
Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications

Volume 5, Number 3

June 2018



Disclaimer
Statements of fact and opinion in the articles in Journal of Applied Logics - IfCoLog Journal of
Logics and their Applications (JAL-FLAP) are those of the respective authors and contributors and
not of the JAL-FLAP. Neither College Publications nor the JAL-FLAP make any representation,
express or implied, in respect of the accuracy of the material in this journal and cannot accept any
legal responsibility or liability for any errors or omissions that may be made. The reader should
make his/her own evaluation as to the appropriateness or otherwise of any experimental technique
described.

c© Individual authors and College Publications 2018
All rights reserved.

ISBN 978-1-84890-279-4
ISSN (E) 2055-3714
ISSN (P) 2055-3706

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk


Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
Amy Felty
David Fernandez Duque
Jan van Eijck

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

Area Scientific Editors

Philosophical Logic
Johan van Benthem
Lou Goble
Stefano Predelli
Gabriel Sandu

New Applied Logics
Walter Carnielli
David Makinson
Robin Milner
Heinrich Wansing

Logic and category
Theory
Samson Abramsky
Joe Goguen
Martin Hyland
Jim Lambek

Proof Theory
Sam Buss
Wolfram Pohlers

Logic and Rewriting
Claude Kirchner
Jose Meseguer

Human Reasoning
Peter Bruza
Niki Pfeifer
John Woods

iii



Modal and Temporal
Logic
Carlos Areces
Melvin Fitting
Victor Marek
Mark Reynolds.
Frank Wolter
Michael Zakharyaschev

Automated Inference
Systems and Model
Checking
Ed Clarke
Ulrich Furbach
Hans Juergen Ohlbach
Volker Sorge
Andrei Voronkov
Toby Walsh

Formal Methods:
Specification and
Verification
Howard Barringer
David Basin
Dines Bjorner
Kokichi Futatsugi
Yuri Gurevich

Logic and Software
Engineering
Manfred Broy
John Fitzgerald
Kung-Kiu Lau
Tom Maibaum
German Puebla

Logic and Constraint
Logic Programming
Manuel Hermenegildo
Antonis Kakas
Francesca Rossi
Gert Smolka

Logic and Databases
Jan Chomicki
Enrico Franconi
Georg Gottlob
Leonid Libkin
Franz Wotawa

Logic and Physics
(space time. relativity
and quantum theory)
Hajnal Andreka
Kurt Engesser
Daniel Lehmann
lstvan Nemeti
Victor Pambuccian

Logic for Knowledge
Representation and the
Semantic Web
Franz Baader
Anthony Cohn
Pat Hayes
Ian Horrocks
Maurizio Lenzerini
Bernhard Nebel

Tactical Theorem
Proving and Proof
Planning
Alan Bundy
Amy Felty
Jacques Fleuriot
Dieter Hutter
Manfred Kerber
Christoph Kreitz

Logic and Algebraic
Programming
Jan Bergstra
John Tucker

Logic in Mechanical
and Electrical
Engineering
Rudolf Kruse
Ebrahaim Mamdani

Logic and Law
Jose Carmo
Lars Lindahl
Marek Sergot

Applied Non-classical
Logic
Luis Farinas del Cerro
Nicola Olivetti

Mathematical Logic
Wilfrid Hodges
Janos Makowsky

Cognitive Robotics:
Actions and Causation
Gerhard Lakemeyer
Michael Thielscher

iv



Type Theory for
Theorem Proving
Systems
Peter Andrews
Chris Benzmüller
Chad Brown
Dale Miller
Carsten Schlirmann

Logic Applied in
Mathematics
(including e-Learning
Tools for Mathematics
and Logic)
Bruno Buchberger
Fairouz Kamareddine
Michael Kohlhase

Logic and
Computational Models
of Scientific Reasoning
Lorenzo Magnani
Luis Moniz Pereira
Paul Thagard

Logic and Multi-Agent
Systems
Michael Fisher
Nick Jennings
Mike Wooldridge

Logic and Neural
Networks
Artur d’Avila Garcez
Steffen Holldobler
John G. Taylor

Logic and Planning
Susanne Biundo
Patrick Doherty
Henry Kautz
Paolo Traverso

Algebraic Methods in
Logic
Miklos Ferenczi
Rob Goldblatt
Robin Hirsch
Idiko Sain

Non-monotonic Logics
and Logics of Change
Jurgen Dix
Vladimir Lifschitz
Donald Nute
David Pearce

Logic and Learning
Luc de Raedt
John Lloyd
Steven Muggleton

Logic and Natural
Language Processing
Wojciech Buszkowski
Hans Kamp
Marcus Kracht
Johanna Moore
Michael Moortgat
Manfred Pinkal
Hans Uszkoreit

Fuzzy Logic
Uncertainty and
Probability
Didier Dubois
Petr Hajek
Jeff Paris
Henri Prade
George Metcalfe
Jon Williamson

v



vi



Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

vii

jane.spurr@kcl.ac.uk


viii



Contents

ARTICLES

Argument Strength in Formal Argumentation . . . . . . . . . . . . . . . . . . . 629
Mathieu Beirlaen, Jesse Heyninck, Pere Pardo and Christian Straßer

Imprecise Probability and the Measurement of
Keynes’s “Weight of Arguments” . . . . . . . . . . . . . . . . . . . . . . . . . 677
William Peden

On Elitist Lifting and Consistency in Structured Argumentation . . . . . . . 709
Sjur Dyrkolbotn, Truls Pedersen and Jan Broersen

Defining Argument Weighing Functions . . . . . . . . . . . . . . . . . . . . . . . 747
Thomas F. Gordon

ix



x



Argument Strength in Formal
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Jesse Heyninck, Pere Pardo, Christian Straßer†
Ruhr-Universität Bochum, Germany

{jesse.heyninck,pere.pardoventura,christian.strasser}@rub.de

Some arguments are stronger than others. What makes an argument strong may
vary with the reasoning context. In epistemic contexts, where the main interest is
a true account of a given subject matter, a strong argument is based on reliable
information and reliable (not necessarily deductive) inferences from this information.
In practical decision making, we may care more about arguments promoting certain
specific values than about arguments promoting other values. In didactic contexts we
may be interested mainly in the explanatory strength of an argument, and possibly
in the extent to which it is understood by the target audience. Turning our focus to
the social dimension of argumentation, we may consider the strength of an argument
relative to its dialectic nature. Will it refute many arguments the opponents bring
forward? Will it make one’s overall stance more vulnerable, etc.?

Computational argumentation provides a formal theory of argument construction
and evaluation. Given the prominent place the notion of argument strength has in
discursive contexts, it is key for this research program to develop an account of
it. In this article we highlight some of the main conceptual developments in this
domain on the notion of argument strength. In computational argumentation we
can distinguish between three tiers or dimensions of argumentation. The notion

This special issue came about in the wake of the first Argument Strength workshop, held at the Ruhr-
University of Bochum from November 30th till December 2nd of 2016. We thank all participants
for their contributions at the workshop, and for valuable discussions which helped to shape this
overview. We also thank the referees of papers submitted to this volume for their generous help
and expertise.
∗This research was funded by the Flemish Research Foundation (FWO-Vlaanderen).
†Research for this article was sponsored by a Sofja Kovalevskaja award of the Alexander von

Humboldt Foundation, funded by the German Ministry for Education and Research.
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Beirlaen, Heyninck, Pardo and Straßer

of argument strength comes into play in each of these. We will use these tiers to
structure and guide the discussion below by dedicating one section of this article to
each tier:

Sec. 1 The support dimension. Which premisses does the argument rely on? How
reliable are they? To what extent do they support the conclusion? Which
inference rules were used in the argument’s construction on the basis of these
premisses, and how reliable are these rules? These questions concern an ar-
gument’s construction and degree of support independently of the presence
of other arguments. In informal logic, the support dimension corresponds to
the illative core of an argument: the argument seen as a premise-conclusion
structure which provides for the argument’s conclusion [32, 93].

Sec. 2 The dialectic dimension. We do not assess arguments in isolation. A good
assessment takes into account alternative points of view and possible objec-
tions. For this, we need to consider counter-arguments. Johnson refers to
this dimension as the dialectical tier of argumentation [93]. In a formal ac-
count of argumentation, this dialectics is mainly represented by relations of
argumentative attack and defeat between arguments.

Sec. 3 The evaluative dimension. There exist various ways of determining which
arguments in a given set can be considered justified or unjustified. The choice
of a particular method is a highly context-dependent matter. In practical
decision making, we may attach more importance to a specific value promoted
by some argument. In certain epistemic contexts we may want to adopt a
rather skeptical stance on argument acceptance, while in others we may want
to be more credulous, and so on. Given a set of arguments and a relation of
argumentative defeat over this set, the evaluative dimension consists of a large
variety of ‘semantics’ for determining the acceptability status of arguments
and their respective claims relative to the context at hand.

The current main point of reference in formal argumentation is Dung’s approach
from [63]. Dung defines an argumentation framework as a pair consisting of a set
of arguments and a relation of argumentative attack over arguments. The second
member of this pair belongs to the dialectic tier (Section 2), while the first relates
to the support tier (Section 1). In the support tier we zoom in on the illative
core or internal structure of arguments. The subfield of formal argumentation that
takes this dimension into account is called structured argumentation [25]. Given
an argumentation framework, Dung provides various semantics for determining the
acceptability status of an argument in the framework. These belong to the evaluative
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tier. We will have more to say about these in Section 3. We end with a short overview
of different approaches to argument accrual, a topic that connects to all three tiers
of computational argumentation (Section 4), and with a discussion on the power of
formal approaches to argumentation to represent and incorporate existing work in
the field of non-monotonic logic (Section 5).

1 The Support Dimension: Argument Construction
Systems of structured or instantiated argumentation specify how arguments are con-
structed relative to a premise set and a number of inference rules. Premisses are
formulas in a given formal language. They represent the evidence or information
on the basis of which we build arguments. Besides premisses, we have rules at our
disposal for inferring new formulas from others. Arguments are considered the re-
sult of applying inference rules to the given premisses and, possibly, of chaining such
applications. In applications of automated reasoning a given set of premisses and a
given set of inference rules form a knowledge base from which arguments are gener-
ated. Such a knowledge base can be used to model, for example, legal argumentation
(see [19] for an overview), reasoning with conditional obligations [18, 103], default
reasoning [160, 159], logic programming with negation as failure [52], autoepistemic
reasoning [37], causal inference [34] or reasoning with plausible assumptions [37].

In Section 1.1 below we present some standard accounts of argument construction
in the subfield of structured argumentation. The support provided by an argument
for its conclusion is determined by the degree of support of its premisses, and by the
degree of support provided by the inference rules applied in its construction. We
discuss these determinants in Sections 1.2 and 1.3 respectively. Degrees of support
are relative to a pre-given ordering over the premisses and/or rules in the knowledge
base. Differences in the type of ordering chosen may have important consequences
for the ensuing account of argument strength. These differences are discussed in
Section 1.4.

1.1 A basic matrix of argument representation
A first source of variation with respect to the way arguments are constructed, con-
cerns the expressive power of the system at hand. The formal language in which
premise sets are encoded may or may not contain disjunctions, predicates, etc. More-
over, systems may or may not allow for a distinction between strict and defeasible
rules. Strict rules are deductive and non-retractable, while defeasible rules can be
retracted and their consequents do not follow with absolute certainty from the fact
that the antecedent holds. A similar distinction in terms of certainty/retractability
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System StrPrem DefPrem StrRules DefRules
ABA X X X ×
ASPIC+ X X X X
DA × X X ×
DeLP X∗ X∗ X X
DL X X∗ X X
SBA × X X ×

Table 1

can be made between strict premisses (facts) and defeasible premisses (assumptions).
Strict rules often correspond to valid deductions in some core logic, such as classical
logic (CL), intuitionistic logic, or some modal or paraconsistent logic. Systems of
structured argumentation are usually quite flexible when it comes to the choice of
this deductive core. In Table 1 we provide an overview of some central systems of
structured argumentation and their capacities to represent different types of rules
and premisses.

‘StrPrem’ and ‘StrRules’ refer to the capacity to represent strict premisses and
strict rules respectively. Similarly, ‘DefPrem’ and ‘DefRules’ refer to the capacity
to represent defeasible premisses and defeasible rules respectively. A X∗-symbol
denotes systems that can only express premisses indirectly via the use of rules, e.g.
as rules with an empty body > ⇒ ϕ (in DeLP and DL).1

ABA is the framework of assumption-based argumentation by Bondarenko et
al. [37]; ASPIC+ is the framework for structured argumentation developed by Prak-
ken & Modgil [112, 113]; DA is Besnard & Hunter’s framework of deductive ar-
gumentation [28]; DeLP is the defeasible logic programming framework by García
& Simari [72]; DL is Nute’s defeasible logic [119]; and SBA is the sequent-based
argumentation framework as found in Arieli & Straßer [9].

Clearly, defeasibility comes in various flavours. In ABA, for instance, all inference
rules are strict but premisses can be defeasible. This type of defeasible reasoning
has been labelled plausible reasoning by Rescher [116]. In ASPIC+, both premisses
and inference rules may be defeasible. Defeasible inference rules may represent
generalizations that allow for exceptions, such as the default rule “birds typically

1Although DA and SBA do not accommodate strict premises in their standard formulations,
one can model these e.g. by means of adding axioms to the core logic. For instance, in DA strict
premisses φ can then be introduced by arguments of the form (∅, φ). For paradigmatic core logics,
such as CL, these arguments cannot be attacked, because any rebuttal-attacker (Γ,¬φ) would be
such that Γ is inconsistent in the enriched core logic.
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fly”.
A second source of variation with respect to the way arguments are constructed,

concerns the degree to which an argument’s internal structure is explicit in the
representation of the argument. The situation here is roughly analogous to the
way inferences are represented in, say, CL. At the level of logical consequence, the
inference from the premisses ¬q ∧ ¬p and ¬p ⊃ r to the conclusion r is represented
as {¬q ∧¬p,¬p ⊃ r} ` r. But in a natural deduction of r given these premisses, we
can represent this inference in a more ‘structured’ way as a proof in which we apply
rules for implication and conjunction:

1. ¬q ∧ ¬p Premise
2. ¬p ⊃ r Premise
3. ¬p 1; ∧-Elimination
4. r 2,3; ⊃-Elimination

The latter representation is more informative as to the internal structure of the
inference. Of course, there are plenty of other possible representations of the internal
structure of this inference, each of which highlights different aspects of the structure
of an inference (e.g. in a sequent calculus or tableau system). The same holds true
for the ways in which arguments are constructed relative to a knowledge base in
a structured argumentation framework. The systems mentioned above behave as
listed in Table 2 with respect to the way they represent the internal structure of
arguments.2 Let us illustrate this with the ASPIC+ system.

Example 1 (Argument construction in ASPIC+). Lower case letters a, b, . . . are
logical atoms in our formal language. Capital letters A1, A2, . . . represent arguments.
Suppose our knowledge base contains the strict premise a, and the defeasible rules
a⇒ b, b⇒ c, and a⇒ ¬c. The following arguments can then be constructed:

A1 : 〈a〉 A3 : A2 ⇒ c
A2 : A1 ⇒ b A4 : A1 ⇒ ¬c

2Most structured accounts of argumentation (such as ASPIC+, DA, DeLP and SBA) operate on
the level of arguments (e.g. derivations, a set of premisses, etc) which support a specific conclusion.
In contrast, ABA operates at a higher level of abstraction, since attacks are defined directly on the
level of sets of assumptions instead of on the level of individual arguments for specific conclusions.
There are some formulations of ABA that define attacks on the level of individual arguments (e.g.
[65]). However, since attacks are only possible on assumptions, these formulations are equivalent
(cf. also [147]). ABA can thus be viewed as operating on the level of equivalence classes consisting
of arguments generated using the same assumptions. Other systems make the conclusion explicit
in the argument but still abstract from (some aspects of) the actual derivation (DeLP, DA, SBA).
Only DL and ASPIC systems make the argument structure fully explicit.
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System Argument structure
ABA Arguments are sets Γ of (defeasible) assumptions
ASPIC+ Arguments A are proof trees built on the basis of pre-

misses (〈γ〉) and strict (A1, . . . , An → φ) or defeasible
(A1, . . . , An ⇒ φ) inference rules

DA Arguments are pairs (Γ, φ) of premise sets Γ and conclusions
φ, where Γ is consistent and ⊆-minimal with respect to en-
tailment in the deductive core logic (`), and where Γ ` φ

DeLP Arguments are pairs (Γ, ϕ) of a set of defeasible rules Γ and
a conclusion ϕ derivable from Γ and the strict information

DL Similar to ASPIC+, except that it represents undercutting
defeaters with arrows (A φ)

SBA Arguments are Gentzen-style sequents Γ ⇒ φ derivable in
an underlying sequent calculus of some deductive core logic.

Table 2

A1 simply states the piece of information represented by a. A2 concludes that b based
on A1 and the rule a ⇒ b. A3 extends A2 to reach the conclusion c on the basis of
the additional rule b⇒ c (which can be applied to the conclusion b of A2). Likewise,
A4 concludes ¬c based on the premise A and the rule a⇒ ¬c.

In the examples below, we will usually follow the ASPIC+ representation of ar-
guments. This is because the framework is well-studied and very expressive (witness
Table 1), and because its notation and argument representation is transparent and
perspicuous (witness Table 2 and Example 1).

In our brief overview of accounts of argument construction in structured argu-
mentation, we did not yet mention where and how the notion of argument strength
comes into play. We now set out to do exactly that.

1.2 Premisses as a source of argument strength
Many of the systems considered allow for a stratification of the premisses in terms
of their strength. The idea can already be found in one of the first formal systems of
non-monotonic reasoning: reasoning with maximally consistent subsets of a stratified
set Prem of premisses [39, 23]. The question of how to measure and represent the
strength of a premise depends heavily on the application context. We give some
examples.
Quantitative rankings. We start with examples of direct numerical rankings π :
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Prem→ N where N is a set of numbers (such as N, (0, 1), [0, 1], etc.). In the context
of epistemic reasoning one may want to numerically rank premisses, e.g. according
to how likely or probable they are [126, 22], how trustworthy their sources are
[121], or according to the degree of reliability of the method by means of which the
information has been obtained or the authority which issued the information [18]. In
the context of social choice one may numerically represent how many people voted
for a specific option [98].
Qualitative rankings. Sometimes it may be preferable to work with qualitative
comparisons. One may, for instance, impose an order over the given premisses
� ⊆ Prem× Prem. Related ideas are prominent in non-monotonic logic [99] as well
as in epistemology [80, 140] where the order reflects the comparative plausibility of
a given piece of information.

Since arguments are often based on multiple (defeasible) premisses, in order to
compare the strength of arguments based on their premisses, one needs to lift the
quantitative or qualitative comparisons above from premisses to sets of premisses.
Typical candidates are: lexicographic liftings [42, 21], the weakest link or Smyth
ordering [24], the Plotkin [24] or max-min ordering, or the strongest link or Hoare
ordering [24].

Example 2 (Liftings of orderings on the premisses). Let xi ≺ yi (resp. xi � yi)
denote that xi is strictly less preferred (resp. less or equally preferred) than yj.
Consider the set DefPrem = {p1, q1, s1, . . . , p5, q5, s5} of defeasible premisses, for
which xi ≺ yj [xi � yi] iff i < j [i ≤ j] where x, y ∈ {p, q, s}. That is, we have the
following stratified sets:

p1, q1, s1 ≺ p2, q2, s2 ≺ p3, q3, s3 ≺ p4, q4, s4 ≺ p5, q5, s5

Consider the arguments A1, . . . , A5 based on the premisses listed on the right:

Arguments Defeasible premisses
A1 p1
A2 p2, p3
A3 p2, p4, p5
A4 p4, p5
A5 p2, q4, s4, p5

Below we define a number of candidate liftings on ≺, where X,Y ⊆ DefPrem
and strata are denoted as Si = {pi, qi, si} for each 1 ≤ i ≤ 5. Figure 1 illustrates
the applications of these lifting principles to the arguments A1 −A5.

max-max: X ≺ Y iff for every x ∈ X there is a y ∈ Y such that x ≺ y
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A3 A4 A5

A2

A1

max-max

A4

A2 A3 A5

A1

max-min

A4

A2 A3 A5

A1

min-min

A3 A5

A4

A2

A1

⊂-lex

A5

A3

A4

A2

A1

card-lex

A4

A3 A5

A2

A1

domination

Figure 1: Different lifting principles for Example 2

max-min: X ≺ Y iff x ≺ y for all x ∈ max(X) and all y ∈ min(Y )

min-min: X ≺ Y iff for every y ∈ Y there is a x ∈ X such that x ≺ y

⊂-lex: X ≺ Y iff there is i ∈ {1, . . . , 5} for which X ∩ Sj = Y ∩ Sj whenever j > i
and such that X ∩ Si ⊂ Y ∩ Si

card-lex: X ≺ Y iff there is i ∈ {1, . . . , 5} for which card(X ∩ Si) ⊂ card(X ∩ Si)
and card(X ∩⋃

j>i Sj) = card(Y ∩⋃
j>i Sj)

domination: X ≺ Y iff for all x ∈ X there is y ∈ Y for which x � y and for all
y ∈ Y there is x ∈ X for which x � y.

Probability. There are two basic proposals as to what it means to say that argu-
ments are probable to a certain degree. In the constellations approach [101, 89]
or external view [71] it reflects the probability that the argument is justified in
playing a role in a given discursive situation. This approach models an uncer-
tainty about the structural properties of the discursive situation concerning what
arguments and counter-arguments should be considered. We will describe it with
more detail in Section 3 when discussing argumentative evaluations. In the epis-
temic approach [144, 90, 91, 122] or internal view [71] there is no uncertainty about
the discursive situation in the sense that we know for sure which arguments and
counter-arguments belong to the framework. Here, the probability of an argument
is (subjectively) interpreted as the credence an agent has in the argument being
acceptable. The main research question concerns the rationality of a probability as-
signment to arguments in view of the given discursive situation. We will also come
back to this when talking about evaluations in Section 3.
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Suppose now that an assignment of probabilities to defeasible premisses is given.
Where arguments are generated from defeasible premisses and strict rules, one may
take the probability of the conjunction of the premisses of an argument to be the
probability of the argument in question. For instance, in [90], a probability distribu-
tion over the models of a given language is used to assign probabilities to formulas
and in turn to arguments based on specific premisses.

Example 3 (Probabilities on assumptions). Suppose we have the language of (propo-
sitional) classical logic with two atoms p and q. We have four classical models in
terms of truth assignments to p and q to which we assign probabilities as follows:

model v(p) v(q) P (M)
M1 1 1 0.4
M2 1 0 0.3
M3 0 1 0.2
M4 0 0 0.1

The probability of a formula is simply the sum of the probability of all the models
in which it is true. For instance, P (p) = P (M1) + P (M2) = 0.7 and P (q) =
P (M1) + P (M3) = 0.6.

Suppose now we have a defeasible theory with the defeasible premisses p, q and
¬(p ∧ q). We have, among others, the following arguments in (classical) logic-based
argumentation: A1 = ({p}, p) and A2 = ({q,¬(p ∧ q)},¬p). The probabilities of A1
and A2 are then calculated as the probability of the conjunction of their premisses:
P (A1) = P (p) = 0.7 and P (A2) = P (q ∧ ¬(p ∧ q)) = P (M3) = 0.2.

In the dialogical setting of [136] an account of an argument’s chance of con-
struction in the setting of legal reasoning is given in terms of the probability of the
premisses it is based on.

Another source of the strength of an argument comes with the quantity and
quality of the available evidence that supports it. If I don’t know anything about
the possible bias of a given coin that looks evenly shaped on both sides, I may form
the argument that the coin has a 0.5 chance to land heads based on its appearance.
If I additionally learn from a source that she observed that out of the past 1000
throws 500 landed head, my argument can be improved by calling upon the addi-
tional evidence and so has more weight, since now the available evidence provides
more relevant information for the statement. Note that in this case my credence
in the coin falling heads and the underlying conditional probability remains unal-
tered. In the paper “Imprecise Probability and the Measurement of Keynes’s ‘Weight
of Arguments’ ” (this volume), William Peden proposes a quantitative account of
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Keynes’ notion of argument weight [97] in terms of Kyburg’s system of Evidential
Probabilities [100]. Unlike Keynes’ notion, Peden allows also for cases where ad-
ditional relevant evidence may decrease an argument’s weight (suppose our source
above additionally states that she was drunk while observing the 1000 coin flips).
He demonstrates how his account can be used to analyse philosophical problems
such as Popper’s paradox of ideal evidence [128].

Some authors [29, 124] have argued against the use of probability theory in
specific applications of defeasible reasoning. For example, [124] argued that since
the probability of a conjunction A ∧ B could be lower than both the probability of
A and of B, probability theory precludes inferences from multiple premisses that
would be logically valid [151]. [29] argue that various assumptions necessary for
probabilistic reasoning are not feasible when dealing with uncertainties occurring in
deontic reasoning or in the reasoning to an interpretation.
Specificity. Another principle to compare the strength of two arguments based on
their premisses is to check their degree of specificity [104, 127, 141]. If I know that
“Tweety is a bird” I may use the default that “birds fly” to compose an argument
that “Tweety flies”. However, if I additionally know that “Tweety is a penguin” then
I may use the default rule that “penguins do not fly” to infer that “Tweety does
not fly”. The second argument should be deemed stronger since the more specific
information encodes an exceptional situation for the first default. Things get, of
course, more complicated if the more specific argument is based on less reliable
information. One may wonder whether specificity is best considered as a source of
argument strength or rather as giving rise to a specific type of undercut attack (see
below).

Tracking specificity can be difficult when considering arguments that have a more
complex structure. We give some examples to illustrate this:

Example 4 (Specificity). We use the ASPIC+ framework to describe several argu-
ments, with square brackets representing a set of arguments that are used to construct
a new super-argument using a defeasible rule. (For example, in Case 1, 〈p〉 ⇒ t and
〈q〉 ⇒ v are used to construct an argument with conclusion s using the defeasible
rule t, v ⇒ s.)

1. A =
[
〈p〉 ⇒ t
〈q〉 ⇒ v

]
⇒ s and B =



〈p〉 ⇒ u
〈q〉 ⇒ w
〈p′〉 ⇒ u′


⇒ ¬s

2. A = 〈r〉 ⇒ g and B = 〈r〉, 〈l〉 ⇒ g ∨ s

3. A = 〈s〉 ⇒ y → a⇒ m and B = 〈s〉 ⇒ ¬m.
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In Case 1, B is more specific than A if we only take into account the premisses
used in the construction of these arguments: B relies on p, q, and p′, while A relies
only on p and q. However, the conclusions of A and B were reached via different
intermediate steps: t and v in the case of A as opposed to u,w, and u′ in the case of
B. Given these additional steps in the construction of A and B, are we still allowed
to conclude that B is the more specific argument?

In Case 2, the more specific argument B leads to a less specific (logically weaker)
conclusion. [87] proposed this case as a problem case for accounts that track speci-
ficity (for similar examples also see [35]). Consider two islands, the green island and
the sand island. Let r ⇒ g represent “ruffed finches live on the green island” while
r, l ⇒ g ∨ s represents “least ruffed finches live on the green or the sand island”. If
we are dealing with a least ruffed finch, we may want to infer g ∨ s on the basis of
the more specific argument B, without inferring g on the basis of the less specific
argument A.

Case 3 [66, p. 40] indicates that it is not sufficient to consider only the premisses
of arguments, also sub-conclusions and defeasible links used in the respective argu-
ments are relevant and considered in the literature ([72, 86, 157]). We read a⇒ m
as “Adults are usually married”, s ⇒ ¬m as “Students are usually not married”,
s ⇒ y as “Students are usually young adults”, and y → a as “Young adults are
adults”. In this example it is intuitive to consider argument B as more specific than
A since from ‘being a student’ (s) we get ‘being a young adult’ (y) which is more
specific than ‘being an adult’ (a) on which the last defeasible link in A is based.
The example is also instructive if we consider a student that is not a young adult,
but an adult. In this case we have reasons to stay agnostic concerning the question
whether our student is married. This means that when dealing with normal students
we consider the defeasible link s ⇒ ¬m as more specific than a ⇒ m due to the
argument s⇒ y → a, however, when dealing with exceptional students for whom ¬y
holds, this is not the case. Specificity is thus a contextual matter which has to be
determined conditional on the specific factual context. This is problematic for many
accounts that treat it by ordering defeasible links in a context-independent way and
then, on this basis, compare arguments based on this ordering (e.g. [40, 73]).

1.3 Defeasible rules as a source of argument strength

The strength of an argument is influenced not just by the strength of the premisses
it is based on, but also by the strength and reliability of the inference rules used in
its construction. In view of their truth-preserving (deductive) nature, strict rules are
usually considered maximally strong. Things get more interesting once defeasible
rules enter the picture. Like defeasible premisses, defeasible rules allow for a stratifi-
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cation in terms of their strength. In analogy to the treatment of defeasible premisses
in Section 1.2, we can assign a (qualitative or quantitative) degree of strength to the
defeasible rules in our knowledge base. In epistemic reasoning contexts the driving
consideration may be one of plausibility, typicality, likelihood, etc. In the context
of normative reasoning (such as legal or moral reasoning) defeasible links may rep-
resent norms or legal principles which come with degrees of deontic or legal urgency
(e.g., in view of the authority which issued them, etc.). As in Section 1.2, lifting
principles are necessary when considering arguments that are composed of multiple
defeasible rules. This way we gain a comparative notion of argument strength based
on the strength of the defeasible links in an argument.

Below we present some lifting principles for defeasible rules suggested in the
literature, and we apply these to a ‘prioritized’ version of Example 1.

Example 5 (Example 1, cont’d). Suppose a⇒ b has the lowest strength 1, a⇒ ¬c
has strength 2 and b⇒ c has the highest strength 3. Let us represent this as:

a⇒1 b a⇒2 ¬c b⇒3 c

Weakest Link. The weakest link principle says that an argument is as strong as its
weakest defeasible elements3. Following Examples 1 and 5 where, recall A1 = 〈a〉,
this means that

A2 : A1 ⇒1 b
and

A3 : A2 ⇒3 c
are less strong than A4 : A1 ⇒2 ¬c

since both A2 and A3 make use of the weakest rule a⇒1 b, whereas the only rule used
in A4 is a ⇒2 ¬c. Weakest link has been argued to be a particular suitable lifting
principle for epistemic reasoning [126]. Let us interpret the example as follows:

(a⇒1 b) : “given all the evidence, he was drunk and driving”, according to the
report by a not very reliable neighbour

(b⇒3 c) : “if someone is in the car, he cannot be struck by lightning”, according to
physics textbooks

(a⇒2 ¬c) : “given all the evidence, he was struck by lightning”, said by the coroner

In this context, it seems reasonable to infer that this person was struck by lightning
after all. If one adds the contraposed rule ¬c ⇒3 ¬b one also obtains that he was

3When arguments have defeasible rules in common, one can choose to either take into account
these common defeasible rules as in e.g. [112] or to ignore shared defeasible rules as in e.g. [44, 160].

640



Argument Strength in Formal Argumentation

not in a car. (Although accepting contraposition in general for defeasible rules is
controversial [46].)
Last Link. The last link principle says that an argument is as strong as the last
defeasible elements applied in the construction of the argument. In Example 5, as
before we get that A2 is weaker than A4, but now A4 is weaker than A3, since A3’s
last rule (b⇒3 c) is stronger than that of A4 (a⇒2 ¬c). As an example from deontic
logic (taken from [103]), suppose that a soldier gets the following orders:

(a⇒1 b) : “in winter, turn on the heating”, said by a captain

(a⇒2 ¬c) : “in winter, do not open the window”, said by a major

(b⇒3 c) : “if the heating is on, open the window”, said by a general

In this context, the soldier disobeys the order of the highest ranking order if she
reasons according to the weakest link principle. This outcome is avoided if she
reasons according to the last link principle (or makes use of contraposition, see [103]
for more details).

A complication that arises with the last link lifting concerns cases in which the
last link in an argument aggregates several defeasible arguments. In such cases it
is not clear what the last defeasible link of the argument is. Take, for instance, the
argument

A =



〈p〉 ⇒ u
〈q〉 ⇒ v
〈r〉 ⇒ w


→ u ∧ v ∧ w

We can, for instance, opt for the strongest of the last links (called elitist ap-
proach [112]) or the weakest (called democratic approach in [112]).

In systems where strength is represented in the object language, the strength of
an argument can be identified with the strength k of its conclusion, say (ϕ, k), and
possibly that of its sub-conclusions —see Section 2 for details.4

Probabilities. In Section 1.2 we have discussed probabilistic notions of argument
strength. When working with defeasible rules, it makes sense to let the probability

4For example, [1] incorporates weakest link into DeLP. The weakest link lifting takes the form
of generalized modus ponens:

(p, k) . . . (p′, k′) (p ∧ . . . ∧ p′ ⇒ q,m)
(q,min(k, . . . , k′,m))

A related approach is [142] which fuzzifies the distinction defeasible/strict of premisses and rules
with a fuzzy membership function. The degrees of premisses and rules in an argument determine
the argument’s strength, which finally translates into a notion of strength for extensions.
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of an argument be determined by both the probability of its premisses and the
probability of the defeasible rules used in its construction. See [67] for an account
based on assumption-based argumentation and [135] for an account based on semi-
abstract argumentation frameworks.

As [132] remarks, one has to be careful when considering a probabilistic treatment
of argument strength in the presence of defeasible rules: the probability of “most
Belgians speak French” is ambiguous between (i) the probability of the truth of the
proposition (which is 1, since it is true that most Belgians speak French); and (ii)
the probability of the consequent “x speaks French” given the antecedent “x is a
Belgian” (which is definitely smaller than 1). Furthermore, the relationship between
probabilities of arguments and their dialectical strength is not very clear. Suppose
for example that 90 percent of all birds fly and that 80 percent of the chickens on
Annie’s farm do not fly (where these statements are interpreted in sense (ii) above).
Then it seems that we would still like “Miss Prissy is a chicken on Annie’s farm and
therefore she does not fly” to defeat “Miss Prissy is a bird and therefore she flies”,
even though the probability of the first argument is lower than the probability of
the second argument [132].

These problems are avoided in [146] where a method is described that allows
to compute a well-behaved structured argumentation framework in the ASPIC+-
family from a given Bayesian network —well-behaved in terms of the rationality
postulates.5 The authors study two measures of argument strength that make use
of the quantitative information given in the Bayesian network: incremental ones
expressing the change in the odds of a hypothesis if the evidence were observed
resp. if the relevant premisses were considered true, and absolute ones expressing
the a posteriori belief in a hypothesis. The Bayesian approach to evidential reasoning
is, for instance, very useful in the context of legal reasoning. However, it is often
difficult to grasp and to use by non-experts, which is why it is attractive to find
more self-explanatory and accessible representations. Other translations into the
argumentative setting can be found in [96, 155].6

An interesting research question, tackled in a probabilistic setting in [74, 75],
concerns the extent to which chaining defeasible rules leads to a decrease of argument
strength under an epistemic interpretation.
Directness. Argument strength comparisons based on directness give priority to
arguments whose conclusions are “tied closely to the evidence” [104]. For example,

5The Rationality Postulates are a list of desiderata for structured argumentation systems that
these should satisfy in order to be logically well-behaved. They include consistency and logical
closure conditions, among others. See [50, 49, 48] for more details, as well as Sec. 3.1.1.

6For an approach that goes the other direction and extracts a Bayesian network from a
Carneades argumentation framework [77], see [79].
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suppose that a ⇒ b means “cats are generally aloof to people” and b ⇒ c means
“aloofness is an indicator of dislike” whereas a ⇒ ¬c means “cats generally like
people”. According to [104], 〈a〉 ⇒ ¬c is to be preferred over 〈〈a〉 ⇒ b〉 ⇒ c in view
of directness considerations.

Summing up our discussion on lifting principles for defeasible rules, it is clear that
some such principles, such as directness, are defined purely in terms of the structure
of arguments. Others, like weakest link, are defined purely in terms of the strength
of the defeasible rules used in argument construction. Other lifting principles take
into account both the strength of defeasible rules and the general structure of an
argument. The last link principle exemplifies such a hybrid approach, as not just
the strength of the defeasible rules matters, but also the order in which these rules
are applied in the construction of the argument.7

From the discussion above it is clear that there are many candidate lifting prin-
ciples, and that these may give rise to quite different outcomes. Most authors agree
that the appropriateness of a specific lifting principle mainly depends on the con-
text of application. For instance, Pollock argued that weakest link is appropriate
in an epistemic setting [126], while perhaps last link is more appropriate in a legal
setting [113].

The lifting principles described above are perhaps best understood as general
guidelines rather than full-fledged formal definitions. In the paper “On elitist lifting
and consistency in structured argumentation” (this volume) Sjur Dyrkolbotn, Truls
Pedersen and Jan Broersen offer a clarifying exposition of the problems that occur
when one tries to give a formal account of the weakest link principle. They pro-
pose sufficient conditions for specific instantiations of weakest link that avoid these
problems, in a quite general (signature-based) approach. In general, it seems that
problems (and solutions) related to argument construction often occur because of
subtle interactions between the argument construction process, the construction of
the defeat relation and the evaluation of arguments. For other examples of such
problems see [84, 112].

1.4 Orderings on defeasible information
In the approaches discussed in sections 1.2 and 1.3, (part of) the defeasible informa-
tion in a knowledge base is assumed to be ordered, where the ordering represents
preferences over the different elements in our knowledge base. Picking an appro-
priate way to order defeasible information is a representational choice which may

7On a related note, in [69] it is argued that arguments of the form A ⇒ B → D are stronger
than A→ C ⇒ ¬D in the context of the defeasible interpretation of A⇒ B as “most As are Bs”,
and the strict reading of A→ C as “all As are Cs”.
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have severe conceptual and technical consequences. Below we list some of the main
alternatives.
Linear orders. If not the most popular then certainly the most well-behaved and
simplest option is to assume that the knowledge base is mapped into a total or linear
order ≤.8
Preorders. A pre-order is a binary relation that is reflexive and transitive. It allows
for the mutual incomparability of defeasible elements in our knowledge base. In an
epistemic setting, this move may be motivated in terms of epistemic incomparability:
it might be the case that the user who supplies the defeasible knowledge base does
not know the actual preferences of each element in the base; enforcing a preference
in such cases might lead to unwanted consequences [158]. Another motivation for
giving up the totality assumption is deontic incomparability. When reasoning with
norms or conditional obligations, for instance, different sources of such norms might
be incomparable. Suppose we have a Christian soldier who can be given commands
by a captain, a general and a priest. Any of the captain’s commands is less preferred
than those from the general, but both types are incomparable with any command
from the priest. A similar reason for incomparability is given by the values with
respect to which we compare choices. Suppose for example I want to choose a hotel
in Bielefeld. I prefer hotels with a gym and I likewise prefer hotels close to the
railway station. If only two hotels exist in Bielefeld, one with a gym but not close to
the station, the other close to the railway station but without gym, the two hotels
might be considered incomparable in terms of my preferences.

When allowing for incomparable elements in the defeasible knowledge, however,
various complications can arise. One class of problems arise within representational
results. Already in the seminal [63], argumentation theory was motivated as a uni-
fying formalism for defeasible reasoning. This role as unifying formalism depends
crucially on its ability to capture many different formalisms for defeasible reasoning,
such as default logic, auto-epistemic logic and answer set programming. Various
variants of prioritized default logic, however, turned out difficult to represent when
considering non-total pre-orders [159, 103]. Another class of problems arises in the
context of the rationality postulates [48]. In fact most of the research on ratio-
nality postulates that has been done for systems of structured argumentation with
argument strength is restricted to total orders. Especially crash-resistance and non-
interference have not received sufficient attention for non-total orders.

8Recall that a linear order is antisymmetric, transitive and total.
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2 The Dialectic Dimension: Attack and Defeat

In Section 1 we looked at the strength of isolated arguments as a function of the
support provided by the premisses and inference rules used in their construction.
We now turn to the dialectic dimension of argumentation, and study the notion of
argument strength in relation to attacks and defeats between arguments.

A typical example of an argument A attacking another argument B is that
A concludes (or derives) a formula which is the contrary of a formula in B. By
‘contrary’, one can mean a pair of an atom p and its negation ¬p; or more generally,
any pair of formulas φ, ψ such that φ is classically equivalent to ¬ψ. The set of
contraries of φ is usually denoted φ. The set of contraries of a given formula φ
depends on the application context. The contrariness relation, as expressed by e.g.
q ∈ p, can be asymmetric so that one can have p /∈ q. This can be used to represent
default negation (also known as negation as failure).

In Section 2.1 we introduce four standard variations of argumentative attack, and
we discuss how such attacks may give rise to argumentative defeats in the presence
of a concept of argument strength as introduced in Section 1. In Section 2.2 we turn
to some further developments aimed at providing a more detailed account of how
argument strength comes into play at the dialectic level of argumentation.

2.1 From attack to defeat

Following the bulk of the literature, we start by considering argumentative attack
and argumentative defeat as binary relations between arguments. Argumentative
attack is a purely syntactical relation that expresses the fact that two arguments
are in conflict.

Example 6 (Attack and defeat). Suppose our knowledge base contains a set of strict
premisses {p∧q, u, u′}, a set of defeasible premisses {p′} and a set of defeasible rules
described below. These rules are assigned a name ri in the formal language, which
can be used to define attacks on rules.

r1 : u⇒4 v r3 : v ⇒1 ¬p r5 : p′ ⇒3 q′

r2 : u′ ⇒3 ¬v r4 : p ∧ q ⇒1 ¬r2 r6 : u⇒2 ¬p′

As before, superscripts on defeasible rules indicate strength —the higher the number,
the stronger the rule. We have, amongst others, the following arguments (written in
ASPIC+-style).
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A = 〈p ∧ q〉 → p

B = 〈u〉 ⇒4 v

C = 〈u′〉 ⇒3 ¬v

D = 〈p′〉

E = B ⇒1 ¬p

F = 〈p ∧ q〉 ⇒1 ¬r2

G = D ⇒3 q′

H = 〈u〉 ⇒2 ¬p′

We list four types of argumentative attack, here presented in the terminology of
ASPIC+:

Rebuttal An argument X rebuts an argument Y if the conclusion of X is contrary
to the conclusion of Y . In the remainder, we take the contrary of φ to be any
formula which is classically equivalent to ¬φ. In Example 6, A and E rebut
each other; so do B and C.9

Undermining An argumentX undermines an argument Y if the conclusion ofX is
contrary to one of the defeasible premisses of Y . In Example 6, H undermines
G and D.

Undercut An argument X undercuts an argument Y if the conclusion of X is the
contrary of ri, where ri is the last rule applied in the construction of Y . In
Example 6, F undercuts C.

Sub-argument attack An argumentX sub-argument attacks Y (in Y ′) if it rebuts,
undermines, or undercuts a sub-argument Y ′ of Y . What is counted as a sub-
argument depends on the underlying formalism. In ASPIC+ a sub-argument
is a sub-tree of an argument’s construction tree, e.g. B is a sub-argument of
E and of itself. In sequent-based argumentation Γ ⇒ φ is a sub-argument of
Γ′ ⇒ φ′ if Γ ⊆ Γ′. In Example 6 each of C and D sub-argument attacks E.
Similarly, H sub-argument attacks G.

Attacks do not yet take into account the strength of individual arguments. For
instance, in Example 6 the arguments B and C attack one another despite the fact
that B is clearly stronger. For an attack to be successful and succeed as a defeat, we
need to take into account the strength of the arguments involved. Following [110]
we take “defeat” to be synonymous to “successful attack”.

9 Following Pollock [125, 126], rebuttal is often further restricted so that X only rebuts Y if
the conclusion of Y was obtained by applying a defeasible rule. Applied to Example 6, this leads
to a disruption of the symmetry of rebutting attack: A still rebuts E, but E no longer rebuts A.
This restricted approach to rebuttal has certain advantages, but a discussion of these is beyond the
scope of this paper. For more details, see [51, 84].
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D H G

F C

A E

B

Figure 2: An attack diagram for Example 6.

In Section 1 we listed various ways for determining the strength of an argument
in isolation, based on the support provided by its premisses and by the rules used in
its construction. Given a clear account of how to calculate an argument’s individual
strength, there are various ways of bringing argument strength into play at the level
of argumentative defeat.

First, consider rebuttal. On the account in [112], a rebutting attack by argument
A on argument B leads to defeat if A is not strictly weaker than B. [143] demands
that A must be (strictly) stronger (in their terminology, more important) than B
in order for the attack to be successful. Suppose that we adopt the former notion,
and that in addition we use the weakest link lifting for determining the strength of
the arguments in Example 6. Then, for instance, A defeats E. In ASPIC+ strict
arguments (those without defeasible rules) are considered indisputable and so E
does not attack back. Moreover, B defeats C since B is stronger than C. Although
C rebuts B, this attack is not successful since C is strictly weaker than B.

In general, the considerations about rebuttal-defeats also apply to undermining-
defeats. For example, in [112], an undermining attack by argument A on argument B
leads to defeat if A is not strictly weaker than B. We note here that in ASPIC+ the
orderings for defeasible premisses and defeasible rules may be independent from each
other. As such, these defeasible premisses and defeasible rules may play different
roles in determining the strength of arguments. In [112, Def. 21 (Weakest Link)],
for example, an argument A without defeasible rules but with defeasible premises
(called strict and plausible) is incomparable with an argument B with defeasible
rules but without defeasible premises (called defeasible and firm). In view of this, in
Example 6, the defeasible and firm H defeats the strict and plausible D, and, vice
versa, D defeats H.

Next, consider sub-argument attack. Here the convention is to compare the
strength of the attacker X to the strength of the attacked sub-argument Y ′. For
instance, in Example 6 C sub-argument attacks E in B, and the relevant comparison
in terms of strength is between C and B. Since B is stronger than C, we obtain
that C does not defeat E (in B) even though C is stronger than E (still under the
assumption that we use the weakest link lifting).10 The same goes for the attack

10With the last link lifting, sub-argument attacks sometimes lead to strange scenarios, since the
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D H G

F C

A E

B

Figure 3: A defeat diagram for Example 6 using preference-Independent undercuts.
Attacks that do not result in defeats are represented as dotted arrows.

H to G.
Finally, we turn to undercutting attacks. There is some debate as to what it

means for an undercutter to be sufficiently strong for the attack to succeed. Are
undercutting attacks successful independently of the strength of the arguments in-
volved? Or should an undercutting attack by A on B lead to defeat only in case A is
not strictly weaker (or even strictly stronger) than B? [112] work with a preference-
independent notion of undercutting defeat according to which undercutting attacks
always give rise to defeat. Their motivation, however, has been questioned by [13].
A preference-dependent notion of undercutting attack was recently proposed by [18]
in the context of deontic logic, with the aim of modelling a cautious, ‘austere’ style
of reasoning.

A further possible application of the concept of undercutting attacks relates back
to the specificity principle as discussed in Section 1, There, we pointed out that com-
parisons of arguments based on specificity are in a sense orthogonal to comparisons
based on the strength of the (defeasible) premisses on which the respective argu-
ments are based. The same applies to the strength of the defeasible links on which
they are based. Another question is what kind of dialectic behaviour occurs in the
context of specificity cases. Should these cases be treated as cases of rebutting defeat
with the more specific argument being the stronger one? One complication here is
that Dung-style complete semantics give rise to reinstatement, i.e., agents are mod-
elled as having commitments to defended arguments. However, it has been argued
[88] that in nested specificity cases reinstatement may be counter-intuitive.

Moreover, argumentative defeat is a problematic way of dealing with specificity
in cases like Ex. 4 (item 2) where there is no conflict in the conclusions of the two
arguments which constitute a case of specificity. A possible solution is to use un-
dercuts in such situations. Alternatively, inspired by Hempel’s principle of maximal
specificity [82], [35] introduce cautious defeaters as arguments “showing that the
total evidence only enables a not so specific conclusion” [35, p. 289] to deal with

attacker X may be stronger than the sub-argument Y ′ but weaker than Y . We list sub-argument
attack for analytic purposes. In systems of structured argumentation it is usually integrated in the
definition of the other attack forms.
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cases such as “least ruffed finches” in the above example and to give an appropriate
account of reinstatement in which non-maximally specific arguments cannot be re-
instated. In [27] it is argued that in similar cases the more specific argument need
not even be factually triggered to exclude the more general one from acceptance.
Their example is “If there is a match tonight then John will go to the stadium”
versus “If there is a match tonight and if John has got enough money then John will
go to the stadium”. If we only know that there is a match tonight we may want to
be cautious since we don’t know whether John has enough money and only in the
latter hypothetical situation we are –via the second conditional– entitled to conclude
that he actually goes to the stadium. This type of hypothetical exclusion mecha-
nism is realized in their account by using conditional logic as a base for structured
argumentation.

2.2 Further developments
Reverse attacks. When considering asymmetric attacks (e.g. attacks based on asym-
metric notions of contrariness) one can run into scenarios where arguments with
contrary (sub)conclusions may not defeat each other, as illustrated in Example 7.

Example 7 (Asymmetric contrariness). Consider the arguments A : 〈>〉 ⇒1 q and
B : 〈>〉 ⇒2 p where q is contrary to p but not vice versa. A attacks but does not
defeat B, and B neither attacks nor defeats A. At the level of argumentative defeat,
the conflict between A and B goes unnoticed.

Where A attacks B and B is strictly preferred to A, the attack from A to B is
usually considered unsuccessful and so the conflict between A and B is not visible at
the level of argumentation defeat. On an extension-based account of argumentation
with preferences (cfr. Section 3), this may lead to the result that A and B – despite
a clear conflict between them – belong to the same extension. To remedy this defect,
some approaches such as [8, 59] introduce a notion of reverse attack: if A attacks
B and B is strictly preferred to A then B reverse attacks A. On the resulting
accounts, the reverse attack by B on A, as opposed to the original attack by A on
B, is successful. As a result, A and B can no longer belong to the same extension.
Extended argumentation frameworks. In some situations, it might be feasible to
allow for the possibility that the information about the strength of an argument is
itself subject to revision11. For example, suppose that A : > ⇒α ¬q and B : > ⇒β q
stand for “study a shows that drug x is not safe to use” and “study b shows that

11In the context of default logic such an approach is said to deal with dynamic (as opposed to
static) preferences [62, 41]
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A : > ⇒α ¬q

B : > ⇒β q

α < β

A : > ⇒α ¬q

B : > ⇒β q

β < α

Figure 4: Reasoning with dynamic preferences in extended argumentation frame-
works.

drug x is safe to use” respectively. Suppose furthermore that (at moment 1) study a
supporting A is deemed of lesser quality (i.e. because it made use of a smaller sample
group) than study b supporting B. Then a rational agent might want to conclude
that B defeats A but not vice versa since α < β. Suppose now that the agent later
(at moment 2) learns that the scientists conducting study b were actually paid by
the pharmaceutical company who developed drug x. In that case, the agent might
want to retract α < β and possibly replace it by β < α, resulting in a new defeat
graph (A defeats B but not vice versa). This kind of reasoning about preferences
can be modelled by extended argumentation frameworks12 [110], where arguments
are allowed to attack both arguments and other attacks. To see how that allows
to model the situation described above, we have to allow for information about
preferences to be represented in the object languages. In that case there will be
an additional argument α < β that attacks the attack relation between A and B,
resulting in the graph in Figure 4 (left). We see that α < β attacks the attack arrow
from A to B. Since α < β is unattacked, the attack from A to B is unaccepted and
consequently does not have to be taken into account to determine the acceptability
of the arguments A and B, resulting in B being accepted. Once α < β is replaced
by β < α in Figure 4 (right), we get exactly the opposite situation, with the attack
on the attack from B to A being attacked causing A to be acceptable.
Value-based Argumentation. Instead of defining argument strength (and the defeat
relation) in terms of strength of premisses and/or defeasible links, in [20] arguments
are associated with values they promote. Different orderings on the values may
represent different audiences of the discursive situation. Defeat is then relative to a
given audience, i.e. relative to a given preference ordering on values: an argument A
defeats B relative to an audience if A attacks B and the value promoted by B is not
more important for our audience than the value promoted by A. The approach has

12Also called argumentation framework with recursive attacks [11] or higher-order argumentation
frameworks [70].
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been generalized and applied in various ways: for instance, in [95] arguments may
promote multiple values and non-monotonic preference reasoning is used to compute
preferences among arguments; in a similar vein [111] integrates value-based argu-
mentation with higher-order argumentation (see the previous paragraph) to model
meta-reasoning about values; and in [61] value-based argumentation is combined
with machine learning methods.

Attack strength. So far we treated attack and defeat as binary notions in the sense
that they either hold or fail between any two arguments. A further refinement is
to think of attack and/or defeat as a gradual notion. As a motivation (taken from
[92]), suppose three persons, Anna, Bernard and Catherine disagree over the colour
of a sweater. Anna thinks the sweater is red (A), Bernard thinks that the sweater
is pink (B) whereas Catherine thinks that the sweater is blue (C). Then we would
perhaps want to say that A and B attack each other to a low degree whereas A
and C attack each other to a higher degree, since the difference between red and
pink is perhaps subtler than that between red and blue. As with argument strength,
different representational formats can be used to represent this attack strength. The
two main alternatives in the literature are to either opt for a pre-order over the
attacks [54, 107] or to assign numerical degrees to attacks [57, 68, 92]. Within the
latter approach, [92] allows for arguments to attack each other to a fuzzy degree and
[101] allows for attacks to have a probability assigned to them. [57, 68], on the other
hand, assume that each attack is assigned a weight that represents the importance
of an attack. A central idea in [57, 68] is that a user can specify an inconsistency
budget which indicates how much inconsistency (i.e. the sum of the importance of
attacks between accepted arguments) a user is prepared to tolerate.

Given the two different approaches in which a notion of strength matters for
argumentative defeat, strength of arguments and strength of attacks, one question
is how these notions are interrelated or whether one is more primary.

Some papers [94, 56] investigate how to obtain a preference relation over the
attacks of an argumentation graph from a given preference ordering over the ar-
guments. For example, [94] investigates how to determine weights on the attack
relation on the basis of a given preference relation over arguments by assuming that
whenever A attacks B, a stronger preference for A over B will result in a stronger
attack from A to B. [56] considers several generalizations of this idea, like using a
preference relation instead of a (numerical) weighing function.
Qualifying defeat. Not only attacks, but also defeats can be qualified in terms of
their nature and strength. For instance, the Defeasible Logic Programming (DeLP)
framework [72, 154] combines two notions of defeat which differ in terms of their
strength: proper defeaters are strictly better (more specific) than the arguments
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they defeat, while blocking defeaters are incomparable (in terms of specificity) with
the arguments they defeat. The difference in strength matters e.g. for defense and
reinstatement. An argument with a blocking defeater can only be defended by a
proper defeater for the latter, and not by a blocking defeater. (It is also worth men-
tioning that DeLP departs from most of the literature since Dung [63] by enforcing
acyclic defeat paths in the form of finite trees.)
Support relations. Dual to the relation of argumentative attack, one can introduce
a relation of argumentative support between arguments [55]. (Such a dialectical,
inter-argument notion of support is not to be confused with the individual, intra-
argument account of argumentative support discussed in Section 1.) Depending on
the context of application, a relation of argumentative support between arguments
can be interpreted in various ways. For instance, it has been interpreted as a sub-
argument relation [106]; as a relation of deductive support [36]; as a relation of inter-
argument evidential support [120]; as an explanatory relation between arguments or
between arguments and observations in the context of scientific discourse [139]; and
as a relation which represents conditions necessary for the acceptance of a claim [118].
As an example of the latter interpretation, note that turning on the light switch (A)
may be a sufficient condition for a light bulb to light up (B) (assuming the electricity
works etc.). Consequently, the light bulb’s lighting up is necessary for the switch
to be turned on. In an argumentation graph, this will mean that whenever B is
accepted, A will also be accepted. See also [55, 123] for how some of these systems
relate to each other. [5] describes the introduction of support in other dimensions
of argumentation processes, besides the dialectical tier. Further extensions with
strength of supports are described in [108] and, for abstract dialectical frameworks, in
[12, Chap. 5]. Higher-order relations are studied in [36]. Of course, in logic-based or
structured argumentation systems, a natural reading of inferential support is already
provided by the system with the notion of sub-argument. Indeed, [131] studies to
which extent abstract argumentation with support is suitable as an abstraction of
ASPIC+ structured argumentation.

3 Argument Evaluation
Following Dung [63], the most influential way to evaluate the status of arguments
relative to a given discursive context, i.e., relative to a given attack and/or defeat
relation, is via an extensional semantics such as the grounded, preferred, or sta-
ble semantics. In Section 3.1 we discuss this approach in relation to the topic of
argument strength. In Section 3.2 we turn to ranking-based semantics as a more
fine-grained approach to argument evaluation.
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3.1 Applying Extensional Semantics over Defeat Graphs
Given a set of arguments A and an attack relation Attack ⊆ A×A, the argumenta-
tion framework (A,Attack) can be interpreted as a directed graph with arguments
as nodes and attacks as arrows. Taking into account argument strength and the dis-
tinction between attack and defeat (Section 2) the defeat relation Defeat ⊆ Attack
induces a new argumentation framework (A,Defeat).

Given an argumentation framework we can assign acceptability statuses to ar-
guments with the help of argumentation semantics. The most prominent of these
are extension-based argumentation semantics,13 which determine criteria for sets
of arguments to represent a rational position within the given discursive situation.
One such criterion is that a set of arguments B ⊆ A should not contain conflicting
arguments. Another is that B should defend itself against its defeaters — where a
set B defends a set B′ if for each defeater of a member of B′, there is a member of B
that defeats it. A set of arguments is a complete extension if it is conflict-free and it
contains every argument it defends; it is a preferred extension (resp. grounded exten-
sion) if it is ⊂-maximally (resp. ⊂-minimally) complete in A; it is a stable extension
if it is conflict-free and every argument not contained in it is attacked/defeated by
one of its members. Whether an argument is justified, is then determined in view of
the chosen semantics. Some semantics, such as the grounded semantics, determine
a unique extension. In this case an argument is justified if it belongs to the unique
extension. When dealing with multiple extensions one may consider an argument
justified if it belongs to all extensions (skeptical approach) or if it belongs to some
extension (credulous approach).14 Justified conclusions are then defined as con-
clusions of credulously justified arguments or as conclusions of skeptically justified
arguments.15

Example 8 (Example 6, cont’d.). When applying preferred semantics to the defeat
diagram in Figure 3 we see that there are two preferred extensions: {D,G,A, F,B}
and {H,A, F,B}. This means that e.g. H is credulously but not skeptically justified

13For an introduction to extensional argumentation semantics, see e.g. [10].
14Labelling semantics (see [45]) give a more fine-grained approach by offering argument labels

such as in, out and undecided and by specifying relationships in which labelled arguments are
supposed to stand: e.g., every argument attacked by an argument that is in is out, every out
argument is attacked/defeated by at least one argument that is labelled in, if an argument is
neither in nor out it is undecided, etc.

15For the latter there are also different options: φ is justified if (a) there is skeptically justified
argument with the conclusion φ, or (b) in every extension there is an argument with conclusion
φ. Clearly, if φ is justified according to (a) then it is also also justified according to (b) but for
many settings this need not hold vice versa. Based on the labelling approach [15] distinguish two
principled and incomparable ways to obtain conclusion justifications.
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whereas F is skeptically (and thus also credulously) justified. The grounded extension
is {A,B, F}.

3.1.1 Rationality Postulates and Argument Strength

A possible problem with the approach described in Section 3.1 is that information
may be lost in the transition from argumentation frameworks based on attacks to
argumentation frameworks based on defeat, which may in turn lead to violations of
certain rationality postulates for logic-based argumentation.16 By way of illustra-
tion, recall Example 7 from Section 2.2, in which the information that A attacks B is
lost in the defeat graph for this example (since A attacks, but does not defeat B). If
acceptability is based on defeat, and if a conflict between two arguments amounts to
one of these defeating the other, then for Example 7 we obtain the counter-intuitive
outcome that A and B belong to the same conflict-free extension, despite the fact
that A attacks B. This violates the consistency postulate for logic-based argumen-
tation, according to which arguments with contrary conclusions ought not belong to
the same extension.17 As we saw in Section 2.2, consistency can be restored for this
example via the introduction of reverse defeat.

Rationality postulates for logic-based argumentation, as introduced by Caminada
& Amgoud in [49], are desiderata for logically well-behaved systems of structured
argumentation. Besides consistency, Caminada & Amgoud also propose the closure
postulate, according to which (in ASPIC+ notation) an argument A1, . . . , An → ϕ
ought to be justified whenever each of A1, . . . , An is justified. The motivation for the
closure postulate stems from the interpretation of strict rules as truth-preserving or
deductive inference tickets: if each of the premisses of such a rule is warranted, then
so is its conclusion.

Even in the absence of preferences on defeasible premisses or defeasible rules,
many systems of logic-based argumentation do not satisfy all postulates proposed
in the literature. For instance, closure and consistency may fail if rebuttal is un-
restricted [53, 51, 84], or if strict rules are not closed under transposition [113].18

In the presence of preferences on defeasible rules, it was shown in [51] that, for the
weakest link and last link principles, structured argumentation frameworks using
the attack form of unrestricted rebuttal satisfy the postulates of closure and consis-

16[6] gives several additional problematic examples for the approach using direct defeats and
extensional semantics.

17The consistency postulate was proposed in [49]. Our formulation is slightly more general and
follows [114].

18The transposition rule licenses e.g. the inference from the rule p, q → r to both the rule
p,¬r → ¬q and the rule ¬r, q → ¬p. The closure and consistency postulates were also proven to
hold for knowledge bases that satisfy the similar requirement of contraposition [112, 113].
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tency when strict rules are closed under transposition. More generally, it was shown
in [112] that ASPIC+ satisfies closure and consistency for frameworks closed under
transposition (along with several other side constraints) for any argument ordering
that is reasonable. A reasonable argument ordering is a set of properties “that one
might expect to hold of orderings over arguments composed from fallible and infal-
lible elements” [112, p. 371]. More precisely, an ordering over a set of structured
arguments is reasonable iff:

1. strict arguments are maximally preferred, and

2. extending an argument with strict rules or strict premisses does not change
the strength of the extended argument.

The generality of this result for reasonable orderings allows the user of the
ASPIC+ framework to choose between a variety of lifting principles without having
to worry about violations of closure or consistency. Both the last link and the weak-
est link principle, for instance, result in a reasonable ordering on arguments. But
although the conditions proposed in [112] suffice to ensure closure and consistency,
other postulates may still fail. For instance, the non-interference postulate proposed
in [50] may fail for reasonable argument orderings that meet these conditions. The
non-interference postulate demands that syntactically disjoint knowledge bases do
not contaminate one another in the sense that uniting these knowledge bases ought
not lead to the unacceptability of arguments that are acceptable in one of the orig-
inal knowledge bases.19 In fact the only system in the ASPIC-family for which all
rationality postulates were proven to hold when taking into account preferences is
ASPIC	 [84], which so far has only been studied under total orders and the weakest
link principle.

3.1.2 Preference-Based Extensional Semantics

Motivated by problems presented in Section 3.1.1, the authors of [6, 7] propose to
study argument strength on the basis of attack graphs induced by the framework
(A,Attack) instead of defeat graphs induced by the framework (A,Defeat). Given
an argumentation framework (A,Attack) and a preference order � ⊆ A×A, one can
define a dominance ordering on the power set of A, abusing notation �⊆ P(A) ×
P(A). An extension-based semantics is then defined on the basis of all �-maximal
sets. Of course, the dominance ordering � has to fulfil specific properties in order
to give intuitive outcomes:

• a conflict-free set should always be strictly �-preferable to a conflicting set;
19Two knowledge bases are syntactically disjoint if they have no atomic sub-formulas in common.
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• the comparison between two sets should be determined by those arguments
that are not shared, i.e. A1 � A2 iff A1 \ A2 � A2 \ A1.

An equivalent condition for A2 � A1 is that every argument in A2 is either de-
feated by an argument in A1 or reverse attacked. This last requirement seems in
a close relation to the reverse-attack approach, and indeed both approaches yield
the same results [7, Thm. 5]. Similar ideas where explored in [44] and in the con-
text of assumption-based argumentation in [156]. Furthermore, preference-based
extensional semantics are used in various applications in [58, 161].

3.1.3 Uncertainty and Argumentative Evaluations

We recall that the constellations approach (see Section 1.2) models uncertainty con-
cerning structural properties of the discursive situation expressed in the argumenta-
tion framework. In [101] the authors work with probability distributions both on the
set of arguments and on the attacks between them. In [90, 135] only uncertainty in
the question whether arguments are (justified to be) part of the discursive situation
is considered. One can now use the given probabilities to calculate how likely it is
that an argument is accepted relative to a given semantics. We demonstrate the
procedure in the framework of deductive argumentation (cfr. Section 1.1).

Example 9 (Constellations approach). Suppose we have a defeasible knowledge base
with two premisses p and ¬p. Suppose further that we consider p to have the proba-
bility 0.7 and ¬p the probability 0.3. In (classical) deductive argumentation we have,
inter alia, the following two arguments A1 = ({p}, p) and A2 = ({¬p},¬p) stand-
ing in a rebuttal-relation to each other. We consider the argumentation framework
G = (A,Attack) with the set of arguments A = {A1, A2} and mutual attacks between
A1 and A2.

Argument A1 has the probability 0.7 while that of A2 is 0.3. The interpretation
according to the constellations approach is that this probability signifies the odds
with which the respective argument is part of an arbitrary full sub-graph of the given
argumentation framework. The full sub-graphs of our argumentation framework G
are (G =)G1 = ({A1, A2}, {(A1, A2), (A2, A1)}), G2 = ({A1}, ∅), G3 = ({A2}, ∅), and
G4 = (∅, ∅).20 The probability of a sub-graph H = (AH,AttackH) is a function of the
probability of arguments:

P (H) =
∏

A∈AH
P (A) ·

∏

A/∈AH
(1− P (A)).

20Given a graph G = (A,R), H = (A′,R′) is a full sub-graph of G iff A′ ⊆ A and R′ =
R∩ (A′ ×A′).
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In our case, P (G1) = 0.7 · 0.3 = 0.21, P (G2) = 0.7 · (1 − 0.3) = 0.49, P (G3) =
(1− 0.7) · 0.3 = 0.09, and P (G4) = (1− 0.7) · (1− 0.3) = 0.21.

Next we consider the grounded semantics with the goal to determine each argu-
ment’s likelihood of being grounded (that is a member of the grounded extension)
relative to our sample space, the set {G1,G2,G3,G4} of full sub-graphs of our initial
argumentation framework G. For this we simply sum up the probabilities of those
graphs in which the argument in question is grounded, formally:

Pgrounded(A) =
∑
{P (H) | H is full sub-graph of G in which A is grounded}

In our case: Pgrounded(A1) = P (G2) = 0.49 and Pgrounded(A2) = P (G3) = 0.21.

We now move our attention to the epistemic approach. Recall that in this ap-
proach there is no uncertainty concerning the structure of the discourse or, techni-
cally, the structure of the underlying argumentation framework. We start with an
argumentation framework (A,Attack) and a probability function P : A → [0, 1] that
assigns to each argument the degree to which we assume it to be acceptable. Given
the additional dialectic structure underlying the argumentation framework we can
then study properties of such probability distributions. Of specific interest is the
epistemic extension of an argumentation framework in view of P : i.e., the set of all
arguments A for which P (A) > 0.5. One may think of the epistemic extension as
representing all arguments an agent has a doxastic commitment to. For instance,
we may require coherence: the beliefs of an agent cohere with the given dialectic
information in that for any two arguments A,B ∈ A we have P (A) ≤ 1 − P (B) if
A attacks B. A less demanding requirement concerning cases where A attacks B
is rationality: if P (A) > 0.5 then P (B) ≤ 0.5 (if the agent believes in A then she
should not believe in B given the attack). One may also demand that non-attacked
arguments should have probability 1 (resp. ≥ 0.5) (this is called founded (resp. semi-
founded) in [91]). Optimality demands that P (A) ≥ 1−∑

B∈Attacker(A) P (B) (where
Attacker(A) is the set of all arguments that attack A) and so gives a lower bound
for the belief in A being accepted in terms of the beliefs concerning its attackers
being accepted.

Example 10 (Epistemic approach). We take another look at Example 3. Suppose
attack is defined as follows: (Γ, φ) attacks (Θ, ψ) iff ` φ ↔ ¬θ for some θ ∈ Θ.21

We give an excerpt of the argumentation framework in Figure 5.
The epistemic extension for our example contains for instance the arguments

({p}, p), ({q}, q) and ({¬(p ∧ q)},¬(p ∧ q)). Note that the set of conclusions for
21In the context of logic- and sequent-based argumentation this attack form is called Direct

Undercut – unlike the usage of the term in ASPIC+ [112] and by Pollock [126].

657



Beirlaen, Heyninck, Pardo and Straßer

({¬(p ∧ q), q},¬p) 0.2 ({p}, p) 0.7

({p, q}, p ∧ q) 0.4 ({¬(p ∧ q)},¬(p ∧ q)) 0.6

({¬(p ∧ q), p},¬q) 0.3 ({q}, q) 0.6

Figure 5: Excerpt of the argumentation framework for Example 10 with probabilities
for each argument.

this extension is not consistent. Nevertheless, the underlying probability function of
Example 3 satisfies the properties of coherence and (therefore) rationality.

This is not a coincidence, since it can be shown that all consistent probability
distributions are coherent [90, Prop. 6], where P is consistent iff ∑

M∈M P (M) = 1
(for the class M of classical models over a given signature). Were we to use an
inconsistent probability function P ′ such as (for Example 3) P ′(M3) = 0.8 and
P ′(Mi) = P (Mi) for i ∈ {1, 2, 4}, then coherence (and also rationality) would be
violated, as witnessed by P ′(({¬(p∧q), q},¬p)) = P ′(M3) = 0.8 > 1−P ′(({p}, p)) =
0.3. Inconsistent probability functions are studied in more detail in [91].

3.2 Ranking-Based Semantics
Extensional semantics are functions that output a collection of sets of arguments:
each set (i.e. each extension) contains arguments that can be reasonably upheld
together given an argumentation graph. In a sense, they thus assign a discrete or
crisp value to an argument (e.g. a is an element of some extension; a is an element of
every extension; a is not an element of any extension)22. Ranking-based semantics
allow for more fine-grained distinctions in that they impose an ordering on the set
of arguments and attacks and/or support relations between them. This ranking
of arguments is usually sensitive to (some of) the following factors: the set of an
argument’s attackers and/or supporters and their ranks, and possibly to a basic
strength value with which arguments are equipped. Some rankings in the literature
are qualitative (e.g. [2, 145] and the meta-study [38]) while others work with numeric
assignments (e.g. [4, 3, 109, 133, 17]).

22See [14] for more on justification states.

658



Argument Strength in Formal Argumentation

Example 11 (Ranking and defense). Suppose our set of arguments is A = {A1, A2, A3}
where A1 attacks A2 and A2 attacks A3. In [26] arguments are ranked according to
the following categoriser function cat : A → (0, 1],

A 7→





1 if A has no attackers
1

1+
∑

B∈Attackers(A) cat(B)
else

We have: cat(A1) = 1 > cat(A3) = 2
3 > cat(A2) = 1

2 .
A similar approach is the burden-based semantics in [2]. Where i ≥ 0 let bur i :

A → [1, 2],

A 7→




1 if i = 0
1 + ∑

B∈Attackers(A)
1

buri−1(B) else

Here we get the next sequences of burden numbers (written 〈bur0(·), bur1(·), . . . 〉):
〈1, 1, 1, . . . 〉 for A1, 〈1, 2, 2, . . . 〉 for A2, and 〈1, 2, 1.5, . . . 〉 for A3. By lexicographi-
cally comparing these sequences we get the ranking A1 � A3 � A2.

The example illustrates that, unlike in extensional semantics, an argument’s
strength can be diminished even if it is fully defended (like A3 in the example
above). The next example shows that also the number of attackers matters for our
two examples of rankings:

Example 12 (Ranking and number of attacks). Let our set of arguments be A =
{A1, A2, B1, C1, C2} where A1 is attacked by B1 and A2 is attacked by both C1 and
C2. We have

• cat(B1) = cat(C1) = cat(C2) = 1, cat(A1) = 1
2 and cat(A2) = 1

3 .

• the burden number sequences of B1, C1 and C2 are 〈1, 1, 1, . . . 〉 while we have
〈1, 2, 2, . . . 〉 for A1 and 〈1, 3, 3 . . . 〉 for A2. By lexicographically comparing the
sequences we get the ranking B1, C1, C2 � A1 � A2.

In both cases we see that the argument with more attackers (A2) is ranked worse
than the one with less attackers (A1).

In the context of ranking-based semantics a great variety of properties have been
proposed and studied which help to group the various proposals in the literature. For
instance, one expects an argument only to have diminished strength if it is attacked;
or, one may require that the strength of an argument is indirectly proportional to
the number (and strength) of its attackers (see e.g. [16, 4] for recent investigations
into such properties). So far, ranking-based approaches have been mainly studied
in the context of abstract argumentation. A notable exception is [162].

659



Beirlaen, Heyninck, Pardo and Straßer

4 Argument Accrual
Conclusions generally tend to become more credible the more independent argu-
ments we find in their favour. This, roughly, is the principle of argument accrual.
We discuss it in a separate section as it seems to connect to all three tiers of argu-
mentation presented in the introduction.

Most authors tend to agree that arguments accrue,23 although opinions differ on
how to implement argument accrual. We illustrate some approaches by means of an
example adopted from [115].

Example 13 (Accrual for defeat). Max has been invited to a wedding, but since the
wedding falls at an inconvenient time, he is inclined not to attend. But now Max
finds out that the guests will include his two old aunts, Olive and Petunia, whom
he enjoys and who he knows would like to see him. Even though Max would choose
not to attend the wedding if only one of the two aunts were going, the chance to see
both Olive and Petunia in the same trip offers enough value to compensate for the
inconvenience of the trip itself.

Suppose our knowledge base contains the information that the wedding falls at
an inconvenient time (i), that Olive will be present (o), and that Petunia will be
present (p). It also contains the defeasible rules r1 : i ⇒3 ¬a and r2 : o ⇒2 a and
r3 : p⇒2 a, where a represents Max’s attending the wedding.

A : 〈i〉 ⇒3 ¬a B : 〈o〉 ⇒2 a C : 〈p〉 ⇒2 a

In a structured argumentation formalism, a fully automated procedure for argument
accrual would, given the arguments B and C, come up with an accrued argument
B⊕C which combines B and C, and which defeats A. In our example, this could be
done via a lifting principle which assigns to B⊕C a degree of priority higher than 3.
That would require a lifting principle capable of raising the strength of arguments
so that accrued arguments are stronger than their constituents. For example, the
sum of the strengths of B and C (2 in each case) would assign a strength 4 to their
accrual B⊕C. (Clearly, none of the lifting principles we saw in Section 1 will do.) It
is a hard and open question whether there are lifting principles adequate for this job,
since the mechanism underlying reason accrual is far from clear. As Prakken [129]
points out, there are cases in which the accrued argument is in fact weaker than
its constituents. By way of example he considers two arguments not to go jogging.

23A notable exception is Pollock: “I doubt that reasons do accrue. If we have two separate
undefeated arguments for a conclusion, the degree of justification for the conclusion is simply the
maximum of the strengths of the two arguments. This will be my assumption” [126, p. 102].
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The first is that it is hot, and the second that it is raining. Each of these arguments
may be stronger than the accrued argument for the same conclusion, since we may
in fact be more inclined to go jogging if it is hot and raining.

A different strategy is to ‘manually’ add further defeasible rules to our knowledge
base for representing accrual. For instance, the rule r4 : o, p ⇒4 a allows us to
construct the argument 〈o〉, 〈p〉 ⇒4 a, which defeats A as desired. Alternatively, and
following Prakken [129], we might treat accrual via undercuts in a setting in which
the strength of defeasible rules is not explicitly represented. Omitting superscripts
for defeasible rules, we could, for instance, add the rule r5 : o, p ⇒ ¬r1, so that, as
a result, the argument 〈o〉, 〈p〉 ⇒ ¬r1 undercuts the argument 〈i〉 ⇒ ¬a.

Thomas Gordon suggests a different approach to argument accrual in the pa-
per “Defining argument weighing functions” (this volume). Within the structured
argumentation approach for ‘balancing’ arguments from [78], Gordon investigates a
number of functions assigning weights to arguments relative to structural proper-
ties of argumentation frameworks, and relative to the acceptability status of other
arguments in these frameworks. Simple cases of accrual are represented via weigh-
ing functions on cumulative arguments —arguments the strength of which increases
with the number of acceptable premisses. Non-cumulative cases of accrual, such as
Prakken’s jogging example, can also be dealt with via the more intricate notion of
a factorized weighing function, which measures an argument’s weight in proportion
to a number of relevant factors, such as “it is hot” and “it is raining” in the jogging
example. As Gordon admits, it is currently unclear which rationality constraints ap-
ply to weighing functions of the kind he proposes. What is clear, is that his account
of ‘balancing’ pros and cons via weighing functions offers interesting prospects for
the study of argument accrual.

Within the setting of DeLP, argument accrual has been studied via the concepts
of partial and combined attacks on accrued structures which combine arguments
with identical conclusions [105, 76]. Via combined attacks two or more arguments
may jointly defeat an accrued structure even if none of these arguments on their own
can defeat the structure in question. Similarly, Verheij tackles accrual via the notion
of compound defeat, according to which collections of arguments may defeat other
collections of arguments [150, 149]. In the context of abstract argumentation we can
find similar approaches where several arguments may jointly attack arguments (or
sets of arguments) [117, 33].

In the context of weighted abstract argumentation frameworks (see Section 2),
some notions of an accrual of defending arguments have been defined. We illustrate
these with an example.

Example 14 (Accrual for defense). Suppose we have the argumentation framework
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B1

B2 A C

B3

2
2

2

3
3

defender set defend1 defend2 defend3

{B1}
{B2}

{B1, B2} X
{B1, B2, B3} X X

Figure 6: The weighted argumentation framework for Example 14. In the table we
indicate whether the set on the left defends C according to the different notions of
defense.

with weighted attacks in Figure 6 (left).
Where W (A,B) denotes the weight of the attack from A to B, we can with [31]

define the weight of a set of arguments A attacking a single argument A by W (A, A)
= ∑

B∈A(B,A). Similarly, we can define the weight of an argument’s A attack on a
set of arguments A by W (A,A) = ∑

B∈AW (A,B).24 We now compare three ways
of defining a notion of defense in weighted abstract argumentation, where the first
two realize a notion of accrual:

1. According to [31], A defends1 B iff for every A that attacks B we have:
W (A,A ∪ {B}) ≤W (A, A).

2. According to [57], A defends2 B iff for every A that attacks B we have:
W (A,B) ≤W (A, A).

3. According to [107], A defends3 B iff for every A that attacks B there is a
C ∈ A for which W (A,B) ≤W (C,A).

In the table in Figure 6 we give an overview of how these notions apply to our
example.

Argument accrual raises a number of difficult open questions, and there is little
convergence as to the methods by which to address them. Different approaches
highlight interesting aspects of accrual, but at the moment there is no consensus
regarding how the strengths of a number of arguments A1, . . . , An with identical
conclusions relate to the strength of their accrual A1 ⊕ . . .⊕An.

24We suppose in our example that weights are numbers (canonically ordered) and that weights
are aggregated by summing them up. The approach in [31] is more general in that it allows to work
with arbitrary C-semirings [30].
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5 Representational Results
One of the motivations of formal argumentation is to act as a unifying model of
formal approaches to defeasible reasoning25 which offers conceptually motivated ex-
plications of many defeasible reasoning forms and has a strong explanatory power
(see e.g. [47, 138]). In this capacity, representational results that establish connec-
tions between formal (instantiated) argumentation and other formalisms for defea-
sible reasoning are important to substantiate the claim of formal argumentation as
a unifying formalism. For example, in [37] it was shown that assumption-based
argumentation can represent auto-epistemic and default logic.

Preferences play an important role in formal models of defeasible reasoning (see
e.g. [43, 62]). However, the relation between preferences in defeasible reasoning and
argument strength is far from clear. [160] offers representation results for prioritized
default logic [40] based on totally ordered preferences within ASPIC+ but shows that
several complications have to be overcome to obtain this representation. In [159],
further problems and their solutions are discussed for the case where the preference
order is not totally ordered. Similar representation results for totally ordered default
theories have been presented in [40] for prioritized normative reasoning [81] and the
Brewka-Eiter approach to prioritized default logic [42]. For these representations,
no generalizations to the case for non-totally ordered default theories have been
published yet.

Another important open question concerns the relation between argumentation-
based approaches to preferential reasoning on the one hand, and model-theoretic
approaches on the other hand. Arguably, the best known representative of the
model-theoretic perspective is the ‘KLM’ semantics [99]. On this semantics, in-
ferences are evaluated by checking whether their conclusion holds true at the best
premise-states, where some order on states is given in advance. Some properties of
this semantics have been studied from an argumentative perspective in [137]. The
KLM semantics also bears close connections to Verheij’s case-based approach to
argumentation [152, 153]. Arguments on Verheij’s account are premise-conclusion
pairs of the form (ϕ,ψ). They are evaluated against the backdrop of a case model:
a pair (C,�) of a finite set of formulas (‘cases’) C and an ordering � on C. An
argument (ϕ,ψ) is presumptively valid if ψ is true in some best ϕ-case, where ‘best’
means ‘maximal with respect to �’. On the KLM semantics, inferences are evaluated
by checking whether their conclusion holds true at the best premise-states, just as
Verheij evaluates arguments by checking whether their conclusion holds true at the
best premise-cases. Still, there are important differences between both approaches.

25This motivation was already present in [63].
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For instance, cases on Verheij’s account are required to be logically incompatible,
and the ordering � is required to be a total pre-order so as to ensure that probabil-
ities can be assigned to cases.

An alternative line of research on the connection between preferential reason-
ing and formal argumentation is the investigation of various postulates for non-
monotonic reasoning as formulated by [99] for argumentation formalisms. Such
studies have been carried out for ASPIC+ [102, 64] and ABA [85, 60].

From this short discussion it is clear that there are important open questions
concerning the representation of preferential reasoning and argument strength in
argumentation-based approaches to defeasible reasoning on the one hand, and some
of the paradigmatic approaches in the field of non-monotonic reasoning on the other.
Besides the well-known accounts of default logic and preferential semantics, there is
a multitude of other approaches to prioritized defeasible reasoning – e.g. [134, 148]
– whose representation in formal argumentation has not been investigated yet.

Another open question concerns the comparison of the expressive power of dif-
ferent frameworks of structured argumentation. For instance, while it is known that
without priorities, ASPIC+ and ABA are equi-expressive [130, 83], the question is
open for prioritized versions.
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Abstract
Many philosophers argue that Keynes’s concept of the “weight of arguments”

is an important aspect of argument appraisal. The weight of an argument is the
quantity of relevant evidence cited in the premises. However, this dimension
of argumentation does not have a received method for formalisation. Kyburg
has suggested a measure of weight that uses the degree of imprecision in his
system of “Evidential Probability” to quantify weight. I develop and defend
this approach to measuring weight. I illustrate the usefulness of this measure
by employing it to develop an answer to Popper’s Paradox of Ideal Evidence.

Introduction
One of the oldest systems of imprecise probability in the literature is Henry E. Ky-
burg’s system of “Evidential Probability”. In this article, I shall defend and develop a
proposal by Kyburg to use his system to measure what John Maynard Keynes called
the “weight of arguments” [1]. The analysis of weight has been challenging for prob-
abilistic theories of reasoning, but I shall argue that Kyburg’s measure can address
this issue. My discussion will illustrate the advantages of Evidential Probability for
argument analysis. Additionally, to illustrate the usefulness of this measure, I shall
use this measure to answer Karl Popper’s “Paradox of Ideal Evidence”. While there
are many proposed methods for measuring weight, I shall focus entirely on Kyburg’s
measure.

In Section 1, I describe Keynes’s concept of weight and explain its importance.
In Section 2, I explain Kyburg’s system and develop his proposal for measuring
weight using his system; I also examine whether this measure can withstand a range
of existing and novel objections to using imprecise probabilities to measure weight.
In Section 3, I apply this measure to Popper’s paradox.
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1 Keynes and the Weight of Argument

Keynes uses the term “weight of argument” to refer to his concept. In the literature,
“weight of evidence” is also common. I shall stick to Keynes’s terminology, because
the phrase “weight of evidence” sometimes refers to other concepts, such as the
degree of confirmation of a hypothesis by the evidence. Additionally, in law, the
phrase “weight of evidence” is typically used to mean the balance of evidence with
respect to a hypothesis of guilt or innocence [2, p. ix]. Thus, “weight of argument”
helps avoid some potential ambiguities.

The “weight of argument” of a statement H given another statement E is the
extent to which E (which might be the conjunction of many distinct statements in
natural language) provides information that is relevant to H. As Rod O’Donnell em-
phasises, the adjective ‘relevant’ in front of ‘evidence’ is very important [3]. Keynes
is not referring to the sheer number of statements on the right hand side of a condi-
tional probability P (H | E) or the sheer bulk of information that these statements
contain. By “relevant evidence”, Keynes is only referring to the extent that E pro-
vides information that is pertinent to H in particular.

The informal concept of weight has a long history. I. J. Good notes that, as
a metaphor, it can be traced back at least to the Ancient Greek goddess Themis
and her ‘scales of justice’, in which the scales involve both a balance and a quantity
of evidence [4]. Charles Sanders Peirce provides one of the earliest philosophical
discussions [5]. He gives a simple example of weight’s significance: suppose there
is a bag that we know consists of red beans and/or black beans, in some unknown
proportion. Intuitively, there is a difference between extrapolating from half of a
sample of 1,000 beans drawn from the bag and half of a sample of only 2 beans. If
someone is extrapolating from the former bag, then they seem to be entitled to a
greater degree of confidence (in some informal sense) in estimating that half of the
beans of a bag are red. According to Peirce, the difference is the greater quantity of
evidence that the report of the larger sample provides. Thus, an argument from that
report and the relevant background knowledge to a hypothesis about the proportion
of red beans in the bag has more weight.

Keynes firmly distinguishes weight and conditional probability, because they can
move in different directions. For example, imagine that you hear a weather report
stating that the weather in your area tomorrow will not be windy. The conditional
probability that tomorrow will be windy, given your total evidence, has decreased.
In contrast, the weight of argument has increased. Jochen Runde notes that Keynes
presupposes that weight always increases monotonically with additions of relevant
evidence to a body of evidence [6]. This monotonicity of weight means that, if E is
relevant toH given background knowledgeK, then (E∧K) must have greater weight
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with respect to H than K alone. In this respect, weight differs from conditional
probability, because conditional probability does not always increase monotonically
as relevant statements are added to the conditional evidence.

However, some philosophers who have discussed weight have questioned this
monotonicity presupposition. Runde argues that, under some circumstances, new ev-
idence might reveal that our evidence is more limited than we thought [6]. James M.
Joyce implicitly rejects the monotonicity presupposition in his discussion of weight
[7]. Brian Weatherson argues against the monotonicity presupposition and provides
an elegant example to support his denial [8]. Imagine that you are playing poker
with several people. You are wondering if another player, whom I shall call “Lydia”,
has a straight flush. A straight flush in poker consists of five cards of sequential
rank in the same suite. For instance, a hand consisting of a two, a three, a four, a
five, and a six, all Diamonds, would be a straight flush. Since a dealt poker hand
consists of 5 cards from a normal deck of 52 cards, there are 52!

(5!)(47!) = 2, 598, 960
possible hands that Lydia might have. There are 10 possible straight flushes for
each suit and 4 suits. Therefore, there are 40 possible straight flush. In the absence
of any additional evidence that makes a particular hand more likely, the Keynesian
probability that Lydia has a straight flush is 40

2,598,960 . In the Keynesian theory of
evidence and probability, this initial total evidence provides substantial informa-
tion about your conjecture that she has a straight flush. However, the subsequent
combination of this initial evidence with Lydia’s facial expressions, tone of voice,
past bluffing behaviour, and other sources of information regarding her hand might
leave you with much more vague total evidence. In Keynes’s probability theory, this
vagueness might make it impossible to specify a precise conditional probability for
the conjecture that Lydia has a straight flush.

In Weatherson’s example, the subsequent evidence is qualitative. However, there
are also possible scenarios in which the evidence is entirely quantitative. For in-
stance, imagine that I am about to make a selection from an urn containing 100
lottery tickets. 90 of the tickets are red and 10 are blue. You are wondering whether
I shall draw a blue ticket. If there is no additional evidence that suggests that any
one ticket is more likely to be selected than another, then the initial Keynesian
probability of the hypothesis that I shall draw a blue ticket is 10

100 = 0.1. Suppose
that you then learn that (1) I am drawing the ticket from the top of the urn and
you also learn that (2) the proportion of blue tickets at the top of the urn is 0.2,
1, or somewhere in between. In other words, you now know that the ticket will be
selected from a subset of the urn whose proportion of blue tickets does not match
the proportion for the urn as a whole, but you only have imprecise statistical data
about the subset: the proportion of blue tickets x has a value 0.2 ≥ x ≤ 1. While
you have acquired new evidence about the hypothesis that the ticket will be blue, it
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seems that the weight of your total evidence has been reduced, because the pertinent
evidence of proportions has become imprecise.

Weatherson argues that, in such situations, it is intuitive to say that the weight
of argument has fallen after you have acquired this new evidence. Metaphorically,
Weatherson is pointing to the possibility that additional relevant information can
result in a murkier overall picture, such that the total evidence provides vaguer
information regarding a proposition and therefore less weight. On the grounds of
such examples, I shall not share Keynes’s presupposition (which he does not defend)
that weight is monotonic.

Keynes did not doubt that weight was an important concept, but he was unsure
about precisely how weight has practical significance. However, there have been
a considerable number of suggested applications. In formal epistemology, Janina
Hosiasson utilises Keynes’s concept as part of an analysis of evidence and its value
[9]. Weatherson argues that probabilistic theories of reasoning, such as Bayesianism,
can incorporate weight to distinguish (a) propositions for which our total evidence
provides considerable information and (b) propositions for which our total relevant
evidence is highly exiguous, which is a distinction that is not captured by conditional
probabilities [10]. In the philosophy of law, Barbara Davidson and Robert Pargetter
use weight in their analysis of the legal phrase ‘beyond reasonable doubt’[11]. James
Franklin has also employed the concept in the philosophy of law [12,13]. These are
just a few examples of how Keynes’s concept has been fecund in its philosophical
applications.

Keynes doubted that weight is quantitatively measurable. However, a quantita-
tive formalization of weight might be useful, given the employment of the concept
of weight by formal epistemologists and philosophers of law. Imprecise probabilities
offer one possible basis for such measurement.

2 Evidential Probability and the Weight of Argument

The oldest suggestion of using imprecise probabilities to measure weight seems to be
Kyburg’s proposal in a 1961 monograph. He proposed using the degree of imprecision
of the intervals in his probability system, called ‘Evidential Probability’ [14]. (I shall
use the upper-case ‘Evidential Probability’ to refer to Kyburg’s system and lower-
case phrases like, ‘evidential probability’ for the probability values in his system.)
The probabilities in this system take the values of intervals in the range from 0
to 1. For example, the intervals can cover the whole range, such as [0, 1], or some
subinterval of the range, such as [0.5, 0.75], or a degenerate interval such as [0.5, 0.5].
In a 1968 article, Kyburg restricts his claim to the measurement of weight where the
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evidence is of the same sort [15]. His proposed measure is a very simple function:

Definition 1 Weight of argument for H given E and K = (y − x) where H is a
hypothesis, E is some evidence, K is the relevant background information, x
is the lower bound of the evidential probability interval for H given (E ∧K),
and y is the upper bound of the interval for H given (E ∧K).

However, this measure is linguistically awkward, since the values will be high
when weight is low and low when weight is high. A simple modification makes the
definition more verbally felicitous:

Definition 2 Weight of argument for H given E and K = WK = 1− (y − x)

Thus, insofar as the Evidential Probability intervals are more imprecise (wider)
the weight will be low; insofar as the intervals are precise, the weight will be high.
Thus, when the value of H given (E ∧K) is a degenerate interval like [0.5, 0.5], then
the WK measure of weight will take a maximal value: 1− (0.5−0.5) = 1. When the
interval is the maximally wide [0, 1], the measure’s value will take a minimal value:
1 − (1 − 0) = 0. When the interval is a non-degenerate sub-interval, the measure’s
value will take some value between 1 and 0, depending on the imprecision of the
evidential probability.

I shall argue that Kyburg’s measure seems to offer a very widely applicable
measure of weight, which goes at least beyond his 1968 claim. I shall begin by
describing Kyburg’s system of Evidential Probability. I shall then detail some simple
examples of the WK measure in action. I shall finish this subsection by examining
a range of existing and novel challenges for this measure.

2.1 Evidential Probability
Kyburg developed his system over 40 years, but I shall discuss his system in terms
of its final version, as expressed in [16]. Kyburg’s system of Evidential Probability
maps interval values onto statements relative to other statements. Such values
are intended to represent objective evidential relations between the two relata: the
interval values are interpreted as a form of (non-deductive) logical relations, rather
than in terms of belief. Thus, Evidential Probability is a member of the family of
logical interpretations of probability. However, unlike many philosophers who use
such an interpretation, Kyburg argues that the probabilities should be imprecise, in
many contexts.

For the formal application of Evidential Probability, the statements in the prob-
ability relation are expressions within a formal language that models the rea-
soning of some agent(s). An Evidential Probability function EP has a value
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EP (H | E ∧ K) = [x, y], where the range of the function is interpreted as rep-
resenting the objective degree of support that the conjunction of E and K provide
for H and the interval is a closed interval with two real fraction as its limits.1

Instead of symmetry principles (as in Objective Bayesianism) or subjective cre-
dences (as in Subjective Bayesianism), Kyburg uses direct inference as the founda-
tion of his probabilities. To use a simplified example, imagine that all you know
about a single object a is that it is a fish. You also know that 1.5% of fish are gold-
fish. Kyburg (and many other philosophers) would say that the probability of the
hypothesis Fa, given what you know, is 1.5%. However, this situation is extremely
unrealistic. Our statistical data is typically imprecise: the proportions of predicates
like ‘fish’ in populations are estimated with margins of error. And, as Hans Re-
ichenbach argued [17], we always have competing statistics about reference classes
for any given individual: we would not just know that a is a fish, but a fish that is
differentiated from other fish via some definite description, such as ‘That orange fish
in Tank 7’. There is no reason why our data for the proportion of goldfish among
orange fish or among fish in Tank 7 must match our data for fish in general. Thus,
for Kyburg, the foundational issue in probability is formulating rules for ignoring
and/or combining such competing reference class data.

To determine the range of the EP function for a hypothesis H and a body of
evidence K, Kyburg proposes the following procedure. Where H concerns a single
object a and a predicate F , one begins by enumerating the reference classes to which
(i) a is known to belong and for which (ii) K contains data about the frequency of
objects with F in that reference class. Such data can be imprecise: for example,
K might include a statement Ri that only specifies that F has a relative frequency
of 0.4 ± 0.05 in a particular reference class that includes the object a. For these
reference classes, there will be a set of statements about frequencies in reference
classes: {R1, R2, R3 . . . Rn}. These are the possible reference class statements, which
report relative frequencies that might supply the interval values for EP (H | K).
Some of these reference class statements might conflict, in the sense that the relative
frequency reported by one statement is not a subinterval of the relative frequency
in the other: for example, perhaps you know that 1.5% ± 0.1% of fish are goldfish,
whereas you know that 45% ± 0.01% of fish in Tank 7 are goldfish. Thus, there is
a reference class problem: what is the appropriate reference class statement for the
probability of a hypothesis, given competing reference class statements in K? Or, if
there are no reasons to favour any single reference class statement to determine the

1I am expressing the evidential probabilities in a formalism that somewhat differs from Kyburg’s,
in that it is closer to the formalism of Bayesian conditional probabilities. This choice is to make
it more familiar to readers who are unfamiliar with Evidential Probability. The differences from
Kyburg are only superficial.

682



Imprecise Probability and the Weight of Arguments

probability of the hypothesis, how should one combine conflicting statements into a
single interval value?

Kyburg’s answer is to sequentially apply the following rules to this set:

(1) Sharpening by Richness Compare each statement in the set via a pairwise
comparison. Suppose that Rj has been deduced from a full joint distribution
for a random variable Q, whereas Ri has been deduced from a marginal distri-
bution for Q. Suppose that the interval of the relative frequency reported in
Rj conflicts with the relative frequency reported in Ri. Sharpening by Rich-
ness requires that one ignores Ri. Put another way, Sharpening by Richness
enables us to favour reference class statements that more fully articulate our
statistical data.

For example, for a hypothesis about a selection from a set and given the choice
between (1) statistical data about the raw proportion in the set and (2) statistical
data about the proportion of selections from that set, one should favour the latter.
Imagine that you are about to make a random selection from one of two decks
of cards. You wondering whether to bet that the card you draw will be an Ace
of Spades. Let H be the hypothesis that the card you will draw is the Ace of
Spades. You know that Deck 1 is a normal deck and that Deck 2 is a normal deck
minus the Spades. Before making your random selection, you must toss a six-sided
die that you know to be normal and fair. If the die lands on 1 or 2, you must
draw from Deck 1; if the die lands on a 3, 4, 5, or 6, you must draw from Deck
2. Thus, if the die lands on 2/3rds of the equiprobable possibilities, then you are
certain to draw a card other than the Ace of Spades. Should you use (a) your
information about the proportion of Aces of Spades in the total number of cards (1
out of 103) or (b) your information about the relative frequency of tossing the die
and selecting the Ace of Spades? The former implies an evidential probability of
[ 1
103 ,

1
103 ], whereas the latter joint distribution is the relative frequency of a 1 or 2

multiplied by the conditional frequency of selecting an Ace given that the die has
landed favourably:

(
1
3

) (
1
52

)
= 1

156 , for an interval of
[

1
156 ,

1
156

]
. Sharpening by

Richness requires that you ignore the relative frequency about the cards alone, in
favour of the joint distribution concerning the random variables of the card draw and
the die toss. Assuming no other relative frequency statements survive competition
against the latter data, the evidential probability of H will be

[
1

156 ,
1

156

]
. In general,

Sharpening by Richness means that statistical statements in the set of candidates
for an evidential probability which are based on joint distributions must be favoured
over those that are based on marginal distributions, in those circumstances where
they conflict.
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(2) Sharpening by Specificity Having applied the previous rule, one compares
the surviving statements by a pairwise comparison. Suppose that the interval
of the relative frequency reported in Rj conflicts with the relative frequency
reported in Ri. If a statement Rj describes a proper subset of Ri, then Rj is
preferred overRi. Therefore, data that is more specifically about the individual
in question will be favoured over more general conflicting data.

For example, suppose you are wondering if a flower in your greenhouse will
bloom in March. If you know the general relative frequency of this species blooming
in March and the more specific data for this species blooming in March when stored
in a greenhouse, and these frequencies conflict, then one should ignore the data
about the species in general. Similarly, in the earlier example of wondering if a is
a goldfish, given choice between data for the proportion of goldfish among fish in
general and data for the proportion of goldfish among fish in Tank 7 (the container
of a) Sharpening by Specificity requires that one use the latter statistic, because you
know that all the fish in Tank 7 are fish, but not all fish are in Tank 7. (The fish in
Tank 7 are a proper subset of fish.) To use a gambling example, if you are selecting a
ball from the upper region of an urn and you have data for the proportion of red balls
on the top of the urn and for the proportion for the urn in general, then you should
use your data for the upper region when determining the evidential probability that
the ball is red.

Suppose that you have applied these two rules. If a single reference class state-
ment Rj remains after one or both of these rules have been applied, then the eviden-
tial probability is [x, y], where x and y are the lower and upper limits of the relative
frequency data stated in Rj . For example, if Rj states that the relative frequency
of F in a reference class is 0.5 ± 0.03, then EP (Fa | K) = [0.47, 0.53]. If a set of
reference class statements remain, then the following rule must be applied:

(3) Sharpening by Precision If there is a statement Rj that states a relative
frequency that is a proper subinterval of every other remaining statements’
relative frequency data, then the evidential probability is this proper subin-
terval. If there is no such statement, then the evidential probability is the
shortest possible cover of the intervals from the surviving members of the set.

For example, if R1, R2, and R3 are the surviving statements and they provide inter-
vals of [0.1, 0.2], [0.15, 0.3], and [0.5, 0.55], then the evidential probability is [0.1,
0.55].

Essentially the same reasoning for single-case probabilities extends to plural-case
probabilities, because the Sharpening rules can be multi-member sets (a sample of
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balls from the top of an urn; the penguins of Antarctica; the stars in the Known
Universe etc.) as well as hypotheses about particular individuals. Kyburg develops
a range of general formal properties for values of the EP function: see [16,18],
and a summary of salient results on page 49 in [19]. One axiom, that will be
particular important later (in Subsection 2.2) is that if EP (Φ ↔ Ψ | Ω, 1], then
EP (Φ | Ω) = EP (Ψ | Ω), for any statements Φ, Ψ, and Ω. This has the consequence
that if one knows that one statement is true if and only if a second statement is true,
then the two statements must have the same evidential probability relative to one’s
total evidence.

Despite Kyburg’s references to relative frequencies, he does not identify prob-
abilities with relative frequencies: evidential probabilities take their values from
accepted statements about frequencies, but they are not identified with frequencies.
Instead, they are logical probabilities, akin to those of Keynes in [2] and Rudolf
Carnap in [20]. As a result, he does not deny that probabilities can be meaning-
fully ascribed to single-case hypotheses, such as the hypothesis that a die will land
on 6 in a particular toss. This feature of Evidential Probability enables Kyburg
to obviate the standard frequentist problems with single-case probabilities. Indeed,
as described above, all evidential probabilities are either single-case or ultimately
derived from single-case probabilities.

Since Kyburg’s proposal for measuring weight is my focus in this article, I shall
not discuss the various general strengths and weaknesses of Kyburg’s system. (The
special issue on Kyburg in [21] contains further discussion, including critical assess-
ments of Evidential Probability from Bayesian perspectives.) Instead, I shall restrict
the scope my discussion to his measure of weight.

2.2 Examples

In Section 1, I mentioned a simple type of example of weight in reasoning, which
was developed by Peirce. Suppose that you are considering hypotheses about the
composition of an urn full of beans. You know that the urn consists of red and/or
black beans in some unknown proportion. Assume that your background information
is suitable for standard statistical inferences involving sampling without replacement:
the selections are apparently random, they are not independent in your model of
the sampling set-up, the population of beans is finite with well-defined means for
the proportions of red beans and black beans, and so on. Intuitively, as your sample
of beans increases, the quantity of evidence that is available to you (the weight)
increases, ceteris paribus. I shall now explain how the WK measure treats this
scenario.

Kyburg discusses this type of sample-to-population inferences in his system at
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great length in Chapter 11 of [16]. Since my focus is the WK measure, rather than
the details of statistical inferences in his system, I shall be brief in my description
of how such extrapolations work in Evidential Probability. Let H be the hypothesis
that 49.5-50.5% of the beans in the urn are red. Let E1 be the sample report that 2
sampled beans are red. Let E2 be the sample report that 3,000 beans, including the
beans described in E1, also are red. Let K be your relevant background knowledge.
Assume that there is sufficient information in K to calculate, using combinatorics,
that between 2% and 100% of the 2-fold samples of any large finite population of
beans in the urn will be matching samples, in the sense that the samples will match
the population within a margin of error of 1%. The Law of Large Numbers is one
obvious source of combinatoric information that might be useful, under suitable
conditions, for calculating the proportion of matching samples. However, you might
know other combinatoric principles that could help with the estimation; additionally,
background information about the urn, urns in general, and other contingent facts
might be relevant to the estimation of the proportion of matching samples in the urn.
In short, the probability of an interval-valued hypothesis for a population, given some
sample data and background information, will depend on the statistical estimate
of matching samples of that size for that population, relative to the background
information.

In this particular scenario, we have assumed that you know that the proportion
of possible samples that match the population in redness, within a margin of error
of 1%, is in the closed interval [0.02, 1]. If the rules of Sharpening select this
statement about the set of possible compositions of the beans in the urn as your
best information about H given the conjunction of E1 and K, then the evidential
probability will be EP (H | E1 ∧K) = [0.02, 1]. The WK measure gives the output
of (1−(1−0.02)) = 0.02 for the weight of E1 and K with respect to H, which reflects
Peirce’s judgement that E1 provides some evidence about H, but almost none.

In contrast, suppose that you can calculate that the relative frequency of 3,000-
fold samples that match (within a margin of error of 1%) any large finite population
of beans in the urn is some proportion from 72.665% to 100%. Assume that the
conditions match those described in the paragraph, mutatis mutandis, such that
EP (H | E1 ∧E2 ∧K) = [0.72665, 1]. The WK measure for your total evidence with
respect to H is now (1− (1− 0.72665)) = 0.72665. In accordance with the intuition
that Peirce is trying to convey, the WK measure gives us the result that your total
evidence is much greater given a 3,000-fold sample report than a 2-fold sample report.
In general, in the extremely simple sort of sampling model that Peirce is implicitly
describing, if the evidence simply consists of increasingly larger sample reports, and
if the evidential probabilities are simply derived from the combinatoric properties of
possible samples of a large finite population, then the evidential probability intervals
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will narrow as the reported samples are larger. Thus, on the WK measure, the weight
will increase in a linear fashion in such (idealized) circumstances.

I shall now give a different example in which the WK measure seems to work
well. Imagine two different object-tossing scenarios: one in which the object you are
tossing is an ordinary 1 coin; another in which the object you are tossing is a gömböc.
A gömböc is a homogenous three-dimensional solid that has just two equilibria on a
flat surface: (1) a stable equilibrium and (2) an unstable equilibrium. The gömböc
that you are tossing has the Coptic letter ‘ ’ on the side with its stable equilibrium
point and the Coptic letter ‘ ’ on the side with its unstable equilibrium point.
You are wondering whether the next toss of the gömböc on a flat table in front of
you will land ‘ ’. In the coin tossing case, you are wondering whether the next
toss of the coin will land ‘heads’. You might know that 1 coins land ‘heads’ with a
relative frequency somewhere between 49% and 51%. Assume that, given your total
evidence, this data about 1 coins in general is your best information (according to
the rules of Sharpening) about whether the next toss will land ‘heads’, such that
the evidential probability interval is [0.49, 0.51]. The weight of your total evidence,
on the WK measure, is the very high value of (1− (0.51− 0.49)) = 0.98.

In contrast, imagine that you are almost entirely unfamiliar with the dynam-
ics of the gömböc and gömböcs in general. Since gömböcs are rare (the first was
produced in 2007 and the shape itself was only first conjectured in 1995 by the
mathematician Vladimir Arnold) there might be little readily available information
on how frequently they end up on any particular side. Nonetheless, imagine that
you are able to conduct a brief investigation and learn that they land on their stable
equilibrium point in somewhere between 0.01% and 99.9% of tosses on a flat table.
Assume that this is your best information according to the rules of Sharpening. The
evidential probability that the gömböc will land ‘ ’, given your total evidence, is
[0.01, 0.999]. The weight of your total evidence, on the WK measure, is the very
low value of (1− (0.999− 0.01)) = 0.011. This value reflects the intuition that you
have a much greater quantity of evidence about the hypothesis that the 1 coins will
land ‘heads’ than the hypothesis that the gömböc will land ‘ ’.

These examples suggest that Kyburg’s measure works well, at least in some
simple cases of reasoning. There are many more complex cases where a measure
of weight might be useful, and it would be preferable to have a broad survey of
them. Yet such a survey would require a very wide-ranging analysis of many types
of reasoning using Evidential Probability. In its place, I shall look at some prima
facie problems for measures of weight that use imprecise probabilities, and examine
whether the WK measure is vulnerable to them.
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2.3 Dilation

Some imprecise probability systems have a feature called “dilation”, in which up-
dating on apparently irrelevant evidence can cause the probabilities to become more
imprecise. Some philosophers try to use dilation as a general objection against
such probability systems [22] and others have sought to defend imprecise probabil-
ity systems by responding to such objections [23]. For my purposes in this article,
the significant feature of dilation is the challenge that they can pose to measures
of weight such as the WK measure. Seamus Bradley has recently raised such an
objection: in dilation scenarios, the weight of argument for a hypothesis given the
total evidence will fall upon the addition of apparently irrelevant evidence; conse-
quently, a measure that identifies weight with the degree of imprecision will register
a decrease upon the addition of apparently irrelevant evidence [24]. This raises the
question of whether dilation is a feature of Evidential Probability. I shall set aside
both (a) whether dilation is problematic and (b) whether dilation is problematic for
all the types of weight measures that Bradley discusses. I shall focus purely on the
WK measure. Arthur Paul Pederson and Gregory Wheeler [14], as well as Teddy
Seidenfeld [25], have noted that dilation is not a feature of Evidential Probability,
but they do not argue for this point in detail. In this subsection, I shall explain why
the standard dilation scenarios are impossible in Kyburg’s system.

I shall adapt Bradley’s dilation scenario to Evidential Probability. Imagine that
I am about to randomly select a card from a pile of 40 cards. Let H be ‘The card
is red’, X be ‘The card is even’, Y be ‘The card is red if and only if it is even’,
and K be my total evidence. Suppose that my best reference class information for
H’s probability is that 1/2 of the cards in the pile are red, whereas I only know
that the proportion of even-numbered cards in the pile is between 0 and 1. In some
imprecise probability systems, learning Y results in a widening of the intervals of
the probability of X given Y and K, in comparison to the probability of X given K
alone.

In Evidential Probability, the value of EP (X | Y ∧ K) is determined by the
rules of Sharpening to the relative frequency data about X that (Y ∧ K) implies.
By assumption, the information about the relative frequency of cards in the pile is
initially my best information about H. Since this data tells me that exactly half
of the cards are red, such that EP (H | K) = [0.5, 0.5]. Learning Y gives me a
new potential reference class statement: I now know that the card is a member of
a subset of the cards in the pile (the subset of cards that are red if and only if they
are even) and I must now apply the rules of Sharpening to check if I should favour
my relative frequency data about this reference class (the data that states that the
proportion of red cards in this class is between 0 and 1) over my information for the
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pile as a whole.
The intervals [0.5, 0.5] and [0, 1] do not conflict, in the sense described in Sub-

section 2.1, because [0.5, 0.5] is a proper subinterval of [0, 1]. Therefore, neither
Sharpening by Richness nor Sharpening by Specificity is applicable. (The latter rule
is not applicable, even though [0, 1] is derived from the evidence that the card in
question is a member of a proper subset of the pile, because the intervals do not con-
flict and Sharpening by Specificity only favours more specific reference classes when
they conflict with more general reference classes.) The remaining rule is Sharpening
by Precision, which requires selecting a proper subinterval of the possible intervals
that have survived the first two rules, if such a subinterval is available; otherwise,
the evidential probability is the cover of the intervals. Since [0.5, 0.5] is a proper
subinterval of [0, 1], Sharpening by Precision requires selecting [0.5, 0.5] as the value
of EP (H | Y ∧ K). Therefore, the Evidential Probability of H does not become
more imprecise upon learning Y . The WK measure provides the output that learn-
ing Y has not affected the weight, because WK(H | K) = 1 − (0.5 − 0.5) = 1 and
WK(H | Y ∧K) = 1− (0.5− 0.5) = 1.

Additionally, Evidential Probability provides the potentially intuitive result that
the weight of argument for X given Y and K is greater than the weight for H given
K alone. As I noted towards the end of Subsection 2.2, if EP (Φ ↔ Ψ | Ω) = [1, 1],
then EP (Φ | Ω) = EP (Ψ | Ω), for any Φ, Ψ, and total evidence Ω. Therefore, since
EP (H ↔ X | (H ↔ X) ∧ K) = [1, 1], it follows that EP (X | (H ↔ X) ∧ K) =
EP (H | (H ↔ X) ∧ K). Using the reasoning in the earlier paragraph and the
fact that Y is equivalent to (H ↔ X), we can infer that the evidential probability
that the card is even, given my new total evidence, must be [0.5, 0.5]. We can also
infer this directly: the card is now known to be red if and only if it is even, such
that the earlier [0, 1] interval is now competing with the [0.5, 0.5] interval from
the data for red cards in the pile. Neither interval conflicts, because [0.5, 0.5] is a
proper subinterval of [0, 1], and therefore Sharpening by Richness and Sharpening by
Specificity are both inapplicable. Once again, via Sharpening by Precision, the new
evidential probability must be [0.5, 0.5], because this interval is a proper subinterval
of [0, 1]. Learning Y has increased the weight for X according to Kyburg’s measure,
because WK(X | K) = 1− (1− 0) = 0 and WK(X | Y ∧K) = 1− (0.5− 0.5) = 1.

For some, these are both intuitive results. The WK measure tracks the intuition
that Y adds to the weight for X and does not reduce the weight for H. However,
those who believe that the imprecise probabilities should become more imprecise in
dilation scenarios and/or that the weight should decrease will not share this intuition.
To comprehensively defend the result in this subsection in depth would require a full
defence of Evidential Probability against alternative approaches, and this defence
would be outside the scope of my argument. However, there are two arguments that
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can be made for this output of Evidential Probability. Firstly, learning Y tells us
that the card is a member of a subset of the pile, but it is a subset for which I have
no (non-vacuous) data in Bradley’s scenario; for all I know, the relative frequency of
red cards in this subset is no different from the relative frequency of cards in the pile
as a whole. In contrast, I do know that all the members of the subset are members
of the pile and I have no reason to believe that they are unrepresentative of the pile
with respect to their colour. As I do not seem to have any reasons to disregard the
data for the pile, I should still use it.

Secondly, the claim that one should always use statistics for the most precise
reference class has an apparent counterexample of singleton sets. I always know that
the card is a member of the singleton containing that specific card. In Bradley’s
scenario, I am ignorant about the relative frequency of redness in this singleton.
(Otherwise, I would have no reason to consider the pile as a whole, the subset, or
any other broader reference class.) However, it seems unreasonable to say that,
until I know whether the card is red or not red, my evidential probability for the
hypothesis that it is red must be [0, 1], even though the singleton is the most
specific possible reference class. This example suggests that, when conjecturing that
a particular object a satisfies a predicate F , the mere fact that a is a member of a
reference class A and that A is a proper subset of B is insufficient to require that the
data for A must be favoured over the data for B. Kyburg avoids this consequence
by limiting Sharpening by Specificity to comparisons in which two possible intervals
are in conflict. Therefore, the evidential probability for a single-case hypothesis will
be derived from the data about a singleton set if that data conflicts with any other
candidates. For instance, if I know that the card is red, then the [1, 1] interval from
my data for the singleton set will be selected over the [0.5, 0.5] interval from my
data for the pile. However, such data must be ignored in Kyburg’s system in cases
where it does not conflict with more precise general data, such that the [0, 1] interval
will not always dominate alternative data. Thus, in some circumstances and within
the context of Kyburg’s interpretation of probability (where probabilities are always
derived via relative frequency data) it seems reasonable for relatively non-specific
relative frequency information to be the basis of a probability. The selections of the
[0.5, 0.5] value in the dilation scenario discussed above are instances of Kyburg’s
rules for adjudicating it is reasonable to use data for a reference class that is not the
most specific.

One might wonder whether the evidential probabilities will widen in some vari-
ations on Bradley’s scenario. For example, suppose that I learn that the card is a
member of a subset of cards from a second pile. I do not know the proportion of red
cards in this second pile. Will the evidential probability that the card is red, given
my new total evidence, have a wider interval? If I am selecting from this subset,
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then some of my original evidence be contracted, because I have learned that it is
false that the card will be selected from the first pile.2 Suppose that (a) my interval
for this subset is imprecise and (b) according to the rules of Sharpening, this interval
must be selected over any competing possible interval. Under such circumstances,
the evidential probability for the hypothesis that the card is red will widen. Yet,
while this scenario exemplifies how evidential probabilities can become imprecise
upon learning new data, it is not analogous to dilation: I acquired evidence that
some of my earlier information was false, and (in contrast to scenarios featuring
dilation) no-one thinks that such evidence is irrelevant. The WK measure will give
a relatively imprecise value in this scenario, but that is an unsurprising feature,
because we have assumed that the relatively precise frequency data has become
unavailable.

However, while the classic form of dilation does not occur in Evidential Proba-
bility, there are circumstances in which learning new evidence can cause a widening
of evidential probability intervals. Seidenfeld examines such a scenario in [22] and I
shall now discuss this possibility.

2.4 The Hollow Cube
Seidenfeld developed his “Hollow Cube” scenario in order to demonstrate that Ev-
idential Probabilists cannot always make use of Bayesian statistical methods. In
particular, joint distributions of frequencies can only be utilised for determining ev-
idential probabilities when the evidence contains those joint distributions. In some
circumstances, this inability to feature of Evidential Probability results in the in-
tervals widening. In Seidenfeld’s scenario, we are measuring the volume of a hollow
cube. We hypothesise that the cube has a volume of V millilitres, where V is an
interval-value. Assume that we have two available measurement methods:

• (1) We can fill the cube with a liquid. We can then calculate the probability
that the cube will have a volume V given that it has been filled by the measured
quantity of that liquid.

• (2) We can cut a rod which has a length equal to the cube’s edge and measure
the length of this rod. We can then calculate the probability that the cube
will have a volume V given the result of this cutting and measuring procedure.

2If I am not selecting from this subset and my data for the subset is relatively imprecise, then
Sharpening by Precision will require ignoring the subset data in favour of the data for the pile as a
whole.
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Seidenfeld notes that Bayesians can always combine these results to calculate a
posterior probability for the hypothesis: it is simply a matter of using the relevant
priors and likelihoods from our existing full distribution to calculate the conditional
probability of the hypothesis given the conjunction of the measurements. (This
assumes, of course, that we happen to share the relevant Bayesian probabilities.) In
contrast, using Evidential Probability, we can only use these Bayesian methods if we
know a joint distribution for the frequency that the hypothesis will be true given the
results of both measurements. However, Seidenfeld notes that such rich information
might be unavailable. Potentially, we might just have the separate frequencies for the
hypothesis’s truth for each measurement; these frequencies might be very different.
If the report of (2) is added after the report of (1) or vice versa, then the evidential
probability can become wider after acquiring more evidence. As a result, the degree
of imprecision will increase, and the WK measure decrease, such that learning the
report of (2) results in less weight for an argument for/against the hypothesis given
our total evidence.

For example, it is possible that using method (1) produces a measurement that
strongly indicates that the cube’s volume is in the interval V , whereas using method
(2) produces a measurement that strong indicates that the volume is not in the
interval V . I shall use the following abbreviations: E1 is the estimate for the cube’s
volume given method (1), E2 is the corresponding estimate given method (2), and H
is the hypothesis that the volume of the cube is in the interval V . Our background
knowledge is represented by K, and by assumption K lacks a sufficiently rich full
distribution to use a joint distribution for H given E1 and E2 for Bayesian statis-
tical methods. However, it does contain relative frequency data for the conditional
probabilities of H given E1 and H given E2.

Since it is assumed that the joint distribution is not available, Evidential Proba-
bility will require using confidence-interval methods from classical statistics (if pos-
sible) as an alternative [16]. Suppose that we are using a confidence level such
that the inference that ¬H has a ± 2% confidence interval. Assume that H is
extremely unlikely given E1 and that EP (H | E1 ∧K) = [0.01, 0.03]. With compa-
rable assumptions, suppose that E2 provides an evidential probability that is almost
a mirror image, such that H is very likely given our measurement using the rod:
EP (H | E2 ∧K) = [0.97, 0.99].

Sharpening by Richness is not available in this case, since we have assumed that
there is no available joint distribution that provides frequency data for H given
both measurements in our background knowledge. Sharpening by Specificity is not
available, since neither EP (H | E1∧K) nor EP (H | E2∧K) is based on a reference
class that we know to be the subset of the other. Only Sharpening by Precision
remains. Since there is no available proper subinterval, this rule requires that we use
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the cover of the two potential interval, such that EP (H | E1∧E2∧K) = [0.01, 0.99].
Therefore, if we learned E1 and obtained [0.01, 0.03] as the probability of H, then
subsequently learning E2 would result in a wider probability.

Kyburg accepts Seidenfeld’s example without objection [26]. In itself, Seiden-
feld’s example is not problematic for Evidential Probability: if we discover that
our initial probability for H was radically dependent on our choice of measurement
method, then a less precise interval seems to provide an appropriate representation
of our greater uncertainty upon learning this dependence. It also does not present
a direct challenge to Kyburg’s 1968 claim about the possible use of evidential prob-
abilities to measure weight, because it involves different kinds of evidence; in his
1968 article, Kyburg only claims that the imprecision of evidential probabilities can
measure the weight when the evidence is “of the same sort”. Yet if one shares
Keynes’s assumption that weight must increase monotonically, Seidenfeld’s scenario
implies that the WK measure does not always capture the general informal concept
of weight.

However, once we drop this monotonicity assumption, the Hollow Cube is no
longer a problem for the WK measure. What is happening in Seidenfeld’s scenario
is analogous to Weatherson’s poker example, which I discussed in Section 1. Adding
new information to our total evidence about a hypothesis can result in a new body
of evidence that is less informative about that hypothesis. Put figuratively, the
combination of relevant evidence might have less weight than the sum of its parts.
For instance, if we were estimating appropriate betting odds that the volume of a
cube is within the interval V , then one might think that the range of reasonable
betting odds is greater once we know the result of the second measurement. In
other words, there is a greater degree of arbitrariness in any such decision according
to Evidential Probabilists. (See Chapter 14 of [19] for Kyburg’s account of how
this idea can be explicated in his system and how evidential probabilities can guide
betting decisions.) Using the WK measure, one can register this shift in the extent
to which the evidence provides information once the discordance between the results
of the two measurements becomes apparent.

One might object that a report of the second measurement is intuitively relevant
to one’s hypothesis, and therefore that the weight (which is the quantity of evidence
in one’s total information with respect to a hypothesis) should be greater. However,
there is an ambiguity in “quantity of evidence” here. This phrase might mean (1) the
quantity of relevant statements that are available to us, which has increased once the
second measurement is reported. Yet it might also mean (2) the extent to which the
conjunction of our total data (after learning the result of the second measurement)
provides evidence about the hypothesis. In Seidenfeld’s scenario, this latter quantity
seems to have fallen, because the evidence is more ambiguous: the two measurements
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gave very different results, and we lack the background information to amalgamate
them via Bayesian statistical methods. It is meaning (2) that Keynes meant by
“weight”. The WK measure formalises this fall in this quantity.

In general, the WK measure seems to work well even in those cases where eviden-
tial probabilities widen upon learning new evidence. Firstly, learning new evidence
can cause one to abandon old evidence. For example, imagine that you are studying
the empirical basis for a particular homeopathic medicine’s efficacy. You learn that
the putative studies of this medicine are fraudulent, because the tests never actually
occurred. It is possible that your subsequent evidential probabilities for hypotheses
like “This homeopathic treatment alleviates nasal congestion symptoms in 83–88%
of adults” will be much wider due to the contraction of relative frequency data on
the medicine’s efficacy. The quantity of evidence has decreased in this scenario, even
though the information that the results were fraudulent is relevant evidence for such
hypotheses, and this decrease will be reflected in higher values of the WK measure.

Secondly, Sharpening by Richness and Sharpening by Specificity can require
that relatively imprecise intervals must be used after new evidence is acquired. For
instance, recall the card selection set-up discussed in Subsection 2.2: I am making
a random selection from a pile of 40 cards and considering the hypothesis that the
selected card will be red. Imagine that I learn that the card is from the top of the
pile. Suppose that I know that 10–20% of cards at the top of the pile are red. The
[0.1, 0.2] interval conflicts with the [0.5, 0.5] interval that I could derive from my
data about the pile. Sharpening by Specificity requires that I use the wider interval.
Therefore, the WK measure will indicate a loss of weight. However, this fall in the
WK measure reflects the intuition that (a) I have learned that the card belongs to
an unrepresentative subset of the pile and (b) my evidence about this subset is less
precise than my data for the pile. By contrast, in the version of this scenario that I
discussed in Subsection 2.2, condition (a) was not satisfied, since I did not know that
the subset is unrepresentative of the pile in its colour. Assuming that conditions (a)
and (b) entail a loss of weight, the WK measure provides an adequate analysis of
this possibility.

These particular examples do not provide a general proof that there are no
circumstances in which evidential probabilities widen and yet the weight does not
seem to decrease. Since the intervals in Kyburg’s system can widen under a variety
of possible situations, there is always the possibility that such a widening might
not correspond to the informal concept of weight. Nonetheless, if Kyburg’s system
is a generally adequate theory of epistemic probability (and I have not argued, in
this article, that this claim is true) the intervals for a hypothesis given new total
evidence should not widen or contract except via some important change in the total
evidence. Furthermore, they suggest that the WK measure is widely applicable,
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even if it cannot address every possible circumstance in which we want to formalise
weight.

2.5 The Problem of Corroborating Evidence

Evidential Probability intervals can be maximally imprecise: there is no wider value
than [0, 1] in Kyburg’s formalism. Concomitantly, the WK measure can have a
minimal value: when EP (Φ | Ω) = [0, 1], then WK(Φ | Ω) = (1 − (1 − 0)) = 0.
Evidential Probability intervals can also be maximally precise: if the intervals are
degenerate, then no additional evidence can increase their precision. This entails
that the WK measure can have a maximal value: when EP (Φ | Ω) = [x, y] and
x = y, then WK(Φ | Ω) = (1 − (y − x)) = 1. The Problem of Corroborating
Evidence is that even once a hypothesis is inconsistent with our total evidence, such
that its evidential probability is the degenerate interval [0, 0], it seems possible
to corroborate the evidence that is inconsistent with that hypothesis. Thus, the
quantity of relevant evidence seems to be increasing while the WK measure stays
at 1. This is a prima facie problem for the WK measure.

For instance, imagine that we are hypothesising that “All metal rods expand
when they are heated” and that we are testing this hypothesis in a laboratory. In
an experiment, we apply a heat source to the rod, but we compress the rod as it is
heated. Let H be “All metal rods expand when heated”, E1 be “A metal rod was
heated but did not expand” and E2 be “A different metal rod was heated but did
not expand.” Suppose we accept E1 after performing the experiment many times.
(Due to measurement error and the fallibility of any instruments we could use, a
single experiment will not be sufficient to establish E1.) Since E1 is inconsistent
with H, our acceptance of E1 reduces the evidential probability of H given the total
evidence to [0, 0], such that WK(H | E1∧K) = 1. This is because we know that the
hypothesis is a member of the reference class of universal generalisations and we know
from deductive logic that 0% of universal generalisations with counterexamples are
true. Subsequently learning E2 and conjoining it with (E1 ∧K) will not provide an
interval other than [0, 0]. Therefore, the WK measure value for H given E1∧E2∧K)
will not be different from 1. Yet one might think that our total evidence with respect
to H has increased.

It is important to note that there is only a problem if E1 has been fully accepted
as evidence. This does not require that we regard E1 as irrefutable, but it does mean
that if we are Evidential Probabilists, then we must accept its immediate deductive
consequences, including ¬H. If E1 and E2 merely become more probable at each
stage, then the evidential probability of H relative to our total evidence will just
become a lower and narrower interval, such that the WK measure increases. If
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accepting E2 is genuinely adding apparently relevant information about H beyond
the acceptance of E1, then it must be via increasing the apparent reliability of E1
and any other accepted statements that are inconsistent with H, without affecting
the probability of H. However, the weight that a body of evidence supplies and the
apparent reliability of that body of evidence are two different aspects of the strength
of arguments. The WK measure is only intended to explicate weight; there is no
apparent reason to require that it also captures apparent reliability.3

Once the distinction between the reliability of evidence and the quantity of evi-
dence is made, the Problem of Corroborating Evidence does not pose a problem for
the WK measure. However, it does raise the question of the relationship between
weight and evidential relevance. It also illustrates that the “relevance” of evidence
can be ambiguous. I shall discuss these issues later, in Section 3.

2.6 Inertia
As noted in the previous subsection, the WK measure will indicate a minimum
weight when the Evidential Probability interval is the maximally wide [0, 1] interval.
For example, imagine that there is a card that will be randomly drawn from a deck
of unknown composition. Suppose that the only information provided by your total
evidence, K, about the card’s redness is that it will be drawn from a deck of cards
and either 0%, 100%, or some intermediate proportion of the cards in this deck
are red. Let H be the hypothesis that the card is red. Therefore, by the rules of
Sharpening, EP (H | K) = [0, 1], and the WK measure gives a value of 0 for the
weight in this example. This illustrates the potential usefulness of the [0, 1] interval
to enable the representation of minimal weight.

However, for some imprecise probability updating rules, it is not possible for
additions of apparently relevant evidence to shift from the [0, 1] interval, unless
either (a) the hypothesis has a probability of 1 given the new total evidence or
(b) the hypothesis has a probability of 0 given the evidence. This feature, called
“inertia”, seems to have been first discovered by Peter Walley [30]. For the WK
measure, the potential problem is that inertia could result in the measure failing
to register apparent increases of evidence when (a) and (b) are not satisfied. For
example, in the card selection scenario from the previous paragraph, suppose you
learn the statement E, that ‘99% of the cards in the deck are red’. E seems to be
relevant to H, but adding it to the total evidence will not change H’s probability
in some imprecise probability systems. Thus, if inertia is a feature of Evidential

3Kyburg does have an explication of the reliability of evidence, which he develops and applies
in [16], [18], and [19].
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Probability, then the WK measure would fail to register an apparent increase in
weight.

As Isaac Levi has noticed, Evidential Probability does not feature inertia [31]. To
illustrate this claim, I shall explain what the rules of Sharpening require when E is
added to K. Since [0.5, 0.5] is a proper subinterval of [0. 1], Sharpening by Precision
requires using the information from E such that EP (H | E ∧K) = [0.5, 0.5]. More
generally, any evidence that can be combined with K to derive a relatively precise
reference class statement that is a candidate for the probability of H will increase
the weight, because the interval from the new reference class statement will not
conflict with the [0, 1] interval and it will be more precise. In any such scenario, the
rule of Sharpening by Precision will require that one uses the more precise interval.
Furthermore, this rule was developed independently of the problem of inertia, and
therefore it is not just an ad hoc response to this issue.4

Levi criticises Kyburg’s avoidance of inertia as creatio ex nihilo. His worry seems
to be that Evidential Probability makes it possible to move from a state of complete
ignorance to a precise probability distribution for H, without conditionalizing on
a prior distribution. For the measurement of weight, the problem would be that
Kyburg avoids inertia only by supposing evidence that is not present. However,
regardless of whether Kyburg’s overall system is satisfactory, his method of avoiding
inertia is grounded in evidence: if we have information about a relative frequency
that is more precise than the [0, 1] interval and if this is a suitable basis for the
probability of a hypothesis H, then according to Kyburg this more precise relative
frequency should be used. The Evidential Probabilist cannot shift from a [0, 1]
interval for a hypothesis without suitable evidence that provides pertinent relative
frequency data. One can approve or disapprove of Kyburg’s method of creation, but
it is incorrect to say that it proceeds from nothing, because the relative frequency
data is essential.

Section Summary. In this section, I have reviewed some cases in which the WK
measure works well, as well as some potentially difficult scenarios. The measure’s
successes in these areas does not prove that it is universally applicable. Indeed, it
is plausible that there will be some forms of argumentation (perhaps mathemati-
cal argumentation) that are not amenable to analysis using Evidential Probability.
Conceivably, the WK measure will be unable to measure weight in these areas.
Nonetheless, the measure is promising and it seems broadly applicable. For exam-
ple, unlike Kyburg in his 1968 article, I have not restricted the scope of an Evidential

4It might be ad hoc in other senses, but it was not specifically formulated to avoid the issue
that Walley raises.
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Probability-based measure of weight to arguments featuring evidence “of the same
sort”. However, one might wonder whether such the WK measure offers any worth-
while fruits. I shall now turn to an instance in formal epistemology where the WK
measure can aide philosophical analyses.

3 The Paradox of Ideal Evidence
Popper’s Paradox of Ideal Evidence (PIE), in [33] is a criticism of what he calls
“subjective” theories of probability. By “subjective”, Popper means theories that
interpret probability (at least in some cases) as an epistemic concept concerning
rational belief, rather than as a mind-independent concept like relative frequencies or
propensities. Thus, theories like Subjective Bayesianism and Objective Bayesianism
are “subjective” in Popper’s sense. (He mentions the probability theories of Keynes
and Carnap in particular.) Popper develops the following scenario: suppose that
you have a coin, Z, when you have no knowledge of the bias or fairness of Z. Let H be
the conjecture that “the nth unobserved toss of Z will be heads”. Your background
knowledge has no empirical evidence regarding H and you assign a probability of
0.5 to this conjecture. You subsequently learn E, which is a statistical report that
is “ideally favourable” to this assignment of 0.5, such as a report stating that 1,500
out of the 3,000 tosses landed heads.5 In your probability model for the coin, the
tosses are not independent, such that earlier tosses of the coin can be relevant
to subsequent tosses. Assume that the conditional probability of H given your
new total evidence is equal to the prior probability, such that P (H | E ∧ K) =
0.5. In some “subjective” probability theories, these values for the prior probability
and the conditional probability will be mandatory, whereas in other theories (such
as Subjective Bayesianism) they are merely permissible. In either case, Popper’s
example can be formulated.

There are actually two different problems that Popper develops from this sce-
nario. I shall call these the ‘Relevance Paradox’ and the ‘Representation Para-
dox’. Both are objections to “subjective” theories of probability, including Evidential
Probability. I shall discuss them separately, and argue that the WK measure can
help facilitate an answer to both paradoxes.

3.1 The Relevance Paradox
One of the putative applications of “subjective” theories of probability is that they
can be used to define evidential relevance. The standard definition dates back to

5Popper’s argument can also be made in terms of margins of error, but I shall simplify matters
by focusing on the case where the sample frequency exactly matches the prior probability.
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Keynes in [2]. Branden Fitelson notes that it has been popular among probabilists
(including Bayesians) ever since Keynes’s analysis [35]. On this definition, for some
suitable “subjective” precise probability function P, any statement Φ, any hypothesis
Ψ, and background knowledge Ω:

Evidential Relevance (1) Φ is evidentially relevant to Ψ, relative to Ω, if and
only if P (Ψ | Φ ∧ Ω) ̸= P (Ψ | Ω).

Put another way, in this analysis of evidential relevance, Φ is evidentially relevant
to Ψ (relative to Ω) if and only if Φ is probabilistically relevant to Ψ (relative to Ω),
for some suitable precise probability function P .

Popper’s scenario raises a problem for this definition. The report of 3,000 tosses
seems to be relevant to H, relative to the implicit background knowledge. However,
since P (H | E ∧ K) = P (H | K), the standard definition implies that E is not
relevant to H in Popper’s example. Thus, the first sub-paradox within Popper’s
PIE, which I have called “the Relevance Paradox”, challenges analyses of evidential
relevance that are based on “subjective” probability functions.

I shall not engage in a full critical discussion of the various responses that have
been made to the PIE, since my objective is to use the WK measure to argue that
there is at least one adequate answer to the Relevance Paradox, rather than that
there is only one adequate answer. Nonetheless, I shall mention that Keynes seems
to anticipate problems with his initial definition of relevance, and develops a “stricter
and more complicated definition” on page 55 of [2] to address such problems. Un-
fortunately, Carnap, in section of [20], proved a trivialization problem for Keynes’s
strict definition: almost any arbitrary statement will be evidentially relevant to al-
most any other arbitrary statement. If a statement A that has an implication E that
is probalistically relevant to H, then A is relevant to H on Keynes’s “stricter” defi-
nition. Yet Carnap notes that, in classical logic, any statement A implies (A ∨H),
and this disjunction will be probabilistically relevant to H probability functions,
except in special cases. (I explain the details of these special cases when I return
to Carnap’s trivialization problem.) Thus, one obvious adequacy condition for any
answer to the Relevance Paradox is that it also addresses the issues that Carnap
raises. I shall develop an answer that can address both challenges.

Consider what happens if we alter the standard definition to one using Evidential
Probability:

Evidential Relevance (2) Φ is evidentially relevant to Ψ, relative to Ω, if and
only if EP(Ψ | Φ ∧ Ω) ̸= EP(Ψ | Ω).

(The only difference from Evidential Relevance (1) is that we have switched from
a subjective precise probability function to the Evidential Probability function EP .)
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Unlike precise probability functions, evidential probabilities can differ in two
ways. Firstly, the means of the limits of the intervals can differ. For example, if
EP (H | E1 ∧ K) = [0.8, 0.85] and EP (H | E2 ∧ K) = [0.5, 0.55], then the mean
of the limits of the first probability is 0.825, whereas the value for the second is
0.525. Informally, the value of EP (H | E1 ∧ K) is “greater” than the value of
EP (H | E2 ∧K). Secondly, the degree of imprecision of the intervals can differ. For
example, if EP (H | E1 ∧K) = [0.1, 0.3] and EP (H | E2 ∧K) = [0, 0.4], then the
latter value is more imprecise, even though one cannot say that either probability
value is “greater”. Of course, it is also possible two intervals to contrast in both
respects, such as [0.1, 0.5] and [0.9, 0.95]. Therefore, if EP (Ψ | Φ∧Ω) ̸= EP (Ψ | Ω),
the difference might be a difference in mean value of the intervals, a difference in
the precision of the intervals, or both.

The WK measure will increase or decrease when an increase or decrease in preci-
sion occurs, because the WK measure is proportionate to the degree of imprecision
of evidential probabilities. We can use the WK measure to interpret how differences
of precision can constitute evidential relevance: the additional information has ei-
ther increased or decreased the weight of an argument from one’s total evidence
to the hypothesis in question. This enables an answer to the PIE that is intuitive
and informally grounded, yet also systematic and formal: in Popper’s scenario, the
weight has increased. I shall now sketch this answer in more detail.

Suppose that you are almost totally ignorant about the coin in question. (Per-
haps it has an extremely unusual shape, like a gömböc, that could result in a long-
run frequency of ‘heads’ that is very high or very low.) In particular, suppose
that you have no relative frequency knowledge that can be used to determine an
evidential probability value with any precision. Therefore, the probability of the
hypothesis H, that the coin will land heads, given your background information K,
is EP (H | K) = [0, 1]. Such a position of extreme ignorance seems to be the sort of
situation that Popper had in mind6.

By combining E with your background knowledge, you might be able to use to
infer that the long-run relative frequency of the coin landing heads is 0.5± ϵ, where
ϵ is 3%. Whether this value is correct will depend on whether it is acceptable, given
your background knowledge, that the sample of tosses is representative, in the sense
of matching the long-run relative frequency within a margin of error of 3%. (Your
background knowledge might give you reasons to doubt that the sample is represen-
tative of the long-run relative frequency.) Assuming that you can extrapolate from

6My discussion on this point would not differ significantly if we assume that your have stronger
background information, such as the knowledge that coins with this shape land at a relative fre-
quency somewhere in the interval [0.01, 0.99] and that you can use this information to determine
that EP (H | K) = [0.01, 0.99].
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E to the long-run relative frequency, you have learned from (E ∧K) that:

R1 The long-run relative frequency of heads for this coin is between 0.47 and 0.53.

Since the nth toss is a member of the reference class of long-run tosses of the coin,
it follows that the set of reference class statements for H has expanded, because it
now includes R1 and this statement is one of the statements that must be considered
when determining EP (H | E∧K). If R1 is the appropriate reference class statement
for H according to Sharpening, then EP (H | E ∧K) = [0.47, 0.53]. Therefore, E
can be relevant to H, relative to K, according to Evidential Relevance (2). Using
the WK measure, we can describe what has happened in Popper’s example: E is
relevant, but its relevance consists in increasing the weight.

One important aspect of this definition of evidential relevance and its interpre-
tation using the WK measure is that evidence can be relevant by decreasing the
weight of argument, as well as by increasing it. For example, in Seidenfeld’s Hollow
Cube scenario from Subsection 2.4, the second measurement is relevant to the hy-
pothesis, but its relevance consists in decreasing the weight, as well as disconfirming
the hypothesis that the volume is the cube is the high initial interval from the first
measurement and the background knowledge.

As I mentioned earlier, Carnap proved that some definitions of evidential rele-
vance suffer from a triviality problem. For example, on Keynes’s strict definition,
A is evidentially relevant to H, relative to K, if A classically entails E and E is
probabilistically relevant to H given K. Carnap proved that, if P (H | K) is neither
0 nor 1 and P (A | K) ̸= 1, then A is evidentially relevant to H on Keynes’s strict
definition, for any statement A. Thus, ‘There is a planet in the Solar System be-
yond Pluto’ is relevant to ‘Dark energy exists’, because the former implies ‘There is
a planet in the Solar System beyond Pluto or dark energy exists’, the this disjunc-
tion is probabilistically relevant to ‘Dark energy exists’, and neither statement has
a value of 0 or 1 given current scientific knowledge.

In Evidential Probability, this trivialization proof will not work, because eviden-
tial probabilities can only differ if there is relative frequency data that alters that
intervals via the Rules of Sharpening. Thus, if (E ∧K) does not imply any new ref-
erence class statements, then EP (H | E ∧K) will not differ from EP (E | K), and
E will not be relevant according to Evidential Relevance (2). There are further
issues for analyses of evidence that I have not addressed. For example, while the PIE
suggests that probabilistic definitions of evidential relevance might be too narrow,
there are some paradoxes in confirmation theory in which definitions of evidence
are arguably too broad. These include the New Riddle of Induction (developed by
Nelson Goodman in [37] and [38]) and the Paradox of the Ravens (developed by
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Carl Hempel [39]). Neither paradox was originally targeted at probabilistic defini-
tions of evidence, but they are further potential problems for any theory of evidence.
Naturally I have not addressed these challenges and others in this paper. However,
my argument does evince how one particular problem regarding evidential relevance
can be addressed using the WK measure. In particular, the WK measure enables
us to formalise how evidence can be relevant to a hypothesis even if that evidence
neither confirms not disconfirms the hypothesis.

3.2 The Representation Paradox

One issue that Popper raises in light of this scenario is that, on standard “subjec-
tive” theories, an agent’s degree of belief in H should not change upon learning E,
and he claims that this entails that “subjective” probabilities cannot represent the
change in weight, and therefore “subjective” probabilities cannot adequately rep-
resent evidential relations. However, the representation of evidential relations was
part of the original motivation for the development of “subjective” probability the-
ories. In contemporary terminology, Popper is claiming that probabilities cannot
distinguish ignorance, the absence of relevant evidence, from equivocation, the pres-
ence of evenly-balanced evidence. This charge against theories like Bayesianism is
still common today: see [40] and [41]. I shall call this issue the “Representation
Paradox.”

There are a number of possible lines of response for a “subjective” probabilist,
but the WK offers a simple and direct reply to Popper: since weight is formaliz-
able in terms of the imprecision of Evidential Probability intervals, it is possible
to represent an increase in weight using “subjective” probabilities. The Evidential
Probability intervals will narrow as the weight of argument for H given the total
evidence increases. Thus, in Popper’s scenario, prior to acquiring the report of tosses
of the coin, you are in a state of complete ignorance with respect to the nth coin
toss; once you have acquired the evidence from the report (and assuming that it
can be combined with your background knowledge to enable you to utilise relatively
precise frequency data about the coin) your total evidence leaves you in an equivocal
position regarding the nth toss.

This shift from ignorance towards equivocation could have practical significance.
Suppose that you were trying to estimate a precise expected value for H. (The
context of the estimate might be gambling, but Popper’s PIE is adaptable to a
variety of possible situations.) In Chapter 14 of [17], Kyburg argues that the range of
rational expected values is equal to the width of the Evidential Probability intervals.
Thus, prior to learning any evidence about the coin, your choice of expected value
is very arbitrary. However, if the interval for H given your total evidence becomes
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narrower, then only a value within this relatively narrow interval will be rational in
Kyburg’s decision theory. There is much more to be said here, as Kyburg’s decision
theory is fairly inchoate. Nevertheless, for the Representation Problem, the salient
point is that if we assume that Evidential Probability is an adequate “subjective”
probability system and that theWK measure is an adequate measure of weight, then
“subjective” probabilities can represent what is happening in the PIE, and there will
be some connection between the greater quantity of evidence and practical decisions.

Answering the Representation Paradox by appealing to the weight of argument is
not an original move (for instance, see [7] and [42]) but the particular use of the WK
measure is novel. Furthermore, there are some ancillary features of Kyburg’s system
which might make the WK particularly attractive as a means of formulating this
response to Popper. For example, the width of Evidential Probability intervals are
objectively determined, in the sense that they are always the same for given evidence.
(See Chapter 12 of [16] for a detailed exposition of this point.) Put another way,
two agents using Evidential Probability who have identical relevant evidence and
a shared domain (the statements of a language) must have identical intervals for
a given hypothesis, regardless of their subjective opinions. Since the WK measure
is a function whose only variables are the limits of Evidential Probability intervals,
this form of objectivity is also a feature of the WK measure. Consequently, on the
WK measure, weight will be significantly independent of opinion. (There can still
be a subjective element in what evidence we accept or what domain we choose.)
Therefore, the WK measure can play a useful and novel role in answer to the
Representation Paradox.

One possible objection to my answer is that a person might know that the precise
relative frequency of ‘heads’ for tosses of a type of coin. In particular, they might
know that the statistical statement that ‘50% of tosses of this type of coin land
heads’. Suppose that this knowledge is the person’s best reference class data, such
that EP (H | K) = [0.5, 0.5]. No subsequent evidence for the frequency of ‘heads’
reference class will result in a more precise probability for the hypothesis given the
total evidence. (This subsequent evidence could take the form of sample data for the
type of coin, confirmation of a physical model for shapes with the coin’s symmetries
and asymmetries, analogical evidence from similar types of coins, and so on.) Yet
their epistemic state does seem to have changed in some respect when such evidence
is acquired.

My response to this objection is that (1) probabilities given evidence and (2)
weight are collectively insufficient to characterise all the important aspects of some-
one’s epistemic state, but that Evidential Probability can characterise the other
aspects as well. In particular, the “subjectivist” can say that additional evidence
can increase the reliability of one’s existing evidence. This reliability can also be
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explicated using Evidential Probability. I mentioned Kyburg’s formalisation of this
concept at the end of Section 2.5: Kyburg develops a probabilistic model of the
reliability of evidence as part of a broader model of scientific knowledge, in which
evidence is ranked depending on its reliability given one’s foundational evidence. Al-
ternative probabilistic analyses of this aspect of reasoning include Richard Jeffrey’s
version of conditionalization [43] (in which we can model the evidence as merely
probable) and the modelling of reliability by Luc Bovens and Stephan Hartmann in
Chapter 3 of [44]. In the coin-tossing case, a probabilist can argue that it is the sta-
tistical statement that ‘50% of tosses of this type of coin’ land heads that becomes
more probable.7 By using formalisations of relative probabilities and weight and
reliability, a “subjectivist” can represent the evidential relations in such variations
on Popper’s PIE.

To formulate these answers to the Relevance Paradox and the Representation
Paradox, I have made strong assertions and assumptions about the adequacy of
both (a) Evidential Probability and (b) the WK measure. Since Evidential Prob-
ability currently has a very marginal position within imprecise probability theory
(let alone the philosophy of science in general) I expect that both (a) and (b) will
be objectionable to most readers. As my aim in this section has been to exemplify
how the WK measure is philosophically useful, the fact that its adequacy plays an
important part in my arguments above supports that aim, rather than undermines
it. I have also not proven that these answers are superior to alternative responses
to the PIE. However, my objective has been to develop a novel answer to the PIE,
rather than to prove that this answer is uniquely adequate; it is plausible that there
are multiple viable responses that defenders of “subjective” theories might make to
Popper’s paradox.

4 Conclusion
Weight seems to be an important part of argument strength. Keynes was sceptical
about its quantitative measurement, but I have argued that the WK measure offers
a propitious formalization of weight. Kyburg thought (at least from 1968 onwards)
that measures of weight based on Evidential Probability would be limited to evidence
“of the same sort”, but once one drops the assumption that weight must increase
monotonically, his approach can be expanded to a much more general measure. I
have also illustrated how the WK measure can be used to formulate new arguments

7There could be further responses, such as denying that precise statistical generalisations can
be acceptable, but I have accepted the details of the objection so that my defence is independent
of such controversies.
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within formal epistemology. I have not discussed alternative measures, such as Wal-
ley’s measure in [24]. It might be the case that different measures of weight are
preferable for analysing different arguments and inferences, so that alternative mea-
sures could be attractive even for ardent Evidential Probabilists. However, my aim
has been to promote the WK measure, rather than to claim that other measures
are unsatisfactory. I hope that my discussion has furthered this aim and illustrated
the potential of Kyburg’s system for the analysis of evidential relations.
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1 Introduction

Structured argumentation is about combining defeasible and non-defeasible reason-
ing rules into arguments that can be studied in terms of their structure. Abstract
argumentation is about what arguments count as valid arguments in the context
of other arguments, independently of the internal structure of the arguments them-
selves. Any argumentation system based on this two-tiered view will have to ensure
congruence between the semantics of the underlying defeasible reasoning systems
whose rules are used to build arguments, and the abstract semantics that governs
the interaction between arguments [3, 12, 11].

Typically, the semantics for abstract argumentation is provided by Dung’s theory
of argumentation frameworks [6], which looks only at the relations between different
arguments, providing a semantics using graph-theoretic definitions. In Dung’s the-
ory, arguments have no internal structure whatsoever. Therefore, applying abstract
argumentation to a concrete argumentation scheme can be looked at as a process of
abstraction and transformation: Dung-style semantics transforms arguments char-
acterised by their content into arguments characterised by their relationship with
other arguments.

This raises a number of issues regarding the relationship between the semantics of
the underlying defeasible reasoning system and the ‘abstract’ relational semantics.
One of the most fundamental questions that arise is the question of consistency:
if we translate arguments into vertices in a graph and apply Dung’s semantics,
do we get a theory extension that is consistent in the underlying logic? Prima
facie, we seem entitled to expect so [3]. After all, arguments should be sound, and
accepted arguments should be sound in the underlying logic. However, as recent
research on structured argumentation has shown, ensuring consistency is far from
trivial, especially when preferences are used to prioritise between different rules and
arguments [11, 4, 15, 10, 9]. In this paper we study the consistency problem, focusing
on the question of how to lift priority orderings over rules to preference orderings
over arguments, without violating consistency.

The structure of this paper is as follows. In Section 2 we provide some motiva-
tion and discuss a challenging example that has motivated recent work. In Section
3 we define basic concepts and present a signature-based approach to structured
argumentation, allowing us to be clear about the assumptions we need for proving
results, without sacrificing generality. In Section 4, we introduce preferences into the
mix and discuss the relationship between orderings over rules and preferences be-
tween arguments, an issue at the heart of the consistency problem. We then give an
order-theoretic constraint that ensures consistency for a broad range of argumenta-
tion systems, generalising a similar constraint found in [11]. Following up on this, we
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give two results that link the order-theoretic constraint with the so-called elitist ap-
proach to lifting orderings over rules to preferences over arguments. In Section 5 we
take a step back and consider a conceptual problem that has led other researchers to
propose disjoint elitist lifting as an alternative approach to connecting rule-orderings
and preferences [10, 15]. We show that the approach is flawed, since it cannot be
generalised to systems that allow strict rules (with so-called “restricted rebut”). If
such rules are allowed, inconsistencies arise even for linear orders. Specifically, it is
shown that disjoint lifting is no answer to the consistency problem for ASPIC+, a
leading framework for structured argumentation. In Section 6 we consider another
recent proposal from the literature, asking us to ensure that rule-orderings reflect
the order in which rules can be applied when arguments are constructed (if neces-
sary, we might have to reorder the inital ordering of rules to satisfy this constraint)
[14, 15]. Unlike the proposal for disjoint lifting, this proposed shift of attention
towards structural orderings is shown to have several appealing consequences. A
summary of results and a conclusion is offered in Section 7.

2 Motivation
If all rules are defeasible or strict rule applications are vulnerable to objections
(which would mean they are not actually “strict”), ensuring consistency is not a
deep problem. In this case, when two arguments have contradictory conclusions,
any reasonable translation scheme will ensure that at least one of them defeats
the other in the corresponding abstract argumentation framework. It will follow
from any reasonable abstract semantics that not both arguments can be accepted.
Hence, the theory resulting from taking the conclusions of all accepted arguments in
a given Dung extension will be consistent (assuming natural closure properties that
ensure the existence of a corresponding argument for every logical consequence of a
consistent theory).

However, if there are strict rules in the system, that is, rules whose application
is beyond objection (we assume, of course, that all preconditions are met so the
rules are active), ensuring consistency becomes non-trivial. For a concrete example
of this phenomenon, consider a system with defeasible rules r1, r2 and strict rules
s1, s2 and s3, depicted below.

r1: ⇒ p1, r2: ⇒ p2,
s1: p1 → p3, s2: p2 → p4, s3: p4 → ¬p3

By applying these rules in the ordinary manner of logic, we can form the following
arguments (proof trees), where a curved line indicates that a defeasible rules is being
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used to infer the conclusion (a strict rule application is indicated by a straight line,
as usual).

A:

∼∼
p2

p4

¬p3

B:
∼∼
p1

p3

A and B have contradictory conclusions, so to ensure consistency we must avoid
accepting both of them. However, the defeasible rules in A and B are r1 and r2
respectively, which are not in any direct opposition to one another. Specifically,
A and B will only attack each other if our system permits attacks on strict rule-
applications. In this article we work with systems that do not allow this, described in
the literature as systems with restricted rebuttal. For such systems, with respect to
A and B above, we cannot exclude either argument, which means that our extension
will be inconsistent.

In a system without preferences, the natural solution to this problem is to ensure
that we can reason contrapositively with strict rules. If A and B have contradictory
conclusions and A concludes with a sequence of strict rules, there should be some
way of using B in combination with contrapositive reasoning with strict rules from
A to obtain an argument B′ that contradicts the conclusion of some defeasible rule
applied earlier in A. In our example we need to ensure that at least one of R̄1 and
R̄2 exists, where the overbar notation is used to indicate opposition (e.g., R̄1 denotes
an argument in opposition to any argument that includes r1):

R̄1:

∼∼
p2

p4

¬p3

¬p1

R̄2:

∼∼
p1

p3

¬p4

¬p2

The final rule applied in R̄1 is a contrapositive application of s1, while the final
two rules applied in R̄2 are contrapositive applications of s2 and s3 respectively.
Notice that R̄1 is an argument that uses only one defeasible rule, namely r2. Sym-
metrically, R̄2 is an argument with r1 as the only defeasible rule. Hence, we have
captured the opposition between these two rules at the argument level, ensuring also
that A and B will not both be accepted by any reasonable argumentation semantics
(since they include r2 and r1 respectively).

It has been shown that if the argumentation system we use satisfies some natural
properties (e.g., that B attacks A when it attacks one of the subarguments of A),
contraposition will suffice to ensure consistency, even in the presence of strict rules [3,
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12]. However, if the system takes preferences into account, the consistency problem
becomes harder. In this case, it is natural to hold that Ā can only defeat A by
contradicting the conclusion of A when A is not strictly preferred to Ā (this is how
preferences are used to prune the attack relation in the ASPIC+ framework). This
puts a new obstacle in our path to consistency. For instance, if A is strictly preferred
over R̄2 and B is stricly preferred over R̄1 in the example above, the attacks we need
to avoid inconsistency will be rendered impotent by the preference relation.

What this means is that we need to put restrictions on our preference relations
over arguments, to ensure that a preference-dependent translation from logic-based
arguments to graph-based argumentation frameworks does not result in inconsis-
tency. In the example above, it seems perfectly reasonable to demand either that
R̄2 is no worse than A or that R̄1 is no worse than B, depending on the relationship
between r1 and r2. Indeed, if some argument A contains no defeasible rule strictly
worse than any defeasible rule in B, it is hard to see how A could be a strictly worse
argument than B. For R̄1 and R̄2, this situation must obtain in one direction or the
other, so the requirement we need seems fundamentally reasonable in this case.

When assessing whether a given preference ordering is reasonable in this context,
we tend to look at the relationship between how we order arguments and how we
order rules. Typically, the assumption is that the latter is an atomic parameter set
in advance, e.g., in the form of a priority or specificity ordering that comes from the
underlying logic. But nothing really hinges on this assumption. The broader point is
that we have strong expectations that arguments built using defeasible rules need to
be ordered in a way that allows us to explain the ordering in terms of a corresponding
ordering over these rules.

In the following, we will assume that the relationship between preferences over
arguments and priorities over rules is of the so-called elitist variety. Roughly, what
this means is that A is less preferred than B whenever there is a rule among the
defeasible rules in A that is less preferred than all the defeasible rules that occur in
B. However, the elitism criterion may be directed to specific subsets of the defeasible
rules in arguments. Depending on the subsets of defeasible rules we focus on, we get
different varieties of elitism, three of which we will explore later in this article. If
we limit the scope of the principle to cases where there is a relevant rule in A that
is strictly less preferred than all relevant rules in B, we get a variety that we refer
to as strict elitism.

Before turning to the formal details, we give a final motivating example to show
that there is an interesting non-trivial tension between ensuring consistency and
giving a reasonable treatment of preferences. The example we give is due to Dung [7],
who asks us to consider a dilemma involving four rules, r1, . . . , r4, each of which has
the empty set as the only premise and an associated conclusion c(ri). This becomes a
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dilemma because we have strict rules available, which include sl: c(ri), c(rj), c(rk) →
¬c(rl) for all bijections between {i, j, k, l} and {1, 2, 3, 4}. That is, the negation of
the conclusion of any one of the r-rules can be derived from the conclusions of the
three other r-rules by a strict rule. In terms of the underlying logic, what this means
is that taking the conclusions of all four r-rules yields an inconsistent theory.

Avoiding this outcome becomes difficult if we assume an ordering over rules that
partitions the r-rules into two incomparable equivalence classes where r1 ≡ r2 and
r3 ≡ r4 (so that all other rule-pairs are incomparable). This leaves us with a set of
dilemmas, where we have to choose between arguments Āi, Ai of the following form:

Āi:
∼∼∼∼
c(rj) ,

∼∼∼∼
c(rk) ,

∼∼∼∼
c(rl)

¬c(ri)
, Ai:

∼∼∼∼
c(ri)

Clearly, Āi and Ai are in opposition for all i ∈ {1, 2, 3, 4}. Moreover, there is a prima
facie reason to think that Ai is preferable to Āi, in view of the priority ordering given
over the rules. Granted, Āi concludes with a strict rule, but it uses three defeasible
rules to get there, one of which is at least as bad as ri. Hence, Āi as a whole seems at
least as bad as Ai. Moreover, since Āi contains two defeasible rules not comparable
to any rule used in ri, there is an intuitive reason to think that Ai is strictly better
than Āi. Indeed, this intuition corresponds to the judgement prescribed by the
version of elitist lifting used in the first version of ASPIC+ [11] (see Definition 11
below for the formal details).

Unfortunately, if we accept this intuitive judgement, we arrive at an inconsis-
tency. Indeed, if we reason as we did above for all Ai, then we end up ignoring all
attacks made on these arguments by the corresponding Āi (here we assume that
attacks are ignored when their source is strictly less preferred than their target, as
is often the case in structured argumentation). But then we end up accepting all
Ai, resulting in a set of arguments that yields an inconsistent theory.

When it was presented for the first time – in a slightly different context – the
example above came as a surprise. Specifically, the authors of [11] realised that it
revealed an error in a theorem regarding the leading framework of structured argu-
mentation systems, ASPIC+. The solution was to replace elitism by strict elitism,
for which consistency can be ensured [11, corrected online 2017]. In the Dung
example, this solves the problem by rendering all argument pairs in the dilemma
incomparable, so that none is strictly better than any of the others (so the attacks
needed to prevent inconsistency are not blocked). However, strict elitism is concep-
tually problematic for partial rule orderings, when some rules are incomparable. In
this case, if A contains a least preferred rule r1 and B is an argument that consists
only of r2, with r1 ≡ r2, A and B will be considered equivalent or incomparable
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regardless of what other rules A contain. However, if A contains additional defea-
sible rules that are not comparable to r1 and r2, we seem entitled to think that B
is a strictly better argument (which is the judgement prescribed under non-strict
elitism).

In view of this and other concerns, some of which are addressed in more depth
in Section 5, there is still more work needed on the question of how to determine
the relationship between orderings over rules and orderings over arguments, without
violating consistency. In the following, we present our own results on this question,
adopting an abstract approach that we believe is suited for delivering general re-
sults that are not tailor-made for specific argumentation systems, but focus on the
properties such systems should meet in order to make sense of rule orderings and
preferences.

3 A signature for structured argumentation
Unlike most other works in structured argumentation, we adopt a top-down ap-
proach, starting from a set A of atomic argument labels (henceforth referred to
simply as arguments) and an attack relation Att ⊆ A ×A. An argumentation sys-
tem is then some structure A that instantiates (A,Att) by telling us how arguments
are built, how the relation of attack is derived from their structure, and which (sets
of) arguments we may accept. The most abstract example of an argumentation
system (in this sense) is Dung’s theory of argumentation frameworks, where both
A and Att are taken as primitives, yielding a directed graph with a purely graph-
theoretical semantics [6]. Another important class of argumentation systems arise
from Prakken’s ASPIC+ framework, where arguments are proof trees in default
logic whose internal structure determine the relation of attack, a relation that is
subsequently refined using preferences, before Dung’s theory is used to provide a
semantics [12, 11].

In this article, we will not limit our investigation to any specific argumentation
system. Rather, we will characterise properties of such systems and prove results
about them in terms of the following language.

Definition 1 (Argumentation Language). An argumentation language is a structure
X = (L,S,D,≤,A,Att) which provides:

• A logical language L that comes also with a contrariness function : L → 2L.

• A set of strict rules S.

• A set of defeasible rules D and a reflexive and transitive ordering ≤⊆ D× D.
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• A carrier set A of all arguments and an attack relation Att ⊆ A×A.

• For each argument A ∈ A we also have:

– a conclusion: c(A) ∈ L,
– a set of defeasible rules which occur in an argument: Rd(A) ⊆ D, and
– a set of subarguments Sub(A) ⊆ A.

All the concepts above are instantiated by any argumentation system obtained
using the ASPIC+ framework. However, many other systems can also be viewed
as instantiations of argumentation languages under the perspective adopted here.
Indeed, even an abstract argumentation framework – a directed graph – can be
viewed as an instantiation of an argumentation language. The trivial such instan-
tiation takes A = D = L as the set of arguments, lets Att be the relation of at-
tack, leaves ≤, S and empty, and maps the remaining components to the identity
function. Of course, this instantiation is not particularly interesting. However, it
illustrates that there are many ways of associating a given argumentation system
with an argumentation language, some more interesting than others. For systems
obtained using ASPIC+, the (intended) corresponding argumentation language is
obvious, since the constructs above are constructively defined in such systems (as
required by the ASPIC+ template). For other systems, such as sequent-based [1]
or assumption-based argumentation [2], it is less obvious how we should instantiate
the corresponding argumentation language. It can be done in a number of different
ways, but the question is how we ought to do it to establish interesting results. We
will not investigate this question here, for any non-ASPIC+ argumentation system.
We note, however, that if it is possible to establish a mapping such that the condi-
tions of our results hold, then those results apply to non-ASPIC+ systems as well.
This, we believe, is an added benefit of a signature-based approach to structured
argumentation, which makes the results generalisable through appropriate instanti-
ations.

As usual, the contrariness function : L → 2L collects those formulas that are
contrary to a given formula. How this set is defined depends on the underlying logic.
We assume that if Γ ⊆ L is a theory of this logic and there is some φ ∈ Γ such that
Γ ∩ φ 6= ∅, then Γ is an inconsistent theory. This is all we need to know about the
underlying logic in the present article. For simplicity, we also assume that φ ∈ ψ if,
and only if, ψ ∈ φ for all φ,ψ ∈ L. That is, contrariness is symmetric. Nothing much
hinges on this assumption, but it will simplify the statement of some definitions and
results. It is also reasonable, e.g., we expect φ ∈ ¬φ whenever ¬φ ∈ φ.

Note that the ordering ≤ over the rules is assumed to be reflexive and transitive.
This is a standard requirement for any ordering that encodes a notion of strength or
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preference, which is conceptually and independently motivated. In the following, we
will consider what additional constraints on ≤ we need in order to ensure consistency
when the ordering over the rules is lifted to an ordering over arguments.

The elements that make up an argumentation language can be refined in various
ways, to characterise different argumentation systems over the same language. In
the following definition, we record the signature of some of the most important re-
finements that we need in order to characterise existing systems, including ASPIC+.

Definition 2 (Argumentation Signature). Given an argumentation language X, an
(argumentation) signature is a tuple Ω = (LastRule,RS

d , FS ,MS ,Def) where for every
argument A ∈ A:

• LastRule(A) ∈ S ∪ D is the last rule applied in A.

– Intuitively, this encodes the idea that arguments have a proof-theoretic
structure; they conclude with a unique rule that establishes the conclusion
of the argument as a whole.1

• RS
d (A) ⊆ Rd(A) is the set of salient defeasible rules that occur in A.

– Intuitively, a defeasible rule is salient in A if we may take it into account
when comparing A with some other argument to determine the relative
preference of A.

• FS(A) ⊆ Sub(A) is the set of fallible subarguments of A.

– Intuitively, the fallible subarguments of A are those subarguments of A
that are open to direct attack (as opposed to an implicit attack via a
fallible subargument).

• MS(A) ⊆ FS(A) is the set of maximally fallible subarguments of A.

– Intuitively, the maximally fallible subarguments are the fallible subargu-
ments of A that are maximal in some sense, e.g., because they are not
themselves subarguments of any fallible subargument of A.

• Def(A) ⊆ Att(A) is the set of arguments defeated by A.
1The last rule of an argument is assumed given as a primitive, it is not constructively defined,

so we only define its type. The reason for this is that we want to ensure that our work remains
general; the results we prove apply to all systems satisfying the conditions of our results, regardless
of how exactly the function LastRule is instantiated in a given context. We follow this definition
strategy for all the components of an argumentation signature; indeed, this is why it is referred to
as a signature.
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– Intuitively, the arguments defeated by A are the arguments attacked by
A after pruning the attack relation to take preferences into account.

To illustrate how we work at the signature level, consider the notion of a fallible
subargument. All we have said is that such a notion belongs to an argumenta-
tion signature. We have not said anything about how it should be defined, beyond
providing the underlying intuition. However, we can offer a (partial) formal char-
acterisation of fallible subarguments by stipulating the following constraint, for all
A ∈ A:

FS(A) = {B ∈ Sub(A) | LastRule(B) ∈ D} (1)
This constraint is satisfied in ASPIC+. However, it is not satisfied by all ar-

gumentation systems. Both the system in [4] and the systems in [10] are better
characterised by FS(A) = Sub(A) for all A ∈ A. We do not have to exclude systems
that violate our constraint; the signature is purely descriptive and should not be
given a normative reading. Moreover, there is no reason to exclude from considera-
tion a system that fails to include its own definitions of what it means to be a fallible
or a maximally fallible subargument. For such systems, the task is to analyse their
behaviour and infer what notion of fallible and maximally fallible subargument they
use.

Recall that we defined a possible refinement of defeasible rules into salient de-
feasible rules. This allows us to characterise the difference between weakest link and
last link reasoning, in the following sense:

Weakest Link Salience: RS
d (A) = Rd(A), for all A ∈ A, meaning that the least

preferred defeasible rule is salient, i.e., the weakest link is salient.

Last Link Salience: RS
d (A) = {r ∈ D | ∃B ∈ MS(A) : LastRule(B) = r}, for all

A ∈ A, meaning that the least preferred defeasible rule is only salient if it is
the final rule of a maximally fallible subargument, i.e., the weakest link is only
salient if it is a last link.

Similarly, we can characterise a key element of preference-independent argumen-
tation systems (including Dung’s theory) by stipulating that there is no distinction
between attack and defeat, i.e., Att(A) = Def(A) for all A ∈ A.

The first constraint we will assume to hold quite generally, for all argumentation
systems A, is the following, ensuring that the conclusion of an argument is the
conclusion of the last rule applied in that argument.

∀A ∈ A : r = LastRule(A) ⇒ c(A) = c(r) (2)
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Secondly, we impose the following constraint, encoding the intuition that maxi-
mally fallible subarguments are fallible subarguments that are not subarguments of
any other fallible subargument.

MS(A) = {B ∈ FS(A) | ¬∃C ∈ FS(A) s.t. Sub(B) ⊂ Sub(C)} (3)

This constraint is satisfied both by the systems found in [4, 10] (where MS(A) = {A}
for all A ∈ A) and by ASPIC+, showing a point of agreement between distinct
systems.

Thirdly, we impose the following constraint, encoding the intuition that defeats
target fallible subarguments.

∀A,B ∈ A : B ∈ Def(A) ⇔ ∃B′ ∈ FS(B) : B′ ∈ Def(A) (4)

That is, A defeats B if, and only if, A defeats some fallible subargument of B.
In addition, we make the following assumption about arguments that are defeated
without being defeated on any strict subargument. It encodes the intuition that
defeats effectively emanate from attacks on rules.

∀A,B ∈ A : (A ∈ Def(B) and ∀C ∈ FS(A) \ {A} : C 6∈ Def(B)) ⇒
(∀D ∈ A : LastRule(D) = LastRule(A) ⇒ D ∈ Att(B)) (5)

This constraint effectively says that arguments can only be successfully attacked
on their rules: if B defeats A without defeating any fallible proper subargument
of A, then B attacks every argument concluding with the same rule as A (but the
attack might not be a defeat, depending on how we prune the attack relation). We
also make the following assumption about the attack relation, for all A,B ∈ A:

c(B) ∈ c(A) and LastRule(A) ∈ D⇒ A ∈ Att(B) (6)

This constraint implies that the system includes a certain type of attack between
arguments, referred to as restricted rebuttal in the theory of structured argumenta-
tion, see e.g., [12]. Notice how this kind of attack links the notion of contrariness
from the underlying logic with the argumentation-theoretic concept of an attack be-
tween arguments. Restricted rebuttal is the only notion of attack we need to include
explicitly in order to discuss the consistency problem addressed in this work. That
is, our results require the presence of at least all attacks corresponding to rebuttals
of defeasible rules. This does not exclude systems that include additional attacks,
e.g., undercutting attacks of the type discussed in [12]. Our results still hold for
such systems, as long as all the constraints we require are satsified. The point is
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that our results do not depend on the particularities of other types of attack, so the
signature-based approach allows us to abstract away from them to deliver a more
general treatment of the consistency problem.

Systems including so-called unrestricted rebuts deserve a special mention, how-
ever, since they give rise to additional challenges that we do not address in this work.
These additional challenges arise from the fact that such systems allow attacks also
on strict rule-applications, as discussed at length in [4, 9]. This means that certain
desirable closure properties are not trivially satisfied for these systems, see also the
discussion after Definition 5 below. The reader should note that while attacks tar-
geting the conclusions of strict rules are not ruled out by (6), they are ruled out
whenever conditions (1), (4) and (5) all hold. In this case, all attacks must target
the last rule of a fallible subargument, all of which must in turn be defeasible.

The next property we assume to hold is transitivity of the fallible subargument
relation: all fallible subarguments of B are also fallible subarguments of all argu-
ments that have B as a fallible subargument.

∀A,B ∈ A : B ∈ FS(A) ⇒ ∀C ∈ FS(B) : C ∈ FS(A) (7)
This constraint is satisfied by ASPIC+ and all other systems of argumentation

of which we are aware. In addition, we will assume that the following property holds.

∀A ∈ A : ∀B ∈MS(A) : MS(B) = {B} (8)
Intuitively, this constraint says that if an argument is a maximally fallible sub-

argument of some other argument, then it is also the only maximally fallible sub-
argument of itself. Finally, we will be assuming the following, stating that any two
strict arguments have mutually consistent conclusions.

∀A,B ∈ A : (Rd(A) ∪Rd(B) = ∅) ⇒ c(A) 6∈ c(B) (9)
Notice that this only requires that all arguments consisting of only strict rules

have mutually consistent conclusions. It is not required that all strict rules are
mutually consistent. If two strict rules are inconsistent, our constraint only implies
that establishing their preconditions requires us to use at least one defeasible rule.
Effectively, the restriction is a consistency requirement on the underlying logic: if
two formulas are contradictory according to the contrariness relation of this logic,
then the strict rules from this logic must not allow us to prove that both formulas are
tautologies (notice that this does not rule out paraconsistent background logics, for
which the contrariness function must be defined differently than in classical logic).

From now on, when we say that A is an argumentation system, we mean that it is
a structure that instantitates all operators from Definitions 1 and 2, while satisfying
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(2)-(9). We remark that all of these properties are independent and required for our
proofs – each of them (or stronger properties that imply more than one of them)
must therefore be established to conclude that our results apply to a non-ASPIC+

system. In the next section, we give the signature of Dung-style argumentation
semantics, before stating a consistency requirement that targets the relationship
between the argumentation semantics and the semantics of the underlying logic.

3.1 Argumentation semantics and consistency
By now, we have encountered three distinct notions of opposition between argu-
ments.

• First, we can have c(A) ∈ c(B), meaning that the conclusion of A is contrary
to the conclusion of B according to the underlying logic.

• Second, we can have B ∈ Att(A), meaning that B is attacked by A.

• Third, we can have B ∈ Def(A), meaning that B is defeated by A.

The relation between the three notions of opposition identified above is very im-
portant in structured argumentation theory. It pertains to the consistency problem,
as we will see shortly. First, let us define (Dung-style) semantics for argumentation
systems.

Argumentation semantics obtained via Dung’s theory of argumentation frame-
works only look at the pair (A,Def) to determine which collections of arguments
we may accept. This leads to the following signature, where we add two constraints
that are satisfied by all main argumentation semantics.

Definition 3 (Abstract semantics). An argumentation semantics for A is an in-
terpretation function ε such that ε(A) = ε(A,Def) ⊆ 2A for all A,Def, where the
different collections of arguments included ε(A,Def) are referred to as (abstract)
extensions. We require that ε satisfies the following constraints:

• Conflict-freeness: for all E ∈ ε(A,Def):

∀A,B ∈ E : A 6∈ Def(B)

– Intuitively, there are no attacks between any two arguments in the same
extension.

• Completeness: for all E ∈ ε(A,Def):

∀A ∈ A : ((∀C ∈ A : A ∈ Def(C) ⇒ ∃D ∈ E : C ∈ Def(D)) ⇒ A ∈ E))
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– Intuitively, if an argument is defended by an extension, then it must be
included in that extension.

An argumentation semantics for (A,Def) provides a semantics for argumentation
also at the level of L, in the following sense.

Definition 4 (Concrete semantics). We lift the conclusion function to also apply
to extensions. If A is an argumentation system, and E ∈ ε(A) is an extension, then
c(E) = {c(A) | A ∈ E} is the correspodning theory extension.

An extension of an argumentation system yields a theory of the underlying logic
under the conclusion function, a subset of formulas from L. Such theories cor-
respond to the theory extensions familiar from default logic – now obtained from
argument extensions using the lifted conclusion function. Hence, a basic sanity check
for structured argumentation asks whether the resulting theory extensions are al-
ways consistent theories. In [3], we find several rationality postulates for structured
argumentation, including consistency of theory extensions. In this article, it is the
only rationality postulate that we will be concerned with. This is justified by the
fact that in systems like ASPIC+, which satisfy conditions (2)-(9), it is the only
non-trivial rationality postulate.

To formalise these remarks, for all E ⊆ A we lift notation and let Sub(E) = {A ∈
A | ∃B ∈ E : A ∈ Sub(B)} denote the sets of subarguments of a set of arguments E.
Furthermore, for all A ∈ A let Sc(A) = {B ∈ A : A ∈ Sub(B) and FS(A) = FS(B)}
be the set of strict continuations of argument A. We lift this notation to sets E ⊆ A
as well, such that Sc(E) = {A ∈ A | ∃B ∈ E : A ∈ Sc(B)}. Then the rationality
postulates from [3] can be defined as follows.

Definition 5. Given an argumentation semantics ε and an argumentation system
A, the rationality postulates for ε at A are the following:

i. Subargument closure: ∀E ∈ ε(A) : Sub(E) ⊆ E.

ii. Strict closure: ∀E ∈ ε(A) : Sc(E) ⊆ E.

iii. Direct consistency: ∀E ∈ ε(A) : ∀φ ∈ c(E) : φ ∩ c(E) = ∅.

iv. Indirect consistency: ∀E ∈ ε(A) : ∀φ ∈ c(E) : c(E) 6|=L ¬φ where |=L is the
logical consequence relation of the underlying logic for L.

It is easy to see that first constraint follows from assumptions (2) − (9) (in
particular, by repeated applications of (4)). The second constraint then follows
trivially for all systems that also satisfy (1), since strict continuations cannot make
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an argument more vulnarable to attack in this case. It follows that for systems like
ASPIC+, consistency is the only substantive rationality constraint. By contrast,
when working with systems that violate (1), satisfying the closure properties can
be non-trivial [4, 9]. This challenge is not discussed further in this work, where we
focus on the question of consistency. As to the two consistency requirements, we
focus only on direct consistency, since the indirect variant will be ensured whenever
we have a sufficient set of strict rules available. In particular, indirect consistency
follows from direct consistency and strict closure whenever the following is assumed
(where ⊥ is used to denote an arbitrary contradiction in the underlying logic):

∀E ⊆ A : ((c(E) 6|=L ⊥ and c(E) |=L φ) ⇒ ∃B ∈ Sc(E) : c(B) = φ) (10)

This is effectively a constraint on the deductive strength of the strict rules present
in the system, telling us that A does indeed match the notion of logical consequence
given by |=L, on all sets of arguments with mutually consistent conclusions. Unless
such a condition is fulfilled, it seems inaccurate to say that |=L is the “underly-
ing” logic of A. If some logical consequences of arguments with mutually consistent
conclusions cannot be argued for, it would be more appropriate to say that the
underlying logic is a proper fragment of |=L. In this case, we also undercut the
conceptual argument in favour of indirect consistency with respect to |=L. There is
no reason why we would generally expect or require indirect consistency of logical
consequences that it is not possible to argue for. Hence, when strict closure holds,
indirect consistency is conceptually redundant. Since we only address systems satis-
fying conditions (2)-(9), our work in the following targets only the property of direct
consistency, which we refer to from now on simply as consistency.

We remark that there are additional constraints sometimes grouped together
with the original rationality postulates discussed above, most notably so-called
crash-resistance and non-interference [5, 13, 9]. These are two closely related con-
straints that effectively restrict the use of ex falso as a strict rule when building
arguments. The intuition behind such restrictions is to prevent the use of inconsis-
tent fallible subarguments as means to successfully attack arbitrary unrelated argu-
ments. Argumentation frameworks based on classical logic typically fail to exclude
such vacuous attacks, since the unrestricted use of ex falso will often (depending on
the preference ordering) allow us to defeat reasonable arguments using completely
unrelated inconsistencies found among other default rules in the system.

While we do not investigate the formal details, it should be noted that crash-
resistance and non-interference can be imposed as additional constraints, adding to
(2)-(9) and (10) above. Notice that (10) only requires us to include enough strict
rules to deduce the consequences of consistent sets of arguments. As long as closure
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and consistency holds, this means that strict rules corresponding to ex falso are not
required. Hence, the constraints we rely on in this article are compatible with the
assumption that non-interference and crash-resistence also hold, provided we are
working with an argumentation system that satisfies (direct) consistency.

Therefore, the key question that concern us in this article is the following: how
can we ensure that consistency is satisfied? The most obvious way to do it is to
ensure that B ∈ Def(A) or A ∈ Def(B) whenever c(A) ∈ c(B). In this case, conflict-
freeness ensures that there is no extension with both A and B, meaning that the
corresponding theory extension cannot be inconsistent. However, this approach
to the consistency problem makes the notion of strict reasoning rather vacuous –
effectively, all reasoning steps become defeasible, regardless of whether we use a
strict or a defeasbile rule.2 Instead of this reductive solution, Prakken proposed a
more subtle constraint for ensuring consistency [12]. We will present an abstract
variant of his condition below.

3.2 Reasonableness and conflict contraposition
For all arguments A ∈ A, we define [A]Rd

= {B ∈ A | RS
d (A) = RS

d (B)}. That
is, [A]Rd

is an equivalence class of arguments containing exactly the same salient
defeasible rules as A. Intuitively, these are the arguments that we regard as similar
to A in an argumentation-theoretic sense. We will assume that when we reason
contrapositively to defeat A, we will never need to use a similar argument to A
in order to do so. That is, we will not need to use an argument that includes
exactly the same set of defeasible rules as those that occur in A (we might well have
to use all but one). Formally speaking, this strengthens the original definition of
reasonableness, but if contrapositive reasoning is implemented in a reasonable way,
the definitions will amount to equivalent restrictions. It should be noted that we
need this adaptation in the proof of Theorems 2 and 3, but not elsewhere.

We will now state our version of Prakken’s original reasonableness constraint.
Our version is more general, as it does not involve preferences at all. However, we
show in Proposition 1 that the original preference-dependent formulation implies
reasonableness as defined below.

Definition 6 (Reasonableness – without preferences). For any argumentation sys-
tem A, we say that A is reasonable if for all A,B ∈ A such that c(A) ∈ c(B),

2We mention that the weakest link system in [10] achieves consistency in a similar manner, by
not including any strict rules. As we will show later, in Section 5, the approach to preferences
found in [10] does not generalise well when strict rules are included and treated in the manner of
ASPIC+.
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A 6∈ Def(B) and B 6∈ Def(A) we have ∃X ∈MS(A) ∪MS(B):

∃Y ∈ A : X ∈ Def(Y ) and MS(Y ) ⊆ (MS(A) ∪MS(B)) \ [X]Rd

That is, a system is reasonable if for any A,B with inconsistent conclusions, if
A and B are unrelated by the relation of defeat, then there is a maximally fallible
subargument, X ∈MS(A) ∪MS(B), that is defeated by an argument containing at
most the fallible subarguments that already occur in A or B and that are not similar
to X. Returning to the Dung example, we see that this fails, since no maximally
fallible subargument (consisting of one of the r-rules) of any of the dilemmas could
be defeated (since they were all strictly preferred to the arguments that attacked
them). If reasonableness holds, it is not hard to prove that it does ensure consistency,
as follows.

Theorem 1. For any argumentation system A, if A is reasonable then it is consis-
tent.

Proof. Assume towards contradiction that A is inconsistent. Then there is some
E ∈ ε(A,Def) with φ ∈ c(E) such that c(E) ∩ φ 6= ∅. Say φ = c(B) and let
c(A) ∈ c(E) ∩ φ. Then c(A) ∈ c(B).

Since ε is conflict-free, it follows that A 6∈ Def(B) and B 6∈ Def(A). Hence,
since A is reasonable, there is some X ∈MS(A) ∪MS(B) such that there is Y ∈ A
with X ∈ Def(Y ) and MS(Y ) ⊆ (MS(A) ∪ MS(B)) \ [X]Rd

. Assume wlog that
X ∈ MS(A). Then by (4) it follows that A ∈ Def(Y ). Hence, Y 6∈ E by conflict-
freeness of E. By completeness of ε, it follows that there is some Z ∈ E such that
Y ∈ Def(Z). By (4) there is some V ∈ FS(Y ) such that V ∈ Def(Z). By (7) there
are then two cases:

i. V ∈ FS(A). In this case, A ∈ Def(Z) with A,Z ∈ E.

ii. V ∈ FS(B). In this case, B ∈ Def(Z) with B,Z ∈ E.

Either way, we contradict conflict-freeness of ε.

In this article, we focus on the order-theoretic assumptions needed to ensure
reasonableness for preference-dependent argumentation. Hence, the details of how
contrapositive reasoning is done is of no particular interest to us. We will simply
limit attention to argumentation systems where a sufficient number of contrapositive
arguments are ensured to exists.
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Definition 7 (Conflict contraposition). For any argumentation system A and all
A,B ∈ A, we say that A admits conflict contraposition if c(A) ∈ c(B) implies that
∀X ∈MS(A) ∪MS(B):

∃Y ∈ A : X ∈ Att(Y ) and MS(Y ) ⊆ (MS(A) ∪MS(B)) \ [X]Rd

That is, conflict contraposition is the same requirement as reasonableness, except
that X is under the scope of universal quantification while the relation of defeat is
substituted by the (weaker) relation of attack. Clearly, for argumentation systems
such that Att(A) = Def(A) for all A ∈ A, conflict contraposition implies reason-
ableness. Indeed, conflict contraposition is then a stronger requirement. It might
be possible to use weaker requirements here, e.g., the notion of self-contradiction
found in [8].3 By assuming a strong and simple constraint that provides enough
attacks we can focus on the order-theoretic aspect of the consistency problem: how
to ensure that reasonableness is not violated when the notion of attack is pruned
by a preference relation to yield a distinct notion of defeat. This is the subject we
address in the next section.

4 Preferential systems and lifting principles
The intuition behind introducing preferences is simple enough: if A attacks B on
some fallible subargument B′ ∈ FS(B), the attack could fail if we strictly prefer B′

over A. The paradigmatic example where this is reasonable is the situation where
the attack is symmetric: A attacks B′, but B′ also attacks A. In this case, it makes
sense that the choice comes down to our preferences. To characterise preference-
dependent argumentation, we will use the following constraint.

Definition 8 (Preferential systems). An argumentation system A is preferential for
the preorder �⊆ A×A if for all A,B ∈ A:

B ∈ Att(A) and A 6≺ B ⇒ B ∈ Def(A)

That is, in preferential argumentation systems we know that if A attacks B
and B is not strictly preferred to A, then A also defeats B (notice that preference-
independent attacks are not excluded; it is permitted for A to attack and defeat B
even if B is preferred over A). Taken together with (4), it follows that if A attacks

3We remark that while [8] provides an abstract logic approach to the consistency problem, it
does not account for preferences. Hence, while there are some similarities with our approach (most
notably the level of generality achieved by abstracting away from how exactly arguments are built),
we focus on different technical and conceptual challenges.
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B′ and B′ is a fallible subargument of B, then A defeats B whenever B′ is not
strictly preferred to A. We also require the following natural property, stating that
it is impossible to strengthen an argument by adding defeasible rules.

A � B and Rd(A) ⊆ Rd(C) ⇒ C � B (11)

With preferences in place, we can formulate a condition that ensures reasonable-
ness, corresponding more closely to the original definition of reasonableness given
by Prakken [12].

Proposition 1 (Reasonableness – with preferences). Let A be an arbitrary argumen-
tation system that admits conflict contraposition and is preferential for �. Assume
that for all X,Y ∈ A such that c(Y ) ∈ c(X), X 6∈ Def(Y ) and X ≺ Y , there is
Xi ∈MS(X) and Z ∈ A such that:

Xi ∈ Def(Z) and MS(Z) ⊆ (MS(X) ∪ {Y }) \ [Xi]Rd

Then A is reasonable.

Proof. We consider arbitrary A,B ∈ A with c(B) ∈ c(A), A 6∈ Def(B) and B 6∈
Def(A). There are three cases:

i. A ≺ B. Then the claim follows immidiately from the assumption.

ii. B ≺ A. We have B 6∈ Def(A) and c(A) ∈ c(B). Hence, by assumption there is
Bi ∈MS(B) and Z ∈ A such that:

Bi ∈ Def(Z) and MS(Z) ⊆ (MS(B) ∪ {A}) \ [Bi]Rd

This suffices to ensure reasonableness.

iii. B and A are equivalent under �. In this case, it is easy to see that (6) implies
that LastRule(A),LastRule(B) ∈ S. Let C be some element of MS(A)∪MS(B).
By (9), MS(A) ∪MS(B) 6= ∅, so such C must exist. Assume wlog that C ∈
MS(A). By conflict contraposition, there is some Y ∈ A with Y ∈ c(C) and
MS(Y ) ⊆ (MS(A) ∪MS(B)) \ [C]Rd

. If C ∈ Def(Y ), we are done, so assume
C 6∈ Def(Y ). If Y ∈ Def(C), then by (4) there must be some D ∈ FS(Y ) ⊆
{FS(X) | X ∈ (MS(A)∪MS(B))\[C]Rd

} (where the final inclusion follows from
(7)). Moreover, D ∈ Def(C) by (4), so we are done. Hence, we may assume
C 6∈ Def(Y ) and Y 6∈ Def(C). But we know that LastRule(C) ∈ D (since
C ∈ MS(A)), so by case i. and ii. above, combined with (4), reasonableness
follows. �
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This proposition explains how reasonableness with preferences works, as a spe-
cial case of the more general reasonableness property from Definition 6. Whenever
X and Y are in conflict, it is safe to assume that when one of these arguments
is strictly preferred over the other, we can use the strictly preferred argument to
attack a fallible subargument of the other. To ensure consistency, choosing the
strictly preferred argument in this way is not always necessary, as reflected by the
formulation in Definition 6. Hence, Prakken’s original definition of reasonableness
includes an additional constraint motivated by (reasonable) intuitions about prefer-
ences, not strictly needed to ensure consistency. Proposition 1 shows how Prakken’s
formulation still suffices to ensure reasonableness in the more general sense.

Where do preferences over arguments come from? One possible answer, typically
assumed in the theory of structured argumentation, is that our relative preference
for an argument should match our relative preference (or priority) assigned to rules
that occur in that argument.4

Recall that RS
d (A) denotes the set of salient defeasible rules that occur in A. To

formalise the idea that preferences for arguments should be possible to explain in
terms of rule-orderings, we first define rule-based preferences, orderings over argu-
ments that correspond to orderings over sets of rules.
Definition 9 (Rule-based preferences). An argumentation system A that is prefer-
ential for � has rule-based preferences if there is some relation ✂ ⊆ 2D × 2D such
that for all A,B ∈ A:

A � B ⇔RS
d (A) ✂RS

d (B)
In this case we say that � is induced by ✂.

We are now ready to define an abstract rationality constraint, which will ensure
consistency for all argumentation systems with rule-based preferences and conflict
contraposition. We remark that the constraint is not independently justified – as far
as we can see, it admits no obviously desirable intuitive reading. However, it is both
useful and desirable in view of how it provides a purely order-theoretic perspective
of what consistency amounts to for the class of argumentation systems studied in
this article. As such, it is used here to express rather surprising and clarifying results
about the relationship between consistency and properties of rule-orderings.
Definition 10 (Rationality). A relation ✂ ⊆ 2D × 2D is rational at ∆ ⊆ 2D if it
satisfies the following constraint:

∆ 6= ∅ ⇒ ∃A ∈ ∆ :
⋃

B∈∆\{A}
B 6✁A

4The rule-ordering, meanwhile, is typically taken as an exogeneous primitive: it is determined
by the modeller, not the model.
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If ✂ is rational at all ∆ ⊆ 2D, we say that ✂ is rational.

Proposition 2. Let A be an argumentation system with conflict contraposition and
rule-based preferences induced by ✂. Then A is consistent if for all A,B ∈ A such
that c(A) ∈ c(B), A 6∈ Def(B) and A ≺ B, ✂ is rational at {RS

d (X) | X ∈MS(A) ∪
{B}}.

Proof. We will show that A is reasonable using Proposition 1, so that the claim
follows from Theorem 1. Consider arbitrary A,B ∈ A with B ∈ c(A), A 6∈ Def(B)
and A ≺ B. Let ∆ = {RS

d (X) | X ∈ MS(A) ∪ {B}}. That is, ∆ includes exactly
those sets of rules that are the salient defeasible rules of B or some maximally
fallible subargument of A. By (9) we have ∆ 6= ∅. Hence, by rationality of ✂ there
is some X ∈ ∆ such that ⋃

Y ∈∆\X Y 6✁ X. Assume wlog that RS
d (Ai) = X for

some Ai ∈ MS(A). Since A admits conflict contraposition, there is some argument
C with Ai ∈ Att(C) and MS(C) ⊆ (MS(A) ∪MS(B)) \ [Ai]Rd

. Hence, RS
d (C) ⊆⋃

Z∈(MS(A)∪MS(B))\[Ai]Rd
RS
d (Z) ⊆ ⋃

Y ∈∆\RS
d
(Ai) Y , where the final inclusion relies

on the fact that ∀W ∈MS(A)∪MS(B) : RS
d (W ) = RS

d (Ai) ⇒W ∈ [Ai]Rd
. By (11)

it follows that RS
d (C)6✁RS

d (Ai). Hence, it follows by Definition 8 that Ai ∈ Def(C)
as desired.

The rationality constraint in Definition 10 is rather abstract. In the following, we
will work with rule-based preferences of the elitist variety and show that rationality
follows from some more familiar and intuitive order-theoretic constraints. This will
also help shed more light on the intuitive content of the rationality constraint.

Definition 11 (Elitist lifting). A rule-based argumentation system A with prefer-
ences induced by ✂ is elitist if there is some ≤ ⊆ D×D such that for all R1, R2 ⊆ 2D:

R1 ✂R2 ⇔
{
R2 = ∅ if R1 = ∅
∃r1 ∈ R1 : ∀r2 ∈ R2 : r1 ≤ r2

In this case, we say that ✂ is lifted from ≤.

The strict elitist lifting is obtained from replacing r1 ≤ r2 by r1 < r2 in the
definition above and removing the clause for R1 = ∅. To sum up where we stand
at this point, a rule-based argumentation system with an elitist preference ordering
admits a characterisation in terms of three difference relations, for all A,B ∈ A:

A � B ⇔RS
d (A) ✂RS

d (B) ⇔
{
RS
d (B) = ∅ if RS

d (A) = ∅
∃r1 ∈ RS

d (A) : ∀r2 ∈ RS
d (B) : r1 ≤ r2
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Dung’s example shows that elitist systems are not necesssarily rational. However,
it is easy to show that strict elitist systems are rational for all preorders ≤⊆ D ×
D. This observation corresponds to the modified result on reasonableness in the
corrected version of [11]. To see why it is true, consider arbitrary non-empty ∆ ⊆
2D and let r be a ≤-minimal element in ⋃∆. Hence, there is no set in ∆ that
contains a rule strictly weaker than r. Let R ∈ ∆ be some set containing r. Clearly,⋃
Y ∈∆\R Y 6✁R under strict elitist lifting, since otherwise there would have to be a

rule in ⋃
Y ∈∆\R Y that is strictly weaker than r.

As mentioned in Section 2, strict elitism is conceptually problematic. In the
following, we will show that non-strict elitism does ensure rationality (at all ∆)
under additional order-theoretic constraints. For all A,B ∈ 2D, let A⊥B denote
that A6✂B and B 6✂A, i.e., A and B are incomparable. For single rules, under elitist
lifting, we have r1 ≤ r2 ⇔ {r1} ✂ {r2}, so we need not distinguish between X⊥r
and X⊥{r}. The main result of this section is the following.

Theorem 2. Let A by a rule-based argumentation system with conflict contraposition
and preferences � induced from ✂, lifted from ≤. Then A is consistent if one or
more of the following conditions hold.

i. ≤ is a total relation over rules.

ii. ✂ is an antisymmetric relation over sets of rules.

iii. ✂ satisfies transitivity of incomparability, i.e., for all A,B,C ∈ 2D, if A⊥B
and B⊥C, then A⊥C.

Proof. By Proposition 2, it suffices to show that ✂ is rational if any of the constraints
(i)-(iii) hold. To prove these three claims, we first assume towards contradiction
that there is some ∆ ⊆ 2D with ∆ 6= ∅ such that

⋃
Y ∈∆\A Y ✁A for all A ∈ ∆. Let

b ∈ ⋃
Y ∈∆\A Y be minimal such that ∀a ∈ A : b ≤ a. Since ✂ is lifted from ≤, such

b must exist. Then we have the following:

• There is some B ∈ ∆ \ A such that b ∈ B. By assumption, we also have⋃
Y ∈∆\B Y ✁B, with some c ∈ ⋃

Y ∈∆\B Y as a minimal witness with ∀x ∈ B :
c ≤ x. Specifically, we have c ≤ b. By transitivity, we then also have c ≤ a
for all a ∈ A. Since b was chosen minimally, it follows that b ≡ c. Notice that
b = c is possible (this prevents us from proving stronger results).

• Since B 6✂⋃
Y ∈∆\B Y , there must be d ∈ ⋃

Y ∈∆\B Y such that b ≡ c 6≤ d. By
minimality of b ∈ B ⊆ ⋃

Y ∈∆\A Y , it follows that b⊥d. This establishes point
i of the claim, since it contradicts the assumption that ≤ is total.
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• By transitivity of ≤ and b ≡ c it also follows that c⊥d. Since c ∈ ⋃
Y ∈∆\B Y ,

there is C ∈ ∆ \ {B} with c ∈ C. Moreover, C 6= B. By assumption, we
have ⋃Y ∈∆\C Y ✁C, with some e ∈ ⋃

Y ∈∆\C Y that is a minimal witness with
∀x ∈ C : e ≤ x. It follows that e ≤ c, so that by minimality of c we get e ≡ c.
By now, we have e ≡ c ≡ b (but they could all be the same rule).

• Since C 6✂⋃
Y ∈∆\C Y , we obtain f ∈ ⋃

Y ∈∆\C Y such that e⊥f . We then get
two cases:

– e 6= c. Then e ≡ c violates antisymmetry (since then
⋃
Y ∈∆\B Y ✂⋃

Y ∈∆\C Y,
⋃
Y ∈∆\C Y ✂

⋃
Y ∈∆\B Y with ⋃

Y ∈∆\B Y 6= ⋃
Y ∈∆\C Y ), so

point ii of the claim follows. Moreover, we have e⊥f⊥c with e ≡ c,
so incomparability is not transitive and point iii of the claim follows as
well.

– e = c. Since C 6= B, this means that either C 6= {c} or B 6= {c}.
Assume wlog that C 6= {c}. Then C ≡ {c} violates antisymmetry, so
point ii of the claim follows. Moreover, we have C⊥f⊥c with C ≡ {c},
so incomparability is not transitive and point iii of the claim follows as
well.

It is instructive to notice how Dung’s example, considered in Section 2, violated
all three conditions for rationality identified above. First, ≤ was clearly not a to-
tal relation, since the rules were partitioned into incomparable equivalence classes.
Second, ✂ is not antisymmetric, since A1 ≡ A2 and A3 ≡ A4, Finally, transitivity
did not hold for incomparability under ✂, since A1⊥A3⊥A2, even though A1 and
A2 were equivalent.

More generally, notice that point ii of Theorem 2 implies that consistency holds
for strict elitist lifting. Indeed, it is not hard to see that if strict elitist lifting
is used, then ✂ will be antisymmetric over sets of rules; only ∅ is equivalent to
anything (namely itself) under strict elitist lifting (in [11], A ≡ B when A = B is
added by a special clause, to make the set-comparison reflexive, but this does not
violate antisymmetry).

On the other hand, notice that antisymmetry of ≤ does not imply antisymmetry
of ✂. For example, A and B can share a weakest rule r such that A✂B,B✂A even
though A 6= B. Similarly, transitivity of incomparability with respect to ✂ does
not imply transitivity of incomparability with respect to ≤. To see this, consider
a collection of six rules r1, . . . , r6 such that r1 < r2 < r3 and r4 < r5 < r6, while
all other pairs of distinct rules are incomparable. Then incomparability under ≤ is
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transitive, as the reader can verify. However, consider the sets A1 = {r1, r2}, A2 =
{r1, r3} and A3 = {r4, r5}, A4 = {r4, r6}. Under elitist lifiting, these sets will be
ordered exactly as the problematic rules were ordered in the Dung example:

A1 ≡ A2
⊥ ⊥
A3 ≡ A4

We see that A1⊥A3⊥A2, even though A1 ≡ A2, witnessing to the fact that incom-
parability at the set level is not transitive. Moreover, it is easy to verify that ✂

induced by ≤ under elitist lifting is not rational at ∆ = {A1, A2, A3, A4}. Hence,
stipulating antisymmetry and/or transitivity of incomparability with respect to ≤
does not guarantee rationality. We can easily instantiate the rules above in such a
way that an inconsistency arises, showing that these two conditions are not in any
case strong enough to give us what we want when restricted to ≤. However, as we
will see in Section 6, an additional assumption on ≤ will allow us to replace ✂ by ≤
in all points of Theorem 2. Before getting to this result, we will address a conceptual
problem, threatening to undermine the very idea of elitist lifting.

When attention is restricted to argumentation systems with last link salience,
this changes. Then we may replace ✂ by ≤ in all points of Theorem 2, as we will
demonstrate in the following.

First we need to make an additional assumption regarding the nature of the
contrapositive arguments we have available. There are several ways of getting what
we need, including strengthening the definition of conflict contraposition to ensure
that we never have to use r to attack A when MS(A) = {A} and LastRule(A) =
r. For simplicity, we choose a different approach here, whereby we assume that
no two maximally fallible subarguments of the same argument conclude with the
same defeasible rule. This is not a very limiting assumption, depending on the
exact format of the strict rules we have available. Specifically, assuming a Hilbert-
style representation of arguments as sequences of rules, the assumption is clearly
inconsequential (since there is no reason for any rule to appear twice in such a
sequence), c.f., [10]. If arguments have a tree-structure, by contrast, the same rule
can appear in different positions in the tree. However, if two maximally fallible
subarguments conclude with the same rule, it is semantically reasonable (in systems
like ASPIC+, at least) to remove either one of them from the set of maximally
fallible subarguments.5 Formally, we assume that the following property holds, for

5Roughly, the reason is that if A includes two maximally fallible subargument, B1 and B2, such
that LastRule(B1) = LastRule(B2) = r, then the system also includes an argument A1 (resp. A2)
that is identical with A except for the fact that B2 has been replaced with B1 (resp. B1 has been
replaced with B2). But then the existence of suitable contrapositive arguments for both A1 and
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all A ∈ A:

∀A ∈ A : ∀B1, B2 ∈MS(A) : B1 6= B2 ⇒ LastRule(B1) 6= LastRule(B2) (12)

It is important to notice that the condition should not be strengthened in the
obvious way, by requiring that no two distinct maximally fallible subarguments share
a rule. Consider, for instance, a system where any argument needs to begin with
the same initial rule r, the only rule that has an empty set of premises. Here we
cannot assume to be working with disjoint sets of arguments; distinctness of final
rules is all we have to rely on. However, it suffices to strengthen Theorem 2 for last
link lifting.

Let LL(A) = {LastRule(Ai) | Ai ∈ MS} and recall that last link salience obtains
just in case RS

d (A) = LL(A) for all A ∈ A. Then we have the following.

Theorem 3. Assume that A is a rule-based argumentation system satisfying (12),
with last link salience, conflict contraposition and preferences �, induced from ✂

and lifted from ≤ ⊆ D×D under elitist lifting. Then A is consistent if one or more
of the following conditions hold.

i. ≤ is antisymmetric.

ii. ≤ satisfies transitivity of incomparability.

Proof. The proof uses a similar construction as the proof of Theorem 2, but takes
the structure of arguments into account. By Proposition 2, it suffices to show that
✂ is rational for all ∆ =

{RS
d (A1), . . . ,RS

d (An),RS
d (B)} = {{LastRule(A1)}, . . . , {LastRule(An)},LL(B)}

where {Ai | 1 ≤ i ≤ n} = MS(A) for some A,B ∈ A such that c(A) ∈ c(B). Assume
towards contradiction that rationality fails for some such ∆. As before, we let⋃
Y ∈∆\X Y = ⋃

Y ∈∆\{X} Y for all X. Hence, we have ⋃Y ∈∆\D Y ✁D for all D ∈ ∆.
Specifically, we have ⋃Y ∈∆\RS

d
(B) Y ✁RS

d (B). We let a ∈ ⋃
Y ∈∆\RS

d
(B) Y be minimal

such that ∀x ∈ RS
d (B) : a ≤ x. Then there is some RS

d (Ai) ∈ ∆ \ RS
d (B) such that

a ∈ RS
d (Ai). Since A satisfies last link salience and MS(Ai) = {Ai}, it follows that

a = LastRule(Ai). By assumption, we also have ⋃Y ∈∆\RS
d
(Ai) Y ✁RS

d (Ai), with some
c ∈ ⋃

Y ∈∆\RS
d
(Ai) Y as a minimal witness with ∀x ∈ RS

d (Ai) : c ≤ x. Specifically, we
have c ≤ a. By transitivity, we then also have c ≤ x for all x ∈ RS

d (B). Since a was
chosen minimally, it follows that a ≡ c. There are two cases to consider.
A2 ensures that we can drop either B1 or B2 from MS(A), without violating conflict contraposition
at A.
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i. c ∈ RS
d (Aj) for some Aj ∈ MS(A). Then b 6= c by (12), so b ≡ c contradicts

antisymmetry of ≤, proving point i. Moreover, RS
d (Aj)6✂

⋃
Y ∈∆\RS

d
(Aj) Y so

there must be some d ∈ ⋃
Y ∈∆\RS

d
(Aj) Y such that c 6≤ d. Since c was chosen

minimally and c ≡ a, it follows that d 6< c ≡ a. Hence, d⊥c and d⊥a, even
though c ≡ a and c 6= a. This contradicts transitivity of incomparability under
≤, establishing point ii of the claim.

ii. c ∈ RS
d (B). SinceRS

d (B)6✂⋃
Y ∈∆\RS

d
(B) Y there is d ∈ ⋃

Y ∈∆\RS
d
(B) Y such that

d 6> c (since otherwise c would witness to RS
d (B)✂⋃

Y ∈∆\RS
d
(B) Y ). However,

c was chosen minimally from ⋃
Y ∈∆\RS

d
(B) Y and a = c, so d 6> c implies that

d⊥c. Since we have a = c ∈ RS
d (Ai) ∩ RS

d (B) and ∀x ∈ RS
d (Ai) ∪ RS

d (B) :
c = b ≤ x, it follows that d 6∈ RS

d (Ai) ∪ RS
d (B). Hence, there must be some

j 6= i with d ∈ RS
d (Aj). By assumption, we have

⋃
Y ∈∆\RS

d
(Aj) Y ✁RS

d (Aj), so
there is a minimal e ∈ ⋃

Y ∈∆\RS
d
(Aj) Y with ∀x ∈ RS

d (Aj) : e ≤ x. Since a was
chosen minimally, we know that e 6< a = c. Hence, e⊥a = c, since otherwise
c ≤ d by transitivity of ≤, contradicting c⊥d. From this it follows that e 6∈
RS
d (Ai) ∪ RS

d (B), since c = a is comparable to all elements of this set. This,
in turn, implies that e = LastRule(Ak) for i 6= k 6= j. However, we also have⋃
Y ∈∆\RS

d
(Ak) Y ✁ RS

d (Ak), witnessed by some minimal f ∈ ⋃
Y ∈∆\RS

d
(Ak) Y

such that f ≤ x for all x ∈ RS
d (Ak). Moreover, since e⊥c and c ≤ x for

all x ∈ RS
d (Ai) ∪ RS

d (B), it follows that f 6∈ RS
d (Ai) ∪ RS

d (B). Hence, we
have f = LastRule(Al) for some l 6= k. It follows by (12) that f 6= e. Since
f was chosen minimally, we have e ≡ f , contradicting antisymmetry of ≤,
thereby establishing point i. We also have f⊥c⊥e, contradicting transitivity
of incomparability under ≤, thereby establishing point ii of the claim.

5 A conceptual problem and possible refinements
Assume you are faced with the following three rules pertaining to the evolution and
creationism debate: r1: ⇒ c1, where c1 is “evolution has not been proven”; r2:
c1 ⇒ c2, where c2 is “we need more research on evolution”; and r3: c1 ⇒ ¬c2 ∧ c3,
where c3 is “the hypothesis of creationism should be entertained”. We assume that
the ordering over the rules is r1 < r3 < r2.6

6Intuitively, saying that evolution has not been proven is quite a stretch, but not logically or
even scientifically incoherent (depending on what you mean by “proven”, obviously). However, if
the scientist conceeds (as good scientists tend to do) that evolution has not been proven – in some
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Let A be the argument obtained by taking r1 followed by r2, in favour of research,
while B is the argument obtained by taking r1 followed by r3, against research and
in favour of considering the hypothesis of creationism. Intuitively, A is a better
argument than B, at least given our rule-ordering which makes clear that r2 > r3.
Both arguments share r1 as the least preferred rule, but r2 is preferred over r3. Still,
the elitist lifting principle forces us to conclude that these two arguments are equally
good, which seems intuitively unreasonable.

A possible solution, proposed in recent work [15, 10], is to use a disjoint version
of elitist lifting. Specifically, we say that ✂ is a disjoint elitist lifting of ≤ whenever
we have, for all A,B ∈ 2D:

A✂B ⇔
{
B = ∅ if A = ∅
∃r1 ∈ A \B : ∀r2 ∈ B \ A : r1 ≤ r2 otherwise

(13)

The strict variant of disjoint lifting is then defined in the obvious way, with ≤
replaced by < in the equation above.

With disjoint lifting, the problem with the evolution debate above disappears.
A is better than B since r1, the weakest link of both arguments, is removed from
consideration. There are two problems with this proposed solution, the first of
which is conceptual. If we modify the evolution debate by including an additional
rule r4 :⇒ c4, where c4 is “evolution could be incorrect”, we can reasonably include
also the rule r5: c4 ⇒ ¬c2 ∧ c3. The obvious extension of the rule-ordering would
be r1 ≡ r4 < r3 ≡ r5 < r2. The creationist could then form the argument C, built
from r4 followed by r5. In this case, it would follow that A is equally good as C
even under the disjoint lifting. Indeed, A and C share no rules, so disjoint lifting is
the same as traditional elitist lifting in this case.

To solve this problem, we could try to expand upon the idea behind disjoint
lifting, to remove not only shared rules between A and B but also rules belonging
to shared equivalence classes of rules. Formally, we let Eq(A) = {r ∈ D | ∃q ∈ A :
r ≡ q} and define strongly disjoint lifting as follows, for all A,B ∈ 2D:

A✂B ⇔
{
B = ∅ if A = ∅
∃r1 ∈ A \ Eq(B) : ∀r2 ∈ B \Eq(A) : r1 ≤ r2

(14)

Conceptually, strongly disjoint lifting seems like it might be exactly what we are
after. Unfortunately, there is a second problem with the idea of removing shared
rules from consideration: it yields inconsistency in many situations. For strongly
sense or other – they give the creationist an entry point to further their argument on a more solid
footing, which would not have been afforded to creationism otherwise. This suggests the pragmatic
correctness of the rule-ordering given here.
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disjoint lifting, this is quite easy to see. For instance, the reader can check that
strongly disjoint lifting results in inconsistency when applied to the Dung example
in Section 2. In fact, contradictory theory extensions arise for even more basic
examples, suggesting that strongly disjoint lifting is not a good solution to the
conceptual problem discussed above.

Example 1 (Three rights make it wrong). We assume given an argumentation
system with D = {r1, r2, r3} and S = {s1, s2, s3} where

⇒ q1︸ ︷︷ ︸
r1

, ⇒ q2︸ ︷︷ ︸
r2

, ⇒ q3︸ ︷︷ ︸
r3

, q2, q3 → ¬q1︸ ︷︷ ︸
s1

q1, q3 → ¬q2︸ ︷︷ ︸
s2

q1, q2 → ¬q3︸ ︷︷ ︸
s3

The argumentation system is preferential with an ordering obtained using strongly
disjoint lifting of the rule-ordering ≤ ⊆ D × D given by r1 ≡ r3 < r2. Consider the
following pairs of argument dilemmas:

Ā1 :
∼∼ r2
q2

,∼∼ r3
q3

s1¬q1
, A1 : ∼∼ r1

q1

Ā2 :
∼∼ r1
q1

,∼∼ r3
q3

s2¬q2
, A2 : ∼∼ r2

q2

Ā3 :
∼∼ r1
q1

,∼∼ r2
q2

s3¬q3
, A3 : ∼∼ r3

q3

Since � is obtained by strongly disjoint lifting from ≤, we have Āi < Ai for all
i ∈ {1, 2, 3}. To see this, consider first the case when i = 1 and the case when i = 3.
Either way, we have Eq(Āi) = {r1, r2, r3}. Hence, Ai \ Eq(Āi) = ∅, so the strongly
disjoint lifting definition (14) trivially ensures Āi✂Ai for these two cases. For i = 2,
recall that r2 > r3 ≡ r1, so taking either r1 or r3 as the witness shows that Ā2 ✂A2.
Hence, any complete argumentation semantics will return all of {q1, q2, q3} as the
extension, yielding an inconsistent theory (since all of ¬qi will then also have to be
included, due to the strict rules).

As it turns out, the problem of consistency arises for both types of disjoint
lifting, also for rule-orderings that are very well-behaved. Indeed, inconsistency
arises already for linear orders, as shown by the following example.

Example 2. We let D = {r1, r2, . . . , r6, q1, q2, q3} contain 9 defeasible rules. Each
ri is of the form ⇒ pi where pi ∈ L is a propositional atom. That is, each ri is
a defeasible rule allowing you to conclude pi from the empty premise. The three
q-rules are depicted below:
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p1, p3, p6 ⇒ a1︸ ︷︷ ︸
q1

, p1, p2, p5 ⇒ a2︸ ︷︷ ︸
q2

, p2, p4, p5 ⇒ a3︸ ︷︷ ︸
q3

So qi allows you to conclude ai from three p-premises, as detailed above. Further-
more, assume we have the following strict rules:

a2, a3 → ¬a1︸ ︷︷ ︸
s1

, a1, a3 → ¬a2︸ ︷︷ ︸
s2

, a1, a2 → ¬a3︸ ︷︷ ︸
s3

That is, an extension including {a1, a2, a3} will be inconsistent according to the
underlying logic. The ordering ≤⊆ D × D is given by r1 < r2 < r3 < r4 < r5 <
r6 < q1 < q2 < q3. That is, all q-rules are better than all r-rules and rules with a
higher index are better than rules with a lower index. Consider the following pairs
of argument dilemmas (names of rules are left implicit).

Ā3 :

∼∼
p1 ,

∼∼
p3 ,

∼∼
p6∼∼∼∼∼∼∼∼∼

a1

∼∼
p1 ,

∼∼
p2 ,

∼∼
p5∼∼∼∼∼∼∼∼∼

a2

¬a3

, A3 :
∼∼
p2 ,

∼∼
p4 ,

∼∼
p5∼∼∼∼∼∼∼∼∼

a3

Ā2 :

∼∼
p1 ,

∼∼
p3 ,

∼∼
p6∼∼∼∼∼∼∼∼∼

a1

∼∼
p2 ,

∼∼
p4 ,

∼∼
p5∼∼∼∼∼∼∼∼∼

a3

¬a2

, A2 :
∼∼
p1 ,

∼∼
p2 ,

∼∼
p5∼∼∼∼∼∼∼∼∼

a2

Ā1 :

∼∼
p1 ,

∼∼
p2 ,

∼∼
p5∼∼∼∼∼∼∼∼∼

a2

∼∼
p2 ,

∼∼
p4 ,

∼∼
p5∼∼∼∼∼∼∼∼∼

a3

¬a1

, A1 :
∼∼
p1 ,

∼∼
p3 ,

∼∼
p6∼∼∼∼∼∼∼∼∼

a1

The argument pairs above show that disjoint elitist lifting does not satisfy the order-
theoretic rationality constraint. Specifically, it is easy to check that we have Āi ≺ Ai
for all i ∈ {1, 2, 3} for disjoint elitist lifting. Essentially, the reason is that the
two subarguments of each Āi-argument overlap with the weakest rules of Ai, so
that removing shared rules forces the comparison to take place relative only to
the strongest rules in Ai, which are all strictly preferred over a remaining rule
of intermediate strength in Āi. As a result, all complete extensions will include
{a1, a2, a3}, since all corresponding Ai-arguments are undefeated. This yields an
inconsistent theory, when the strict rules are applied.

The example above shows that disjoint lifting can lead to violations of consis-
tency for orderings we would normally consider very well-behaved, also for disjoint
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strict lifting. A minor modification to the example also answers in the negative a
conjecture by Young and others, to the effect that disjoint lifting of any so-called
structure preference ordering results in a rational ordering of arguments [14]. How-
ever, Young and others offer a direct proof that consistency is satisfied under disjoint
lifting of such orderings (assuming enough strict rules are available to capture clas-
sical logic) [15]. This shows that structure preference orderings manage to avoid
counterexamples even if they do not satisfy the purely order-theoretic rationality
constraint.

To illustrate how this is possible, we first note that structure preference orderings
forbid us from saying that q1 and q2 are better than any of the r-rules in the example
above. The reason is that these two q-rules can only be applied after the weakest
p-rule has already been applied. The reordering removes the inconsistency, but not
the order-theoretic irrationality (or unreasonableness, in the terminology of [11]).
To disprove the conjecture made by Young and others, we could either reorder or
simply remove all q-rules. The sets of defeasible rules associated with the problematic
arguments above would still exist and would still violate order-theoretic rationality.
However, they would no longer result in any inconsistency.

In the next section, we will consider the phenomena at work here in more depth,
by giving a more abstract (and much simpler) definition that captures the essen-
tial consistency-preserving property of the structure preference orderings defined by
Young and others.

6 On structural orderings

In this section, we formulate an additional condition on arbitrary ≤ ⊆ D × D,
capturing a key property of structure preference ordering in an abstract way. We
also prove that every such ordering satisfies consistency under disjoint strict lifting,
generalising previous results of Young and others. Specifically, we do not need to
make any additional order-theoretic assumptions to prove the result.

Following up on this, we prove a result on traditional (non-strict) elitist lifting,
strengthening Theorem 2 for the case when ≤ is a structural ordering. This is
not only a technical result, but also conceptually significant. The reason is that
the conceptual problems discussed in the previous section, motivating the shift to
disjoint lifting, do not seem to arise when ≤ corresponds to a structure preference
ordering.

Hence, it can be argued that disjoint lifting is a conceptual dead end: the solution
to the problems discussed in the previous section is to reorder ≤ to take into ac-
count the structure of arguments. The solution is not to remove shared rules before
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comparing arguments. Indeed, Example 2 shows that disjoint lifting by itself does
not ensure consistency. We also need to ensure that ≤ is structural. However, once
we ensure this, the examples used to motivate disjoint lifting become inadmissible
for an independent reason: the weakest link can no longer come at the beginning of
two arguments that continue along a preferred and a strictly less preferred branch.
Assuming all examples motivating disjoint lifting have this form, we might as well
go back to traditional non-disjoint elitist lifting.

Formally, we start by making the following assumption, which is already satisfied
by many argumentation systems, including those in the ASPIC+ tradition.

∀A ∈ A : ∀B ∈MS(A) : LastRule(B) ∈ RS
d (B) ⊆ RS

d (A) (15)

That is, we assume that all maximally fallible rules of A conclude with a defeasible
rule that is salient in both A and B. We are ready for the key definition of this
section, whereby we will say that ≤ ⊆ D×D is structural for A if

∀A ∈ A : LastRule(A) ∈ RS
d (A) ⇒ ∀r ∈ RS

d (A) : r 6< LastRule(A) (16)

Effectively, structural rule-orderings take the structure of arguments into ac-
count, by ensuring that whenever a defeasible rule r occurs in an argument, all
premises of r have been established using defasible rules that are at least as good as
r. Intuitively, the fact that q can be used to establish a premise of r is a structural
reason to regard q as a rule that is at least as good as r. This makes intuitive sense
if we argue using a greedy heuristic, where we always use a maximally preferred
rule to extend our arguments. For such a reasoner, a structural rule-ordering only
encodes at the rule-level what already transpires at the argument level; rules are
ordered (also) by the stage at which they may be applied (formally, this leads to a
structural reordering of the original rule-order used by a greedy arguer, c.f., [15]).

Strictly speaking, the structural preference orderings defined by Young and oth-
ers do not automatically ensure that (16) holds for every argument in A. However,
any argumentation system with a structural preference ordering can be characterised
by a smaller collection of normal-form arguments that do satisfy the requirement.
We will not formalise the construction from [15] to show this, but we will give a
more general characterisation result below (Proposition 4) that clearly applies also
to structural preference orderings. First, we show that (16) is all we need to ensure
consistency under disjoint strict lifting.

Theorem 4. Assume A is an argumentation system with conflict contraposition and
an argument preference ordering that is induced by a set ordering that has been lifted
under disjoint weakest link from a structural rule-ordering. Then A is consistent.
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Proof. We show that A is reasonable. Consider arbitrary A,B such that c(A) ∈ c(B),
A 6∈ Def(B) and B 6∈ Def(A). We have to show ∃X ∈MS(A) ∪MS(B):

∃Y ∈ A : X ∈ Def(Y ) and MS(Y ) ⊆ (MS(A) ∪MS(B)) \ [X]Rd

First, let Ai ∈MS(A) such that (i) ∀C ∈MS(A) : LastRule(C) 6< LastRule(Ai). That
is, Ai is a maximally fallible subargument of A that concludes with a rule that has
minimal priority of all rules that occur as the final rule in some maximally fallible
subargument of A. Now, by (i) and the fact that ≤ is structural for A, it follows that
(ii) ∀r ∈ Rd(A) : r 6< LastRule(Ai). By conflict contraposition, we have an argument
D that attacks Ai such that RS

d (D) ⊆ ⋃
Z∈(MS(A)∪MS(B))\[Ai]Rd

RS
d (Z). By (12),

we know that LastRule(Ai) 6∈ RS
d (D). Hence, LastRule(Ai) ∈ RS

d (Ai) \ RS
d (D).

Moreover, by (ii) we have ∀r ∈ RS
d (D) \ RS

d (Ai) : r 6< LastRule(Ai). Since ✂ is
lifted under disjoint strict lifting, it follows that D 6✁Ai. Hence, D defeats Ai as
desired.

Notice that the proof does not hold when the lifting is not strict. In this case, it
is possible for A � B with a witness r ∈ Rd(A) such that there is q ∈ Rd(B) with
r ≡ q. Moreover, (12) does not rule out the possibility that there areB1, B2 ∈MS(A)
such that LastRule(B1) ≡ LastRule(B2) with LastRule(B1) 6= LastRule(B2) being two
distinct minimally preferred rules occuring as the final defeasible rule applied in a
maximally fallible subargument of A. Specifically, the Dung example is a counter-
example to consistency, for both disjoint and ordinary non-strict lifting, since the
rule-ordering from this example is structural.

However, when the rule-ordering is structural, the elitist principle is almost rep-
resentable by last link reasoning, for any definition of salience (RS

d ) that satisfies
LL(A) ⊆ RS

d (A) for all A ∈ A. Intuitively, this is because the weakest rules in an
argument are always applied last when the ordering is structural. To make the last
link representation tight, we have to strengthen our requirement, giving rise to what
we call strongly structural orderings, defined as follows:

∀A ∈ A : LastRule(A) ∈ RS
d (A) ⇒ ∀r ∈ RS

d (A) : r ≤ LastRule(A) (17)
If an ordering is strongly structural, last link reasoning is always equivalent to

weakest link reasoning, meaning that Theorem 3 applies to both. To formalise this,
say that A is last link representable if the following holds, for all A,B ∈ A:

A 6≺ B ⇔ A = ∅ or ∀x ∈ LL(A) : ∃y ∈ LL(B) : x 6≤ y (18)
Intuitively, A is last link representable if its defeat relation can be equivalently

characterised using last link lifting of ≤. Obviously, if A satisfies last link salience,
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so that RS
d (A) = LL(A) for all A ∈ A, it is last link representable. Conversely, if A

is last link representable, then replacing RS
d (A) by LL(A) for all A ∈ A will yield

an equivalent argumentation system A′ such that the defeat relation corresponding
to A is the same as that corresponding to A′. Furthermore, we have the following
result.

Proposition 3. Let A be an argumentation system with elitist preferences satisfying
(17), such that LL(A) ⊆ RS

d (A) for all A ∈ A. Then A is last link representable.

Proof. We must show both directions of the equivalence in (18). ⇒) Let A,B ∈ A be
arbitrary such that A 6≺ B and assume towards contradiction that there is r ∈ LL(A)
such that r ≤ q for all q ∈ LL(B). By (17) and transitivity of ≤ it follows that r ≤ s
for all s ∈ ⋃

X∈MS(B)RS
d (X) = RS

d (B). Hence, A ≤ B, contradiction. ⇐) Let
A,B ∈ A be arbitrary such that A = ∅ or ∀x ∈ LL(A) : ∃y ∈ LL(B) : x 6≤ y. If
A = ∅, then clearly A6✁B, so assume ∀x ∈ LL(A) : ∃y ∈ LL(B) : x 6≤ y. Assume
towards contradiction that A ≤ B. By (17) there is a witness r = LastRule(Ai) for
some Ai ∈ MS(A). Hence, r ≤ q for all q ∈ LL(B) ⊆ RS

d (B), contradicting the
assumption.

The stronger version of Theorem 2 then follows for strongly structural orderings
as a corollary.

Corollary 1. Assume that A is a rule-based argumentation system with conflict
contraposition and preferences �, induced from ✂, which are in turn lifted from a
structural preorder ≤ ⊆ D × D under elitist lifting. Then A is consistent if one or
more of the following conditions hold.

i. ≤ is antisymmetric.

ii. ≤ satisfies transitivity of incomparability.

Proof. Since A is last link representable by Proposition 3, the claim follows from
Theorem 3.

The structure preference orderings defined by Young and others in [15] are almost
strongly structural (since they are strict total orders). Specifically, let |D| = {r ∈
D | ∃A ∈ A : r ∈ Rd(A)}. Then it is not hard to see that structure preference
orderings satisfy the following property:

∀r ∈ |D| : ∃A ∈ A : LastRule(A) = r and ∀r ∈ RS
d (A) : r ≤ LastRule(A) (19)
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That is, for any defeasible rule r that appears in some argument, there is an
argument Ar concluding with that defeasible rule, such that Ar also satisfies the
condition in (17). Let |A| = {Ar | r ∈ |D|} be the collection of all such arguments.
Then we can show that |A| provides a normal-form representation of arguments, in
the following sense.

Proposition 4. Let A be an argumentation system with preferences satisfying (19).
Then for all E ∈ ε(A,Def) we have |E| ⊆ E where |E| = {Ar | ∃X ∈ E :
LastRule(X) = r}.

Proof. Let E ∈ ε(A,Def) and assume towards contradiction that |E| 6⊆ E. Let Ar ∈
|E| be a minimal argument such that Ar 6∈ E, i.e., such that there is no subargument
of Ar that is not in E. Consider arbitrary X ∈ E such that LastRule(X) = r. By
minimality of Ar, every fallible subargument of Ar is in E. Hence, by completeness
of E, there must be some Y ∈ E that defeats Ar on r. But then by (5) Y attacks
X as well. Moreover, since Ar is not strictly preferred over Y and r ≤ q for all
q ∈ RS

d (Ar) (by (17)), X is not strictly preferred over Y either (since r is also in
RS
d (X)). It follows that Y defeats X as well, contradicting conflict-freeness of E.

In view of Proposition 4 and (2), we have c(E) = c(|E|) for all E ∈ ε(A,Def).
Hence, |A| really does provide us with a normal-form representation of arguments
under strongly structural preference orderings, meaning also that the consistency
results in Theorem 4 and Corollary 1 apply to systems with such orderings. Hence,
the consistency results from [15] have been generalised.

7 Conclusion and summary of results
We have studied the relationship between preferences and consistency in structured
argumentation. Using the notion of an argumentation signature, we provided a
more general version of the reasonableness requirement from [12] (Definition 6).
We showed that this requirement ensures consistency for any argumentation sys-
tem that satisfies certain natural properties, formulated in terms of their signature
(Theorem 1). We then went on to consider argumentation systems with preferences,
focusing on the case when preferences over arguments are induced by orderings over
sets of arguments that are in turn lifted from orderings over defeasible rules. Our
signature-based reasonableness requirement was then related to the original notion
of reasonableness, which specifically addressed preferences (Proposition 1).

We then considered the elitist lifting principle, returning to the non-strict variant
used in the original version of [11], which was later replaced by strict elitist lifting in
an erratum. The notion of rationality was introduced, providing a terse and abstract

742



condition on argumentation systems, essentially lifting the idea behind the so-called
rationality postulates [3] to the order-theoretic level (Definition 10). Specifically,
rationality was shown to imply consistency of (non-strict) elitist lifting (Proposition
2). Using this preliminary result, we then provided sufficient conditions for consis-
tency in terms of more well-known and intuitive order-theoretic conditions, first for
weakest link lifting (Theorem 2), then with a stronger version for last link lifting,
applicable when only the last defeasible rule of every maximally fallible subargument
is taken into account when comparing the strength of arguments (Theorem 3).

Following up on this, we briefly considered a conceptual objection to elitist lifting.
We then showed that the disjoint lifting principle that has been proposed to deal with
conceptual problems can result in inconsistency even for linear rule-orderings (Ex-
ample 2). We then considered another recent proposal from the literature, whereby
rule-orderings are first reordered to take the structure of arguments into account,
before lifting principles are applied [15]. We formulated an abstract condition on
orderings that characterise the outcome of such a reordering, giving rise to what we
call structural rule-orderings (Eq. 16). We showed that disjoint lifting of a struc-
tural rule-ordering is always consistent, thereby explaining and generalising recent
work on such liftings [15, 10] (Theorem 4).

However, we also argued that the conceptual problem motivating disjoint lifting
is resolved independently (for a different reason) when structural rule-orderings are
used. Hence, we suggested that disjoint lifting might be a conceptual dead end.
Indeed, elitist lifting of a structural rule-ordering does not suffer from any obvious
conceptual shortcomings (that disjoint lifting can resolve). Following up on this, we
defined strongly structural rule-orderings and showed that weakest link and last link
lifting coincides for such orderings (Proposition 4). In our opinion, this suggests that
strongly structural rule-orderings are an interesting special case, where (non-strict
and non-disjoint) elitist lifting is conceptually well-behaved and ensures consistency
provided the rule-ordering satisfies one of the conditions identified in Theorem 3
(c.f., Theorem 1).

In future work, we would like to address other conceptual objections to elitist
lifting, including some addressed in [10] that we have not considered in this article.
More generally, we want to consider in more depth the merits and characteristics
of strongly structural rule-orderings. It seems to us that such orderings have nice
properties and should be investigated further. We also believe the signature-based
approach taken in this article is the appropriate way forward, allowing us to dis-
cuss the consistency problem abstractly, providing results that are more general and
(hopefully) more accessible than results obtained with respect to specific instantia-
tions and constructions.
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DEFINING ARGUMENT WEIGHING FUNCTIONS

THOMAS F. GORDON∗
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Abstract

Dung designed abstract argumentation frameworks [8] to model attack relations
among arguments. However, a common and arguably more typical form of human
argumentation, where pros and cons are weighed and balanced to choose among al-
ternative options, cannot be simply and intuitively reduced to attacks. [12] defined
a new formal model of structured argument which generalizes Dung abstract argu-
mentation frameworks to provide better support for argument weighing and balancing,
enabling cumulative arguments and argument accrual to be handled without causing an
exponential blowup in the number of arguments. Dung proposed a pipeline model of
argument evaluation for abstract argumentation frameworks, where first all the argu-
ments are evaluated and labeled, at the abstract level, and then, in a subsequent process,
the premises and conclusions of the arguments are labeled, at the structured argument
level. This pipeline model makes it impossible to make the weight of arguments de-
pend on the labels of their premises. To overcome this problem, in the new model of
[12] the weight of arguments and labels of statements can depend on each other, in a
mutually recursive manner. The new model is a framework which can be instantiated
with a variety of argument weighing functions. In this article, this feature is illustrated
by defining a number of argument weighing functions, including: 1) simulating linked
and convergent arguments, by making the weight of an argument depend on whether
all or some of its premises are labeled in, respectively; 2) making the weight of an ar-
gument depend on one or more meta-level properties of the argument, such as the date
or authority of the scheme instantiated by the argument; 3) modeling a simple form of
cumulative argument, by making the weight of an argument depend on the percentage
of its in premises; 4) making the weight of an argument depend on the percentage
of its in “factors”, from a set of possible factors, where premises represent factors;
and, finally 5) making the weight of an argument depend on a weighted sum of the in
properties of an option, in the style of multi-criteria decision analysis, where premises
model properties of an option.

Keywords: artificial intelligence, computational models of argument, multi-criteria decision
analysis
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1 Introduction

A wide class of human argumentation involves the weighing and balancing of pros and cons
to choose among a set of options, including practical reasoning about choosing a course of
action, theoretical argumentation both in natural science and the humanities, about which
theory is most coherent, factual argumentation about whether or not some claim about an
event is sufficiently supported by evidence, as well as reasoning about how best to interpret
some abstract (“open-textured”) concept in more concrete situations.

The leading computational model of argument, abstract argumentation frameworks [8],
was not designed to handle balancing arguments, but rather only to resolve attacks among
arguments, especially when attacks are cyclic, i.e. when arguments attack each other, di-
rectly or indirectly. Most of the leading models of structured argumentation [3, 16, 25]
are defined as preprocessors for an argument evaluator for abstract argumentation frame-
works, following a pipeline methodology proposed by Dung in [8, pg 348], in which an
abstract argumentation framework is first generated or constructed from domain knowledge
and then evaluated to determine which arguments are acceptable. In practice, structured
models of argument extend this pipeline with an additional process at the end, for labeling
the statements (propositions) in the structured model of argument. Typically, a statement is
acceptable (in) if and only if it is supported by an acceptable argument.

The linearity of this pipeline presents a problem when one wants to model balancing
arguments, since in general the weight of an argument can depend on the acceptability of its
premises and, recursively, the acceptability of the premises can depend on the weights of the
arguments supporting them. When balancing, pro and con arguments are weighed against
each other. An out premise can reduce or strengthen the weight of an argument, without
defeating it completely. For an example of reducing the weight of an argument, consider a
convergent argument from the testimony of multiple witnesses, where one or more of the
witnesses lied. That the failure of a premise can also strengthen an argument, increasing
its weight, may seem somewhat surprising or counterintuitive. But consider for example
a practical reasoning argument in favor of purchasing a particular car, where it is claimed
the car is moderately safe. But if it turns out that the car is actually safer than claimed, the
argument in favor of the car is strengthened, a fortiori.

In [12], Douglas Walton and I presented a structured argumentation framework with
support for both attacks and balancing, which preserves and models the recursivity of the
weighing and balancing process, in which the labels of arguments can depend on the labels
of statements, and vice versa. The model also formalizes issue-based information systems
[14], a leading informal model of argument designed to support practical reasoning and
decision-making. Issues have a set of options, statements representing alternative actions
or choices, where each option can be supported by arguments. The premises of arguments
can, recursively, be called into question by raising issues about them. Issues are resolved by
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applying proof standards, which are modeled as functions for aggregating the arguments and
selecting at most one option. The proof standards make use of argument weighing functions.
The framework can be instantiated with any number of weighing functions. Each argument
is associated with a weighing function, typically via the argumentation scheme used to
construct the argument.

The main aim of this article is to illustrate the concept and use of argument weighing
functions in the structured argumentation framework of [12]. Five example weighing func-
tions are defined, for: 1) simulating linked and convergent arguments, by making the weight
of an argument depend on whether all or some of its premises are labeled in, respectively;
2) making the weight of an argument depend on one or more meta-level properties of the
argument, such as the date or authority of the scheme instantiated by the argument; 3) mod-
eling a simple form of cumulative argument, by making the weight of an argument depend
on the percentage of its in premises; 4) making the weight of an argument depend on the
percentage of its in “factors”, from a set of possible factors, where premises represent fac-
tors; and, finally 5) making the weight of an argument depend on a weighted sum of the
in properties of an option, in the style of multi-criteria decision analysis, where premises
model properties of an option.

The rest of this article is organized as follows: the next section presents our formal
model of structured argument, with support for argument weighing and balancing. This is
followed by a section presenting the five examples of weighing functions, illustrating the
formal model. Next there is a section discussing some related work. The articles ends with
our conclusions and some ideas for future work.

2 Formalizing Argument Weighing and Balancing

In this section, the formal model of structured argument of [12], supporting argument
weighing and balancing, is presented. This section presumes some familiarity with other
formalizations of structured argument, in particular ASPIC+ [20]

2.1 Structure

Let L be a logical language for expressing statements (propositions). As in ASPIC+ [20],
this formal model of structured argument is a “framework”. It can be instantiated with any
logical language.

An argumentation scheme is an abstract structure (signature) in this framework provid-
ing functions for generating, validating and weighing arguments. The framework can be
instantiated with various argumentation scheme structures satisfying this signature. For our
purpose here of modeling balancing arguments, only the weighing functions of argumenta-
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tion schemes are relevant. See Definition 5 for the signature and further details of weighing
functions.

Definition 1 (Argument). An argument is a tuple (s,P,c,u), where:

• s is the scheme instantiated by the argument

• P, the premises of the argument, is a finite subset of L

• c, a member of L , is the conclusion of the argument, and

• u, a member of L , is the undercutter of the argument.

This model of argument closely fits the usual conception of an argument in informal
logic and argumentation theory in philosophy [31]. Notice that an argument here, unlike in
ASPIC+, is not a complete proof tree, but rather only a single inference step in such a proof
tree. Undercutters here are modeled in the same way as in ASPIC+, with a proposition in
L for each undercutter.1 In practice, these propositions will typically be constructed by
applying some predicate to a term naming the argument, such as undercut(a1). But this is
a detail to be worked out when instantiating the framework. Arguments which have under-
cutter statements as their conclusion are also called undercutters. Notice that the argument
includes a reference to the scheme used to construct (or reconstruct) the argument. This will
be used to weigh the argument.

Example 1. Following the tradition of [5], let us use as our running example a practical
reasoning task about choosing a car to buy. Let us assume that a domain-dependent argu-
mentation scheme for car buying has been defined, where the premises express the claimed
properties of a particular car, one for each of the criteria to be considered, and the weigh-
ing function of the scheme computes a weighed sum of the proven (not claimed) properties
of the car, where the weight assigned to each property by the scheme is chosen to reflect
the relative importance of the criterion, relative to the other criterion, in the manner of
multi-criteria decision analysis. Here is an example of an argument for a particular auto,
applying this scheme:

Let a5 = (s,P,c,u) be an argument for buying a Porsche, where:

• s is a car buying scheme, described in more detail in Section 3.5.

• P, the premises, are:

1There are three kinds of attacks in ASPIC+: 1) An undercutter attacks the applicability of an argument,
i.e. the link between the premises and the conclusion of the argument; 2) A rebuttal attacks the conclusion of
the argument, for example with an argument for a contrary conclusion; and 3) A premise defeater attacks a
premise of an argument.
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1. type(porsche,sports)

2. price(porsche,high)

3. safety(porsche,medium)

4. speed(porsche,fast)

• c, the conclusion, is buy(porsche), and

• u, the undercutter, is undercut(a5)

Definition 2 (Issue). An issue is a tuple (O, f ), where:

• O, the options (also called positions) of the issue, is a finite subset of L .

• f , the proof standard of the issue, is a boolean function which evaluates an option. If
the function, applied to the option, evaluates to true, the option is said to satisfy the
proof standard. See Definition 6.

Issues are inspired by Issue-Based Information Systems (IBIS) [14]. They extend the
concept of a “contrary” in the ASPIC+ model of structured argument, from a binary relation
to an n-ary relation. Allowing more than two options is important for two reasons:

1. To allow more than two alternative options in deliberation dialogues and other
decision-making contexts.

2. To avoid false dilemmas, by allowing alternatives other than true or false (or yes or
no).

A common example used to illustrate false dilemmas is the issue “Have you stopped
beating your spouse?” If you answer “yes”, this suggests that you had been beating your
spouse previously. If you answer “no”, this suggests you are still beating your spouse. Thus,
it is useful to be able to assert a third option meaning “I have never beat my spouse.”

Proof standards of issues are borrowed from the 2007 version of Carneades [11]. Asso-
ciating proof standards with issues is designed to assure that the same proof standard applies
to every position of the issue.

Definition 3 (Argument Graph). An argument graph is a tuple (S,A, I,R), where:

• S, the statements of the argument graph, is a finite subset of L .

• A, the assumptions, is a subset of S, where each statement in A is assumed to be
provable or acceptable to the relevant audience without requiring proof.
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• I, the issues of the argument graph, is a finite set of issues, where every position of
every issue is a member of S and no s ∈ S is a position of more than one i ∈ I, and

• R, the arguments of the argument graph, is a finite set of arguments, where all con-
clusions, premises and undercutters are members of S.

The restriction requiring each statement to be a position of at most one issue may seem
limiting, but this limitation, if it is one, holds also in prior models of structured argument,
where implicitly all issues are Boolean, with just two contrary positions, for example P and
¬P. That is, every pair of contraries are in effect positions of exactly one issue in these
systems. We have generalized issues to allow for more than two positions (options), but
have retained the restriction that every statement is a position of at most one issue.

Argument graphs are called graphs for historical reasons. Admittedly this a bit of an
abuse of terminology. But every argument graph (S,A, I,R) can be easily mapped to a
directed graph (V,E) as follows:

• The vertices, V , of the graph consist of the statements (S), issues (I) and arguments
(R) of the argument graph.

• The edges, E, of the graph are constructed by linking arguments in A to their premises,
conclusions and undercutters in S, and issues in I to their options in S, in the obvious
way.

In most other models of structured argument, argument graphs for structured arguments
are not formally defined. In [3], Besnard and Hunter use the term “argument graph” as a
synonym for abstract argumentation frameworks. In ASPIC+ arguments are proof trees.
Sets of such arguments are often visualized in ASPIC+ presentations as an argument graph,
where each argument is a subgraph of the argument graph, but the argument graph per se is
not a part of the formal ASPIC+ model.

Example 2. Figure 1 shows an argument graph for the car buying example, with an ar-
gument for buying a Porsche and another argument for buying a Volvo. The labels of the
statement nodes, displayed with colors, and arguments, displayed as numbers (weights) on
the edges from the arguments to their conclusions, are explained in Section 2.2. The proof
standard “PE” used by both issues, means “preponderance of the evidence” and is also
defined in Section 2.2. Undercutters are visualized with dashed edges.

2.2 Semantics

The semantics of argument graphs is defined here in a way inspired by and analogous to
the labeling semantics of abstract argumentation frameworks [2], but without mapping ar-
gument graphs to abstract argumentation frameworks.
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Figure 1: Example Argument Graph

Definition 4 (Labeling). A labeling is a total function from L to {in,out,undecided}.
Notice that statements, not arguments, are labeled in, out, or undecided here, unlike

the labeling semantics for abstract argumentation frameworks. Arguments here are labeled
by their weights, as described below.

Example 3. In the argument graph diagram (argument map) shown in Figure 1, the state-
ments shown in green and red are labeled in and out, respectively. All other statements
in L are, by default, labeled undecided. The underlined statements are in because they
are assumptions. The undercutters are out because they are not supported by any argu-
ments and have not been assumed. The safety(volvo,medium) position of issue i2 is in,
because it is supported by a stronger argument, with a weight of 0.8, than the argument
supporting the other position of the issue, safety(volvo,high), and issue i2 is using the
preponderance of the evidence proof standard. Finally, the buy(volvo) position of issue
i1 is in, rather that the buy(porsche) position, because the car buying scheme uses a
multi-criteria decision analysis weighing function to balance the attributes of the cars.

Now we are in position to define weighing functions of argumentation schemes more
precisely.

Definition 5 (Weighing Function). A weighing function maps (labeling×argument graph
× argument) tuples to normalized weights, real numbers in the range of 0.0 to 1.0. Every
weighing function must assign the weight of 0.0 to an argument in a labeling if its under-
cutter is in in the labeling.

Notice that the weight of an argument can depend on:
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• the labeling

• properties of the argument graph, including but not limited to properties of other
arguments about the same issue

• properties of the argument, such as the scheme applied

It is the potential dependence of the weight of an argument on the labeling of statements
in the argument graph which makes it unclear how this model could be mapped to the
pipelined evaluation model of abstract argumentation frameworks, where the labeling of all
statements takes place at the end of the pipeline, after all the arguments have been labeled.
Not all weighing functions may be sensible. An interesting project for future work might be
to define further rationality constraints for weighing functions, in addition to assuring that
undercut arguments weigh 0.0.

Several examples of weighing functions are in Section 3.

Definition 6 (Proof Standard). A proof standard is a mapping from (labeling× argument
graph× statement) to {true, false}. A statement s satisfies a proof standard, f , given a
labeling l and argument graph AG, iff f (l,AG,s) = true. Since proof standards are used to
justify decisions, a proof standard may allow at most one position of an issue to satisfy the
standard.

Example 4. The preponderance of evidence proof standard can be defined as follows: a
position of an issue satisfies the preponderance of evidence standard in an argument graph
AG, if and only if there exists an argument in AG for this position (i.e. having this position
as its conclusion) which weighs more than every argument in AG for every other position
of the same issue, where the weight of an argument, ai, is derived by applying the weighing
function of the argumentation scheme of ai to (l,AG,ai).

Definition 7 (Applicable Argument). An argument r ∈ R is applicable in a labeling l if and
only if:

• The undercutter of r is in or

• The undercutter of r is out in l and every premise of r is not undecided in l.

Notice that premises of an argument need not be in for the argument to be applicable.
Premises that are out can weaken or strengthen the argument, without causing it to be-
come inapplicable. Also, somewhat unintuitively, an argument can be applicable even if its
undercutter is in. Undercut arguments have zero weight. (See Definition 5.)

Example 5. In the argument graph shown in Figure 1, all of the arguments are applicable,
since all of their undercutters are out and none of their premises are undecided.
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Definition 8 (Supported Statement). Let AG be the argument graph (S,A, I,R), l be a label-
ing and s be a statement in S. s is supported by AG iff there exists an argument r ∈ R such
that

• s is the conclusion of r,

• r is applicable in l, and

• w(l,AG,r)> 0.0, where w is the weighing function of the scheme of r.

In other words, a statement is supported if it is the conclusion of an applicable argument
weighing greater than 0.0. Note that a supported statement is not necessarily labeled in in
l.

Example 6. In the argument graph shown in Figure 1 the supported statements are

• safety(volvo,medium),

• safety(volvo,high),

• buy(volvo) and

• buy(porsche).

Definition 9 (Unsupported Statement). Let l be a labeling, AG be the argument graph
(S,A, I,R) and P be the subset of the arguments R having a statement s as their conclusion.
s is unsupported by the argument graph iff

• P is empty or

• for every argument r ∈ P: r is applicable in l but the weight of r in l is 0.0, i.e.
w(l,AG,r) = 0.0, where w is the weighing function of the scheme of r.

That is, a statement is unsupported if every argument for this statement (i.e. having this
statement as its conclusion) is applicable but with a weight of 0.0. Note that supported and
unsupported are not duals: A statement can be neither supported nor unsupported.

Definition 10 (Resolvable Issue). Let (S,A, I,R) be an argument graph. An issue i ∈ I
is resolvable in a labeling l, if for every position p of i: every argument r ∈ R with the
conclusion p is applicable in l.

The basic intuition here is that an issue in an argument graph is ready to be resolved
in a labeling, if the labeling provides enough information to evaluate every argument for
every position of the issue. It may be that no position of a resolvable issue satisfies its proof
standard. Thus being resolvable does not imply that some position of the issue is in.
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Example 7. Both issues of the argument graph shown in Figure 1 are resolvable.

Definition 11 (Conflict Free Labeling). Let AG be an argument graph (S,A, I,R). A labeling
l is conflict free with respect to AG iff, for every statement s ∈ S:

• if s ∈ A then l(s) 6= out

• if s 6∈ A and s is unsupported in l then l(s) 6= in

• if s is not a position of some issue i ∈ I and s is supported in l then l(s) 6= out

• if s is a position of some issue i ∈ I such that i is resolvable in l and s does not satisfy
the proof standard of i then l(s) 6= in

• if s is a position of some issue i ∈ I such that i is resolvable in l and s satisfies the
proof standard of i then l(s) 6= out

The concept of conflict-freeness here is analogous to conflict-freeness in abstract ar-
gumentation frameworks. The purpose is to define constraints which must be satisfied by
every labeling of an argument graph. The constraints tell us what the labels may not be, but
do not tell us what they must be. Labeling a statement undecided is always permitted. So,
more precisely, the constraints tells us when a statement may not be in or out:

• Assumptions may not be out.

• An unsupported statement which is not an assumption may not be in.

• If a supported statement is not at issue, it may not be out.

• If an issue is resolvable and some position of the issue does not satisfy the proof
standard of the issue, then the position may not be in.

• If an issue is resolvable and some position of the issue satisfies the proof standard of
the issue, then the position may not be out.

Inspired also by abstract argumentation frameworks, we define the semantics of argu-
ment graphs using fix-points of a characteristic function:

Definition 12 (Characteristic Function). Let AG be an argument graph (S,A, I,R). The
characteristic function of the argument graph, fAG : labeling→ labeling, is defined as fol-
lows:
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f AG(l) =
let m be the resulting labeling
for each s ∈ S:

if l(s) 6= undecided then m(s) = l(s)
else if s ∈ A then m(s) = in
else if s is unsupported in l

then m(s) = out
else if s is not a position of some issue and s is supported in l

then m(s) = in
else if s is a position of some issue i ∈ I such that

i is resolvable in l and s does not satisfy the proof standard of i
then m(s) = out

else if s is a position of some issue i ∈ I such that
i is resolvable in l and s satisfies the proof standard of i
then m(s) = in

else m(s) = l(s)

The basic intuition behind this characteristic function is that it is intended to complete a
labeling of an argument graph, relabeling some or all undecided statements to in or out, as
much as possible in a “single step”. The characteristic function can be applied repeatedly
(iteratively) until a fix-point is found, i.e. where f (l) = l.

Fix-point semantics requires the characteristic function to be monotonic:

Definition 13 (In and Out Statements of a Labeling; Extensions). Given an argument graph
(S,A, I,R) and a labeling l, let i(l), called the extension of the argument graph in l, denote
the subset of S labeled in in l and o(l) denote the subset of S labeled out in l.

Lemma 1 (Preservation of Conflict Freeness by the Characteristic Function). The charac-
teristic function preserves the conflict freeness of a labeling. That is, for every labeling l,
fAG(l) is not conflict free only if l is not conflict free.

Proof. Let l be a conflict free labeling. Since fAG does not change the labeling of a decided
statement, fAG(l) is not conflict free only if some statement s which is undecided in l fails
to satisfy some constraint in the definition of conflict freeness in fAG(l). Let us assume
that fAG(l) is not conflict free and prove the lemma by contradiction. Then there must be
some clause in the definition of the characteristic function which can assign an undecided
statement a label which is not admissible in the definition of conflict freeness. There is no
such clause. �

Theorem 1 (Monotonicity of the Characteristic Function). Let us overload⊆ to also denote
a preorder on labelings, where l1 ⊆ l2 iff i(l1)⊆ i(l2) and o(l1)⊆ o(l2). The characteristic
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function f is monotonic, preserving this order: for every conflict-free labeling l1 and l2, if
l1 ⊆ l2 then fAG(l1)⊆ fAG(l2).

Proof. Let l1 and l2 be conflict free labelings such that l1 ⊆ l2. Thus, for every statement
s, if s is in in l1 then it is also in in l2 and if s is out in l1 then it is also out in l2. The
characteristic function never changes the label of an in or out statement. That is, for every
label l, if l(s) 6= undecided then fAG(l)(s) = l(s). Thus, if s is in in l, then s is in in
fAG(l) and if s is out in l, then s is out in fAG(l). Let us assume that fAG(l1) 6⊆ fAG(l2)
and prove the theorem by contraction. There must be some undecided statement s in l1
which is not undecided in fAG(l1) and for which fAG(l1)(s) 6= fAG(l2)(s). According to
the definition of the characteristic function, there are five cases in which an undecided
statement s can become decided, when s is 1) an assumption; 2) unsupported; 3) supported
and not a position of some issue; 4) a position of a resolvable issue, where s satisfies the
proof standard of the issue; and 5) a position of a resolvable issue, where s does satisfy the
proof standard of the issue. In each case, if fAG(l1)(s) 6= fAG(l2)(s), then l2 is not conflict
free, by the lemma which states that the characteristic function preserves conflict freeness,
contradicting the assumption that it is conflict free. �

Finally, due to the monotonicity of the characteristic function, various fix-point seman-
tics of argument graphs can be defined, in a way similar but not identical to the semantics
of abstract argumentation frameworks:

Definition 14 (Fix-Point Semantics). Let AG be the argument graph (S,A, I,R). A labeling
l is:

• admissible if and only if l is conflict-free.

• complete if and only if l is admissible and fAG(l) = l, i.e. l is a fix-point of f .

• grounded if and only if l is complete and minimal, i.e. there does not exist a labeling
l′ such that l′ ⊂ l.

• preferred if an only if l is complete and maximal, i.e. there does not exist a complete
labeling l′ such that l′ ⊃ l.

One difference between this semantics and the semantics of abstract argumentation
frameworks is that admissible labellings are the same as conflict free labelings here, but
not in abstract argumentation frameworks.

Example 8. The grounded labeling of the argument graph of the running example is shown
in Figure 1. The in and out labels of statements are shown by filling the boxes of the
statements with green and red color, respectively. (No statements are undecided in the
grounded labeling of this argument graph.)
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The formal model has been fully implemented in Version 4 of the Carneades Argumen-
tation System. Carneades is open source software, published using the MPL 2.0 license.2

Carneades can be used as a command line program or as a web application. You can try out
the web version online using the Carneades server.3 All of the figures for the examples in
this article were generated using this implementation.

3 Example Weighing Functions

Recall that weighing functions (Definition 5) have the signature:

labeling× argument graph× argument 7→ 0.0...1.0

The argument referred to in the signature is the one being weighed. Recall also that weigh-
ing functions are constrained to assign the weight of 0.0 to an argument in a labeling if
its undercutter is in in the labeling, where a labeling is a mapping from statements in the
language, L , to {in, out, undecided}. Again, notice that the weight of an argument may
depend on the labels of any statements in the argument graph, not just its own premises.

This section presents several useful weighing functions matching this signature. We
begin by defining weighing functions for simulating linked and convergent arguments from
informal logic in philosophy [31].

3.1 Linked and Convergent Arguments

In informal logic, a linked argument has weight only if all of its premises are acceptable
(presumptively true) and a convergent argument has weight only if some premise is accept-
able. That is, linked and convergent arguments work similar to conjunction and disjunction
operators in propositional logic.

Let premises(a,g) denote the set of premises and undercutter(a,g) denote the under-
cutter statement of the argument a in the argument graph g. Now, weighing functions for
linked and convergent arguments can be formally defined as follows:

linked(l,g,a) =

{
1.0 l(undercutter(a,g)) 6= in∧∀p ∈ premises(a,g).l(p) = in,
0.0 otherwise.

(1)

convergent(l,g,a) =

{
1.0 l(undercutter(a,g)) 6= in∧∃p ∈ premises(a,g).l(p) = in,
0.0 otherwise.

(2)
2https://github.com/carneades/carneades-4
3http://carneades.fokus.fraunhofer.de/carneades
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Figure 2: Example of Linked and Convergent Arguments

3.2 Cumulative Arguments

Intuitively, a cumulative argument is an argument whose strength increases with the number
of its acceptable premises: the greater the number of premises of the argument which are
acceptable, the greater the weight of the argument.

Carneades, the Greek skeptic philosopher, gave an early example of a cumulative argu-
ment [32], about whether a coiled object in a dark cave is a rope or a snake. He proposed a
three-pronged test for deciding whether or not the object is a snake: 1) First, check whether
the object looks like a snake; 2) then prod the object with a stick to see if it moves; 3) and
finally, jump over the object, again to see if it moves. The greater the number of these tests
with positive results, the stronger the presumption that the object is a snake.

Cumulative arguments are special case of argument accrual [27, 19]. Whereas ac-
crual can both strengthen or weaken arguments, cumulation can only strengthen arguments.
While there have been efforts to formally model accrual [27, 19], it remains unclear how
the weight of a cumulative argument should be affected by the defeat of one or more of
its premises. Here, for the sake of illustrating argument weighing functions, we take a
straightforward but perhaps too simplistic approach, where the weight of a cumulative ar-
gument depends on the proportion of its premises which are acceptable. A more satisfying
approach might make use of probability theory [29, 30], but such an approach would of
course have the disadvantage of requiring more domain knowledge about probabilities and
dependencies.

Here is the formal definition of this simple weighing function for cumulative arguments:

cumulative(l,g,a) =

{
0.0 l(undercutter(a,g)) = in,
r otherwise.

(3)

where

r =
|{p ∈ premises(a,g).l(p) = in}|

|premises(a,g)| (4)

Figure 3 shows an argument map for the snake or rope example, with two cumulative
arguments, one supporting the conclusion that the object is a rope and the other supporting
the conclusion that the object is a snake. Whereas the rope passes all three of the test
proposed by Carneades, the Greek philosopher, the snake passes only one of the tests. Thus,
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the argument for the rope is stronger, with a weight of 1.0, because all three of its premises
are in, whereas the argument for the snake is weaker, with a weight of only 0.33, because
only one of its three premises is in.

Figure 3: Snake or Rope Example of a Cumulative Argument

3.3 Factorized Arguments

Henry Prakken illustrated the idea of argument accrual with an example about jogging [19].
Some jogger doesn’t like to run when it is hot or raining, exclusively, but does like to run
when it is both hot and raining. This example illustrates a form of accrual which does not
seem to be cumulative, since the conclusion switches from not jogging to jogging, rather
than strengthening the argument for not jogging, when a further premise, raining or hot,
becomes (presumptively) true.

Figure 4 shows an argument map for the jogging example. What we want is a weighing
function which makes jogging in when it is both hot and raining, but for not jogging to
be in, instead, when it is either hot or raining, but not both. There are three arguments
in the diagram, one for not going jogging when it is raining (a1), another for not going
jogging when it is hot (a2), and a third one for going jogging when it is both hot and raining
(a3). If these arguments were weighed using the cumulative weighing function, defined in
Section 3.2, then all three arguments would have the same weight, 1.0, because 100% of
the premises of all three arguments are in. And thus there would no reason for preferring
jogging to not jogging and both options would be out.

The solution idea is to define a weighing function based on the complete set of factors to
consider when evaluating each of the options, where each factor is modeled as a statement
(proposition). In the jogging example, the set of factors is {hot, raining}. The weight of
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Figure 4: Jogging Example of Factorized Arguments

an argument for some option is then measured as the proportion of the factors which are in
premises of the argument.

Let factors(a,g) denote the set of factors of the argument a in the argument graph g.
Now the factorized weighing function can be formally defined as follows:

factorized(l,g,a) =

{
0.0 l(undercutter(a,g)) = in,
r otherwise.

(5)

where

r =
|{p ∈ premises(a,g).l(p) = in}|

|factors(a,g)| (6)

Notice that determining these factors requires traversing the graph from the argument to
the issue of the argument and then computing the union of the premises of all the arguments
for all of the options of the issue. The issue of an argument is two edges (links) away
from the argument in the graph, and the premises of the arguments for each option of the
issue are three edges away from the issue in the graph. Thus this method of calculating the
weight of an argument cannot be straightforwardly modeled using structured argumentation
frameworks such as Abstract Dialectical Frameworks [6], in which the value of a node
depends only on its immediate predecessors in a directed graph.

It is possible to reconstruct the jogging example using only cumulative arguments, as
shown in Figure 5. The trick is to add further premises to the arguments for not going
jogging, for the negation of the other factor; that is, by adding ¬hot as a premise to the
argument for not going jogging when it is raining, and adding ¬raining as a further premise
to the argument for not going jogging when it is hot. Moreover, we also need to add two
issues to the argument graph, for each of the pairs of complements, {raining,¬raining} and
{hot,¬hot}. We leave it up to the reader to decide which approach to modeling the jogging
example is more straightforward and intuitive. Surely the version of the argument graph
using the factorized weighing function has fewer nodes, with only half as many premises
and one third as many issues. Our purpose here is only to illustrate a variety of possible
argument weighing functions.
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Figure 5: Jogging Example Reconstructed to Use Cumulative Arguments

3.4 Using Metadata to Weigh and Sort Arguments

In the law, the weight of a legal argument can depend on meta-level properties of the argu-
ment, or the argumentation scheme used to construct the argument, such as date of enact-
ment of some norm (e.g. rule of law or precedent court case), or the level of authority of
the norm in a hierarchical system of authorities (e.g. federal or state law). The law provides
principles for resolving these conflicts: lex superior gives priority to norms from higher
authorities and lex posterior gives priority to later norms. (A further principle, lex specialis,
gives priority to more specific norms.) Moreover, it may be necessary to order these prin-
ciples, for example to resolve conflicts between earlier federal law and later state law by
giving priority to lex superior over lex posterior.

Prior work on computational models of argument has approached this problem by sup-
porting meta-level argumentation about argument weights or preference orderings [9, 21,
15]. Here we present an alternative approach, using weighing functions to sort arguments
based on meta-level properties of the arguments.

Let us model metadata as functions (maps) from property names to values, i.e. functions
of the type string 7→ any. Let metadata(a,g) denote the metadata of the argument a in the
argument graph g.

Next, we need a way to order arguments based on their metadata. Let us model this
order as a sequence of pairs, where each pair consists of the name of a property and either
an implicit order (ascending or descending) or an explicit order (a sequence of property
values). The order of the sequence is significant: Properties earlier in the sequence have
priority over later properties.

Using this approach, we can model the ordering of legal arguments using the principles
of lex superior and lex posterior as follows. There are two properties: authority and date.
The domain of the authority property, i.e. its possible values, is the extensionally defined
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set {federal,state}. The domain of the date property is, of course, the infinite set of dates.
Now we can define the legal ordering, >lex, as follows:

>lex= [(authority, [federal,state]),(date,ascending)] (7)

This ordering models lex superior by giving federal law priority over state law, using
an explicit ordering of the two property values, and models lex posterior using an implicit,
ascending order, giving later dates priority over earlier dates. The ordering also gives lex
superior priority over lex posterior, as desired, since the authority property is ahead of the
date property in the sequence.

Now we can use this ordering to sort arguments into equivalence classes, where all
arguments in a class have the same priority. That is, no argument in a class is preferred
to any other argument in the same class. Let us define a helping function for this purpose,
named sort, with the following signature:

(order, issue,argument graph) 7→ [2argument] (8)

The sort function maps an order, issue and argument graph into a sequence of sets of
arguments. More precisely, its sorts all the arguments for options of the given issue into a
sequence of sets of arguments, where the arguments in each set all have the same priority
and the arguments in sets later in the sequence have priority over arguments earlier in the
sequence.

Now we just need a way to assign weights to these arguments which preserves the
ordering. One simple way to do this is to let the weight equal the 1-based index of the set
containing the argument, divided by the number of sets in the sequence. This assures that
arguments in the last set in the sequence, the strongest arguments, have a weight of 1.0.
Conversely, if there are ten sets in the sequence, arguments in the first set of the sequence
will have a weight of 0.1. Let w(a,S) denote the weight of an argument a in a sorted
sequence S, defined in this way.

sorted(l,g,a) =

{
0.0 l(undercutter(a,g)) = in∨∃p ∈ premises(a,g).l(p) 6= in
r otherwise.

(9)

where
r = w(a,sort(order(a,g), issue(a,g),a)) (10)

In Equation 10, order(a,g) denotes the order applicable to the argument a in the argu-
ment graph g, and issue(a,g) denotes the issue of the argument a in g.

Like all weighing functions, by definition, the sorted weighing function assigns a weight
of 0.0 to arguments which have been undercut. And, like the linked argument weighing
function, it also assigns zero weight to an argument if any of its premise are not in.
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Figure 6 shows an argument map illustrating the use of the sorted weighing function,
using a simple, fairly abstract legal example. The issue is whether a crime has been com-
mitted for consuming cannabis. It has been assumed that cannabis has been consumed, so
the facts of the case are not at issue. The only issue is whether cannabis consumption is
illegal. According to some “earlier federal law”, it is illegal, but according to some “later
state law”, it is not illegal. The same sorting weighing function has been assigned to both
of these argumentation schemes and thus, indirectly, to the arguments instantiating these
schemes, arguments a1 and a2 in the figure. This sorting weighing function gives lex supe-
rior priority over lex posterior. Thus, as we can see in the figure, it is presumptively true
that a crime has been committed.

Figure 6: Legal Example of How to Sort Arguments Using Metadata

3.5 Multi-Criteria Decision Analysis

Finally, in our last example of how to define argument weighing functions we show how to
use this argumentation framework to realize a form of multi-criteria decision analysis. For
this purpose, we reuse the example about choosing a car to buy, shown in Figure 1.

The weighing function of the car buying scheme in this example computes a weighted
sum of the proven (not claimed) properties of an option, where the proven properties are
represented by the in premises of the argument. For example, recall the example argument
for buying a Porsche, a5 = (s,P,c,u), where:

• s is the car buying scheme

• P, the premises, are:

1. type(porsche,sports)

2. price(porsche,high)

3. safety(porsche,medium)

4. speed(porsche,fast)

• c, the conclusion, is buy(porsche), and
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• u, the undercutter, is undercut(a5)

Each of the premises of the argument represent the value of some property of the
Porsche: type, price, safety and speed. The properties are encoded with binary atomic
formulas of the form property(object,value). Given an atomic formula of this form, let
property and value be functions for selecting the property and value of the formula, respec-
tively. For example:

property(type(porsche, sports)) = type (11)

and
value(type(porsche, sports)) = sports (12)

Given this convention for encoding properties, a multi-criteria decision analysis weigh-
ing function can be specified using a structure of the form:

([h1, ...,hn], [(s1,w1, [(q1,v1), ...,(qn,vn)]), ...,(sn,wn, ...)])

where each hi and si defines a hard constraint and soft constraint, respectively.
Each hard constraint, hi, is a predicate symbol denoting some property of the objects to

be compared which must be satisfied. To assure this, if a hard constraint of an argument is
not in in a labeling, the multi-criteria decision analysis weighing function assigns the argu-
ment zero weight. For example, when selecting a car to buy, satisfying safety regulations
might be a hard constraint. This hard constraint could be modeled with a unary predicate
legal. In the argument for buying a Porsche, this would be used by adding a premise
legal(porsche) as a hard constraint.

The soft constraints, s1, ...,sn, are used to compute the weighted sum of the remaining
properties, i.e. the properties which do not denote hard constraints. In a soft constraint, wi

is an integer denoting the relative weight (factor), not a percentage, of the property and the
(qi,vi) assign a numeric value vi, a real number in the range of 0.0 to 1.0, to the qualitative
value (term) qi of the property. That is, a soft constraint maps the symbolic values of the
property to quantities and assigns a relative weight to the constraint.

Let us illustrate this structure for representing weighted sums with the car purchasing
example. In this example, the pair of hard and soft constraints is ([],s), where s is

[(type, 2, [(sports,0.0),(sedan,0.5),(family,1.0)]),
(price, 2, [(low,1.0),(medium,0.5),(high,0.0)]),
(speed, 2, [(slow,0.0),(medium,1.0),(fast,0.5)]),
(safety, 4, [(low,0.0),(medium,0.5),(high,1.0)])]

(13)

The car purchasing example has no hard constraints, so the first element of the pair
is empty, []. There are four soft constraints (type, price, speed, and safety). They are all
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weighed with the same factor, 2, except for safety, which is deemed twice as important and
thus given a factor of 4. The absolute value of the factors is not relevant, just their relation
to the other factors. Using factors instead of percentages to model relative weights makes it
easier to add or delete properties, without having to reassign the weights or assure they add
up to 100. Notice that the value of the speed dimension is non-linear: Medium speed cars
are valued higher (1.0) than both slow (0.0) and fast (0.5) cars.

We are now ready to define the weighing function for multi-criteria decision analysis
(MCDA). Let hard(a,g) be the set of premises of the argument a in the argument graph
g representing the hard constraints; let soft(a,g) be the set of soft constraints of a in g;
and, for each soft constraint ci ∈ soft(a,g), let value(ci, l) denote the quantitative value of
the constraint ci which is in in the labeling l (which is not necessarily the value asserted
in a premise of the argument being weighed), factor(ci) denote the relative weight of the
constraint and sum(ci) denote the sum of the factors of the constraint.

mcda(l,g,a) =

{
0.0 l(undercutter(a,g)) = in∨∃p ∈ hard(a,g).l(p) 6= in
w otherwise.

(14)

where

w =
n

∑
i=1

factor(ci)

sum(ci)
×value(ci, l) (15)

Let us illustrate w by applying it to compute the weighted sum of the soft constraints of
the argument for buying a Porsche. The sum of the factors is 2+2+2+4 = 10. Thus we
have

0.0 = 2/10∗0.0 sports car
+ 0.0 = 2/10∗0.0 high price
+ 0.1 = 2/10∗0.5 fast speed
+ 0.2 = 4/10∗0.5 medium safety
= 0.3

(16)

Since there are no hard constraints and the argument has not been undercut, the weight
of the argument, 0.3, is the same as the value of w.

Figure 1 shows an argument map applying this MCDA argument weighing function
for the car-buying example. Notice that an issue has been made out of the premise of a4
stating that Volvos have medium safety, in issue i2. Had this issue been resolved in favor
of the other position of the issue, claiming that Volvos are not merely medium safe, but
rather highly safe, then the argument for buying the Volvo, a4, would have weighed more
than it does, 0.7. This illustrates that the failure of a premise can not only weaken an
argument, but also strengthen it, a fortiori. The example also illustrates how the weight of
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an argument, a4, can depend on the label of a statement, safety(volvo,medium), which in
turn (recursively) depends on weights of other arguments, a1 and a3, which is not possible
in a straightforward way using Dung’s pipeline model of abstract argument evaluation. (The
weights of arguments a1 and a3 have been assumed in the example. The weighing functions
used to derive these weights are unspecified.)

4 Related Work

The formal model of structured argument has been clearly inspired by Dung’s work [8], even
if it does not follow his recommended pipeline methodology. Rather, Dung’s approach, in
particular its use of fix-point semantics, has been used as a model and adapted to the purpose
of handling balancing arguments, in addition to attack relations among arguments.

Another source of inspiration for this work was ASPIC+ [20]. All three kinds of at-
tack relations supported by ASPIC+ (premise attacks, rebuttals and undercutters) are also
supported in this model. A question for future work is whether ASPIC+ can be simulated
using this new model. The new model appears to be both simpler and more expressive
than ASPIC+, considered as a whole, despite some elements of the new model being more
complex.

Abstract Dialectical Frameworks (ADFs) [6], may seem like a suitable foundation for
the new model, since they provide a convenient platform for defining a wide variety of
graph-based formalisms. However, ADFs evaluate and label nodes using functions attached
to nodes which depend only upon the parents of the nodes, i.e. the immediate predecessors
of the node in the directed graph. This does not appear to be general enough for the purposes
of the new model, as can be seen in the factorized and MCDA weighing functions, illustrated
with the jogging and car buying examples.

In his PhD thesis [26], Tom van der Weide developed a comprehensive formal model
of decision-making, based on computational models of argument, covering meta-level rea-
soning about attributes, values and utility functions, as well as deliberation procedures.
However, the thesis did not break new ground with respect to argument accrual, cumulative
arguments or methods for weighing arguments. Rather, van der Weide applied Prakken’s
approach to handling accrual [19] which is computationally and epistemologically less than
ideal, due to its causing an exponential blow-up in the number of arguments.

Finally, of course the model is derived from Gordon and Walton’s own prior work on
structured argumentation with Prakken [11] and preserves all of its features, including its
support for variable proof standards and its support for modeling the two kinds of critical
questions of argumentation schemes, using assumptions and exceptions. However the new
model is simpler and more general in several ways. The main additional complexity in
the new model is its introduction of a third node type for issues, in addition to statements
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and arguments. However this complexity is justified by enabling the new model to provide
better support for decision-making, in the style of issue-based information systems.

One important advantage of the new formal model is that argument graphs are now
much closer to the conceptual model underlying the argument diagrams typically used in
informal logic textbooks, such as [31]. This conceptual model underlies several argument
mapping tools, including Araucaria [23], and is also the basis for the Argument Interchange
Format (AIF) [22]. Version 4 of Carneades, based on the new model presented here, can
import and evaluate AIF files.

Let us now turn to prior work on formal models of argument weights. Qualitative Value
Logic [5], which first introduced the car-buying example, extended Brewka’s Preferred Sub-
theories approach to nonmonotonic logic [4], with an evaluation function for weighing de-
faults and showed how to use this logic to support multi-criteria decision making. The
evaluation function assigned weights to the default rules and could not depend, recursively,
on the set of propositions entailed by the default theory.

The Zeno Argumentation Framework [10] presented a formal model of structured argu-
ment for supporting practical reasoning, inspired by issue-based information systems [14].
The model defined dialectical graphs, consisting of issues, propositions (called “positions”)
and pro and con arguments, where an issue is a set of propositions, representing options,
and a set of qualitative constraints on the weights of propositions. Essentially, arguments
were weighed and ordered by solving these constraints. Zeno was more limited than the
model presented here in a couple of ways: 1) Every argument was limited to having exactly
one premise, so the weight of an argument determined the weight of its premise; and 2)
dialectical graphs were not permitted to contain cycles. One the other hand, Zeno supported
meta-level argumentation about the constraints, which would be comparable to supporting
arguments about the weighing functions, which is not supported by the model presented
here. This additional expressiveness of Zeno was enabled by the restriction to acyclic di-
alectical graphs.

Reason-Based Logic [13, 28] resolved conflicts among arguments, called reasons, by
accruing and weighing sets of arguments for each option. The model did not include a
formalization of weighing functions, but rather assumed the sets of arguments could be
weighed in some fashion to produce a priority relation provided as input to the argument
evaluation process. As noted by Siekmann [24], Reason-Based Logic does not provide
a way to make weights of arguments depend on the evaluation of arguments about the
premises of the arguments to be weighed. We agree with Siekmann [24, p. 213] that,
in general, “arguments to be balanced are not only the objects of, but also reasons guiding,
the balancing process.” The model of argument weighing and balancing presented here
provides this capability.

Amgound and Prade [1] developed a method for using abstract argumentation frame-
works to support decision-making. This work extends a Dung abstract argumentation frame-
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work with a set of options, modeling the set of alternatives under consideration, and pro-
poses a two-step decision procedure: 1) pro and con arguments for the options are first
evaluated using Dung abstract argumentation frameworks; and, 2) the options are then com-
pared, pair-wise, and ordered, using various “decision principles”. These decision princi-
ples come closest to the concept of weighing functions presented here. One such principle
prefers the option with the greatest number of pro arguments. Another principle prefers
the option whose con arguments are all weaker than at least one con argument of the other
option. Further principles take into consideration both pro and con arguments. Finally,
multi-criteria decision analysis is simulated using aggregation functions for computing a
weighted sum of pro and con arguments. Because [1] applies Dung’s pipeline model of
argument evaluation, it does not handle decision problems in which the acceptability of an
argument for some option depends on applying argumentation, recursively, to first resolve
an issue about some premise.

Ouerdane, et al., [18] presents a fairly elaborate argumentation-based process model of
multi-criteria decision-making. The model applies multi-criteria decision analysis to evalu-
ate and compare options as well a formal model of structured argument for reasoning about
the properties of the options. Conflicts among arguments are resolved using meta-level
priority rules, which serve as weighing functions. Thus, this work has much in common
with [1], which they cite, in that argumentation and decision-making are separate tasks of
a procedural model in both. Our work, on the other hand, aims to integrate multi-criteria
decision analysis into a formal model of structured argumentation.

Finally, Müller and Hunter [17] developed another decision-making model integrating
argumentation and multi-criteria decision analysis. The model is also similar in spirit to
[1], in that it models argumentation about the properties of options and the evaluation and
comparison of the options, using multi-criteria decision analysis, separately. Müller and
Hunter use a simplified version of ASPIC+ [20], without undercutters4, to generate options
and properties of options, using a rule base, as well as to evaluate the resulting arguments,
using grounded semantics. The results of the argumentation process are then fed into a
decision analysis process to compare the options. The options are weighed and ordered by
the number of goals they satisfy in the grounded extension. Thus, this is another pipeline
model where argumentation precedes decision analysis. The results of the decision analysis
can have no impact on the evaluation of the arguments and thus the arguments may not
raise any practical issues which need to be resolved via decision analysis. (In real-life
practical reasoning, a decision may depend on other decisions. For example, when planning
a vacation, the choice of hotel can depend on the choice of location.) Moreover, the system
uses a fixed weighing procedure for comparing options, rather than providing a framework
which can be instantiated with various weighing functions, as in our system.

4Caution: "Hunter calls attacks on premises in ASPIC+ undercutters.
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5 Conclusion

This article illustrated the concept of weighing functions in a formal model of structured
argument with support for balancing arguments. Five example weighing functions were
presented, for 1) simulating linked and convergent arguments, by making the weight of
an argument depend on whether all or some of its premises are labeled in, respectively;
2) making the weight of an argument depend on one or more meta-level properties of the
argument, such as the date or authority of the scheme instantiated by the argument; 3)
modeling a simple form of cumulative argument, by making the weight of an argument
depend on the percentage of its in premises; 4) making the weight of an argument depend
on the percentage of its in “factors”, from a set of possible factors, where premises represent
factors; and, finally 5) making the weight of an argument depend on a weighted sum of the
in properties of an option, in the style of multi-criteria decision analysis, where premises
model properties of an option.

The model can handle cumulative arguments [32] and argument accrual [19] without
causing an exponential blow-up in the number of arguments. While the model does not
map structured arguments to abstract arguments, it is inspired by the fix-point semantics
of abstract argumentation frameworks and uses comparable methods to handle and resolve
cycles in argument graphs. The formal model has been fully implemented in Version 4 of
the Carneades argumentation system, for grounded semantics. All of the figures for the
examples in this article were generated using this new version of Carneades.

New in this article is the proof of the monotonicity of the characteristic function of
argument graphs, which was left as a conjecture in [12].

Some ideas for future work include formally investigating relationships between this
model and other models of structured argument, in particular ASPIC+. Another idea would
be to investigate whether or not Caminada’s rationality postulates for structured argumen-
tation [7], e.g. closure, direct consistency and indirect consistency, are meaningful in the
context of this model and, if so, whether they are satisfied.

The model of structured argument presented in [12] provides a framework which can be
instantiated with arbitrary argument weighing functions, but not all weighing functions may
be sensible or rational. This paper illustrated how the framework can be instantiated with a
variety of argument weighing functions for various purposes, but it remains for future work
to develop rationality constraints for weighing functions or to formally investigate the prop-
erties of various weighing functions. The rationality constraints may depend on the task or
dialogue type. Moreover, the current model allows different argument weighing functions
to be applied within the context of a single issue, without restrictions. This seems too un-
constrained. Perhaps a concept of issue schemes is required, comparable to argumentation
schemes, for restricting the allowed schemes of arguments put forward about options of
each kind of issue, and thus indirectly restricting the argument weighing functions which
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may be used in arguments for each kind of issue.
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