tp) Tp = t

′
max(i) − t

′
0, k ∈ N

(4)

Equation (4) reduces the problem to the identification of the modes in one time
period, Tp = t

′
max(i) − t

′
0, of the circuit, which is the length of time over which the

modes of a power circuit converter repeat themselves. The function y is a piecewise
function defined over l modes. Whereas, yk(t′0) = yk(t′0 + Tp) refers to the steady-
state conditions of the system variable at reference switching time instances, t′0, and
Tp, and k represents the k-th order derivative of the variable.

Fig. 2 illustrates the behavior of the output of a DC-DC power converter in
steady-state, which is mathematically modeled in Equation 4. The output, y(t),
of the converter exhibits a repetitive behavior over the time period Tp in l modes.
In literature, waveforms of the dependent variable, y, are used for the periodic
steady-sate analysis of the power converters by applying the principle of inductor
volt-second or capacitor-charge, along, with small-ripple approximations to reduce

452

Formal Periodic Steady-State Analysis of Power Converters

Sw

Periodic steady-state

y(t)

t
′
0 t

′
1 t

′
2 t

′
n t

′
n+1 t

′
n+2 t

′
2n

t

l −modes l −modes

Tp 2Tp

Figure 2: Behavior of the output, y(t), of a DC-DC power converter in
Periodic steady-state.

the complexity of the analysis by compromising the accuracy [10].

In this paper, we propose a logical framework for the formal verification of the
periodic steady-state analysis of power converters in time domain, which are mathe-
matically represented by Equation 4. The challenges to develop a logical framework
for the formal verification of the aforementioned problem are two fold. Firstly, we
intend to develop a higher-order logic formalization capable of incorporating the
topological structural changes over the time period, i.e., T ∈ ⋃l

i=1
[
t
′
i−1, t

′
i

]
, thus,

enabling us to formally model and reason about the implementation behavior of
these circuits within the sound core of the HOL-Light theorem prover. Second we
want to develop a formal library of foundations, including; differential equations,
concepts from operational calculus described by Equation 2, to formally reason and
verify the highly nonlinear behavior of the circuit variables involved in the formal
periodic steady-state analysis of these circuits, in higher-order logic. The respective
subsections of Section 4 address these challenges by presenting the formalization of
switching function technique, differential equations and solution of these differential
equations, respectively, to conduct the formal periodic steady-state analysis of power
converters in the time-domain.

In the next section, we present the proposed methodology for the formal periodic
steady-state analysis of the power converters, in a higher-order-logic theorem prover,
i.e., HOL-Light.

453

Ahmed, O. Hasan and A. Hasan

3 Proposed Methodology

We propose to use higher-order-logic theorem proving, as shown in Fig. 3, in order
to formally verify the power converters operating in the periodic steady-state. The
first step in the proposed methodology is to build a formal model for the switching
function technique and linear order differential equations to formally express the
implementation and specification of power converter circuits, in higher-order logic.
The proposed formal modeling of switching function technique is based on the for-
mal definitions of an ideal semiconductor switch, energy storage and dissipative
elements, and Kirchoff’s current and voltage laws. Whereas, the formal modeling
of the linear ordinary differential equation is used for the formal specification of
the behavior of each mode of the power converter circuit. The aforementioned two
formal models can then be used to formally assert and analyze the implementation
of the circuits, as a theorem, using the sound core of HOL-Light. Moreover, the
formal specification of ordinary linear differential equations is also used to formally

Higher-order Logic

Multivarite Theory

Storage and
dissipative
components

Kirchoff’s
current and
voltage laws

Semiconductor switch

Steady-state conditions

Library

Switching Function
Technique

Ordinary Linear Differential
Equations (ODEs)
ODEs Solution

Power
Electronics
Circuits

Circuit
Implementation

Circuit
Specification

Steady-state
Conditions

Formal
Implementation

Formal
Model

Formal
Model

Properties

Formal
Specification

Theorems Theorem

HOL-Light

Verification

Foundational Formalization Power Converters Verification

Figure 3: Proposed Methodology

454

Formal Periodic Steady-State Analysis of Power Converters

verify the correctness of the solutions of these equations. As the steady-state anal-
ysis is based upon the formal modeling of the linear ordinary differential equations
and their solutions, therefore, in the next step, we propose to formally define the
steady-state conditions to conduct the formal analysis of power converters, as shown
in Fig 3. These formal definitions, along with multi-variable theories of HOL-Light,
are used to formally verify the theorems that are required to conduct the formal
steady-state analysis of power converters. Finally, the switch is formalized using the
Heaviside step function, and its related properties, such as integration and derivation
of piecewise functions involving Heaviside step function, are formally verified. As
the switching functionality plays the most vital role in characterizing the nonlinear
behavior of the power converters therefore these formally verified properties are used
in, almost, every aspect of the formalization and verification.

4 Foundational Formalizations
4.1 Formal Model of the Switching Function Technique
In power converter circuits, semiconductor devices such as, diodes, BJTs (bipolar
junction transistors), MOSFETs (metal oxide semiconductor field effect transistors),
IGBTs (insulated gate bipolar transistors) etc, are used for performing the switching
operation. These semiconductor devices play a vital role in the development of
reliable, cost-effective and highly efficient converters [4]. Although, these devices
differ in their physics and physical properties, however, as a switch, their function is
to connect or disconnect a path or subcircuit, in a converter circuit, to achieve the
desired conversion. Therefore, the functionality of an ideal semiconductor device as
a switch can be modeled using the Heaviside function, i.e., Equation (1), in HOL-
Light:

Definition 1: ` ∀ t. semi_switch t = if t < &0 then &0 else
(if t = &0 then &1 / &2 else &1)

Definition 1 models the functionality of a semiconductor switch as a real value 1,
for connected status, and 0, for disconnected status, in higher-order logic. Whereas,
at the switching instance t, it has value 1/2. The & is a typecasting operator in
HOL-Light that maps a number to a real number. In our formalization, we use
switch status or switching function to refer connected or disconnected switch.

The switching operation is central to the power converters functionality, however,
it hinders the straightforward usage of the conventional circuit theory techniques,
such as Kirchoff’s voltage and current laws. The switching function technique relies
on the superposition theorem of the voltage or current to express the behavior

455

Ahmed, O. Hasan and A. Hasan

A

B

VAB(t)

V1(t) F1(t)

V2(t) F2(t)

Vn(t) Fn(t)

(a) Voltage at switching junction

I1(t) I2(t) In(t)

A
′

I(t)

F1(t) F2(t) Fn(t)

(b) Current at switching junction

Figure 4: Switching function technique

of these quantities in the presence of a switch in the circuit. It is based on the
conceptualization of the switch as a modulating function for the input and output
power. Based on this notion, the voltages and the currents in the presence of a
switch component can be expressed as [1];

VAB(t) =
n∑

i=1
Vi(t)Fi(t) n ∈ N (5a)

Ii(t) = I(t)
n∑

i=1
Fi(t) n ∈ N (5b)

Equation 5(a), describes voltage at the switch junction, in a mesh, in terms of
switching functions. Fig. 4(a) is a pictorial representation of the concept, where n
voltage sources are connected to a point, A, through n switches. The voltage, VAB,
is then the superposition of the input voltages, however, the contribution of each
voltage is dependent upon the associated switching function. Similarly, Equation
5(b), describes the current at a node, A′ , which has n switches. Fig. 4(b) describes
the situation where current, I(t), is supplied to n paths of the circuit through n
switches. Each path receives the fraction of total current depending upon its switch
status, Fn(t).

Voltages and currents at the switching junction in higher-order logic are defined,
as:
Definition 2: ` ∀ mod_lst volt_lst t.
switch_volt mod_lst volt_lst t =
vsum (0..LENGTH mod_lst - 1) (λ n. EL n volt_lst t * Cx (EL n mod_lst))

The function switch_volt describes the voltage at the switch junction using Equation

456

Formal Periodic Steady-State Analysis of Power Converters

5(a). It accepts a list, volt_lst, which contains all the possible voltage drops at
the switching junction, a list of modes, mod_lst, which contains the switch status
or switching function for each mode, and t is the time, which indicates that this
function is time dependent. Whereas, Cx is a HOL-Light function, which is used to
map a real number, representing the switching function, to a complex number.

Definition 3: ` ∀ mod_lst curr t. switch_current mod_lst curr t =
curr t * vsum (0..LENGTH mod_lst - 1) (λ n. Cx (EL n mod_lst))

Definition 3 formally models the current at the switching junction using Equation
5(b). It accepts an argument curr, which represents the total supplied current to
the switch junction, a list of modes, mod_lst, which contains the switch status or
switching function for each mode, and t, which represents time.

To accomplish the formal modeling of the switching function technique, we also
formalize the Kirchoff’s voltage and current laws:

Definition 4: ` ∀ vol_lst t. kvl vol_lst t =
vsum (0..LENGTH vol_lst - 1) (λn. EL n vol_lst t) = Cx (&0)

Definition 5: ` ∀ cur_lst t. kcl cur_lst t =
vsum (0..LENGTH cur_lst - 1) (λn. EL n cur_lst t) = Cx (&0)

The kvl and kcl functions accept lists of type (R → C), to express the behavior of
the time dependent voltages and currents in the given power converter circuit and
a time variable t. They return the predicates that guarantee that the sum of the
voltages in a loop or sum of the currents at a node are zero for all the time instants.

The voltages and currents in Definitions 2 and 3 are piecewise functions due to
switching action. We formally verified the result of Equation (2) to conduct the
formal analysis involving such functions:

Theorem 1: ` ∀ f a b c x.
A1:(∀t. (λx. f (x)) differentiable_on s) ∧
A2:∼(real_interval [a,b] = {}) ∧
A3:c ∈ [a, b]
⇒
∫ b

a (λx. semi_switch x c) * f (x)) =
∫ b

c (λx. f (x))

The Assumption A1 ensures the differentiability of a test function, f, over s. Where-
as, s:(R→ B) is a set-theoretic definition of the intervals in higher-order logic, over
real numbers. For a given real interval [a,b], it represents all possible real intervals,
which are subsets of the given real interval. Therefore, Assumption A1 ensures the
differentiability of a test function over all subsets of the given real interval [a,b].
Assumptions A2 and A3 ensure that the interval is non-empty and point c lies within

457

Ahmed, O. Hasan and A. Hasan

the interval [a, b]. The conclusion of the Theorem 1 formally verifies the affect
of applying the Heaviside step function on a test function, i.e., changes the limit of
integral. Theorem 1 is formally verified using the formal definition of Gauge integral
and its properties, available in HOL-Light theorem prover. This formally verified
result plays a very key role in the formal reasoning of the systems which exhibit
nonlinear behavior, such as power converters circuits.

The above formalization enables us to formally model and analyze the nonlinear
behavior exhibited by the power converters, due to switching action, in higher-order
logic.

4.2 Ordinary Linear Differential Equation
An nth-order ordinary linear differential equation can be represented as:

an(t)d
ny(t)
dx

+ an−1(t)d
n−1y(t)
dx

+ ...+ a0(t)y(t) = p(t) (6)

We formalized the nth-order derivative function in higher-order logic as follows:

Definition 6: ` ∀ n f t. (n_vec_deri 0 f t = f t) ∧
(∀ n. n_vec_deri (SUC n) f t =

n_vec_deri n (λ t. vector_derivative f at t) t)

The function n_vec_deri accepts a positive integer n that represents the order of the
derivative, the function f:(R→ C) that represents the complex-valued function that
needs to be differentiated, and the variable t:(R) that is the variable with respect
to which we want to differentiate the function f. It returns the nth-order derivative
of f with respect to t. Now, based on this definition, we can formalize the left-hand
side (LHS) and right-hand side (RHS) of Equation (6) in HOL-Light as the following
definitions:

Definition 7: ` ∀ P y t. diff_eq_lhs A f t =
vsum (0..LENGTH A) (λ n. Cx (EL n A t) * n_vec_deri n f t)

Definition 8: ` ∀ L y t. diff_eq_rhs L p t =
vsum (0..LENGTH L) (λ n. Cx (EL n L) * EL n p t)

In the above definitions, A and L are the coefficient’s lists, f:(R→ C) and p(t):(R→
C) are complex-valued functions, and t:(R) is the time variable to formally model
the linear ordinary differential equation. Definition 6 is also used to formally define
the steady-state condition of the power converters as:

458

Formal Periodic Steady-State Analysis of Power Converters

Definition 9: ` ∀ n. (steady_state 0 f Tp =
(n_vec_deri 0 f (&0) = n_vec_deri 0 f Tp)) ∧
(steady_state (SUC n) f Tp =
(n_vec_deri (SUC n) f (&0) = n_vec_deri (SUC n) f Tp))

The above generic formalization allows to formally model the dynamic behavior
of systems represented by differential equations. We have utilized this formalization
to formally specify and reason the periodic steady-state behavior of power converters,
described in Equation 4.

4.3 Solution of Linear Differential Equations
The general solution to non-homogeneous Equation (6) is expressed as

y(t) = yh(t) + yp(t) =
n∑

i=1
ciyi(t) + yp(t) (7)

Where, yh(t) is the linear combination of the fundamental solutions of Equation (6)
when p(t) = 0, and yp is the particular solution corresponding to Equation (6) when
p(t) 6= 0.

The formal verification of the correctness of the solution of linear differential
equation, i.e., Equation (6), is based on the linearity property of the derivatives,
which we have formally verified for the complex-valued functions as:

Theorem 2: ` ∀ n f h t.
A1: (λ m t. m ≤ n ⇒ (λ t. n_vec_deri m f t) differentiable at t) ∧
A2: (λ m t. m ≤ n ⇒ (λ. n_vec_deri m h t) differentiable at t)

⇒ n_vec_deri n (λt. Cx a * f t + Cx b * h t) t =
Cx a * n_vec_deri (λt. f t) t + Cx b * n_vec_deri (λt. g t) t

We formally verified the solution of a linear differential equation, represented by
Equation (7), in the HOL-Light theorem prover as follows:

Theorem 3: ` ∀ Yh C Yp A L p t.
A1: (n_differentiable_fn Yh (LENGTH A)) ∧
A2: (n_differentiable_fn Yp (LENGTH L)) ∧
A3: (n_homo_soln A Yh t) ∧
A4: (n_nonhomo_soln A L Yh Yp t)
⇒ diff_eq_lhs A (λ t. linear_sol C Yh t + Yp t = diff_equ_rhs L p t

In Theorem 3, Assumptions A1 and A2 ensure the nth-order differentiability of the
fundamental solutions, given as a list Yh, and particular solution, provided as a

459

Ahmed, O. Hasan and A. Hasan

list Yp, respectively. The predicate in the Assumption A3, i.e., n_order_homo_-
eq_soln_list, ensures that each element of the list Yh is a solution of the given
differential equation, when p(t) = 0 in Equation (6), where L is the list of coefficients.
Similarly, the predicate in Assumption A4, i.e., n_order_nonhomo_eq_soln_list,
ensures that the particular solution, Yp, satisfies the differential Equation (6). The
function linear_sol, used in the conclusion of Theorem 2, models the linear so-
lution combination of fundamental solutions, i.e., ∑n

i=1 ciyi(t), using the lists of
solution functions Yh and arbitrary constants C. The formal verification of Theo-
rem 3 is based on Theorem 1 and the formally verified lemma about solution of
homogeneous differential equation, i.e., when p(t) = 0 in Equation (6). More details
about the modeling and verification steps can be found in our proof script [2]. The
formalization, presented in this section, is generic and provides sufficient support
to formally model and reason about different aspects of a power converters’ circuits
including; implementation and behavior, specification, correctness of the solution of
differential equations representing the behavior of circuits, and also the steady-state
behavior of quantities of interests, such as voltages and currents. The corresponding
proof script, which is available for download at [2], has 3000 lines of HOL-Light code
and requires about 350 man hours of development time.

5 DC-DC Buck Converter
The DC-DC buck converter is a commonly used power converter that steps down
a given input to a desired output level. In a DC-DC Buck converter, operating in
a continuous conduction mode, a switch controls the flow of energy from the raw
source, V s, to the output by periodically switching between Positions 1 and 2, as
shown in Fig 5. The energy is stored in the inductor when the switch is at Position
1, and is dissipated to the output circuitry, when the switch is at Position 2. The
circuit has two modes, i.e., n = 2, defined by the switching instances, t0, ton, and
toff . In periodic steady-state the circuit will repeat its behavior periodically over

+
−Vs

•1

•2

L

RC

iL iC

iR

Vout

Vout

t0 ton toff

Tp

Figure 5: DC-DC buck Converter

460

Formal Periodic Steady-State Analysis of Power Converters

the time period Tp. Moreover, due to periodic steady-state the dependence on t0 can
be dropped and therefore have assigned t0 = 0 in our analysis. Applying Kirchoff’s
current and voltage laws in switch Positions 1 and 2, gives the following differential
equations for the respective modes:

iL = iC + iR

d2

dt2
V 1

out(t) + 1
RC

d

dt
V 1

out(t) + 1
LC

V 1
out(t) = Vs

LC

V 1
out(t) = c1e

s1t + c2e
s2t + Vs

(8)

iL = −ic − iR
d2

dt2
V 2

out(t) + 1
RC

d

dt
V 2

out(t) + 1
LC

V 2
out(t) = 0

V 2
out(t) = c3e

s3t + c4e
s4t

(9)

Where, Vout is the output voltage of the converter, as shown in the Fig. 5, and s1,
s2, s3 and s4 are the roots of the characteristic equation of the converter in two
modes. Moreover, s1 = s3 and s2 = s4 due to the identical characteristic equations.
The solution of Equations (8-9), over the time period Tc, can be written using the
Heaviside step function as

Vout(t) = u(t− ton)V 1
out(t) + (1− u(t− ton))V 2

out(t) (10)

In the periodic steady-state, the voltage of the DC-DC buck converter satisfies the
following conditions

Vout(0) = Vout(T) , d

dt
Vout(0) = d

dt
Vout(T) (11)

The steady-state conditions provide two algebraic equations, however, there are four
constants involved in the solution. Two more algebraic equations can be obtained
from the continuity of the voltage, i.e., Vout, due to continuous conduction mode of
the circuit, i.e.,

V 1
out(ton) = V 2

out(ton) , d

dt
V 1

out(ton) = d

dt
V 2

out(ton) (12)

Equations (11-12) are used to specify the periodic steady-state voltage that allows
finding the minimum and peak conduction currents in steady-state. These currents
can then be used to determine ripple currents, which are essentially crucial in spec-
ifying the components in the design of the converters.

The first step, in the formalization of the DC-DC Buck converter consists of
using the switching function technique to write the switch junction voltages, which

461

Ahmed, O. Hasan and A. Hasan

Component Current Relationship
Resistor IR(t) = V(t)

R
Capacitor IC(t) = CdV(t)

d(t)
Inductor IL = i0 + 1

R
∫ t

0 V(t)

Table 1: Basic quantities in DC-DC converter

in turn requires to formally define the currents of inductor, capacitor and resistor
elements. The mathematical expressions for these elements are presented in Table
1, which are formally defined as,

Definition 10: ` ∀ io L v. ind_curr v L io =
(λ t. io + Cx (&1 / L) * integral (interval [&0, t]) v)

Definition 11: ` ∀ C v. cap_curr C v =
(λ t. Cx C * vector_derivative v (at t))

Definition 12: ` ∀ v R. res_curr R v = (λ t. v t * Cx (&1 / R))

Where, R , C and L represent the resistance, capacitance and inductances of the
resistor, capacitor and inductor of the circuit. io is the initial value of the induc-
tor current, whereas, v represents the voltage drop across the circuit elements, at
any time t. Now, using Definitions 2, 4, 5, 10, 11, and 12, we can formalize the
implementation of DC-DC Buck converter as:

Definition 13: ` ∀ io L C R Vs Vout VL ton t.
buck_ckt_impl io L C R Vs Vout VL ton t =
(Vl = switch_volt [λt. Cx Vs - Vout t; (λt. –Vout t)]

[&1 - semi_switch (t - t_on); semi_switch (t - ton] t)
∧ (∀t. ∼(t = ton) ⇒

kcl [ind_curr (λt. VL t) L io; cap_curr C (λt. –Vout t);
res_curr R (λt. –Vout t)] t)

In the above definition, Vs is the supply voltage, Vout is the voltage drop at the
junction of all these components, with respect to the ground, and VL is the voltage
drop across the inductor. However, due to the the presence of the switching junction,
we model the inductor voltage, in the first conjunct, using the switch_volt function,
which is provided with two lists; one for all the possible voltage drops, and the other
with all the corresponding switching functions for every mode, and an independent

462

Formal Periodic Steady-State Analysis of Power Converters

variable t. Where, ton, is the exact switching instant. This voltage is then used to
apply the conventional Kirchoff’s current law, using the function kcl, which accepts
a list of currents, and an independent variable, i.e., t.

This implementation model results in the ordinary linear differential equations
of the system, which can be described using Definitions 7 and 8 as:
Definition 14: ` ∀ io Vs Vout L C R ton t.

buck_diff_equ io Vs Vout L C R ton t =
if (t < ton) then diff_eq_lhs [

1
LC

;
1
RC

; 1] (Vout(t)) t =

diff_eq_rhs [
Vs

LC
] [1] t

else diff_eq_lhs [
1
LC

;
1
RC

; 1] (Vout(t)) t = diff_eq_rhs [0] [0] t

According to the proposed methodology, as a first step, we formally verify the im-
plementation and behavior of the Buck converter using the formal model of switching
function technique and linear order differential equations as:
Theorem 4: ` ∀ i0 Vs VL Vout L C R ton Tp t .

A1: (∀ t. VL continuous_on [0, t] ∧
A2: ∼ (C = 0) ∧
A3: (t ∈ (0, Tp)) ∧
A4: ∼(t = ton) ∧ A5: (ton ∈ (0, Tp)) ∧
A6: (∀ t. differentiable_n_vec_deri 1 Vout t) ∧
A7: buck_ckt_impl i0 L C R Vs Vout VL ton t

⇒ buck_diff_equ i0 Vs Vout L C R ton t

Assumption A1 ensures that the converter is operating in the continuous conduc-
tion mode. Assumption A2 prevents a division by zero case in the formal analysis.
Assumptions A3-A4 ensure that the time is over one time period of the system and
does not include the singularities, at t0 = 0, t = ton and t = Tp, due to switch-
ing action. Whereas, Assumptions A5 specifies that the switching time, t = ton, lies
within the open interval defined by the single time period of the circuit. Assumption
A6 formally specifies the differentiability of the function, Vout, and its first derivative.
The predicate differentiable_n_vec_deri accepts a number, n, and function, f,
and specifies the differentiability of the function upto its nth-derivative. Finally,
Assumption A7 specifies the formal implementation of the power converter circuit
using Definition 13. The formal proof of Theorem 4 involves taking derivative of
Assumption A7, which consists of piecewise functions, by employing Theorem 1.

Following the proposed methodology, the next task is to formally verify the
correctness of the solution of the ordinary linear differential equations of the Buck
converter in HOL-Light. Therefore, we define the piecewise solution, i.e., Equation
(10), of the Buck converter in higher-order logic as:

463

Ahmed, O. Hasan and A. Hasan

Definition 15: ` ∀ Vs c1 c2 c3 c4 s1 s2 ton t.
solution Vs c1 c2 c3 c4 s1 s2 ton t =
linear_sol [c1; c2] (cexp_list [s1; s2]) t *

Cx (semi_switch (t - ton)) +
linear_sol [c3; c4] (cexp_list [s1; s2]) t *

Cx (&1 - semi_switch (t - ton)

Where Vs is the supply voltage, c1, c2, c3 and c4 are arbitrary constants, s1 and
s2 are the roots of homogeneous differential equations corresponding to Equations
(7) and (8), respectively. Whereas, the cexp_list function is a higher-order-logic
function to express the exponential form of the solution for real and distinct roots,
i.e., s1 and s2, of the circuit. It is defined as:

Definition 16: ` ∀ x. (cexp_list [] = []) ∧
cexp_list (CONS s t) = CONS (λx. cexp (s * Cx (x))) (cexp_list t)

Next, using Definition 15, we formally verify the correctness of the solution of
the differential equations, in each mode of the converter, in HOL-Light as:

Theorem 5: ` ∀ i0 Vs Vout L C R c1 c2 c3 c4 s1 s2 ton Tp t .

A1: (∀ t. ∼(t = ton) ⇒ Vout = solution Vs c1 c2 c3 c4 s1 s2 ton t) ∧
A2: (s1 = − 1

2RC + 1
2

√
1

(RC)2 − 4
LC) ∧

A3: (s2 = − 1
2RC − 1

2

√
1

(RC)2 − 4
LC) ∧

A4: (4 R2 C ≤ L) ∧
A5: (0 < L) ∧
A6: (0 < R) ∧
A7: (0 < C) ∧
A8: (t ∈ (0, Tp)) ∧
A9: ∼(t = ton) ∧
A10: (ton ∈ (0, Tp))

⇒ buck_diff_equ i0 Vs Vout L C R ton t

Assumption A1 formally defines the output voltage Vout as a piecewise function, over
the time period, Tp, of the converter circuit. Assumptions A2-A3 formally specify
the roots of the equation. Assumption A4 formally specifies the condition on the
circuit parameters for real and distinct roots. Assumptions A5-A7, ensure the positive
values of inductance, resistance and capacitance of the circuit. Assumptions A8-A9
ensure that the time is over one time period of the system and does not include
the singularities, at t0 = 0, t = ton and t = Tp, due to switching action. Whereas,
Assumptions A10 specifies that the switching time, t = ton, lies within the open
interval defined by the single time period of the circuit.

464

Formal Periodic Steady-State Analysis of Power Converters

The formal verification of Theorem 5 utilized the formally verified results of
Theorems 1 and 3.

Finally, we present the formally verified results of periodic steady-state voltage
of of the DC-DC Buck converter as:
Theorem 6: ` ∀ Vs Vout c1 c2 c3 c4 s1 s2 ton t Tp.

A1: (t ∈ (0, Tp)) ∧
A2: ∼(t = ton) ∧
A3: (ton ∈ (0, Tp)) ∧
A4: (∀ t. ∼ (t = ton) ⇒ Vout = solution Vs c1 c2 c3 c4 s1 s2 ton t) ∧
A5: (∀ t. n_vec_deri 1 (λ t. Vout t) continuous at t) ∧
A6: ∼ (s2 - s1 = 0) ∧
A7: steady_state 1 Vout t ⇒(

Vout(0) =
(s2

s2 − s1

)[(
Vout(0) + 1

s2

d
dt Vout(0)− Vs

)
e−tons1 + Vs

]
e−Tps1 +

(s1

s2 − s1

)[(
-Vout(0)− 1

s1

d
dt Vout(0) + Vs

)
e−tons1 - Vs

]
e−Tps2

)
∧

(
− d

dt Vout(0) =
(s1s2

s2 − s1

)[(
Vout(0) + 1

s2

d
dt Vout(0)− Vs

)
e−tons1 + Vs

]

e−Tps1 +
(s1s2

s2 − s1

)[(
-Vout(0)− 1

s1

d
dt Vout(0) + Vs

)
e−tons1 - Vs

]
e−Tps2

)

Assumptions A1 and A2 formally specify the analysis over one time period with
singularities, at t = 0 , t = ton and t = Tp, excluded. Whereas, Assumptions A3
specifies that the switching time, t = ton, lies within the open interval defined by
the single time period of the circuit. Assumption A4 formally defines the output
voltage Vout as a piecewise function, over the time period, Tp, of the converter circuit.
Assumption A5 formally specifies the continuity of the function and its derivative,
to ensure the continuous conduction mode. Assumption A6 prevents the division by
zero case in the analysis, and finally, Assumption A7 defines the steady-state of the
buck converter.

The formal proof of Theorem 6 essentially consists of finding the values of the
function and its derivative at t = 0 and t = Tp , in limit sense, and the values of
arbitrary constants c1, c2, c3 and c4 by utilizing the continuity assumption A5 and
the one-sided limits concepts due to singularities at t = 0 , t = ton and t = Tp, due
to switching action. More details about the proof can be found at [2].

The proposed foundational formalization of switching function technique and
linear differential equations allowed us to formally specify and verify the nonlinear
behavior of the DC-DC Buck converters in a very straightforward manner. Theorem
4 verifies that the implementation and behavior of the Buck converter by explicitly
specifying the conditions on the piecewise functions, e.g., voltages in the case of DC-
DC Buck converter, in the continuous conduction operating mode of the converter.

465

Ahmed, O. Hasan and A. Hasan

The formally verified result is very helpful in the topology selection of the converter,
which is usually the first step in the design procedure and, in practice, consists of
an intuitive selection of topology for a given design specification. Moreover, Theo-
rem 5 formally verifies the correction of the solution of the linear order differential
equations representing the power converter behavior. This result plays a vital role
in the performance evaluation. Once the implementation and behavior (Theorem
4), and the solution (Theorem 5) of the DC-DC Buck converter is formally verified,
then Theorem 6 formally verifies the relationship among different parameters of the
circuit, such as voltage and circuit components, in periodic steady-state. This result
is instrumental in formal verification of the design objectives, such as desired voltage
levels and component values, of the circuit. However, unlike traditional techniques
these formally verified results give exact conditions in terms of the parameters of the
Buck converter as they have been formally verified using a sound theorem prover.
Moreover, these results are generic in terms of universally quantified variables and
contain an exhaustive set of assumptions required for the validity of the results.

6 Conclusion

In this paper, we presented a formal methodology to conduct the formal time-domain
based periodic steady-state analysis of power converters. The power converters are
characterized by the switching functionality, which imparts to the structural changes
of the converter circuit and a nonlinear mathematical analysis. To model the struc-
tural changes in the circuit, we developed the formal model of the circuit analysis
technique, called switching function technique, and also developed a formal model
of linear differential equations to formally specify the behavior of the converters. To
cater for the nonlinearities in the analysis, the integral property of the Heaviside
step function as a generalized function is verified. This logical formalism is then
applied to the DC-DC Buck converter to formally verify the implementation and
behavior of the converter’s circuit, solution of its linear ordinary differential equa-
tions in all modes of the converter’s circuit and the steady-state voltage relationship
of the DC-DC Buck converter.

The proposed formalization can be extended to incorporate the formal small-
signal modeling analysis of the power converters. Moreover, the formalization is
based upon the complex valued functions to formally analyze the periodic steady-
state analysis of power converters, which are characterized by the discontinuity due
to switching action, therefore, the formalization is also equally applicable to analyze
many other discontinuous phenomenon ubiquitous in many fields of Physics and
engineering.

466

Formal Periodic Steady-State Analysis of Power Converters

References

[1] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1964.

[2] Asad Ahmed. Formal periodic steady-state analysis of power converters in time-domain.
http://save.seecs.nust.edu.pk/projects/fpssapc/. [Online; accessed 1-March-
2019].

[3] Achraf Ben Amar, Ammar B. Kouki, and Hung Cao. Power approaches for implantable
medical devices. Sensors, 15(11):28889–28914, 2015.

[4] B. Jayant Baliga. Fundamentals of power semiconductor devices. Springer Science &
Business Media, 2010.

[5] Soumitro Banerjee and George C. Verghese. Nonlinear phenomena in power electronics.
Wiley-IEEE Press, 2001.

[6] Sidi Mohamed Beillahi, Umair Siddique, and Sofiène Tahar. Formal analysis of power
electronic systems. In International Conference on Formal Engineering Methods, pages
270–286. Springer, 2015.

[7] Philip J. Davis and Philip Rabinowitz. Methods of numerical integration. Courier
Corporation, 2007.

[8] Manjusha Dawande, Victor Donescu, Ziwen Yao, and V. Rajagopalan. Recent advances
in simulation of power electronics converter systems. Sadhana, 22(6):689–704, 1997.

[9] Ali Emadi. Handbook of automotive power electronics and motor drives. CRC Press,
2017.

[10] Robert W. Erickson and Dragan Maksimovic. Fundamentals of power electronics.
Springer Science & Business Media, 2007.

[11] John Harrison. HOL Light: An overview. In International Conference on Theorem
Proving in Higher Order Logics, pages 60–66. Springer, 2009.

[12] John Harrison. The HOL Light theory of Euclidean space. Journal of Automated
Reasoning, 50(2):173–190, 2013.

[13] M. David Kankam and Malik E. Elbuluk. A survey of power electronics applications
in aerospace technologies. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.
gov/20020013943.pdf, 2001. [Online; accessed 1-March-2019].

[14] Ram P. Kanwal. Generalized functions: Theory and technique. Springer Science &
Business Media, 2012.

[15] Tuo Yeong Lee. Henstock-Kurzweil integration on Euclidean spaces, volume 12. World
Scientific, 2011.

[16] Dragan Maksimovic. Automated steady-state analysis of switching power converters
using a general-purpose simulation tool. In Power Electronics Specialists Conference,
volume 2, pages 1352–1358. IEEE, 1997.

[17] Christos C. Marouchos. The switching function: Analysis of power electronic circuits,
volume 17. The Institution of Engineering and Technology(IET), 2006.

[18] Marcia Verônica Costa Miranda and Antônio Marcus Nogueira Lima. Formal verifica-

467

Ahmed, O. Hasan and A. Hasan

tion and controller redesign of power electronic converters. In Industrial Electronics,
IEEE International Symposium on, volume 2, pages 907–912, May 2004.

[19] Muhammad Usman Sanwal and Osman Hasan. Formally analyzing continuous aspects
of cyber-physical systems modeled by homogeneous linear differential equations. In In-
ternational Workshop on Design, Modeling, and Evaluation of Cyber Physical Systems,
pages 132–146. Springer, 2015.

[20] Matthew Senesky, Gabriel Eirea, and Tak-John Koo. Hybrid modelling and control of
power electronics. In International Workshop on Hybrid Systems: Computation and
Control, pages 450–465. Springer, 2003.

[21] David R. Stoutemyer. Crimes and misdemeanors in the computer algebra trade. Notices
of the American Mathematical Society, 38(7):778–785, 1991.

[22] Thomas G. Wilson. Life after the schematic: The impact of circuit operation on the
physical realization of electronic power supplies. Proceedings of the IEEE, 76(4):325–
334, 1988.

Received 13 August 2018468

Probabilistic Analysis of Dynamic Fault
Trees using HOL Theorem Proving

Yassmeen Elderhalli, Waqar Ahmad, Osman Hasan, Sofiène Tahar
Electrical and Computer Engineering

Concordia University, Montreal, QC, Canada
{y_elderh, waqar, o_hasan, tahar}@ece.concordia.ca

Abstract

Dynamic Fault Trees (DFTs) is a widely used failure modeling technique
that allows capturing the dynamic failure characteristics of systems in a very
effective manner. Simulation and model checking have been traditionally used
for the probabilistic analysis of DFTs. Simulation is usually based on sampling
and thus its results are not guaranteed to be complete, whereas model checking
employs computer arithmetic and numerical algorithms to compute the exact
values of probabilities, which contain many round-off errors. Leveraging upon
the expressive and sound nature of higher-order-logic (HOL) theorem proving,
we propose, in this paper, a formalization of DFT gates and their probabilistic
behaviors as well as some of their simplification properties in HOL based on
the algebraic approach. This formalization would allow us to conduct the prob-
abilistic analysis of DFTs by verifying generic mathematical expressions about
their behavior in HOL. In particular, we formalize the AND, OR, Priority-AND,
Functional DEPendency, Hot SPare, Cold SPare and the Warm SPare gates and
also verify their corresponding probabilistic expressions in HOL. Moreover, we
formally verify an important property, Pr(X < Y), using the Lebesgue integral
as this relationship allows us to reason about the probabilistic properties of
the Priority-AND gate and the Before operator in HOL theorem proving. We
also formalize the notion of conditional densities in order to formally verify the
probabilistic expressions of the Cold SPare and the Warm SPare gates. In order
to illustrate the usefulness of our formalization, we use it to formally analyze
the DFT of a Cardiac Assist System.

1 Introduction
A Fault Tree (FT) [22] represents an effective way of graphically modeling the causes
of failure in a system in the form of a rooted failure tree. A typical FT consists of

Vol. 6 No. 3 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Elderhalli, Ahmad, Hasan and Tahar

a top event representing system failure, basic failure events modeling the compo-
nents failure and the FT gates, which combine the basic failure events and allow
components failure to propagate to the top event. FTs are categorized as: Static
FTs (SFTs) and Dynamic FTs (DFTs). SFTs capture the causes of failure in a sys-
tem without considering the failure dependencies or sequences between the system
components. DFTs, on the other hand, capture the failure dependencies in sys-
tems, which represent a more realistic approach to model the behavior of real-world
systems.

Fault Tree Analysis (FTA) can be used to examine the failure characteristics
of the given system qualitatively and quantitatively. In the former analysis, the
combinations and sequences of basic failure events, associated with the system com-
ponents, are determined in the form of cut sets and cut sequences [22]. While the
quantitative analysis allows estimating the failure probability of the system based
on component’s failure probabilities among other metrics. Usually, Markov chain
(MC) based analysis or algebraic approaches are used to perform DFT analysis. In
the Markov chain based analysis, the DFT is first converted into its equivalent MC
and then the analysis is conducted on the resulting MC. Complex systems often lead
to a MC with a large number of states. The MCs of such complex systems can be
analyzed using a modularization approach that divides the corresponding FT into
SFT and DFT parts [19]. The SFT part is analyzed using traditional combinatorial
analysis methods, such as Binary Decision Diagrams (BDDs) [22], while the DFT
part is analyzed using MCs [23]. This kind of modularization approach has been
implemented in the Galileo tool [24]. In the algebraic approach, an algebra similar
to the ordinary Boolean algebra is used to reduce the structure function (expression)
of the top event of the DFT [12]. This reduced expression is then used to derive
the failure probability of the given system based on the failure probabilities of DFT
gates.

Traditionally, DFTs are either analyzed by analytically deriving the system fail-
ure probability expression or using computer-based simulation tools. In the former
method, firstly cut-sequences consisting of basic failure events are obtained and
then the probabilistic Principle of Inclusion-Exclusion (PIE) [12] is used to man-
ually derive the probability of failure of the overall system. This kind of manual
manipulation is prone to human errors and can produce erroneous results especially
when dealing with large DFTs. The latter method is more extensively used due
to its scalability and user friendliness. Several simulation tools are available that
provide GUI editors that obtain the system FT model from the user and return
the analysis results based on the assigned failure distribution to the system com-
ponents at a given instant of time. However, simulation cannot be guaranteed to
produce complete and accurate results due to the involvement of numerical tech-

470

Probabilistic Analysis of Dynamic Fault Trees using HOL

niques, such as Monte Carlo simulation [17], and pseudo random variables. Due
to the above-mentioned inaccuracies, both analytical and simulation based methods
are not suitable to conduct the failure analysis of safety-critical systems.

As an accurate alternative, formal methods have been recently utilized for ana-
lyzing FTs. Probabilistic model checkers (PMC), such as STORM [6], have been used
to perform the quantitative analysis of DFTs [9]. However, due to the state-based
nature of PMCs, they cannot be used to verify generic expressions for probability of
failure. In addition, their usage is only limited to exponential distributions, which
in the context of reliability analysis, for example, do not consider the aging of sys-
tems components. Due to the sound nature of higher-order-logic (HOL) theorem
proving, it has been successfully used to formalize basic SFT gates [1], which have
been in turn used to conduct the SFT-based analysis of several systems, including
an air traffic management system [2]. However, this formalization is only limited to
SFTs. So far, there is no formalization in HOL that supports the probabilistic failure
analysis of DFTs. Recently, we have presented a hybrid methodology based on both
interactive theorem proving and model checking for formal analysis of DFTs [8]. The
main idea is to first conduct the qualitative analysis of a given DFT, based on the
algebraic approach [12], using theorem proving and then quantitatively analyze the
simplified DFT model using the STORM model checker. Since a PMC is involved in
estimating the probabilities quantitatively, this methodology cannot provide generic
expressions for probability and its usage is only limited to exponential distributions.
Moreover, the formal definitions of DFT gates in [8] cannot cater for conducting the
probabilistic analysis using HOL theorem proving as the behavior of the DFT gates
has been captured using numbers instead of random variables.

In order to perform the complete probabilistic analysis of DFTs within a higher-
order-logic theorem prover by verifying generic expressions of probability of failure,
we propose to improve our formalization of the DFT gates in higher-order logic
that uses the algebraic approach, presented in [12], as its foundation. The choice
to formalize an algebraic approach to conduct the DFT analysis is motivated by
the fact that HOL is well known for modeling systems that can be mathematically
expressed. In addition, using HOL theorem proving we can formally verify generic
expressions that cannot be obtained and verified using other formal tools and the
algebraic approach fits perfectly with these features of HOL theorem proving. The
foremost task in this work is to identify an algebraic approach to formalize DFTs so
that the formal DFT analysis can be constructed within a theorem prover. In this
respect, we have to consider the availability of foundational theories, like measure
and probability, and their compatibility with the chosen approach. We identified
the algebraic approach, initially proposed by Merle [12], to formalize DFTs among
other options (e.g., [18]). Despite the fact that the presented formalization is based

471

Elderhalli, Ahmad, Hasan and Tahar

on an existing algebraic approach [12], it bears its own research challenges. For ex-
ample, it is well-known that a theorem proving based proof requires many intricate
proof guidance and explicit reasoning that a mathematician doing a paper based
proof would sometimes ignore. Thus, in our experience with the formalization of
the algebraic approach, we also had to take many modeling decisions, choose ap-
propriate data types, identify missing assumptions for the validity of results, devise
proof strategies and verify many helper theorems to facilitate the process of formal
DFT analysis in a theorem prover. The paper highlights these details while we
present our formalization. Based on this novel formalization, we also formally verify
the DFT algebraic reduction properties. Then, using the available probability the-
ory formalization [13], we also formally verify the failure probability relationships of
all commonly used DFT gates, i.e., AND, OR, Priority-AND (PAND), Functional
DEPendency (FDEP), Hot SPare gate (HSP), Cold SPare gate (CSP) and Warm
SPare gate (WSP). In order to verify the failure probability relationship of some
of these DFT gates, we are required to formalize the Pr(X < Y) describing the
effect of one system component failing before the other or one after the other. This
property is mainly verified by using Lebesgue integral properties [15, 21]. In addi-
tion, we formalize the notion of conditional density functions, which is necessary to
formally verify the probabilistic relationships of the spare gates. The HOL4 the-
orem prover [10] was a natural choice for this formalization as it has the required
theories such as: the probability theory and the Lebesgue integral [15]. In addition,
we use the existing formalization of the probabilistic PIE in HOL4 [1]. The above-
mentioned formalizations can be utilized to conduct the DFT-based failure analysis
of a variety of real-world systems within the sound core of a theorem prover. For
illustration purposes, we present the formal DFT-based failure analysis of a Cardiac
Assist System (CAS) [5], which is a safety-critical DFT benchmark. We first reduce
the original structure function of the system’s top event using the formally veri-
fied simplification theorems. Then, we utilize the probabilistic PIE [1] to formally
verify a generic failure probability expression of the Cardiac Assist System whereas
the failure characteristics of its components are represented as generic probability
distribution and density functions.

1.1 Contributions of the Paper

The main contributions of the paper are summarized as:

• Providing a framework for the probabilistic analysis of DFT within a theorem
prover, which offers a sound and rigorous method for conducting DFT analysis
by providing formally verified generic expressions of probability of failure.

472

Probabilistic Analysis of Dynamic Fault Trees using HOL

• Development of reasoning steps for the verification of DFT gate properties,
which, to the best of our knowledge, are not available in the literature or even
in [12].

• Providing the formal definitions of DFT gates, which are somewhat different
than the expressions provided in [12].

• Verifying a generic expression for the probabilistic failure behavior of a cardiac
assist system in HOL theorem proving, which involves identifying the required
conditions for the generic expression to hold.

1.2 Paper Organization

The rest of the paper is structured as follows: Section 2 presents some preliminaries
about the probability theory and the Lebesgue integral in HOL4 that will facilitate
the understanding of the rest of the paper. In Section 3, we present our HOL for-
malization of DFT gates and the corresponding simplification properties. Section 4
provides the verification details of the probabilistic behavior of the DFT gates. Sec-
tion 5 presents the formalization of the probabilistic failure behavior of the Cardiac
Assist System. Finally, we conclude the paper in Section 6.

2 Preliminaries
In this section, we present some preliminaries that are required for the understanding
of the proposed formalization.

2.1 Probability Theory

The probability theory is formalized based on the measure theory in HOL4 [15].
A measurable space is represented as a pair (X ,A), where X represents a space
and A a set of measurable sets. The functions space and subsets are defined in
HOL to return X and A, respectively of a measurable space (X ,A). A measure
is generally a function that designates a certain number to a set, which represents
the size of this set [13]. It is defined as the triplet (X ,A, µ), where X represents
the space, A represents the measurable sets and finally µ represents the measure.
Three functions, m_space, measurable_sets and measure, are defined in HOL to
return the space (X), measurable sets (A) and measure (µ) of a measure space,
respectively [16]. A probability space is defined as a measure space, with the added
condition that the probability measure for the entire space is equal to 1.

473

Elderhalli, Ahmad, Hasan and Tahar

Random variables are formalized as measurable functions that map events from
the probability space to some other σ- algebra space s. Random variables are de-
fined in HOL4 as [13]:

Definition 2.1.
⊢ ∀X p s. random_variable X p s ⇔

prob_space p ∧ X ∈ measurable (p_space p, events p) s

where prob_space p ensures that p is a probability space with p_space as its space
and events as its measurable sets. X ∈ measurable (p_space p, events p) s
ensures that X belongs to the set of measurable functions from the probability space
p to σ-algebra space s [16]. Measurable spaces s and (p_space p, events p) are
ensured to be σ-algebra spaces using the measurable function.

The probability distribution of a random variable X represents the probability
that the random variable X belongs to a set A. This is equivalent to finding the
probability of the event {X ∈ A}, which can also be represented using the preimage
as X−1(A). The probability distribution is defined in HOL4 as [13]:

Definition 2.2.
⊢ ∀p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p_space p))

where s is a set of elements of the space that the random variable X maps to.
For a random variable that maps the probability space (p) into another measurable
space, the push forward measure is a measure that uses the space and subsets of the
measurable space as its space and measurable sets and uses the distribution of the
random variable as its measure part [11]. In general, the push forward measure for
any measurable function X from measure M to measure N can be expressed as:

Definition 2.3.
⊢ ∀ M N f. distr M N f =

(m_space N, measurable_sets N,
λA. measure M (PREIMAGE f A ∩ m_space M))

474

Probabilistic Analysis of Dynamic Fault Trees using HOL

A density measure is used to define a density function, f , over the measure space
M as [11]:

Definition 2.4.
⊢ ∀ M f. density M f =

(m_space M, measurable_sets M,
λA. pos_fn_integral M (λ x. f x * indicator_fn A x))

where pos_fn_integral represents the Lebesgue integral of positive functions as
will be described in the following section.

The cumulative distribution function (CDF) of a random variable X is usually
used when we are interested in finding the probability that the random variable is
less than or equal to a certain value. It is formally defined for real values as [1]:

Definition 2.5.
⊢ ∀p X t. CDF p X t = distribution p X {y | y ≤ (t:real)}

It is worth mentioning that the CDF can be defined for extended-real (extreal)
random variables as well, where extreal is a HOL data-type that includes the real
numbers beside ±∞. However, in our formalization we will use the CDF of real
random variables, as it is required to integrate their density functions over the real
line.

When dealing with multiple random variables, the probabilistic Principle of In-
clusion and Exclusion (PIE) provides a very interesting relationship between the
probability of the union of different events. It can be expressed as:

Pr(
n∪

i=1
Ai) =

∑

t̸={},t⊆{1,2,...,m}
(−1)|t|+1Pr(

∩

j∈t
Aj) (1)

It has been formally verified in HOL4 as follows [1]:

Theorem 2.1.
⊢ ∀p L.

prob_space p ∧ (∀ x. MEM x L ⇒ x ∈ events p) ⇒
(prob p (union_list L = sum_set {t | t ⊆ set L ∧ t ̸= {}}
(λt. -1 pow (CARD t+1) * prob p (BIGINTER t))

475

Elderhalli, Ahmad, Hasan and Tahar

where L is the list of events that we are interested in expressing the probability of
their union.

In order to be able to handle multiple random variables, a pair measure (often
called binary product measure) is required to be able to model joint distribution
measures. This pair measure can be used also in a nested way to model the joint
distribution measure of multiple random variables. The pair measure is defined as
the product of two measures. It was initially formalized in Isabelle/HOL [11] and was
then ported to HOL4 [20]. The space and the measurable sets of this pair measure
are generated using the Cartesian product of the spaces and the measurable sets of
the participating measures, while the measure part is defined using the Lebesgue
integral.

Since there are real and extended-real data-types in HOL4, there exist two Borel
spaces, one over the real line (borel) [21] and the second over the extended-real
line (Borel) [14]. The Lebesgue-Borel measure is required to integrate over the real
line. In particular, we need the Lebesgue-Borel measure in this work to integrate
the density functions of the random variables over the real line. The Lebesgue-Borel
measure is a measure defined over the real line, which uses the real line as its space
and the Borel sets as its measurable sets. The Lebesgue-Borel measure is defined in
HOL4 as lborel, which uses the real borel sigma algebra (borel) generated by the
open sets of the real line as well as the Lebesgue measure [21].

The independence of random variables is an important property when dealing
with multiple random variables. In general, for any two random variables X and Y ,
the probability of the intersection of their events is equal to the multiplication of
the probability of the individual events. The independence of random variables is
defined as indep_vars [20]:

Definition 2.6.
⊢ indep_vars p M X ii =

(∀i. i ∈ ii ⇒
random_variable (X i) p

(m_space (M i), measurable_sets (M i))) ∧
indep_sets p

(λi. {PREIMAGE f A ∩ p_space p |
(f = X i) ∧ A ∈ measurable_sets (M i)}) ii

where p is the probability space and M is the measure space that the random vari-
able X maps to. In this case, M and X are indexed by a number from the set of
numbers ii, which gives the possibility of defining the independence for multiple
random variables that map from the probability space to different spaces. The

476

Probabilistic Analysis of Dynamic Fault Trees using HOL

function indep_vars defines the independence by first ensuring that the group of
input functions X are random variables and that their event sets are independent
using indep_sets. Using indep_sets, the probability of the intersection of any
sub-group of events of the random variables is equal to the multiplication of the
probability of the individual events.

Using indep_vars, the independence of two random variables is defined as [20]:

Definition 2.7.
⊢ indep_var p M_x X M_y Y =

indep_vars p (λi. if i = 0 then M_x else M_y)
(λi. if i = 0 then X else Y) {x | (x = 0) ∨ (x = 1)}

We define several functions that facilitate handling our formalization. The first
function is measurable_CDF, which is defined as:

Definition 2.8.
⊢ ∀p X. measurable_CDF p X = (λx. CDF p X x) ∈ measurable borel Borel

This function ensures that the CDF of random variable X is measurable from
the borel space to the Borel space. In other words, it ensures that the CDF
is measurable from the real line to the extended-real line. This implies that the
domain for this CDF is the real line and the range is the extended-real line.

We define another function, cont_CDF, which ensures that the CDF is continuous.
It is formally defined as:

Definition 2.9.
⊢ ∀p X. cont_CDF p X = ∀z. (λx. real (CDF p X x)) contl z

where the function real typecasts the value of CDF from extended-real to real
data-type, and contl ascertains that the function is continuous over all values in its
domain. It is worth mentioning that X is a real valued random variable. However,
the CDF returns extended-real. As the continuity of functions is defined in HOL4 for
real valued functions, it is required to typecast the value of the CDF from extended-
real to real. In addition, since the values of the CDF range from 0 to 1, as it
represents a probability, this function is the same in both cases but with different
datatypes. Therefore, if the function is continuous in the extended-real, then it is

477

Elderhalli, Ahmad, Hasan and Tahar

continuous using the real datatype. Furthermore, later we will use extended-real
random variables, therefore, it is required to typecast their values using the real
function.

Next, we define a function, rv_gt0_ninfinity, to ensure that the input random
variables of a DFT can only have the range [0,+∞):

Definition 2.10.
⊢ (rv_gt0_ninfinity [] = T) ∧

(rv_gt0_ninfinity (h::t) = (∀s. 0 ≤ h s ∧ h s ̸= PosInf) ∧
(rv_gt0_ninfinity t))

Finally, we define a function, den_gt0_ninfinity to ensure the proper values
for the marginal, joint and conditional density functions:

Definition 2.11.
⊢ ∀f_xy f_y f_cond.

den_gt0_ninfinity f_xy f_y f_cond ⇔
∀x y.

0 ≤ f_xy (x,y) ∧ 0 < f_y y ∧ f_y y ̸= PosInf ∧ 0 ≤ f_cond y x

where f_xy is the joint density function, f_y is the marginal density function, and
finally f_cond is the conditional density function of X given Y. This function can
be used to assign the mentioned conditions to other functions and not necessarily
only the density functions.

2.2 Lebesgue Integral
The Lebesgue integral is defined in HOL4 using positive simple functions, which
are measurable functions defined as a linear combinations of indicator functions of
measurable sets representing a partition of the space X [15]. A positive simple
function, g, can be represented using the triplet (s, a, x) as [15]:

∀t ∈ X, g(t) =
∑

i∈s
xi1ai(t), xi ≥ 0 (2)

where s is a finite set of partition tags, xi is a sequence of positive extreal numbers,
ai is a sequence of measurable sets and 1ai is the indicator function of measurable
set ai and is defined as [15]:

478

Probabilistic Analysis of Dynamic Fault Trees using HOL

Definition 2.12.
⊢ ∀A. indicator_fn A = (λx. if x ∈ A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then
extended for positive functions for measure µ as [14]:

∫

X
fdµ = sup{

∫

X
g dµ | g ≤ f and g positive simple function} (3)

It is usually required that the probability of an event for a random variable to
be expressed using the integration of the random variable’s distribution. This is
verified in HOL4 as [13]:

Theorem 2.2.
⊢ ∀X p s A.

random_variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A =
integral (space s, subsets s, distribution p X)(indicator_fn A))

In the above theorem, X can be a continuous or discrete random variable. How-
ever, in our DFT formalization, we are only interested in continuous random vari-
ables as they represent the time of failure of system components.

3 Formalization of Dynamic Fault Trees in HOL
Our previous formalization of DFT gates and operators was based on the algebraic
approach [12], where the DFT events are treated based on their time of occurrence
(failure of corresponding components) [8]. However, these formal definitions cannot
cater for the probabilistic analysis of system failures, which is the scope of the
current paper. Therefore, we provide an improved formalization of DFT gates and
operators using functions of time that can be represented as random variables when
carrying out the formal probabilistic analysis of the given DFT based on the algebraic
approach presented in [12]. However, there are some missing gaps in the paper-and-
pencil proofs available in [12] that we were able to fill using our formalization,
particularly that we had to build our formalization on top of some existing HOL
theories, such as the Lebesgue integral and probability theories. In [12], there is no
direct description on how to build the DFT analysis based on the above-mentioned
theories. Besides this, we also had to use different strategies for some proofs. All
these differences will be highlighted throughout Sections 3 and 4.

479

Elderhalli, Ahmad, Hasan and Tahar

3.1 Identity Elements and Temporal Operators

Similar to ordinary Boolean algebra, the DFT algebraic approach defines identity
elements that are important in the simplification process of the DFT [12]. The
DFT identity elements are: the ALWAYS element representing an event that always
occurs (fails) from time 0 and the NEVER element, which describes an event that
never occurs (fails). The formal definitions of these elements are shown in Table 1,
where PosInf represents +∞ in HOL4. We define the time of failure of the events
as lambda abstracted functions that accept an arbitrary data-type that represents
an element from the probability space and return the time. so that they can be later
treated as random variables. For example, the time of failure of a component is a
random variable X and can be expressed in lambda abstraction form as (λs. X s).

Temporal operators are also required to model the DFT gates in the algebraic
approach [12]. These operators are: Before (�), Simultaneous (∆) and Inclusive
Before (�). Each one of these operators accepts two inputs, which can be subtrees
or basic events that represent faults of system components. The output event of
the operator occurs according to a certain sequence of occurrence for the input
events, i.e., the time of occurrence of the first (left) input is less than, equal to
or less than or equal to the occurrence time of the second input (right) for the
Before, the Simultaneous and the Inclusive Before operators, respectively. The time
of occurrence of the output event of all operators is equal to the time of occurrence
of the first input event (left). The mathematical expressions of these operators as
well as their corresponding HOL formalizations are shown in Table 1, where X and
Y represent the time of occurrence of events X and Y, respectively.

It is worth mentioning that if the inputs of the Simultaneous operator are basic
events with continuous failure distributions, then the output of this operator can
never fail [12]. This is because the time of failure is continuous, and the possibility
that two system components failing at the same time can be neglected. As a conse-
quence, it is assumed in the algebraic approach that any two different basic events

Table 1: Definitions of Identity Elements and Temporal Operators

Element/Operator Mathematical Expression Formalization
Always element d(ALWAY S) = 0 ⊢ ALWAYS = (λs. (0:extreal))
Never element d(NEVER) = +∞ ⊢ NEVER = (λs. PosInf)

Before d(X�Y)=
{
d(X), d(X) < d(Y)
+∞, d(X) ≥ d(Y)

⊢ ∀X Y. D_BEFORE X Y =
(λs. if X s < Y s then X s else PosInf)

Simultaneous d(X∆Y)=
{
d(X), d(X) = d(Y)
+∞, d(X) ̸= d(Y)

⊢ ∀X Y. D_SIMULT X Y =
(λs. if X s = Y s then X s else PosInf)

Inclusive Before d(X�Y)=
{
d(X), d(X) ≤ d(Y)
+∞, d(X) > d(Y)

⊢ ∀ X Y. D_INCLUSIVE_BEFORE X Y =
(λs. if X s ≤ Y s then X s else PosInf)

480

Probabilistic Analysis of Dynamic Fault Trees using HOL

can never fail at the same time. This can be expressed for basic failure events of the
inputs of the given DFT as [12]:

d(X∆Y) = NEV ER (4)

3.2 Formalization of FT Gates and Simplification Theorems

Our formalization of all FT gates; static and dynamic, and their mathematical
expressions [12] are presented in Table 2.

Table 2: DFT Gates

Gate Mathematical Expression Formalization

d(X · Y) = max(d(X), d(Y)) ⊢ ∀X Y. D_AND X Y = (λs. max (X s)(Y s))

AND

d(X + Y) = min(d(X), d(Y)) ⊢ ∀X Y. D_OR X Y = (λs. min (X s)(Y s))

OR

d(QPAND) =
{
d(Y), d(X) ≤ d(Y)
+∞, d(X) > d(Y)

⊢ ∀X Y. PAND X Y =
(λs. if X s ≤ Y s then Y s else PosInf)

PAND

d(XT) = min(d(X), d(T)) ⊢ ∀X T. FDEP X T = (λs. min (X s)(T s))

FDEP

d(QCSP) =
{
d(X), d(Y) < d(X)
+∞, d(Y) ≥ d(X)

⊢ ∀X Y. CSP Y X =
(λs. if Y s < X s then X s else PosInf)

d(QHSP) = max(d(Y), d(X)) ⊢ ∀X Y. HSP Y X = (λs. max (Y s)(X s))

Spare
d(QWSP) = d(Y · (Xd � Y)+

Xa · (Y �Xa)+
Y∆Xa + Y∆Xd

⊢ ∀Y X_a X_d. WSP Y X_a X_d =
D_OR(D_OR(D_OR (D_AND Y (D_BEFORE X_d Y))

(D_AND X_a (D_BEFORE Y X_a)))
(D_SIMULT Y X_a))(D_SIMULT Y X_d)

d(Q1) = d(X · (Zd �X)+
Za · (X � Za)+
X · (Y �X))

⊢ ∀X Y Z_a Z_d.
shared_spare X Y Z_a Z_d =
D_OR (D_OR (D_AND X (D_BEFORE Z_d X))
(D_AND Z_a (D_BEFORE X Z_a)))
(D_AND X (D_BEFORE Y X)))

Shared
Spare

481

Elderhalli, Ahmad, Hasan and Tahar

3.2.1 AND and OR Gates

The AND (·) and OR (+) gates can be modeled based on the time of occurrence of
their output events. For the AND gate, the output occurs when both of its input
events occur and the time of occurrence of the output is modeled as the maximum
time of occurrence of both input events [12]. For the OR gate, the output occurs
once one of its input events occurs. Therefore, we formalize it as the minimum time
of occurrence of the inputs [12]. In Table 2, max and min are the HOL4 functions that
represent the maximum and the minimum functions, respectively. It is important to
notice that we define the AND and OR gates as lambda abstracted functions that
accept two inputs that are also functions. This would enable defining the inputs later
as random variables to represent the time of failure function of system components.
This also applies to the formal definitions of the rest of DFT gates.

3.2.2 Priority AND Gate (PAND)

The PAND gate, shown in Table 2, captures the sequence of occurrence (failure)
of its inputs. The output event of this gate occurs if all input events occur in a
certain sequence (conventionally from left to right). In Table 2, we provide both the
mathematical and formal definitions of the PAND gate. Then we verify that the
behavior of the PAND can also be represented using the temporal operators as [12]:

Q = Y · (X � Y) (5)

We verify the above relationship in HOL4 as follows:

Theorem 3.1. ⊢ ∀X Y. PAND X Y = D_AND Y (D_INCLUSIVE_BEFORE X Y)

This result ascertains that the behavior of PAND gate is correctly captured in our
formal definition. It is worth mentioning that in [12] the PAND gate is defined as
Equation (5). However, we define it using a mathematical expression as in Table 2,
which represents its actual behavior, and then verify that this definition is equal to
the definition provided in [12] as in Theorem 3.1.

3.2.3 Functional DEPdency Gate (FDEP)

The FDEP is used to model the dependencies in the failure behavior between the
system components. In other words, it is used when the failure of one component
triggers the failure of another. For the FDEP gate, shown in Table 2, event X can
occur if it is triggered by the failure of T or if it occurs by itself. As a result, the

482

Probabilistic Analysis of Dynamic Fault Trees using HOL

occurrence time of XT (triggered X) equals the minimum time of occurrence of T
and X. From the FDEP definition, we can notice that its behavior is equivalent to
the behavior of the OR gate.

3.2.4 Spare Gates

Modeling spare parts in real systems is necessary when analyzing the probability of
failure of the overall system, as these spares are used to replace the main parts after
their failure. The main part Y of the spare gate, shown in Table 2, is replaced by
the spare part X after a failure occurs. The spare gate has three variants depending
on the type of the spare:

• Cold SPare Gate (CSP): The spare part can only fail while it is active.

• Hot SPare Gate (HSP): The spare part can fail in both the active and the
dormant states with the same probability.

• Warm SPare Gate (WSP): The spare part can fail in both the dormant
and active states with different probabilities.

While manipulating the structure function of the DFT, it is required to distinguish
between the two states of the spare part, i.e., the active state and the dormant state,
therefore a different variable is assigned to each state. For example, for the spare
gate in Table 2, variable X is assigned Xd and Xa for the dormant and active states,
respectively [12]. This is required in case of a WSP gate, where the spare part has
two different states. Recall that in the case of a CSP gate, it is not necessary to use
these subscripts, since the spare part in the CSP gate does not work in the dormant
state. Therefore, the active state only affects the DFT behavior and is included in
the expressions. In the HSP gate, the spare part has the same behavior for both
states and no subscript is required to distinguish between these two.

It can be noticed from the definition of the WSP gate that the output of the
spare occurs in two cases; if the spare fails in its dormant state, then the main part
fails or the main part fails then the spare is activated and then it fails in its active
state. The last two terms in the WSP definition cover the possibility that the spare
and the main part fail at the same time. This can happen if the main part and
the spare are functionally dependent on the same trigger. The WSP represents the
general case for the spare gates, while the CSP and HSP represent special cases of
the WSP , where the spare cannot fail or is fully functioning in its dormant state. We
have defined mathematical expressions for both the CSP gate for basic events and
the HSP gate to facilitate using their expressions in DFT analysis. However, as will
be seen shortly, we have verified that the behavior of our expressions is equivalent to

483

Elderhalli, Ahmad, Hasan and Tahar

a WSP under certain conditions. For the CSP gate, the output occurs if the main
part fails then the spare is activated and then the spare fails while it is active. Since
the spare part of the HSP has the same failure distribution in both of its states,
the output of the HSP occurs when both inputs (main and spare) fail. Therefore,
its behavior is equivalent to an AND gate. We formally verify that the WSP gate is
equivalent to an HSP gate when the spare part in its dormant state is equal to its
active state.

Theorem 3.2. ⊢ ∀X Y. WSP Y X X = HSP Y X

Moreover, we formally verify that the WSP gate is equivalent to a CSP gate, if
the spare part cannot fail in its dormant state. We formally verify this as:

Theorem 3.3. ⊢ ∀X_a X_d Y. (X_d = NEVER) ∧
(∀s. ALL_DISTINCT [Y s; X_a s]) ⇒ WSP Y X_a X_d = CSP Y X_a

where X_d = NEVER indicates that the spare part cannot fail in its dormant state,
and ALL_DISTINCT ensures that the inputs cannot fail at the same time. This is
because we defined the CSP gate for basic events. As can be seen from the above
theorem, the CSP gate only deals with the active state of the spare, therefore, when
dealing with a CSP there is no need to use the subscript.

In some real-world applications, a spare part can replace one of two main parts.
This case is represented using shared spare gates as shown in Table 2 [8]. The
expression of the output Q1 of the first gate is listed in Table 2 [12]. This expression
implies that the output Q1 of this gate occurs in three different situations: (i) if the
main part X fails, then the spare fails while it is active (Za), (ii) if the spare part
fails in its dormant state Zd, then the main part fails, or (iii) if the second main part
(of the other gate) Y fails before X, and thus the spare is not available to replace
X when it fails. We use the DFT operators to model the behavior of this gate, as
shown in Table 2.

In the DFT algebraic approach, many simplification theorems exist and are used
to reduce the structure function of the top event [12]. In [8], we verified over 80
simplification theorems. However, these theorems were based on our old definitions
of the DFT gates and operators that cannot cater for probabilistic analysis. We
verify all these theorems for the new definitions, presented in this paper, and the
details can be accessed from [7]. These simplification theorems range from simple
ones, such as commutativity of the AND, OR and Simultaneous operator, to more
complex ones that include combinations of all the operators. Table 3 includes some
of these verified properties.

484

Probabilistic Analysis of Dynamic Fault Trees using HOL

Table 3: Examples of Formally Verified Simplification Theorems

DFT Algebra Theorems HOL Theorems
X+Y=Y+X ⊢ ∀X Y. D_OR X Y = D_OR Y X
X.NEV ER=NEV ER ⊢ ∀X. D_AND X NEVER = NEVER

X�(Y+Z)=(X�Y).(X�Z) ⊢ ∀ X Y Z. D_BEFORE X (D_OR Y Z) =
D_AND (D_BEFORE X Y)(D_BEFORE X Z)

X�(Y+Z)=(X�Y).(X�Z)

⊢ ∀ X Y Z. D_INCLUSIVE_BEFORE X (D_OR Y Z) =

D_AND (D_INCLUSIVE_BEFORE X Y)

(D_INCLUSIVE_BEFORE X Z)

(X�Y)+(X∆Y)=X�Y
⊢ ∀X Y. D_OR (D_INCLUSIVE_BEFORE X Y)
(D_SIMULT X Y) = D_INCLUSIVE_BEFORE X Y

4 Formal Verification of DFT Probabilistic Behavior
In order to formally verify the probability of failure of the top event of a DFT, it is
required to formally model and verify the probability of failure expression for each
DFT gate. We assume that the basic events of the DFT are independent. However,
in some cases these events can be dependent; in particular in the case of CSP and
WSP, where the failure of the main part affects the operation and failure of the spare
part. We handle this by first introducing the probabilistic behavior of the gates for
independent events, then we present the probabilistic behavior of the WSP and
the CSP gates, which deal with dependent events. At the end of this section, we
present a summary of the challenges that we faced during the formalization of the
probabilistic failure behavior of DFT gates.

4.1 Probabilistic Behavior of Gates with Independent Events
Assuming that we are interested in finding the probability of failure until time t, the
following four expressions can be used to express the probability of any DFT gate
with independent basic events [12]:

Pr{X · Y }(t) = FX(t)× FY (t) (6a)
Pr{X + Y }(t) = FX(t) + FY (t)− FX(t)× FY (t) (6b)

Pr{Y · (X � Y)}(t) =
∫ t

0
fY (y) FX(y) dy (6c)

Pr{X � Y }(t) =
∫ t

0
fX(x)(1− FY (x)) dx (6d)

485

Elderhalli, Ahmad, Hasan and Tahar

where FX and FY represent the CDFs of the random variables X and Y , respectively,
and fX and fY represent their corresponding PDFs.

Equation (6a) represents the probability of the AND and HSP gates, which re-
sults from the probability of intersection of two independent events. Equation (6b)
describes the probability of the OR and FDEP gates, which corresponds to the prob-
ability of union of two independent events. Equation (6c) represents the probability
of having two basic events occurring in sequence one after the other until time t,
i.e., Pr(X < Y) until time t or Pr(X < Y ∧ Y ≤ t), which is the failure probability
of the PAND for basic events. Finally, the probability of the Before operator is
represented by Equation (6d), which is the probability of having event X occurring
before event Y until time t, i.e., Pr(X < Y ∧ X ≤ t). The difference between the
last two events (before and after) is that in the before event, we are just interested
in finding the probability of failure of X until time t with the condition that X fails
before Y . So, it is not necessary that Y fails. While in the after event, we find the
probability of failure of Y until time t with the condition that Y fails after X. So,
it is required that both X and Y fail in sequence.

Since the probability is applied for sets that belong to the events of the probabil-
ity space, we define a DFT_event that satisfies the condition that the input function
is less than or equal to time t, which represents the moment of time until which we
are interested in finding the probability of failure. Without this DFT_event, there
is no possible way to apply the probability directly to DFT gates. We first need
to create the DFT_event for the time-to-failure function of the output event of any
gate or DFT, then apply the probability to it.

Definition 4.1.
⊢ ∀p X t. DFT_event p X t = {s | X s ≤ Normal t} ∩ p_space p

where Normal typecasts the type of t from real to extreal, p represents the prob-
ability space and X represents the time-to-failure function.

We formally verify the equivalence between the probability of the DFT_event of
an extended real function and its equivalent CDF of the real version of the func-
tion as:

486

Probabilistic Analysis of Dynamic Fault Trees using HOL

Theorem 4.1.
⊢ ∀X p t. (∀s. X s ̸= PosInf ∧ 0 ≤ X s) ⇒

(CDF p (λs. real (X s)) t = prob p (DFT_event p X t))

where real is mirror opposite to the typecasting Normal operator. This typecasting
is required as the DFT_event is defined for extreal data-type, and the CDF is
defined for real random variables only. Therefore, it is required to ensure that the
input function does not equal +∞ and is greater than or equal to 0 since it represents
the time of failure of a system component.

4.1.1 Probabilistic Behavior of AND, HSP, OR and FDEP Gates

To formally verify Equations (6a) and (6b), we verify the equivalence of the DFT
event of the AND gate to the intersection of two events and the OR as the union:

Lemma 4.1.
⊢ ∀p t X Y.

DFT_event p (D_AND X Y) t = DFT_event p X t ∩ DFT_event p Y t

Lemma 4.2.
⊢ ∀p t X Y.

DFT_event p (D_OR X Y) t = DFT_event p X t ∪ DFT_event p Y t

Based on the independence of random variables and using Theorem 4.1, we
formally verify Equation (6a) in HOL4 as:

Theorem 4.2.
⊢ ∀p t X Y. rv_gt0_ninfinity [X; Y] ∧

indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ⇒
(prob p (DFT_event p (D_AND X Y) t) =
CDF p (λs. real (X s)) t * CDF p (λs. real (Y s)) t

where indep_var ensures the independence of the random variables, X and Y , over
the Lebesgue-Borel (lborel) measure [20]. rv_gt0_ninfinity is required since we

487

Elderhalli, Ahmad, Hasan and Tahar

are dealing with the real versions of the random variables. It is a logical condition,
since any real-world component will eventually fail, so we are interested only in
dealing with the time of failure that is not ∞.

In Theorem 4.2, the random variables are type-casted as real-valued, using the
operator real, to function over the Lebesgue-Borel (lborel) measure. lborel is
purposely used here to facilitate the Lebesgue integration over the real line when
expressing the probabilities of the before and after events. Theorem 4.2 represents
the probability of the AND gate and the HSP gate, since the behavior of the HSP
is equivalent to the behavior of the AND gate.

We formally verify Equation (6b) based on the probabilistic PIE and the inde-
pendence of random variables and using Theorem 4.1 as:

Theorem 4.3.
⊢ ∀p t X Y. rv_gt0_ninfinity [X; Y] ∧

All_distinct_events p [X;Y] t ∧
indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ⇒
(prob p (DFT_event p (D_OR X Y) t) =
CDF p (λs. real (X s)) t + CDF p (λs. real (X s)) t -
CDF p (λs. real (X s)) t × CDF p (λs. real (Y s)) t)

where All_distinct_events ascertains that the event sets are not equal. We for-
mally define it as:

Definition 4.2.
⊢ All_distinct_events p L t =

ALL_DISTINCT (MAP (λx. DFT_event p x t) L

where ALL_DISTINCT is a HOL4 predicate, which ensures that the elements of its
input list are not equal, MAP is a function that applies the input function (λx.
DFT_event p x t) to all the elements in the list L and returns a list. This condition
is required for the probabilistic PIE.

Theorem 4.3 provides the probability of the OR gate as well as the FDEP gate,
since the behavior of the FDEP is equivalent to the OR gate.

It is worth noting that in [12], Equations (6a) and (6b) were just presented
without any information on how to link them to the definitions of the AND and OR
gates. We should recall that the AND and OR gates are defined as the maximum and
minimum of their operands. Looking at these definitions does not give any knowledge
about how the probability of the AND gate is equivalent to the probability of the

488

Probabilistic Analysis of Dynamic Fault Trees using HOL

intersection or how the probability of the OR gate is equal to the probability of
the union. However, using our formalization and utilizing our formal definition of
DFT_event, we are able to verify that the DFT_event of the AND gate is equal to the
intersection of the input events and that the DFT_event of the OR gate is equal to
the union of the input events. Based on this, we can ensure that the probability of
the AND and OR gates are represented using Equations (6a) and (6b), respectively.

4.1.2 Probabilistic Behavior of PAND Gate and Before Operator

We verify Equations (6c) and (6d) as Theorems 4.4 and 4.5, respectively.

Theorem 4.4.
⊢ ∀X Y p fy t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ∧ prob_space p ∧
indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ∧
distributed p lborel (λs. real (Y s)) fy ∧ (∀y. 0 ≤ fy y) ∧
cont_CDF p (λs. real (X s)) ∧
measurable_CDF p (λs. real (X s)) ⇒
(prob p (DFT_event p (Y·(X�Y)) t) =
pos_fn_integral lborel

(λy. fy y *
(indicator_fn {w | 0 ≤ w ∧ w ≤ t} y *
CDF p (λs. real (X s)) y)))

Theorem 4.5.
⊢ ∀X Y p fy t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ∧ prob_space p ∧
indep_var p lborel (λs. real (X s)) lborel (λs. real (Y s)) ∧
distributed p lborel (λs. real (X s)) fx ∧ (∀x. 0 ≤ fx x) ∧
measurable_CDF p (λ s. real (Y s)) ⇒
(prob p (DFT_event p (X � Y) t) =
pos_fn_integral lborel

(λx. fx x *
(indicator_fn {u | 0 ≤ u ∧ u ≤ t} x *
(1- CDF p (λs real (Y s)) x)))

where pos_fn_integral is the Lebesgue integral for positive functions [15], fy and
fx are the PDF of random variables of the real version of functions Y and X, respec-
tively. cont_CDF is required in Theorem 4.4 as we need to prove that Pr(X ≤ t) and

489

Elderhalli, Ahmad, Hasan and Tahar

Pr(X < t) are equal, and this is not valid unless the CDF function is continuous
(cont).

Verifying Theorems 4.4 and 4.5 is not a straightforward task due to the involve-
ment of Lebesgue integration. To the best of our knowledge, this is the first time
that these proofs are formally verified in a theorem prover, where we are able to
identify the exact steps to reach the final form of Theorems 4.4 and 4.5. In addition,
in [12], Equation (6c) is presented without any proof, while a proof is presented for
Equation (6d) that is based mainly on the probability of disjoint events and utilizes
derivatives to reach the final expression. However, we have been able to verify the
same expression of Equation (6d), but following a different and simpler proof, which
is similar to the proof of Equation (6c) to reach the final form of Theorem 4.5 with-
out using derivatives. We first prove the probability of sets of real random variables
in the form of integration before extending the proofs to extended real functions.

Proof Strategy for Theorem 4.4

To verify Theorem 4.4, we first express the event set that corresponds to the inte-
gration in Equation (6c) as:

(X,Y)−1{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} (7)

Then we verify that the probability of this set can be written using the integration
as in Equation (6c). Therefore, we verify the relationship between the distribution
and the integration of positive functions using the push forward measure (distr):

Theorem 4.6.
⊢ ∀X p M A.

measure_space M ∧
random_variable X p (m_space M, measurable_sets M) ∧
A ∈ measurable_sets M ⇒
(distribution p X A =
pos_fn_integral (distr p M X) (indicator_fn A))

It is worth mentioning that this theorem can be used in the verification process
of other applications and not only for DFT analysis. We use Theorem 4.6 to verify
the relationship between the probability and the integration of the joint distribution
FXY of two independent random variables as:

Pr(X,Y)−1(A) =
∫

1A dFXY (8)

490

Probabilistic Analysis of Dynamic Fault Trees using HOL

We formalize this relationship in HOL4 and use a property, which converts the
distribution of a pair measure of independent measures into the pair measure of
the individual distributions [20], to split the integral of joint distributions into two
integrals of the individual distributions (

∫ ∫
1AdFXdFY). In order to reach the final

form of Equation (6c), we express it in the form of two integrals:

∫ t

0
fY (y)× FX(y) dy =

∫ t

0

∫ y

−∞
fY (y)× fX(x) dx dy (9a)

=
∫ t

0
fY (y)

(∫ y

−∞
fX(x) dx

)
dy (9b)

The problem in Equations (9a) and (9b) lies in the fact that the outer integral
is a function of the inner integral, i.e., for the inner integral we are integrating until
y which is the variable of the outer integral. To be able to handle this formally, we
verify that the indicator function of the set in Equation (7) can be written in the
form of the multiplication of two indicator functions, where one is a function of the
other.

Lemma 4.3.
⊢ ∀x y t.

indicator_fn {(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t}(x,y) =
indicator_fn {w| 0 ≤ w ∧ w ≤ t} y * indicator_fn {u|u < y} x

In order to use the above-mentioned lemma and the set on the left hand side,
we need to verify that this set is measurable in the two dimensional borel space,
i.e., the set belongs to the measurable sets of pair_measure lborel lborel. This
property can be verified based on the fact that the countable union of measurable
sets is also measurable. We verify this fact on the rational numbers Q as follows:

Theorem 4.7.
⊢ ∀m s.

measure_space m ∧ (∀n. n ∈ Q_set ⇒ s n ∈ measurable_sets m) ⇒
BIGUNION (IMAGE s Q_set) ∈ measurable_sets m

where m in our case is pair_measure lborel lborel. This theorem is generic and
can be used in other contexts than DFTs.

The purpose of using the set of rational numbers is that we need a countable set
that can be used to express the set in Lemma 4.3 as the union of borel rectangles.
We verify this in HOL4 as:

491

Elderhalli, Ahmad, Hasan and Tahar

Lemma 4.4.
⊢ ∀t. BIGUNION

{{u | u < real q} × {w | real q < w ∧ 0 ≤ w ∧ w ≤ t} |
q ∈ Q_set} =

{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t}

Besides this, we also verify a lemma that the sets in the union of Lemma 4.4 are
measurable sets in the pair_measure lborel lborel as:

Lemma 4.5.
⊢ ∀t q. {u | u < real q} × {w | real q < w ∧ 0 ≤ w ∧ w ≤ t} ∈

measurable_sets (pair_measure lborel lborel)

We can use the proof steps of the previous lemmas to verify the same properties
for similar sets, which is essential for other gates expressions. This facilitates dealing
with other events in the future, by following the steps in our proof.

By using the above lemmas, we can reason that the original set is a measurable
set in the pair_measure lborel lborel as:

Lemma 4.6.
⊢ ∀t. {(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} ∈

measurable_sets (pair_measure lborel lborel)

We use Lemmas 4.3 and 4.6 to verify that the expression given in Equation (9b) is
equal to

∫
A dFXdFY , where A is the set that specifies the boundaries of the integral.

We verify this in HOL4 using the push forward measure as:

Lemma 4.7.
⊢ ∀X Y p t.

prob_space p ∧ indep_var p lborel X lborel Y ⇒
(pos_fn_integral (pair_measure (distr p lborel X)

(distr p lborel Y))
(λ(x,y). indicator_fn{(u,w) |u < w ∧ 0 ≤ w ∧ w ≤ t }(x,y) =

pos_fn_integral (distr p lborel Y)
(λy. indicator_fn {w|0 ≤ w ∧ w ≤ t} y *

pos_fn_integral(distr p lborel X)
(λx. indicator_fn {u | u < y} x)))

492

Probabilistic Analysis of Dynamic Fault Trees using HOL

where pair_measure (distr p lborel X) (distr p lborel Y) represents the
joint distribution of the push forward measures of random variables X and Y over
the borel space.

We verify several essential properties for CDF in order to prove that the inner
integral of Lemma 4.7 is equal to FX(y) or formally to (CDF p X y). In order to have
the PDF of random variable Y in the integral, we assume that the random variable Y
has a PDF by defining a density measure for Y . We ported the following definition,
distributed, from Isabelle/HOL [11], where f in this definition is the PDF of
random variable X, and the measure part of the density measure is the integral of
this PDF. Using this definition, the integral of f is equal to the distribution of the
random variable X.

Definition 4.3.
⊢ ∀p M X f.

distributed p M X f ⇔
X ∈
measurable(m_space p,measurable_sets p)

(m_space M,measurable_sets M) ∧
f ∈ measurable(m_space M,measurable_sets M) Borel ∧
AE M {x | 0 ≤ f x} ∧ (distr p M X = density M f)

where density is the density measure, and AE M {x | 0 ≤ f x } ensures that
the PDF f is almost everywhere positive over the measure M. We also use a
theorem that replaces the integration with respect to the density measure by the
PDF with respect to the original measure (lborel in our case) [11]. In addition
to the previously verified theorems, we also prove some additional properties,
such as sigma finite measure for the push forward measure over the borel space
(sigma_finite_measure (distr p lborel X)). We also verify that the space
generated by the pair measure of two distributions over the borel space is sigma
algebra (sigma_algebra (m_space (pair_measure (distr p lborel X)(distr
p lborel Y)), measurable_sets (pair_measure (distr p lborel X)(distr
p lborel Y)))). Moreover, we verify that the space generated by the space
and the measurable sets of the pair measure of lborel is also a sigma algebra
(sigma_algebra (m_space (pair_measure lborel lborel), measurable_sets
(pair_measure lborel lborel))). Finally, we prove that the set of the left-hand
side of Equation (6c) is equal to the set that corresponds to the integration of the
right-hand side of the same equation as:

493

Elderhalli, Ahmad, Hasan and Tahar

Lemma 4.8.
⊢ ∀p t X Y.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT_event p (Y·(X�Y)) t =
PREIMAGE (λx. (real (X x), real (Y x)))

{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} ∩ p_space p

Based on all the above mentioned lemmas, we are able to verify the original goal
for Equation (6c) as in Theorem 4.4.

Proof Strategy for Theorem 4.5

For the verification of Theorem 4.5, we follow almost the same steps for the previous
proof. We start by first writing the event set for the integration as:

(X,Y)−1{(u,w) | 0 ≤ u ∧ u ≤ t ∧ u < w } (10)
Then, we describe the indicator function of this set as the multiplication of two

indicator functions as:

Lemma 4.9.
⊢ ∀x y t.

indicator_fn {(u,w) | 0 ≤ u ∧ u ≤ t ∧ u < w}(x,y) =
indicator_fn {u | 0 ≤ u ∧ u ≤ t} x * indicator_fn {w | x < w} y

Similar to the procedure, explained previously for the set of the after event in
Lemmas 4.4, 4.5 and 4.6, we verify that the set of the before event is a measurable
set in the pair_measure lborel lborel.

Finally, we rewrite Equation (6d) as:

Pr{X � Y }(t) =
∫ t

0

∫ ∞

x
fX(x) fY (y) dy dx

=
∫ t

0
fX(x)

(∫ ∞

x
fY (y) dy

)
dx

(11)

We verify some additional properties for the CDF in order to complete the proof.
For example, we verify that

∫∞
x fY (y) dy is equal to 1 − FY (x). Similarly, we also

formally verify that the event of the left-hand side of Equation (6d) is equal to the
set that corresponds to the integration of the right-hand side of the same equation.
We use the set in Equation (10) to verify this as:

494

Probabilistic Analysis of Dynamic Fault Trees using HOL

Lemma 4.10.
⊢ ∀p t X Y.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT_event p (X�Y) t =
PREIMAGE (λs. (real (X s),real (Y s)))

{(u,w) | 0 ≤ u ∧ u < w ∧ u ≤ t} ∩ p_space p

Based on all these verified theorems, we are able to formally verify Theorem 4.5.
So far, we presented the formal verification of the probabilistic behavior of:

• The AND and HSP gates using Theorem 4.2 (since they are equivalent).

• The probability of the OR and FDEP gates using Theorem 4.3 (since they are
equivalent).

• The probability of the PAND gate for basic events using Theorem 4.4.

• The probability of the Before operator using Theorem 4.5.

There is no probability of failure for the Simultaneous operator as it is eliminated
for basic events according to Equation (4). This implies that the probability of the
Inclusive Before operator is equal to the probability of the Before operator for basic
events.

4.2 Probabilistic Behavior of Gates with Dependent Events
The probabilistic behavior of the CSP and WSP requires dealing with dependent
events, as the failure of the main part affects the behavior of the spare part. There-
fore, it is required to approach the proof in a different manner.

For the CSP , the failure distribution of the spare part is affected by the failure
time of the main part, as the cold spare starts working after the failure of the main
part. Hence, the failure distribution of the spare part is dependent on the failure of
the main part. The probability of failure for the output event of a CSP with Y as
the main part and X as the spare part is given by [12]:

Pr(QCSP)(t) =
∫ t

0

(∫ t

v
f(Xa|Y=v)(u)du

)
fY (v)dv (12)

where f(Xa|Y=v) is the conditional probability density function for the spare part in
its active state (Xa) given that the main part(Y) has failed at time v. As mentioned
previously, the subscript of Xa can be omitted, since the spare part of the CSP

495

Elderhalli, Ahmad, Hasan and Tahar

gate does not work in its dormant state and we are only concerned with the active
state, so using X directly with CSP means that we are dealing with the active state
and not the dormant one. It can be noticed from Equation (12) that the failure
distribution of the spare part is affected by the failure of the main part. Hence, these
two input events are not independent, and we cannot utilize the previously verified
relationships in Section 4.1 to verify the probabilistic behavior of the CSP gate.

For the WSP gate with two basic events, the output fails in two cases, Case 1:
when the main part fails, then the spare fails in its active state (this case is similar
to the CSP case); Case 2: when the spare part fails in its dormant state, then the
main part fails with no spare to replace it. In the latter case, the failure distribution
of the spare part in its dormant state is independent of the main part. Hence, we
can use the previously verified expressions for this case. The probability expression
for a WSP with X as the spare part (Xa for the active state and Xd for the dormant
state) and Y as the main part is expressed as [12]:

Pr(QWSP)(t) =
∫ t

0

(∫ t

v
f(Xa|Y=v)(u)du

)
fY (v)dv +

∫ t

0
fY (u)FXd(u)du (13)

where FXd is the CDF of X in its dormant state. The first part of Equation (13)
represents the probability of a CSP and the second part represents the probability
when the spare fails before the main part. For the second part, Y and Xd are
considered to be independent as the failure of one of them does not affect the failure
of the second and hence we can use Equation (6c) for this case.

We verify Equations (12) and (13) as Theorems 4.8 and 4.9, respectively.

Theorem 4.8.
⊢ ∀p X Y f_xy f_y f_cond t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ∧
(∀y.

cond_density lborel lborel p
(λs. real (X s)) (λs. real (Y s)) y f_xy f_y f_cond) ∧

prob_space p ∧ den_gt0_ninfinity f_xy f_y f_cond ⇒
(prob p (DFT_event p (CSP Y X) t) =
pos_fn_integral lborel

(λy.
indicator_fn {u | 0 ≤ u ∧ u ≤ t} y * f_y y *
pos_fn_integral lborel

(λx. indicator_fn {w | y < w ∧ w ≤ t} x * f_cond y x)))

496

Probabilistic Analysis of Dynamic Fault Trees using HOL

Theorem 4.9.
⊢ ∀p Y X_a X_d t f_y f_xy f_cond.

prob_space p ∧ (∀s. ALL_DISTINCT [X_a s; X_d s; Y s]) ∧
(D_AND X_a X_d = NEVER) ∧ rv_gt0_ninfinity [X_a; X_d; Y] ∧ 0 ≤ t ∧
(∀y.

cond_density lborel lborel p
(λs. real (X_a s))(λs. real (Y s)) y f_xy f_y f_cond) ∧

den_gt0_ninfinity f_xy f_y f_cond ∧
indep_var p lborel (λs. real (X_d s)) lborel (λs. real (Y s)) ∧
cont_CDF p (λs. real (X_d s)) ∧
measurable_CDF p (λs. real (X_d s)) ⇒
(prob p (DFT_event p (WSP Y X_a X_d) t) =
pos_fn_integral lborel

(λy.
indicator_fn {u | 0 ≤ u ∧ u ≤ t} y * f_y y *
pos_fn_integral lborel

(λx. indicator_fn {w | y < w ∧ w ≤ t} x * f_cond y x))+
pos_fn_integral lborel

(λy.
f_y y *
(indicator_fn {u | 0 ≤ u ∧ u ≤ t} y *
CDF p (λs. real (X_d s)) y)))

where p is the probability space, f_xy is the joint density function for X and Y , f_y
is the marginal density function for Y , cond_density defines the conditional density
function (f_cond) for X given that (Y = y) and den_gt0_ninfinity ensures the
proper values for the density functions as mentioned in Section 2.

It is noticed that the spare part in the CSP is used without any subscript, i.e., it
is used as X, since the spare has only one state in the CSP, which is the active state.
Therefore, there is no need to use any subscript to distinguish between the dormant
and the active states. While in the WSP, we need to distinguish between the two
states, i.e., active and dormant, hence the usage of Xa and Xd. For Theorem 4.9,
the condition D_AND X_a X_d = NEVER ensures that the spare part can only fail in
one of its states but not both. This condition is different from D_SIMULT X_a X_d =
NEVER, as the former means that if one of the inputs occurs, then the other cannot
occur at all. While the latter means that both inputs cannot occur at the same
time, they can occur at different times. This second condition is ensured in our case
using ALL_DISTINCT. In addition, it is assumed that the spare part in the dormant
(Xd) state is independent of the main part Y since the failure of the spare part in its
dormant state is not affected by the failure of the main part. As with the previous

497

Elderhalli, Ahmad, Hasan and Tahar

theorems in Section 4.1, we need to use the typecast operator real with the random
variables, since the random variables are of type extreal and the integral over the
lborel requires real random variables.

In [12], a proof has been introduced for the above expressions, which is based
mainly on the total expectation theorem [4]. However, we have been able to con-
duct the same proof in a simpler manner based on conditional density functions as
explained below.

Proof Strategy for Theorem 4.8 (CSP Gate)

In order to verify Theorem 4.8, we formalize the conditional density function as [3]:

Definition 4.4.
⊢ ∀M1 M2 p X Y y f_xy f_y f_cond.

cond_density M1 M2 p X Y y f_xy f_y f_cond ⇔
random_variable X p (m_space M1, measurable_sets M1) ∧
random_variable Y p (m_space M2, measurable_sets M2) ∧
distributed p (pair_measure M1 M2) (λx. (X x, Y x)) f_xy ∧
distributed p M2 Y f_y ∧ (f_cond y = (λx. f(x,y) / f_y y))

where p is the probability space, M1 and M2 are the measure spaces that the random
variables X and Y map to, respectively (we will use lborel in our case), f_xy is
the joint density function for X and Y , f_y is the marginal density function of Y
and finally, f_cond is the conditional density function of X given (Y = y).

The conditional density function definition ensures that X and Y are random
variables with joint density function f_xy and a marginal density function f_y. It
is noticed from the definition of the conditional density function f_cond that it is
a function of x only, and it can have different variants depending on the value of Y
that we are conditioning at, i.e., y. This is why f_cond takes y as a parameter.

From Definition 4.4, we formally verify the following relationship between the
conditional density, the joint density and the marginal density functions, given that
fY (y) ̸= 0:

fXY (x, y) = fX|Y=y(x)× fY (y) (14)

The above equation can be formalised in HOL4 as:

498

Probabilistic Analysis of Dynamic Fault Trees using HOL

Theorem 4.10.
⊢ ∀M1 M2 p X Y f_cond x y f_xy f_y.

(∀y. f_y y ̸= 0 ∧ f_y y ̸= PosInf ∧ f_y y ̸= NegInf) ∧
cond_density M1 M2 p X Y y f_xy f_y f_cond ⇒
(f_xy (x,y) = f_cond y x * f_y y)

The condition f_y y ̸= 0 is required, as this function will be used in the de-
nominator of the conditional density and it cannot equal to 0. In addition, since we
are dealing with extended-real numbers, f_y y cannot equal infinity. This theorem
is applicable to any conditional density function that satisfies the given conditions.

The second step in verifying the expression of the CSP is by verifying that the
probability of the joint random variables is equal to the iterated integrals of the joint
density function. This can be expressed as:

Pr(X,Y)−1(A) =
∫ ∫

1A × fXY (x, y)dx dy (15)

We use Theorem 4.6 to verify this in HOL4 as:

Theorem 4.11.
⊢ ∀p X Y f_xy A.

distributed p (pair_measure lborel lborel) (λx. (X x, Y x)) f_xy ∧
prob_space p ∧ (∀x. 0 ≤ f_xy x) ∧
A ∈ measurable_sets (pair_measure lborel lborel)⇒
(prob p (PREIMAGE (λx. (X x, Y x)) A ∩ p_space p) =
pos_fn_integral lborel

(λy.
pos_fn_integral lborel

(λx. indicator_fn A (x,y) * f_xy (x,y))))

Then, we express the probability of the joint random variables using the condi-
tional density function as:

Pr(X,Y)−1(A) =
∫ ∫

1A × f(X|Y=y)(x)× fY (y) dx dy (16)

We verify this in HOL4, using Theorems 4.10 and 4.11, as:

499

Elderhalli, Ahmad, Hasan and Tahar

Theorem 4.12.
⊢ ∀p X Y f_xy f_y f_cond A.

(∀y. cond_density lborel lborel p X Y y f_xy f_y f_cond) ∧
prob_space p ∧ (∀x. 0 ≤ f_xy x) ∧
(∀y. 0 < f_y y ∧ f_y y ̸= PosInf) ∧
A ∈ measurable_sets (pair_measure lborel lborel)⇒
(prob p (PREIMAGE (λx. (X x, Y x)) A ∩ p_space p) =
pos_fn_integral lborel

(λy.
pos_fn_integral lborel

(λx. indicator_fn A (x,y) * f_cond y x * f_ y y)))

In order to be able to reach the final form of Equation (12), we need first to
express the event set that corresponds to the integration in Equation (12) as:

(X,Y)−1{(x, y) | y < x ∧ x ≤ t ∧ 0 ≤ y ∧ y ≤ t} (17)

We verify in HOL4 that this set corresponds to the DFT_event of the CSP gate as:

Lemma 4.11.
⊢ ∀X Y p t.

rv_gt0_ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT_event p (CSP Y X) t =
PREIMAGE (λs. (real (X s), real (Y s)))

{(x,y)| y < x ∧ x ≤ t ∧ 0 ≤ y ∧ y ≤ t} ∩ p_space p)

In addition, we verify that the event set in Lemma 4.11 is measurable in
pair_measure lborel lborel. Finally, we verify that the indicator function of the
set in Lemma 4.11 can be expressed as the multiplication of two indicator functions
to determine the boundaries of the iterated integrals in Equation (12) as:

Lemma 4.12.
⊢ ∀x y t.

indicator_fn {(w,u) | u < w ∧ w ≤ t ∧ 0 ≤ u ∧ u ≤ t} (x,y) =
indicator_fn {w | y < w ∧ w ≤ t} x *
indicator_fn {u | 0 ≤ u ∧ u ≤ t} y

Using all these verified theorems and lemmas, we formally verify Theorem 4.8.

500

Probabilistic Analysis of Dynamic Fault Trees using HOL

Proof Strategy for Theorem 4.9 (WSP Gate)

For the verification of Theorem 4.9, it is evident that the probability expression
involves the probability of the CSP gate in addition to the probability of the after
expression of Theorem 4.4. Therefore, we choose to verify that the event of the WSP
for basic events is equivalent to the union of two sets as:

Lemma 4.13.
⊢ ∀p Y X_a x_d t.

(∀s. 0 ≤ Y s) ∧ (∀s. ALL_DISTINCT [X_a s; X_d s; Y s]) ∧
(D_AND X_a X_d = NEVER) ⇒
(DFT_event p (WSP Y X_a X_d) t =

{s | Y s < X_a s ∧ X_a s ≤ Normal t ∧
0 ≤ Y s ∧ Y s ≤ t} ∩ p_space p ∪

{s | X_d s < Y s ∧ Y s ≤ Normal t } ∩ p_space p)

Then, we verify that the above two sets are disjoint. As these two sets are
disjoints then the probability of the original set is equivalent to the sum of the
probabilities of the disjoint sets. Based on this, we verify that the probability of
the first set ({s | Y s < X_a s ∧ X_a s ≤ Normal t ∧ 0 ≤ Y s ∧ Y s ≤ t}
∩ p_space p) is equal to the probability of the CSP gate, which will result in the
first term in the addition of the conclusion of Theorem 4.9. We also verify that the
probability of the second set in Lemma 4.13 ({s | X_d s < Y s ∧ Y s ≤ Normal
t} ∩ p_space p)) is expressed using Theorem 4.4, which will result in the second
term of the addition of the conclusion of Theorem 4.9. As a result, we have the
probability of the WSP as in Theorem 4.9.

In this section, we formally verified the probabilistic behavior of the DFT gates:
AND, OR, HSP, FDEP, PAND, CSP, WSP and the Before operator besides the
formalization of expressions for Pr(X < Y ∧ Y ≤ t) and Pr(X < Y ∧X ≤ t).

These verified properties are generic, i.e., universally quantified for all distribu-
tion and density functions, and can be used to formally verify the probability of
failure expression of any DFT. The HOL4 proof script for this verification as well
as the gate definitions is available at [7].

4.3 Summary of Formalization Challenges
In this section, we summarize the main challenges that we faced during our formal-
ization of the DFT gates, which allows us to formally analyze DFTs in a theorem
prover.

501

Elderhalli, Ahmad, Hasan and Tahar

The first challenge is resolving the data-types issue. The problem in the data-
types is that the gates and operators are defined as functions that return extreal.
This is mainly required because we need to model +∞ that represents the NEVER
condition. However, this data-type cannot be used to represent random variables
over the lborel measure. Any random variable defined from a probability space
to the lborel measure should return real data-type. This is required because we
need to integrate the density and distribution functions over the real line. Therefore,
we need random variables that return extreal to model the gates but at the same
return real to be used with lborel. We resolved this issue by using extreal to
model the gates, but when we are conducting the probabilistic analysis we use the
real version of the random variable (λ. real (X s)).

Secondly, after modeling the DFT and expressing the structure function of the
top event using the DFT gates and operators, it is required to conduct the proba-
bilistic failure analysis of the top event. However, the structure function cannot be
used directly since it is a time-to-failure function not a set. Furthermore, in [12],
there is no clear information on how to create the DFT event and link it to the
structure function of the DFT top event or any other event in the fault tree. Using
our formalization, we have been able to clearly and formally define a DFT_event that
is used to create the set of moments of time until the time of failure t, as explained
in Definition 4.1.

Thirdly, the probabilities of the AND and OR gates are directly presented in [12]
as the probability of the intersection and union (Equations (6a) and (6b), respec-
tively). However, the AND and the OR are defined using the maximum and mini-
mum of their input operands, respectively. There is no information in [12] on how
the AND and OR gates are related to the intersection and union of the input events.
Using our formalization, we have been able to verify the relationship between the
AND and the interaction of the input events utilizing our defined DFT_event. In a
similar way, we verified the relationship between the OR gate and the union of the
input events.

Another contribution is represented by introducing a formal proof in a theorem
prover for the probability of failure of the PAND and Before operator, which are
represented by Pr(X < Y) in both forms, i.e., Pr(X < Y ∧ Y ≤ t) and Pr(X <
Y ∧X ≤ t). As mentioned earlier, the first proof of these (Pr(X < Y ∧ Y ≤ t)) is
not provided in [12], while the second one (Pr(X < Y ∧X ≤ t)) is presented in a
different manner that involves derivatives. In our formalization, we presented, for
the first time, the formal proof for Pr(X < Y) in both its formats, i.e., Pr(X <
Y ∧ Y ≤ t) that represents the probability of the PAND gate for basic events; and
Pr(X < Y ∧ X ≤ t) that represents the probability of the before operator. In
addition, we presented a formal proof for the probability of the WSP and CSP

502

Probabilistic Analysis of Dynamic Fault Trees using HOL

gates based on conditional density functions, which we defined, while the proof of
these gates is presented in [12] based on the law of total expectation.

Finally, while performing all of these formalizations and proofs in HOL, we iden-
tified several missing assumptions or conditions that were required to ensure the
correctness of the theorems. For example, ensuring the proper values for the input
random variables that represent the time-to-failure functions of the system com-
ponents. These important assumptions were either unavailable in [12] or are not
explicitly presented as a requirement in the final form of the theorems in [12].

It is important to highlight that the main benefit of having the formalization
of DFT in higher-order logic is that it enables conducting the formal DFT analysis
within the sound environment of a theorem prover, which is very useful in the context
of safety-critical systems.

5 Formal Verification of the Cardiac Assist System
In order to illustrate the utilization of our formalized probabilistic behavior of the
gates and operators in the last section, we present a DFT-based formal failure anal-
ysis of the Cardiac Assist System, shown in Figure 1 [5].

We first provide generic steps that can be followed in order to use our formal-
ization of the DFTs to conduct the formal analysis of DFTs in the form of generic
expressions of failure probabilities. These steps are:

1. Determine the structure function of the top event of the DFT.
2. Simplify the structure function and formally verify that the simplified version

is equal to the original function obtained in step (1).
3. Create the DFT_event of the structure function.
4. Express the DFT_event of the top event as the union of multiple input events.
5. Apply the probabilistic PIE to the union of events generated in the previ-

ous step, then simplify the result of the PIE. This will result in having the
summation of the probabilities of the intersection of the different events that
contribute to the failure of the top event of the DFT.

6. Replace each term in the result of the PIE by its probabilistic expression based
on the verified expressions in Section 4 for each gate and operator.

Step (5) requires proving many lemmas that are necessary for manipulating the
result of the PIE. For example, we need to verify the associativity property of addi-
tion for a large group of numbers (in case of the Cardiac Assist system, we verified

503

Elderhalli, Ahmad, Hasan and Tahar

Figure 1: Cardiac Assist System

this property for 63 numbers). Although this seems a trivial task, it requires deal-
ing with extreal numbers, which includes proving that for all combinations of the
inputs, the result of the addition cannot equal to ∞. Step (5) also requires verifying
the power set of events in a recursive way to generate a set of all combinations of the
events, which is required by the PIE. Moreover, based on the independence of the
input random variables, we need to verify the independence of several combinations
of random variables (in the Cardiac Assist system, we verified that any two random
variables out of the ten are independent, then three out of ten,... etc). We have
verified these generic lemmas and they can be easily reused with other similar case
studies and thus can reduce the proof efforts significantly.

In the rest of this section, we illustrate the utilization of the previous steps to
perform the formal DFT analysis of the Cardiac Assist System to provide a generic
expression for the probability of failure of the top event. The Cardiac Assist system
consists of three main subsystems: pumps, motors and CPUs. The system has two
main pumps (PA and PB) with a shared spare PS. It has three motors MS, MA,
and MB, where MB replaces MA after failure. Finally, the system has one main
CPU (P) and a spare CPU (B). Both CPUs are functionally dependent on a trigger,
which is the union of the crossbar switch (CS) and the system supervisor (SS). In
this case study, we are assuming that the spare gates are HSPs.

Our goal is to verify the probability of failure of the Cardiac Assist system by
applying the probabilistic PIE considering that the input events are independent.

504

Probabilistic Analysis of Dynamic Fault Trees using HOL

This can be represented mathematically as:

Pr(Q) =FCS(t) + FSS(t) +
∫ t

0
fMA(y)× FMS(y) dy +

FMA(t)× FMB(t) + FP (t)× FB(t) + FPA(t)× FPB(t)× FPS(t)

− ...+ ...− FCS(t) × FSS(t)×
(∫ t

0
fMA(y)× FMS(y) dy

)

× FMA(t)× FMB(t)× FP (t)× FB(t)× FPA(t)× FPB(t)× FPS(t)

(18)

We verify Equation (18) for generic probability CDF and PDF in HOL4 as:

Theorem 5.1.
⊢ ∀CS SS MA MS MB P B PA PB PS p t f_MA.

0 ≤ t ∧ prob_space p ∧
ALL_DISTINCT_RV [CS;SS;MA;MS;MB;P;B;PA;PB;PS] p t ∧
indep_vars_sets [CS;SS;MA;MS;MB;P;B;PA;PB;PS] p t ∧
distributed p lborel (λs. real (MA s)) f_MA ∧ (∀y. 0 ≤ f_MA y) ∧
cont_CDF p (λs. real (MS s)) ∧
measurable_CDF p (λs. real (MS s)) ⇒
(prob p

(DFT_event p
((shared_spare PA PB PS PS)·(shared_spare PB PA PS PS)+
(PAND MS MA)+(HSP MA MB)+
(HSP (FDEP(CS + SS) P)(FDEP(CS + SS) B))) t) =

CDF p (λs. real (CS s)) t + CDF p (λs. real (SS s)) t +
pos_fn_integral lborel

(λy.
f_MA y * (indicator_fn {u | 0 ≤ u ∧ u ≤ t} y *
CDF p (λs. real (MS s)) y)) +

CDF p (λs. real (MA s)) t * CDF p (λs. real (MB s)) t +
CDF p (λs. real (P s)) t * CDF p (λs. real (B s)) t +
CDF p (λs. real (PA s)) t * CDF p (λs. real (PB s)) t *
CDF p (λs. real (PS s)) t -+...-
CDF p (λs. real (CS s)) t * CDF p (λs. real (SS s)) t *
pos_fn_integral lborel

(λy.
f_MA y * (indicator_fn {u | 0 ≤ u ∧ u ≤ t} y *
CDF p (λs. real (MS s)) y)) *

CDF p (λs. real (MB s)) t * CDF p (λs. real (P s)) t *
CDF p (λs. real (B s)) t * CDF p (λs. real (PA s)) t *
CDF p (λs. real (PB s)) t * CDF p (λs. real (PS s)) t)

505

Elderhalli, Ahmad, Hasan and Tahar

where 0 ≤ t ensures that the time t is greater than or equal to 0, prob_space p
indicates that p is a probability space, ALL_DISTINCT_RV is a predicate which ensures
that all inputs and their event sets are not equal and their values are greater than or
equal to 0 but they cannot equal +∞. This assumption is a realistic one, since for
any component in a system the time of failure will always be greater than or equal
to 0 and the component will eventually fail. The predicate indep_vars_sets adds
the condition that all random variables and their event sets are independent. The
predicate (distributed p lborel (λs. real (MA s)) f_MA) indicates that the
real random variable of MA has the density function f_MA. The last two predicates
in the goal ensures that the CDF of the real random variable of MS is continuous
and measurable from the real line to the extreal one (real-borel to extreal-borel).

We verify several intermediate lemmas to prove Theorem 5.1. We first verify a
reduced form of the given DFT and, then we verify the probability expression of the
verified reduced version.

Lemma 5.1.
⊢ ∀CS SS MA MS MB P B PA PB PS.

(∀s. ALL_DISTINCT [MA s; MS s; PA s; PB s; PS s]) ⇒
((shared_spare PA PB PS PS)·(shared_spare PB PA PS PS) +
(PAND MS MA) +
(HSP MA MB)+(HSP (FDEP(CS + SS) P)(FDEP(CS + SS) B)) =
CS + SS + (MA·(MS � MA)) + MA·MB + P·B + PA·PB·PS)

In the above lemma, (shared_spare PA PB PS PS)·(shared_spare PB PA PS
PS) represents the pumps part of the DFT, (PAND MS MA)+(HSP MA MB) repre-
sents the motors parts and finally the CPUs part is represented by (HSP (FDEP(CS
+ SS) P)(FDEP(CS + SS) B). The predicate ALL_DISTINCT ensures that all basic
events cannot fail at the same time. Since we assumed that all spare gates are HSPs,
the spare input PS for the shared spare gates is the same for both the active and
dormant states.

In order to find the probability of the top event, we utilize the formally verified
reduced version of the structure function and encapsulate it into a DFT_event, as the
probability can only be applied to sets. To utilize the probabilistic PIE, we express
the DFT_event of the Cardiac Assist system as the union of events.

506

Probabilistic Analysis of Dynamic Fault Trees using HOL

Lemma 5.2.
⊢ ∀PA PB PS MS MA MB CS SS P B p t.

DFT_event p
(CS + SS + (MA·(MS � MA)) + MA·MB + P·B + PA·PB·PS) t =

union_list
[DFT_event p CS t; DFT_event p SS t;
DFT_event p (MA·(MS � MA)) t;
DFT_event p (MA·MB) t;
DFT_event p (P·B) t; DFT_event p (PA·PB·PS) t]

From Lemma 5.2, we can notice that the top event is constructed from the union
of six different sets. Applying the probabilistic PIE on the union of these sets (6
sets) generates 63 different terms (combinations). We verify several lemmas to be
able to use the theorem of the probabilistic PIE [1] for the union list of these six
sets. For example, we formally verify that:

Lemma 5.3.
⊢ ∀A B C D E K.

{t | t SUBSET {A; B; C; D; E; k} ∧ t ̸= {}} =
{{A}; {B}; {C}; {D}; {E}; {k}; {A; B}; {A; C};...;
{A; B; C; D; E; k}}

The result of Lemma 5.3 is a set of 63 different sets. We had to apply the SIGMA
function that results from the sum_set in the PIE theorem. Therefore we verify the
following lemma for 63 sets.

Lemma 5.4.
⊢ ∀A B C D E K.

ALL_DISTINCT [A;B;C;D;E;k] ∧
(∀x. x ∈{{A};{B};{C};{D};{E};{k};...;{A; B; C; D; E; k}} ⇒

f x ̸= PosInf) ⇒
(SIGMA f {{A};{B};...;{A; B; C; D; E; k}} =
f {A} + f {B} +...+ f {A; B; C; D; E; k}

After verifying all these lemmas and based on the reduced DFT expression we
are able to verify the probability of the Cardiac Assist system (Equation 18) into
Theorem 5.1.

507

Elderhalli, Ahmad, Hasan and Tahar

The first part of the conclusion of Theorem 5.1 corresponds to the original DFT
(without reduction). In the verification of this theorem, we use Lemma 5.1 to re-
place the original DFT with the reduced one. Then, we use Lemma 5.2 to represent
the DFT_event as a union list. After representing the left-hand side of the conclu-
sion of Theorem 5.1 as a union list, we use Lemmas 5.3, 5.4 and the probabilistic
PIE theorem [1] to prove this goal. After applying the probabilistic PIE, the result-
ing 63 subgoals should be proven based on the verified theorems of the probability
of DFT gates. Therefore, applying the probabilistic PIE will not directly verify
the current theorem, it is rather required to verify several intermediate subgoals
after applying the PIE. In addition, after applying the PIE, it is necessary to ap-
ply the simplification theorems again since the application of the PIE results in
intersecting the events. This means that further simplifications needed to be done.
The first 6 terms in the right-hand side of the conclusion of Theorem 5.1 corre-
spond to the probability of the elements of the list in Lemma 5.2. For example,
CDF p (λs. real (CS s)) t represents the probability of DFT_event p CS t,
which is FCS(t), according to Theorem 4.1. pos_fn_integral lborel(λy. f_MA
y *(indicator_fn {u |0 ≤ u ∧ u ≤ t} y * CDF p (λs. real (MS s)) y))
represents the probability of DFT_event p (MA·(MS � MA)) t, which is

∫ t
0 fMA(y)×

FMS(y) dy, according to Theorem 4.4. The following terms in the conclusion of The-
orem 5.1 correspond to finding the probability of the intersection of each pair in the
list, then each 3 elements then 4 elements until we reach the last term in the right-
hand side of the goal, which corresponds to the probability of the intersection of
all elements in the list. Since all six elements in the union list are independent,
the probability of their intersection is equal to the multiplication of the individual
probabilities. The verification of Theorem 5.1 required around 6000 lines of proof
script and took only 40 man-hours. This process was significantly facilitated thanks
to the availability of the formally verified intermediate lemmas. The proof effort for
the formal verification of these lemmas involved 12000 lines of code and about 320
man-hours. These lemmas can be easily reused for verifying similar systems that
can be represented as the union of 6 events. In addition, these lemmas can also be
useful in verifying larger systems based on similar proof steps identified above. As
a future work, we plan to use machine learning techniques to automate the proof
process of similar systems. This would facilitate the reusability of this work with
users who are not much familiar with HOL or the underlying details of our verified
theorems.

It is important to note that we have been able to verify the probability of the
Cardiac Assist system for generic distributions and density functions, which can
be instantiated later with specific functions according to the required constraints,
without any need to repeat the whole process from the beginning. It is worth men-

508

Probabilistic Analysis of Dynamic Fault Trees using HOL

tioning that such results cannot be obtained using PMCs, as they can only generate
the probability of failure after specifying the failure rates of the components. In
addition, PMCs are only limited to exponential distribution which does not con-
sider the aging factor in any system. However, using our formalization for generic
expression, it can be used with any probability distribution and density function as
long as they are integrable, which makes it a more general and accurate alternative
to the existing techniques.

6 Conclusions
In this paper, we proposed to conduct the probabilistic analysis of DFTs within
the HOL4 theorem prover and thus obtain formally verified probability of failure
expressions for generic probability distributions and density functions. We verified
many simplification theorems for DFT gates and operators that allow formal rea-
soning about the reduction of the structure function of the DFT top event into a
simpler form. In particular, we verified the probability of the intersection and the
union of independent events to provide the probability of the AND, OR, FDEP and
HSP gates. Moreover, we verified the probability of a sequence of two failing events
(Pr(X < Y)) in two forms, i.e, Pr(X < Y ∧Y ≤ t) and Pr(X < Y ∧X ≤ t), which,
to the best of our knowledge, is another novel contribution. These expressions are
used to formally express the probability of the PAND gate and the before opera-
tor. Similarly, we also verified the probabilistic behavior of the spare gates, which
required dealing with dependent events and conditional density functions. To illus-
trate the effectiveness of our formalization, we presented the formal analysis of the
Cardiac Assist System, which is a safety-critical system. Using our formalization, we
were able to provide generic results for the probability of failure of this system, i.e.,
for any distributions and density functions. It is evident that such results cannot be
obtained using simulation nor using model checking. This highlights the importance
of our proposed work, besides the fact that it inherits the sound and expressive
nature of HOL theorem proving.

509

Elderhalli, Ahmad, Hasan and Tahar

References

[1] W. Ahmad and O. Hasan. Towards Formal Fault Tree Analysis using Theorem Proving.
In Intelligent Computer Maths., LNCS 9150, pages 39–54. Springer, 2015.

[2] W. Ahmad and O. Hasan. Formalization of Fault Trees in Higher-order Logic: A
Deep Embedding Approach. In Dependable Software Engineering: Theories, Tools,
and Applications, LNCS 9984, pages 264–279. Springer, 2016.

[3] H. Bauer. Probability Theory. Walter de Gruyter, 1996.
[4] P. Billingsley. Probability and Measure. John Wiley & Sons, 2012.
[5] H. Boudali, P. Crouzen, and M. Stoelinga. A Rigorous, Compositional, and Extensible

Framework for Dynamic Fault Tree Analysis. IEEE Transactions on Dependable and
Secure Computing, 7:128–143, 2010.

[6] C. Dehnert, S. Junges, J.P. Katoen, and M. Volk. A Storm is Coming: A Modern
Probabilistic Model Checker. In Computer Aided Verification, LNCS 10427, pages
592–600. Springer, 2017.

[7] Y. Elderhalli. DFT Formal Probabilistic Analysis: HOL4 Script, Concordia University,
Montreal, QC, Canada, http://hvg.ece.concordia.ca/code/hol/DFT/index.php, 2018.

[8] Y. Elderhalli, O. Hasan, W. Ahmad, and S. Tahar. Formal Dynamic Fault Trees
Analysis Using an Integration of Theorem Proving and Model Checking. In NASA
Formal Methods, LNCS 10811, pages 139–156. Springer, 2018.

[9] M. Ghadhab, S. Junges, J.P. Katoen, M. Kuntz, and M. Volk. Model-based Safety
Analysis for Vehicle Guidance Systems. In Computer Safety, Reliability, and Security,
LNCS 10488, pages 3–19. Springer, 2017.

[10] HOL4. https://hol-theorem-prover.org/, 2018.
[11] J. Hölzl. Construction and Stochastic Applications of Measure Spaces in Higher-Order

Logic. PhD thesis, Technische Universität München, Germany, 2012.
[12] G. Merle. Algebraic Modelling of Dynamic Fault Trees, Contribution to Qualitative

and Quantitative Analysis. PhD thesis, ENS, France, 2010.
[13] T. Mhamdi. Information-theoretic Analysis using Theorem Proving. PhD thesis, Con-

cordia University, Montreal, QC, Canada, 2012.
[14] T. Mhamdi, O. Hasan, and S. Tahar. On the Formalization of the Lebesgue Integration

Theory in HOL. In Interactive Theorem Proving, LNCS 6172, pages 387–402. Springer,
2010.

[15] T. Mhamdi, O. Hasan, and S. Tahar. Formalization of Entropy Measures in HOL. In
Interactive Theorem Proving, LNCS 6898, pages 233–248. Springer, 2011.

[16] T. Mhamdi, O. Hasan, and S. Tahar. Formalization of Measure Theory and Lebesgue
Integration for Probabilistic Analysis in HOL. ACM Transactions on Embedded Com-
puting Systems, 12(1):13, 2013.

[17] C.Z. Mooney. Monte Carlo Simulation. Sage, 1997.
[18] J. Ni, W. Tang, and Y. Xing. A Simple Algebra for Fault Tree Analysis of Static and

Dynamic Systems. IEEE Transactions on Reliability, 62(4):846–861, 2013.

510

Probabilistic Analysis of Dynamic Fault Trees using HOL

[19] L. Pullum and J.B. Dugan. Fault Tree Models for the Analysis of Complex Computer-
based Systems. In IEEE Reliability and Maintainability Symposium, pages 200–207,
1996.

[20] M. Qasim. Formalization of Normal Random Variables. Master’s thesis, Concordia
University, Montreal, QC, Canada, 2016.

[21] M. Qasim, O. Hasan, M. Elleuch, and S. Tahar. Formalization of Normal Random
Variables in HOL. In Intelligent Computer Mathematics, LNCS 9791, pages 44–59.
Springer, 2016.

[22] E. Ruijters and M. Stoelinga. Fault Tree Analysis: A Survey of the State-of-the-art in
Modeling, Analysis and Tools. Computer Science Review, 15-16:29 – 62, 2015.

[23] M. Stamatelatos, W. Vesely, J.B. Dugan, J. Fragola, J. Minarick, and J. Railsback.
Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and Mission
Assurance, 2002.

[24] K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galileo Fault Tree Analysis Tool. In
IEEE Symposium on Fault-Tolerant Computing, pages 232–235, 1999.

Received 20 July 2018511

A Novel Criterion for Rejecting the
Non-Inductive Method

Ruurik Holm
Deduktia Ltd, Helsinki, Finland
ruurik.holm@deduktia.fi

Abstract

The article discusses the problem of choosing between inductive methods in
Rudolf Carnap’s inductive logic. It has been held that, if one has no background
knowledge, there is no way to justify the use of one inductive method instead
of another one. Even the non-inductive method, which gives no regard to
experience, cannot be considered worse than the inductivist methods giving
regard to experience. However, it can be shown that, by using Carnap’s own
success criterion for inductive methods, there is an inductivist method which is
to be preferred over the non-inductive method. The result will be compared to
Hans Reichenbach’s pragmatic justification of induction.

1 Introduction
Rudolf Carnap defined a continuum of inductive methods in (1952), but did not
establish convincing criteria on the basis of which one could choose the most appro-
priate method for each empirical situation. If no background knowledge is available,
there seems to be no way to prefer any method to any other. In particular, there
are no solid grounds for rejecting the non-inductive method, which yields the same
probabilities regardless of any evidence.

It was shown by Good (1965) that Carnap’s continuum is equivalent to Dirich-
let’s (prior) distributions in Bayesian statistics (see also Festa 1993, pp. 65-66; Festa
2011, pp. 477-478). Festa (1993; 1995; 2011, p. 485) discusses a possible proce-
dure for obtaining the optimum inductive method. However, Festa relies on prior
assumptions concerning the degree of order of the universe under scrutiny.

The “straight rule” projects observed frequencies of properties to estimations
of the whole population. It will be shown that one should prefer the straight rule
over the non-inductive method for all sample sizes. In a knowably non-homogeneous

Vol. 6 No. 3 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Holm

universe, this converts to a preference of a particular and knowable self-correcting
method over the non-inductive method.

The argument is based on Carnap’s criterion of the success of an inductive
method, namely its mean square error. Other performance measures could also
be presented, but being able to establish grounds for the straight rule for at least
one measure of success gives at least one criterion for distinguisihing between in-
ductive methods. Hence, to re-establish that it is not justified to resort to any
inductivist method, one would at least need to show that the mean square error is
not an acceptable criterion of success of inductive methods.

2 Formal Background

This article proceeds by following the presentation and terminology of Carnap
(1952).

Carnap’s continuum of inductive methods is defined for monadic predicate logic
with the identity symbol = between individual constants, which are finite in number
and denoted by a1, ..., an. (Although Carnap does not state this explicitly, it will be
assumed that ai 6= aj for all i 6= j.)

The molecular predicates are defined by using the usual logical connectives ∼,
∨,&. (Carnap 1952, p. 9.)

The possible states of the universe are represented by state descriptions “con-
taining as components for every atomic sentence either it or its negation, but not
both, and no other sentences” (Carnap 1952, p. 11).

The inductive methods are conditional probability functions c(h, e) (or in Car-
nap’s terminology, methods of confirmation) or corresponding estimation functions
(for Carnap, methods of estimation) defined in the usual way over the set of sen-
tences (where the hypothesis h and evidence e are both sentences), and parametrised
by the parameter λ, whose values are real numbers from 0 without an upper bound.
Hence, the continuum of inductive methods is also referred to as the λ-continuum.
The inductive method denoted by λ = ∞ is formally defined as the limit value of
the method when λ→∞. (See Carnap 1952, pp. 32-33.)

The inductive methods of the λ-continuum fulfil certain conditions which are
common for various systems of probability, denoted by C1−C10 in Carnap (1952).
For example, C1 states that if h and h′ are logically equivalent sentences, their
conditional probabilities (or “degree of confirmation”, see e.g. Carnap 1952, p. 4)
under evidence e are equal.

In Carnap’s terminology, a Q-predicate is a conjunction which contains either the
predicate itself or its negation for each (monadic) atomic predicate. A Q-predicate

514

A Novel Criterion for Rejecting the Non-Inductive Method

denotes the corresponding Q-property. Hence, a Q-predicate says of an individual
to which it applies which atomic properties it possesses and which it does not. Each
Q-predicate (Q-property) can thus be associated with a class of individual constants
(individuals) of a particular type. The total set of Q-properties incorporates all
possible combinations of atomic properties an individual can have.

Each molecular predicate M can be represented by a disjunction of Q-predicates.
The logical width b of M is the number of disjuncts in such a disjunction (cf. Carnap
1952, p. 10).

The following formula in Carnap (1952, p. 33) gives the probability that the
x+ 1’th individual will satisfy the predicate M , given that the first xM individuals
satisfy it in the sample of size x:

xM + b
κλ

x+ λ
, (1)

where κ is the number of Q-predicates in the language and b is the logical width
of M . The same formula (1) expresses also the λ-estimate of the relative frequency
Estλ,κ(x,M,wn, xM), where wn is the state description of size n from which the
sample is taken. (Cf. Carnap 1952, p. 33.)

Observe that the value of (1) does not depend on the size of the domain of
individuals.

3 Self-Correcting Methods
Carnap himself regards the non-inductive method1 c†, i.e. λ =∞ as seemingly inap-
propriate for sound scientific reasoning on the grounds that it gives no consideration
to experience when making expectations or estimations, if the experience does not
concern the individual mentioned in the hypothesis (e.g., 1950 [1962], p. 564; 1952,
p. 38). For example, the evidence of n black ravens does not affect the c†-probability
that the n+1’th raven is black. This can be formally seen by taking the limit of (1)
when λ→∞, which becomes 1

κ (Carnap 1952, p. 37).
What about the other λ-methods? Carnap puts forward the fact that all esti-

mation methods based on the corresponding inductive methods are self-correcting,
with the sole exception of c† (1952, p. 63; also p. 44). To understand what this
means, one has to consider Carnap’s original treatment in more detail.

The original formulation of inductive logic in Carnap (1950, 1952) is based on
finite domains of individuals (more precisely, individual constants) and thus also on

1By using the term “non-inductive method” I follow the terminology of Kuipers (1986, p. 38).

515

Holm

finite state descriptions. The probabilities in infinite domains are modelled by a
limit procedure by letting n denoting the size of the domain tend to infinity.

In the discussion concerning the comparison of inductive methods, starting from
page 56 in Carnap (1952), the size of the domain of individuals (and therefore the
number of individuals occurring in the state descriptions) is assumed to be very
large compared to the sample size x, i.e. n >> x. Carnap (1952, p. 20, pp. 62-
63) introduces the class Km (m = n − x) of those m individuals described by the
state description wn not belonging to the sample wx, wx ⊂ wn. In other words,
the class K consists of individuals having particular properties as described by that
part of wn. Moreover, the elements of K are enumerated (Carnap 1952, p. 20).
This means that one can speak about initial segments (author’s terminology, not
Carnap’s) consisting of the first i elements of K.

The case of an infinite state description w∞ is treated by Carnap by letting m
in Km grow without an upper bound. In other words, Carnap assumes that the
infinite sequence K∞ of individuals (and hence, also the infinite state description
w∞, conceived as a sequence of atomic sentences) is given somehow.

The extreme method λ = 0, which projects the observed frequencies to the whole
domain, is called by Carnap the straight rule of confirmation (1952, p. 40) and
the corresponding estimate function Est0,κ is called the straight rule of estimation.
Carnap (1952, p. 63) refers to Reichenbach (1949), who shows that considering
consecutive samples from w∞ proves that his rule of induction (which is essentially
the same as Carnap’s Est0,κ) will yield, for a given predicate, estimates approaching
the real frequency of the predicate in w∞, and is thus self-correcting.2

Carnap (1952, p. 63) proceeds to show that if x→∞ in (1), i.e. one takes samples
of consecutive sizes (not necessarily consisting of initial segments of K∞), then the
value of (1) tends to the value of Est0,κ for a given positive finite λ, which, in turn,
is a self-correcting method in the above sense when applied to consecutive samples
(initial segments) from w∞. Hence, all such methods are likewise self-correcting,
i.e. if there is a limiting relative frequency r for a particular predicate, all methods
except c† converge toward r.

The self-correcting methods give better estimates than c† only if the relative
frequencies of all Q-predicates are not the same. One can say that a (finite) uni-
verse where each Q has the same relative frequency is maximally heterogeneous. It
seems perhaps that a self-correcting method should be chosen because a maximally
heterogeneous universe is such an extreme and unlikely case, but this is only an in-
tuitive feeling based on our unconscious presupposition that the universe has some

2Actually, Carnap’s elaboration takes place in terms of the infinite sequence K∞, but this is
slightly confusing since Km is supposed to be the class of those individuals not mentioned in the
given sample.

516

A Novel Criterion for Rejecting the Non-Inductive Method

homogeneity.
However, there is a classical argument for choosing a self-correcting method anal-

ogous to the Reichenbachian pragmatic justification of induction (cf. Reichenbach
1949). This argument goes as follows: if there is a limiting relative frequency for a
particular predicate, a self-correcting method will approach this frequency asymp-
totically, whereas the c† method will not necessarily do so. In other words, if the
universe is of the kind in which learning from experience is possible, then only the
self-correcting methods will always approach the true relative frequencies, which is
not the case with c†.

Unfortunately Reichenbach’s justification of induction has a serious problem:
convergence of the stream of data only means that the data converges to the real
relative frequency in the limit. As Salmon (1991, p. 106) points out, “there is no
finite integer N representing a sample size at which all of the regular asymptotic
rules begin to converge”. Hence, nothing guarantees or even makes it more probable
that by using a self-correcting method, one actually obtains better estimates than
by using a non-inductive method.

4 Carnap’s Measure of Success: the Mean Square Error

Nevertheless, self-correcting methods can be argued for, but not in the traditional
Reichenbachian way. The key is in the measure of success of inductive methods used
by Carnap in (1952), the mean square error, which will be defined below.

It will be shown below that the mean square error of a particular self-correcting
method, the straight rule, converges and has a computable maximum which is prac-
tically always smaller than that of the non-inductive method c†. Moreover, neither
the maximum nor the real mean square error of c† converge, which means that they
cannot be made smaller by increasing the sample size.

The main difference of this line of argumentation to Reichenbach’s justification is
that one does not consider the actual sample from some very large state description –
which may be anything, and thus the convergence to the real frequency can take place
only in the limit. Instead one considers the average error of all possible samples of
given size from that state description, in other words the square error of the average
observer. In the absence of information about the best inductive method for the
actual sample, it seams reasonable to choose the inductive method on the basis of
its success on the average.

Carnap’s notion of mean square error must now be introduced formally in order
to derive the results mentioned above.

Carnap (1952, pp. 56-65) derives the mean square error for a given inductive

517

Holm

method. Generally speaking, the mean square error is the mean of the square of the
error of the estimate. If e denotes the estimate and y the actual value of a given
magnitude, the error of the estimate is e− y. Since y is constant, the mean of e− y,
i.e. E(e − y), equals E(e) − y. With the help of variance of the error, V ar(e − y),
one can write the mean square error as

E[(e − y)2] = V ar(e− y) + [E(e − y)]2 (2)

Let M be an arbitrary molecular predicate. When n >> x, the proportion of
samples of size x with a given value of xM (and hence the statistical probability that
a random sample has a given value of xM) can be approximated by

(
x

xM

)
rxM (1− r)x−xM , (3)

where r is the relative frequency of M in the whole state description. Carnap (1952,
pp. 62-63) shows that with the help of this and (2) above, one obtains the mean
square error with respect to M .

However, that is not sufficient as a measure of success of an inductive method
since it considers one Q-predicate only. Instead, Carnap (1952, pp. 65-67) defines
as the measure of success the average mean square error of the estimates for all
Q-predicates, which can be written as:

x− λ2

κ + (λ2 − x)∑κ
i=1 r

2
i

κ(x + λ)2 , (4)

Consider now the expression ∑κ
i=1 r

2
i in (4) above, which is referred to as the

degree of order of the whole state description (Carnap 1952, p. 66).
The degree of order represents how uniformly the individual constants have been

distributed among the Q-predicates. For example, if all the individuals belong to the
range of a single Q-predicate, the universe is extremely uniform (or homogeneous).
In this case, the degree of order is 1. On the other hand, if no Q-predicate has more
occurrences than any other Q-predicate, the universe is extremely non-uniform (or
heterogeneous), in which case the degree of order is 1

κ .
In the sequel, the degree of order ∑κ

i=1 r
2
i will be denoted by d.

For every degree of order d, there is a corresponding optimum inductive method,
which yields the smallest mean square error in all state desriptions whose degree of
order is d:

λ(d) = 1− d

d− 1
κ

. (5)

518

A Novel Criterion for Rejecting the Non-Inductive Method

4.1 Convergence and Maximum of the Mean Square Error

Let us proceed to analyse the convergence of the mean square error.
The expression (4) can be written as

x− λ2

κ + λ2d− xd

κx2 + 2κλx + κλ2 .
(6)

Suppose now that λ = 0. The equation (6) becomes

1− d

κx
. (7)

If d = 1 (i.e., the degree of order of the actual state description is maximal), the
value of (7) is zero. However, for all that is known of the actual state description, d
can be as small as 1

κ . For this value of d, the mean square error of the straight rule
takes its maximum value:

1− 1
κ

κx
=

1
κ − 1

κ2

x
. (8)

For any number of primitive predicates, one knows exactly the maximum mean
square error for each sample and, moreover, one can always make this maximum
smaller by increasing the sample size. If the sample size is increased x-fold, the
maximum mean square error reduces to 1

x ’th of the original value. For large samples,
the maximum mean square error is very small compared to the sample of 1.

Let us now proceed to show that the straight rule yields almost always a smaller
maximum mean square error than the non-inductive method.

We must thus examine the case when λ = ∞. The limit convention of Carnap
(1952, p. 33) means that for any function f(λ) the value of f(λ), when λ = ∞, is
limλ→∞ f(λ). Hence, to calculate the mean square error of λ = ∞ for a particular
x, one must consider the limit of (9) below when λ → ∞. Beside (6), the mean
square error (4) can also be written as

x− λ2

κ + λ2d− xd

κλ2(x2
λ2 + 2x

λ + 1)
=

x
κλ2 − 1

κ2 + d
κ − xd

κλ2

x2
λ2 + 2x

λ + 1
.

(9)

Consider the last form above when λ→∞. The first two terms in the denominator
clearly tend to zero, which entails that the denominator tends to 1. The first and

519

Holm

last terms of the numerator tend to zero as well. Hence, the whole expression tends
to

d

κ
− 1
κ2 (10)

for all values of x. This constant is the mean square error for λ =∞. If d = 1
κ , (10)

is zero (as Carnap 1952, p. 69 also notes). However, if d > 1
κ , (10) is greater than

zero and does not converge. In particular, (10) reaches its maximum when d = 1,

1
κ
− 1
κ2 . (11)

When (11) is compared to (8), the following can be stated:

Proposition 1. The maximum mean square error of the straight rule is smaller
than that of the non-inductive method for all x > 1, and for x = 1, the maximum
errors are equal. Moreover, while (11) remains constant when the sample size (i.e.,
the value of x) increases, the function (8) decreases strictly toward zero.

This shows that, for all samples sizes larger than one, the straight rule (λ = 1) is
to be preferred over the non-inductive method (λ = ∞) when the maximum mean
square error criterion is applied. However, the proof leaves open whether some finite
values of λ should be preferred over λ = 1.

4.2 Straight Rule vs. Other Self-Correcting Methods
Carnap (1952, p 75-77) shows that for any evidence with at least two different
kind of individuals, i.e. individuals manifesting two different Q-predicates, one can
calculate a value λ′ > 0 which is a lower bound for the optimum value of λ among
those state descriptions which are compatible with the evidence. This value thus
demonstrably yields a smaller mean square error than the straight rule λ = 0 for
any state description which is compatible with the evidence.

However, in most cases this gives no practical guidance for choosing the optimum
inductive method. While the mean square error with respect to all samples is smaller
for λ′ than for λ = 0, provided that the universe is non-homogeneous, i.e. d < 1,
it is not shown by Carnap (1952) that this would hold for the narrower set of all
non-homogeneous samples. Once we have a non-homogeneous piece of evidence, any
larger sample consistent with this observation is also non-homogeneous. Hence, the
average observer having the evidence that the state description is non-homogenous,
is not necessarily better off by choosing λ′ than any other method (since the set of
such observers can only obtain non-homogeneous samples). This can be contrasted
with the above result: the average observer is better off by choosing the straight

520

A Novel Criterion for Rejecting the Non-Inductive Method

rule instead of the non-inductive method, and the evidence obtained by the observer
plays no role in determining which method one should use.

The only situation where Carnap’s result is applicable is the case where it is
somehow known without observation that d < 1. In such a case, the maximum
mean square error of the straight rule is achieved when d = 1

κ and is given by (8)
above. Since λ′ yields now a smaller mean square error than the straight rule, the
maximum mean square error of λ′ is smaller than that of the straight rule – and
thus also (almost always) smaller than the mean square error of the non-inductive
method.

5 Philosophical Significance of the Result

Proposition 1 above certainly does not mean that for some particular sample,
the error of the estimate of the straight rule (or the known method denoted by λ′

in section 4.2) would be smaller that of the non-inductive method. However, by
limiting the maximum average error (i.e., the maximum mean square error) when
making estimates is an obvious reason for preferring the straight rule (or λ′) instead
of the non-inductive method.

Consider a situation where an estimate of the relative frequency is required. It
is assumed that beside the sample, there is no information as regards the actual
state description. Hence, one cannot choose the estimate on the basis of its de facto
accuracy (if one could do this, no samples or estimates would be needed). It is
natural to choose the method which yields the smallest expected value of the error
when all possible state descriptions are considered. This is precisely the expected
value of the square error of the estimate, i.e. the mean square error. The problem in
this approach has been that there is no way to judge which inductive method gives
the smallest mean square error. However, it was shown above that one can in fact
know the maximum of the mean square error for the straight rule and it converges
rapidly when the sample size increases. In other words, for a given sample, the
estimate of the straight rule is, on the average, at least within a computable margin
of the real relative frequency, and this margin can be made arbitrarily small by
increasing the sample size.

This can be important information in a given decision-making situation. Hence,
in the absence of additional information about the actual state description, the
straight rule is a more rational basis for estimates and estimate-based decisions
than the non-inductive method.

What is the significance of this result in terms of the problem of induction? It
has been demonstrated above that in terms of estimating relative frequencies, it is

521

Holm

justified to use the straight rule (or λ′) instead of the non-inductive method. Using
a self-correcting method amounts to making inductive inferences on the basis of
evidence. This leads one to conclude that making inductive inferences is justified.

It can of course be objected that Carnap’s assumption of a random sample from
the unkown actual state description (cf. section 4 above) is not justified. What
grounds does one have for assuming that the given sample is a random one and not
biased? However, as Campbell & Franklin (2004) point out, unless there are specific
reasons to think otherwise, it is justified to assume that a given sample is not biased.

The issue of the randomness assumption is too extensive to be discussed here
in detail. But even if the random sample objection is valid, one has still provided
an answer to the original problem of not being able to justify the use of a self-
correcting method in inductive logic by using Carnap’s measure of success of an
inductive method.

References
[1] Campbell, S. & J.Franklin 2004: “Randomness and the justification of induction”.

Synthese 138, 79-99.
[2] Carnap, R. 1950 [1962]: Logical Foundations of Probability, (2nd edition in 1962, to

which the page numbers refer). The University of Chicago Press, Chicago.
[3] Carnap, R. 1952: The Continuum of Inductive Methods. The University of Chicago

Press, Chicago.
[4] Festa, R. 1993: Optimum Inductive Methods.Kluwer, Dordrecht.
[5] Festa, R. 1995: “Verisimilitude, Disorder, and Optimum Prior Probabilities”. In T.

Kuipers & R. Mackor (eds.), Cognitive Patterns in Science and Common Sense. Rodopi,
Amsterdam.

[6] Festa, R. 2011: “Bayesian Inductive Logic, Verisimilitude, and Statistics”. In p. S.
Bandyopadhyay & M. R. Forster, Philosophy of Statistics. Elsevier, Oxford.

[7] Good, I. 1965: The Estimation of Probabilities. The MIT Press, Cambridge, Mas-
sachusetts.

[8] Kuipers, T. 1986: “Some estimates of the optimum inductive method”. Erkenntnis 24,
37-46.

[9] Reichenbach, H. 1949: The Theory of Probability. University of California Press, Berke-
ley and Los Angeles.

[10] Salmon, W. 1991: ‘Hans Reichenbach’s Vindication of Induction”. Erkenntnis 35, 99-
122.

Received 8 January 2019522

Adaptive Deontic Logics: a Survey

Frederik Van De Putte
Ghent University and University of Bayreuth

frederik.vandeputte@ugent.be

Mathieu Beirlaen
Ghent University

mathieubeirlaen@gmail.com

Joke Meheus
Ghent University

joke.meheus@ugent.be

Abstract

Adaptive Logics (ALs) are a viable and useful formal tool to handle vari-
ous issues in deontic logic. In this paper, we motivate, explain, illustrate, and
discuss the use of ALs in deontic logic. Published work on deontic ALs fo-
cusses mainly on conflicttolerant deontic logics (logics that can accommodate
conflicting obligations) and – to a lesser extent – on problems concerning fac-
tual and deontic detachment. So does the present paper. Near the end of
the paper, however, we also indicate some of the possibilities that the adaptive
logic framework creates for tackling other types of problems within deontic logic.

Keywords: Deontic Logic, Adaptive Logics, Conflict-tolerance, Non-monotonic
Reasoning, Benchmark Examples

We thank Jesse Heyninck, Stef Frijters, for valuable comments on previous drafts of the paper. We
are also indebted to Lou Goble for his incisive remarks and useful suggestions. Finally, we thank
Daniela Glavaničová for spotting some crucial errors in the penultimate version of this paper.
Frederik Van De Putte is a post-doctoral fellow of the Flemish Research Foundation (FWO-

Vlaanderen) at Ghent University and a Marie Skłodowska-Curie Fellow at the University of
Bayreuth. Mathieu Beirlaen was a post-doctoral fellow of the Flemish Research Foundation (FWO-
Vlaanderen) at Ghent University at the time of writing this paper.

Vol. 6 No. 3 2019
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Van De Putte, Beirlaen, and Meheus

Preludium: Nathan’s predicament
One Friday evening, Nathan promises his mother that he will look after his little
brother, Ben, on Saturday afternoon so that she can visit her sister. A couple of
hours later, Nathan’s girlfriend Lisa calls. Being a typical teenager and hopelessly
in love, he completely forgets about the promise he made earlier to his mother and
agrees with Lisa to go with her to the cinema on Saturday afternoon (to see this
cool movie – children under the age of 13 not allowed!) and to go for a veggie
burger in the evening. On Saturday, Lisa rings at the door. Almost simultaneously,
his mother puts on her coat, meanwhile saying “So, I’ll be back by five. Don’t
forget. . . ”. Hearing this, Nathan remembers about both promises and immediately
realizes what kind of situation he is in. Given his promises, there are several things
he ought to do and it is clear that he cannot do them all. Keeping his promise to go
for a veggie burger in the evening still seems feasible, but he cannot look after six
year old Ben and at the same time take Lisa to this particular movie!

1 Introduction
Logical principles may fail to apply under certain conditions, and logical principles
involving normative concepts are no exception. Even if we restrict our focus to the
modalities “it is obligatory that” and “it is permitted that”, there are circumstances
in which we cannot apply certain plausible rules of inference (unrestrictedly) on pain
of highly undesirable outcomes or even plain triviality.

The example from the preludium provides one kind of illustration of this phe-
nomenon. It concerns a context in which an agent, in this case Nathan, faces several
obligations that cannot be jointly fulfilled. In such contexts, several clusters of oth-
erwise plausible principles involving obligations and permissions are problematic.
Let us look at two instances of such clusters.

Consider first the combination of the principle that whatever is obligatory is
also permissible (OIP), and the principle of the interdefinability of obligation and
permission (ID):

(OIP) If A is obligatory, then A is also permitted: OA ⊃ PA
(ID) A is obligatory iff ¬A is not permitted: OA ≡ ¬P¬A

If both A and its negation ¬A are obligatory (OA ∧ O¬A), then by (ID) and
the first conjunct, ¬P¬A. However, by (OIP) and the second conjunct, P¬A. So
we obtain a plain contradiction: ¬P¬A∧P¬A. Even if one is willing to accept that
contradictions are not absurd, it seems hard to accept that conflicting obligations

524

Adaptive Deontic Logics

entail them. Opinions may differ on which of these two principles is the most salient
one. It is clear, however, that at least one of them has to be abandoned or adequately
restricted if we want to avoid the outcome that conflicting obligations entail plain
contradictions.

A second cluster of principles which is problematic in the face of conflicting
obligations consists of the aggregation principle (Agg), the principle that “ought
implies can” (OIC), and the impossibility of contradictory states of affairs (CP):

(Agg) If A and B are obligatory, then so is their conjunction: (OA∧OB) ⊃ O(A∧B)
(OIC) If something is obligatory, then it is also possible: OA ⊃ 3A
(CP) Contradictions are impossible: ¬3(A ∧ ¬A)

If OA∧O¬A, then, by (Agg), O(A∧¬A) and hence by (OIC), 3(A∧¬A). But
this is in direct contradiction with (CP). Again, one of the principles from the cluster
cannot be upheld (unrestrictedly) if we are to accommodate conflicting obligations,
or at least if we want to avoid that such conflicts result in plain contradictions.

Besides conflicting obligations, there are other types of circumstances in which
plausible logical principles may fail to apply. One that we want to consider here
concerns the violation of conditional obligations, i.e. statements of the form “If A
is the case, then B is obligatory” – formally, O(B | A). Each of the rules of factual
detachment (FD) and deontic detachment (DD) is intuitively appealing as a rule for
detaching unconditional obligations from conditional ones:

(FD) If it is obligatory that B given condition A, and if A is the case, then it is
obligatory that B: A,O(B | A) ` OB

(DD) If it is obligatory that B given condition A, and if A is obligatory, then it is
obligatory that B: OA,O(B | A) ` OB.

The combination of (FD) and (DD) is known to cause trouble in so-called
contrary-to-duty cases: cases in which a secondary obligation kicks in once a possi-
bly conflicting primary obligation was violated. The following is an example of such
a case.

Lisa and Nathan are a couple since eleven months. Lisa wants their first an-
niversary to be special and promises Nathan to take him to a “real” restaurant.
One can only pay in cash at this restaurant, so if they are going to the restaurant,
then Lisa ought to withdraw one hundred dollars at an ATM beforehand. However,
on the day of the event, Lisa changes her mind and decides that she is not going
to the restaurant after all – perhaps she is no longer sure she wants to be Nathan’s
girlfriend in the first place. In view of her promise, she (still) has the obligation
to take Nathan to the restaurant: OA. She also still has the conditional obligation

525

Van De Putte, Beirlaen, and Meheus

that, if she takes Nathan there, she has to withdraw the money: O(B | A). How-
ever, if she is not going to any restaurant, then she should not withdraw a hundred
dollars, since carrying around that much money for no reason would be hazardous:
O(¬B | ¬A). And as it happens to be, she is not going to the restaurant: ¬A.

Let us now see how the combination of (FD) and (DD) causes trouble for cases
like this. If the obligation OA is violated, i.e. ¬A is the case, then the primary
conditional obligation O(B | A) leads to the unconditional obligation OB via (DD),
while the secondary (contrary-to-duty) obligation O(¬B | ¬A) leads to the uncon-
ditional obligation O¬B via (FD). In order to resolve this conflict, we must block
the application of (DD) or that of (FD).1

We will have much more to say about conflicting obligations and about the
detachment of conditional obligations in the remainder of this paper. For now,
these examples merely serve to illustrate a general point. In the circumstances
described above – conflicting obligations and contrary-to-duty cases – one cannot
consider principles such as the ones just mentioned as unrestrictedly valid. This
leaves the logician who wants to explicate our reasoning in such cases with various
options. One is to simply reject those principles, and hence declare a number of
intuitive inferences simply invalid. Our stance towards this option is perhaps best
summarized by the following words of van Benthem [96, p. 95]:

This is like turning down the volume on your radio so as not to hear
the bad news. You will not hear much good news either.

A more promising option is to look for restricted versions or alternative, more
fine-grained formulations of those principles. For instance, for the case of conflicting
obligations, one may argue that (Agg) should only be applicable in case the conjunc-
tion of A and B is possible. For contrary-to-duty cases, one may reformulate (FD)
as a principle that concerns dynamic updates, rather than (mere) factual input –
see e.g. [97] where this is proposed.

We will not pursue this second option here, even though occasionally we will show
that some concrete instances of it fail to deliver an appropriate logic of normative
reasoning, either on philosophical or on purely technical grounds. Instead, we will
focus on a third option, i.e. to take (some of) these problematic principles to be only
valid in a defeasible, context-sensitive way.

That this option seems well in line with our intuitions is easily demonstrated
by returning to our examples. As soon as Nathan realizes that looking after Ben is

1Alternatively, we could bite the bullet and accept the outcome that both B and ¬B are
obligatory. But then our first illustration shows that we must give up other logical principles on
pain of contradiction.

526

Adaptive Deontic Logics

incompatible with going to that particular movie with Lisa, it seems quite rational
to reject the conclusion that he ought to do both. But, suppose that his mother
also made him promise to walk the family dog on Saturday evening. Would it be
rational that, in view of the conflict concerning his afternoon plans, he also rejects
the conclusion that he ought to go with Lisa for a veggie burger (at 6pm) and take
the dog for a walk (at 10pm)? It seems that the one should have no bearing on the
other. What this comes to is that, even if it makes sense to withdraw applications
of (Agg) upon realizing that A and B are mutually exclusive, this need not affect
other applications of (Agg).

In a similar vein, it seems quite natural that certain applications of (DD) are
upheld unless and until it turns out that the unconditional obligation in the premises
is violated. That Lisa has the obligation to withdraw money, even if she is not going
to the restaurant at all, feels contra-intuitive to non-logicians. Is there something
wrong with their intuitions? Not necessarily, and maybe even to the contrary. It
seems quite justified that in cases like this, (DD) is treated as a defeasible rule of
inference: the obligation is detached from the conditional obligation provided the
unconditional obligation is not violated.

Note the difference between the third option and the first one. In our approach,
we do not invalidate principles, we invalidate certain applications of principles and
this is done only when and where necessary. This at once illustrates what we mean by
context-sensitivity: whether an application of a certain principle or rule is validated
or not depends on the specific context (the premises at issue).

The aforementioned clusters of principles governing obligations and permissions
were originally introduced to hold unconditionally. The circumstances in which
these principles are not (jointly) applicable, such as conflicts and violations, are
often considered anomalous or exceptional. Other principles were acknowledged to
be applicable only in a defeasible, context-sensitive manner right from their very
introduction. We give only one example. Consider the nullum crimen sine lege
principle: “If A is not forbidden, then A is permitted”. This principle is best thought
of as a kind of default rule: assume (or infer) PA, unless O¬A follows from the
premises. This rule is defeasible by its very nature, in the sense that at least some
of its instances are violated in every interesting application context.

In order to apply inference rules in a logic in a context-sensitive, defeasible
manner, the consequence relation of this logic has to be non-monotonic: given a set
of premises from which a conclusion A is derivable, it must be possible to revoke
A in the light of additional premises.2 Adaptive logics (henceforth, ALs) provide

2Formally, a logic L is non-monotonic iff (if and only if) there are two sets of formulas Γ and ∆
and there is a formula A such that A is L-derivable from Γ, while A is not L-derivable from Γ∪∆.

527

Van De Putte, Beirlaen, and Meheus

a natural way to explicate the premise-sensitive, defeasible application of certain
inference rules in a formal logic.

ALs are built on top of a core logic, called the lower limit logic, the inference
rules of which hold unconditionally and unrestrictedly. An AL strengthens its lower
limit logic by allowing a number of additional inference rules to be applied relative
to the specific premises at hand. The term “adaptive logic” originates from this
premise-sensitivity: ALs “adapt” themselves to the premises under consideration.

Beside ALs, many other formalisms for modelling defeasible reasoning have been
applied in a deontic context: default logic [53], defeasible deontic logic [71], formal
argumentation theories [33; 77; 92; 18; 105], input/output logic [76], etc. These
different frameworks are all linked to one another and to ALs in various ways – see
e.g. [47] for some recent comparisons.

There is, however, a distinctive feature of ALs that sets them apart from other
approaches to non-monotonic reasoning, viz. their dynamic proof theory. The idea
behind this proof theory is that the non-monotonicity of the logic’s consequence
relation is pushed into the object-level proofs. This means that a given derivation
in a proof can become rejected in the light of other derivations within that same
proof.3

Another important difference between the existing work on ALs and other types
of non-monotonic logics is the pivotal role that classical logic (henceforth CL) plays
within the latter. ALs are, at least in origin, more pluralistic in spirit regarding the
meaning of the classical connectives, thus opening up to new perspectives on defea-
sible reasoning that are hard to detect when one sticks to CL as one’s underlying
monotonic logic.4

The current paper’s aim is to motivate, explain, illustrate, and discuss the use
of ALs in deontic logic. Published work on deontic ALs focusses mainly on conflict-
tolerant deontic logics (logics that can accommodate conflicting obligations) and –
to a lesser extent – on problems concerning factual and deontic detachment. So does
the present paper. Near the end of the paper, however, we also indicate some of
the possibilities that the adaptive logic framework creates for tackling other types
of problems within deontic logic.

The outline of this paper is as follows. For ease of reference, we start by recalling
the basic definitions concerning Standard Deontic logic, henceforth SDL (Section
2). In Section 3 we provide an introduction to the framework of ALs. By way of
illustration, we first present two very simple adaptive logics that can handle examples
as the one from the preludium (Section 3.1).

3We will define and illustrate the dynamic proof theory of ALs in Section 3.
4This aspect of ALs is nicely illustrated by our Section 7, where we introduce and discuss

(adaptive) paraconsistent deontic logics.

528

Adaptive Deontic Logics

In Sections 5–7 we present and discuss a variety of conflict-tolerant deontic ALs
that move further away from the standard view: unlike the logics from Section 3.1,
the logics from Sections 5–7 have lower limit logics that are inferentially weaker
than SDL. Section 4 provides the conceptual and technical basis for this discussion.
Whereas Sections 5 and 6 are mainly based on existing work, Section 7 presents
mostly new material that we think improves on the existing work in a number of
ways – we explain this in Section 7.4.

Section 8 summarizes the merits and demerits of the conflict-tolerant ALs pre-
sented throughout Sections 3–7. In that section we also show how the simple logics
introduced in Section 3.1 can be further refined in various ways.

The other main application of existing deontic ALs concerns the problem of
detaching conditional obligations. We distinguish between various approaches to
this problem in Section 9, and discuss adaptive versions of each of them.

In Section 10 we show how the nullum crimen sine lege principle can be captured
within the AL framework, and how this gives rise to various extensions of the logics
defined in previous sections. This at once paves the way for our last section in which
we give a short summary of the paper and point to ideas for future research.

Throughout this paper our focus is on the illustration and motivation of the
core ideas we present, rather than on formal details and meta-theoretical results.
Whenever relevant, we provide pointers to the literature, cf. the subsections “further
reading and open ends”.

Much of what we will write in this paper builds on Lou Goble’s work on normative
conflicts, which is nicely summarized in [42]. We will provide references to specific
parts of this (and other) work in due course. In general, we try to avoid overlap as
much as possible, but whenever this maxim conflicts with keeping the present paper
self-contained, we give priority to the latter.

We end this section with some more general comments regarding the plurality
and diversity of logics to be discussed in this paper. Our stance on the matter can
be described as follows.

For a start, various logics present themselves as useful depending on the specific
type of application context, and the associated logical grammar one wants to study.
But even if we keep the grammar fixed, there are various reasons for occupying
oneself with not one but many logics for this grammar. That logic – even the
logic of our most basic connectives like conjunction – is not god-given, and that
there are no absolute grounds for preferring one logic over another, seems hardly
contested nowadays. So all one can do is give pragmatic arguments, referring to
general desiderata for logics on the one hand, and the needs of a given application
on the other.

In the context of conflict-tolerant deontic logics, one way to argue for diver-

529

Van De Putte, Beirlaen, and Meheus

sity is by referring to various explosion principles, as discussed in Section 4.2. For
instance, if one does not need to accommodate conflicts between obligations and
permissions, or if one can safely assume within a given domain that norms are at
least internally consistent, then this should translate to one’s preferred logic for that
domain. Moreover, there are many different ways one can interpret the O of a given
(conflict-tolerant or other) deontic logic, which will yield different formal semantics
and hence different logics in turn.

Going non-monotonic (or in our case, going adaptive) does not reduce this plu-
rality – quite to the contrary. To use Makinson’s words [61, p. 14]:

Leaving technical details aside, the essential message is as follows.
Don’t expect to find the nonmonotonic consequence relation that will
always, in all contexts, be the right one to use. Rather, expect to find
several families of such relations, interesting syntactic conditions that
they sometimes satisfy but sometimes fail, and principal ways of gener-
ating them mathematically from underlying structures.

Indeed, it will become clear throughout this paper that there are usually several
interesting and sensible ways of going adaptive, starting from a given lower limit
logic. In the absence of further philosophical arguments against the resulting logics,
one needs to keep an open mind and study all of them.

2 Some formal preliminaries
Languages Throughout this paper, we use A,B, . . . as metavariables for formulas
of a given formal language, and Γ,∆, . . . as metavariables for sets of such formulas.

Let henceforth CL stand for the propositional fragment of classical logic, as based
on a set of propositional variables (also called sentential letters) S = {p, q, . . .}, the
connectives ¬,∨,∧,⊃,≡, and the logical constants ⊥,>. We use W to denote the
set of well-formed formulas in this language.

The language of SDL is obtained by adding to the grammar of CL the modal
operators O for “it is obligatory that” and P for “it is permitted that”. We take
both O and P (and the classical connectives) to be primitive by default in this
paper; i.e. whenever one is defined in terms of the others in one logic or another,
we will indicate so. For the sake of simplicity, we will focus on the fragment of this
language in which no nested occurrences of O and P are allowed. This means that
the set of well-formed formulas for SDL is defined as follows:
Wd := W | ¬〈Wd〉 | 〈Wd〉 ∨ 〈Wd〉 | 〈Wd〉 ∧ 〈Wd〉 | 〈Wd〉 ⊃ 〈Wd〉 |

〈Wd〉 ≡ 〈Wd〉 | O〈W〉 | P〈W〉

530

Adaptive Deontic Logics

Axiomatization The logic SDL is obtained by adding to CL the following ax-
ioms, rule, and definition:

(K) O(A ⊃ B) ⊃ (OA ⊃ OB)
(D) OA ⊃ ¬O¬A
(N) if ` A, then ` OA
(DefP) PA =df ¬O¬A

It is well-known that in the presence of (N), (K) can equivalently be expressed
as the combination of the axiom of aggregation (Agg) and the rule of inheritance
(Inh):

(Agg) (OA ∧ OB) ⊃ O(A ∧B)
(Inh) if ` A ⊃ B, then ` OA ⊃ OB

whence SDL can be equivalently characterized by adding (N), (Agg), (Inh), (D),
and (DefP) to CL. Note also that in the presence of (Agg), (D) is equivalent to the
following principle:

(P) ¬O(A ∧ ¬A)

For ease of reference, we note some more derivable principles of SDL. The first
is the axiom of distributivity (of O over ∧):

(Dist) O(A ∧B) ⊃ (OA ∧ OB)

Second, the replacement of equivalents rule (RE) is an immediate consequence
of the behavior of ⊃ and ≡ in CL and (Inh):

(RE) if ` A ≡ B, then ` OA ≡ OB

Third and last, in view of (Agg), (Inh), and the validity of disjunctive syllogism
(DS) in CL, we have:

(DDS) (OA ∧ O(¬A ∨B)) ⊃ OB

Semantics We work with the traditional Kripke-semantics for SDL, but to pre-
pare for the semantics of other logics to be presented below, we work with a des-
ignated “actual” world. An SDL-model M is a quadruple 〈W,w0, R, v〉, where W
is a non-empty set of worlds, w0 ∈ W is the actual world, R ⊆ W ×W is a se-
rial5 accessibility relation and v : W → S is a valuation function. R(w) (the image

5R is serial iff for every w ∈W , there is a w′ ∈W such that (w, w′) ∈ R.

531

Van De Putte, Beirlaen, and Meheus

of w under R) is the set of worlds that are accessible from the viewpoint of w,
R(w) = {w′ | (w,w′) ∈ R}.

The semantic clauses for the sentential variables and the connectives are as usual;
those for O and P are as follows:

(SC1) M,w |= OA iff M,w′ |= A for all w′ ∈ R(w)
(SC2) M,w |= PA iff M,w′ |= A for some w′ ∈ R(w)

Truth of a formula A at a world w is given by the relation |=. Truth in a model
M = 〈W,w0, R, v〉 is simply truth at w0. We say that M is a model of Γ iff all the
members of Γ are true inM , i.e. iff for all B ∈ Γ,M,w0 |= B. Semantic consequence
is then defined as the preservation of truth in all models: Γ
 A iff A is true in all
models of Γ.

Following customary notation, let |A|M =df {w | M,w |= A}. |A|M is also
called the truth set (intension) of A. Note that the semantic clause for O can be
equivalently rewritten as follows: M,w |= OA iff R(w) ⊆ |A|M .

3 Adaptive logics
Adaptive logics were originally introduced by Diderik Batens around the 1980s, and
have since been applied to various forms of defeasible reasoning.6 The aim of this
section is to highlight the basic features of ALs by means of a running example, viz.
the logics SDLr

p and SDLm
p . These logics can handle simple cases of conflicting

obligations such as the running example from the beginning of this paper. We
explain the idea behind both logics in Section 3.1. Generic definitions for all ALs in
the standard format from [10] are given in Section 3.2. We mention the most salient
properties of all logics that are defined within this format in Section 3.3. Finally,
we discuss some variants of the standard format that will turn out useful in the
remainder of this paper (Section 3.4).

3.1 The basics
Before introducing the logics SDLr

p and SDLm
p , we present another predicament

from Nathan’s life. The example will be used to illustrate the proof theory of SDLr
p

and SDLm
p .

One evening, Nathan comes home from school. As soon as he enters the kitchen,
he hears his father: “Remember, Nathan, it’s your turn to do the dishes tonight.
Do them this time!” His mother immediately adds: “And forget about playing with

6See Section 3.5 for references to the literature on ALs.

532

Adaptive Deontic Logics

Ben tonight. Before supper, you will do nothing but your homework. Your grades
are terrible lately!” Not too enthusiastically, Nathan heads towards his room to do
his homework. As soon as he wants to enter it, his twin sister Olivia leaves hers,
in great despair: “Nathan, you have to help me. I am on “Ben watch” tonight, but
he is driving me crazy and I am expecting this really, really important phone call!
Play with him until supper, will you? I’ll do anything for you in return!” Nathan
finds himself again in a difficult situation. He can obey his father and do the dishes.
No problem there. But what should he do until supper? Olivia helps him out on
a quite regular basis and he feels he ought to return the favor this time. But if he
plays with Ben, he will not be able to do his homework.

This example and the one from the preludium have three important character-
istics in common. The first is that they both concern a situation in which an agent
faces several obligations, not all of which can be fulfilled. The second is that, for
each of the separate obligations, there is some prima facie reason. In the exam-
ple from the preludium, Nathan’s specific obligations hold in view of the general
rule “One ought to keep one’s promises”. In this last example, the obligation that
Nathan ought to do the dishes holds in view of his father’s command. The third
characteristic is that, although not all obligations can be met, some of them can.
Nathan cannot look after Ben and take Lisa to that particular movie, but he can go
for a veggie burger in the evening. Similarly, Nathan cannot do his homework and
at the same time play with Ben, but he can do the dishes.

In this paper, we will use the term prima facie obligations for any obligation for
which there is some prima facie reason (some general rule, a command, . . .). As the
examples show (and as we all know from daily life), there are situations in which
not all prima facie obligations can be binding. Nathan cannot go to that particular
movie with Lisa (in view of his promise to her) and at the same time not go there
(in view of his promise to his mother and the fact that six year olds are not allowed
for this particular movie). We will use the term actual obligations for obligations
that are binding and that should be acted upon.

Examples in which not all prima facie obligations can be met raise the following
question: how do we decide, in a given situation, which prima facie obligations are
actual obligations and which are not? A first answer to this question seems to be
that at least those prima facie obligations should be considered as actual obligations
that are not in conflict with any other prima facie obligation. This seems to capture
nicely our intuitions behind the examples. The fact that Nathan made conflicting
promises with respect to what he will do in the afternoon should not prevent him
from going for a veggie burger in the evening. The fact that he cannot help out his
twin sister as well as obey his mother should not rule out that he at least obeys his
father.

533

Van De Putte, Beirlaen, and Meheus

This is exactly the idea behind the logics SDLr
p and SDLm

p presented in this
section: prima facie obligations are considered as actual obligations unless and until
it turns out that they are in conflict with some other prima facie obligation. Or, put
in a somewhat different form, the logics SDLr

p and SDLm
p validate the inference

of actual obligations from prima facie obligations as much as possible. The exact
meaning of this “as much as possible” will become clear below.

The logics have two further characteristics in common: they allow us to (a)
accommodate conflicts at the level of prima facie obligations, and (b) reason about
actual obligations in the standard way (i.e., applying all axioms of SDL).7 What
(a) comes to is that both logics are conflict-tolerant: they do not lead to unwanted
conclusions in the face of conflicting prima facie obligations.

We will now show, step by step, how the logics SDLr
p and SDLm

p are obtained.

The lower limit logic In order to make the distinction between prima facie
obligations and actual obligations, we will use a bi-modal language that contains
two obligation operators: Op and O. The first is used for prima facie obligations,
the second for actual obligations. The language is defined as follows:
Wp := W | O〈W〉 | Op〈W〉 | ¬〈Wp〉 | 〈Wp〉 ∨ 〈Wp〉 | 〈Wp〉 ⊃ 〈Wp〉 |

〈Wp〉 ∧ 〈Wp〉 | 〈Wp〉 ≡ 〈Wp〉
Note that we exclude nesting; i.e. none of the two operators occurs within the

scope of another operator.
To obtain a logic that is tolerant with respect to conflicting prima facie obliga-

tions (characteristic (a) above), Op is treated as a propertyless operator, a “dummy”.
This means that e.g. prima facie obligations cannot be derived from other prima
facie obligations. Characteristic (b) is realized by assuming that O is the ought-
operator of SDL.

Let us call the resulting logic SDLp – it is just SDL extended with the dummy-
operator Op. In AL terminology, what we have done so far is define the lower limit
logic of our AL. This logic constitutes the monotonic core of the AL. In other words,
it consists of all the principles (rules, axioms) that are unconditionally valid within
the logic.8

In order to obtain a logic that validates the inference from prima facie obligations
to actual obligations as much as possible, SDLp needs to be strengthened. One
option that does not work is to simply add the axiom

7Our characteristics (a) and (b) correspond to Goble’s criteria of adequacy a) and b) for prima
facie oughts versus all-things-considered oughts [42, p. 257].

8The lower limit logic of every AL has to satisfy certain general desiderata, which will be spelled
out in Section 3.2.

534

Adaptive Deontic Logics

(A) OpA ⊃ OA

to SDLp. Let us call the resulting logic SDL+
p . In this stronger logic, conflicts

at the level of prima facie obligations will be trivialized: if `CL ¬(A1 ∧ . . . ∧ An),
then OpA1, . . . ,OpAn `SDL+

p
B for any B.9 Of course, we could weaken the logic

of O, but then we would lose characteristic (b). This shows that we need a more
refined way to fulfill our aim. We will now show how this can be realized within the
framework of adaptive logics.

Going adaptive What we need is a way to steer between SDLp and SDL+
p ,

avoiding the weakness of the former but also the explosive character of the latter.
More precisely, we need a defeasible, context-sensitive version of (A). This can be
done by assuming that formulas like Opp∧¬Op, Opq∧¬Oq, etc. are false unless and
until proven otherwise.

In AL terminology, such formulas – the negations of defeasible assumptions – are
called abnormalities.10 We will use Ωp to refer to the set of all those abnormalities,
i.e. all formulas of the form OpA ∧ ¬OA.

In an adaptive proof, we can derive formulas on the assumption that certain
abnormalities are false. This is most easily illustrated with an example. Let d stand
for “Nathan washes the dishes”, b for “Nathan plays with Ben” and h for “Nathan
does his homework”. The prima facie obligations that Nathan faces in our second
running example may then be formalized as Opd, Opb and Op(¬b∧ h). An adaptive
proof from Γ = {Opd,Opb,Op(¬b∧h)} in which we try to derive the actual obligation
for Nathan to wash the dishes (Od) may then look as follows:

1 Opd Prem ∅
2 Opb Prem ∅
3 Op(¬b ∧ h) Prem ∅
4 Od ∨ ¬Od SDL ∅
5 Od ∨ (Opd ∧ ¬Od) 1,4; SDL ∅
6 Od 5; RC {Opd ∧ ¬Od}

The fourth element of each line in this proof represents the condition of that line.
This condition is always a (possibly empty) set of abnormalities. After introducing

9To see why, note that in SDLp, conflicting actual obligations are trivialized just as in SDL.
If we moreover allow for the unrestricted application of (A), this means that also conflicts at the
level of prima facie obligations are trivialized.

10Our terminology here and below suggests a link with Makinson’s Default Assumption Conse-
quence Relations [61]. Indeed, as shown in [99], one can establish an exact correspondence between
Makinson’s construction and ALs that use the minimal abnormality strategy.

535

Van De Putte, Beirlaen, and Meheus

the premises on lines 1-3, we have used excluded middle to derive a new formula at
line 4, and then derived line 5 using lines 1 and 4. We use “SDL” as a generic name
for all rules and axioms of SDL. At line 6, Od is derived on the condition that the
abnormality Opd ∧ ¬Od is false. This is done by means of the rule RC (shorthand
for conditional rule) which allows us to push abnormalities to the condition within
an adaptive proof.

Here are two other applications of RC:

...
...

...
...

7 Ob ∨ (Opb ∧ ¬Ob) 2; SDL ∅
8 Ob 7; RC {Opb ∧ ¬Ob}
9 O(¬b ∧ h) ∨ (Op(¬b ∧ h) ∧ ¬O(¬b ∧ h)) 3; SDL ∅
10 O(¬b ∧ h) 9; RC {Op(¬b ∧ h)∧

¬O(¬b ∧ h)}
At this point, the reader may become suspicious. Clearly, Ob and O(¬b ∧ h)

cannot both be true. By means of well-known SDL-principles, we can derive from
our premises that at least one of the two corresponding abnormalities is true:

11 (Opb ∧ ¬Ob) ∨ (Op(¬b ∧ h) ∧ ¬O(¬b ∧ h)) 2,3; SDL ∅
Formulas like the one at line 11 are called Dab-formulas (Dab is shorthand for

“disjunction of abnormalities”). Note that this Dab-formula is derived on the empty
condition. Hence, it is an unconditional consequence of the premises – it cannot
be false, if the premises are true. Moreover, it is minimal: neither of its disjuncts
Opb∧¬Ob or Op(¬b∧h)∧¬O(¬b∧h) is derived on the empty condition in the above
proof.11

At lines 8 and 10 respectively, we relied on the assumption that the first, respec-
tively the second of these abnormalities is false. But line 11 clearly indicates that
those two assumptions cannot be jointly true. So a mechanism is needed to retract
the inferences at lines 8 and 10.

Formally, this is taken care of by a marking definition, which stipulates which
lines are marked, and hence considered “out” at a given stage of an adaptive proof.
How the marking proceeds depends on the so-called adaptive strategy. The logics
SDLr

p and SDLm
p are based respectively based on the Reliability strategy and the

Minimal Abnormality strategy. Let us look at these in turn.

11In fact, neither of them can be derived in this proof on the empty condition, since they simply
do not follow from Γ by SDLp.

536

Adaptive Deontic Logics

Reliability For SDLr
p, a line is marked whenever its condition contains an ab-

normality that is a disjunct of a minimal Dab-formula that has been derived in the
same proof. For instance, in the above example, lines 8 and 10 are marked, whereas
all other lines are not marked. This is indicated by a X-symbol at the end of the
line:

1 Opd Prem ∅
2 Opb Prem ∅
3 Op(¬b ∧ h) Prem ∅
4 Od ∨ ¬Od SDL ∅
5 Od ∨ (Opd ∧ ¬Od) 1, 4; SDL ∅
6 Od 5; RC {Opd ∧ ¬Od}
7 Ob ∨ (Opb ∧ ¬Ob) 2; SDL ∅
8 Ob 7; RC {Opb ∧ ¬Ob} X
9 O(¬b ∧ h) ∨ (Op(¬b ∧ h) ∧ ¬O(¬b ∧ h)) 3; SDL ∅
10 O(¬b ∧ h) 9; RC {Op(¬b ∧ h)∧

¬O(¬b ∧ h)} X
11 (Opb ∧ ¬Ob) ∨ (Op(¬b ∧ h) ∧ ¬O(¬b ∧ h)) 2,3; SDL ∅

In general, lines with an empty condition are never marked. But also those lines
whose condition is not problematic in view of the minimal Dab-formulas in the proof
remain unmarked (witness line 6 in the example). So at the end of the day, some
instances of (A) are trustworthy in the light of the premises, while other instances
of (A) are not. This illustrates the premise-sensitivity of adaptive logics that was
mentioned in Section 1.12

The fact that lines can become marked in a proof means that we cannot simply
define logical consequence in terms of being derivable in a proof. We need a more
robust notion of derivability; this is called final derivability. The basic idea is that
something is finally derivable if and only if it can be derived in a “stable” way.
Spelling out this intuition is not as straightforward as it may seem, as it requires
quantification over extensions of proofs. We refer to Definitions 3.3 and 3.4 in the
next section for the exact details.

12Some may argue that, in light of the premise set, the inferences at lines 8 and 10 were never
rational in the first place. Admittedly, in cases like Γ above, it can easily be seen which prima
facie obligations can make it into actual obligations, and which cannot on pain of triviality. But
then again, such cases are not the only ones we may encounter in practice. Conflicts may exist
between many different prima facie obligations, and they may be very hard to trace. Once we move
to the predicate level, it may even be undecidable whether a certain set of prima facie obligations
is consistent. One may well be calculating up to eternity before ever knowing for sure whether a
certain inference is safe.

537

Van De Putte, Beirlaen, and Meheus

Minimal Abnormality The logic SDLm
p works in exactly the same way as

SDLr
p, except that the marking in both logics is slightly different. Consider the

following extension of our proof:

1 Opd Prem ∅
2 Opb Prem ∅
3 Op(¬b ∧ h) Prem ∅
4 Od ∨ ¬Od SDL ∅
5 Od ∨ (Opd ∧ ¬Od) 1, 4; SDL ∅
6 Od 5; RC {Opd ∧ ¬Od}
7 Ob ∨ (Opb ∧ ¬Ob) 2; SDL ∅
8 Ob 7; RC {Op¬r ∧ ¬O¬r} X
9 O(¬b ∧ h) ∨ (Op(¬b ∧ h) ∧ ¬O(¬b ∧ h)) 3; SDL ∅
10 O(¬b ∧ h) 9; RC {Op(¬b ∧ h)∧

¬O(¬b ∧ h)} X
11 (Opb ∧ ¬Ob) ∨ (Op(¬b ∧ h)∧

¬O(¬b ∧ h)) 2,3; SDL ∅
12 O(b ∨ h) 8; (Inh) {Opb ∧ ¬Ob} ?
13 O(b ∨ h) 10; (Inh) {Op(¬b ∧ h)∧

¬O(¬b ∧ h)} ?

Note first that, since we used the formula at line 8 to derive the one at line 12,
the latter inherits the condition of the former. Likewise, line 13 is derived on the
same condition as line 10. Taken together, lines 12 and 13 indicate that O(b ∨ h) is
true if either of the abnormalities in the Dab-formula at line 11 is false.

Should lines 12 and 13 in this proof be marked? Clearly, there is a problem
with at least one of the two involved abnormalities. Since there is no reason to
prefer the falsehood of one over that of the other, that means both abnormalities
are “unreliable” at this proof stage. However, if we assume that as few abnormalities
as possible are true – until and unless proven otherwise –, then in cases like these we
will assume that only one of both abnormalities is true. And in that case, O(b ∨ h)
does follow.

To turn this idea into a general method for marking lines in an adaptive proof, we
need the concept of a (⊂-minimal) choice set. Suppose that the Dab-formulas at the
current stage of our proof are Dab(∆1),Dab(∆2), A choice set of {∆1,∆2, . . .}
is a set ϕ that contains at least one member of each ∆i. In view of our proof, we
know that (at least) the members of one choice set of {∆1,∆2, . . .} should be true
in view of the premises. However, we are still free to assume that only the members
of a ⊂-minimal choice set of {∆1,∆2, . . .} are true. Suppose now moreover that, for

538

Adaptive Deontic Logics

every such minimal choice set ϕ, we can derive A on a condition Θ that does not
overlap with ϕ. This means that we have sufficient reasons to infer A – since every
minimally abnormal way of interpreting the current proof stage will make A true.
Following this general line of reasoning, lines 12 and 13 will not be marked, but lines
8 and 10 will be marked just as before.

To summarize: one can be cautious to different degrees when reasoning defeasi-
bly; this difference is modeled by the adaptive strategy. According to the reliability
strategy (usually indicated with a superscript r), both lines 12 and 13 are marked.
According to minimal abormality, they are both unmarked. In general, reliability is
slightly weaker (more cautious) than minimal abnormality – see Theorem 3.15.

We now turn to the general characterization of ALs. A critical discussion of the
logics SDLr

p and SDLm
p is postponed until Section 8. There we evaluate SDLr

p and
SDLm

p by various criteria that are introduced in Section 4.

3.2 The standard format
The locus classicus for the standard format is Batens’ [10]; an earlier version of
it appeared in [9]. Here, we will follow the more recent presentation from [12],
indicating minor differences where they occur. We will only explain the general
characteristics, and refer to the works just cited for more details.

Standardly, a logic is defined as a function L : ℘(WL) → ℘(WL), where WL is
the set of formulas in the formal language of L. This also holds for adaptive logics.
For adaptive logics in standard format, the language should at least contain the
classical disjunction ∨.13 For reasons of convenience, we will in this paper assume
that the language also contains the classical negation ¬.

Every logic ALx is defined by a triple:

1. A lower limit logic LLL. This is a reflexive, transitive, monotonic and compact
logic14 that has a characteristic semantics and for which at least the disjunction
∨ behaves classically.

2. A set of abnormalities Ω ⊆ WLLL that is specified in terms of one or several
logical forms.

13The assumption that the language contains a classical disjunction can be questioned on philo-
sophical grounds. In [72; 12] it is shown that one can do without this assumption, if one rephrases
everything in terms of multi-conclusion sequents.

14Let Cn be the consequence operation of a logic L. L is reflexive iff for all Γ, Γ ⊆ CnL(Γ). L
is transitive iff for all Γ, Γ′: if Γ′ ⊆ CnL(Γ), then CnL(Γ ∪ Γ′) ⊆ CnL(Γ). L is monotonic iff for
all Γ, Γ′, CnL(Γ) ⊆ CnL(Γ ∪ Γ′). L is compact iff for all Γ, A, if A ∈ CnL(Γ), then there is a finite
Γ′ ⊆ Γ with A ∈ CnL(Γ′).

539

Van De Putte, Beirlaen, and Meheus

3. An adaptive strategy: Reliability (when x = r) or Minimal Abnormality (when
x = m).

For instance, the adaptive logic SDLr
p from Section 3.1 is defined by the triple

〈SDLp,Ωp, r〉; the logic SDLm
p is defined by 〈SDLp,Ωp,m〉. The logical form that

specifies Ωp is OpA ∧ ¬OA. In general, it is required that only countably many
logical forms specify the set of abnormalities.

In the remainder of this section, we presuppose a fixed LLL, Ω, and strategy
x ∈ {r,m}. We use Dab(∆) to denote the (classical) disjunction of the members of
∆, where it is presupposed that ∆ is a finite subset of Ω.

Proof theory The core idea behind the adaptive proof theory is to take all the in-
ference rules of the lower limit logic for granted and to allow in addition for defeasible
applications of some rules. Defeasible inferences in adaptive proofs are conditional.
Hence, the usual way in which lines in proofs are presented – by a line number,
a formula, and a justification – is enriched by a fourth element: a condition. A
condition in turn is a set of abnormalities.

Suppose some formula A is derived on the condition {B1, B2, . . . , Bn} ⊆ Ω. The
intended reading is that A is derived on the assumption that all the abnormalities
B1, . . . , Bn are false.

Adaptive proofs are characterized by three generic rules and a marking definition.
Let us first discuss the generic rules. In what follows we skip the line numbers and
justification of lines.

Prem If A ∈ Γ:
...

...
A ∅

RU If A1, . . . , An `LLL B:

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B ∨ Dab(Θ):

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ
By means of Prem, any premise may be introduced on the empty condition. Of

course, we do not need any defeasible assumptions in order to state premises. The
unconditional rule (RU) makes it possible to apply any inference rule of LLL in an

540

Adaptive Deontic Logics

adaptive proof. Note that RU may also be applied to lines that were derived on
defeasible assumptions, i.e. where ∆i 6= ∅ for some i ∈ {1, . . . , n}. The assumptions
under which the Ai’s were derived thus carry forward to the line at which B is
derived. In virtue of Prem and RU, ALs inherit all the inferential power of LLL:
any LLL-proof can be rephrased as an AL-proof just by adding the empty condition
in the fourth column and by replacing the respective LLL-rules by Prem or RU.

In Section 3.1, we sometimes referred explicitly to the axiom that was used
to derive a specific line in an adaptive proof. In the remainder we use RU as a
metavariable for all axioms and (derivable) rules of the LLL; whenever useful we
will indicate in footnotes which exact axioms were applied in order to derive a new
line.

The rule that permits the introduction of new conditions in an adaptive proof is
RC, the conditional rule. Suppose that we can derive B∨Dab(Θ) by means of LLL,
i.e. that either B is the case or some of the abnormalities in Θ. Then RC allows us
to derive B on the assumption that none of the abnormalities in Θ is true. Making
this assumption amounts to adding all members of Θ to the condition by means of
RC. Similarly as for RU, in case some of the lines that are used for the inference
step are conditional inferences, we carry forward their conditions as well.

Apart from the possibility to make conditional derivations via RC, a second
distinctive aspect of adaptive proofs is the marking definition, which is applied
at each stage of a proof. A stage is simply a sequence of lines, obtained by the
application of the above rules. For concrete examples, we will identify stages with
their last line. So for example the last stage of the last proof displayed in Section
3.1 is referred to as stage 13.

Dab(∆) is a Dab-formula at stage s of a proof, iff it is the second element of a
line of the proof with an empty condition, and derived by means of RU.15 Dab(∆) is
a minimal Dab-formula at stage s iff there is no other Dab-formula Dab(∆′) at stage
s such that ∆′ ⊂ ∆. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas at
stage s of a proof, let Σs(Γ) = {∆1,∆2, . . .}. Finally, let Us(Γ) = ⋃Σs(Γ).

Definition 3.1 (Marking for ALr). A line l is marked at stage s iff, where ∆ is its
condition, ∆ ∩ Us(Γ) 6= ∅.

In terms of assumptions, this means that according to the reliability strategy, an
assumption is “safe” at stage s iff the corresponding abnormality is not a member of
Us(Γ), and an inference is “safe” at s iff it only relies on assumptions that are safe
at s.

15Here, our terminology differs slightly from that in [12]. Batens uses the term “Dab-formula
at stage s” for any disjunction of abnormalities derived at s, whereas we preserve it for those that
have been derived by means of RU. Batens calls the latter “inferred Dab-formulas”.

541

Van De Putte, Beirlaen, and Meheus

Returning to our example of page 15, we can see that Σ11(Γ) = {{Opb ∧ ¬Ob,
Op(¬b∧h)∧¬O(¬b∧h)}} and hence U11(Γ) = {Opb∧¬Ob,Op(¬b∧h)∧¬O(¬b∧h)}.
This explains why lines 8 and 10 are marked at stage 11 of the proof.

The marking definition for minimal abnormality requires some more terminology.
Recall that, where Σ is a set of sets, ϕ is a choice set of Σ iff for every ∆ ∈ Σ,
ϕ ∩ ∆ 6= ∅. ϕ is a minimal choice set of Σ iff there is no choice set ψ of Σ such
that ψ ⊂ ϕ. Let Φs(Γ) be the set of ⊂-minimal choice sets of Σs(Γ). Marking for
minimal abnormality proceeds as follows:

Definition 3.2 (Marking for ALm). A line l with formula A is marked at stage s
iff, where its condition is ∆: (i) there is no ϕ ∈ Φs(Γ) such that ϕ ∩∆ = ∅, or (ii)
for a ϕ ∈ Φs(Γ), there is no line at which A is derived on a condition Θ for which
Θ ∩ ϕ = ∅.

In our simple example on page 16, Φ13(Γ) = {{Opb∧¬Ob}, {Op(¬b∧h)∧¬O(¬b∧
h)}}. In view of condition (ii) in Definition 3.2, lines 8 and 10 are marked for minimal
abnormality at stage 13, but lines 12 and 13 are not. Note that all of these lines are
marked for reliability.

If a line that has A as its second element is marked at stage s, this indicates
that according to our best insights at this stage, A cannot be considered derivable.
If the line is unmarked at stage s, we say that A is derivable at stage s of the proof.
Since marks may come and go as a proof proceeds, we also need to define a stable
notion of derivability. This definition is the same for both strategies.

Where s is a proof stage, an extension of s is every stage s′ that contains the
lines occurring in s in the same order. Hence putting lines in front of s, inserting
them somewhere in between lines of s, or simply adding them at the end of s may
all result in an extension of s.

Definition 3.3. A is finally derived from Γ at line l of a stage s iff (i) A is the
second element of line l, (ii) line l is unmarked at s, and (iii) every extension of s in
which line l is marked may be further extended in such a way that line l is unmarked
again.

Definition 3.4. Γ `ALx A (A ∈ CnALx(Γ)) iff A is finally derived at a line of a
stage in an ALx-proof from Γ.

Note that in order to be finally derivable, A must be derived at a line l, where
l ∈ N. This means that every formula that is finally derivable from Γ can be finally
derived in a finite proof from Γ. However, we need a meta-level argument to show
that clauses (ii) and (iii) in Definition 3.3 are satisfied, and hence that Γ `ALx A.

542

Adaptive Deontic Logics

Semantics On the supposition that LLL is characterized by a model theoretic
semantics (with the semantic consequence relation
LLL), one can also give a se-
mantics for ALx. The rough idea is as follows: from the set of LLL-models of a
given premise set, ALx selects a subset of “preferred” models. Whatever holds in
those preferred models, follows by ALx.16

What counts as a preferred model depends on the strategy used. For minimal
abnormality, only those models of the premise set are selected which verify a ⊂-
minimal set of abnormalities. For reliability, a threshold of unreliable abnormalities
(with respect to a given premise set Γ) is defined, and only the models that do not
verify any abnormalities other than the unreliable ones, are selected.

To define the ALx-semantics in exact terms, we need some more notation. Va-
lidity of a formula A in a model M will be written as M |= A. M is an LLL-model
of Γ iff M |= A for all A ∈ Γ. MLLL(Γ) denotes the set of LLL-models of Γ. Where
M is an LLL-model, its abnormal part is given by Ab(M) =df {B | B ∈ Ω,M |= B}.

For reliability, the selection of preferred models is in some sense analogous to the
marking definition. Dab(∆) is a minimal Dab-consequence of Γ iff Γ
LLL Dab(∆)
and there is no ∆′ ⊂ ∆ for which Γ
LLL Dab(∆′). Where Dab(∆1),Dab(∆2), . . . are
the minimal Dab-consequences of Γ, let Σ(Γ) = {∆1,∆2, . . .}. Let U(Γ) = ⋃Σ(Γ).
We say that U(Γ) is the set of unreliable formulas with respect to Γ.

Definition 3.5. An LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 3.6. Γ
ALr A iff A is verified by all reliable models of Γ.

For minimal abnormality, the semantics’ simplicity stands in sharp contrast to
the intricate marking definition:

Definition 3.7. An LLL-model M of Γ is minimally abnormal iff there is no LLL-
model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 3.8. Γ
ALm A iff A is verified by all minimally abnormal models of Γ.

In the remainder, we will denote the set of ALx-models of a set Γ byMALx(Γ).

16Note that this is similar to the semantics of circumscription (where models are selected in
which the abnormal predicates have a minimal extension) and Shoham-style preferential semantics
(where all the ≺-minimal models are selected, for a given order ≺ on the models of a premise
set). However, in ALs, the selection depends on purely syntactic properties of the models, viz. the
formulas (more specifically, the abnormalities) that they verify. This in turn gives ALs fairly strong
meta-theoretic properties – see Section 3.3.

543

Van De Putte, Beirlaen, and Meheus

Upper Limit Logic The so-called upper limit logic of ALx is defined as the
Tarski-logic17 obtained by adding all negations of abnormalities as axioms to LLL.
That is, where Ω¬ = {¬A | A ∈ Ω}, Γ `ULL A iff Γ ∪ Ω¬ `LLL A. By the compact-
ness of LLL, Γ `ULL A iff there are B1, . . . , Bn ∈ Ω such that
Γ ∪ {¬B1, . . . ,¬Bn} `LLL A. ALx can be seen as steering a middle course be-
tween LLL and ULL (see Theorem 3.15 below).

In our running example, SDL+
p is the upper limit logic of both SDLr

p and SDLm
p .

Note that in general, ULL does not depend on the strategy of ALx.

3.3 Some meta-properties of ALs in standard format
Once defined within the standard format, it is guaranteed that an AL satisfies a
number of meta-properties. We only mention some of them here for the ease of
reference. Their proofs can be found in [10].

First of all, the dynamic proof theory is sound and complete with respect to the
semantics of ALx:

Theorem 3.9 (Soundness and Completeness). Γ `ALx A iff Γ
ALx A.

It follows from this result that one can rely on semantic considerations in order to
prove that a formula A is finally derivable from a given Γ. We will in the remainder
rely freely on Theorem 3.9, switching between the semantic and proof theoretic
consequence relation where suitable.

Recall that the semantics of an AL consists in selecting a subset of the LLL-
models of Γ. Now, when a model M is not selected, we should be able to justify this
in terms of another model M ′ that is selected, and is more normal than M . This is
what the following theorem gives us:

Theorem 3.10 (Strong Reassurance). If M ∈MLLL(Γ)−MALx(Γ), then there is
an M ′ ∈MALx(Γ) such that Ab(M ′) ⊂ Ab(M).

In other words, the preference relation defined in terms of ⊂ and the abnormal
part relation is smooth with respect to every set MLLL(Γ).18 It is well-known
that a selection semantics based on such a smooth preference relation warrants the
following properties in turn:19

Theorem 3.11 (Consistency Preservation). If Γ has LLL-models, thenMALx(Γ) 6=
∅. Hence, Γ is ALx-trivial iff Γ is LLL-trivial.

17A Tarski-logic is a logic whose consequence relation is reflexive, monotonic, and transitive.
18A partial order ≺ is smooth with respect to a set X iff for all x ∈ X, either x is ≺-minimal in

X, or there is some ≺-minimal y ∈ X such that y ≺ x.
19See e.g. [60].

544

Adaptive Deontic Logics

Theorem 3.12 (Cumulative Indifference). If Γ′ ⊆ CnALx(Γ), then CnALx(Γ) =
CnALx(Γ ∪ Γ′).

In the literature on non-monotonic logics, cumulative indifference is often di-
vided into two properties: cumulative transitivity or cut (if Γ′ ⊆ CnALx(Γ), then
CnALx(Γ ∪ Γ′) ⊆ CnALx(Γ)) and cumulative or cautious monotonicity (if Γ′ ⊆
CnALx(Γ), then CnALx(Γ) ⊆ CnALx(Γ ∪ Γ′)).

Strong reassurance, consistency preservation, and cumulative indifference are
generally considered desirable for non-monotonic consequence relations, see e.g. [61].
It speaks in favor of ALs (in standard format) that they satisfy each of these prop-
erties. In particular, cautious monotonicity is a very intuitive property: if a formula
follows from a premise set Γ, then it ought to follow from any Γ′ that is obtained
by extending Γ with some logical consequences of Γ. The extended premise set
Γ′ contains no genuinely new information, as the additions are in a sense already
contained in Γ.

Suppose that Γ and Γ′ are LLL-equivalent, i.e. CnLLL(Γ) = CnLLL(Γ′). It follows
that they have the same set of LLL-models and that U(Γ) = U(Γ′). Hence in view
of the semantics, they will also have the same ALx-models, and hence be ALx-
equivalent. So we have a fairly straightforward criterion to decide when two premise
sets are equivalent according to ALx:20

Theorem 3.13. If CnLLL(Γ) = CnLLL(Γ′), then CnALx(Γ) = CnALx(Γ′).

The next property on the list is specific to ALs, as it concerns the notion of an
abnormality. It will be of particular use in Sections 5-7.

Say a premise set Γ is normal iff Γ ∪ {¬A | A ∈ Ω} is not LLL-trivial; in other
words, iff it is ULL-consistent. The theorem states that every adaptive logic is as
powerful as its upper limit logic when normal premise sets are concerned:21

Theorem 3.14 (ULL-recapture). Γ is a normal premise set iff
CnALx(Γ) = CnULL(Γ).

The last theorem simply recalls the relation between LLL, ALr, ALm and ULL,
which was illustrated in Section 3.1:

Theorem 3.15. CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

20Similar criteria for equivalence are discussed in [14]; an extended and updated version of this
paper can be found in [87, Chapter 4].

21Our name for the theorem is inspired by discussions in paraconsistent logic, where a similar
property is called “classical recapture” [81].

545

Van De Putte, Beirlaen, and Meheus

3.4 Variants and extensions of the standard format
In this section, we briefly consider two variants of the standard format that are
useful in the context of deontic reasoning; we will occasionally refer back to both
variants in the remainder of this paper. We focus on the essential ideas in both
cases; the metatheory of these (and many other) variants of the standard format is
studied at length in [87, Chapter 5].

Normal Selections The minimal abnormality strategy corresponds to what is
called the skeptical solution to the problem of multiple extensions in default logic.22

That is, A is finally ALm-derivable from Γ if and only if, for every maximal set
∆ ⊆ Ω¬ such that Γ ∪∆ is LLL-satisfiable, Γ ∪∆ `LLL A.23

Rather than taking the universal quantification over such maximal sets, one may
also quantify existentially over them. That is, say Γ `ALn A iff there is a maximal
set ∆ ⊆ Ω¬ such that Γ∪∆ `LLL A. The superscript n refers to “normal selections”,
which is the name of the adaptive strategy of the resulting logics. Proof-theoretically,
such logics are characterized in exactly the same way as ALs in standard format,
with the only exception that the marking definition is simplified:

Definition 3.16 (Marking for Normal Selections). A line l in a proof with condition
∆ is marked at stage s iff Dab(∆) is derived on the empty condition at s.

The consequence relation `ALn is usually very strong, and yet does not trivialize
premise sets as long as they are LLL-consistent. However, it will not in general
be closed under LLL. More generally, many of the nice properties we discussed in
Section 3.3 can fail for `ALn .

To understand this, consider the logic SDLn
p, defined by the triple

〈SDLp,Ωp, normal selections〉 (1)

Let Γ = {Opp,Opq,¬O(p ∧ q)}. Note that this premise set has the following
minimal Dab-consequence:

(Opp ∧ ¬Op) ∨ (Opq ∧ ¬Oq) (2)

22Analogous problems arise in Input/Output-logic, inheritance networks, and abstract argumen-
tation, giving rise to similar distinctions between less and more cautious “modes of reasoning” –
see [87, Sect. 2.8] for more discussion.

23This is a well-known property that is often used in the metatheory of ALs; see e.g. [99] for a
proof of it.

546

Adaptive Deontic Logics

Since this is a minimal Dab-consequence of Γ, both Op and Oq are individually
compatible with Γ. Hence, both Op and Oq are finally SDLn

p-derivable from Γ,
on the respective conditions {Opp ∧ ¬Op} and {Opq ∧ ¬Oq}. However, Op ∧ Oq is
not finally SDLn

p-derivable from Γ, since one needs to rely on the falsity of both
abnormalities in order to obtain this conclusion. This shows that the consequence
relation of SDLn

p is not closed under the rule of conjunction, even if ∧ behaves
classically in the lower limit logic.

In the context of deontic logic, normal selections has been used to characterize
one variant of Horty’s approach to conflicting obligations [89]. Likewise, it has been
applied to characterize constrained Input/Output-logics that are defined in terms of
the join of the maximal unconflicted sets of generators [88]. We will shortly return
to the latter systems in Section 9.2.

Prioritized adaptive logics Another useful variation of the standard format is
obtained by distinguishing between various types of abnormalities, and by giving
priority to some of these when minimizing abnormality. This can be done in at
least three clearly distinct ways – see [98] for a detailed study of these. Here we
will only discuss one of these three, viz. the so-called lexicographic adaptive logics
first presented in [102]; we moreover confine ourselves to the minimal abnormality-
variant of these systems. Although these logics can be fully characterized in terms
of a dynamic proof theory, we focus on their semantics, which is a straightforward
generalization of the ALm-semantics.

Let 〈Ωi〉i∈I (for I ⊆ N) be a sequence of sets of abnormalities. Intuitively, the
idea is that we consider the members of Ω1 to be the “worst” abnormalities; those
of Ω2 as “slightly less problematic (yet still abnormal)”, etc. Thus, we want to make
sure when selecting models, that we first minimize with respect to Ω1, next with
respect to Ω2, etc. This is done in terms of a lexicographic order @ on the abnormal
parts of the models:

Definition 3.17. Where ∆,∆′ ⊆ ⋃i∈I Ωi: ∆ @ ∆′ iff there is a j ∈ I such that (1)
for all k < j (if any), ∆ ∩ Ωk = ∆′ ∩ Ωk and (2) ∆ ∩ Ωj ⊂ ∆′ ∩ Ωj.

The preference relation@ on abnormal parts of models yields a smooth preference
relation on every set MLLL(Γ) [102]. Hence, just as for minimal abnormality, we
can select the @-minimal models of a premise set and define semantic consequence
in terms of those models. Then it is again a matter of routine to show that this
consequence relation satisfies all the nice properties of the standard format.

For an illustration of this format of ALs, let us suppose that prima facie obliga-
tions come in various degrees i ∈ N of importance, where degree 1 is most important,

547

Van De Putte, Beirlaen, and Meheus

degree 2 is slightly less important, etc. Let Op
iA denote that A is prima facie obliga-

tory, with degree i. Then intuitively, we expect that from {Op
1p,O

p
2q,O

p
2r,¬O(p∧q)}

we can derive Op but not Oq. Moreover, we also expect Or to be derivable, since r
is not involved in the conflict. This is exactly the result we obtain if we define our
sequence of sets of abnormalities as 〈{Op

iA ∧ ¬OA}〉i∈N.
The format of lexicographic ALs is relatively new; the first ideas for it date back

to 2010. It has been applied to deontic logic in [103], where a lexicographic variant
of the logic from [67] is proposed.

3.5 Further reading
The first ALs were developed a little before 1980 by Diderik Batens, as a new, “dialec-
tical” aproach to (non-explosive) reasoning with inconsistent theories.24 Nowadays
these logics are called “inconsistency-adaptive logics” – more on them in Section 7.25

From its first days, this research was pluralist in the sense that various (mono-
tonic) paraconsistent logics were used to define ALs. Around the mid 1990s, the
idea emerged that besides inconsistency, various other types of “abnormality” with
respect to classical (propositional or first order) logic can be used as a basis to de-
fine ALs – see e.g. [6]. The resulting logics are nowadays called “corrective ALs”,
in contradistinction to “ampliative” ALs, which only saw light around 2000.26 The
latter are, roughly, ALs that characterize a given type of inference which goes beyond
one’s chosen standard of deduction (usually first order CL), such as compatibility
[13], inductive generalization [11], abduction [69; 19], etc.

The notion of an adaptive strategy was only fully developed in the 1990s – see
in particular [7]. Before that, only the proof theory of reliability and the semantics
of minimal abnormality were known.

The standard format as presented in this section, was introduced in [10]. Its
further development in turn facilitated applications in various new areas during the
last decade, ranging from foundations of set theory [108], over causal discovery [56;
20], to deontic logic.

For a recent and compact introduction into ALs (with a focus on their application
to paraconsistent reasoning), we refer to [12]. A thorough discussion of the standard
format and several of its generalizations can be found in Part I of [87]. Slightly older
papers that present the basics of ALs are [9] and [10].

ALs have been compared to various other generic frameworks for defeasible

24In [4], Batens refers to an (unpublished) manuscript from 1979, “Dynamische processen en
dialectische logica’s”, as the first paper on this subject.

25The term “adaptive” appears to be introduced in 1981 [4].
26See e.g. [69] for a discussion of this distinction.

548

Adaptive Deontic Logics

and/or non-monotonic reasoning in the past, including Makinson’s default assump-
tion consequence relations [99], abstract argumentation [95], and modal logics [2].
There is also an interesting line of research on the relation between ALs and Rescher-
Manor consequence relations for “contextualized” reasoning with inconsistent
premises [82]. In fact, the logics SDLr

p, SDLm
p , and SDLn

p can be seen as adaptive
variants of the Free, the Strong, and the Weak Rescher-Manor consequence relation
respectively [68].

4 Revisionist adaptive deontic logics

The logics SDLr
p and SDLm

p from Section 3 reserve the SDL-operator O for actual
obligations, while they allow for the non-trivial formalization of conflicting (prima
facie) obligations in terms of the new operator Op. Via this grammatical enrichment,
we obtain a conflict-tolerant adaptive logic, without having to revise any of the core
principles of SDL. Indeed, SDLx

p is built on top of SDLp, which is in turn an
extension of SDL.

Instead of extending the grammar of SDL while keeping its core principles intact,
we may also accommodate conflicts by keeping the grammar of SDL intact while
giving up some of its core principles. This means that we revise the underlying logic,
to use the terminology from [42]. We therefore call the adaptive logics based on such
“weak” deontic logics revisionist adaptive deontic logics. The aim of sections 5–7 is
to present and discuss this branch of ALs.

We provide some general insight into the various types of revisionist (adaptive)
deontic logics that are on the market in Section 4.1. Next, we will introduce some
conceptual machinery that allows us to compare and evaluate such logics (Section
4.2).

4.1 SDL: three ways of giving it up (while keeping it)

If we are to reason non-trivially in the face of conflicting obligations, we need to
give up at least some part of SDL. For the time being, let us focus on conflicts of
the type OA ∧ O¬A (we will consider several other types below). First, if the logic
of ¬ is classical, then the (D)-axiom needs to be given up in order to avoid that
everything follows from OA∧O¬A. This means we are left with the minimal normal
modal logic K, which is fully characterized by CL, the rule of necessitation (N) and
the normality schema (K).

But giving up (D) alone will not do. As soon as (Agg), (Inh), and Ex Contra-
dictione Quodlibet (ECQ) are valid, deontic conflicts result in deontic explosion, i.e.

549

Van De Putte, Beirlaen, and Meheus

the conclusion that everything is obligatory:27

OA,O¬A ` OB (DEX)

Suppose OA and O¬A. By (Agg), O(A∧¬A). By (ECQ) and (Inh), OB. Since
all three of these principles are derivable within K, deontic conflicts imply deontic
explosion also in this minimal logic.

So at least one of (Agg), (Inh), or (ECQ) has to go. It can be shown – and
will be shown in the next three sections – that giving up either (Agg), or (Inh), or
(ECQ) is sufficient in order to accommodate conflicts of the type OA ∧ O¬A.28 So
in the remainder we will focus on these three principles, rather than on the “official”
characterization of SDL in terms of (N), (K) and (D).

In Section 5, we will consider deontic logics that are obtained by giving up
(Inh).29 This means that e.g. O(A∧B) does not imply OA, and OA does not imply
O(A∨C) in these logics, absent further information about A, B, and C. As a result,
O(A∧B) can be true for conflicting (i.e., mutually incompatible) A and B, but this
need not imply that OC is true for any arbitrary (non-contradictory) C.

Section 6 is concerned with conflict-tolerant deontic logics that invalidate (Agg).
Thus, in these logics, OA and OB can be true without O(A ∧ B) being true. As a
result, the step from OA ∧ O¬A to O(A ∧ ¬A) is blocked and we cannot get to the
conclusion that any B is obligatory.

Finally, Section 7 focuses on alternative, weaker accounts of negation, which
invalidate (ECQ). This allows us to keep (D).

So there are several, well-studied ways to avoid (DEX) and thus to accommodate
deontic conflicts within a formal logic. However, giving up principles of SDL comes
at a price. As we will show below, these principles are at the heart of intuitively
plausible patterns of inference – see Section 4.2 for a number of examples. Giving
up the principles means that one either has to deny head-on the validity of those
inferences, or to explain them as enthymatic arguments, i.e. arguments with a num-
ber of tacit, hidden premises. Even if such a strategy is successful to some extent, it
turns out very difficult to develop a general logical (and philosophically justifiable)
procedure that allows one to obtain such tacit premises for a given case.

Going adaptive allows us to give up principles, whilst keeping them as much as
possible, i.e., as long as they do not lead to deontic explosion. The core idea behind

27(ECQ) is the (classically valid) inference from A,¬A to arbitrary B.
28One may of course give up even more principles, but we will focus on the simple cases where

only one of the three is given up. All that we write on revisionist deontic logics and their adaptive
extensions applies mutatis mutandis to such weaker logics.

29In some but not all of these logics, also (Agg) is restricted. In all of them, classical logic is
preserved for the connectives and replacement of equivalents (RE) holds.

550

Adaptive Deontic Logics

revisionist adaptive deontic logics is to start from a monotonic, conflict-tolerant
deontic logic L and to try to apply the missing SDL-rule(s) in a premise-sensitive,
defeasible way, thus steering a middle course between the excesses of SDL and the
inferential weakness of L.

Before we continue, an important side-remark is in place. In [42, Sect. 5.4], Goble
also develops two new, monotonic conflict-tolerant deontic logics that are inferen-
tially very powerful, in the sense that they validate (a variant of) (Agg), (DDS), and
(Dist). The basic idea behind these logics is to give up the principle of extensionality
(RE), and to opt for a weaker notion of “analytic equivalence” instead. In recent
(unpublished) work, Anglberger and Korbmacher have developed a semantics for
the resulting logics, based on truthmaker semantics for hyperintensional logics [32].
We will not discuss these new systems in the present paper, since it is as yet unclear
whether and how sensible adaptive logics based on them could be developed.

4.2 Criteria for comparison and evaluation
When discussing and comparing the ALs defined in the next three sections, we will
look at two aspects in particular. First, we will consider various types of deontic
conflicts, and compare the logics in terms of which of these types they can accom-
modate properly. Second, we look at how the logics behave with respect to specific
benchmark examples known from the literature.

Explosion principles In the specific context of conflict-tolerant deontic logics, it
is common to demand some additional consistency constraints on top of the con-
sistency preservation property from Theorem 3.11. In particular, we want to take
great care to avoid the validity of explosion principles, i.e. principles according to
which a set of arbitrary formulas is derivable given a (specific type of) normative
conflict. These can come in various types, as we now explain.

We already referred to the principle of deontic explosion (DEX) in Section 4.1. In
[93], some more refined explosion principles are specified that serve as touchstones for
measuring the conflict-tolerance of various deontic logics. Here are some examples:30

OA,O¬A ` OB ∨ O¬B (3)
OA,O¬A ` OB ∨ PB (4)
OA,O¬A ` OB ∨ ¬O¬B (5)
OA,O¬A ` PB (6)

30Recall that we treat O and P as primitive operators unless stated otherwise; cf. Section 2.

551

Van De Putte, Beirlaen, and Meheus

Principles (3)-(6) weaken the right-hand side of (DEX). We can devise further –
equally undesirable – explosion principles by strengthening its left-hand side via the
addition of logically unrelated information. For instance, where γ is any subset of
{OD,¬O¬D,PE,¬O¬E,¬OF,¬O¬F,PG,P¬G},

{OA,O¬A} ∪ γ ` OB ∨ PB (7)

More fine-grained explosion principles may be obtained by stipulating that principles
like (3)-(7) are avoided even for B that satisfy certain additional constraints. For
instance, Goble showed that the following principle is valid in deontic logics which
restrict (Agg) to conjunctions of jointly consistent obligations [41]:

If 6` ¬B, then OA,O¬A ` OB (8)

The above forms of explosion are all still limited in (at least) one sense, in
that they are focused on binary conflicts between obligations, i.e. formulas of the
form OA ∧ O¬A. There seems to be no reason to us as to why one should focus
solely on such types of conflicts between norms, ignoring all others. For instance,
there seems to be no logical reason why self-contradictory norms should be excluded
– if an authority can issue mutually incompatible commands, then why can’t it
issue (highly complex but) self-contradictory commands as well? Likewise, why not
consider conflicts between obligations and permissions?

Consider the following variant of an example from [?, p. 305]: a couple you know
is having a party. One of them leaves a message: “I am sorry, you cannot come –
it’s close friends only.” The other also leaves a message: “you can surely come to the
party if you like – there will anyway be plenty of food for everyone.” Absent further
information, the resulting norms can best be formalized as ¬Pp and Pp, where p
stands for “go to the party”. Even if we assume that O and P are interdefinable,
this does not result in a conflict of the form OA ∧ O¬A, but rather in a direct
contradiction, i.e. OA ∧ ¬OA.

So all in all, there seem to be reasons for taking into account explosion principles
such as the following:

OA,P¬A ` OB (9)
O(A ∧ ¬A) ` OB (10)

Candidate conflict-tolerant deontic logics should be tested not only for the valid-
ity of (DEX), but also for the validity of more refined principles like (3)-(8) above.
In doing so, we do not consider it the task of any such logic to invalidate all forms

552

Adaptive Deontic Logics

of explosion; rather, we treat the explosion principles as a useful way to compare
and classify given deontic logics.

In the next two sections, we will focus on the following explosion principles –
apart from (DEX):

O(A ∧ ¬A) ` OB (DEX-O⊥)
P(A ∧ ¬A) ` PB (DEX-P⊥)
OA ∧ P¬A ` B (DEX-OP¬)
OA ∧ ¬PA ` B (DEX-O¬P)

We choose these five principles since they allow us to compare the (non)explosive
behavior of the various logics discussed below in a succinct way. In Section 7 we will
consider some additional forms of explosion that can be avoided by using paracon-
sistent deontic logics.

Benchmark examples. Research in the fields of deontic logic and non-monotonic
logic is to a large extent driven by a relatively small set of benchmark examples
aimed at testing the formal system in question (the reader may be familiar with
Tweety the penguin, the good Samaritan, and the gentle murderer, just to name
a few). When faced with such examples, counter-intuitive outcomes are taken to
reflect badly on a formal system, so these benchmark examples provide a criterion
for checking whether a formal system meets our informal intuitions.

A warning is in order here, however. The fact that a formal system provides
intuitive outcomes for the relevant benchmark examples is not a sufficient condition
for positively evaluating the system in question. For instance, the system may be
devised in an ad hoc manner to deal specifically with a small set of examples, at
the cost of violating one or more rationality postulates. Moreover, some of these
examples may reflect intuitions on which not everyone agrees, leaving room for
dispute. In some cases the fact that our logic does not give us the expected outcome
for some concrete example may inform us that our intuitions are perhaps incoherent,
whence this is not in itself a sufficient reason to reject the logic. So, as was the case
with explosion principles, we will use our benchmark examples as means to classify
given logics, not as absolute criteria for their usefulness.31

With this warning in mind, let us list a number of examples which have been
used to evaluate conflict-tolerant deontic logics studied in the literature. For each

31For a critical discussion of the use of examples as intuition-pumps in the evaluation of logics
for defeasible reasoning, see [78].

553

Van De Putte, Beirlaen, and Meheus

of them, we indicate some of the basic SDL-principles which allow us to infer the
conclusion from the given premises. We use (CL) as a generic name for all inferences
that are CL-valid.

1. The Smith Argument. — (Agg), (Inh), (CL)

(i) Smith ought to fight in the army or perform alternative service
to his country (O(f ∨ s)).

(ii) Smith ought not to fight in the army (O¬f).
∴ (iii) Smith ought to perform alternative service to his country (Os).

2. The Jones Argument. — (Inh), (CL)

(i) Jones ought to tell a joke and sing a song (O(j ∧ s)).
∴ (ii) Jones ought to tell a joke (Oj).

3. The Roberts Argument, version 1. — (Inh), (CL)

(i) Roberts ought to pay federal taxes and register for national
service (O(t ∧ r)).

(ii) Roberts ought not to pay federal taxes but volunteer to help
the homeless in his community (O(¬t ∧ v)).

∴ (iii) Roberts ought to register for national service and ought to
volunteer to help the homeless (Or ∧ Ov).

4. The Roberts Argument, version 2. — (Inh), (CL), (Agg)

(i) Roberts ought to pay federal taxes and register for national
service (O(t ∧ r)).

(ii) Roberts ought not to pay federal taxes but volunteer to help
the homeless in his community (O(¬t ∧ v)).

∴ (iii) Roberts ought to register for national service and volunteer
to help the homeless (O(r ∧ v)).

5. The Thomas Argument. — (Inh), (Agg), (CL)

554

Adaptive Deontic Logics

(i) Thomas ought to pay federal taxes and either fight in the army
or perform alternative service to his country (O(t ∧ (f ∨ s))).

(ii) Thomas ought neither to pay federal taxes nor fight in the army
(O(¬t ∧ ¬f)).

∴ (iii) Thomas ought to perform alternative service to his country (Os).

6. The Natascha Argument, version 1. — (K) / (Inh), (Agg), (CL)

(i) Natascha ought to take Sarah to the concert (Os).
(ii) Natascha ought to take Martin to the concert (Om).
(iii) It is not the case that Natascha ought to take Sarah and Martin to

the concert (¬O(s ∧m)).
(iv) If she takes Sarah, she ought to buy an extra ticket (O(s ⊃ t)).
(v) If she takes Martin, she ought to buy an extra ticket (O(m ⊃ t)).
∴ (vi) Natascha ought to buy an extra ticket (Ot).

7. The Natascha Argument, version 2. — (K) / (Inh), (Agg), (CL)

(i) Natascha ought to take Sarah to the concert (Os).
(ii) Natascha ought to take Martin to the concert (Om).
(iii) Natascha ought not to take Sarah and Martin to the

concert (O¬(s ∧m)).
(iv) If she takes Sarah, she ought to buy an extra ticket (O(s ⊃ t)).
(v) If she takes Martin, she ought to buy an extra ticket (O(m ⊃ t)).
∴ (vi) Natascha ought to buy an extra ticket (Ot).

The Smith argument was first presented by Horty [49; 50; 52; 53]; the name “Smith”
is due to Goble [43; 42]. The Jones, Roberts, and Thomas arguments are variations
on examples from [43; 42]. The Natascha argument is new.

The validity of these arguments is not undisputed. The Jones argument, for
instance, which concerns the application of the inheritance principle (Inh), has been
called into question [34; 45; 74]. The Natascha argument concerns the derivation
of a so-called floating conclusion, a conclusion entailed by each of two mutually
conflicting obligations. The status of such conclusions is debatable.32

32See [51; 57; 78] for arguments pro and contra the derivation of floating conclusions in non-
monotonic logic. In a moral context, the derivability of floating conclusions has been defended by
Brink [26].

555

Van De Putte, Beirlaen, and Meheus

In both versions of the Natascha argument, the idea behind the third premise
is that for some reason or another, Natascha cannot possibly take both Sarah and
Martin to the concert — e.g. because there is only one additional ticket left at the
counter. In the absence of alethic modalities, we translate information concerning
what is (im)possible directly into the language of SDL. While the first version of
this argument relies on the principle of “ought implies can” (OIC) and contraposi-
tion, the second relies on the stronger principle of “permitted implies can” (PIC),
interdefinability of O and P, and contraposition. Both (OIC) and (PIC) are contro-
versial.33 However, here we focus merely on the formal premises as such, not on the
question whether they represent the example in the most natural way.

5 Adaptive inheritance
The first type of conflict-tolerant deontic logics mentioned in Section 4.1 is obtained
by giving up or weakening the rule of inheritance (Inh). In the present section, we
discuss one specific subclass of such logics, showing how they can be strengthened
by going adaptive.

5.1 Logics with unconflicted inheritance
Restricting inheritance In a number of papers, Goble presented the LUM-
family of deontic logics.34 The language of these logics is just that of SDL, with
P defined as the dual of O. The logics in the LUM-family do not simply reject
inheritance, but replace it with a weaker principle that accounts for a number of
intuitive applications of (Inh). This requires some explanation.

Let UA =df ¬(OA ∧ O¬A) denote that A is unconflicted. All LUM-systems
extend CL with the necessitation rule (N), the replacement of equivalents rule (RE),
as well as the following rule of “unconflicted” inheritance (RUM):

If A ` B, then UA,OA ` OB (RUM)

(RUM) allows for those applications of the inheritance rule (Inh) which involve
only unconflicted obligations. In terms of permission, the rule states that whenever
A is both obligatory and permitted, then whatever is logically weaker than A is
also obligatory. This rule is therefore also sometimes referred to as “permitted
inheritance” (RPM).

33See [110] for a comprehensive discussion of the first of these two principles.
34We adopt the presentation and nomenclature from [43]. For more details and references, we

refer to Section 5.3.

556

Adaptive Deontic Logics

In addition to (N), (RE), and (RUM), the systems in the LUM-family are de-
fined in terms of (a selection among) (P), (Agg), and “consistent” and “permitted”
aggregation rules (C-Agg) and (P-Agg):

If 6` ¬(A ∧B) then OA,OB ` O(A ∧B) (C-Agg)
PA,PB,OA,OB ` O(A ∧B) (P-Agg)

Note that, since P is the dual of O, the antecedent of (P-Agg) just means that
A and B are obligatory, and that neither of their negations are obligatory. The
systems LUM.a-LUM.c extend CL by adding:

LUM.a: (N), (RE), (RUM), (Agg)
LUM.b: (N), (RE), (RUM), (P), (C-Agg)
LUM.c: (N), (RE), (RUM), (P), (P-Agg)

A semantics for these three logics can easily be obtained, following the well-
known generalization of Kripke-semantics into neighbourhood semantics – cf. [29,
Chapters 7 & 8] and [85]. Say a LUM-model is of the type M = 〈W,w0, nO, v〉,
where W is a non-empty set of worlds, w0 ∈ W is the actual world, nO : W →
℘(℘(W)) maps each world w ∈ W to the set of obligatory propositions at w, and v
is a valuation function. The semantic clause for O in such models reads:

(SC-O) M,w |= OA iff |A|M ∈ nO(w)

Truth in a model is defined as usual, viz. as truth at w0; semantic consequence is
defined by quantifying over all models in which the premises are true.

This gives us the minimal classical modal logic E, which is characterized fully by
adding (RE) to CL. Imposing a number of restrictions on such models, we obtain
the additional axioms and rules listed above. These conditions are:

(CO-RUM) if X ∈ nO(w), W \X 6∈ nO(w), and X ⊆ Y , then Y ∈ nO(w)
(CO-N) W ∈ nO(w)
(CO-P) ∅ 6∈ nO(w)
(CO-Agg) if X ∈ nO(w) and Y ∈ nO(w), then X ∩ Y ∈ nO(w)
(CO-C-Agg) if X ∈ nO(w), Y ∈ nO(w), and X ∩ Y 6= ∅, then X ∩ Y ∈ nO(w)
(CO-P-Agg) if X ∈ nO(w), Y ∈ nO(w), W \X 6∈ nO(w), and W \Y 6∈ nO(w), then

X ∩ Y ∈ nO(w)

For an extensive comparison and discussion of the various LUM-logics, we refer
to [42, Sect. 5.3]. In the remainder, we will focus on ALs obtained from them.

557

Van De Putte, Beirlaen, and Meheus

Going adaptive To understand the specific motivation for going adaptive in the
case of the LUM-logics, it will be useful to reconsider the benchmark examples
from Section 4.2. The Smith and Jones arguments are invalid in all three of the
LUM-logics, but valid once we add the premises U¬f (for the Smith argument)
and U(j ∧ s) (for the Jones argument). The Roberts and Thomas arguments are
more problematic. In the Roberts argument, for instance, we cannot just add the
premises U(t ∧ r) and U(¬t ∧ v) in order to render the argument valid, since doing
so would trivialize the premise set.35

More generally, it is problematic that in the LUM-systems we need to add the
‘tacit’ information that a formula is unconflicted before we can apply the restricted
distribution rule. This worry was first raised in [94], and acknowledged by Goble:

For one thing, the additional non-conflict condition on the distribution
rule seems rather ad hoc; there is little to recommend it except its suc-
cess in disarming deontic explosion. For another, it seems risky to try
to account for the plausibility of arguments by considering them en-
thymematic for straight-forwardly valid arguments. In context it may be
all right to accept the alleged tacit premise, but we cannot rely on that.
With more complicated arguments it might be quite uncertain what un-
spoken premises of non-conflict are implicitly present [43, pp. 210-211].

Both problems can be overcome by strengthening the LUM-systems within the
adaptive logics framework. On the one hand, we can validate all those applications
of distribution that do not lead to deontic explosion. On the other hand, it is the
logic itself that fixes which applications of distribution are tolerable; no interference
of any user is required for this. We explain how this works below, focusing on
the adaptive extensions of the logic LUM.a. For the other logics in this family, the
difficulties and properties are roughly analogous. We will point out salient differences
as we go along.

The logics LUM.ax A natural way of strengthening Goble’s LUM-systems is to
work under the assumption that obligations are unconflicted, so that an obligation
OA behaves abnormally in case it is conflicted, i.e. in case ¬UA or, equivalently,
OA ∧ O¬A:

Ω = {OA ∧ O¬A | A ∈ W}

35For Roberts, first note that ` (t∧r) ⊃ ¬(¬t∧v). By (RPM), ¬O¬(t∧r) ⊃ (O(t∧r) ⊃ O¬(¬t∧v))
or, equivalently, O¬(t∧r)∨(O(t∧r) ⊃ O¬(¬t∧v)). By premises (i) and (ii) of the Roberts argument,
we get (O(t ∧ r) ∧O¬(t ∧ r)) ∨ (O(¬t ∧ v) ∧O¬(¬t ∧ v)) by CL. So adding U(t ∧ r) and U(¬t ∧ v)
would make the argument CL-inconsistent. For Thomas the argument is analogous.

558

Adaptive Deontic Logics

The logic ADPM.1r from [94] is the AL defined by the triple 〈LUM.a,Ω,
reliability〉. In an ADPM.1r-proof, (Inh) can be applied via the conditional rule
RC, assuming that the obligations involved are not conflicted:

1 O(p ∧ q) Prem ∅
2 Op 1; RC {O(p ∧ q) ∧ O¬(p ∧ q)}

The conditional derivation at line 2 is legitimate in view of the LUM.a-valid
inference

O(p ∧ q) ` Op ∨ (O(p ∧ q) ∧ O¬(p ∧ q)) (11)
Unfortunately, Goble pointed out that ADPM.1r suffers from a problem [43, Sect.
4.3.1]. Although we can indeed apply distribution conditionally in ADPM.1r, the
corresponding application of RC in the proof is marked as soon as a (possibly un-
related) conflict follows from the premise set. The problem is best illustrated by
means of a simple example.

1 O(p ∧ q) Prem ∅
2 Or Prem ∅
3 O¬r Prem ∅
4 Op 1; RC {O(p ∧ q) ∧ O¬(p ∧ q)}X
5 (O(p ∧ q) ∧ O¬(p ∧ q))∨ 1-3; RU ∅

(O(p ∧ r) ∧ O¬(p ∧ r))∨
(O(p ∧ ¬r) ∧ O¬(p ∧ ¬r))

The Dab-formula derived at line 5 is minimal at this stage of the proof, and
causes the marking of line 4.36 This Dab-formula is a minimal Dab-consequence of
the premise set {O(p∧q),Or,O¬r}. Consequently, there is no extension of this proof
in which line 4 is unmarked, and hence

O(p ∧ q),Or,O¬r 6`ADPM.1r Op (12)

The same holds if we use the minimal abnormality strategy instead of reliability (the
reasoning is analogous):

O(p ∧ q),Or,O¬r 6`ADPM.1m Op (13)

This problem generalizes: in the presence of a conflict between two obligations, we
can construct minimal Dab-formulas containing abnormalities pertaining to seem-
ingly unrelated and unproblematic formulas, blocking unproblematic applications

36By (11), Op∨ (O(p∧ q ∧O¬(p∧ q)). Suppose Op. Then (i) by (Agg), O(p∧ r) and, by (RUM)
and CL, O¬(p∧¬r)∨ (O(p∧ r)∧O¬(p∧ r)); analogously (ii) by (Agg), O(p∧¬r) and, by (RUM)
and CL, O¬(p∧ r)∨ (O(p∧¬r)∧O¬(p∧¬r)). Altogether, by CL, (O(p∧ q)∧O¬(p∧ q))∨ (O(p∧
r) ∧ O¬(p ∧ r)) ∨ (O(p ∧ ¬r) ∧ O¬(p ∧ ¬r)).

559

Van De Putte, Beirlaen, and Meheus

of RC. The logics ADPM.1r and ADPM.1m are therefore called flip-flops [10].
In the absence of conflicts, their consequence set is the same as their ULL, namely
SDL.37 As soon as one conflict is present, however, their consequence set collapses
into that of their lower limit logic LUM.a.

There is a natural fix to this flip-flop problem, due to Goble [43]. Let S(A) denote
the set of all subformulas of A (including A itself). Where S(A) = {B1, . . . , Bn}, we
define38

](A) = (OB1 ∧ O¬B1) ∨ . . . ∨ (OBn ∧ O¬Bn)

Following Goble, we let LUM.ar = 〈LUM.a,ΩS, reliability〉, where39

ΩS = {](A) | A ∈ W}

In an LUM.ar-proof, the formula derived at line 5 of our proof above is no
longer a Dab-formula. Rather, we obtain the following proof:

1 O(p ∧ q) Prem ∅
2 Or Prem ∅
3 O¬r Prem ∅
4 Op 1; RC {](p ∧ q)}
5](p ∧ q) ∨](p ∧ r) ∨](p ∧ ¬r) 1-3; RU ∅
6](p ∧ r) 2,3; RU ∅
7](p ∧ ¬r) 2,3; RU ∅

The abnormalities](p∧ q),](p∧ r), and](p∧¬r) denote the formulas (14), (15),
and (16) respectively:

(O(p ∧ q) ∧ O¬(p ∧ q)) ∨ (Op ∧ O¬p) ∨ (Oq ∧ O¬q) (14)
(O(p ∧ r) ∧ O¬(p ∧ r)) ∨ (Op ∧ O¬p) ∨ (Or ∧ O¬r) (15)
(O(p ∧ ¬r) ∧ O¬(p ∧ ¬r)) ∨ (Op ∧ O¬p) ∨ (O¬r ∧ O¬¬r) ∨ (Or ∧ O¬r) (16)

The inference made at line 4 is legitimate in view of the LUM.a-valid inference

O(p ∧ q) ` Op ∨](p ∧ q) (17)

Since](p∧r) and](p∧¬r) are LUM.a-derivable from the premises Or and O¬r, the
Dab-formula derived at line 5 of the proof is not minimal at stage 7. Consequently,

37It was shown in [94, Th. 7] that SDL is the ULL of ADPM.1r.
38Our expression](A) is equivalent to the negation of Goble’s expression f(A) in [43; 42]. Note

that] is not a (modal or other) operator but just a symbol that allows us to abbreviate a formula.
39Goble uses the name ALUMr for the logic that we call LUM.ar.

560

Adaptive Deontic Logics

line 4 is unmarked at this stage. As opposed to ADPM.1r and ADPM.1m, the
logics LUM.ar and LUM.am lead to the following desirable outcome:

O(p ∧ q),Or,O¬r `LUM.ar Op (18)
O(p ∧ q),Or,O¬r `LUM.am Op (19)

5.2 Evaluating the logics
Explosion principles The adaptive logics based on the LUM-family are conflict-
tolerant to the same extent as their respective lower limit logics. This means, for
a start, that (DEX) is invalid in all of them. Since they are CL-based and in view
of the interdefinability of O and P, they also accommodate conflicts of the form
OA ∧ ¬PA, which simply reduce to conflicts between obligations.

However, the logics do not tolerate the other types of deontic conflicts that
were discussed in Section 4.2. While O(A ∧ ¬A) is consistent in LUM.a – and
hence also in LUM.ax, it is inconsistent in each of LUM.b and LUM.c in view
of the (P)-axiom. It follows that ALs based on the latter two logics cannot make
sense of self-contradictory obligations. Also, all the (adaptive) LUM-logics trivialize
conflicts of the form OA ∧ P¬A, as these reduce to plain contradictions in view of
(DefP) and (RE). Finally, P(A ∧ ¬A) (which is equivalent to ¬O(¬A ∨ A)) is also
trivial in these logics, in view of the necessitation rule (N).

Benchmark examples The Smith and Jones arguments are LUM.ax-valid. The
premises of these arguments are SDL-consistent and hence normal, which means
that (by Theorem 3.14), the adaptive logics are just as strong as SDL for these
cases.40 The Roberts and Thomas arguments are not valid in LUM.ar or LUM.am.
Here is a proof illustrating why the Roberts arguments are not valid in LUM.ax:

1 O(t ∧ r) Prem ∅
2 O(¬t ∧ v) Prem ∅
3 Or 1; RC {](t ∧ r)}X
4 Ov 2; RC {](¬t ∧ v)}X
5 O(r ∧ v) 3,4; RU {](t ∧ r),](¬t ∧ v)}X
6](t ∧ r) ∨](¬t ∧ v) 1,2; RU ∅

In order to infer Or and Ov via RC we need to rely on the falsity of](t ∧ r)
and](¬t ∧ v). However, further inspection of the premises teaches us that the
disjunction of these abnormalities is LUM.a-derivable from the premises. To see

40Goble showed that the upper limit logic of LUM.ax is SDL, see [43, Observation 4.1].

561

Van De Putte, Beirlaen, and Meheus

why, note that this disjunction is LUM.a-equivalent to the following formula, which
is a LUM.a-consequence of the premises:41

(
O(t ∧ r) ∧ O¬(t ∧ r)) ∨ (O(¬t ∧ v) ∧ O¬(¬t ∧ v)

)∨
(Ot ∧ O¬t) ∨ (Or ∧ O¬r) ∨ (Ov ∧ O¬v)

(20)

The minimal Dab-formula derived at line 6 blocks the derivation of the formulas
derived at lines 3-5, causing the invalidity of the Roberts arguments. The same
mechanism blocks the derivation of the conclusion of the Thomas argument.42

The Natascha argument, version 1, is LUM.a-valid (and hence LUM.ax-valid),
but only because its premise set is LUM.a-trivial: from premises (i) and (ii) we
can derive the negation of premise (iii) by (Agg). In contrast, the second version of
the Natascha argument is LUM.a-satisfiable. Here is an LUM.am-proof for this
argument:

1 Os Prem ∅
2 Om Prem ∅
3 O¬(s ∧m) Prem ∅
4 O(s ⊃ t) Prem ∅
5 O(m ⊃ t) Prem ∅
6 O(s ∧ t) 1, 4; RU ∅
7 O(m ∧ t) 2, 5; RU ∅
8 Ot 6; RC {](s ∧ t)}
9 Ot 7; RC {](m ∧ t)}
10](s ∧ t) ∨](m ∧ t) 1-3; RU ∅

The formulas derived at lines 6 and 7 are LUM.a-derivable from the premises
via applications of (Agg) and (RE). From each of these formulas we can derive Ot
via RC. Since we are working with the minimal abnormality strategy, lines 8 and 9
are unmarked at stage 10. If we were to use reliability, however, both lines would
be marked. Indeed, the modified Natascha argument is valid for LUM.am, while
invalid for LUM.ar:

Os,Om,O¬(s ∧m),O(s ⊃ t),O(m ⊃ t) 6`LUM.ar Ot (21)
Os,Om,O¬(s ∧m),O(s ⊃ t),O(m ⊃ t) `LUM.am Ot (22)

41By CL,
(
O(t∧ r)∧O¬(t∧ r)

)
∨¬
(
O(t∧ r)∧O¬(t∧ r)

)
. Since O(t∧ r), ¬

(
O(t∧ r)∧O¬(t∧ r)

)

entails Ot by (RUM). Analogously, by CL,
(
O(¬t ∧ v) ∧O¬(¬t ∧ v)

)
∨ ¬
(
O(¬t ∧ v) ∧O¬(¬t ∧ v)

)
.

Since O(¬t∧ v), ¬
(
O(¬t∧ v)∧O¬(¬t∧ v)

)
entails O¬t by (RUM). Altogether, by CL,

(
O(t∧ r)∧

O¬(t ∧ r)
)
∨
(
O(¬t ∧ v) ∧ O¬(¬t ∧ v)

)
∨ (Ot ∧ O¬t). By CL again, (20) follows.

42In the Thomas case, the culpable Dab-formula is the disjunction](t∧ (f ∨ s))∨](¬t∧¬f). We
leave the verification to the interested reader.

562

Adaptive Deontic Logics

The behavior of the ALs based on LUM.b and LUM.c is roughly analogous to
the preceding case, with one exception. The premises in version 1 of the Natascha
argument are inconsistent in LUM.a and LUM.b, but consistent in LUM.c. That
is, we cannot aggregate premises (i) and (ii) of this argument, in the absence of
the permission statements Ps and Pm. Parallel to the situation for the modified
Natascha argument in LUM.ax, we obtain the conclusion Ot with LUM.cm for the
original Natascha argument, while we do not obtain it with LUM.cr. The following
proof illustrates that Ot is LUM.cm-derivable:43

1 Os Prem ∅
2 Om Prem ∅
3 ¬O(s ∧m) Prem ∅
4 O(s ⊃ t) Prem ∅
5 O(m ⊃ t) Prem ∅
6 O(s ∧m) 1,2; RC {]s,]m}X12

7 O(s ∧ t) 1, 4; RU {]s,](s ⊃ t)}X12

8 O(m ∧ t) 2, 5; RU {]m,](m ⊃ t)}X12

9 Ot 7; RC {]s,](s ⊃ t),](s ∧ t)}
10 Ot 8; RC {]m,](m ⊃ t),](m ∧ t)}
11](s ∧ t) ∨](m ∧ t) 1-3; RU ∅
12]s ∨]m 1-3; RU ∅
13]s ∨](m ∧ t) 12; RU ∅
14](s ∧ t) ∨]m 12; RU ∅

The inferences at lines 13 and 14 hold in view of the CL-validity of]s ⊃](s∧ t)
and]m ⊃](m ∧ t) respectively. Where Γn = {Os,Om,¬O(s ∧m),O(s ⊃ t),O(m ⊃
t)}:

Φ14(Γn) = {{](s ∧ t),]s}, {](m ∧ t),]m}} (23)
It is easily verified that, in view of Definition 3.2, lines 9 and 10 are unmarked. If we
were to use the reliability strategy instead, then by Definition 3.1 these lines would
be marked in the proof above.

Γn 6`LUM.cr Ot (24)
Γn `LUM.cm Ot (25)

The formula Ot is a floating conclusion with respect to Γn. As pointed out in
Section 4, it is a matter of debate whether or not floating conclusions are acceptable.

43Lines 7 and 8 can be derived by means of (P-Agg). Note that this rule requires that the
two formulas to be aggregated are themselves unconflicted. Hence we need RC to make these two
derivations.

563

Van De Putte, Beirlaen, and Meheus

We do not add anything to this debate here. It suffices for us to point out that each
stance can be formally represented within the AL framework.

5.3 Further reading and open ends
The LUM-systems were introduced by Goble in [35; 41; 36], where they were called
‘logics of permitted distribution’ or DPM. They were called ‘logics of unconflicted
distribution’ or LUM in [42; 43]. Adaptive extensions of these systems were pre-
sented in [94; 87; 43]. Moreover, in [91], dyadic variants of the LUM-systems were
also strengthened within the AL framework (see also Section 9.1 below).

There are many other types of deontic logics which invalidate (Inh). First, there
is the general class of classical modal logics of which the logic E (cf. supra) is but one
example. Second, Goble [34; 37] developed a very rich semantics for deontic logics,
based on an idea from [54]. On this semantics, OA is true iff the closest A-worlds
are all better than the closest ¬A-worlds. Third and last, in more recent work,
Cariani [27] proposed yet another semantics for “ought” which invalidates (Inh) in
a principled way – see also [100; 101] for a formal investigation into this proposal.
For each of these types of logics, one can ask whether it makes sense to strengthen
them adaptively, and if so, which technical difficulties arise and what behavior the
resulting logics will display. In particular, it would be interesting to learn whether
some such variants perform better than the currently available logics, in dealing with
the Roberts arguments and the Thomas argument.

6 Adaptive aggregation
A popular way to accommodate deontic conflicts in a formal system is by rejecting
the aggregation principle (Agg), and with it the normality schema (K). In its simplest
form, this proposal gives us the deontic logic P.44 We will focus on two relatively
basic ALs obtained from P in this section.

6.1 Adaptive aggregation: a basic example
Rejecting aggregation The language of P is the same as that of SDL, with P
defined as the dual of O. As before, we will not consider nested occurrences of O. P
is axiomatized by adding the axiom (D) to CL and closing the resulting set under
modus ponens (MP), the necessitation rule (N), and the rule of inheritance (Inh).
Each of the following are facts about the derivability relation of P:

44Again, we follow Goble’s nomenclature. See the end of this section for pointers to the literature
on this and related logics.

564

Adaptive Deontic Logics

` O(p ∨ ¬p) (26)
Op ` O(p ∨ q) (27)

O(p ∧ q) ` Op,Oq (28)
Op,Oq 6` O(p ∧ q) (29)

O(p ∧ (¬p ∨ q)) ` Oq (30)
Op,O(¬p ∨ q) 6` Oq (31)

In view of (Inh), Replacement of (Classical) Equivalents (RE) is valid in P. So
in Chellas’ terms, P is a non-normal but classical modal logic [29].

One way to motivate and understand the rejection of (Agg) in P is in terms of
multiple normative standards that ground our obligations, where OA is unspecific
about the normative standard that grounds the obligation that A. Under such a
reading, OA and OB may well be true even if there is no single standard that grounds
the conjunction of both obligations, and hence O(A∧B) can still fail.45 For instance,
varying on our Smith example, one’s duty to fight in the army might be based on
the laws of one’s country, whereas one’s personal pacifist ethics grounds the claim
that one ought not to fight in the army. Still, it does not follow that one ought to
do the logically impossible, viz. to fight in the army and not fight in the army.

A semantics for P is obtained from the SDL-semantics (cf. Section 2) by gen-
eralizing the notion of an accessibility relation R. P-models are then of the type
〈W,w0,R, V 〉, where W , w0, and V are as before, but R is a non-empty set of serial
accessibility relations, rather than a single such relation. The semantic clause for O
then reads as follows:

(SC-O) M,w |= OA iff there is an R ∈ R such that M,w′ |= A for all w′ such that
Rww′

In other words, the single normative standard from SDL is replaced with a set
of such standards, and we quantify (existentially) over such standards in order to
determine the truth of OA. It is well-known that P is sound and complete with
respect to this semantics – see [38, Theorem 1]. Other semantics can also be given
for P. We refer the reader to [42, pp. 300-301] for an overview of these.

45The idea that one can relativize deontic logic to a given “moral code”, and that what is
obligatory under one such code may not be obligatory (or even forbidden) under another, is at least
as old as Von Wright’s Deontic Logic – see [109, p. 15]. The difference here is that in P, the code
that is at stake remains implicit, and OA only means that A is obligatory under at least some moral
code.

565

Van De Putte, Beirlaen, and Meheus

Going adaptive Even if aggregation is invalid on the reading of O just presented,
in practice we do often aggregate our obligations. One simple way to argue for this
is by referring to the benchmark examples from Section 4. It can easily be verified
that neither the Smith argument nor the second variant of the Roberts argument is
valid in P.

More generally, it is one thing to say that we take into account various norma-
tive standards and treat them as independent grounds or reasons when trying to
determine what our obligations are. It is quite another thing to argue that none
of these obligations can themselves be aggregated when doing so; this seems to go
against much of our intuition.46 For instance, when deciding how to get to the office
in the morning, I may apply norms concerning the environment, norms uttered by
my boss, and norms concerning my own safety and that of others. There seems to
be no prima facie reason why we cannot integrate these various norms when settling
for a single way to get to the office – e.g. I may conclude that I ought to bike to the
office, since that way I will be in time for a meeting without causing air-pollution.
The presence of deontic conflicts in itself seems insufficient to warrant a full rejection
of aggregation, and, as we will show below, there is no logical reason for doing so
either.

One needs to be careful here though. We cannot just add (Agg) to P, as this
would give us again full SDL and hence deontic explosion in the face of deontic
conflicts.47 Moreover, as shown in [41, Sect. 2], there is no obvious conditional
variant of (Agg) that can do a similar job, without in turn yielding some variant of
deontic explosion.48 So some obligations can be aggregated, but not all. As we will
show in the remainder of this section, going adaptive allows us to steer a middle
course between the weakness of P and deontic explosion.

The logics Px The most straightforward way one might strengthen P adaptively,
is by treating all formulas of the form OA ∧ OB ∧ ¬O(A ∧ B) as abnormalities.
However, just as in the case of ADPM1r, this will give us a flip-flop. To see why,
consider Γ = {Op,O¬p,Oq,Or}. Intuitively speaking, there is no problem with q
and r in this example, and hence we expect O(q ∧ r) to be derivable. Such an
inference can indeed be made within a proof of the adaptive logic thus defined.

46Compare [42, p. 253]: “Even if what one ought to do is often determined by different sources
or authorities, insofar as propositions of what one ought to do serve as guides to action or as
standards of evaluation of an agent’s overall actions, there must be a common ought derived from
those separate sources”.

47We safely leave it to the reader to check that adding (Agg) to P yields full SDL.
48See also [42, Section 5.2]. In particular, Goble shows that adding the axiom (C-Agg) (cf.

Section 5.1) to P will result in a variant of deontic explosion.

566

Adaptive Deontic Logics

However, we can derive a disjunction of abnormalities (in that adaptive logic) from
Γ which will block the derivation. This Dab-formula is a disjunction of the following
three formulas:

Oq ∧ Or ∧ ¬O(q ∧ r)) (32)
O(p ∨ ¬(q ∧ r)) ∧ O¬p ∧ ¬O((p ∨ ¬(q ∧ r)) ∧ ¬p) (33)

O(q ∧ r) ∧ O¬(q ∧ r) ∧ ¬O((q ∧ r) ∧ ¬(q ∧ r)) (34)

Suppose that (32) is false but the premises are true. Then O(q ∧ r) is the case.
Likewise, since O(p ∨ ¬(q ∧ r)) follows by (Inh) from Op, (33) can only be false (in
view of the premises) if its last conjunct is false, and hence O¬(q ∧ r) is true. But
then the third abnormality, (34) must be true.

It is not hard to see where the problem could be in cases like this. That is,
since Op,O¬p ∈ Γ, we should not use these obligations – nor weakenings of them
– in order to apply aggregation. In other words, obligations that are themselves
conflicted, or subformulas of which are conflicted, should be treated as abnormal.

This brings us to a slightly more complicated set of abnormalities, which is due
to Goble [43]. As before, let](A) denote the disjunction of all formulas OB ∧O¬B,
where B ∈ S(A) (B is a subformula of A). Let \(A,B) = (OA∧OB ∧¬O(A∧B))∨
](A ∧B). We now define

ΩP = {(\(A,B) | A,B ∈ W}
In other words, we have an abnormality with respect to A and B iff they are

both obligatory and their conjunction is not obligatory, or a proper subformula of
them is conflicted. This means that as soon as e.g. Op,O¬p holds, all abnormalities
\(A,B) with p ∈ S(A) are true. Under this definition, none of the formulas (32)-(34)
are abnormalities. The corresponding disjunction of ΩP-abnormalities

\(q, r) ∨ \(p ∨ ¬(q ∧ r),¬p) ∨ \(q ∧ r,¬(q ∧ r)) (35)

is not a minimal Dab-consequence of Γ, since \(p ∨ ¬(q ∧ r),¬p) alone follows from
Γ.

Let the logics Pr and Pm be the adaptive logics defined by the triple 〈P,ΩP, x〉,
where x ∈ {r,m}.49 It can easily be checked that the upper limit logic of Pr and Pm

is just SDL: adding the negation of all members of ΩP as axioms to P, is equivalent

49In Goble’s work, the first of these two logics is known as APr. As before, we skip the initial
“A” since the superscript suffices to mark the difference with the monotonic logic P.

567

Van De Putte, Beirlaen, and Meheus

to adding (Agg) to P.50 This means that normal premise sets in the logics Px

are just SDL-consistent premise sets (where ‘normal’ is understood in the technical
sense specified on page 23). Hence by Theorem 3.14, whenever a premise set is
SDL-consistent, its Px-consequence set will be identical to its SDL-consequence
set:

Theorem 6.1. If Γ is SDL-consistent, then CnPr(Γ) = CnPm(Γ) = CnSDL(Γ).

6.2 Evaluating the logics
Explosion principles The logic P, and with it Pr and Pm, clearly accommodates
conflicts of the basic type OA,O¬A. By (RE), (DefP) and CL-properties, also
conflicts of the type OA,¬PA are consistent in P and its adaptive extensions.

All other types of deontic conflicts listed in Section 4.2 will be trivialized within
these logics. The reasons are similar to those for LUM.b and LUM.c: O(A ∧ ¬A)
is contradictory in view of (P), OA ∧ P¬A is contradictory in view of (DefP) and
(RE), and P(A∧¬A) is false in view of (N) and (DefP). So the simplicity of P comes
at an important price, viz. that it can only handle conflicting obligations and does
not allow us to reason about conflicting information concerning (obligations and)
permissions.51

Benchmark examples The arguments for Jones and Roberts 1 are valid in both
Pr and Pm. This is easy to verify since the arguments are already valid in P in
view of its validating (Inh), and since both Pr and Pm are extensions of P. The
premises of the Smith argument are normal: no Dab-formula can be derived from
them. As a result, we can aggregate the obligations in the argument and derive Os.

The second Roberts argument is also valid in Px, but here the reasoning is
slightly more intricate. First, applying (Inh), we can derive Or and Ov from the
premises. To apply aggregation to these two formulas, we need to assume that
neither r nor v are conflicted, given the premise set. This is clearly the case: the
only conflict that follows from the premises, is Ot,O¬t. The following Pr-proof
illustrates how we can obtain the desired conclusion for Roberts 2, while avoiding
the aggregation of conflicted obligations:

50To see why this is so, note first that if we negate all formulas of the form \(A, B), then a
fortiori we negate all formulas of the form OA∧OB∧¬O(A∧B), and hence we affirm all instances
of (Agg). In addition, we also negate all formulas of the form OA ∧ O¬A, but these are anyway
SDL-valid.

51Note also that simply rejecting (P) will not allow us to have a satisfactory account of conflicts
of the type O(A ∧ ¬A): due to (Inh) these conflicts will still lead to deontic explosion.

568

Adaptive Deontic Logics

1 O(t ∧ r) Prem ∅
2 O(¬t ∧ v) Prem ∅
3 Or 1; RU ∅
4 Ov 2; RU ∅
5 O(r ∧ v) 4,5; RC {\(r, v)}
6 Ot 1; RU ∅
7 O¬t 2; RU ∅
8 O(t ∧ v) 6,4; RU {\(t, v)}X11

9 O(t ∧ ¬t) 6,7; RC {\(t,¬t)}X10

10 \(t,¬t) 6,7; RU ∅
11 \(t, v) 6,7; RU ∅

Since \(t, v) follows from the premises, we cannot finally derive O(t ∧ v) from
them. So even if there is no direct conflict between t and v, the fact that t is
itself conflicted is sufficient to block its aggregation with other (unproblematic)
obligations.52

The reasoning for the Thomas argument is wholly analogous to the second
Roberts case, with the difference that we apply (Inh) once more after aggregat-
ing O(f ∨ s) and O¬f to O((f ∨ s) ∧ ¬s). This gives us the desired conclusion
Os.

For the Natascha arguments, it turns out that with the P-based adaptive logics
the strategies make no difference. The point is that, although we can obviously
not apply aggregation to Os and Om, we can still aggregate Os and O(s ⊃ t) (and
likewise, Om and O(m ⊃ t)). The fact that the pair (m, s) behaves abnormally
(\(m, s) follows from the premises of the argument) does not imply that either of
(s, s ⊃ t) or (m,m ⊃ t) behave abnormally. Hence we can finally derive Ot on two
different conditions in both Pr and Pm. We illustrate this for the first variant of
the Natascha argument:

52As pointed out by Goble, allowing aggregation for all A, B such that A ∧ B is consistent is
simply a no-go in the context of P, since it will lead to another form of deontic explosion. See [41,
Sect. 2.4.1].

569

Van De Putte, Beirlaen, and Meheus

1 Os Prem ∅
2 Om Prem ∅
3 ¬O(s ∧m) Prem ∅
4 O(s ⊃ t) Prem ∅
5 O(m ⊃ t) Prem ∅
6 O(s ∧ (s ⊃ t)) 1,4; RC {\(s, s ⊃ t)}
7 O(m ∧ (m ⊃ t)) 2, 5; RC {\(m,m ⊃ t)}
8 Ot 6; RU {\(s, s ⊃ t)}
9 Ot 7; RU {\(m,m ⊃ t)}

For none of the variants of the Natascha arguments, the disjunction of abnor-
malities (Os ∧ O¬s) ∨ (Om ∧ O¬m) is P-derivable from the premises. Nor is there
another Dab-formula which prevents lines 8 and 9 from being finally derivable. So,
to sum up, all inferences from our benchmark examples are valid in the logics Pr

and Pm.
This is not to say that there is no difference between Pr and Pm. Consider e.g.

Γ = {Op,Oq,Or,¬O(p∧ r)∨¬O(q∧ r)}. From this premise set, Pr will not allow us
to finally derive O(p∧ r)∨O(q∧ r), whereas Pm will. To understand this, note that
\(p, r) ∨ \(q, r) is a minimal Dab-consequence of Γ, whence both abnormalities are
unreliable in view of Γ. However, since nothing prevents us to assume that either
the first or the second abnormality is false, using minimal abnormality we can derive
O(p ∧ r) ∨ O(q ∧ r).

6.3 Further reading and open ends

Bernard Williams [111] was the first to advocate a rejection of (Agg) on philosophical
grounds; Marcus [62] is another important proponent of such a rejection. More
formally worked out proposals can be found in [107; 29; 84]. Later, Goble developed
the semantics and metatheory of P and variants of it in detail – see in particular [38;
40; 39]. For a more complete overview of the literature on P and close (monotonic)
relatives, we refer to [42, Section 5.2].

The first adaptive logic that applies the idea of “adaptive aggregation” was pub-
lished in [66], and later reworked in [67]. These logics are however based on a richer
lower limit logic, viz. the logic SDLaPe from [38]. In this system, one can express
both an “existential” notion of obligation Oe (whose logic is P) and a “universal”
notion of obligation Oa, whose logic is SDL. The two modalities are connected by
the following bridging principle:

(B) Oa(A ⊃ B) ∧ OeA ` OeB

570

Adaptive Deontic Logics

which entails i.a. that every universal obligation is also an existential obligation,
OaA ⊃ OeA. Alternatively, one can interpret the logics in terms of our distinction
between prima facie obligations and actual obligations (cf. Section 3.1).

Adaptive logics that are based on P itself are discussed in [43]; here we only
discussed the second of the two. The other AL discussed by Goble appears to be
slightly weaker. For instance, in this logic, the Natascha argument is only valid if
we use minimal abnormality. More generally, in this logic any conflict of the type
OA ∧ OB ∧ ¬O(A ∧B) “infects” all the subformulas of A and B. We leave the full
inspection and proof of this claim for another occasion.

An interesting issue concerns the enrichment of the aforementioned ALs with
operators that allow one to express (technical, physical, practical) impossibility at
the object level. Indeed, in Williams’ famous essay, he argues that purely logical
conflicts between oughts are only a special case of a much more common type of
conflicts, viz. conflicts between two obligations whose joint fulfillment is impossible
for contingent reasons – e.g. because of the particular physical situation we find
ourselves in [111]. This raises a number of questions concerning the interplay between
alethic and deontic modalities, which would take us well beyond the scope of the
present paper – see however [15, Chapter 4] for a first attempt to combine alethic
and deontic modalities.

7 Inconsistency-adaptive deontic logics

As noted in Section 3.5, the first adaptive logics were inconsistency-adaptive. These
logics are members of the larger family of paraconsistent logics, i.e. logics which
invalidate (ECQ).

Note that (ECQ) bears close affinity to (DEX). To obtain the latter from the
former we only need to prefix the formulas involved with an O-operator. Besides
the approaches we saw in Sections 5 and 6, a third natural way to invalidate (DEX)
is by invalidating (ECQ).

Going paraconsistent has a couple of additional benefits in the context of deontic
logic. A first is that it allows us to preserve the interdefinability of O and P, while
invalidating (DEX-OP¬). Assuming the interdefinability of O and P, the formula
OA ∧ P¬A is equivalent to the contradictions OA ∧ ¬OA and ¬P¬A ∧ P¬A. By
(ECQ), these contradictions entail everything. To prevent such explosive behavior,
it suffices to invalidate (ECQ).

A second advantage is that only a paraconsistent deontic logic can invalidate the
explosion principles (DEX-O¬O) and (DEX-P¬P), for the obvious reason that these

571

Van De Putte, Beirlaen, and Meheus

principles are instances of (ECQ):

OA,¬OA ` OB (DEX-O¬O)
PA,¬PA ` OB (DEX-P¬P)

There are independent reasons as to why, in some contexts, we may want to tolerate
contradictory norms, i.e. formulas of the form OA ∧ ¬OA or PA ∧ ¬PA. Priest, for
instance, gives the following example. Suppose that, in some country, women are
not permitted to vote, while property holders are permitted to vote. Suppose further
that, perhaps due to a recent revision of the property law, women are permitted to
hold property. Then female property holders are both permitted and not permitted
to vote (Pv ∧ ¬Pv) [81, pp. 184–185].

In this section, we present inconsistency-adaptive deontic logics. We will work
stepwise, starting with the paraconsistent logic CLuN, its deontic extension
DCLuN, and adaptive strengthenings DCLuNx (Section 7.1). After that, we will
consider several variants of DCLuN and their associated adaptive logics (sections
7.2 and 7.3).

7.1 Paraconsistent adaptive deontic logic
A paraconsistent core logic We use the paraconsistent logic CLuN as our
starting point. CLuN is an acronym for ‘Classical Logic with gluts for Negation’.
A truth-value glut for negation relative to a formula A occurs when both A and its
negation are true; CLuN allows such gluts whereas CL disallows them. The deontic
logics to be presented in this section are extensions of CLuN, but they are defined
so that plenty of other paraconsistent logics may replace CLuN as their core logic.
In Sections 7.2 and 7.3 we will mention some alternatives.

The set W∼ of well-formed CLuN-formulas is the following:
W∼ := S | ∼〈W∼〉 | ¬〈W∼〉 | 〈W∼〉 ∨ 〈W∼〉 | 〈W∼〉 ∧ 〈W∼〉 |

〈W∼〉 ⊃ 〈W∼〉 | 〈W∼〉 ≡ 〈W∼〉
In the remainder, we will stick to ¬ as the connective denoting classical negation.

Beside ¬, W∼ contains the connective ∼ which we will use as our paraconsistent
negation sign. In fact, ∼ is the only CLuN-connective which behaves differently
from the classical connectives. We obtain CLuN by adding the following axiom
schema to CL:

A ∨ ∼A (EM∼)

We write Γ `CLuN A to denote that A is CLuN-derivable from Γ.

572

Adaptive Deontic Logics

The CLuN-semantics is defined as follows. To obtain a CLuN-model M , we
extend the assignment function va of CL so that it assigns truth values not only
to schematic letters, but also to formulas of the form ∼A, i.e. va : S ∪ {∼A | A ∈
W∼} → {0, 1}. Next, we extend va to a valuation function v as follows:

(SC1) For formulas A ∈ S ∪ {∼A | A ∈ W∼} : M |= A iff va(A) = 1.
(SC2) For ¬,∨,∧,⊃,≡, the semantic clauses for CLuN are those of CL.

Finally, in order to validate the axiom (EM∼), we require that all CLuN-models
satisfy the following condition: for all A ∈ W∼, M |= A or M |= ∼A. A semantic
consequence relation for CLuN is defined as follows: Γ
CLuN A iff for all CLuN-
models M : if M |= B for all B ∈ Γ, then M |= A.

Before we move on to deontic extensions of CLuN, we point out a number of
relevant properties of this logic for ease of reference:

(i) CLuN is paraconsistent, but not paracomplete: while (ECQ) is CLuN-invalid
for ∼, the excluded middle principle (EM∼) is CLuN-valid.

(ii) In contrast to well-known paraconsistent logics such as Priest’s LP, CLuN
validates modus ponens:

A,A ⊃ B ` B (MP)

Note that A ⊃ B and ∼A ∨ B are not CLuN-equivalent: if v(A) = v(∼A) =
v(∼B) = 1 and v(B) = 0, then v(A ⊃ B) = 0 while v(∼A ∨B) = 1.

(iii) De Morgan’s laws and the double negation laws are invalid for ∼ in CLuN.
This means that complex contradictions are not reducible to contradictions
between elementary letters:

(p ∧ q) ∧ ∼(p ∧ q) 6` (p ∧ ∼p) ∨ (q ∧ ∼q) (36)
(p ∨ q) ∧ ∼(p ∨ q) 6` (p ∧ ∼p) ∨ (q ∧ ∼q) (37)

(p ⊃ q) ∧ ∼(p ⊃ q) 6` (p ∧ ∼p) ∨ (q ∧ ∼q) (38)
∼∼(p ∧ ∼p) 6` p ∧ ∼p (39)

(iv) Contraposition, modus tollens, and disjunctive syllogism are invalid for ∼ in
CLuN:

A ⊃ B 6` ∼B ⊃ ∼A (40)
A ⊃ B,∼B 6` ∼A (41)
A ∨B,∼A 6` B (42)

573

Van De Putte, Beirlaen, and Meheus

A paraconsistent deontic logic A technically straightforward way to construct
a deontic logic on the basis of CLuN is the following. First, we extend the language
W∼ with the deontic operator O, preventing nested occurrences of the deontic op-
erator:
W∼O := W∼ | O〈W∼〉 | ∼〈W∼O 〉 | ¬〈W∼O 〉 | 〈W∼O 〉 ∨ 〈W∼O 〉 | 〈W∼O 〉 ∧

〈W∼O 〉 | 〈W∼O 〉 ⊃ 〈W∼O 〉 | 〈W∼O 〉 ≡ 〈W∼O 〉
The logic DCLuN is axiomatized by adding to CLuN the axioms (K), (D), and

closing the resulting set under (N) and (MP). Note that for (D) we need the original
version (cf. page 9), hence with classical negations (¬) only.

The semantics for DCLuN looks as follows. A model is a quadruple M =
〈W,w0, R, v〉 where W is a non-empty set, w0 ∈W , R ⊆W ×W is a serial accessi-
bility relation, and v : W∼O ×W → {1, 0} is a valuation function. As with CLuN,
we first assign truth values to both schematic letters and formulas of the form ∼A:
va : S ∪ {∼A | A ∈ W∼O } ×W → {0, 1}. va is extended to v as follows:

(SC1’) For formulas A ∈ S ∪ {∼A | A ∈ W∼O }: M,w |= A iff va(A,w) = 1.
(SC2’) For O,¬,∨,∧,⊃,≡, the semantic clauses for DCLuN are exactly those of

SDL (cf. Section 2).

A model M is a DCLuN-model iff it satisfies the following condition on v:

for all w ∈W, for all A : v(A,w) = 1 or v(∼A,w) = 1 (Cu)

Γ
DCLuN A iff for all DCLuN-models M : if M,w0 |= B for all B ∈ Γ, then
M,w0 |= A.

The proof of soundness for this logic is a matter of routine. For completeness,
we can use the well-known technique of canonical models (see e.g. [24, Chapter
4]), adjusted to the setting with an actual world. Fix a maximal, ¬-consistent set
Γ ⊆ W∼O . We build the canonical modelM c

Γ = 〈W c,Γ, Rc, V c〉 for this set as follows:

(i) W c is the set of all maximal consistent and DCLuN-closed sets ∆,

(ii) Rc = {(∆,∆′) | {A | OA ∈ ∆} ⊆ ∆′},

(iii) for all A ∈ S ∪ {∼A | A ∈ W∼O }, for all ∆ ∈W c: va(A,∆) = 1 iff A ∈ ∆.

To show that M c
Γ is a DCLuN-model, we need to rely on excluded middle for

∼ and the maximality of each ∆ ∈ W c. For seriality, we rely on the (D)-axiom in
the usual way. The proof of the truth lemma proceeds by a standard induction. So
we can derive that all the members of Γ are satisfied at Γ in M c

Γ.
Note that, since CLuN is a conservative extension of CL, DCLuN is also a

conservative extension of SDL. However, if we consider the ¬-free fragment of

574

Adaptive Deontic Logics

DCLuN, and treat ∼ as the “proper” negation, then DCLuN is a proper fragment
of SDL. When applying the logic DCLuN to concrete examples, we will use ∼ to
translate negations in natural language. Given this convention, the logic DCLuN
is strongly conflict-tolerant.

OA ∧ O∼A 6`DCLuN OB
OA ∧ ∼OA 6`DCLuN OB

In DCLuN we can define permission in various ways relative to our negation oper-
ators:

P¬¬A =df ¬O¬A
P¬∼A =df ¬O∼A
P∼¬A =df ∼O¬A
P∼∼A =df ∼O∼A

All of these permission operators tolerate conflicts between an obligation and a
permission, as well as contradictory norms. Where †, ‡ ∈ {∼,¬}:

OA ∧ P‡†∼A 6`DCLuN OB (43)

O∼A ∧ P‡†A 6`DCLuN OB (44)

P‡†A ∧ ∼P‡†A 6`DCLuN OB (45)

In sum, DCLuN is very conflict-tolerant, especially compared to the logics discussed
in previous sections. However, it is also rather weak. To be sure, the Jones argument,
the Roberts arguments, and the (original and modified) Natascha argument are
valid in DCLuN due to the validity of (Inh) and (Agg). Unfortunately, the Smith
argument and the Thomas argument are not DCLuN-valid. More generally, all
instances of the following inference schemas fail in DCLuN:

O(A ⊃ B) 6`DCLuN O(∼B ⊃ ∼A) (46)
O(A ⊃ B),O∼B 6`DCLuN O∼A (47)
O(A ∨B),O∼A 6`DCLuN OB (48)

The invalidity of (46)-(48) mirrors the invalidity of their non-deontic counterparts
(40)-(42) in CLuN. So the main advantage of DCLuN goes hand in hand with its
inability to validate seemingly intuitive inferences. This drawback is overcome by
strengthening this system within the adaptive logics framework.

575

Van De Putte, Beirlaen, and Meheus

Going adaptive We strengthen DCLuN to the adaptive logic DCLuNx, which
is defined by the triple 〈DCLuN,Ω∼, x〉, where

Ω∼ = {A ∧ ∼A | A ∈ W∼O } ∪ {P¬¬(A ∧ ∼A) | A ∈ W∼}

Ω∼ contains not only plain contradictions, but also formulas that express that in
some deontically accessible world, a given contradiction is true. This allows us
at once to validate the Smith argument and the Thomas argument. Here is a
DCLuNx-proof illustrating the validity of the Thomas argument:

1 O(t ∧ (f ∨ s)) Prem ∅
2 O(∼t ∧ ∼f) Prem ∅
3 O(f ∨ s) 1; RU ∅
4 O∼f 2; RU ∅
5 Os 3,4; RC {P¬¬(f ∧ ∼f)}

The inference made at line 5 holds in view of the DCLuN-valid inference

O(f ∨ s),O∼f ` Os ∨ P¬¬(f ∧ ∼f) (49)

Suppose that O(f ∨ s) and O∼f . By (Agg), O((f ∨ s) ∧ ∼f). By normal modal
logic properties, we can infer Os ∨ ¬O¬(f ∧ ∼f) so that we can derive Os on the
condition P¬¬(f ∧ ∼f).

Equations (50)-(55) illustrate that the DCLuN-invalid inferences (40)-(42) and
(46)-(48) hold conditionally in DCLuNx. The conditions on which these inferences
can be made in a DCLuNx-proof are indicated between square brackets.

p ⊃ q `DCLuNx ∼q ⊃ ∼p [q ∧ ∼q] (50)
p ⊃ q,∼q `DCLuNx ∼p [q ∧ ∼q] (51)
p ∨ q,∼p `DCLuNx q [p ∧ ∼p] (52)
O(p ⊃ q) `DCLuNx O(∼q ⊃ ∼p) [P¬¬(q ∧ ∼q)] (53)

O(p ⊃ q),O∼q `DCLuNx O∼p [P¬¬(q ∧ ∼q)] (54)
O(p ∨ q),O∼p `DCLuNx Oq [P¬¬(p ∧ ∼p)] (55)

More generally, relative to premise sets from which no abnormalities are DCLuN-
derivable ∼ is as strong as ¬ in DCLuNx. That is, where A ∈ W∼O , let π(A) be
the result of replacing every occurrence of ∼ in A with ¬. We lift this translation
to sets of formulas in the usual way. We can now prove the following:

Theorem 7.1. If Γ is normal, then Γ `DCLuNx A iff π(Γ) `SDL π(A).

576

Adaptive Deontic Logics

Proof. The upper limit logic of DCLuNx is obtained by adding to DCLuN all
formulas ¬A for which A ∈ Ω∼. Call this logic UDCLuN. By Theorem 3.14: If Γ
is normal, then Γ `DCLuNx A iff Γ `UDCLuN A. We show that Γ `UDCLuN A iff
π(Γ) `SDL π(A).
(⇒) It is easily checked that, under the transformation given, all CLuN-valid
inferences are CL-valid; (K), (D), and (N) are SDL-valid; and all elements of
π({¬A | A ∈ Ω∼}) are SDL-valid.
(⇐) Given the fact that UDCLuN, like DCLuN, extends SDL, it suffices to show
that ∼ is as strong as ¬ in UDCLuN:

`UDCLuN ∼A ⊃ ¬A (56)
`UDCLuN O∼A ⊃ O¬A (57)

Ad. (56) Suppose ∼A. Then ¬A ∨ (A ∧ ∼A) since `CLuN ∼A ⊃ (¬A ∨ (A ∧ ∼A)).
We also know that `UDCLuN ¬(A ∧ ∼A), so by CL-properties we obtain ¬A.
Ad. (57)By (N), `UDCLuN O(∼A ⊃ (¬A∨ (A∧∼A))). Suppose O∼A. By (K) and
(MP), O(¬A∨ (A∧∼A)). By SDL-properties, O¬A∨P¬¬(A∧∼A). But then O¬A
follows in view of `UDCLuN ¬P¬¬(A ∧ ∼A).

7.2 Semi-paraconsistent adaptive deontic logic
The logic DCLuN and its adaptive extensions consistently accommodate all types
of normative conflicts that we have encountered so far. But they also consistently
accommodate plain contradictions between formulas not involving deontic operators,
such as p ∧ ∼p. One could argue that this is overkill. Even if normative conflicts
are part of life and should be accommodated in a deontic logic, there is no need to
allow also for a non-deontic statement and its negation to be true at the same time.

In this section we mention two ways to adjust DCLuN and its adaptive exten-
sions so as to tolerate normative conflicts, without having to tolerate all outright con-
tradictions of the form A∧∼A. Casey McGinnis coined the term semi-paraconsistent
deontic logic for paraconsistent deontic logics that meet this desideratum [64; 63].

Excluding non-deontic contradictions The logic DCLuN1 is obtained by
closing DCLuN under the axiom schema (Cons1):53

Where A ∈ W∼ : ∼A ⊃ ¬A (Cons1)

53Where ` ⊆ ℘(Φ) × Φ is a consequence relation and ∆ is a set of axioms, we obtain `∆, the
closure of ` under ∆, as follows: Γ `∆ A iff Γ ∪ ∆ ` A. This means that one cannot e.g. apply
necessitation to members of ∆.

577

Van De Putte, Beirlaen, and Meheus

Where A ∈ W∼, (Cons1) takes care that A ∧ ∼A is trivialized in DCLuN1. This
means that for non-deontic formulas, we obtain full CL. Still, DCLuN1, like
DCLuN, is highly conflict-tolerant. Where as before †, ‡ ∈ {∼,¬}:

OA ∧ O∼A 6`DCLuN1 OB (58)
OA ∧ P‡†∼A 6`DCLuN1 OB (59)

O∼A ∧ P‡†A 6`DCLuN1 OB (60)
OA ∧ ∼OA 6`DCLuN1 OB (61)

P‡†A ∧ ∼P‡†A 6`DCLuN1 OB (62)

As desired, DCLuN1 consistently accommodates normative conflicts while trivial-
izing contradictions between statements without occurrences of deontic operators.

Semantically, the logic DCLuN1 is characterized by imposing the following ad-
ditional condition on DCLuN-models:

For all A ∈ W∼ : v(A,w0) = 1 iff v(∼A,w0) = 0 (C0
1)

Unlike DCLuN, the logic DCLuN1 is not a normal modal logic, since it is not
closed under the standard necessitation rule (N). That is, even though ∼p ⊃ ¬p
is a theorem of the logic, O(∼p ⊃ ¬p) is not. For similar reasons, the logic is not
closed under Uniform Substitution. For instance, ∼Op ⊃ ¬Op is not a theorem of
DCLuN1.

Adaptive logics based on DCLuN1 can be defined just as before. Mind however
that abnormalities of the form A ∧ ∼A for A ∈ W∼ are vacuous in the resulting
adaptive logics, since they are anyway trivialized by their lower limit logic, in view
of (Cons1). These adaptive logics will perform just as well as DCLuNx, in that
they validate all the inferences from our list of benchmark examples.

Excluding all contradictions at the actual world A second, stronger semi-
paraconsistent deontic logic is obtained by closing DCLuN under the unrestricted
version of (Cons1):

∼A ⊃ ¬A (Cons2)
Call the resulting logic DCLuN2. Its semantics is obtained by imposing the follow-
ing condition on DCLuN-models:

v(∼A,w0) = 1 iff v(A,w0) = 0 (C0
2)

In the DCLuN2-semantics, ∼ and ¬ are interchangeable at w0. At all other worlds,
¬ remains strictly stronger than ∼. This means that contradictions outside the
scope of O are trivialized, whereas contradictions within the scope of O are not.

578

Adaptive Deontic Logics

The logic DCLuN2 is not as conflict-tolerant as DCLuN1, since it trivializes
conflicts of the form OA∧∼OA or P‡†A∧∼P‡†A, where †, ‡ ∈ {∼,¬}. Since (Cons2)
and (C0

2) are no longer restricted to members of W∼, the logic DCLuN2 satisfies
the rule of uniform substitution, although necessitation (in its full generality) is still
invalid.

Just as with DCLuN and DCLuN1, we can use DCLuN2 as a lower limit logic
of our adaptive logic. In this case, the set of abnormalities can be further simplified
to the following:

Ω∼2 = {P¬¬(A ∧ ∼A) | A ∈ W∼}

7.3 Other paraconsistent negations

CLuN is the weakest logic which verifies the full positive fragment of CL as well
as the principle of Excluded Middle (EM). Stronger paraconsistent logics can be
obtained by adding to CLuN the double negation laws and/or de Morgan’s laws
for negation:

∼∼A ≡ A (A∼∼)
∼(A ⊃ B) ≡ (A ∧ ∼B) (A∼⊃)
∼(A ∧B) ≡ (∼A ∨ ∼B) (A∼∧)
∼(A ∨B) ≡ (∼A ∧ ∼B) (A∼∨)

∼(A ≡ B) ≡ ((A ∨B) ∧ (∼A ∨ ∼B)) (A∼≡)

Let CLuNs be obtained by adding all of these axioms to CLuN. Analogously to
the construction of DCLuN, we can now construct the logic DCLuNs by enriching
CLuNs with (K), (D), and (N).

One clear difference between DCLuN-based ALs and DCLuNs-based ALs is
that the latter verify a number of additional inferences in a non-defeasible way. For
instance, where Γ = {O(p∧ q),O∼(p∧ q)}, one cannot DCLuNr-derive O(∼p∨∼q)
from Γ, since one cannot rely on the falsehood of the abnormality P¬¬((p∧ q)∧∼(p∧
q)). In contrast, one can finally DCLuNsr-derive O(∼p∨∼q) from the same premise
set, simply in view of properties of DCLuNs.

We have to take care when constructing adaptive logics on the basis of DCLuNs.
Suppose that we work with the set Ω∼ of DCLuNx-abnormalities.

579

Van De Putte, Beirlaen, and Meheus

1 Op Prem ∅
2 O∼p Prem ∅
3 Oq Prem ∅
4 O(∼q ∨ r) Prem ∅
5 Or 3,4;RC {P¬¬(q ∧ ∼q)}X6

6 P¬¬(q ∧ ∼q) ∨ P¬¬((p ∧ r) ∧ ∼(p ∧ r)) 1-4;RU ∅
Line 5 is marked in view of the minimal Dab-formula derived at line 6. There is

no extension of this proof in which to unmark line 5. The proof illustrates that Or
is not finally derivable from the premises at lines 1-4. This is counter-intuitive.

If we are to build an adaptive logic on the basis of the lower limit logic DCLuNs
and the set of abnormalities Ω∼, the resulting logic would exhibit flip-flop behavior
(see Section 5 where we also encountered this problem). The solution is to restrict
the set of abnormalities as follows:

Ω∼s = {A ∧ ∼A | A ∈ S} ∪ {OA ∧ ∼OA | A ∈ W∼} ∪ {P¬¬(A ∧ ∼A) | A ∈ S} (63)

Given (A∼∼)-(A∼ ≡), inconsistencies between complex formulas in W can be
reduced to inconsistencies at the level of atoms in DCLuNs. In view of this,
DCLuNsx-abnormalities must be restricted accordingly, on pain of flip-flop behav-
ior. That is, where A ∈ W, A∧∼A and P¬¬(A∧∼A) only counts as an abnormality
when A ∈ S.

The situation is different for formulas of the form OA ∧ ∼OA: within the scope
of O, inconsistencies between complex formulas do not reduce to inconsistencies
at the level of atoms. For instance, the inference from O(p ∧ q) ∧ ∼O(p ∧ q) to
(Op∧∼Op)∨(Oq∧∼Oq) is not DCLuNs-valid, since ∼O(p∧q) does not DCLuNs-
entail ∼Op∨∼Oq. More generally, where A is a complex formula, the formula ∼OA
cannot be further analysed in DCLuNs. So, as in DCLuNx, all formulas of the
form OA ∧ ∼OA count as abnormalities in DCLuNsx.

Let DCLuNsx be the adaptive logic defined by the lower limit logic DCLuNs,
the set of abnormalities Ω∼s , and the strategy x ∈ {r,m}. Then clearly the formula
derived at line 6 of the proof above is no longer a minimal Dab-formula, and line 5
remains unmarked. We can still derive the Dab-formula P¬¬(q ∧ ∼q) ∨ P¬¬(p ∧ ∼p) ∨
P¬¬(r ∧ ∼r) from lines 1-4 via RU, in view of

P¬¬((p ∧ r) ∧ ∼(p ∧ r)) `DCLuNs P¬¬(p ∧ ∼p) ∨ P¬¬(r ∧ ∼r) (64)

However, this Dab-formula is not minimal, since its disjunct P¬¬(p ∧ ∼p) is a
DCLuNs-consequence of the formulas Op and O∼p at lines 1 and 2. As a result,
line 5 is finally derivable and Or is a DCLuNsx-consequence of the premises.

580

Adaptive Deontic Logics

Other than CLuN and CLuNs, there is a wide variety of paraconsistent logics
that can serve as the core logic of an inconsistency-adaptive logic. We could, for
instance, treat ‘∼’ as a dummy operator for which not even (EM) holds by removing
(A∼1) in the axiomatization of CLuN. The resulting logic is called CLoN (for
Classical Logic with both gluts and gaps for Negation). Extending CLoN with
(A∼∼)-(A∼≡) results in the logic CLoNs. These systems too can be extended
deontically and adaptively. In addition, one can also consider semi-paraconsistent
versions of DCLuNs and DCLoNs.

7.4 Further reading and open ends
For a general overview of paraconsistent logic, see e.g. [79; 80]. For an overview of
(monotonic) paraconsistent deontic logic, we refer to [42, Sect. 6.1].

The first paper on inconsistency-adaptive logic – published in 1989, but writ-
ten in 1981 – is [5], where the proof theory for the reliability strategy was first
presented. The minimal abnormality strategy was first presented (semantically) in
[4]. The (propositional) results of the two aforementioned papers were generalized
to the predicative level in [7]. For an overview and more recent results within the
inconsistency-adaptive program, see [12].

Inconsistency-adaptive deontic logics were presented in [15; 22], in [21], and in
[43]. Most of these systems – in contrast to the ones presented in this section – allow
for the following inference:54

OA ∧ O∼A ` ∼O∼A ∧ O∼A (65)

That is, conflicts of the form OA∧O∼A entail plain contradictions. Goble is critical
of such systems:

That seems an exceedingly strong commitment. It is easy to accept that
there are normative conflicts, harder to suppose they all yield contradic-
tions that are true. Even Priest, the hierarch of dialetheism, does not
consider normative conflicts so paradoxical [43, Fn. 15].

The systems presented in this section circumvent Goble’s criticism by invalidating
inferences like (65).

In [16] the semi-paraconsistent deontic logic LNP is presented and extended
within the adaptive logics framework. LNP is a close cousin of DCLoNs2, but has

54(65) holds for the inconsistency-adaptive systems presented in [15; 22], and [21]. The closely
related principle OA∧O∼A ` (O∼A∧∼O∼A)∨OB holds for those logics mentioned in [43] which
satisfy the ‘deontic addition’ schema OA ⊃ O(A ∨B).

581

Van De Putte, Beirlaen, and Meheus

a slightly different language in which the P-operator is primitive, and in which ‘¬’ is
allowed only outside the scope of deontic operators, while ‘∼’ is allowed only inside
the scope of deontic operators.

Once we are open to the possibility of changing the logic of the connectives, new
questions arise. For instance, why should we always blame negation for the explosive
behavior of a logic, and why not weaken the meaning of the other connectives? Why
not e.g. give up addition for ∨ (i.e., to derive A ∨ B from A or from B)? In [8],
Batens shows that a whole range of interesting new logics come to the fore, once we
generalize the idea of gluts and gaps to other connectives and logical operators. The
application of all this to deontic reasoning is yet to be studied in detail, but it can
draw on many existing results concerning corrective ALs.

In [17], a very rich paraconsistent deontic logic is presented, one that allows the
user to express not only obligations that concern states of affairs, but also obligations
that concern agency. The language of these systems contains modal operators �J for
“the group of agents J brings it about that”, inspired by existing work on logics of
agency [86; 23; 31]. This in turn allows one to distinguish between various different
types of inter-personal and intra-personal deontic conflicts:55

O2iA ∧ O2j∼A (66)
O2iA ∧ P2j∼A (67)
O2iA ∧ O2i∼A (68)
O2iA ∧ P2i∼A (69)
O2iA ∧ O∼2iA (70)
O2iA ∧ P∼2iA (71)
O2iA ∧ ∼O2iA (72)
P2iA ∧ ∼P2iA (73)

One further advantage of such richer formal languages in the context of adaptive
reasoning is that they allow us to prioritize the minimization of certain types of
conflicts over that of others. For instance, we may consider conflicts of type (68)
worse than those of type (66) and (67), since the former clearly violate the principle
that if an agent ought to bring about A, then that agent is also able to see to A

55An inter-personal conflict is one that holds between the obligations of different agents, whereas
an intra-personal conflict obtains between the obligations of a single agent. One famous example of
an inter-personal normative conflict can be found in Sophocles’ Antigone, where due to the city’s
laws, Creon is obliged to prevent the burial or Antigon’s brother Polyneices, but Antigone faces a
religious and familial obligation to bury Polyneices [62; 44].

582

Adaptive Deontic Logics

– assuming agents cannot bring about contradictions. Such a prioritized reasoning
can be modeled in terms of a lexicographic AL (cf. Section 3.4).

8 Conflict-tolerant adaptive logics: round-up
In this section, we give an overview of the main features of the logics discussed so far.
We start by giving an overview of the performance of revisionist ALs with respect
to the criteria introduced in Section 4.2. In Section 8.2 we return to the logics from
Section 3. We show how these can be evaluated using similar criteria, and how they
can be enriched in various ways.

8.1 Revisionist deontic adaptive logics: overview
The behavior of the revisionist adaptive logics with respect to the criteria from
Section 4.2 is summarized in Tables 1 and 2. Principles (arguments) that are valid
in a given logic receive a 3, invalid principles (arguments) receive a 7.56 Where the
premises of an argument are trivialized by a given logic, we write a ⊥ in Table 2.

DEX DEX-O⊥ DEX-P⊥ DEX-OP¬ DEX-O¬P
LUM.ax 7 7 3 3 7

LUM.bx 7 3 3 3 7

LUM.cx 7 3 3 3 7

Px 7 3 3 3 7

DCLuNx 7 7 7 7 7

DCLuNx
1 7 7 7 7 7

DCLuNx
2 7 7 7 7 3

Table 1: Behavior of deontic ALs with respect to various explosion principles.

It should be noted here once more (in line with our remarks in Section 4.2) that
whether a given AL validates some form of deontic explosion or a specific inference
should not be seen as conclusive evidence in favour of or against such a logic. The
above tables are mostly for purposes of comparison and classification, and do not
serve as strict criteria of the relative success or failure of the respective systems or
their purposes. For example, with a view to supporting ought-implies-can, a system
might be designed to consider O(A ∧ ¬A) inconsistent even while OA ∧ O¬A is

56As noted before, for the logics from Section 7 we assume that the principles (arguments) in
question are formalized using the paraconsistent negation sign ∼.

583

Van De Putte, Beirlaen, and Meheus

S J R1 R2 T N1 N2
LUM.ar 3 3 7 7 7 ⊥ 7

LUM.am 3 3 7 7 7 ⊥ 3

LUM.br 3 3 7 7 7 ⊥ 7

LUM.bm 3 3 7 7 7 ⊥ 3

LUM.cr 3 3 7 7 7 7 7

LUM.cm 3 3 7 7 7 3 3

Px 3 3 3 3 3 3 3

DCLuNx 3 3 3 3 3 3 3

DCLuNx
1 3 3 3 3 3 3 3

DCLuNx
2 3 3 3 3 3 ⊥ 3

DCLuNsx 3 3 3 3 3 3 3

Table 2: Behavior of deontic ALs with respect to the Smith (S), Jones (J), Roberts
(R1 and R2), Thomas (T), and Natascha (N1 and N2) arguments from Section 4.)

consistent. In that case, that the system validates (DEX-O⊥) may be taken as a
virtue rather than a vice. Likewise, the validation of (DEX-OP¬) would be embraced
by one with a classical point of view (and given the standard interdefinability of O
and P).

Let us close this overview with a technical point. All ALs discussed in Sections
5–7 have a monotonic, conflict-tolerant deontic logic as their lower limit logic. The
latter logics are mutually incomparable, in the sense that none is stronger than
any other.57 For instance, the logic LUM.a from Section 5 invalidates (Inh) but
validates (Agg); conversely, the logic P that is discussed in Section 6 invalidates
(Agg) but validates (Inh). It can easily be shown that any two ALs that are based
on such incomparable lower limit logics, are themselves equally incomparable. This
is an immediate corollary of the following:58

Theorem 8.1. Let AL1 and AL2 be two ALs in standard format, defined by the
triples 〈LLL1,Ω1, x1〉, resp. 〈LLL2,Ω2, x2〉, over a given formal language. If `AL1
⊆ `AL2, then `LLL1 ⊆ `LLL2.

Proof. By contraposition: suppose that `LLL1 6⊆ `LLL2 . Let Γ, A be such that
57A small warning is in place here. The paraconsistent deontic logics of the DCLuN-family,

presented in Section 7, work with a richer language that contains both a paraconsistent and a
classical negation. The claim we make here concerns the fragment of those logics without the
classical negation.

58Theorem 8.1 generalizes one direction of Theorem 3.3 in [104].

584

Adaptive Deontic Logics

(i) Γ `LLL1 A but (ii) Γ 6`LLL2 A. By (i) and the monotonicity of LLL1, (iii)
Γ ∪ {¬A} `LLL1 A. by (ii), Γ ∪ {¬A} is LLL2-consistent, and hence by CL-
properties, (iv) Γ ∪ {¬A} 6`LLL2 A. By (iii) and Theorem 3.15, Γ ∪ {¬A} `AL1 A.
By (iv) and Theorem 3.11, Γ ∪ {¬A} 6`AL2 A. Hence, `AL1 6⊆ `AL2 .

As a result, the ALs discussed in Sections 5-7 are incomparable, i.e. an AL
belonging to one of these three types cannot in general be stronger or weaker than
an AL belonging to another of the three types.

8.2 Prima facie obligations revisited
Explosion principles To apply the criteria from Section 4.2 to the logics from
Section 3.1, we need some more preparation. We take it that the premises of the
explosion principles, resp. arguments under consideration are all concerned with
prima facie obligations, whereas their conclusion concerns actual obligations. Under
this translation, SDLr

p and SDLm
p invalidate the analogues of (DEX) and (DEX-

O⊥):

OpA ∧ Op¬A ` OB (74)
Op(A ∧ ¬A) ` OB (75)

The other explosion principles cannot as easily be translated to these systems,
because in Section 3.1 we did not define a corresponding prima facie permission
operator for the logics SDLx

p.
Suppose that we add a second dummy operator Pp to the language of SDLp. For

the adaptive extension of the resulting logic, we re-define the set of abnormalities
Ωp by including both formulas of the form OpA ∧ ¬OA and formulas of the form
PpA∧¬PA. In the resulting logic, the following analogues of the explosion principles
(DEX-P⊥) and (DEX-OP¬) are invalid:

Pp(A ∧ ¬A) ` OB (76)
OpA ∧ Pp¬A ` B (77)
OpA ∧ ¬PpA ` B (78)

Note that conflicts of the form OpA∧Pp¬A give rise to disjunctions of abnormalities
in this logic:

OpA ∧ Pp¬A ` (OpA ∧ ¬OA) ∨ (Pp¬A ∧ ¬P¬A) (79)

In case there is a conflict between a prima facie obligation and a prima facie
permission, the adaptive logic will not prioritize one over the other. This is in line

585

Van De Putte, Beirlaen, and Meheus

with [?], where it is argued that permission should not take priority over obligations
or conversely. Should one nevertheless want a logic that does treat one type of
conflict as “worse” than the other, then one can turn to the format of lexicographic
ALs as sketched in Section 3.4.

Benchmark examples First, in both SDLr
p and SDLm

p , the Smith and Jones
arguments are SDLx

p-valid, while Roberts and Thomas are not.

Op(f ∨ s),Op¬f `SDLxp Os (Smith)
Op(j ∧ s) `SDLxp Oj (Jones)

Op(t ∧ r),Op(¬t ∧ v) 6`SDLxp Or ∧ Ov (Roberts 1)
Op(t ∧ r),Op(¬t ∧ v) 6`SDLxp O(r ∧ v) (Roberts 2)

Op(t ∧ (f ∨ s)),Op(¬t ∧ ¬f) 6`SDLxp Os (Thomas)

In order to infer the conclusions of the Roberts and Thomas arguments, we would
need to detach the obligations O(t∧r) and O(t∧(f ∨s)) respectively. But we cannot
do that in view of the following minimal Dab-consequences of the respective premise
sets:

(Op(t ∧ r) ∧ ¬O(t ∧ r)) ∨ (Op(¬t ∧ v) ∧ ¬O(¬t ∧ v)) (80)
(Op(t ∧ (f ∨ s)) ∧ ¬O(t ∧ (f ∨ s))) ∨ (Op(¬t ∧ ¬f) ∧ ¬O(¬t ∧ ¬f)) (81)

One way of accounting for the Roberts and Thomas arguments is to strengthen
SDLx

p by closing the operator Op under a number of further rules. For instance,
we could add a principle permitting the inference from Op(A ∧ B) to OpA, such as
(Inh). That would enable us to infer Opr given Op(t∧ r), and Or given Opr (on the
condition Opr ∧ ¬Or). Clearly, however, not anything goes when closing Op under
additional rules. For one thing, we do not want to end up with full SDL or even K
for prima facie obligations, as this would completely annihilate our initial objective.
But also if we characterize Op in terms of weaker logics like the ones presented in
Sections 5-7, we should be careful. After all, the richer one’s lower limit logic, the
more likely one is to end up with flip-flop problems that will require further tinkering
with the set of abnormalities, much as we had to do in previous sections.

For the Natascha argument, one can translate the impossibility of s∧m using the
operator O for actual obligations. The underlying idea is that constraints concerning
what is practically (im)possible only have a bearing on actual obligations, not on
the prima facie obligations. This can again be done in two different ways, giving
rise to two different premise sets. For both, the validity of the argument will depend
on the adaptive strategy:

586

Adaptive Deontic Logics

Ops,Opm,Op(s ⊃ t),Op(m ⊃ t),¬O(s ∧m) 6`SDLrp Ot (Natascha 1)
Ops,Opm,Op(s ⊃ t),Op(m ⊃ t),¬O(s ∧m) `SDLmp Ot (Natascha 1)
Ops,Opm,Op(s ⊃ t),Op(m ⊃ t),O¬(s ∧m) 6`SDLrp Ot (Natascha 2)
Ops,Opm,Op(s ⊃ t),Op(m ⊃ t),O¬(s ∧m) `SDLmp Ot (Natascha 2)

In Sections 4–8 we defined and discussed a large variety of conflict-tolerant de-
ontic logics that can be developed within the AL framework. More variation is
possible, as there are other ways still to define conflict-tolerant deontic logics – by
moving to a hyperintensional framework, for instance – and strengthen them adap-
tively. Moreover, existing systems can be altered by making them more expressive,
e.g. by considering the interplay between deontic modalities and alethic, doxastic,
or epistemic modalities. All this goes to show that adaptive logics provide a versa-
tile and modular framework for conflict-tolerant normative reasoning, and that their
applications to this problem are far from exhausted.

9 Conditional obligations and adaptive detachment
SDL is inadequate not just for accommodating normative conflicts in deontic logic,
but also for representing deontic conditionals, as we will explain below.59 Within the
vast literature on such conditionals, one can distinguish three general approaches.
The first is to represent them by means of a dyadic obligation operator O(· | ·), and
to read a formula O(B | A) as ‘If A, then B is obligatory’. A second approach is to
treat the problems surrounding deontic conditionals as symptomatic of the bigger
challenge of how to formalize conditional statements in general. The third approach
is more abstract: it treats deontic conditionals as pairs connecting a given “input”
with an “output”, and defines specific proof theories and an operational semantics
(based on the principle of detachment and CL) for such connections.

We will discuss these three different approaches in Sections 9.1-9.3 respectively,
showing how the framework of ALs can be useful in each of them. Our discussion
will be mainly tentative; we provide pointers to more technical results and fully
worked-out proposals in the literature at the end of each subsection.

59We will only sketch the latter inadequacy here. It is discussed at length in Section 8.5. and
in the Appendix of [48, Chapter 1]. For other overviews of this problem, see for instance [3;
28].

587

Van De Putte, Beirlaen, and Meheus

9.1 Adaptive dyadic deontic logics
Helping one’s neighbours Let us illustrate the distinctive problems surrounding
deontic conditionals by means of a so-called Chisholm scenario – after [30]. This
scenario can be represented as follows in the dyadic setting:
(i) It is obligatory that Jones goes to the aid of his neighbours (Og).

(ii) It is obligatory that if Jones goes to the aid of his neighbours, then he tells
them he is coming (O(t | g)).

(iii) If Jones does not go to the aid of his neighbours, then he ought not to tell
them he is coming (O(¬t | ¬g)).

(iv) Jones does not go to the aid of his neighbours (¬g).
Recall now the principles of factual detachment (FD) and deontic detachment

(DD) from Section 1:

A,O(B | A) ` OB (FD)
OA,O(B | A) ` OB (DD)

Given premises (iii) and (iv), we can use (FD) to infer an obligation O¬t for
Jones not to tell his neighbours he is coming. However, given premises (i) and (ii),
we can also use (DD) to infer an obligation Ot for Jones to tell his neighbours he is
coming.

But now we face a dilemma. Jones cannot both tell and not tell his neighbours
he is coming. So, each of (DD) and (FD) has some intuitive appeal, but together
they lead to a deontic conflict, and hence explosion if the logic of O is SDL. This
is the dilemma of deontic and factual detachment, also known in the literature as
“the dilemma of detachment and commitment” [3; 106]. In fact, one should rather
speak here of a trilemma, since one may deny that SDL is an appropriate logic for
obligations, and insist that both (FD) and (DD) should be unconditionally valid.
This means one needs a conflict-tolerant deontic logic for O, much as those discussed
in preceding sections. Here, we will first focus on the other two horns of the trilemma
and exclude conflicts at the level of O.

Since each of (DD) and (FD) seems reasonable in isolation, Hilpinen and McNa-
mara argue that we cannot just pick one of them at the expense of the other, and
that we need to move to a more nuanced position beyond this choice [48, p. 119].
One solution is to make the detachment – via (DD) or (FD) – of unconditional obli-
gations subject to further conditions, such as joint consistency. The AL framework
allows us to make this idea exact, and to study its pros and cons.

588

Adaptive Deontic Logics

A simple solution Let SDLd be the logic obtained by replacing the unary prima
facie operator Op(·) of SDLp with the conditional operator O(· | ·). As we did
with the Op-operator of SDLp, we treat the new conditional operator like a dummy
operator in SDLd.

Some authors treat unconditional obligations OA on the same foot as conditional
obligations of the type O(A | >). Note that in SDLd these are not equivalent. For
instance, the conjunction O(A | >) ∧ O(¬A | >) is SDLd-consistent, while the
conjunction OA∧O¬A is not. In line with the interpretation in Section 3, O(A | >)
expresses something like “A is an unconditional prima facie obligation”, whereas the
intended reading of OA is that “A is an actual obligation”.

In order to detach unconditional obligations from conditional obligations, we
strengthen SDLd adaptively to the logics SDLx

d, which are defined by the triple
〈SDLd,Ωd, x〉, with x ∈ {r,m} and Ωd = Ωfd ∪ Ωdd:

Ωfd = {O(B | A) ∧A ∧ ¬OB | A,B ∈ W}
Ωdd = {O(B | A) ∧ OA ∧ ¬OB | A,B ∈ W}

In view of the SDLd-valid inferences (82) and (83), the adaptive logics SDLx
d

allow for the conditional application of (FD) and (DD):

A,O(B | A) ` OB ∨ (O(B | A) ∧A ∧ ¬OB) (82)
OA,O(B | A) ` OB ∨ (O(B | A) ∧ OA ∧ ¬OB) (83)

We illustrate the resulting logic by applying it to the Chisholm scenario in (i)-(iv):

1 Og Prem ∅
2 O(t | g) Prem ∅
3 O(¬t | ¬g) Prem ∅
4 ¬g Prem ∅
5 Ot 1,2; RC {O(t | g) ∧ Og ∧ ¬Ot}X7

6 O¬t 3,4; RC {O(¬t | ¬g) ∧ ¬g ∧ ¬O¬t}X7

7 (O(t | g) ∧ Og ∧ ¬Ot)∨ 1-4; RU ∅
(O(¬t | ¬g) ∧ ¬g ∧ ¬O¬t)

Lines 4 and 5 remain marked in any extension of this proof, so that neither Ot
nor O¬t is an SDLx

d-consequence of the premises at lines 1-4. Thus, in cases of
conflict, the applications of (FD) and (DD) that lead to the conflict are rejected.

Some have taken a bolder stance here by arguing that when factual and deontic
detachment lead to a conflict, (FD) overrules (DD) or vice versa. We will not go into
this discussion here – see [48, p. 112-124] for an overview of the various positions.

589

Van De Putte, Beirlaen, and Meheus

However, let us briefly indicate how this idea of overruling can be modeled with the
AL framework.

Recall the lexicographic ALs that were introduced in Section 3.4. Consider the
lexicographic ALs defined in terms of the lower limit logic SDLd and the sequence
〈Ωfd,Ωdd〉. The idea is that we treat abnormalities with respect to factual detach-
ment as “worst”, and hence give priority to (FD) over (DD). For instance, in the
Chisholm case, the abnormality O(¬t | ¬g) ∧ ¬g ∧ ¬O¬t will be avoided, and hence
the abnormality O(t | g) ∧ Og ∧ ¬Ot will be assumed to hold. Thus, in such logics,
one can conclude that Jones ought not to tell his neighbours he is coming. Other
applications of (DD) that do not result in conflicting obligations will remain valid
in such logics. Finally, if two different applications of (FD) conflict, they will both
be blocked in the adaptive logics.

A (prioritized) combination of various sorts of adaptive reasoning may also be
useful for those who insist on the intuitiveness of (FD) and (DD), and use these to
cast doubt on the validity of full SDL for O (cf. our discussion of the trilemma of
detachment and commitment, supra). Here, one may combine insights and tech-
niques from Sections 5–7 with those from the present section, treating each of (FD),
(DD), and (some or all) rules and axioms of SDL as defeasible. This way one cannot
only accommodate deontic conflicts that arise from an applications of either (FD)
or (DD) or both – by invalidating those applications – but also conflicting obliga-
tions that happen to be simply there, “unconditionally”. In such a setting, one may
e.g. prioritize the standard behavior of O over the applicability of (FD) and (DD),
thus capturing the intuition that even if they are sometimes to be accepted, deontic
conflicts should be avoided whenever possible.

Open problems and further reading The first monotonic dyadic deontic logics
were introduced in Bengt Hansson’s seminal paper [46; 75]. Hansson-style dyadic
deontic logics typically invalidate (FD), while some of them validate (DD).

More recently, van Benthem, Grossi and Liu have investigated the relation be-
tween modal logics of preferences, priority structures, and dyadic deontic logic more
generally [97]. In this account, the factual information in the antecedent of (FD) is
formalized as a dynamic epistemic event, rather than as a “mere” factual (proposi-
tional) statement. This way, the non-monotonicity of reasoning with dyadic obliga-
tions is formalized at the object-level, rather than as a property of the consequence
relation.

Our focus in this section was on the defeasible application of the detachment
principles (FD) and (DD), in a language with both a dyadic operator O(· | ·) for
conditional obligations and an independent, monadic operator O that satisfies full
SDL. We did not discuss other logical properties of O(· | ·), and instead treated

590

Adaptive Deontic Logics

it as a dummy operator much like we treated the Op-operator from Section 3. But
we may of course wonder whether there are no logical properties which the dyadic
operator ought to satisfy unrestrictedly. Possible candidates include, for instance,
the dyadic versions of the aggregation and inheritance principles:

(O(B | A) ∧ O(C | A)) ⊃ (O(B ∧ C | A)) (DAgg)
From O(B | A) and ` B ⊃ C, to infer O(C | A) (DInh)

However, one has to be careful again, since enriching one’s lower limit logic may eas-
ily give rise to flip-flop-problems, analogous to the monadic deontic logics presented
in previous sections. The solutions that were discussed in those sections may in turn
be transferred to the dyadic setting.

Different preferences regarding the characterization of O(· | ·) have given rise to a
wide variety of dyadic systems, including a range of conflict-tolerant dyadic systems
which could in turn be extended adaptively so as to gain further inferential power.
For instance, in [90] and [87, Ch. 11], Christian Straßer studied conditional versions
of some of the LUM-systems from Section 5, and presented a number of adaptive
extensions of these logics. In [91] and [87, Chapters 11–12], Straßer presents a general
method for turning dyadic deontic logics into ALs which allow for the conditional
application of (FD), paying special attention to Chisholm-scenarios.

Finally, it should also be noted that, even if we leave (FD) and (DD) aside,
all the observations and techniques from Sections 5–7 could be applied just as well
to the case of dyadic deontic logics as developed, building on Goble’s work in [39;
40]. Here again, we may use adaptive logics to steer a middle course between all-
too-weak conflict tolerant dyadic systems and deontic explosion.

9.2 Adaptive reasoning with conditionals
Adaptive detachment, generalized Instead of using a binary operator for con-
ditional obligation, one may also introduce a new conditional ⇒, so that the logic
of deontic conditionals derives from the logic for this new conditional and the logic
for the monadic operator O of one’s choice. In this section we focus on this second
approach.

Suppose we formalize “If A, then B is obligatory” as A ⇒ OB.60 Then at the
very least we want to be able to factually detach OB given A and A⇒ OB, absent
further information.61 But we may not want unrestricted detachment (or full modus

60One may also represent the conditional obligation “If A, then it is obligatory that B” by
O(A ⇒ B) or OA ⇒ OB. We will have little to say about the first of these two alternatives; we
briefly return to the second at the end of this section.

61We consider deontic detachment at the end of this section.

591

Van De Putte, Beirlaen, and Meheus

ponens) for the conditional ⇒. For instance, given the premises p, q, p ⇒ Or, and
q ⇒ O¬r, we may not want to be able to detach both Or and O¬r, unless perhaps
we move to a non-standard characterization of O. So if we stick to a standard
characterization of O as an SDL-operator, we will want to allow for some, but not
all instances of modus ponens for ⇒.

In other words, we only want to apply detachment in a defeasible way. This can
be done as follows in terms of ALs. We first enrich the language of SDL with a
default conditional, where nested occurrences of ⇒ are disallowed:

W⇒ := Wd | 〈Wd〉 ⇒ 〈Wd〉 | ¬〈W⇒〉 | 〈W⇒〉 ∨ 〈W⇒〉 | 〈W⇒〉 ∧
〈W⇒〉 |
〈W⇒〉 ⊃ 〈W⇒〉 | 〈W⇒〉 ≡ 〈W⇒〉

Next, let SDL⇒ be just SDL, but defined over this richer language. Hence, ⇒
has no properties in SDL⇒. We then define our ALs on the basis of SDL⇒, by the
set of abnormalities

Ω⇒ =df {(A⇒ B) ∧A ∧ ¬B | A,B ∈ Wd}

So whenever the conditional A⇒ B is true and A is true, then we assume that
also B is true. Note that A and B can be arbitrary members of Wd, hence also A
can be a deontic statement such as Op – we return to this point below.

Let us call the resulting adaptive logics SDLx
⇒. As the following proof illustrates,

conditional obligations are detachable in SDLx
⇒ as long as no conflicts are generated.

(For the sake of readability, we abbreviate (A⇒ B) ∧A ∧ ¬B as A 6⇒ B).)

1 p ∧ q Prem ∅
2 p⇒ Or Prem ∅
3 q ⇒ O¬r Prem ∅
4 (p ∧ q)⇒ Os Prem ∅
5 Or 1,2;RC {p 6⇒ Or}X8

6 O¬r 1,3;RC {q 6⇒ O¬r}X8

7 Os 1,4;RC {(p ∧ q) 6⇒ Os}
8 (p 6⇒ Or) ∨ (q 6⇒ O¬r) 1-3;RU ∅

The conditional ⇒ of SDL⇒ is of course very weak – we can only make use of
it by going adaptive. We can however strengthen the lower limit logic by adding

592

Adaptive Deontic Logics

further rules. Here are some candidates:

If A⇒ C and B ⇒ C, then (A ∨B)⇒ C (Or)
If A⇒ B and B ⇒ C, then A⇒ C (Tra)

If A⇒ B and (A ∧B)⇒ C, then A⇒ C (CTra)
If A ` B and B ⇒ C, then A⇒ C (SA)

Each of these rules can be added to our logic if desired. However, one should be
careful here, as adding more properties to one’s lower limit logic often generates
flip-flop problems, as explained in the previous sections of this paper.

Unlike the dyadic deontic operator of SDLd from Section 9.1, the conditional
⇒ of SDLx

⇒ is completely independent of the way we formalize obligations. We can
read a statement A ⇒ B as ‘If A, then normally B’ as we would do for defeasible
conditionals in general. In SDLx

⇒ we detach obligations via defeasible modus po-
nens, just like we defeasibly detach conclusions in default logic or in your preferred
calculus of non-monotonic logic. So this approach is very unifying, treating deontic
reasoning as just one specific type of defeasible reasoning in general.

However, the approach has the disadvantage that it cannot as easily accom-
modate deontic detachment (DD) (cf. Section 9.1). Consider the following three
inferences:

p, p⇒ Oq ` Oq (84)
Op,Op⇒ Oq ` Oq (85)

Op, p⇒ Oq ` Oq (86)

(84) and (85) are derivable SDLx
⇒-rules: we can apply these rules conditionally in

SDLx
⇒. However, (86) is not a derivable rule in SDLx

⇒. Some have argued that
this is how it should be (see e.g. the discussion and references in [25]). Still, (86)
has some intuitive force.

One way to defend SDLx
⇒ is by arguing that, whenever we think deontic detach-

ment should be allowed, the appropriate translation of the conditional is as in (85).
More generally, such conditionals are of the form: if A is obligatory, then also B is
obligatory (OA ⇒ OB). However, that would mean that in many cases we need a
kind of “double translation” of deontic conditionals – as (A⇒ OB)∧ (OA⇒ OB) –
which seems highly artificial. Moreover, it would go against the spirit of the adaptive
logic approach, where the idea is that the logic should determine which applications
of deontic detachment are rational. So altogether, it seems that the second approach
is less suited to accommodate (DD).

593

Van De Putte, Beirlaen, and Meheus

Further reading The literature on the formalization of defeasible conditionals is
vast. For some good entry points, see e.g. [55; 61]. In this section we only presented a
basic mechanism for the defeasible detachment of obligations via a new conditional.
For more information on the types of rules that can be studied via this mechanism,
we refer to [87, Chapter 6].

9.3 Adaptive Characterizations of input/output logic
Input/output logic The third approach to deontic conditionals that we will dis-
cuss here goes under the name input/output logic (henceforth I/O logic). Technically
speaking, I/O logics (without constraints, cf. infra) are operations that map every
pair 〈A,G〉 to an “output” O ⊆ W, where (i) G ⊆ W ×W is a set of “input/output
pairs” (A,B); (ii) A ⊆ W is the “input”. For instance, given the input A = {p, q}
and the set of conditionals G = {(p, r), (q, s)}, the output O will consist of r, s, and
everything that follows from their conjunction.

In a deontic setting, A usually represents factual information, G is a set of
conditional obligations, and the output consists of what is obligatory, given the
facts at hand and given the conditional obligations that make up our normative
system. The idea of factual detachment thus lies at the very core of I/O-logics.

Different I/O-logics are obtained by varying on the rules under which G is closed,
before one applies factual detachment. These rules are themselves highly similar to
the ones used to characterize default conditionals (cf. Section 9.2). For example, by
assuming that G is closed under the rule (OR)

If (A,C) and (B,C), then (A ∨B,C) (OR)

we can obtain r in the output of A = {p∨ q} and G = {(p, r), (q, r)}. Similarly, if G
is closed under the rule (Tra), one can validate deontic detachment (DD):

If (A,B) and (B,C), then (A,C) (Tra)

So for instance, given closure under (Tra), we can obtain q in the output of A = ∅
and G = {(>, p), (p, q)}.

Both (FD) and (DD) are accommodated within the I/O-systems presented [58].
However, this framework cannot handle conflicts that arise from the application of
(FD) or (DD) or both: e.g. A = {p, q} and G = {(p, r), (q,¬r)} will generate a trivial
output.

To deal with such cases, Makinson and van der Torre introduced a set C of
“constraints” in their [59]. Depending on the application context C may represent

594

Adaptive Deontic Logics

physical constraints, human rights, practical considerations, etc. C can restrict the
output in two ways, each corresponding to a different style of reasoning. We can
require consistency of O ∪ C, or we can impose the weaker requirement that for
each A ∈ O, {A} ∪ C is consistent. In the border case where C = ∅, this simply
means that we require the O to be consistent, or that each A ∈ O is consistent. The
first approach is called meet constrained output; the second is the join constrained
output.

The adaptive characterization In [88], I/O-logics are characterized in terms
of deductive systems within a rich modal language. We explain how this works
for constrained I/O-logics (the case for unconstrained I/O-logics is simpler). The
language uses unary modal operators in, out, con to represent input, output, and
constraints respectively. Input/output pairs (A,B) are represented by means of
in, out and a conditional →, as follows:

inA→ outB
The principle of detachment and the rules for input/output-pairs are then trans-

lated into the object level. This gives us rules and axioms such as the following:

If inA and inA→ outB, then outB (DET′)
((inA→ outC) ∧ (inB → outC)) ⊃ (in(A ∨B)→ outC) (OR′)
((inA→ outB) ∧ (inB → outC)) ⊃ (inA→ outC) (Tra′)

The fact that the output should be consistent with the set of constraints is
captured by

conA ⊃ ¬out¬A (ROC)

Finally, to mimic the selection of maximal consistent sets of conditionals, a
dummy operator • is introduced and used in much the same way as we did in
Section 3. That is, conditionals (A,B) ∈ G are translated into formulas of the form
•(inA→ outB). The adaptive logics then allow one to “activate” such conditionals
by removing the dummy, whence one can apply rules like (DET′), (OR′), or (Tra′)
to them.

Suppose, for instance, that we are given the following set of inputs, I/O-pairs,
and constraints: A = {p, q},G = {(p, r), (q, s), (p, t)}, C = {¬r∨¬s}. In the language
from [88], this gives us the following premise set:

Γ = {inp, inq, •(inp→ outr), •(inq → outs), •(inp→ outt), con(¬r ∨ ¬s)}

595

Van De Putte, Beirlaen, and Meheus

In an adaptive proof from Γ, we can finally derive outt. Depending on the
strategy, we can also finally derive out(r ∨ s) or even outr and outs.

Let us illustrate this with an object-level proof. To enhance readibility, we use
?(A,B) to abbreviate •(inA → outB) ∧ ¬(inA → outB). Moreover, we use super-
scripts r,m to indicate the strategy under which certain lines are (not) marked:62

1 inp Prem ∅
2 inq Prem ∅
3 •(inp→ outr) Prem ∅
4 •(inq → outs) Prem ∅
5 •(inp→ outt) Prem ∅
6 con(¬r ∨ ¬s) Prem ∅
7 inp→ outr 3; RC {?(p, r)}Xr,m

8 inq → outs 4; RC {?(q, s)}Xr,m

9 inp→ outt 5; RC {?(p, t)}
10 outr 1,7; RU {?(p, r)}Xr,m

11 outs 2,8; RU) {?(q, s)}Xr,m

12 outt 1,9; RU {?(p, t)}
13 outr ∨ outs 10; RU {?(p, r)}Xr

14 outr ∨ outs 11; RU {?(q, s)}Xr

15 ?(p, r) ∨ ?(q, s) 1-4,6; RU ∅

Under the modal translation, the minimal abnormality strategy corresponds to
the operation of meet constrained output; normal selections (cf. Section 3.4 corre-
sponds to the join constrained output. The reliability strategy has no counterpart in
the original framework of [59]; however, as shown in [88], one can also define a pro-
cedural semantics for the corresponding operation, much in the spirit of Makinson
and van der Torre’s original setting.

Further reading I/O-logic was introduced by Makinson and van der Torre [58; 59]
as a formal tool for modeling non-monotonic reasoning with conditionals. We refer
to [76] for an introduction to this approach and its applications to deontic reasoning.

The framework presented here is not only sufficient to characterize many well-
known I/O logics, but it allows one to go beyond the expressive means of I/O logics
so as to express useful notions in deontic logic such as violations and sanctions. We
refer to [88] for the many details, and for an elaborate presentation and discussion
of these advantages.

62The formulas at lines 10-12 are derivable in view of (DET′). The formula at line 15 is derivable
in view of (DET′), modal properties of the KD-operator out, and the axiom schema (ROC).

596

Adaptive Deontic Logics

10 Deontic compatibility

10.1 Adaptive logics for deontic compatibility

We saw how ALs are useful for reasoning in the presence of normative conflicts,
and for detaching conditional obligations. A different context of application for ALs
that was mentioned in Section 1 concerns the implementation of the nullum crimen
sine lege principle (henceforth NCSL). This principle expresses that no crimes occur
where there is no law: that which is not forbidden, is permitted. Typically, NCSL is
understood as a rule of closure permitting all the actions not prohibited by penal law
[1, pp. 142–143]. It is a fundamental principle of law, the roots of which go back at
least as far as the French Revolution. In the twentieth century it was incorporated
in various human rights instruments as a non-derogable right [70].

Logicians and computer scientists are very familiar with the concept of “negation
by default”, according to which a piece of information represented by some variable
is taken to be absent unless and until we include it in our database. For instance,
where a variable x abbreviates that there is a train leaving for Ghent at 14:14, we
may conclude that ¬x unless x is mentioned on the timetable at the train station.
Similarly, we can think of NCSL as “permission by default”. Formally, this can be
expressed as follows, where we take our premise set Γ to represent a given normative
system or law, and where ` is an ordinary (Tarskian) deontic logic:

Γ ` PA iff Γ 6` ¬PA

Assume that we want to implement this equivalence against the background of
full SDL. Then, on pain of inconsistency, the equivalence can at best hold defeasibly.
Suppose, for instance, that we are given a premise set Γ such that Γ ` ¬Pp ∨ ¬Pq,
while Γ 6` ¬Pp and Γ 6` ¬Pq. Then we cannot preserve consistency and apply NCSL
to derive Pp as well as Pq. What we want, then, is a logic that preserves consistency
and applies NCSL as much as possible.

This motivates an adaptive logic of deontic compatibility which implements
NCSL by taking SDL as its lower limit logic, and ΩP as its set of abnormalities:

ΩP = {¬PA | A ∈ W}

We call the resulting logic SDLx
nc with nc for nullum crimen and x ∈ {r,m}. In

view of the SDL-validity of PA ∨ ¬PA, SDLx
nc allows for the inference of jointly

compatible permissions relative to a given premise set. The following object level
proof further illustrates the ways this logic works.

597

Van De Putte, Beirlaen, and Meheus

1 O(¬p ∨ ¬q) Prem ∅
2 O(¬s ∧ t) Prem ∅
3 Pt ⊃ (Pu ⊃ O¬v) Prem ∅
4 Pp RC {¬Pp}
5 P¬p RC {¬P¬p}
6 Pq RC {¬Pq}
7 P¬q RC {¬P¬q}
8 Pr RC {¬Pr}
9 P¬r RC {¬P¬r}
10 Ps RC {¬Ps}X18

11 P¬s 2; RU ∅
12 Pt 2; RU ∅
13 P¬t RC {¬P¬t}X19

14 Pu RC {¬Pu}X20

15 P¬u RC {¬P¬u}
16 Pv RC {¬Pv}X20

17 P¬v RC {¬P¬v}
18 ¬Ps 2; RU ∅
19 ¬P¬t 2;RU ∅
20 ¬Pu ∨ ¬Pv 2;3;RU ∅

One nice feature of this logic is its simplicity, when restricted to premise sets of
the form {OA | A ∈ ∆} for ∆ ⊆ W. Indeed, for such cases, the strategies reliability
and minimal abnormality will coincide, since every minimal Dab-consequence of such
premise sets contains only one disjunct A ∈ ΩP. This is itself an immediate corollary
of the following:

Proposition 10.1. If Γ = {OA | A ∈ ∆} for ∆ ⊆ W, then Γ `SDL (¬PA1 ∨ . . . ∨
¬PAn) iff there is an i ∈ {1, . . . , n} such that Γ `SDL ¬PAi.

In more complex cases such as our example proof above, the two strategies may
well differ. In either case, the resulting consequence set will be closed under SDL
and consistent.

One may wonder whether the idea of deontic compatibility should necessarily
be phrased in terms of the underlying logic SDL – after all, legal conflicts are a
fact of life, and as soon as such conflicts are modeled in SDL, everything becomes
obligatory and permissible. This motivates a logic that defeasibly applies NCSL and
that accommodates conflicts much as the logics presented in Sections 5-7.

Let us illustrate this by means of the paraconsistent deontic logics from Section 7.
One option is to just take a monotonic paraconsistent deontic logic – say DCLuN,
to keep things relatively simple – and to use as a set of abnormalities

598

Adaptive Deontic Logics

Ω = {OA | A ∈ W∼}

However, the resulting logic will be too strong, in the sense that it will allow
one to derive permissions that should intuitively not be derivable, even if we take
NCSL seriously. With such a logic, one can e.g. derive P¬¬∼p from Γ = {Op}. The
underlying reason is that in these logics, Op does not entail O¬∼p (just like the
truth of p does not entail the falsehood of ∼p in their paraconsistent propositional
base), and hence one can consistently assume that O¬∼p is false even when Op is
true. But the mere fact that we want to allow for the logical possibility of conflicts,
should not entail that everything is permissible.

A more plausible combination of conflict-tolerance and nullum crimen can be
obtained if we combine the adaptive logics DCLuNx from Section 7 with NCSL,
using the format of lexicographic ALs that was introduced in Section 3.4. This means
that the logic first minimizes inconsistencies (which implies i.a. that we derive further
obligations), and only after that do we maximize permissions. In this way we can
e.g. explain why in view of Γ′ = {Op,O(∼p∨ q),Or,O∼r} we can derive Oq, Op and
¬P¬¬∼p, ¬P¬¬∼q, but also P¬¬s,P¬¬∼s, and P¬¬r,P¬¬∼r.

Analogously, one may enrich the logics from Sections 5 and 6 with a default
version of NCSL. For similar reasons as in the paraconsistent case, it seems best to
first apply the adaptive mechanisms from those sections, and only after that to apply
NCSL. For instance, in the case of non-aggregative deontic logics, we would not want
to infer P¬(p ∧ q) from Γ = {Op,Oq}. Likewise, in the context of the LUM-logics,
we would not want to infer P¬p from Γ′ = {O(p∧ q)}. The full development of such
rich ALs for deontic compatibility is still very much open; it should by now be clear
that a broad range of options are to be considered, and that the devil may well be
in the many details.

10.2 Further reading

Adaptive logics for classical compatibility were among the first ampliative adaptive
logics to be published – see [13]. Although these logics were not formulated in the
standard format, one can do this by means of the triple

〈S5, {¬3A | A is a non-modal formula }, x ∈ {r,m}〉

The relation between classical compatibility and the logics in question is then
expressed in terms of a modal translation: A is compatible with Γ iff {�A | A ∈
Γ} `AL 3A.

599

Van De Putte, Beirlaen, and Meheus

In [65], the basic idea behind these logics is used in order to develop a formal
account of paraconsistent compatibility, i.e., what it means that a given formula is
compatible with a certain (possibly inconsistent) scientific theory. As Meheus argues
there, one also first needs to minimize inconsistencies before checking compatibility
with the resulting maximally consistent interpretation of the theory.

11 Summary and outlook

This paper started with two simple adaptive logics that can handle deontic conflicts.
We then discussed in some detail more sophisticated conflict-tolerant ALs, as well
as ALs for reasoning with conditional obligations and the problems of detachment
that are associated with these. Finally, we broadened the picture by presenting ALs
for the inherently defeasible nullum crimen sine lege principle. This should convince
the reader of the generality and the flexibility of the adaptive logic framework.

It is important to realize, however, that this does not exhaust the possibilities
of adaptive logics for the domain of normative reasoning. This requires more expla-
nation.

All logics presented in this paper share important constraints. One of them is
that we only considered the two main deontic modalities, “it is obligatory that”
and “it is permitted that”, and we moreover restricted our formal languages to non-
nested occurrences of those modalities. Another one is that we took it for granted
that we can start from premise sets that merely consist of very specific and very
concrete normative statements, like “Nathan ought to take Lisa to that particular
movie on Saturday afternoon”.

Because of these constraints, the logics allow us to explicate only a very small part
of the normative reasoning one finds in actual cases. Already the everyday examples
from Nathan’s life (that are recognizable to many of us) suffice to illustrate this. In
Nathan’s first predicament (the preludium), his normative reasoning does not start
from the statements that he ought to take Lisa to the movie in the afternoon, that
he ought to look after Ben in the afternoon and that he ought to take Lisa for a
veggie burger in the evening. These statements are themselves derived from other
statements, in this case concrete promises by Nathan and the general rule “One
ought to keep one’s promises”. Also in Nathan’s second predicament (Section 3.1),
the specific normative statements are not given at the outset, but are the result
of reasoning. In this case, not only general rules play a role (like “One ought to
return favors”), but also commands uttered by an authority (i.c. Nathan’s father).
None of the logics presented here allows us to explicate the reasoning from general
rules to their instances or from commands (uttered by one person) to obligations

600

Adaptive Deontic Logics

(for another person) – to mention only two possible origins of specific normative
statements.

There is more. Some readers may have noticed that, while presenting our conflict-
tolerant logics, we used the term “prima facie obligations”, but never used the term
“all-things-considered obligations” which is, at least since Ross’ [83], associated with
it. Instead we consistently used the term “actual obligations”. The reason is that
none of our logics enables us to explicate the reasoning from prima facie obligations
to all-things-considered obligations, where the latter is taken to mean something
like “obligations that are, after careful deliberation, considered to be binding”. Our
logics only give us those binding obligations for which relatively little deliberation
is needed. For instance, “if a prima facie obligation is unconflicted, it should be
binding” or “if two prima facie obligations are unconflicted, also their conjunction
should be binding”, etc.

In order to explicate the reasoning that goes on in resolving a predicament and
finding out what one’s all-things-considered obligations are (or should be), we need
much more than just deontic operators. For instance, whatever Nathan’s solution
for his first predicament may be, it will involve certain beliefs (for instance, what
Nathan believes will happen if he does not keep the promise he made to his mother).
None of our logics can handle interactions between deontic modalities on the one
hand, and doxastic or epistemic modalities on the other.63

Does this mean we have gone all this way for nothing? Certainly not. We are
convinced that the logics presented here are good candidates to explicate part of the
reasoning that goes on in specific deontic contexts. They moreover provide a first
stepping stone to more complex, richer accounts of deontic reasoning. So there is
still hope for Nathan, or at least for us to fully understand how he should reason.

References
[1] Carlos E. Alchourrón and Eugenio Bulygin. Normative Systems. Springer-Verlag,

Wien/New York, 1971.
[2] Patrick Allo. Adaptive logic as a modal logic. Studia Logica, 101(5):933–958, 2013.
[3] Lennart Åqvist. Deontic logic. In Dov Gabbay and Franz Guenthner, editors, Hand-

book of Philosophical Logic (2nd edition), volume 8, pages 147–264. Kluwer Academic
Publishers, 2002.

[4] D. Batens. Dialectical dynamics within formal logics. Logique et Analyse, 114:161–173,
1986.

63See e.g. [73] for a study of the interaction between epistemic and deontic modalities.

601

Van De Putte, Beirlaen, and Meheus

[5] D. Batens. Dynamic dialectical logics. In G. Priest, R. Routley, and J. Norman,
editors, Paraconsistent Logic. Essays on the Inconsistent, pages 187–217. Philosophia
Verlag, München, 1989.

[6] Diderik Batens. Inconsistencies and beyond. A logical-philosophical discussion. Revue
Internationale de Philosophie, 200:259–273, 1997.

[7] Diderik Batens. Inconsistency-adaptive logics. In Ewa Orłowska, editor, Logic at
Work. Essays dedicated to the memory of Helena Rasiowa, pages 445–472. Physica
Verlag (Springer), Heidelberg, New York, 1999.

[8] Diderik Batens. Zero logic adding up to classical logic. Logical Studies, 2:15, 1999.
[9] Diderik Batens. A general characterization of adaptive logics. Logique et Analyse,

173–175:45–68, 2001. Appeared 2003.
[10] Diderik Batens. A universal logic approach to adaptive logics. Logica Universalis,

1:221–242, 2007.
[11] Diderik Batens. Logics for qualitative inductive generalization. Studia Logica, 97:61–

80, 2011.
[12] Diderik Batens. Tutorial on inconsistency-adaptive logics. In Jean-Yves Béziau, Mi-

hir Chakraborty, and Soma Dutta, editors, Springer Proceedings in Mathematics &
Statistics, volume 152, pages 3–38. Springer, 2015.

[13] Diderik Batens and Joke Meheus. The adaptive logic of compatibility. Studia Logica,
66:327–348, 2000.

[14] Diderik Batens, Christian Straßer, and Peter Verdée. On the transparency of defeasible
logics: Equivalent premise sets, equivalence of their extensions, and maximality of the
lower limit. Logique et Analyse, 207:281–304, 2009.

[15] M. Beirlaen. Tolerating Normative Conflicts in Deontic Logic. Dissertation,
Ghent University, 2012. Available online at http://www.clps.ugent.be/research/
doctoral-dissertations.

[16] M. Beirlaen and C. Straßer. Two adaptive logics of norm-propositions. Journal of
Applied Logic, 11(2):147–168, 2013.

[17] M. Beirlaen and C. Straßer. Nonmonotonic reasoning with normative conflicts in
multi-agent deontic logic. Journal of Logic and Computation, 24:1179–1207, 2014.

[18] M. Beirlaen and C. Straßer. A structured argumentation framework for detaching
conditional obligations. In O. Roy, A. Tamminga, and M. Willer, editors, Proceedings
of the 13th International Conference on Deontic Logic and Normative Systems (∆EON
2016, Bayreuth, Germany), pages 32–48. College Publications, 2016.

[19] Mathieu Beirlaen and Atocha Aliseda. A conditional logic for abduction. Synthese,
191(15):3733–3758, 2014.

[20] Mathieu Beirlaen, Bert Leuridan, and Frederik Van De Putte. A logic for the discovery
of deterministic causal regularities. Synthese, 195:367–399, 2018.

[21] Mathieu Beirlaen and Christian Straßer. A paraconsistent multi-agent framework for
dealing with normative conflicts. In Joao Leite, Paolo Torroni, Thomas Agotnes,
Guido Boella, and Leon van der Torre, editors, Computational Logic in Multi-Agent

602

Adaptive Deontic Logics

Systems, volume 6814 of Lecture Notes in Computer Science, pages 312–329. Springer,
Berlin/Heidelberg, 2011.

[22] Mathieu Beirlaen, Christian Straßer, and Joke Meheus. An inconsistency-adaptive
deontic logic for normative conflicts. Journal of Philosophical Logic, 42(2):285–315,
2013.

[23] N. Belnap and M. Perloff. In the realm of agents. Annals of Mathematics and Artificial
Intelligence, 9:25–48, 1993.

[24] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science, 2001.

[25] Daniel Bonevac. Defaulting on reasons. Noûs, 2016.
[26] D. Brink. Moral conflict and its structure. The Philosophical Review, 103:215–247,

1994.
[27] Fabrizio Cariani. “Ought” and resolution semantics. Noûs, 47(3):534–558, 2013.
[28] J. Carmo and A. Jones. Deontic logic and contrary-to-duties. In Dov Gabbay and

Franz Guenthner, editors, Handbook of Philosophical Logic (2nd edition), volume 8,
pages 265–343. Kluwer Academic Publishers, 2002.

[29] Brian Chellas. Modal Logic: an Introduction. Cambridge: Cambridge university press,
1980.

[30] R. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis, 27:33–36,
1963.

[31] Dag Elgesem. The modal logic of agency. Nordic Journal of Philosophical Logic,
2(2):1–46, 1997.

[32] Kit Fine. Angellic content. Journal of Philosophical Logic, 45(2):199–226, April 2016.
[33] Dov M. Gabbay. Bipolar argumentation frames and contrary to duty obligations,

preliminary report. In M. Fisher, L. van der Torre, M. Dastani, and G. Governatori,
editors, Computational Logic in Multi-Agent Systems, pages 1–24. Springer, 2012.

[34] L. Goble. A logic of “good”, “should”, and “would”: Part I. Journal of Philosophical
Logic, 19:169–199, 1990.

[35] L. Goble. A proposal for dealing with deontic dilemmas. In A. Lomuscio and D. Nute,
editors, 7th International Workshop on Deontic Logic in Computer Science, volume
3065 of Lecture Notes in Computer Science, pages 74–113. Springer, 2004.

[36] L. Goble. Normative conflicts and the logic of ought. Noûs, 43:450–489, 2009.
[37] Lou Goble. A logic of “good”, “should”, and “would”: Part II. Journal of Philosophical

Logic, 19:253–76, 1990.
[38] Lou Goble. Multiplex semantics for deontic logic. Nordic Journal of Philosophical

Logic, 5:113–134, 2000.
[39] Lou Goble. Preference semantics for deontic logic. Part I: Simple models. Logique et

Analyse, 183–184:383–418, 2003.
[40] Lou Goble. Preference semantics for deontic logic. Part II: Multiplex models. Logique

et Analyse, 185–188:335–363, 2004.

603

Van De Putte, Beirlaen, and Meheus

[41] Lou Goble. A logic for deontic dilemmas. Journal of Applied Logic, 3:461–483, 2005.
[42] Lou Goble. Prima facie norms, normative conflicts, and dilemmas. In Dov Gabbay,

Leon van der Torre, John Horty, and Xavier Parent, editors, Handbook of Deontic Logic
and Normative Systems, volume 1, chapter 4, pages 241–351. College Publications,
2013.

[43] Lou Goble. Deontic logic (adapted) for normative conflicts. Logic Journal of the IGPL,
22(2):206–235, 2014.

[44] C.W. Gowans, editor. Moral Dilemmas. Oxford University Press, 1987.
[45] J. Hansen. Imperative logic and its problems. In Dov Gabbay, Leon van der Torre,

John Horty, and Xavier Parent, editors, Handbook of Deontic Logic and Normative
Systems, volume 1, chapter 2, pages 137–192. College Publications, 2013.

[46] Bengt Hansson. An analysis of some deontic logics. Nous, 3:373–398, 1969.
[47] Jesse Heyninck and Christian Straßer. Relations between assumption-based ap-

proaches in nonmonotonic logic and formal argumentation. In Gabriele Kern-Isberner
and Renata Wassermann, editors, 16th International Workshop on Non-Monotonic
Reasoning, Cape Town, South Africa, pages 65–76, 2016.

[48] Risto Hilpinen and Paul McNamara. Deontic logic: a historical survey and introduc-
tion. In Dov Gabbay, Leon van der Torre, John Horty, and Xavier Parent, editors,
Handbook of Deontic Logic and Normative Systems, volume 1, chapter 1, pages 3–136.
College Publications, 2013.

[49] J. Horty. Moral dilemmas and nonmonotonic logic. Journal of Philosophical Logic,
23(1):35–66, 1994.

[50] J. Horty. Nonmonotonic foundations for deontic logic. In Donald Nute, editor, De-
feasible Deontic Logic: Essays in Nonmonotonic Normative Reasoning, pages 17–44.
Kluwer Academic Publishers, 1997.

[51] J. Horty. Skepticism and floating conclusions. Artificial Intelligence, 135:55–72, 2002.
[52] J. Horty. Reasoning with moral conflicts. Noûs, 37:557–605, 2003.
[53] J. Horty. Reasons as Defaults. Oxford University Press, 2012.
[54] Frank Jackson. On the semantics and logic of obligation. Mind, 94:177–195, 1985.
[55] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models

and cumulative logics. Artificial Intelligence, 44:167–207, 1990.
[56] Bert Leuridan. Causal discovery and the problem of ignorance. An adaptive logic

approach. Journal of Applied Logic, 7(2):188–205, 2009.
[57] D. Makinson and K. Schlechta. Floating conclusions and zombie paths: two deep

difficulties in the “directly skeptical” approach to defeasible inheritance nets. Artificial
Intelligence, 48:199–209, 1991.

[58] D. Makinson and L. van der Torre. Input/output logics. Journal of Philosophical
Logic, 29:383–408, 2000.

[59] D. Makinson and L. van der Torre. Constraints for input/output logics. Journal of
Philosophical Logic, 30:155–185, 2001.

604

Adaptive Deontic Logics

[60] David Makinson. General patterns in nonmonotonic reasoning. In Handbook of Logic
in Artificial Intelligence and Logic Programming, vol. III. Clarendon Press, 1994.

[61] David Makinson. Bridges from Classical to Nonmonotonic Logic, volume 5 of Texts
in Computing. King’s College Publications, London, 2005.

[62] Ruth Barcan Marcus. Moral dilemmas and consistency. Journal of Philosophy, 77:121–
136, 1980. Reprinted in [44].

[63] C. McGinnis. Paraconsistency and Deontic Logic: Formal Systems for Reasoning with
Normative Conflicts. Dissertation, University of Minnesota, 2007.

[64] C. McGinnis. Semi-paraconsistent deontic logic. In Jean-Yves Béziau, Walter Carnielli,
and Dov Gabbay, editors, Handbook of Paraconsistency, pages 81–99. College Publi-
cations, London, 2007.

[65] Joke Meheus. Paraconsistent compatibility. Logique et Analyse, 183–184:251–287,
2003.

[66] Joke Meheus, Mathieu Beirlaen, and Frederik Van De Putte. Avoiding deontic ex-
plosion by contextually restricting aggregation. In Guido Governatori and Giovanni
Sartor, editors, Deontic Logic in Computer Science, volume 6181 of Lecture Notes in
Computer Science, pages 148–165. Springer Berlin Heidelberg, 2010.

[67] Joke Meheus, Mathieu Beirlaen, Frederik Van De Putte, and Christian Straßer. Non-
adjunctive deontic logics that validate aggregation as much as possible. Unpublished
manuscript, 2012. Preprint available at http://www.clps.ugent.be/research/
publications.

[68] Joke Meheus, Christian Straßer, and Peter Verdée. Which style of reasoning to choose
in the face of conflicting information? Journal of Logic and Computation, 26(1):361–
380, 2016.

[69] Joke Meheus, Liza Verhoeven, Maarten Van Dyck, and Dagmar Provijn. Ampliative
adaptive logics and the foundation of logic-based approaches to abduction. In L. Mag-
nani, N.J. Nersessian, and Claudio Pizzi, editors, Logical and Computational Aspects
of Model-Based Reasoning, pages 39–71. Kluwer Academic, Dordrecht, 2002.

[70] Ali Mokhtar. Nullum crimen, nulla poena sine lege: Aspects and prospects. Statute
Law Review, 26(1):41–55, 2005.

[71] D. Nute. Norms, priorities, and defeasibility. In Paul McNamara and Henri Prakken,
editors, Norms, Logics and Information Systems. New Studies on Deontic Logic and
Computer Science., pages 201–218. IOS Press, 1999.

[72] Sergei Odintsov and Stanislav Speranski. Computability issues for adaptive logics in
expanded standard format. Studia Logica, 101(6):1237–1262, 2013.

[73] Eric Pacuit, Rohit Parikh, and Eva Cogan. The logic of knowledge based obligation.
Synthese, 149(2):311–341, 2006.

[74] X. Parent and L. van der Torre. “Sing and dance!” Input/output logics without
weakening. In F. Cariani, D. Grossi, J. Meheus, and X. Parent, editors, DEON (12th
International Conference on Deontic Logic in Computer Science), volume 8554 of
Lecture Notes in Artificial Intelligence, pages 149–165. Springer, 2014.

605

Van De Putte, Beirlaen, and Meheus

[75] Xavier Parent. A complete axiom set for Hansson’s deontic logic DSDL2. Logic Journal
of the IGPL, 18(3):422–429, 2010.

[76] Xavier Parent and Leendert van der Torre. Input/output logic. In Dov Gabbay, Jeff
Horty, Xavier Parent, Ron van der Meyden, and Leendert van der Torre, editors,
Handbook of Deontic Logic and Normative Systems, volume 1, chapter 8, pages 499–
544. College Publications, 2013.

[77] H. Prakken and G. Sartor. Law and logic: A review from an argumentation perspec-
tive. Artificial Intelligence, 227:214–245, 2015.

[78] Henri Prakken. Intuitions and the modelling of defeasible reasoning: some case stud-
ies. In Proceedings of the Ninth International Workshop on Nonmonotonic Reasoning,
pages 91–99, Toulouse, 2002.

[79] G. Priest. Paraconsistent logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic (2nd edition), volume 8, pages 287–393. Kluwer Academic
Publishers, 2002.

[80] G. Priest, K. Tanaka, and Z. Weber. Paraconsistent logic. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2015 edition, 2015.
http://plato.stanford.edu/archives/spr2015/entries/logic-paraconsistent/.

[81] Graham Priest. In Contradiction. A Study of the Transconsistent. Nijhoff, Dordrecht,
1987.

[82] N. Rescher and R. Manor. On inferences from inconsistent premises. Theory and
Decision, 1:179–217, 1970.

[83] W. David Ross. The Right and the Good. Clarendon Press, 1930.
[84] Peter K. Schotch and Raymond E. Jennings. Non-kripkean deontic logic. In Risto

Hilpinen, editor, New Studies in Deontic Logic, pages 149–162. Reidel, Dordrecht,
1981.

[85] K. Segerberg. An essay in classical modal logic, 1971.
[86] K. Segerberg. Getting started: beginnings in the logic of action. Studia Logica,

51:347–378, 1992.
[87] C. Straßer. Adaptive Logic and Defeasible Reasoning. Applications in Argumentation,

Normative Reasoning and Default Reasoning. Springer, 2014.
[88] C. Straßer, M. Beirlaen, and F. Van De Putte. Dynamic proof theories for input/out-

put logic. Studia Logica, 104:869–916, 2016.
[89] C. Straßer, A. Knoks, and Joke Meheus. Deontic reasoning on the basis of consistency

considerations. Under review, 2017.
[90] Christian Straßer. An adaptive logic framework for conditional obligations and deontic

dilemmas. Logic and Logical Philosophy, 19(1-2):95–128, 2010.
[91] Christian Straßer. A deontic logic framework allowing for factual detachment. Journal

of Applied Logic, 9:61–80, 2011.
[92] Christian Straßer and Ofer Arieli. Normative reasoning by sequent-based argumenta-

tion. Journal of Logic and Computation, 2015 (online first).
[93] Christian Straßer and Mathieu Beirlaen. Towards more conflict-tolerant deontic

606

Adaptive Deontic Logics

logics by relaxing the interdefinability between obligations and permissions. Un-
published manuscript. Preprint available at http://www.clps.ugent.be/research/
publications.

[94] Christian Straßer, Joke Meheus, and Mathieu Beirlaen. Tolerating deontic conflicts
by adaptively restricting inheritance. Logique et Analyse, 219:477–506, 2012.

[95] Christian Straßer and Dunja Šešelja. Towards the Proof-theoretic Unification of
Dung’s Argumentation Framework: an Adaptive Logic Approach. Journal of Logic
and Computation, 21:133–156, 2010.

[96] Johan van Benthem. What one may come to know. Analysis, 64(282):95–105, 2004.
[97] Johan van Benthem, Davide Grossi, and Fenrong Liu. Priority structures in deontic

logic. Theoria, 80(2):116–152, 2014.
[98] Frederik Van De Putte. Generic Formats for Prioritized Adaptive Logics.

With Applications in Deontic Logic, Abduction and Belief Revision. Disserta-
tion, Ghent University, 2012. Available at http://www.clps.ugent.be/research/
doctoral-dissertations.

[99] Frederik Van De Putte. Default assumptions and selection functions: A generic frame-
work for non-monotonic logics. In Felix Castro, Alexander Gelbukh, and Miguel Gon-
zalez, editors, Advances in Artificial Intelligence and Its Applications, volume 8265 of
Lecture Notes in Computer Science, pages 54–67. Springer, 2013.

[100] Frederik Van De Putte. Coarse Deontic Logic. In Allard Tamminga and Malte Willer,
editors, Deontic Logic and Normative Systems: 13th International Conference, DEON
2016, Bayreuth, Germany, pages 256–271. College Publications, July 2016.

[101] Frederik Van De Putte. Coarse Deontic Logic (Extended Version). Journal of Logic
and Computation, 29(2):285–317, 2019.

[102] Frederik Van De Putte and Christian Straßer. Extending the standard format of
adaptive logics to the prioritized case. Logique et Analyse, 220:601–641, 2012.

[103] Frederik Van De Putte and Christian Straßer. A logic for prioritized normative rea-
soning. Journal of Logic and Computation, 23(3):563–583, 2013.

[104] Frederik Van De Putte and Christian Straßer. Adaptive logics: a parametric approach.
Logic Journal of IGPL, 22(6):905–932, 2014.

[105] L. van der Torre and S. Villata. An ASPIC-based legal argumentation framework for
deontic reasoning. In Computational Models of Argument (Proceedings of COMMA
14), pages 421–432. IOS Press, 2014.

[106] J.A. van Eck. A system of temporally relative modal and deontic predicate logic and
its philosophical applications. Logique et Analyse, 99:249–290, 1982.

[107] Bas C. van Fraassen. Values and the heart’s command. Journal of Philosophy, 70(1):5–
19, 1973.

[108] Peter Verdée. Non-monotonic set theory as a pragmatic foundation of mathematics.
Foundations of Science, 18(4):655–680, Nov 2013.

[109] Georg Henrik von Wright. Deontic logic. Mind, 60:1–15, 1951.
[110] P. Vranas. I ought, therefore I can. Philosophical Studies, 136:167–216, 2007.

607

Van De Putte, Beirlaen, and Meheus

[111] Bernard Williams and W.F̃. Atkinson. Symposium: Ethical consistency. Proceedings
of the Aristotelian Society, Supplementary Volumes, 39:103–138, 1965.

Received 13 June 2018608

