
V
o
lu

m
e
 5

 Is

s
u
e
 1

 F

e
b
ru

a
ry 2

0
1
8

The IfColog Journal of Applied Logics

Journal of
Applied Logics
The IfCoLog Journal of Logics and their Applications

ISSN PRINT 2055-3706
ISSN ONLINE 2055-3714

Published bySponsored by
Available online at

www.collegepublications.co.uk/journals/ifcolog/

Free open access

Contents
Articles
Editorial
Dov Gabbay and Jörg Siekmann 1
Possibilistic Reasoning from Partially Ordered Belief
Bases with the Sure Thing Principle
Claudette Cayrol, Didier Dubois and Fayçal Touazi 5
Characterization of a New Subquasivariety of
Residuated Lattice
Saeed Rasouli, Zeinab Zarin and Abass Hasankhan 41
Tuning the Program Transformers from CC to PDL
Pere Pardo, Enrique Sarión-Morrillo, Fernando Soler-Toscano
and Fernando R.Velázquez-Quesada 71
Lighthouse Principle for Diffusion in Social Networks
Sanaz Azimipour and Pavel Naumov 97
A Labelled Sequent Calculus for Half-order Modal Logic
Romas Alonderis and Jurate Sakauskaite 121
On Epicomplete MV-algebras
Anatolij Dvurecenskij and Omid Zahiri 165
Paraconsistent Rule-based Reasoning with Graded
Truth Values
Francesco Luca De Angelis, Giovanna Di Marzo
Serugendo and Andrzej Szałas 185
Paracomplete Logic K1 — Natural Deduction,
its Automation, Complexity and Applications
Alexander Bolotov, Danil Kozhemiachenko and Vasilyi Shagin 221
Suzumura Consistency, an Alternative Approach
Peter Schuster and Daniel Wessel 263
Maximum Entropy Models for Σ1 Sentences
Soroush Rafi ee Rad 287
Elementary Unifi cation in Modal Logic KD45
Philippe Balbiani and Tinko Tinchev 301
Probabilistic Formal Verifi cation of Communication
Network-based Fault Detection, Isolation and Service
Restoration System in Smart Grid
Syed Atif Naseem, Riaz Uddin, Osman Hasan and Diaa E. Fawzy 319
Elementary-base Cirquent Calculus I: Parallel
and Choice Connectives
Giorgi Japaridze 367
Boolean-valued Models as a Foundation for
Locally L0-Convex Analysisand Conditional Set Theory
Antonio Avilés and José Miguel Zapata 389
About Relationships Between two Individuals
Robert Demolombe 421
On the Lattice of the Subvarieties of Monadic MV (C)-algebras
Antonio Di Nola, Revaz Grigolia and Giacomo Lenzi 437

Volume 5 Issue 1 February 2018

Journal of Applied Logics - IfCoLog
Journal of Logics and their Applications

Volume 5, Number 1

February 2018

Disclaimer
Statements of fact and opinion in the articles in Journal of Applied Logics - IfCoLog Journal of
Logics and their Applications (JAL-FLAP) are those of the respective authors and contributors and
not of the JAL-FLAP. Neither College Publications nor the JAL-FLAP make any representation,
express or implied, in respect of the accuracy of the material in this journal and cannot accept any
legal responsibility or liability for any errors or omissions that may be made. The reader should
make his/her own evaluation as to the appropriateness or otherwise of any experimental technique
described.

c© Individual authors and College Publications 2018
All rights reserved.

ISBN 978-1-84890-274-9
ISSN (E) 2055-3714
ISSN (P) 2055-3706

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk

Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
Amy Felty
David Fernandez Duque
Jan van Eijck

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

Area Scientific Editors

Philosophical Logic
Johan van Benthem
Lou Goble
Stefano Predelli
Gabriel Sandu

New Applied Logics
Walter Carnielli
David Makinson
Robin Milner
Heinrich Wansing

Logic and category
Theory
Samson Abramsky
Joe Goguen
Martin Hyland
Jim Lambek

Proof Theory
Sam Buss
Wolfram Pohlers

Logic and Rewriting
Claude Kirchner
Jose Meseguer

Human Reasoning
Peter Bruza
John Woods

iii

Modal and Temporal
Logic
Carlos Areces
Melvin Fitting
Victor Marek
Mark Reynolds.
Frank Wolter
Michael Zakharyaschev

Automated Inference
Systems and Model
Checking
Ed Clarke
Ulrich Furbach
Hans Juergen Ohlbach
Volker Sorge
Andrei Voronkov
Toby Walsh

Formal Methods:
Specification and
Verification
Howard Barringer
David Basin
Dines Bjorner
Kokichi Futatsugi
Yuri Gurevich

Logic and Software
Engineering
Manfred Broy
John Fitzgerald
Kung-Kiu Lau
Tom Maibaum
German Puebla

Logic and Constraint
Logic Programming
Manuel Hermenegildo
Antonis Kakas
Francesca Rossi
Gert Smolka

Logic and Databases
Jan Chomicki
Enrico Franconi
Georg Gottlob
Leonid Libkin
Franz Wotawa

Logic and Physics
(space time. relativity
and quantum theory)
Hajnal Andreka
Kurt Engesser
Daniel Lehmann
lstvan Nemeti
Victor Pambuccian

Logic for Knowledge
Representation and the
Semantic Web
Franz Baader
Anthony Cohn
Pat Hayes
Ian Horrocks
Maurizio Lenzerini
Bernhard Nebel

Tactical Theorem
Proving and Proof
Planning
Alan Bundy
Amy Felty
Jacques Fleuriot
Dieter Hutter
Manfred Kerber
Christoph Kreitz

Logic and Algebraic
Programming
Jan Bergstra
John Tucker

Logic in Mechanical
and Electrical
Engineering
Rudolf Kruse
Ebrahaim Mamdani

Logic and Law
Jose Carmo
Lars Lindahl
Marek Sergot

Applied Non-classical
Logic
Luis Farinas del Cerro
Nicola Olivetti

Mathematical Logic
Wilfrid Hodges
Janos Makowsky

Cognitive Robotics:
Actions and Causation
Gerhard Lakemeyer
Michael Thielscher

iv

Type Theory for
Theorem Proving
Systems
Peter Andrews
Chris Benzmüller
Chad Brown
Dale Miller
Carsten Schlirmann

Logic Applied in
Mathematics
(including e-Learning
Tools for Mathematics
and Logic)
Bruno Buchberger
Fairouz Kamareddine
Michael Kohlhase

Logic and
Computational Models
of Scientific Reasoning
Lorenzo Magnani
Luis Moniz Pereira
Paul Thagard

Logic and Multi-Agent
Systems
Michael Fisher
Nick Jennings
Mike Wooldridge

Logic and Neural
Networks
Artur d’Avila Garcez
Steffen Holldobler
John G. Taylor

Logic and Planning
Susanne Biundo
Patrick Doherty
Henry Kautz
Paolo Traverso

Algebraic Methods in
Logic
Miklos Ferenczi
Rob Goldblatt
Robin Hirsch
Idiko Sain

Non-monotonic Logics
and Logics of Change
Jurgen Dix
Vladimir Lifschitz
Donald Nute
David Pearce

Logic and Learning
Luc de Raedt
John Lloyd
Steven Muggleton

Logic and Natural
Language Processing
Wojciech Buszkowski
Hans Kamp
Marcus Kracht
Johanna Moore
Michael Moortgat
Manfred Pinkal
Hans Uszkoreit

Fuzzy Logic
Uncertainty and
Probability
Didier Dubois
Petr Hajek
Jeff Paris
Henri Prade
George Metcalfe
Jon Williamson

v

vi

Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

vii

jane.spurr@kcl.ac.uk

viii

Contents

ARTICLES

Editorial . 1
Dov Gabbay and Jörg Siekmann

Possibilistic Reasoning from Partially Ordered Belief Bases with the Sure
Thing Principle . 5
Claudette Cayrol, Didier Dubois and Fayçal Touazi

Characterization of a New Subquasivariety of Residuated Lattice 41
Saeed Rasouli, Zeinab Zarin and Abass Hasankhan

Tuning the Program Transformers from CC to PDL 71
Pere Pardo, Enrique Sarión-Morrillo, Fernando Soler-Toscano and Fernando R.
Velázquez-Quesada

Lighthouse Principle for Diffusion in Social Networks 97
Sanaz Azimipour and Pavel Naumov

A Labelled Sequent Calculus for Half-order Modal Logic 121
Romas Alonderis and Jūratė Sakauskaitė

On Epicomplete MV -algebras . 165
Anatolij Dvurečenskij and Omid Zahiri

ix

Paraconsistent Rule-based Reasoning with Graded Truth Values 185
Francesco Luca De Angelis, Giovanna Di Marzo Serugendo and Andrzej Szałas

Paracomplete Logic K1 — Natural Deduction, its Automation, Complexity
and Applications . 221
Alexander Bolotov, Danil Kozhemiachenko and Vasilyi Shagin

Suzumura Consistency, an Alternative Approach 263
Peter Schuster and Daniel Wessel

Maximum Entropy Models for Σ1 Sentences . 287
Soroush Rafiee Rad

Elementary Unification in Modal Logic KD45 301
Philippe Balbiani and Tinko Tinchev

Probabilistic Formal Verification of Communication Network-based Fault
Detection, Isolation and Service Restoration System in Smart Grid . . . 319
Syed Atif Naseem, Riaz Uddin, Osman Hasan and Diaa E. Fawzy

Elementary-base Cirquent Calculus I: Parallel and Choice Connectives . . . 367
Giorgi Japaridze

Boolean-valued Models as a Foundation for Locally L0-Convex Analysis
and Conditional Set Theory . 389
Antonio Avilés and José Miguel Zapata

About Relationships Between two Individuals 421
Robert Demolombe

On the Lattice of the Subvarieties of Monadic MV (C)-algebras 437
Antonio Di Nola, Revaz Grigolia and Giacomo Lenzi

x

Editorial

1 Introduction
We are happy to introduce the first issue of the combined journal Journal of Applied
Logics - IfCoLog Journal of Logics and their Applications .

This journal continues the publication of the Elsevier Journal of Applied Logic
(JAL) together with our very successful IfCoLog Journal of Logics and their Appli-
cations (FLAP), as a free open access journal.

The Elsevier JAL was established by IfCoLog in 2002. In 2018 Elsevier discon-
tinued the title and allowed IfCoLog to continue the Journal as a free open access
journal.

In their communication to us dated 19th July 2017 Elsevier said among others:

• We agreed that for at least the first year of the new journal we would be able
to add the line that it is supported by Elsevier. We agree with you that for
PR and continuity this is a good option. We can review it after that

• We will also inform Scopus to ensure that they are aware of this for indexing
purposes there too.

• Naturally towards the end of the year a press release, email announcement
and a note on our JAL homepages can be arranged to ensure the community
are aware this is a continuation of an old Journal and that Elsevier are fully
supporting the Society in this endeavor.

We are grateful to Elsevier for their generosity and support of our Logic UK Charity
IfCoLog and the idea of free open access.

The IfCoLog Journal of Logics and their Applications (JAL/FLAP) covers all
areas of pure and applied logic, broadly construed. All papers published are free
open access, and available via the College Publications website. This Journal is open
access, puts no limit on the number of pages of any article, puts no limit on the
number of papers in an issue and puts no limit on the number of issues per year. We
insist only on a very high academic standard, and will publish issues as they come.

For example for the year 2017 we published 11 issues, containing about 4000
pages. Issue 4 for example, an issue dedicated to the Memory of Grigory Mints, was
about 800 pages. No commercial publisher will ever do this.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Gabbay and Siekmann

The issues are available in both printed and electronic formats. It is published by
College Publications, on behalf of the UK logic charity IfCoLog (www.ifcolog.net).

2 Background
The International Federation of Computational Logic (IfCoLog) sponsors THREE
logic journals, two published by OUP (The Logic Journal of the IGPL and the Jour-
nal of Logic and Computation) and one published by Elsevier (Journal of Applied
Logic). All three Journals are highly successful (attracting many submissions and
high impact factor). The community has expressed a desire for some form of open
access, and no limit on size of issues, thus giving immediate free access and also
avoiding years of backlog in publications.

Publishers’ current open access arrangement demands a hefty payment from
authors, and they seem to be resisting any form of concession or compromise on size
of issues.

In order to overcome this issue and set an example for other publishers, we
proposed to start our own independent practically open access journal under the
title “The (open access) IfCoLog Journal of Logics and their Applications”.

This move is in the spirit of a recent call by the community to publish our own
Journals. See this article https://www.nature.com/news/mathematicians-aim-
to-take-publishers-out-of-publishing-1.12243 in Nature.

From 2018, the Elsevier Journal of Applied Logic is no longer being published
by Elsevier and is now being continued by the UK Charity IfCoLog.

We are making the Journal of Applied Logics free open access and amalgamating
it with our current journal (FLAP), giving the unified journal the name Journal of
Applied Logics: IfCoLog Journal of Logics and their Applications.

The impact factor of the Journal of Applied Logic is currently as follows

• CiteScore: 0.73

• More about CiteScore

• Impact Factor: 0.838

• 5-Year Impact Factor: 0.839

• Source Normalized Impact per Paper (SNIP): 0.936

• SCImago Journal Rank (SJR): 0.401

2

Editorial

We expect that the impact factor of the unified journals will continue and grow
even stronger. We are also pleased that DBLP will index the new unified Journal.

We have amalgamated the lists of editors and area editors of both journals, and
we are maintaining the high standard shared by all our Journals as sponsored by
IfCoLog.

We are happy to present to you first issue of 2018 of the combined journal

Dov Gabbay
Jörg Siekmann
February 2018

Received February 20183

4

POSSIBILISTIC REASONING FROM PARTIALLY

ORDERED BELIEF BASES WITH THE SURE THING

PRINCIPLE

CLAUDETTE CAYROL, DIDIER DUBOIS

IRIT, CNRS and Université de Toulouse, France.
{claudette.cayrol,didier.dubois}@irit.fr

FAYÇAL TOUAZI

University M’hamed Bougara, Independence Avenue, 35000 Boumerdes, Algeria.
Faycal.touazi@univ-boumerdes.dz

Abstract

We consider the problem of reasoning from logical bases equipped with a partial
order expressing relative certainty, with a view to construct a partially ordered deduc-
tive closure via syntactic inference. At the syntactic level we use a language expressing
pairs of related formulas and axioms describing the properties of the order. Reasoning
about uncertainty using possibility theory relies on the idea that if an agent believes
each among two propositions to some extent, then this agent should believe their con-
junction to the same extent. This principle is known as adjunction. Adjunction is
often accepted in epistemic logic but fails with probabilistic reasoning. In the latter,
another principle prevails, namely the sure thing principle, that claims that the cer-
tainty ordering between propositions should be invariant to the addition or deletion of
possible worlds common to both sets of models of these propositions. Pursuing our
work on relative certainty logic based on possibility theory, we propose a qualitative
likelihood logic that respects the sure thing principle, albeit using a likelihood relation
that preserves adjunction.

Keywords : partially ordered bases, possibility theory, adjunction rule, compara-
tive probability

1 Introduction

The representation of partial belief often uses a numerical setting, prominently the one of
probability theory, but also weaker non-additive settings such as belief functions or impre-
cise probabilities (see [18] for a survey). However, this kind of approach requires the use of

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

CAYROL, DUBOIS AND TOUAZI

elicitation procedures so as to force agents to provide degrees of belief through a given pro-
tocol (for instance, using the betting metaphor, assigning prices to gambles or risky events,
or using analogy with the frequentist setting of drawing balls from a known urn). Inevitably,
the resulting numbers will not have infinite precision, which leads either to consider pre-
cise figures as suitable idealization, or to take into account the imprecision of assessments,
which may lead to more complex computations.

Reasoning with uncertain knowledge often consists of attaching belief weights to propo-
sitions of interest and computing belief weights of other propositions of interest, using some
appropriate inference methods. This approach was early considered by De Finetti [10] (see
[29] for a translation), and then taken over by many other scholars (Adams and Levine[1],
Coletti and Scozzafava [9], Nilsson [34], etc.).

In this paper, we deliberately give up assigning belief weights to propositions. We as-
sume that uncertain knowledge is based on stating that some propositions are more believed
than others. This is the least we can expect from agents expressing their beliefs. In the
case of probability theory, it comes down to studying properties of the relation “more prob-
able than” first introduced by De Finetti [10], and later by Ramsey, and Savage, among
others (see Fishburn[21] for an early survey). Comparative probabilities are total orders on
propositions, that obey a special case of the so-called sure thing principle of Savage [35],
stating that the fact that a proposition is more probable than another one is not affected by
the probabilities of their common models. We call this property preadditivity, to highlight
the known fact that on finite settings this property is not sufficient to ensure the existence
of a probability measure representing the ordering between propositions [26]. There is not
a long tradition on logics for comparative probability that do not refer to a numerical un-
derpinning. This point is discussed in detail by Walley and Fine [37] who provide an early
overview on modal, conditional and comparative probability logics.

Another kind of uncertainty relation, originally introduced by Lewis [32], are compar-
ative possibility relations, independently introduced by Dubois [11] along with their dual
called necessity relations. While Lewis introduced these concepts in connection with the
logical representation of counterfactuals, Dubois viewed possibility relations as the ordinal
counterpart of Zadeh’s possibility measures [39]. These relations are weak orders that do
not obey the sure thing principle, but they are instrumental in non-monotonic reasoning and
belief revision [17, 2] (where necessity relations are called epistemic entrenchments). This
setting also captures the notion of accepted beliefs [15]: the agent reasons with such beliefs
as if they were true ones, so that the condition that the conjunction of accepted beliefs is an
accepted belief is adopted, like in epistemic logic. For the sake of clarity, we call qualitative
plausibility and certainty relations the generalisation of possibility and necessity relations
to the partially ordered setting. The key property for such relations is called qualitativeness
[22], which encodes the idea that a possible world is always more likely than the disjunction
of less likely worlds.

6

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Logics for reasoning with totally ordered comparative possibility statements have been
first studied by Lewis [31]. Possibilistic logic [19] is an alternative setting where a total
order on a subset of propositions is encoded by means of weighted formulas, where weights
attached to formulas are taken from a totally ordered symbolic scale. In this paper we focus
on partial orders, as we consider that agents may only have a lacunary knowledge of the
relative beliefs of propositions. Approaches to reasoning from logical bases equipped with
a partial order expressing relative certainty have been proposed by Halpern [25] using a
modal logic framework inspired by Lewis works, which means a very rich language. A
simpler framework, called relative certainty logic and focusing on strict partial orders, yet
adopting similar axioms as Halpern, is presented in [36], where the purpose is to construct
a partially ordered deductive closure. The idea is to interpret a partially ordered base as
a partial necessity ordering. At the syntactic level the language expresses pairs of related
formulas; axioms and inference rules describe the properties of the partial certainty order.
The semantics consists in assuming that the partial order on formulas stems from a partial
order between the corresponding sets of models (and not between models as in possibilistic
logic).

Moving from the totally ordered to the partially ordered setting is non-trivial. The dif-
ficult points are twofold: (i) equivalent definitions in the totally ordered case are no longer
equivalent in the partially ordered one, and (ii) a partial possibility order on subsets of a
set cannot be represented by a partial order between elements of this set. This point is
especially explained in [36].

In this paper, we pursue the work initiated in [36] with a view to study how the pread-
ditivity of comparative probability can be used to refine the relative certainty logic. In the
totally ordered case, qualitativeness is almost incompatible with preadditivity [15]. In the
partially ordered setting, we get a qualitative likelihood logic that is adjunctive, but respects
the sure thing principle, that we compare with the qualitative certainty logic of [36]. More-
over we show that the latter logic can be used to facilitate inference in the former.

The paper is structured as follows: in the next section we provide an overview of con-
fidence relations between sets of states, including comparative possibility and probability.
Then we provide characteristic properties of qualitative plausibility, certainty and (preaddi-
tive) likelihood relations, in the partially ordered setting. We show that there is a bijection
between qualitative plausibility and qualitative likelihood relations. Based on these new
results we propose in section 3 a general setting for reasoning about uncertainty using con-
fidence relations, which extends the methodology introduced in [36] for qualitative certainty
logic. Then, in sections 4 and 5 we respectively focus on the qualitative likelihood logic and
on its connection with relative certainty logic.

7

CAYROL, DUBOIS AND TOUAZI

2 Qualitative confidence relations comparing subsets

In a non-numerical setting, it is natural to represent confidence in propositions by means of
a partial preorder � on subsets A,B,C, . . . of a set of states of affairs S. This idea goes
back to De Finetti’s [10] comparative probabilities, and is presented in more details in Fine’s
book [20]. Other proposals are comparative possibilities of Lewis [32] later independently
proposed, along with their dual necessity relations by one of the authors [11] in contrast with
comparative probabilities. These are examples of complete preorders (reflexive, complete
and transitive relations) on the power set ℘(S). Various examples of confidence relations
have been discussed by Halpern [23, 22] in connection with non-monotonic reasoning. They
are called acceptance relations in [15]. In some cases, confidence orderings stem from a total
or partial plausibility ordering on S. This is the case for comparative possibility relations
and their refinements [14, 12], and also for relations built from a partial order on elements,
studied by Halpern [25]. In this section we review such relations and their properties.

Given a reflexive relation � on ℘(S) we can derive three companion relations:

• The strict part of �: A � B iff A � B, but not B � A

• The indifference relation A ∼ B iff A � B and B � A

• The incomparability relation: A±B iff neither A � B nor B � A

Moreover, we can also define the dual �d of a relation � on ℘(S) as:

A �d B iff B � A

There are minimal requirements a confidence relation should satisfy in order to justify
this name.

1. Compatibility with Inclusion (CI) If B ⊆ A then A � B

Indeed if B implies A there is no point for B to be more likely than A.1

2. Orderliness (O) If A � B, A ⊆ A′, and B′ ⊆ B, then A′ � B′

This property, already mentioned by Walley and Fine [37], and also used by Friedman
and Halpern [22], is a variant of, but not equivalent to, the former. It also reflects compati-
bility with logical deduction.

3. Quasi-Transitivity (QT) If A � B, and B � C, then A � C
1Friedman and Halpern [23] call “Plausibility measure” a partial relation that satisfies (CI); however this

name may be judged misleading, since plausibility is a notion dual to belief, as often used in evidence theory.

8

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Should this property be false for an agent, one may question her rationality. These are the
three minimal properties we can expect from a partial confidence relation.

Definition 1. A relation on ℘(S) is called a confidence relation if it satisfies (CI, O, QT).
Its strict part is called a strict confidence relation.

This terminology was proposed in [12]. It is clear that a confidence relation is reflexive
and consistent in the sense that S � A � ∅ for all subsetsA of S. Note that we can do away
with the two monotonicity conditions (CI) and (O) if we modify the latter by requiring it for
� instead of �. Moreover, a strict confidence relation is a strict partial order satisfying (O).
Finally, it can be easily verified that the dual of a confidence relation is again a confidence
relation.

2.1 Complete and transitive confidence relations

It is quite often the case that partial belief is represented numerically via a set-function
f : ℘(S) → [0, 1], for instance a probability measure. A set-function f is said to represent
a confidence relation � provided that for all subsets A,B of S, A � B if and only if
f(A) ≥ f(B), f(∅) = 0, f(S) = 1.

Of course, if this is so, the confidence relation � should be transitive and complete
(hence reflexive):

• Transitivity: If A � B, and B � C, then A � C

• Completeness: A � B or B � A

It is easy to see that complete and transitive confidence relations are represented by
capacities, which are monotonic set-functions, such that if A ⊆ B then f(A) ≤ f(B),
which expresses (CI) (for instance, [18]). In fact, for transitive and complete relations, (CI)
implies (O). Important examples of complete and transitive confidence relations are

• Comparative probabilities [10, 20]: They are complete and transitive confidence re-
lations that obey the preadditivity property:

Preadditivity (P) If A ∩ (B ∪ C) = ∅ then (B � C iff A ∪B � A ∪ C)

• Comparative possibilities [32, 11]: They are complete and transitive confidence rela-
tions that satisfy a property that is a variant of the former:

Stability for Union (SU) If A � B then A ∪ C � B ∪ C

9

CAYROL, DUBOIS AND TOUAZI

Comparative possibility relations, denoted by �Π, can be represented by and only by
possibility measures [11]. They are set-functions Π : ℘(S)→ [0, 1] such that Π(A ∪B) =
max(Π(A),Π(B)) [39, 16]. This is because the (SU) axiom for complete and transitive
confidence relations is equivalent to: IfA �Π B thenA ∼Π A∪B. Comparative possibility
relations on finite sets are completely characterised by the restriction≥π of�Π to singletons
on S. Namely [11]:

A �Π B ⇐⇒ ∀s2 ∈ B, ∃s1 ∈ A : s1 ≥π s2 (1)

⇐⇒ ∃s1 ∈ A,∀s2 ∈ B : s1 ≥π s2 (2)

This property, which shows the simplicity of this approach, reflects the fact that a possibility
measure Π derives from a possibility distribution π : S → [0, 1], in the sense that Π(A) =
maxs∈A π(s). In the scope of uncertainty modeling, π(s) can be viewed as a degree of
plausibility of s, and the condition maxs∈S π(s) = 1 must be satisfied. The possibility
degree Π(A) can be interpreted as a degree of unsurprizingness of A, i.e., the degree to
which there is no reason not to believe A (which does not imply a reason for believing it).

The conjugate functions N(A) = 1 − Π(A), called necessity measures [16], express
the idea that A is certain to some extent, that is, A is true in all situations that are plausible
enough. The corresponding necessity relations �N have a characteristic axiom called

Stability for intersection (SI): If A �N B then A ∩ C �N B ∩ C

It is easy to check [11] that necessity relations can be defined from possibility relations by
duality: A �N B if and only if B �Π A, so that

A �N B ⇐⇒ ∀s2 ∈ A,∃s1 ∈ B : s1 ≥π s2 (3)

⇐⇒ ∃s1 ∈ B, ∀s2 ∈ A : s1 ≥π s2 (4)

Comparative possibility relations satisfy properties that indicate their qualitative nature:

Qualitativeness (Q) If A ∪B �Π C and A ∪ C �Π B, then A �Π B ∪ C
Negligibility (N) If A �Π B and A �Π C, then A �Π B ∪ C

the second one being a consequence of the first. Negligibility expresses the non-compen-
satory nature of possibility measures, according to which the union of unlikely singletons
cannot override a very plausible one.

Necessity relations obey counterparts of (Q) and (N):

Dual qualitativeness (Qd): If A �N B ∩ C and B �N A ∩ C then A ∩B �N C
Adjunction (A): If A �N C and B �N C then A ∩B �N C

10

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

These properties make it clear that the family of sets {A : A �N C} is a filter (closed
under inclusion and intersection) or in terms of propositions, deductively closed. This clo-
sure property for confidence measures is also characteristic of necessity relations for com-
plete and transitive confidence relations [15].

Preadditive complete and transitive confidence relations �P , called comparative prob-
abilities, behave very differently. Given a probability measure on S, the relation A � B if
and only if P (A) ≥ P (B) for some probability measure on a finite set is indeed preadditive,
complete and transitive. However the converse is false, namely it has been known since the
1950’s [26] that there are comparative probability relations that are not representable by a
probability measure; see also [33]. Nevertheless comparative probability relations are self
dual, in the sense of the following property:

Self-duality (D) A �P B iff B �P A

However the fact that comparative probability relations are more general than confi-
dence relations induced by probabilities highlights the fact that, contrary to comparative
possibility and necessity relations, they cannot be defined by a complete preorder on S: the
restriction of �P on singletons is not enough to reconstruct it. In fact comparative prob-
abilities can be represented by special kinds of belief functions inducing a self-dual order
[38].

Interestingly, there are comparative probability relations that satisfy the qualitativeness
properties. It is proved in [3] that they correspond to so-called big-stepped probabilities
on S: there is a probability distribution p such that p(s1) > p(s2) > · · · > p(sn−1) >
p(sn), with ∀i = 1, . . . , n − 1, p(si) >

∑n
j=i+1 p(sj), and then A �P B if and only if

P (A) ≥ P (B). The probabilities of singletons form a super-increasing sequence. More-
over if we consider the possibility ordering s1 >π s2 >π · · · >π sn−1 >π sn, then, for
non-elementary events A,B we have that A �Π B implies A �P B. In other words, the
comparative probability relation induced by a big-stepped probability refines the possibility
relation (see also [12]).

In this paper, we generalize possibility relations and necessity relations to partial orders
on S, and consider their preadditive refinements.

2.2 Partial qualitative confidence relations

In this section we consider partial confidence relations satisfying property (Q). The four
properties (CI), (O), (QT) and (Q) are not independent [25, 5].

Proposition 1. If a relation on ℘(S) satisfies (Q) and (O), this relation and its dual are
transitive.

11

CAYROL, DUBOIS AND TOUAZI

Proof of Proposition 1:
We use a relation denoted by � that can stand for � or its strict part. Suppose A � B and B � C.
Then, from (O), A ∪ C � B and A ∪ B � C, and from (Q): A � B ∪ C, then by (O), A � C. A
similar proof holds for the dual relation. 2

Partial confidence relations satisfying property (Q) generalize comparative possibilities.
However, in the following we consider asymmetric relations of this kind, to which (CI) does
not apply:

Definition 2. A qualitative plausibility relation is an asymmetric relation �pl on ℘(S) that
satisfies (Q) and (O).

Due to Proposition 1, a qualitative plausibility relation is indeed a strict partial order on
℘(S) since it is transitive. Moreover,

Proposition 2. A qualitative plausibility relation satisfies (N), and (SU) in contrapositive
form: If A ∪ C �pl B ∪ C then A �pl B.

Proof of Proposition 2:
(N) is an obvious consequence of (Q) and (O). For (SU), suppose A ∪ C �pl B ∪ C. By (O), we
infer that A∪ (B ∪C) �pl C. Applying (Q) yields A �pl B ∪C, which by (O), results in A �pl B
[7]. 2

Another useful property related to (SU) is:

Proposition 3. A qualitative plausibility relation is such that: If A �pl B and C �pl D
then A ∪ C �pl B ∪D.

Proof of Proposition 3:
Due to (O), A �pl B and C �pl D imply A ∪ C ∪D �pl B and A ∪ C ∪ B �pl D, and then by
(Q), A ∪ C �pl B ∪D follows. 2

Now we introduce another partial order on a set of events, called a qualitative certainty
relation:

Definition 3. A qualitative certainty relation, denoted by �cr, is an asymmetric relation on
℘(S) that satisfies Qd and O.

It is clear that �cr is a qualitative certainty relation if and only if its dual relation is a
qualitative plausibility relation. In particular, from the above results, it easily follows that
a qualitative certainty relation is transitive, satisfies adjunction, and (SI) under the form: If
A∩C �cr B∩C thenA �cr B. Moreover, ifA �cr B andC �cr D thenA∩C �cr B∩D.

12

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Contrary to the terminology used in [23], the use of plausibility vs. certainty to name
confidence relations satisfying (Q) vs. its dual property (Qd) makes the point that such
relations are dual to each other, and reflect the dual pairs (possibility, necessity), (plausi-
bility, belief) in other uncertainty theories, where the second concept in each pair is more
committing than the first one.

Qualitative plausibility and certainty relations are instrumental for defining a semantics
for non-monotonic reasoning (as explained in [22, 15]). Namely consider the following
properties for a partial order on ℘(S), inspired from [27]:

• Conditional Closure by Implication (CCI) If A ⊆ B and A ∩ C � A ∩ C then
B ∩ C � B ∩ C

• Conditional Closure by Conjunction (CCC) If C∩A � C∩A and C∩B � C∩B
then C ∩ (A ∩B) � C ∩ (A ∩B)

• Left Disjunction (OR) If A∩C � A∩C and B ∩C � B ∩C then (A∪B)∩C �
(A ∪B) ∩ C

• Cut (CUT) If A ∩B � A ∩B and A ∩B ∩ C � A ∩B ∩ C then A ∩ C � A ∩ C

• Cautious Monotony (CM) IfA∩B � A∩B andA∩C � A∩C thenA∩B∩C �
A ∩B ∩ C

These properties are intuitive when A � A is interpreted as “A is an accepted belief”, and
A ∩C � A ∩C as “A is an accepted belief in the context C”, hence the name “acceptance
relations” for qualitative plausibility relations in [15]. In that work, it has been proved that:

Proposition 4.

• (O) implies (CCI).

• If a relation between subsets of S satisfies (Q) and (O), then it satisfies (CCI), (CCC),
(OR), (CUT), (CM).

• For any relation that satisfies (O), (CCC) is equivalent to (Q).

See also [6] for the two first results.
It is clear that qualitative plausibility relations satisfy all these properties and are ideally

fit for non-monotonic reasoning with conditional assertions of the formA |∼ B, which stand
for A ∩ B �pl A ∩ B [27]. Note that properties (CCI), (CCC), (OR), (CUT), (CM) only
involve the comparison of disjoint subsets. It is proved in [15], and follows from Proposition
4 that if the restriction of a confidence relation to disjoint subsets satisfies (CCI), (CCC),
(OR), (CUT), (CM) then it is the restriction of a qualitative plausibility relation.

13

CAYROL, DUBOIS AND TOUAZI

One way to construct a qualitative plausibility relation is to proceed as suggested by
Halpern [25]. Let (S,�) be a partially ordered set, where � is an asymmetric and transitive
relation. Various possible definitions for extending the comparative possibility to qualitative
plausibility relations have been reviewed in [6] and arguments have been given for selecting
one of them. Here, like in our previous paper [36] we consider the extensions (1) and (2) of
the strict part of ≥π to build a partial order between subsets. It turns out they are no longer
equivalent, and the one possessing the greatest number of properties is:

Definition 4 (Weak optimistic strict dominance). Let � be an asymmetric and transitive
relation on S. Then A ��

wos B iff A 6= ∅ and ∀b ∈ B, ∃a ∈ A, a� b.

It is clear that if � is the strict part of a complete preorder on S encoded by a possibility
distribution π, A �>πwos B if and only if Π(A) > Π(B). In the partially ordered setting, the
following properties have been established [25, 6, 36]:

Proposition 5. The weak optimistic strict dominance ��
wos is a strict partial order that

satisfies Qualitativeness (Q) and Orderliness (O).

Unfortunately, contrary to the totally ordered case, not all qualitative plausibility rela-
tions can be generated from a partial order on S. This is because knowing only the restric-
tion to the singletons of S of a qualitative plausibility relation �pl on ℘(S) is insufficient
to reconstruct �pl. Namely, let a partial order on S be defined by s1 �pos s2 if and only
if {s1} �pl {s2}, where �pl satisfies (Q) and (O). Consider the relation ��pos

wos induced by
�pos via Definition 4. Then A ��pos

wos B implies A �pl B, but generally the converse does
not hold [6].

Example 1 (due to Halpern). Let S = {a, b, c}, A = {a}, B = {b}, C = {c}. Suppose
relation � is the smallest asymmetric partial order relation including constraints B ∪C �
A,A � ∅, B � ∅, C � ∅, and that is closed for (O) and (T). It obviously satisfies (Q). It is
a qualitative plausibility relation. Define the partial order on S as s1 �pos s2 if and only if
{s1} � {s2}. Then elements a, b, c are not comparable. So we do not have {b, c} ��pos

wos {a}
and we cannot retrieve B ∪ C � A.

Remark A result due to Halpern [25] says that qualitative plausibility relations on ℘(S)
can be generated from a partial order on a set larger than S, which stands as a refinement
of it. Namely, for any qualitative plausibility relation �pl on S, there is a set Ω, a surjective
map f : Ω→ S, and a partial order � on Ω such that, if A,B are subsets of S, A �pl B if
and only if f−1(A) ��

wos f
−1(B). This is in fact the semantics adopted by Lehmann and

colleagues [27] for non-monotonic relations from conditional assertions.

14

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Another way to generate qualitative plausibility relations is to start from a family L of
linear orders >σ on S defined by permutations σ of elements (sσ(1) >σ sσ(2) >σ · · · >σ
sσ(n)) and let the relation �L on ℘(S) be defined as follows:

A �L B ⇐⇒ ∀ >σ∈ L, A �σΠ B

where�σΠ is the strict part of the comparative possibility relation induced by>σ on S [3]. It
is easy to check that the relation �L is a qualitative plausibility relation, i.e., it satisfies the
properties (Q) and (O). An interesting question addressed below is whether any qualitative
plausibility relation can be generated in this way. To this end, we introduce two more
properties of relations between sets:

Non-Dogmaticism (NoD) ∀A 6= ∅, A � ∅

Semi-Cancellativity (SC) A � B if and only if A \B � B

We can establish the following proposition:

Proposition 6. A qualitative plausibility relation is semi-cancellative.

Proof of Proposition 6:
It is clear that by (O), A\B �pl B implies A �pl B. The less obvious part is the converse: suppose
A �pl B. It can be written as

• (A \B) ∪ (A ∩B) �pl B
• and also as (A \B) ∪B �pl B which implies (A \B) ∪B �pl A ∩B.

Now applying (Q) yields A \B �pl B ∪ (A ∩B) = B. 2

It is proved in [15] that for any non-dogmatic, semi-cancellative qualitative plausibility
relation �pl, there exists a family L of linear orders on S, such that �pl coincides with the
relation �L on disjoint subsets.

Using this result, we get the representation theorem for qualitative plausibility relations
as follows:

Corollary 1. A non-dogmatic relation � between sets is a qualitative plausibility relation
if and only if there is a family L of linear orders >σ on S, such that A � B if and only if
A �L B.

Proof of Corollary 1:
Let �pl be a non-dogmatic qualitative plausibility relation. From [15], there exists a family L of
linear orders >σ on S, such that �pl coincides with the relation �L on disjoint subsets. A �pl B

15

CAYROL, DUBOIS AND TOUAZI

if and only if A \ B �pl B (by semi-cancellativity). So A �pl B if and only if A \ B �L B if
and only if ∀ >σ∈ L, A \ B �σΠ B, if and only if ∀ >σ∈ L, A �σΠ B if and only if A �L B. For
the converse it has been already said that the relation �L built from a family of linear orders is a
qualitative plausibility relation. 2

This is the answer to the question of whether any qualitative plausibility relation can be
constructed from a family of possibility orderings.

2.3 Preadditive substitutes of confidence relations

The property of preadditivity considers that the common part of two sets should play no role
in their comparison. This is the idea behind Savage sure thing principle [35], which applies
to the comparison of more general functions than characteristic functions of sets. One may
say that preadditivity is precisely an instance of this principle. Preadditivity is a sufficient
condition to make a relation between subsets self-dual:

Proposition 7. For any relation � on ℘(S), (P) implies (D).

Proof of Proposition 7:
Let A � B. A = (A \B)∪ (A∩B) and similarly B = (B \A)∪ (A∩B). Applying (P) produces
(A \ B) � (B \ A). Applying (P) again yields (A \ B) ∪ (A ∪B) � (B \ A) ∪ (A ∪B). That is
B � A. 2

As a direct consequence, we have an equivalent form of (P), which is to (P) what (SI) is to
(SU):

(P)⇔ If A ∪ (B ∩ C) = S then (B � C iff A ∩B � A ∩ C)

Moreover, the two following properties are direct consequences of (P):

• B � C iff B \ C � C \B (a stronger property than semi-cancellativity)

• B � C iff B ∪ C � C ∪B

A preadditive approach for comparing two sets A and B then consists in eliminating
the common part and then comparing A \ B and B \ A. This is not a new idea (see [24],
[25]). Given a partial order � on ℘(S) one can define a preadditive ordering �+, called
preadditive substitute of � as follows:

A �+ B if and only if A \B � B \A

16

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Clearly �+ and � coincide on pairs of disjoint subsets, and it is obvious that �+ is pread-
ditive, which implies it is self-dual, due to Proposition 7.

Consider a confidence relation � in the sense of Definition 1 and its preadditive substi-
tute �+. It is obvious that, as soon as the strict part of this relation is non-dogmatic (which
means that all elements in S are in some sense useful or possible), the latter satisfies a strong
form of compatibility with inclusion:

Strict Compatibility with Inclusion (SCI) If B ⊂ A then A � B

Proposition 8. If a relation� between subsets satisfies Preadditivity, then SCI is equivalent
to its weak form: If A 6= ∅ then A � ∅ (NoD)

Proof of Proposition 8:
Assume that � satisfies (P) and (NoD). Let B ⊂ A. We have B \ A = ∅ and A \ B 6= ∅. By
(NoD) we obtain (A \ B) � (B \ A). By (P), we add A ∩ B = B to each side and we obtain
((A \B) ∪B) = A � ((B \A) ∪B) = B. 2

The following relaxed versions of properties (Q) and (N) are appropriate for preadditive
relations.

• Qualitativeness for disjoint sets (QD) IfA∪C � B andA∪B � C thenA � B∪C,
provided that A ∩B = A ∩ C = B ∩ C = ∅

• Negligibility for disjoint sets (ND) If A � B and A � C then A � B∪C, provided
that A ∩B = A ∩ C = ∅

It is easy to verify:

Proposition 9. The properties (Q) and (QD) are equivalent when � is applied to disjoint
sets.

Proof of Proposition 9:
Obviously, (Q) implies (QD).
Conversely, let us assume that � satisfies (QD) and consider that A ∪C � B and A ∪B � C, with
(A ∪ C) ∩ B = (A ∪ B) ∩ C = ∅. As (A ∪ C) ∩ B = ∅, we have that A ∩ B = C ∩ B = ∅.
Similarly, we have A ∩ C = ∅. So (QD) can be applied, producing A � B ∪ C. 2

Proposition 10. For any relation � on ℘(S), if � satisfies:

• transitivity (T) and (SCI), then it satisfies (O);

• (QD) and (O), then it satisfies (ND);

17

CAYROL, DUBOIS AND TOUAZI

• (QD) and (O), then it satisfies (CCI), (CCC), (OR), (CUT), (CM);

• (CCC), then it satisfies (QD).

Proof of Proposition 10:
T, SCI⇒ O: Assume that A � B, A ⊆ A′, and B′ ⊆ B. We have to prove that A′ � B′.
If A = A′ we have A′ � B. If A ⊂ A′ we obtain A′ � A by (SCI) and then A′ � B by transitivity
(T).
Now, if B = B′ we obtain A′ � B′. Otherwise B′ ⊂ B, so B � B′ by (SCI) and by transitivity we
obtain A′ � B′.
O, QD ⇒ ND: Assume that A ∩ B = A ∩ C = ∅, A � B and A � C. We have to prove that
A � (B ∪ C). From A � B and (O): (A ∪ C) � (B \ C) (1). From A � C and (O), we obtain
A ∪ (B \ C) � C (2).
Due to the assumptions, we have A ∩ (B \ C) = A ∩ C = ∅ and obviously C ∩ (B \ C) = ∅.
Applying (QD) from (1) and (2) yields A � (C ∪ (B \ C)) that is A � (B ∪ C).
O, QD⇒ CCI, CCC, OR, CUT, CM: As A ∩ C and A ∩ C (resp. B ∩ C and B ∩ C) are disjoint
sets, the proof of Proposition 4 can be used.
(CCC)⇒ (QD) This is Theorem 1 in [15]. 2

As (P) implies Self-duality, it follows that the property (QD) possesses a dual property
(QDd) equivalent to the former for preadditive relations:

QDd: If A ∪B = A ∪ C = B ∪ C = S, then if C � A ∩B and B � A ∩ C, then
B ∩ C � A

So, for preadditive substitutes, we can use the dual property (QDd), in place of (QD).
An important question is whether a strict confidence relation � is refined or not by its

preadditive substitute. We can prove this property for confidence relations that obey the
following weak form of both preadditivity and stability for disjunction (first proposed in
[11] for weak – transitive and complete – orders):

Stability for Disjoint Union (SDU) If A ∩ (B ∪ C) = ∅ then A ∪B � A ∪ C implies
B � C

Proposition 11. If an asymmetric relation � satisfies (SDU), then its preadditive substitute
�+ is a self-dual refinement of � and of its dual.

Proof of Proposition 11:
The result is obvious from � to �+ since by (SDU), if A � B then A \ B � B \ A which is
A �+ B. For the dual relation �d, A �d B means B � A which also reads (A \ B) ∪ (A ∩ B) �
(B \A) ∪ (A ∩B), which by (SDU) implies A �+ B. 2

18

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

2.4 From qualitative plausibility to qualitative likelihood and back

Consider now qualitative plausibility relations �pl and their preadditive substitutes �+
pl. It

is obvious that �+
pl satisfies (O), (QD) and (P). Moreover, due to Propositions 7 and 10,

the preadditive relation�+
pl also satisfies the properties of Self-duality (D), Negligibility for

disjoint sets (ND), and also Conditional Closure by Implication (CCI), Conditional Closure
by Conjunction (CCC), Left Disjunction (OR), (CUT), (CM). The use of �pl or �+

pl for
non-monotonic inference is immaterial as it only involves disjoint subsets.

We can prove that the preadditive substitute of a qualitative plausibility relation is tran-
sitive.

Proposition 12. If A �+
pl B and B �+

pl C, then A �+
pl C.

Proof of Proposition 12:
We can write the two assumptions as (we omit the intersection symbol for simplicity): AB̄C ∪
AB̄C̄ �pl ĀBC∪ĀBC̄ andABC̄∪ĀBC̄ �pl AB̄C∪ĀB̄C. We must prove thatABC̄∪AB̄C̄ �pl
ĀBC ∪ ĀB̄C. Taking the union on both sides it yields, using Proposition 3:

AB̄C ∪AB̄C̄ ∪ABC̄ ∪ ĀBC̄ �pl ĀBC ∪ ĀBC̄ ∪AB̄C ∪ ĀB̄C

Due to property (SU) contraposed (Prop. 2) we can cancel AB̄C and ĀBC̄ which yields ABC̄ ∪
AB̄C̄ �pl ĀBC ∪ ĀB̄C. 2

Remark: Due to the representation result in Corollary 1, there is an alternative proof that
goes as follows: there exists a family L of linear orders >π on S that generates �pl in
the sense that A �pl B if and only if A �Π B, ∀ >π ∈ L. Then suppose A �+

pl B, which
meansA\B �pl B \A, which meansA\B �Π B \A,∀ >π ∈ L. Likewise withB �+

pl C.
Using transitivity of �+

Π (claimed in [14]), we conclude that A \ C �Π C \ A,∀ >π ∈ L,
which is A �+

pl B. However the use of linear orders on S presupposes a non-dogmatic
qualitative plausibility relation.

Since a qualitative plausibility relation �pl satisfies a strong form of axiom (SDU)
(without the condition A ∩ (B ∪ C) = ∅), we get the following result, which is a direct
consequence of Proposition 11:

Corollary 2. The preadditive relation �+
pl is a self-dual refinement of �pl and of its dual:

• If A �pl B then A �+
pl B.

• If B �pl A then A �+
pl B.

This fact has already been known for a long time for comparative possibility and ne-
cessity relations [14]. But it is not valid for any kind of confidence relation. For instance

19

CAYROL, DUBOIS AND TOUAZI

it is easy to find capacities for which f(A) > f(B) but f(A ∪ C) < f(B ∪ C), for dis-
joint A,B,C. So using the order �f induced by f , one would have B ∪ C �f A ∪ C but
A ∪ C �+

f B ∪ C.

These results can be applied to special cases of qualitative plausibility relations �pl:

• Comparative possibility relations �Π

• Weak optimistic strict dominance relations ��
wos (renamed as �wos for short in the

following)

In particular, we can consider the preadditive substitute of a comparative possibility re-
lation. It is a special case of the discrimax relation for comparing vectors of values in a
totally ordered scale [13]. It is defined equivalently as follows in terms of a possibility dis-
tribution: A �+

Π B if and only if maxs∈A\B π(s) > maxs∈B\A π(s) [14]. It is a transitive
refinement of the comparative possibility relation (as pointed out, in [13, 14], but not proved
for transitivity).

The preadditive substitute of a weak optimistic strict dominance relation is as follows:

Definition 5 (Weak preadditive strict dominance). A �+
wos B if and only if A 6= B and

A \B �wos B \A.

This relation has been thoroughly studied in [6]2. It coincides with �wos on disjoint
sets. The above results can also be applied to the weak preadditive strict dominance.

Proposition 13. The weak preadditive strict dominance �+
wos is a strict partial order that

satisfies Preadditivity (P), Strict Compatibility with Inclusion (SCI) and Qualitativeness for
disjoint sets (QD).

Proof of Proposition 13:
(T), (P) and (QD) hold due to the above results about �+

pl. Transitivity has already been proved in
[8] (see also [7], Proposition 30, p. 35). (SCI) follows from the fact that C �+

wos ∅ when C 6= ∅. 2

As a consequence of Corollary 2, the weak optimistic dominance is also refined by its
preadditive substitute.

Corollary 3. �+
wos refines �wos and its dual variant:

• If A �wos B then A �+
wos B.

• If B �wos A then A �+
wos B.

2A loose preadditive dominance has also been studied in [7].

20

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

These results lead us to define a qualitative likelihood relation as follows:

Definition 6. A qualitative likelihood relation is an asymmetric relation �+ on ℘(S) that
satisfies (O), (P) and (QD).

Due to the above results, the preadditive substitute of a qualitative plausibility relation
is a qualitative likelihood relation. More importantly, we can get a representation theorem
for qualitative likelihood relations as follows:

Proposition 14. Any qualitative likelihood relation is the preadditive substitute of a quali-
tative plausibility relation.

Proof of Proposition 14:
Let � be a qualitative likelihood relation. Let us define � as A�B whenever A \B � B. We have
to prove that � satisfies (Q) and (O) and that the preadditive substitute of � is �.

• First we show that � satisfies (Q). That is: if A ∪ C � B and B ∪ C � A, then C � A ∪ B.
Due to the definition of �, we must prove that if (A ∪ C) \ B � B and (B ∪ C) \ A � A,
then C \ (A ∪B) � A ∪B. Let C ′ denote C \ (A ∪B) and AB denote A ∩B.
The hypothesis can be written as (A \ B) ∪ C ′ � (B \ A) ∪ AB (1) and (B \ A) ∪ C ′ �
(A \B) ∪AB (2). The conclusion can be written as C ′ � AB ∪A∆B.
Applying (O) to (1) and (2) produces (A \B)∪C ′ � (B \A) and (B \A)∪C ′ � (A \B).
Now using (QD) we obtain C ′ � (A \B) ∪ (B \A) or equivalently C ′ � A∆B (3).
Applying (O) to (3) produces AB ∪ C ′ � A∆B. Using (O) once again from (1) yields
(A∆B) ∪ C ′ � AB. From (QD) we obtain C ′ � (A∆B) ∪ AB which is exactly the
expected conclusion.

• � satisfies (O). Assume thatA�B,A ⊆ A′ andB′ ⊆ B. Due to the definition of �, we have
A \B � B. Obviously, A \B ⊆ A′ \B′. As � satisfies (O), we conclude that A′ \B′ � B′

which is exactly A′ �B′.

• It remains to prove that the preadditive substitute of �, say �+, is �. By definition, A�+ B
iff A \B �B \A iff A \B � B \A since A \B and B \A are disjoint. As � satisfies (P),
A \B � B \A is equivalent to A � B. So we have proved that A�+ B iff A � B.

2

As a corollary of Propositions 12 and 14, we conclude that any qualitative likelihood re-
lation is transitive, which was not obvious from its definition. In fact what this result shows
is that the application ρ : �pl 7→�+

pl that assigns to each qualitative plausibility relation its
preadditive refinement is a bijection between the set of qualitative plausibility relations �pl
and the set of qualitative likelihood relations �+, namely:

• A �+ B such that �+= ρ(�pl) is defined as A \B �pl B \A.

• A �pl B such that �pl= µ(�+) is defined as A \B �+ B.

21

CAYROL, DUBOIS AND TOUAZI

Then, relation ρ(�pl) is a qualitative likelihood relation, and relation µ(�+) is a qualitative
plausibility relation. Moreover: µ(ρ(�pl)) = �pl and ρ(µ(�+)) =�+.

3 Relative confidence and certainty logics

In [36], a logic for reasoning about partially ordered bases has been proposed, with inference
rules inspired from the properties of a qualitative certainty relation.

In the following, we define a logical language capable of expressing relative confidence
between logical propositions, and a semantics based on confidence relations between sets
of intepretations. An example of such a logic is the one in [36]. After recalling this logic,
we consider a logic for qualitative likelihood, for which the preadditivity axiom holds. The
results in the previous section indicate that the relative certainty logic and qualitative likeli-
hood logic are closely related due to the bijection between the two notions. Especially they
will coincide for pairs of formulas whose disjunction is a tautology.

3.1 A logical framework for confidence relations

We consider a propositional language L where formulas are denoted by φ, ψ etc., and Ω is
the set of its interpretations. [φ] denotes the set of models of φ, a subset of Ω. We denote
by � the classical semantic inference. We also denote by `X the syntactic inference in the
proof system X .

Let K ⊆ L be a finite set of formulas equipped with a relation >. The idea is that this
relation should represent a fragment of a strict partial ordering. We call (K, >) a partially
ordered belief base (po-base, for short) where φ > ψ is supposed to express that φ is more
prone to being true than ψ, for an agent. The standard language L is encapsulated inside
a language equipped with a binary connective > (interpreted as a partial order relation).
Formally, an atom Φ ∈ L> is of the form φ > ψ where φ and ψ are formulas of L. A
formula of L> is either an atom Φ of L>, or a conjunction of formulas, that is, Ψ∧Φ ∈ L>
if Ψ,Φ ∈ L>. We also have the formulas⊥ and> in L>. In contrast with Halpern [25], we
exclude negations and disjunctions of atomic formulas just like in basic possibilistic logic,
where we do not use negations nor disjunctions of weighted formulas.

A relative confidence base B is a finite subset of L>. We associate to a po-base (K, >)
the set of formulas of the form φ > ψ and forming a base B(K,>) ⊂ L>. In the following,
we shall often write (K, >) instead of B(K,>) for simplicity.

We consider a semantics defined by a strict confidence relation between sets of interpre-
tations. The idea is to interpret the formula φ > ψ on 2Ω by [φ] � [ψ] for a strict confidence
relation � (Definition 1). A relative confidence modelM is a structure (2Ω,�) where � is
a strict confidence relation on 2Ω (that is a strict partial order on 2Ω satisfying the properties
O and T).

22

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

We define the satisfiability of a formula φ > ψ ∈ L> inM asM � φ > ψ iff [φ] � [ψ].
The satisfiability of the set of formulas B(K,>) is defined by M � B(K,>) iff M � φi >
ψi, ∀φi > ψi ∈ B(K,>). Note that there is not always a relative confidence model of a
po-base (K, >). For instance, if φ > ψ ∈ B(K,>) such that φ |= ψ, it is impossible to find
a confidence relation � such that [φ] � [ψ] since � should satisfy property O. This comes
down to saying that no model of this formula in L> exists for the semantics of relative
confidence.

We say that (K, >) is inconsistent with respect to the relative confidence semantics, in
short rc-inconsistent, iff there is no relative confidence model for B(K,>).

A logic for relative confidence, denoted by CO, can be defined as follows: It directly
interprets the atoms φ > ψ in L> by means of the strict confidence relation � having prop-
erties (O) and (T) for comparing the sets of models [φ] and [ψ]. The idea behind the proof
system is to use the characteristic properties of the confidence relation�, expressed in terms
of inference rules that define the syntactic entailment `CO. We need one axiom and three
inference rules:

Axiom
axNT : > > ⊥

Inference rules

RIO : If φ � φ′ and ψ′ � ψ then φ > ψ ` φ′ > ψ′ (O)

RIT : {φ > ψ,ψ > χ} ` φ > χ (T)

RIAS : {φ > ψ,ψ > φ} ` ⊥ (AS)

The axiom says that the order relation is not trivial 3. Rules RIO and RIT correspond
to the properties of Orderliness and Transitivity. RuleRIAS expresses the asymmetry of the
relation >. The proof system of the logic of relative confidence is composed of the axiom
axNT and the three inference rules RIO −RIAS .

Remark 1. The order relation> does not contradict classical inference. Indeed, if we have
ψ � φ and ψ > φ ∈ B(K,>), we prove that φ > φ by RIO and the contradiction by RIAS .

The associated semantic consequence �CO can then be defined in the usual way:

(K, >) �CO φ > ψ iff ∀M, if M � B(K,>) then M � φ > ψ. (5)

The proof system of the logic of relative confidence is sound and complete for the relative
confidence semantics:

3This axiom could be replaced by φ ∨ ¬φ > ψ ∧ ¬ψ, in the presence of the inference rule RIT .

23

CAYROL, DUBOIS AND TOUAZI

Proposition 15. Let (K, >) be a partially ordered base and φ, ψ ∈ L.

• Soundness:
If (K, >) `CO φ > ψ then (K, >) �CO φ > ψ

• Completeness:
If (K, >) is rc-consistent and (K, >) �CO φ > ψ then (K, >) `CO φ > ψ
If (K, >) is rc-inconsistent then (K, >) `CO ⊥

Proof of Proposition 15:

Let B(K,>) = {(φi > ψi), i = 1 · · ·n}.
• Soundness:

Let � be a strict partial order on 2Ω satisfying O. We must show that if ∀i = 1 · · ·n, [φi] �
[ψi] then [φ] � [ψ]. We assume that φ > ψ was obtained from (φi > ψi) by inference rules
RIO, RIT , RIAS and the axiom. So we just have to show that each of the rules is sound and
that the axiom axNT is valid.

axNT : It holds because S � ∅ for a confidence relation.

RIO: It holds because � satisfies (O)

RIT : It holds because � is transitive.

RIAS : The presence of both φ > ψ and ψ > φ leads to a semantic contradiction because the
relation � being asymmetric, we can not have both [ψ] � [φ] and [φ] � [ψ].

• Completeness:
We assume that (K, >) is rc-consistent. We suppose that for each strict partial order � on 2Ω

satisfying O, if ∀i = 1 · · ·n, φi � ψi then [φ] � [ψ]. We must show that (K, >) `CO φ > ψ.
If φ > ψ appears in B(K,>), it is proven.
Otherwise, consider the strict partial order � defined on 2Ω as the smallest order containing
pairs [φi] � [ψi] and closed for the properties O, T.
This relation exists because (K, >) is rc-consistent. According to the hypothesis, we have
[φ] � [ψ]. And, by definition of �, the pair ([φ], [ψ]) is obtained by successive applications
of the properties O, T. This amounts to getting φ > ψ by successive applications of inference
rules RIO, RIT .
It remains to prove that if (K, >) is rc-inconsistent, then (K, >) `CO ⊥.
Note that, as L> contains only atomic comparison constraints and their conjunctions, the
only form of syntactic inconsistency is the presence of both φ > ψ and ψ > φ derived from
(K, >). This is the only way to get (K, >) `CO ⊥. In this case, we know that B(K,>) does
not have a model of relative confidence. So if (K, >) `CO ⊥ does not hold, then the relation
> obtained on L> by the syntactic closure is asymmetric and transitive, and so is the relation
� on 2Ω defined by [φ] � [ψ] if and only if (K, >) `CO φ > ψ. In addition, � will be the
smallest relation containing the pairs ([φi], [ψi]) with φi > ψi in (K, >), and closed for the
properties O, T. It is a model of B(K,>), which is rc-consistent.

24

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

2

Example 2. K1= {φ ∧ ψ, φ ∧ ¬ψ,¬φ} with φ ∧ ψ > φ ∧ ¬ψ > ¬φ.
Then we let B(K1,>) = {φ∧ψ > φ∧¬ψ, φ∧¬ψ > ¬φ}. With the proof system of CO, by
RIT , we deduce φ ∧ ψ > ¬φ and by RIO, ψ > ¬φ.

Next is a case where inconsistency can be detected.

Example 3. K2={φ, φ ∧ ψ} with B(K2,>) = {φ ∧ ψ > φ}. With the proof system of CO,
we obtain a contradiction by RIO (we have (K2, >) `CO φ ∧ ψ > φ ∧ ψ) and RIAS .

3.2 Axioms and inference rules for relative certainty logic

The logic for relative certainty described in [36], here denoted by C, directly interprets the
atoms φ > ψ in L> by means of a qualitative certainty relation �cr having properties (O)
and (Qd) for comparing the sets of models [φ] and [ψ]. A relative certainty model is a
structure (2Ω,�cr) where �cr is a qualitative certainty relation on 2Ω.

The idea behind the proof system is again to use the characteristic properties of the
relation �cr, expressed in terms of inference rules. We need again one axiom and three
inference rules in the language L>: the same axiom as for the relative confidence logic
above, and we can add the following inference rule to the inference rules RIO and RIAS of
the confidence relation logic:

RIQd : {χ > φ ∧ ψ,ψ > φ ∧ χ} ` ψ ∧ χ > φ (Qd)

This rule corresponds to the properties of dual Qualitativeness. So the relative certainty
logic proof system is made of axiom axNT , and rules RIO, RIAS and RIQd .

The inference rule RIT can be derived in this system (see also Proposition 1), as well
as the following inference rules, some of which are established in [36]:

RIA : {ψ > φ, χ > φ} ` ψ ∧ χ > φ (A)

RIORd : {φ → χ > φ → ¬χ, ψ → χ > ψ → ¬χ} ` (φ ∨ ψ) → χ > (φ ∨ ψ) → ¬χ
(ORd)

RICCCd : {χ → φ > χ → ¬φ, χ → ψ > χ → ¬ψ} ` χ → (φ ∧ ψ) > χ → ¬(φ ∧ ψ)
(CCCd)

RICUT d : {φ → ψ > φ → ¬ψ, (φ ∧ ψ) → χ > (φ ∧ ψ) → ¬χ} ` φ → χ > φ → ¬χ
(CUTd)

25

CAYROL, DUBOIS AND TOUAZI

RICMd : {φ → ψ > φ → ¬ψ, φ → χ > φ → ¬χ} ` (φ ∧ ψ) → χ > (φ ∧ ψ) → ¬χ
(CMd)

RINec : φ > ⊥ ` φ > ¬φ
RISCd : φ > ψ ` φ > ¬φ ∨ ψ (semi-cancellativity).

The first derived rule expresses adjunction and ensures that formulae that are more cer-
tain than another one will form a deductively closed set. The next four rules are key in-
ference properties in non-monotonic logic of the KLM type [27]. Rule RINec results from
applying RIQd to φ > φ ∧ ¬φ, and reminds of the property min(N(A), N(A)) = 0 of
necessity measures N in possibility theory. The last rule can be proved by implementing
the proof of Proposition 6 in C.

Example 4. Let K3 = {φ,¬φ, ψ,¬ψ} with B(K3,>) = {φ > ¬φ, ψ > ¬ψ}. Using
RICCCd by considering φ > ¬φ as > → φ > > → ¬φ and ψ > ¬ψ as > → ψ > > →
¬ψ, we have φ ∧ ψ > ¬φ ∨ ¬ψ. Then by RIO we obtain ψ > ¬φ. And similarly we obtain
φ > ¬ψ.

The proof system of the relative certainty logic C has been proved sound and complete
[36] for the semantics of relative certainty. Namely, define (K, >) �C φ > ψ to mean:
for each qualitative certainty relation �cr, if [φi] �cr [ψi],∀i s.t. φi > ψi ∈ B(K,>), then
[φ] �cr [ψ]. Moreover (K, >) is said to be rcr-consistent if it has a relative certainty model
(2Ω,�cr). Then we have proved in [36]:

Proposition 16. Let (K, >) be a partially ordered base and φ, ψ ∈ L.

• Soundness:
If (K, >) `C φ > ψ then (K, >) �C φ > ψ.

• Completeness:
If (K, >) is rcr-consistent and (K, >) �C φ > ψ then (K, >) `C φ > ψ.
If (K, >) is rcr-inconsistent then (K, >) `C ⊥.

4 Qualitative likelihood logic

In this section, we will present the preadditive version of the relative certainty logic. As done
for relative certainty, we propose an inference system for qualitative likelihood relations,
which is preadditive, with a semantics defined by a relation between sets of interpretations.
As before, we interpret a partially ordered base as a fragment of a qualitative likelihood
ordering. We propose a logic system for reasoning with comparative statements interpreted
by such a relation. We keep the syntax as defined in the previous section.

26

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

4.1 Semantics of qualitative likelihood

Let us interpret the formula φ > ψ on 2Ω by [φ] �+ [ψ] for a qualitative likelihood re-
lation �+ in the sense of Definition 6. We assume it is non-dogmatic. A qualitative like-
lihood modelM+ is a structure (2Ω,�+) where �+ is a non-dogmatic qualitative likeli-
hood relation on 2Ω. We define the satisfiability of a formula φ > ψ ∈ L> in M+ as
M+ � φ > ψ iff [φ] �+ [ψ]. The satisfiability of the set of formulas B(K,>) is defined
by M+ � B(K,>) iff M+ � (φi > ψi),∀φi > ψi ∈ B(K,>). The associated semantic
consequence �+ can then be defined in the usual way:

Definition 7. (K, >) �+ φ > ψ iff ∀M+, ifM+ � B(K,>) thenM+ � φ > ψ.

In other words, (K, >) �+ φ > ψ iff for every strict partial order �+ on 2Ω verifying
O, P, QD, NoD, if ∀i = 1 · · ·n, [φi] �+ [ψi] then [φ] �+ [ψ].

We say that (K, >) is inconsistent with respect to the qualitative likelihood semantics,
in short ql-inconsistent, iff there is no qualitative likelihood model for B(K,>).

4.2 Proof system

The logic for qualitative likelihood directly interprets the atoms φ > ψ in L> by means
of a qualitative likelihood relation �+ for comparing the sets of models [φ] and [ψ]. The
idea behind the proof system is again to use the characteristic properties of the relation �+,
expressed in terms of formulas, as inference rules. Indeed, we need one axiom and four in-
ference rules in the language L>, owing to Proposition 8, that indicates that SCI is a derived
property in this setting.

Axiom
axNoD: If φ 2 ⊥ then φ > ⊥ (NoD)

Inference rules: RIO, RIAS and

RIQDd : If � φ ∨ ψ,� φ ∨ χ and � ψ ∨ χ, then {χ > φ ∧ ψ,ψ > φ ∧ χ} ` ψ ∧ χ > φ

(QDd)

RIP1 : If ¬χ � φ ∧ ψ then φ > ψ ` φ ∧ χ > ψ ∧ χ (⇒ P)

RIP2 : If ¬χ � φ ∧ ψ then φ ∧ χ > ψ ∧ χ ` φ > ψ (⇐ P)

We denote by QL this logic and by `+ the associated syntactic inference.
Note that the axiom axNoD encodes property (NoD). Besides, (RIQDd) could be replaced

27

CAYROL, DUBOIS AND TOUAZI

by (RIQD) of the form

RIQD: If φ∧ψ � ⊥ and φ∧χ � ⊥ and ψ∧χ � ⊥, then {φ∨ψ > χ, φ∨χ > ψ} ` φ > ψ∨χ

since, in the presence of (P), the properties (QD) and (QDd) are equivalent.
Due to Propositions 8 and 10, it can be proved that other rules can be derived from the

rules of the proof system of QL. Some of these derived rules are theorems of the proof
system of C: RIT , RIORd , RICCCd , RICUT d , RICMd .

Other derived rules are new:

RINDd : If � φ ∨ ψ and � φ ∨ χ, then {ψ > φ, χ > φ} ` ψ ∧ χ > φ (NDd)

RID : {φ > ψ} ` ¬ψ > ¬φ (Self-duality D)

RISCI : If ψ � φ and not φ � ψ then φ > ψ (SCI)

RISD : If φ ∧ ψ = χ ∧ ξ = ⊥, {φ > χ,ψ > ξ} ` φ ∨ ψ > χ ∨ ξ (SD)

RISTP : φ > ψ iff φ ∧ ¬ψ > ψ ∧ ¬φ (direct consequence of P)

The last rule is a consequence of RIP1 and RIP2 (taking ¬χ = φ ∧ ψ), that expresses
the sure thing principle for events.

Example 5. LetK4 = {¬φ∨¬ψ, ¬φ, φ∧ψ, φ} with ¬φ∨¬ψ > φ∧ψ > ¬φ and φ > ¬φ.
So B(K4,>) = {¬φ ∨ ¬ψ > φ ∧ ψ, φ ∧ ψ > ¬φ, φ > ¬φ}. Using RID (Self-duality) we
obtain φ > ¬φ ∨ ¬ψ and so we get the chain φ > ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ.

Of interest is to prove rule RISD and RIT . The derivation of RISD follows from the
following lemma.

Lemma 1. If A,B,C,D satisfy A ∩ B = A ∩ C = B ∩ D = C ∩ D = ∅ then, for
any qualitative likelihood relation �+, it holds that whenever A �+ B and C �+ D then
A ∪ C �+ B ∪D.

Proof of Lemma 1:
Let �+ be a qualitative likelihood relation. Let �pl denote the plausibility relation which is refined
by �+, as defined in Proposition 14. We have �+ = ρ(�pl) and �pl = µ(�+).
So, A �+ B and C �+ D can be written as A \B �pl B \A and C \D �pl D \ C. Moreover as
A ∩B = C ∩D = ∅, we obtain A �pl B and C �pl D.
From Proposition 3, it follows that (A ∪ C) �pl (B ∪ D). Then from Proposition 2, we obtain
(A \D) ∪ (C \ B) �pl (B \ C) ∪ (D \ A) (deleting (A ∩D) ∪ (B ∩ C) on both sides). As �pl
= µ(�+) and the sets are disjoint, we also have (A \D) ∪ (C \ B) �+ (B \ C) ∪ (D \ A). Then

28

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

applying (P) we get A ∪ C �+ B ∪D (adding (A ∩D) ∪ (B ∩ C) to both sides). 2

Then the derivation of RIT goes as follows:

• {φ > ψ,ψ > χ} `QL {φ ∧ ¬ψ > ψ ∧ ¬φ, ψ ∧ ¬χ > χ ∧ ¬ψ} (using RISTP)

• {φ∧¬ψ > ψ∧¬φ, ψ∧¬χ > χ∧¬ψ} `QL (φ∧¬ψ)∨(ψ∧¬χ) > (ψ∧¬φ)∨(χ∧¬ψ)
(using RISD)

• (φ∧¬ψ)∨ (ψ∧¬χ) > (ψ∧¬φ)∨ (χ∧¬ψ) `QL φ∧¬χ > ¬φ∧χ (using RISTP)

• φ ∧ ¬χ > ¬φ ∧ χ `QL φ > χ (using RISTP).

The proof system of QL is sound and complete for the semantics of qualitative likeli-
hood.

Proposition 17. Let (K, >) be a partially ordered base and φ, ψ ∈ L.

• Soundness:
If (K, >) `+ φ > ψ then (K, >) �+ φ > ψ

• Completeness:
If (K, >) is ql-consistent and (K, >) �+ φ > ψ then (K, >) `+ φ > ψ
If (K, >) is ql-inconsistent then (K, >) `+ ⊥

Proof of Proposition 17:

The proof follows the same pattern as for the soundness and completeness of the relative confidence
proof system (proof of Proposition 15).

• Soundness:
Let �+ be a strict partial order on 2Ω satisfying O, P, QDd and NoD. We must show that if
∀i = 1 · · ·n, [φi] �+ [ψi] then [φ] �+ [ψ]. We do it for axioms and rules not previously
encountered.

axNoD We must show that ∀M+, if φ 2 ⊥ thenM+ � φ > ⊥. Or equivalently, for any
strict relation �+ on 2Ω that satisfies the properties O, P, QDd and NoD, if φ 2 ⊥ then
[φ] �+ [⊥]. It follows from Proposition 8 since [φ] 6= ∅ when φ 2 ⊥.

RIP1 We must show that if [φ] �+ [ψ] and ¬χ � φ ∧ ψ then [φ ∧ χ] �+ [ψ ∧ χ]. This is
true since the relation �+ is preadditive.

RIP2 We must show that if [φ ∧ χ] �+ [ψ ∧ χ] and ¬χ � φ ∧ ψ then [φ] �+ [ψ]. This is
true since the relation �+ is preadditive.

29

CAYROL, DUBOIS AND TOUAZI

• Completeness:
The proof is exactly the same as for the relative confidence logic CO, (Proposition 15) replac-
ing (O) by (O), (P), (QDd) and (NoD). Note that the only possible form of syntactic inconsis-
tency that can be detected in (K, >) is again when (K, >) `+ φ > ψ and (K, >) `+ ψ > φ.

2

5 Comparison between proof systems of QL and C
Based on results from the previous sections, it is interesting to compare relative certainty
and qualitative likelihood logics C and QL in terms of strength of their proof systems.

5.1 Is one system more productive than the other?

Recall that for any relative certainty relation, there is a qualitative likelihood relation that
refines it. Due to Proposition 2 and Proposition 14, we have: if M is a relative certainty
model and M+ its associated qualitative likelihood model, M � φ > ψ implies M+ �
φ > ψ and soM � B(K,>) impliesM+ � B(K,>). However it does not imply that, applied
to a set of constraints in the form of a partially ordered set of formulas, the system QL will
produce more comparative statements than C.

Indeed, the following points must be noticed:

• Inference rules RIO and RIAS belong to both systems.

• Axiom axNoD is stronger that axiom axNT .4

• The proof system of QL adds two preadditivity rules that are not part of C.

• C uses ruleRIQd , but the qualitativeness ruleRIQDd used inQL is weaker thanRIQd
as it only applies to relative confidence statements when the disjunction of the two
compared formulas forms a tautology.

Note that due to semi-cancellativity, φ > ψ in QL is equivalent to φ > ¬φ ∨ ψ in C, and
the latter statement obeys the condition that the disjunction of the two formulas forms a
tautology, which enables the use of RIQDd . But the form of the obtained statements does
not allow to apply it directly. So it seems that the two logics are not comparable. Moreover,
if a partially ordered base is inconsistent for relative certainty semantics, it may be consistent
for qualitative likelihood semantics. The following example illustrates this point.

4but non-dogmaticism is not compulsory: one can specialize system C adding it in the form > > φ if
> 6` φ, or weaken system QL by using axNT in place of axNoD .

30

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Example 6. K4= {¬φ ∨ ¬ψ, ¬φ, φ ∧ ψ, φ} with ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ and φ > ¬φ,
(the same case as in Example 5).
With system C, we obtain a contradiction: By RIT we obtain ¬φ∨¬ψ > ¬φ. Then by RIA
we obtain (¬φ∨¬ψ)∧ (φ∧ψ) > ¬φ. Applying RIO produces⊥ > ¬φ and applying RIO
again produces ¬φ > ¬φ, which by RIAS yields a contradiction.
With system QL, we obtain φ > ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ (see Example 5).
Note that the reason why we get a contradiction in C is because we have ¬φ ∨ ¬ψ >
φ ∧ ψ > ⊥, of the form ¬ϕ > ϕ > ⊥ which is forbidden in C due to the inference
{ϕ > ⊥,¬ϕ > ⊥} `C ⊥ valid in C (just use RIA).
However, nothing prevents ¬ϕ > ϕ > ⊥ in QL (e.g., ϕ > ⊥ is axiom axNoD). Note that
we cannot apply rule RIA to {¬ϕ > ⊥, ϕ > ⊥} in QL.
In this example it can be shown that the resulting total order in the case of the system QL is
the refinement of a relative certainty ordering that differs from the set of constraints given in
the original (K4, >). Namely, consider a big-stepped probability that represents the linear
order φ > ¬φ ∨ ¬ψ > φ ∧ ψ > ¬φ, letting

p1 = P ([φ ∧ ¬ψ]) ∝ 8; p2 = P ([φ ∧ ψ]) ∝ 4; p3 = P ([¬φ ∧ ψ]) ∝ 2; p4 =
P ([¬φ ∧ ¬ψ]) ∝ 1.

Then, the reader can check that P ([φ]) > P ([¬φ ∨ ¬ψ]) > P ([φ ∧ ψ]) > P ([¬φ]). It
ensures ql-consistency of the linear order. The big-stepped probability assignment viewed
as a possibility ordering corresponds to the strict constraints (using the max instead of the
sum)

Π([¬φ ∨ ¬ψ]) > Π([φ ∧ ψ]) > Π([¬φ]) and Π([φ]) > Π([φ ∧ ψ]).

Indeed, Π([φ]) = Π([¬φ ∨ ¬ψ]). The corresponding plausibility ordering, expressed in
terms of a partial certainty relation, leads to the new set of constraints obtained by duality
from the possibility constraints:

C: φ� ¬φ ∨ ¬ψ � φ ∧ ψ and ¬φ ∨ ¬ψ � ¬φ.

This new partially ordered base is no longer C-inconsistent and is refined by means of the
QL logic. In C, we cannot prove that C implies φ ∧ ψ � ¬φ, while this is obtained in QL
logic using self-duality rule RID applied to φ� ¬φ ∨ ¬ψ.

However, even rcr-consistent bases do not necessarily produce less inferences using
system C than using system QL, as shown now.

Example 7. K5={φ, φ ∧ ψ} with the constraint φ > φ ∧ ψ.
With system C, we obtain φ > ψ, using RIQd but we do not have that ψ > φ ∧ ψ.
With system QL, the partially ordered base (K5, >) gives no information. Indeed from
RISCI and axNoD, φ > φ ∧ ψ and ψ > φ ∧ ψ are theorems of QL. But we cannot infer
φ > ψ in QL.

31

CAYROL, DUBOIS AND TOUAZI

5.2 Using system C to compute inference in QL

As seen above, we do not have that (K, >) �C φ > ψ implies (K, >) �+ φ > ψ. Indeed,
while the proof system of QL contains inference rules that are not in the proof system of
C (the preadditivity property which is translated into the inference rules RIP1 and RIP2),
it contains one less powerful inference rule (qualitativeness for disjoint sets, which is trans-
lated into RIQDd) than RIQd for system C. Examples above have shown that if applied to
a bunch of comparative confidence statements, one system is, strictly speaking, not more
powerful than the other. Nevertheless we can try to use C to compute inferences in QL,
provided that we modify the original base in a suitable way.

The idea is to exploit Proposition 14 that says that qualitative likelihood orderings are
in bijection with qualitative plausibility ones. Due to Proposition 9, the properties (Q) and
(QD) are equivalent when considering disjoint sets. By duality, it follows that the properties
(Qd) and (QDd) are equivalent on pairs (A,B) such that A∩B = ∅. As a consequence, the
rulesRIQd andRIQDd are equivalent for bases consisting of φ > ψ such that [φ]∩ [ψ] = ∅,
or equivalently such that � φ ∨ ψ (two such formulas are said to be subcontraries). So, the
first step is to transform a partially ordered base understood as a fragment of a qualitative
likelihood ordering, into a partially ordered base with comparative propositions involving
only subcontraries.

More precisely, applying the transformation in Proposition 14, if > is interpreted as a
qualitative likelihood ordering, we consider >pl the qualitative plausibility ordering that is
refined by >, and denote by >cr the certainty ordering dual of >pl. We have > = ρ(>pl)
and >pl = µ(>). So the formula φ > ψ stands for φ ∧ ¬ψ >pl ψ ∧ ¬φ and can be written
as φ ∨ ¬ψ >cr ψ ∨ ¬φ.

Once we obtain such a relative certainty base, the inference rules of C can be applied.
Then, applying the converse transformation in Proposition 14, we obtain formulas belong-
ing to the QL-closure QL(B(K,>)). More precisely, if the formula φ′ >cr ψ′ is produced
using C, as >cr is the certainty ordering dual of >pl and >pl = µ(>), φ′ >cr ψ′ stands for
φ′ ∧ ¬ψ′ > ¬φ′.

The strategy is summarized as follows. Starting from a partially ordered QL-base
(K, >):

1. Turn (K, >) into a new partially ordered C-base µ(K, >) = (K′,�), replacing each
φ > ψ by φ ∨ ¬ψ � ψ ∨ ¬φ.

2. Apply the rules of (C) to the base B(K′,�), thus obtaining the closure C(B(K′,�)).

3. Turn C(B(K′,�)) into a new base ρ(C(B(K′,�))) by replacing each φ′ � ψ′ by φ′ ∧
¬ψ′ > ¬φ′. (Note that this is equivalent to applying ruleRISCd (semi-cancellativity),
a rule of system C).

32

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

Obviously, following the above strategy we obtain only a subset of QL(B(K,>)).

Example 8. Let K = {φ, ψ} with φ > ψ.
As > = ρ(>pl) the formula φ > ψ stands for φ ∧ ¬ψ >pl ψ ∧ ¬φ. Conversely, as >pl =
µ(>), we obtain the formula φ ∧ ¬ψ > ψ ∧ ¬φ. So we do not recover the initial formula
φ > ψ. The rule RISTP must be used for that purpose.

Example 9. LetK = {φ,¬φ∨ψ,¬ψ}withB(K,>) = {φ > ¬ψ,¬φ∨ψ > ¬ψ} interpreting
> as qualitative likelihood.
First, we transform the QL-base into a C-base:

• φ > ¬ψ will be turned into φ ∨ ψ � ¬ψ ∨ ¬φ

• ¬φ ∨ ψ > ¬ψ into ¬φ ∨ ψ � ¬ψ, which remains unchanged

Then we use C. By RIO on φ ∨ ψ � ¬ψ ∨ ¬φ we obtain φ ∨ ψ � ¬ψ. Then by RIA and
RIO again we obtain ψ � ¬ψ. Finally, applying RISCd produces no other formula. As
φ ∨ ψ,¬ψ are subcontraries, and so are ψ,¬ψ, we do get φ ∨ ψ > ¬ψ and ψ > ¬ψ.
By QL we directly compute the partial preadditive deductive closure.

• By RIO we obtain φ ∨ ψ > ¬ψ

• By RINDd we obtain ψ > ¬ψ.

To conclude, applying the proof system of QL to a comparative base does not give the
same results as applying system C first and thenQL (see Example 7). However, by changing
a QL-base into a C-base, applying the transformation in Proposition 14 enables us to derive
QL consequences using inference rules of system C. It is yet to be proved whether adding
axiom axNoD and using preadditivity rules (or just the sure thing principle rule RISTP) to
a QL base, completed by its consequences obtained applying system C to the transformed
original base, will generate the whole QL closure of the latter.

That it can be conjectured relies on the following reasoning. If we consider a qualitative
likelihood relation �+ and its associated plausibility relation �pl= µ(�+), these relations
coincide on pairs of disjoint sets. Consider a relation� relating onlyA,B such thatA∩B =
∅; it is clear that

• �+ can be obtained from � using C �+ D if and only if C \D � D \ C, for C,D
not disjoint.

• �pl can be obtained from � using C �pl D if and only if C \D � D.

So if a QL base (K,>) is changed into a C-base using the transformation µ (and taking the
certainty relation dual of µ(>)), we can extract from the C-closure of the transformed base

33

CAYROL, DUBOIS AND TOUAZI

all statements φ > ψ where φ, ψ are subcontraries. Call this set of comparative statements
SC(K,>). All statements in SC(K,>) are in the QL-closure of (K,>) and we can argue
that the C-closure of the transformed base contains all QL-consequences of (K,>) involv-
ing subcontraries. So if we apply the sure thing principle rule RISTP to SC(K,>), we can
hope to recover the QL-closure (K,>).

5.3 Case of a flat base

One interesting issue is whether classical propositional logic is a special case of the logics
of relative certainty and of qualitative likelihood. To see it, we can encode a propositional
knowledge base in the syntax of these logics, and show that the standard closure of the
original propositional knowledge base can be recovered respectively from the C-closure,
and the QL-closure, of the set of comparative statements obtained by such encodings.

Consider a flat propositional base of the form K = {φ1, · · · , φn}, where each formula
φi expresses a piece of information given by an agent. We thus suppose that each formula is
certain. In consequence a natural encoding ofK in terms of comparative statements consists
in translating each formula φi into φi > ¬φi. Let BK = {φ1 > ¬φ1, · · · , φn > ¬φn}.

We try to show that introducing the comparative statement φi > ¬φi for each formula
φi of the flat base K, we can recover a classical consequence ψ of K as the consequence
ψ > ¬ψ of BK. We will successively study the deductive closures of BK in the sense of
relative certainty and qualitative likelihood logics.

Example 10. Let K = {φ,¬φ ∨ ψ} be a classical base. So, BK = {φ > ¬φ,¬φ ∨ ψ >
φ ∧ ¬ψ}.
By modus ponens on K, ψ can be derived. So, we would like to obtain ψ > ¬ψ from BK.

• We compute the C-closure: by RICCCd on φ > ¬φ and ¬φ ∨ ψ > φ ∧ ¬ψ we obtain
φ ∧ ψ > ¬ψ ∨ ¬φ. Then by RIO we obtain ψ > ¬ψ. The C-closure also contains:

– φ ∧ ψ > ¬ψ, φ ∧ ψ > ¬φ, ψ > ¬ψ, φ > ¬ψ and ψ > ¬φ.

– φ > ¬φ ∨ ¬ψ and ψ > ¬φ ∨ ¬ψ.

• We compute the QL-closure. Each formula is of the form φi > ¬φi, so BK contains
only pairs of disjoint formulas, that are also subcontraries. Inference rule RICCCd
can still be applied and so the same conclusion ψ > ¬ψ can be inferred. Other
comparative formulas can be inferred such as

– By axiom axNoD, we obtain φ ∧ ¬ψ > ⊥ and ψ ∧ ¬φ > ⊥ if φ and ψ are not
equivalent. So we have φ ∧ ¬(φ ∧ ψ) > ¬φ ∧ (φ ∧ ψ).

– By RISTP , we obtain φ > φ ∧ ψ and similarly ψ > φ ∧ ψ.

34

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

With both systems, we obtain ψ > ¬ψ. Moreover theQL-closure contains φ > φ∧ψ
and ψ > φ ∧ ψ (when φ and ψ are not equivalent).

What the above example suggests holds more generally:

Proposition 18. If {φ1, . . . φn} ` φ then {φ1 > ¬φ1, . . . φn > ¬φn} `X φ > ¬φ for
X ∈ {C, QL}.

Proof of Proposition 18:
In both systems C and QL, we can apply inference rule RICCCd to {φ1 > ¬φ1, . . . φn > ¬φn} and
get the consequence φ1 ∧ · · · ∧ φn > ¬φ1 ∨ · · · ∨ ¬φn. And indeed, {φ1, . . . φn} ` φ1 ∧ · · · ∧ φn.

Now it is well-known that {φ1, . . . φn} ` φ if and only if φ1 ∧ · · · ∧ φn ` φ. In this case
{φ1 > ¬φ1, . . . φn > ¬φn} `X φ > ¬φ also holds using RIO, valid for X ∈ {C, QL}. 2

For the converse proposition, the situation is different between C and QL. Note that

Lemma 2. In C, φi > ¬φi is equivalent to φi > ⊥.

Proof of Lemma 2:
Rule RINec expresses that φi > ⊥ implies φi > ¬φi, and for the converse, apply RIO. 2

So we can prove:

Proposition 19. If {φ1 > ¬φ1, . . . φn > ¬φn} `C φ > ¬φ then {φ1, . . . φn} ` φ.

Proof of Proposition 19:
In C, the knowledge base {φ1 > ¬φ1, . . . φn > ¬φn} is equivalent to {φ1 > ⊥, . . . φn > ⊥}. Only
rules RIA and RIO can be used to the latter base, which ensures that {φ1 > ⊥, . . . φn > ⊥} `C
φ > ⊥ only when {φ1, . . . φn} ` φ, so that {φ1 > ¬φ1, . . . φn > ¬φn} `C φ > ¬φ implies
{φ1, . . . φn} ` φ. 2

In QL, the base {φ1 > ⊥, . . . φn > ⊥} brings no information as it follows from non-
dogmaticism axiom axNoD, so it is not equivalent to {φ1 > ¬φ1, . . . φn > ¬φn}. More-
over, we cannot apply theQL ruleRIQd to the knowledge base {φ1 > ¬φ1, . . . φn > ¬φn}.
We can only apply inference rules RICCCd and RIO. But then what we get is again the C-
closure. The inference rules we can use on top are RIP1 and RIP2, or better the sure thing
principle RSTP . However they would only deduce statements of the form φ∨ψ > φ when-
ever ψ 6|= φ from axiom axNoD. But note that we cannot apply RSTP to statements of the
form φi > ¬φi. So inference from such statements in QL is again equivalent to inference
in classical logic.

35

CAYROL, DUBOIS AND TOUAZI

6 Conclusion

In their early survey on qualitative approaches to probabilistic reasoning, Walley and Fine
[37] pointed out in 1979 that

there is a uniform disregard for the formal analysis of probability concepts that
cannot be reduced in some fashion to numerical probability.

Due to the assumption that probability is intrinsically numerical, most logical approaches
to reasoning with absolute or comparative probability statements in a symbolic framework
still reject the adjunction principle according to which the conjunction of two beliefs is still
a belief (see for instance the logic of risky knowledge [30], or yet Burgess comparative
probability logic [4]). In this paper we have tried to reconcile two uncertain reasoning
traditions in a symbolic framework, namely the non-monotonic reasoning approach of the
Kraus, Lehman and Magidor style [27] as captured in the possibility theory setting, and the
probabilistic reasoning approach as captured via the sure thing principle. There is a clash of
intuitions between the two frameworks as the first one respects deductive closure for beliefs,
while the latter often rejects it, for instance on the basis of the lottery paradox, originally
introduced by Kyburg [28]. In this example, a conjunction of strong beliefs may turn out
to be inconsistent. As explained in [15], the lottery paradox is less convincing in situations
where some possible worlds are much more frequent than other ones, and probabilities tend
to be big-stepped on a suitable partition, which brings probability orderings much closer to
possibilistic orderings. However, if the considered probability ordering is total, a certain
trivialization results from adopting the adjunction principle, as it enforces a linear order of
possible worlds ([15] again).

In this paper, we restrict to partial orders expressing relative likelihood, giving up the
reference to numerical probabilities, thus avoiding this trivialization. We show that strict
partial comparative plausibility and qualitative likelihood relations coincide on pairs of dis-
joint sets and are in bijection with one another, and we provide a logic for relative likelihood
that is both adjunctive and respects the sure thing principle.

A possible extension of this work would be to consider similar notions dropping the
asymmetry property, so as to capture equal likelihoods between propositions as distinct
from incomparability due to incompleteness, as studied in [12]. However it is clear that such
a logic should then allow for negation and disjunction of comparative statements, in order
to express relations between strict and weak preference, which would make the language
more complex. Another line of further research would be to extend QL to comparative
conditional statements.

36

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

References

[1] E.W. Adams and H.P. Levine. On the uncertainties transmitted from premises to conclusions
in deductive inferences. Synthese, 30:429–460, 1975.

[2] S. Benferhat, D. Dubois, and H. Prade. Nonmonotonic reasoning, conditional objects and
possibility theory. Artif. Intell., 92(1-2):259–276, 1997.

[3] S. Benferhat, D. Dubois, and H. Prade. Possibilistic and standard probabilistic semantics of
conditional knowledge bases. Journal of Logic and Computation, 9(6):873–895, 1999.

[4] J. P. Burgess. Axiomatizing the logic of comparative probability. Notre Dame Journal of
Formal Logic, 51(1):119–126, 2010.

[5] C. Cayrol, D. Dubois, and F. Touazi. Fermeture déductive d’une base partiellement ordonnée.
Research report RR–2014-08–FR, IRIT, Université Paul Sabatier, Toulouse, November 2014.

[6] C. Cayrol, D. Dubois, and F. Touazi. On the semantics of partially ordered bases. In C. Beierle
and C. Meghini, editors, Foundations of Information and Knowledge Systems, volume 8367 of
Lecture Notes in Computer Science, pages 136–153. Springer, 2014.

[7] C. Cayrol, D. Dubois, and F. Touazi. Ordres Partiels entre Sous-Ensembles d’un Ensem-
ble Partiellement Ordonné. Research report RR–2014-02–FR, IRIT, Université Paul Sabatier,
Toulouse, February 2014.

[8] C. Cayrol, V. Royer, and C. Saurel. Management of preferences in assumption based reasoning.
In Information Processing and the Management of Uncertainty in Knowledge based Systems
(IPMU’92), volume 682 of Lecture Notes in Computer Science, pages 13–22. Springer, 1993.

[9] G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Setting. Kluwer Academic
Pub, 2002.

[10] B. de Finetti. La prévision : ses lois logiques, ses sources subjectives. Annales Institut
Poincaré, 7:1–68, 1937.

[11] D. Dubois. Belief structures, possibility theory and decomposable confidence measures on
finite sets. Computers and Artificial Intelligence (Bratislava), 5:403–416, 1986.

[12] D. Dubois and H. Fargier. A unified framework for order-of-magnitude confidence relations.
In Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence, pages 138–145.
AUAI Press, 2004.

[13] D. Dubois, H. Fargier, and H. Prade. Refinements of the maximin approach to decision-making
in fuzzy environment. Fuzzy Sets and Systems, 81:103–122, 1996.

[14] D. Dubois, H. Fargier, and H. Prade. Possibilistic likelihood relations. In Proceedings of
7th International Conference on Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU’98), pages 1196–1202, Paris, 1998. Editions EDK.

[15] D. Dubois, H. Fargier, and H. Prade. Ordinal and probabilistic representations of acceptance.
J. Artif. Intell. Res. (JAIR), 22:23–56, 2004.

[16] D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of
Uncertainty. Plenum Press, New York, 1988.

[17] D. Dubois and H. Prade. Epistemic entrenchment and possibilistic logic. Artificial Intelligence,
50(2):223–239, 1991.

37

CAYROL, DUBOIS AND TOUAZI

[18] D. Dubois and H. Prade. Formal representations of uncertainty. In D. Bouyssou, D. Dubois,
M. Pirlot, and H. Prade, editors, Decision-making - Concepts and Methods, chapter 3, pages
85–156. ISTE & Wiley, London, 2009.

[19] D. Dubois and H. Prade. Possibilistic logic - an overview. In D. Gabbay, J. Siekmann, and
J. Woods, editors, Computational logic, volume 9 of Handbook of the History of Logic, pages
283–342. elsevier, 2014.

[20] T. Fine. Theories of Probability. Academic Press, New York, 1983.
[21] P. C. Fishburn. The axioms of subjective probability. Statistical Science, 1(3):335–358, 1986.
[22] N. Friedman and J. Halpern. Plausibility measures and default reasoning. In Proc of the 13th

National Conf. on Artificial Intelligence, pages 1297–1304, Portland, OR, 1996.
[23] N. Friedman and J. Y. Halpern. Plausibility measures: A user’s guide. In Proc of the Eleventh

Annual Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec, August 18-20,
pages 175–184, 1995.

[24] H. Geffner. Default reasoning: Causal and Conditional Theories. MIT Press, 1992.
[25] J. Y. Halpern. Defining relative likelihood in partially-ordered preferential structures. Journal

of Artificial intelligence Research, 7:1–24, 1997.
[26] C.H. Kraft, J.W. Pratt, and A. Seidenberg. Intuitive probability on finite sets. Ann. Math. Stat.,

30:408–419, 1959.
[27] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and

cumulative logics. Artificial Intelligence, 44:167–207, 1990.
[28] H. E. Kyburg Jr. Probabilistic acceptance. In UAI ’97: Proceedings of the Thirteenth Con-

ference on Uncertainty in Artificial Intelligence, Brown University, Providence, Rhode Island,
USA, August 1-3, 1997, pages 326–333, 1997.

[29] H. E. Kyburg, Jr and H. E. Smokler, editors. Studies in Subjective Probability. Wiley, New
York, 1964. Second edition (with new material) 1980.

[30] H. E. Kyburg Jr. and C-M. Teng. The logic of risky knowledge, reprised. Int. J. Approx.
Reasoning, 53(3):274–285, 2012.

[31] D. Lewis. Counterfactuals. Basil Blackwell, 1973.
[32] D. Lewis. Counterfactuals and comparative possibility. Journal of Philosophical Logic,

2(4):418–446, 1973.
[33] R.D. Luce, D.H. Krantz, P. Suppes, and A. Tversky. Foundations of measurement. Academic

Press, New York, 1990.
[34] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71 – 87, 1986.
[35] L. Savage. The foundations of statistics. Dover, New-York, 1972.
[36] F. Touazi, C. Cayrol, and D. Dubois. Possibilistic reasoning with partially ordered beliefs. J.

Applied Logic, 13(4):770–798, 2015.
[37] P. Walley and T. Fine. Varieties of modal (classificatory) and comparative probabilities. Syn-

these, 41:321–374, 1979.
[38] S. K. M. Wong, P. Bollmann Y. Y. Yao, and H. C. Burger. Axiomatization of qualitative belief

structure. IEEE transactions on SMC, 21(34):726–734, 1991.

38

POSSIBILISTIC REASONING FROM PARTIALLY ORDERED BELIEF BASES . . .

[39] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28,
1978.

Received 9 January 201739

40

Characterization of a New Subquasivariety
of Residuated Lattice

Saeed Rasouli
Persian Gulf University,
Bushehr, 75169, Iran.
srasouli@pgu.ac.ir

Zeinab Zarin and Abass Hasankhan
Shahid Bahonar University, Kerman, Iran.

zeinabzarin@yahoo.com, abhasan@uk.ac.ir

Abstract

The paper is devoted to study the notions of right and left stabilizers in
residuated lattices relative to a filter. We establish a connection between right
and left stabilizers in residuated lattices relative to a filter and (contravariant)
Galois connection. We define a new class of residuated lattices, called RS −RL
and we show this class is a subquasivariety of the residuated lattices variety.

1 Introduction
It is well known that certain information processing, especially inferences based on
certain information, is based on the classical logic. Naturally, it is necessary to estab-
lish some rational logical systems as the logical foundation for uncertain information
processing. For this reason, various kinds of non-classical logical systems have been
extensively proposed and researched. In fact, non-classical logic has become a for-
mal and useful tool for computer science to deal with uncertain information and
fuzzy information. On the other hand, various logical algebras have been proposed
as the semantical systems of non-classical logical systems, for example, residuated
lattices, divisible residuated lattices, MTL algebras, Girard monoids, BL algebras,
Gödel algebras, etc. Among these algebras, residuated lattices are very basic and
important algebraic structures because the other logical algebras are all particular
cases of residuated lattices.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Rasouli, Zarin and Hasankhan

In Gentzen-style systems, a structural rule is an inference rule that does not
refer to any logical connective. Substructural logics were introduced as logics which,
when formulated as Gentzen-style systems, lack some of the three basic structural
rules as follows:

Weakening rule:
Γ,∆⇒ φ

Γ, α,∆⇒ φ
.

Contraction rule:
Γ, α, α,∆⇒ φ

Γ, α,∆⇒ φ
.

Exchange rule:
Γ, α, β,∆⇒ φ

Γ, β, α,∆⇒ φ
.

Commutative residuated lattices are the algebraic counterpart of logics without
contraction rule. The concept of commutative residuated lattice firstly introduced
by W. Krull in [31] who discussed decomposition into isolated component ideals.
After him, they were investigated by M. Ward and R. P. Dilworth in a series of
important papers [13, 14, 37, 38, 39, 40, 41], as the main tool in the abstract study
of ideal lattices in ring theory. These lattices have been known under many names:
BCK latices in [23], full BCK algebras in [31], FLew algebras in [33], and integral,
residuated, commutative `-monoids in [5].

Apart from their logical interest, residuated lattices have interesting algebraic
properties. The properties of residuated lattices were presented in [18, 30, 34]. For
a survey of residuated lattices we refer to [29].

The deductive system theory of the logical algebras plays an important role
in studying these algebras and the completeness of the corresponding non-classical
logics. From a logical point of view, various deductive systems correspond to various
sets of provable formulas. Since deductive systems correspond to subsets closed with
respect to Modus Ponens so they are sometimes called (implicative) filters.

Di Nola, Georgescu and Iorgulescu in [15] introduced the notion of left stabilizers
in pseudo-BL algebras. After that Haveshki and Mohamadhasani in [25] generalized
the notion of stabilizers to the stabilizers with respect to a subset and introduced
the notion of left stabilizer with respect to a subset in BL-algebras. Borzooei and
Paad in [4] introduced some new types of stabilizers in BL-algebras. Borumand and
Mohtashamnia in [3] introduced the notion of right and left stabilizer in (commuta-
tive) residuated lattices. Haveshki in [22] improved some results in [3]. Ahadpanah
and Torkzadeh in [2] introduced the normal residuated lattices and studied them.

42

Characterization of a New Subquasivariety of Residuated Lattice

Motamed and Torkzadeh in [32] introduced the notion of right stabilizers in BL-
algebras and define a class of BL-algebras, called RS-BL-algebra. In this paper we
study the notions of right and left stabilizers in residuated lattices relative to a filter
and we establish a connection between them and (contravariant) Galois connection.
Also, we introduce a new quasi subvariety of the variety RL.

This paper is organized in five sections. In Section 2, we recall some definitions
and facts about residuated lattices and Galois connection that we use in the sequel.
In Section 3, we introduce the notion of left and right stabilizer of a nonempty subset
relative to a filter of a residuated lattice and study the relationship between them.
In Section 4, we establish a connection between Galois connection and stabilizers
in a residuated lattices. In Section 5, we introduce the notion of right stabilizer
residuated lattices relative to a filter and we show that the class of right stabilizer
residuated lattices is a quasivariety.

2 A brief excursion into residuated lattices and Galois
connections

In this section we recall some definitions, properties and results relative to residuated
lattices and Galois connection which will be used in the following sections of this
paper.

2.1 residuated Lattices
Definition 2.1. [37] A residuated lattice is an algebraic structure A = (A;∨,∧,�,→
, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

RL1 (A;∨,∧, 0, 1) is a bounded lattice.

RL2 (A,�, 1) is a commutative monoid.

RL3 x� y ≤ z if and only if x ≤ y → z.

The operation → is referred to as the residual of �. A residuated lattice A is
nontrivial if and only if 0 6= 1. We denote by RL the class of residuated lattices. In
a residuated lattice A, for any a ∈ A, we put ¬a := a → 0 and x0 = 1 and for any
natural number n, we define xn = xn−1 � x.

A residuated lattice A is called an MTL algebra [10] if it satisfies the pre-linearity
condition (denoted by prel):

(prel) (x→ y) ∨ (y → x) = 1.

43

Rasouli, Zarin and Hasankhan

It is easy to see that each linearly-ordered residuated lattice is an MTL algebra.
We denote byMT L the class of MTL algebras. Obviously, the classMT L of MTL
algebras is equational, hence it forms a subvariety of the variety RL.

A residuated lattice A is called a divisible residuated lattice [24] if it satisfies the
divisibility condition (denoted by div):

(div) x� (x→ y) = x ∧ y.

We denote by DRL the class of divisible residuated lattice. Obviously, the class
DRL of divisible residuated lattice is equational, hence it forms a subvariety of the
variety RL. A residuated lattice A in which x�y = x∧y (or equivalently, x2 = x)for
all x, y ∈ A is called a Heyting algebra or pseudo-Boolean algebra [36]. A Heyting
algebra is a particular case of divisible residuated lattice.

A residuated lattice A is called a BL algebra [24] if it satisfies both (prel) and
(div). Denote by BL the class of BL algebras. A residuated lattice is called proper
if it is not a MTL algebra, a divisible residuated lattice or a BL algebra, i.e. if (prel)
and (div) do not hold. A MTL algebra is called proper if it is not a BL algebra, i.e.
if (div) does not hold. A divisible residuated lattice is called proper if it is not a BL
algebra, i.e. if (prel) does not hold.

A BL-algebra A is called an MV-algebra [27] if it is an involutive (or regular) i.e.
¬¬x = x. Denote byMV the class of MV algebras. According to [42] a residuated
lattice A is an MV-algebra if and only if it satisfies the following assertions:

mv (x→ y)→ y = (y → x)→ x.

A BL algebra is called proper if it is not an MV algebra, i.e. if mv does not hold.
Note that MT L, DRL, BL and MV are all subvarieties of RL, connected as

Figure 3.

ℛℒ

𝒟ℛℒ ℳ𝒯ℒ

ℬℒ

ℳ𝒱

Figure 1: Inclusions between some subvarieties of RL

44

Characterization of a New Subquasivariety of Residuated Lattice

Proposition 2.2. [30] Let A be a residuated lattice. Then the following conditions
are satisfied for any x, y, z ∈ A:

r1 x ≤ y if and only if x→ y = 1.

r2 x→ x = 0→ x = x→ 1 = 1 and 1→ x = x.

r3 x→ (y → z) = (x� y)→ z = y → (x→ z).

r4 x� y ≤ x� (x→ y) ≤ x ∧ y. In particular, x ≤ y → x and x ≤ (x→ y)→ y.

r5 x ≤ y implies x� z ≤ y � z.

r6 x ≤ y implies z → x ≤ z → y and y → z ≤ x→ z.

r7 x→ y ≤ (y → z)→ (x→ z).

r8 x→ y ≤ (z → x)→ (z → y).

r9 x→ (y ∧ z) = (x→ y) ∧ (x→ z). In particular, x→ y = x→ (x ∧ y).

r10 ((x→ y)→ y)→ y = x→ y.

In the following, we give some examples of residuated lattice.

Example 2.3. Let A7 = {0, a, b, c, d, e, 1} be a lattice whose Hasse diagram is below
(see Figure 2). Define � and → on A7 as follows:

� 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 a a a a a a
b 0 a a a a a b
c 0 a a c c c c
d 0 a a c c c d
e 0 a a c c e e
1 0 a b c d e 1

→ 0 a b c d e 1
0 1 1 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 e 1 e 1 1 1
c 0 b b 1 1 1 1
d 0 b b e 1 1 1
e 0 a b c d 1 1
1 0 a b c d e 1

Routine calculation shows that A7 = (A7;∨,∧,�,→, 0, 1) is a proper residuated lattice,
because the property (prel) does not hold: (b→ c)∨ (c→ b) = e∨ b = e 6= 1 and the property
(div) also does not hold: d� (d→ b) = d� b = a 6= d ∧ b.

45

Rasouli, Zarin and Hasankhan

0

b

a

c

1

d

e

Figure 2: The Hasse diagram of A7.

Example 2.4. Let A5 = {0, a, b, c, 1} be a lattice whose Hasse diagram is below (see
Figure 3). Define � and → on A5 as follows:

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 0 0 b
c 0 a 0 a c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b c c 1 1 1
c b c b 1 1
1 0 a b c 1

Routine calculation shows that A5 = (A5;∨,∧,�,→, 0, 1) is a proper residuated

0

1

𝒂 𝒃

𝒄

Figure 3: The Hasse diagram of A5.

lattice, because the property (prel) does not hold: (a→ b) ∨ (b→ a) = b ∨ c = c 6= 1
and the property (div) also does not hold: c� (c→ b) = c� b = 0 6= b = c ∧ b.

Let A be a residuated lattice and F be a subset of A. For convenience, we
enumerate some conditions which will be used in this paper.

c∅ F 6= ∅.

c1 1 ∈ F .

46

Characterization of a New Subquasivariety of Residuated Lattice

c� x, y ∈ F ⇒ x� y ∈ F .

c≤ x ≤ y, x ∈ F ⇒ y ∈ F .

c∨ x ∈ F and y ∈ A⇒ x ∨ y ∈ F .

cl x, x→l y ∈ F ⇒ y ∈ F .

cr x, x→r y ∈ F ⇒ y ∈ F .

Definition 2.5. Let A be a residuated lattice and F be a subset of A.

• F is called an ordered-filter of A if it satisfies c∅ and c≤.

• F is called a filter of A if it satisfies c∅, c� and c≤.

• F is called a 1-ideal of A if it satisfies c∅, c� and c∨.

• F is called a left deductive system of A if it satisfies c1 and cl.

• F is called a right deductive system of A if it satisfies c1 and cr.

Proposition 2.6. Let A be a residuated lattice and F be a subset of A containing
1. Then the following assertions are equivalent for any x, y, z ∈ A:

F1 F is a filter.

F2 F is a 1-ideal.

F3 F is a left deductive system.

F4 F is a right deductive system

F5 x→l y, y →l z ∈ F ⇒ x→l z ∈ F .

F6 x →r y, y →r z ∈ F ⇒ x →r z ∈
F .

F7 x→l y, x� z ∈ F ⇒ y � z ∈ F .

F8 x→r y, z � x ∈ F ⇒ z � y ∈ F .

F9 x→l y,¬ly ∈ F ⇒ ¬lx ∈ F .

F10 x→r y,¬ry ∈ F ⇒ ¬rx ∈ F .

F11 x, y ∈ F and x ≤ y →l z ⇒ z ∈ F .

F12 x, y ∈ F and x ≤ y →r z ⇒ z ∈ F .

Proof. It is straightforward by Proposition 2.2.

The set of ordered-filters and filters of a residuated lattice A will be denoted by
OF (A) and F (A), respectively. It is clear that F (A) ⊆ OF (A). Trivial examples of
filters are 1 = {1} and A. A filter F of A is proper if F 6= A. Clearly, F is a proper
filter if and only if 0 /∈ F .

47

Rasouli, Zarin and Hasankhan

Example 2.7. Consider the proper residuated lattice A7 from Example 2.3. Then
F (A7) = {F1 = 1, F2 = {e, 1}, F3 = {c, d, e, 1}, F4 = {a, b, c, d, e, 1}, F5 = A7}.

Example 2.8. Consider the proper residuated lattice A5 from Example 2.4. Then
F (A5) = {F1 = 1, F2 = {a, c, 1}, F3 = A5}.

It is obvious that (A;F (A)) is an algebraic closed set system. The closure oper-
ator associated with the closed set system (A;F (A)) is denoted by FiA : P(A) −→
P(A). Thus for any subset X of A, FiA(X) = ∩{F ∈ F (A)|X ⊆ F} is the smallest
filter of A containing X. FiA(X) is called the filter generated by X. For each x ∈ A,
the filter generated by {x} is denoted by FiA(x) and it is called the principle filter
of A. When there is no ambiguity we will drop the superscript A.

If F = {Fi}i∈I is a family of all filters of A, we define ZF = ∩F and YF =
Fi(∪F). According to [11], (F (A),Z,Y,1, A) is a bounded complete distributive
lattice.

Proposition 2.9. [11] Let A be a residuated lattice and X be a subset of A. Then
we have

Fi(X) = {a ∈ A|x1 � · · · � xn ≤ a, for some integer n, x1, · · · , xn ∈ X}.

Proposition 2.10. [11] Let A be a residuated lattice, F and G be two filters of A
and x, y ∈ A. The following assertions hold:

(1) F YG = {a ∈ A|f � g ≤ a, for some, f ∈ F, g ∈ G}.

(2) Fi(x ∨ y) = Fi(x) ∩ Fi(y).

(3) x ≤ y implies Fi(y) ⊆ Fi(x).

(4) Fi(x) Y Fi(y) = Fi(x ∧ y) = Fi(x� y).

Let A be a residuated lattice. We put d(a, b) = (a → b) � (b → a). With any
filter of a residuated lattice A we associate two binary relations ≡F on A by defining

(a, b) ∈≡F if and only if d(a, b) ∈ F .

It is easy to check that the binary relations ≡F is a equivalence relations on A.
≡F are called the equivalence relation induced by F . In the following, for any a ∈ A
the equivalence classes a/ ≡F and is denoted by [a]F .

Definition 2.11. [9] Let A be a residuated lattice. A filter F of A is called an MV
filter (filter of type MV) if A/F ∈MV.

48

Characterization of a New Subquasivariety of Residuated Lattice

Proposition 2.12. [9] Let A be a residuated lattice and F be a subset of A. The
following assertions are equivalent:

1. F is an MV filter.

2. F is a filter and x→ y ∈ F implies ((y → x)→ x)→ y ∈ F , for any x, y ∈ A.

3. 1 ∈ F and z, z → (x → y) ∈ F implies ((y → x) → x) → y ∈ F , for any
x, y, z ∈ A.

4. F is a filter and ((x→ y)→ y)→ (x ∨ y) ∈ F , for any x, y ∈ A.

5. F is a filter and ((y → x)→ x)→ ((x→ y)→ y) ∈ F , for any x, y ∈ A.
Let A be a residuated lattice. The set of all complemented elements in the

lattice reduct of A is denoted by B(A) and it is called the Boolean center of A.
Complements are generally not unique unless the lattice is distributive. In residuated
lattices however, although the underlying lattices need not be distributive, according
to [11], the complements are unique.

Proposition 2.13. [11] Let A be a residuated lattice, e ∈ B(A) and a ∈ A. The
following assertions hold:

1. ec = ¬e and ¬¬e = e and e2 = e.

2. ¬e→ e = e

3. e� a = e ∧ a.

4. (e→ a)→ e = e.

5. e ∨ ¬e = 1.

6. e ∧ ¬e = 0.

Proposition 2.14. [12] Let A be a residuated lattice and e ∈ B(A). Then Fi(e), is
a normal filter of A and we have

Fi(e) = {a ∈ A|e ≤ a}.

Let A be a residuated lattice, F be a filter of A and X ⊆ A. In the following the
filter generated by F ∪X, i. e. F Y Fi(X), will be denoted by FX .

Proposition 2.15. Let A be a residuated lattice, F be a filter of A and e ∈ B(A).
Then we have

Fe = {a ∈ A|f � e ≤ a for some f ∈ F}.

49

Rasouli, Zarin and Hasankhan

Let A and B be two residuated lattices. A mapping h : A −→ B is called a
homomorphism, in symbols h : A −→ B, if it preserves the fundamental operations.
If h : A −→ B is a homomorphism we put coker(h) = h←(1). It is easy to check
that coker(h) is a normal filter of A. Also, it is obvious that h is a monomorphism
if and only if coker(h) = {1}.
Proposition 2.16. Let h : A −→ B be a homomorphism.

(1) If h is surjective and F ∈ F (A)(F ∈ Fn(A)) such that coker(h) ⊆ F then
h(F) ∈ F (B)(h(F) ∈ Fn(B)).

(2) If F ∈ F (B)(F ∈ Fn(B)) then h←(F) ∈ F (A)(h←(F) ∈ Fn(A)) and
coker(h) ⊆ h←(F).

Proof. It is straightforward.

Let A be a residuated lattice and F be a filter of A and X be a subset of A. The
generalized co-annihilator of X (relative to F) is denoted by (F : X) and defined as
follow:

(F : X) = {a ∈ A|x ∨ a ∈ F, ∀x ∈ X}.
In the following proposition, we collect the properties of generalized co-annihilators:

Proposition 2.17. [35] Let A be a residuated lattice, F,G be filters of A and X,Y
be subsets of A. Then the following conditions satisfy:

(1) (F : X) is a filter of A.

(2) F ⊆ (F : X).

(3) (F : X) = A if and only if X ⊆ F .

(4) X ⊆ (F : (F : X)).

Definition 2.18. [9, Definition 7.] Let V be a subvariety of the variety RL of
residuated lattices and A ∈ V. A filter F of A will be called a V-filter (or filter of
type V) if A/F ∈ V. We denote by FV(A) the set of all V-filters of A.

2.2 Galois connection
This section is devoted to recall some definitions, properties and results relative to
Galois connection.

Definition 2.19. Let A = (A;≤) and B = (B;4) be posets and f : A −→ B be a
map between posets.

50

Characterization of a New Subquasivariety of Residuated Lattice

1. f is monotone if a1 ≤ a2 implies f(a1) 4 f(a2), for all a1, a2 ∈ A.

2. f is antitone if a1 ≤ a2 implies f(a2) 4 f(a1), for all a1, a2 ∈ A.

In particular case which A = B,

1. f is inflationary (also called extensive) if a ≤ f(a) for all a ∈ A.

2. f is idempotent if f2 = f .

3. f is a closure operator on A if it is inflationary, monotone and idempotent.
A fixpoint of the closure operator f , i.e. an element a of A that satisfies
f(a) = a, is called a closed element of f . The set of closed elements of the
closure operator f will be denoted by Cf .

Definition 2.20. Let A = (A;≤) and B = (B;4) be posets. Suppose that f :
A −→ B and g : B −→ A are functions such that for all a ∈ A and b ∈ B we have

a ≤ g(b) if and only if b 4 f(a).

Then the pair (f, g) is called a (contravariant or antitone) Galois connection
between A and B.

Proposition 2.21. Let A and B be posets and f : A −→ B and g : B −→ A be
two functions. Then the pair (f, g) forms a Galois connection between A and B if
and only if the following assertions hold:

(1) gf and fg are inflationary functions.

(2) f and g are antitone functions.

Proof. Let (f, g) forms a Galois connection between A and B. Consider a ∈ A. We
have f(a) 4 f(a) and it implies that a ≤ g(f(a)). So gf is an inflationary function.
Analogously, we can show that fg is an inflationary function. If we have a1 ≤ a2
then we have a1 ≤ g(f(a2)) and it states that f(a2) 4 f(a1). In a similar way, we
can obtain that g is an antitone function.

Now, let (1) and (2) holds. Assume that a ≤ g(b) for some a ∈ A and b ∈ B.
So we have b 4 f(g(b)) 4 f(a). Analogously, we can show that b 4 f(a) implies
a ≤ g(b). Therefore, (f, g) forms a Galois connection between A and B.

Proposition 2.22. Let A and B be posets and (f, g) forms a Galois connection
between A and B. Then the following assertions hold:

(1) fgf = f and gfg = g.

51

Rasouli, Zarin and Hasankhan

(2) If ∨X exists for some X ⊆ A then ∧f(X) exists and ∧f(X) = f(∨X).

(3) If ∨Y exists for some Y ⊆ B then ∧g(Y) exists and ∧g(Y) = g(∨Y).

(4) f(a) = max{b ∈ B|a ≤ g(b)}, g(b) = max{a ∈ A|b 4 f(a)}

(5) gf is a closure operator on A and Cgf = g(B).

(6) fg is a closure operator on B and Cfg = f(A).

Proof. 1. Let a ∈ A. By Proposition 2.21(1) we have a ≤ g(f(a)) and f(a) 4
f(g(f(a))) and by 2.21(2) we get that f(g(f(a))) 4 f(a). It shows that f =
fgf . Analogously, we can show that g = gfg.

2. Let x ∈ X. Then x ≤ ∨X and it implies that f(∨X) 4 f(x) and this means
that f(∨X) is a lower bound of the set f(X). Assume that b 4 f(x) for any
x ∈ X. So we obtain that x ≤ g(b) for any x ∈ X. So we have ∨X ≤ g(b) and
this states that b ≤ f(∨X). Therefore, f(∨X) = ∧f(X).

3. Let a ∈ A. By Proposition 2.21(1) we obtain that f(a) ∈ {b ∈ B|a ≤ g(b)}.
Assume that b ∈ {b ∈ B|a ≤ g(b)}. Then a ≤ g(b) and it implies that b ≤ f(a).
Analogously, we can show that g(b) = max{a ∈ A|b 4 f(a)}.

4. By Proposition 2.21(1), gf is inflationary and by Proposition 2.21(1), gf is
isotone. Also, by (1) we can conclude that gf is idempotent. It states that gf
is a closure operator on A .
Let b ∈ B. By (1) we have g(B) ⊆ Cgf . Also, for each a ∈ A, a ∈ Cgf

implies a = g(f(a)) ∈ g(B) and this shows that Cgf ⊆ g(B). Hence, we have
Cgf = g(B). Analogously, we can show that fg is a closure operator on B and
Cfg = f(A).

Theorem 2.23. [6] Let A be set and f : P(A) −→ P(A) be a closure operator.
Then the set of closed elements of f , Cf , is a complete lattice with respect to the
following operations:

∧f : Cf × Cf −→ Cf

(X,Y) 7−→ X ∩ Y,
∨f : Cf × Cf −→ Cf

(X,Y) 7−→ f(X ∪ Y).

Corollary 2.24. Let A be a set and (f, g) forms a Galois connection between P(A)
and P(B). Then the following assertions hold.

52

Characterization of a New Subquasivariety of Residuated Lattice

(1) Lg = (g(P(B));∧g,∨g, 0 = g(B), 1 = g(∅)) is a complete lattice where
∧g

i∈Ig(Yi) = g(∪i∈IYi) and ∨g
i∈Ig(Yi) = g(∩i∈Ifg(Yi)) for any family {Yi}i∈I ∈

P(B).
(2) Lf = (f(P(A));∧f ,∨f , 0 = f(A), 1 = f(∅)) is a complete lattice where
∧f

i∈If(Xi) = f(∪i∈IXi) and ∨f
i∈If(Xi) = f(∩i∈Igf(Xi)) for any family {Xi}i∈I ∈

P(B).

Proof. By Proposition 2.22(5), gf is a closure operator on P(A) and Cgf = g(P(B)).
So by Theorem 2.23, (g(P(B));∧gf ,∨gf) is a complete lattice where ∧gf

i∈Ig(Yi) =
∩i∈Ig(Yi) and ∨gf

i∈Ig(Yi) = gf(∪i∈Ig(Yi)) for any family {Yi}i∈I ∈ P(B). Now,
let {Yi}i∈I be a family of subset of the set B. By Proposition 2.22(3) we have
∩i∈Ig(Yi) = g(∪i∈IYi) and this shows that ∧gf

i∈Ig(Yi) = ∧g
i∈Ig(Yi). Also, we have

gf(∪i∈Ig(Yi)) = g(∩i∈Ifg(Yi)) and it implies that ∨gf
i∈Ig(Yi) = ∨g

i∈Ig(Yi). Since g
is an antitone function so we have g(B) ⊆ g(Y) ⊆ g(∅) for any Y ⊆ B. Therefore,
(g(P(B));∧,∨, 0 = g(B), 1 = g(∅)) is a complete lattice. Analogously, we can show
that (2) holds.

3 Stabilizer in residuated lattice
In this section we introduce and investigate the notion of stabilizer relative to a filter
in residuated lattices.

Definition 3.1. [3] Let A be a residuated lattice, F be a filter of A and X be a
subset of A. The left stabilizer and the right stabilizer of X relative to F is denoted
by (F : X)l and (F : X)r, respectively and defined as follows.

1. (F : X)l = {a ∈ A|(a→ x)→ x ∈ F,∀x ∈ X}.

2. (F : X)r = {a ∈ A|(x→ a)→ a ∈ F,∀x ∈ X}.

Also, (F : X)s = (F : X)l ∩ (F : X)r is called the stabilizer of X relative to F .
Let � ∈ {l, r, s}. If X = {x} then (F : {x})� is denoted by (F : x)�. Also, (1, X)�
is called the stabilizer of X and it is denoted by (X)�.

Example 3.2. Consider the proper residuated lattice A7 from Example 2.3 and its
filters from Example 2.7. In Table 1 we calculate the right and left stabilizers relative
to all filters of A7.

Also, we have (F4 : 0)l = (F4 : 0)r = F4, (F5 : 0)l = (F5 : 0)r = F5 and for any
element 0 6= x ∈ A we have (Fi : x)l = (Fi : x)r = F5, for i = 4, 5.

53

Rasouli, Zarin and Hasankhan

0 a b c d e 1

F1
l F4 F2 F3 F2 F2 F1 F5
r F1 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

F2
l F4 F3 F3 F2 F2 F5 F5
r F2 {0, e, 1} {0, e, 1} {0, a, b, e, 1} {0, a, b, e, 1} F5 F5

F3
l F4 F3 F3 F5 F5 F5 F5
r F3 {0, c, d, e, 1} F5 F5 F5 F5 F5

Table 1: Table of stabilizers of the residuated lattice A7.

Example 3.3. Consider the proper residuated lattice A5 from Example 2.4 and its
filters from Example 2.8. Then we have (F2 : 0)r = F2, (F2 : a)r = F3, (F2 : b)r =
F2, (F2 : c)r = F3 and (F2 : 1)r = F3.

In the following proposition, we collect some properties of stabilizers:

Proposition 3.4. Let A be a residuated lattice. Then the following assertions hold
for any family {X} ∪ {Y } ∪ {Xi}i∈I ∈ P(A), {F} ∪ {G} ∪ {Fi}i∈I ∈ Fi(A) and
� ∈ {l, r, s}:

(1) Xl = {a ∈ A|a→ x = x,∀x ∈ X} and Xr = {a ∈ A|x→ a = a,∀x ∈ X}.

(2) (F : X) ⊆ (F : X)s. In particular, F ⊆ (F : X)s.

(3) X ⊆ Y implies (F : Y)� ⊆ (F : X)�.

(4) (F : Fi(X))� ⊆ (F : X)�.

(5) F ⊆ G implies (F : X)� ⊆ (G : X)�.

(6) X ∩ (F : X)� ⊆ F . In particular, if X contains F then X ∩ (F : X)� = F .

(7) (F : X)� = A if and only if X ⊆ F . Consequently, (F : ∅)s = (F : 1)s = (F :
F)s = A.

(8) X ⊆ (F : (F : X)l)r, (F : (F : X)r)l, (F : (F : X)s)s.

(9) ∩i∈I(Fi : X)� = (∩i∈IFi : X)�.

(10) (F : 0)r = (F : A)� = F .

(11) (F : 0)l = {a ∈ A|¬¬a ∈ F}. In particular, (0)l = Ds(A).

54

Characterization of a New Subquasivariety of Residuated Lattice

Proof. 1. By r1 we have Xl = {a ∈ A|(a → x) → x = 1, ∀x ∈ X} = {a ∈
A|a → x ≤ x, ∀x ∈ X}. On the other hand, by r4 we have x ≤ a → x, for
any a, x ∈ A. It implies that Xl = {a ∈ A|a → x = x, ∀x ∈ X}. It shows
that Xl = {a ∈ A|a → x = x,∀x ∈ X}. Analogously, we can show that
Xr = {a ∈ A|x→ a = a,∀x ∈ X}.

2. Let a ∈ (F : X). Then for any x ∈ X we have a ∨ x ∈ F . By r4 we have
a ∨ x ≤ ((a → x) → x) ∧ ((x → a) → a). Since F is a filter so we have
((a→ x)→ x) ∧ ((x→ a)→ a) ∈ F . It shows that a ∈ (F : X)l ∩ (F : X)r =
(F : X)s. By Proposition 2.17(2) we can conclude that F ⊆ (F : X)s.

3. Let X ⊆ Y and a ∈ (F : Y)l. Then for any x ∈ X, since X ⊆ Y , we have
(a → x) → x ∈ F and it shows that a ∈ (F : X)l. So (F : Y)l ⊆ (F : X)l.
Analogously, we can obtain the other cases.

4. It is an immediate consequence of (3).

5. Let F ⊆ G and a ∈ (F : X)l. For any x ∈ X we have (a → x) → x ∈ F . It
implies that (a → x) → x ∈ G and it shows that a ∈ (G : X)l. Analogously,
we can show that the other cases.

6. Let a ∈ X ∩ (F : X)l. Then (a → x) → x ∈ F for any x ∈ X. Let x = a.
By r2 we have a ∈ F and it implies that X ∩ (F : X)l ⊆ F . Similarly, we can
show the other cases. In particular, if X contains F by (2) we conclude that
X ∩ (F : X)� = F .

7. Let (F : X)l = A and x ∈ X. We have x = 1 → x = (x → x) → x ∈ F and
it shows that X ⊆ F . Conversely, if X ⊆ F , then by Proposition 2.17(3) we
have (F : X) = A and (2) implies that (F : X)l = A. Analogously, we can
obtain the other cases.

8. Let x ∈ X. Then for any a ∈ (F : X)l we have (a → x) → x ∈ F and it
implies that x ∈ (F : (F : X)l)r. Analogously, we can show that X ⊆ (F :
(F : X)r)l, (F : (F : X)s)s.

9. By (5), for each i ∈ I we have (∩i∈IFi : X)� ⊆ (Fi : X)� and it shows that
(∩i∈IFi : X)� ⊆ ∩i∈I(Fi : X)�. Conversely, let a ∈ ∩i∈I(Fi : X)l. Thus, for
any i ∈ I and x ∈ X we have (a → x) → x ∈ Fi and it implies that we have
(a→ x)→ x ∈ ∩i∈IFi for any x ∈ X. Hence we obtain that a ∈ (∩i∈IFi : X)l.
Analogously, we can obtain the other cases.

55

Rasouli, Zarin and Hasankhan

10. By (2) we know that F ⊆ (F : 0)r, (F : A)�. Let a ∈ (F : 0)r. Thus we have
a = 1 → a = (0 → a) → a ∈ F . It means that (F : 0)r = F . If a ∈ (F : A)l,
then for each x ∈ A we have (a → x) → x ∈ F . Consider x = a. So we have
a = 1 → a = (a → a) → a ∈ F . It shows that (F : A)l = F . Analogously, we
can obtain the other cases.

11. It is straightforward.

Proposition 3.5. [25, Theorem 3] Let A be a residuated lattice and F be filters of
A. Then (F : X)l is a filter of A for any X ⊆ A.

Proposition 3.6. Let A be a residuated lattice, F be a filter of A and x ∈ A. Then
(F : x/F)� = (F : x)�.

Proof. By Proposition 3.4(3), it is obvious that (F : x/F)� ⊆ (F : x)�. Now, let
a ∈ (F : X)l and y ∈ x/F . Therefore, d(x, y) ∈ F and this means d((a → x) →
x, (a→ y)→ y) ∈ F . On the other hand, we have (a→ x)→ x ∈ F and this implies
that (a→ y)→ y ∈ F . Thus a ∈ (F : x/F)l and this shows that the equality holds.
Analogously, we can show that (F : x)r ⊆ (F : x/F)r and (F : x)s ⊆ (F : x/F)s.

Proposition 3.7. Let h : A −→ B be a surjective homomorphism and � ∈ {l, r, s}.

1. If F is a filter of A containing coker(h) and X ⊆ A then h((F : X)�) =
(h(F) : h(X))�.

2. If F is a filter of B and Y ⊆ B then h←((F : Y)�) = (h←(F) : h←(Y))�.

Proof. 1. Let F be a filter of A and X ⊆ A. By Proposition 2.16(1), h(F) is a
filter of B. If X = ∅ then by Proposition 3.4(7) we have (F : X) = A and
(h(F) : h(X)) = B. Since h is surjective so the equality holds. So let X
be a nonempty subset of A. Assume that b ∈ (h(F) : h(X))l. So for each
y ∈ h(X) we have (b → y) → y ∈ h(F). Hence, there are x ∈ X, a ∈ A
and f ∈ F such that h(x) = y, h(a) = b and (b → y) → y = h(f). It means
that (h(a) → h(x)) → h(x) = h(f) and it implies that f → ((a → x) → x) ∈
coker(h) ⊆ F . Since F is a filter so we can conclude that (a → x) → x ∈ F .
Thus a ∈ (F : X)l and it states that b ∈ h((F : X)l).
Now, let b ∈ h((F : X)l) and y ∈ h(X). So there are a ∈ (F : X)l and
x ∈ X such that h(a) = b and h(x) = y and it results that (a→ x)→ x ∈ F .
Therefore, (h(a) → h(x)) → h(x) ∈ h(F) and it implies that b ∈ (h(F) :
h(X))l. Analogously, we can show that h((F : X)r) = (h(F) : h(X))r and
h((F : X)s) = (h(F) : h(X))s.

56

Characterization of a New Subquasivariety of Residuated Lattice

2. Let F be a filter of B and Y ⊆ A. By Proposition 2.16(2), h(F) is a filter of
A. If Y = ∅ then we have (F : Y)l = B and (h←(F) : h←(Y))l = A. Since
h is surjective so the equality holds. Suppose that a ∈ (h←(F) : h←(Y))l.
Consider y ∈ Y . So there is x ∈ A such that h(x) = y. We have (h(a) →
y) → y = (h(a) → h(x)) → h(x) = h((a → x) → x). On the other hand,
we have x ∈ h←(Y) and it implies that (a → x) → x ∈ h←(F). Therefore,
(h(a) → y) → y ∈ F for each y ∈ Y and it states that h(a) ∈ (F : Y)l. It
shows that a ∈ h←((F : Y)l).
Conversely, assume that a ∈ h←((F : Y)l) and x ∈ h←(Y). Hence h(a) ∈
(F : Y)l and h(x) ∈ Y . It implies that h((a → x) → x) = (h(a) → y) →
y ∈ F . Therefore, (a → x) → x ∈ h←(F) and it concludes that a ∈ (h←(F) :
h←(Y))l. Analogously, we can show that h←((F : Y)r) = (h←(F) : h←(Y))r

and h←((F : Y)s) = (h←(F) : h←(Y))s.

Let A be a residuated lattice and F be a normal filter of A. The mapping
πAF : A −→ A/F defined by πAF (a) = a/F is called the natural homomorphism. It
is obvious that the natural homomorphism πAF is surjective and coker(πAF) = F .
Therefore, by Proposition 2.16 we have

F (A/F) = {H/F |F ⊆ H ∈ F (A)}.

Lemma 3.8. Let A be a residuated lattice and F be a normal filter of A. Then for
any filter G of A containing F and for any subset X of A (G : X)l/F is a filter of
A/F .

Proof. Let G be a filter of A contains F and X be a subset of A. By Proposition
3.4(2) we have F ⊆ (G : X)l and by Proposition 3.5 we have (G : X)l ∈ F (A). So
(G : X)l/F is a filter of A/F .

Corollary 3.9. Let A be a residuated lattice, F be a normal filter of A, G be a filter
of A containing F and X be a subset of A containing F . Then we have

(G/F : X/F)l = (G : X)l/F.

Proof. Consider the natural epimorphism πF in Proposition 3.7. Then we have
π←F (G/F : X/F)l = (G : π←F (πF (X)))l. By Proposition 3.4((3)), we have (G :
π←F (πF (X)))l ⊆ (G : X)l so (G/F : X/F)l ⊆ (G : X)l/F .

Now, assume that a/F ∈ (G : X)l/F . By Lemma 3.8, (G : X)l/F is a filter of
A/F and it implies that a ∈ (G : X)l. Consider y/F ∈ X/F . So there is x ∈ X
such that y/F = x/F and it implies that (a/F → y/F)→ y/F = (a/F → x/F)→

57

Rasouli, Zarin and Hasankhan

x/F = ((a → x) → x)/F ∈ G/F . Hence, a/F ∈ (G/F : X/F)l and it shows that
(G : X)l/F ⊆ (G/F : X/F)l.

4 Galois connection of stabilizers in residuated lattice
Let A be a residuated lattice, F be a filter of A and � ∈ {l, r, s}. We define the
following function.

F� : P(A) −→ P(A)
X 7−→ (F : X)�.

Proposition 4.1. Let A be a residuated lattice and F be a filter of A. Then the
following pairs (Fl, Fr) and (Fs, Fs) are Galois connections on P(A).

Proof. By Proposition 3.4(3), functions Fl and Fr are antitone and by 3.4(8), FlFr

and FrFl are inflationary functions. So by Proposition 2.21 we obtain that (Fl, Fr)
is a Galois connection on P(A). Analogously, we can show that (Fs, Fs) is Galois
connections on P(A).

Corollary 4.2. Let A be a residuated lattice and F be a filter of A. Then for any
X,Y ⊆ A the following assertions hold:

(1) X ⊆ (F : Y)l if and only if Y ⊆ (F : X)r.

(2) X ⊆ (F : Y)s if and only if Y ⊆ (F : X)s.

Proof. It follows by Proposition 4.1 and Definition 2.20.

Corollary 4.3. Let A be a residuated lattice and F be a filter of A. Then the
following assertions hold for any X ⊆ A:

(1) (F : X)l(r) = (F : (F : (F : X)l(r))r(l))l(r).

(2) (F : X)s = (F : (F : (F : X)s)s)s.

Proof. It follows by Proposition 4.1 and Proposition 2.22(1).

Corollary 4.4. Let A be a residuated lattice and F,G be filters of A. Then the
following assertions hold for any family {X} ∪ {Xi}i∈I ∈ P and � ∈ {l, r, s}:

(1) (F : ∪i∈IXi)� = ∩i∈I(F : Xi)�.

(2) (F : X)� = ∩x∈X(F : x)�.

(3) (F : X)r = (F : Fi(X))r.

58

Characterization of a New Subquasivariety of Residuated Lattice

(4) (F : X)r ∩ Fi(X) ⊆ F .

(5) (F : X)� = (F : X − F)�.

(6) (F : FX)r = (F : X)r.

Proof. 1. It is straightforward by Proposition 4.1 and Proposition 2.22((2) and
(3)).

2. By taking X = ∪x∈X{x} it follows by (1).

3. By Proposition 3.4(4) we have (F : Fi(X))r ⊆ (F : X)r. Assume that a ∈
(F : X)r. By Proposition 4.2(1) we obtain that X ⊆ (F : a)l and since (F : a)l

is a filter it states that Fi(X) ⊆ (F : a)l. Thus we have a ∈ (F : Fi(X))r.

4. It follows by (3) and Proposition 3.4(6).

5. By (1) we have (F : X)� = (F : (X − F) ∩ (X ∩ F))� = (F : X − F)� ∩ (F :
X ∩ F)� and by Proposition 3.4(7) we have (F : X ∩ F)� = A. It states that
(F : X)� = (F : X − F)�.

6.

Proposition 4.5. Let A be a residuated lattice, F be a filter of A and x, y ∈ A.
Then the following assertions hold:

(1) x ≤ y implies (F : x)r ⊆ (F : y)r.

(2) (F : x� y)r = (F : x ∧ y)r = (F : x)r ∩ (F : y)r = (F : {x, y})r.

Proof. 1. Let x ≤ y and a ∈ (F : x)r. By Proposition 4.2(1) we obtain that
x ⊆ (F : a)l. Since (F : a)l is a filter so y ∈ (F : a)l and it implies that
a ∈ (F : y)l.

2. By (1) follows that (F : x � y)r ⊆ (F : x ∧ y)r ⊆ (F : x)r ∩ (F : y)r

and by Proposition 4.4(2) we have (F : x)r ∩ (F : y)r = (F : {x, y})r. If
a ∈ (F : {x, y})r then {x, y} ⊆ (F : a)l and it implies that x� y ∈ (F : a)l. It
states that a ∈ (F : x� y)r.

Corollary 4.6. Let A be a residuated lattice and F be a filter of A. Then the
following assertions hold for any X ⊆ A:

59

Rasouli, Zarin and Hasankhan

(1) (F : X)l(r) = ∪{Y ∈ P(A)|X ⊆ (F : Y)r(l)}.

(2) (F : X)s = ∪{Y ∈ P(A)|X ⊆ (F : Y)s}.

Proof. LetX ⊆ A. By Proposition 4.1 and Proposition 2.22(4) we have (F : X)l(r) =
max{Y ∈ P(A)|X ⊆ (F : Y)r(l)}. Let Γ = {Y ∈ P(A)|X ⊆ (F : Y)r(l)}. We have
max Γ ⊆ ∪Γ. By considering Y ∈ Γ we obtain that X ⊆ (F : Y)r(l) and it implies
Y ⊆ (F : X)l(r) by Proposition 4.2. Therefore, ∪Γ ⊆ (F : X)l(r) and by Proposition
4.2 we obtain that X ⊆ (F : ∪Γ)r(l). So ∪Γ ∈ Γ and it means that ∪Γ = max Γ.
Similarly, (2) holds.

Corollary 4.7. Let A be a residuated lattice and F be a filter of A. Then the
following assertions hold for any � ∈ {l, r}:

(1) Fl(r)Fr(l) is a closure operator on P(A) and CFl(r)Fr(l) = {(F : X)l(r)|X ⊆ A}.

(2) FsFs is a closure operator on P(A) and CFsFs = {(F : X)s|X ⊆ A}.

Proof. By Proposition 4.1 and Proposition 2.22((5) and (6)) we obtain that Fl(r)Fr(l)
is a closure operator on P(A) and CFl(r)Fr(l) = {Fl(r)(X)|X ⊆ A} = {(F : X)l(r)|X ⊆
A}. Analogously, (2) holds.

Corollary 4.8. Let A be a residuated lattice and F be a filter of A. Then the
following assertions hold:

(1) LFl(r) = (Fl(r)(P(A));∧Fl(r) ,∨Fl(r) , F,A) is a complete lattice where the opera-
tions ∧Fl(r) and ∨Fl(r) are defined as follows:

∧Fl(r)
i∈I (F : Xi)l(r) = (F : ∪i∈IXi)l(r),

and
∨Fl(r)

i∈I (F : Xi)l(r) = (F : ∩i∈I(F : (F : Xi)l(r))r(l))l(r).

(2) LFs = (Fs(P(A));∧Fs ,∨Fs , F,A) is a complete lattice where the operations
∧Fs and ∨Fs are defined as follows:

∧Fs
i∈I(F : Xi)s = (F : ∪i∈IXi)s,

and
∨Fs

i∈I(F : Xi)s = (F : ∩i∈I(F : (F : Xi)s)s)s.

60

Characterization of a New Subquasivariety of Residuated Lattice

Proof. By Proposition 4.1, (Fl, Fr) is a Galois connection and by Proposition 4.7(1),
Fl(r)Fr(l) is a closure operator on P(A) and CFl(r)Fr(l) = Fl(r)(P(A)). So by Proposi-
tion 2.24, LFl(r) = (Fl(r)(P(A));∧Fl(r) ,∨Fl(r) , F�l(r)(A), F�l(r)(∅)) is a complete lattice.
Also, by Proposition 3.4(7) we have Fl(r)(∅) = (F : ∅)l(r) = A and by Proposition
3.4(10) we have Fl(r)(A) = (F : A)l(r) = F . Analogously, we can show that (2)
holds.

Proposition 4.9. Let A be a residuated lattice and F be a filter of A. Then the
following assertion holds:

CFrFl
= {(F : G)r|G ∈ F (A)[F,A]}.

Proof. It is obvious that {(F : G)r|G ∈ F (A)[F,A]} ⊆ CFrFl
. Now, letH = (F : X)r

for some X ⊆ A. By Proposition 4.3(1) we have (F : (F : H)l)r = H and by
Proposition 3.5 we have (F : H)l ∈ F (A)[F,A]. It shows that CFrFl

⊆ {(F :
G)r|G ∈ F (A)[F,A]}.

Proposition 4.10. Let A be a residuated lattice and F be a filter of A. Also let
F1 and F2 be two ordered filters of A such that F ⊆ F1 ∩ F2. Then the following
assertions are equivalent:

(1) F1 ∩ F2 = F .

(2) F1 ⊆ (F : F2).

(3) F1 ⊆ (F : F2)s.

(4) F1 ⊆ (F : F2)l.

(5) F1 ⊆ (F : F2)r.

Proof. Let a1 ∈ F1 and a2 ∈ F2. We have a1, a2 ≤ a1 ∨ a2 and it states that
a1 ∈ (F : F2). Thus we have F1 ⊆ (F : F2). Therefore (1) implies (2). By
Proposition 3.4(2), (2) implies (3), (4) and (5). Now, let a ∈ F1 ∩ F2. So we have
a = 1 → a = (a → a) → a and it shows that (4), (5) and consequently (2) and (3)
implies (1).

Corollary 4.11. Let A be a residuated lattice and F be a filter of A. Also let G be
an ordered-filter of A containing F . Then the following assertions hold:

(1) (F : G) = (F : G)s = (F : G)l ⊆ (F : G)r.

(2) (F : G)s is a filter of A.

61

Rasouli, Zarin and Hasankhan

(3) G ⊆ (F : (F : G)l)l ∩ (F : (F : G)s)l ∩ (F : (F : G)s)r.

Proof. 1. Let G be an ordered-filter of A containing F . By Proposition 3.5 we
know that (F : G)l is a filter of A. Also, by hypothesis and Proposition
3.4(6) we have (F : G)l ∩ G = F . So by Proposition 4.10 we obtain that
(F : G)l ⊆ (F : G). It shows that (F : G) = (F : G)s = (F : G)l ⊆ (F : G)r.

2. It follows by (1).

3. It follows by (1) and Proposition 2.17(4).

Proposition 4.12. Let A be a residuated lattice and F be a filter of A. Then the
meet-semilattice LFl

(A) = (Fl(P(A));∧Fl , (F : −), F) is pseudocomplemented.

Proof. Let (F : X)l ∈ Fl(P(A)). By Proposition 3.4((2) and (6)) we have (F :
X)l ∩ (F : (F : X)l)l = F . Also, Proposition 3.5 states that (F : X)l is a filter
of A. So by Corollary 4.11(2) we obtain that (F : (F : X)l)l = (F : (F : X)l).
It shows that (F : X)l ∩ (F : (F : X)l) = F . Now, let (F : X)l ∩ (F : Y)l = F .
Since, (F : X)l and (F : Y)l are filters of A containing F so by Proposition 4.10 we
obtain that (F : Y)l ⊆ (F : (F : X)l). It shows that the meet-semilattice LFl

(A) is
pseudocomplemented

According to [20], if A = (A;∧,∗ , 0) is a pseudocomplemented meet-semilattice
and S(A) = {a∗|a ∈ A} then S(A) = (S(A);∧,∨, 0, 1 = 0∗) is a Boolean lattice
where for any x, y ∈ S(A), the join in S(A) is described by x ∨ y := (x∗ ∧ y∗)∗.

Corollary 4.13. Let A be a residuated lattice and F be a filter of A. Then S(LFl
(A))

is a Boolean lattice.

5 Right Stabilizer residuated lattice
Definition 5.1. Let A be a residuated lattice and F be a filter of A. A is called a
right stabilizer residuated lattice relative to F (or RSF -residuated lattice) if (F : a)r

is a filter of A for any a ∈ A. A is called a right stabilizer residuated lattice (or
RS-residuated lattice) if it is a RSF -residuated lattice for any filter F of A. The
class of right stabilizer residuated lattices will be denoted by RS −RL.

Example 5.2. Consider Example 3.2. Then A7 is a right stabilizer residuated lattice
relative to F4.

62

Characterization of a New Subquasivariety of Residuated Lattice

Example 5.3. Consider Example 3.3. Then A5 is a right stabilizer residuated lattice
relative to F2.

Proposition 5.4. Let A be a RSF -residuated lattice for some filter F of A. Then
the following assertions hold for any X ⊆ A, x, y ∈ A and � ∈ {l, r, s}:
(1) (F : X)� = (F : Fi(X))�.

(2) (F : X)� ∩ Fi(X) ⊆ F .

(3) x ≤ y implies (F : x)� ⊆ (F : y)�.

(4) (F : x� y)� = (F : x ∧ y)� = (F : x)� ∩ (F : y)� = (F : {x, y})�.
Proof. The proof is similar to the proof of Corollary 4.4 and Proposition 4.5.

Theorem 5.5. Any subalgebra of a RS residuated lattice is a RS residuated lattice.

Proof. Let A be a RS residuated lattice and B be a subalgebra of A. Assume that
F is a filter of B. By Proposition 2.9 we have FiA(F) ∩ B = F . Consider b ∈ B.
By Proposition 3.4(2) we have 1 ∈ (F : b)r. Now let x, x → y ∈ (F : b)r for some
x, y ∈ B. Thus we have (b → x) → x ∈ F and (b → (x → y)) → (x → y) ∈ F . So
we have (b→ x)→ x ∈ FiA(F) and (b→ (x→ y))→ (x→ y) ∈ FiA(F). It implies
that x ∈ (FiA(F) : b)r and x → y ∈ (FiA(F) : b)r. A ∈ RS −RL states that
y ∈ (FiA(F) : b)r. Now we have (b→ y)→ y ∈ FiA(F). Since B is a subalgebra of
A so (b→ y)→ y ∈ B. It shows that (b→ y)→ y ∈ FiA(F) ∩B = F and it means
y ∈ (F : b)r. Hence B is a right stabilizer residuated lattice.

Theorem 5.6. Any homomorphic image of a RS residuated lattice is a RS residu-
ated lattice.

Proof. Let h : A −→ B be an epimorphism of residuated lattices and A is a RS
residuated lattice. Let F be a filter of B and b ∈ B. By Proposition 3.4(2) we have
1 ∈ (F : b)r. Now let y1, y1 → y2 ∈ (F : b)r for some y1, y2 ∈ B. Thus we have
(b → y1) → y1 ∈ F and (b → (y1 → y2)) → (y1 → y2) ∈ F . Since h is surjective so
there are a, x1, x2 ∈ A such that h(a) = b, h(x1) = y1 and h(x2) = y2. It implies
that (a → x1) → x1 ∈ h←(F) and (a → (x1 → x2)) → (x1 → x2) ∈ h←(F). So we
have x1, x1 → x2 ∈ (h←(F) : a)r and it states that x2 ∈ (h←(F) : a)r. Therefore,
(a → x2) → x2 ∈ h←(F) and it shows that (b → y2) → y2 ∈ F . Thus y2 ∈ (F : b)r

and it shows that (F : b)r is a filter of B.

Proposition 5.7. Let A be a residuated lattice and F be a filter of A. Then A is a
RSF -residuated lattice if and only if for any filter G ∈ Fi(A)[F,A] we have (F : G)r

is a filter of A.

63

Rasouli, Zarin and Hasankhan

Proof. It is an immediate consequence of Proposition 4.9.

Lemma 5.8. Let A be a RSF -residuated lattice for some filter F of A. If G is an
ordered-filter of A containing F , then the following assertion holds:

(F : G) = (F : G)s = (F : G)l = (F : G)r.

Proof. The proof is similar to the proof of Corollary 4.11(1).

Proposition 5.9. Let A be a RSF -residuated lattice for some filter F of A. Then
the following assertion holds:

CFlFr = CFrFl
= CFsFs = {(F : G)|G ∈ F (A)[F,A]}.

Proof. By Lemma 5.8 it is obvious that {(F : G)|G ∈ F (A)[F,A]} = {(F : G)l|G ∈
F (A)[F,A]} ⊆ CFlFr . Now, letH = (F : X)l for someX ⊆ A. By Proposition 4.3(1)
we have (F : (F : H)r)l = H and by Proposition 5.11 we have (F : H)r ∈ F (A)[F,A].
So by Lemma 5.8 we have (F : (F : H)r) = H. It shows that CFlFr ⊆ {(F :
G)|G ∈ F (A)[F,A]}. Analogously, we can show that CFrFl

= CFsFs = {(F : G)|G ∈
F (A)[F,A]}.

Theorem 5.10. Let A be a residuated lattice and F be a filter of A. Then A is a
RSF -residuated lattice if and only if (F : X)r = (F : X)l for any X ⊆ A.

Proof. Let A be a RSF -residuated lattice and a ∈ (F : X)r. We have a ≤ (a→ x)→
x for any x ∈ X. Since (F : X)r is a filter so we obtain that (a→ x)→ x ∈ (F : X)r.
Also x ≤ (a → x) → x for any x ∈ X and it implies that (a → x) → x ∈ Fi(X).
Hence by Proposition 5.4(2) we conclude that (a → x) → x ∈ (F : X)r ∩ Fi(X) ⊆
F . It shows that for any x ∈ X we have (a → x) → x ∈ F and it states that
a ∈ (F : X)l. In a similar way we can show that (F : X)l ⊆ (F : X)r. It shows that
(F : X)r = (F : X)l for any X ⊆ A.

Conversely, if we have (F : X)r = (F : X)l for any X ⊆ A then A is a RSF -
residuated lattice by Proposition 3.5.

Definition 5.11. Let A be a residuated lattice. A filter F of A will be called a right
stabilizer filter of A (RS filter) if (F : x)r = (F : x)l for any x ∈ A.

Proposition 5.12. Let A be a residuated lattice and F be a filter of A. The following
assertions are equivalent:

(1) A is a RSF residuated lattice.

(2) F is a RS filter.

64

Characterization of a New Subquasivariety of Residuated Lattice

(3) (x→ y)→ y ∈ F implies (y → x)→ x ∈ F , for any x, y ∈ F .

(4) z, z → ((y → x)→ x) ∈ F implies (x→ y)→ y ∈ F , for any x, y, z ∈ A.

Proof.

(1)⇔(2): It is obvious by Theorem 5.10 and Definition 5.11.

(2)⇔(3): Let F be a RS filter of A and (x→ y)→ y ∈ F for arbitrary elements x, y ∈ A.
So we have x ∈ (F : y)l = (F : y)r and it implies that (y → x)→ x ∈ F .
Conversely, let F satisfies (2) and a ∈ (F : x)r. Then (x→ a)→ a ∈ F and it
implies that (a → x) → x ∈ F . It states that a ∈ (F : x)l and it shows that
(F : x)r ⊆ (F : x)l. Analogously, we can show that (F : x)l ⊆ (F : x)r and it
means that F is a RS filter.

(3)⇔(4): See [1, Theorem 3.2].

Remark 1. According to [1, Theorem 3.10], each MV filter is a RS filter but the
converse may be not true (See [1, Example 3.11]). Therefore each MV filter of a
residuated lattice is a RS filter. Consequently, each Boolean filter of a residuated
lattice is a RS filter, too.

Corollary 5.13. Let A be a residuated lattice. The following assertions are equiv-
alent:

(1) A is a RS1 residuated lattice.

(2) 1 is a RS filter.

(3) x→ y = y implies y → x = x, for any x, y ∈ A.

Proof. It is an immediate consequence of Proposition 5.12 by taking F = 1.

Corollary 5.14. The class of RS −RL is a subquasivariety of the variety RL.

Proof. By Corollary 5.13, a residuated lattice A is a RS residuated lattice if and
only if it satisfies the quasi-identity x → y = y ⇒ y → x = x. It shows that
RS −RL can be be axiomatized by quasi-identities and it means that RS −RL is
a quasivariety.

Theorem 5.15. Let A be a residuated lattice and F be a filter of A. If the comple-
ment of a filter G in the interval Fi(A)[F,A] = (Fi(A)[F,A];Z,Y) is existed then
(F : G)r ∈ Fi(A)[F,A] and we have Gc = (F : G)r.

65

Rasouli, Zarin and Hasankhan

Proof. Let Gc = H. So we have G ZH = F and G YH = A. By Proposition 4.10
follows that H ⊆ (F : H)r. Let a ∈ (F : H)r. So there are g ∈ G and h ∈ H
such that g � h ≤ a and it means that g ≤ h → a. Since G is a filter so we have
h → a ∈ G. By hypothesis, it implies that h → a = ((h → a) → a) → a ∈ F ⊆ H
and it concludes that a ∈ H. It shows that H = (F : G)r.

Corollary 5.16. Let A be a residuated lattice, F be a filter of A and X ⊆ A. If the
complement of FX in the interval Fi(A)[F,A] is existed then we have F c

X = (F : X)r.

Proof. Let the complement of FX in the interval Fi(A)[F,A] is existed. By Theorem
5.15 we have F c

X = (F : FX)r and by Proposition 4.4(6) we have (F : FX)r = (F :
X)r. These show that F c

X = (F : X)r.

Corollary 5.17. Let A be a residuated lattice and F ba a filter of A. If the interval
Fi(A)[F,A] is a Boolean lattice, then F is a RS filter of A.

Proof. Let G ∈ Fi(A)[F,A]. By Theorem 5.15 we have (F : G)r ∈ Fi(A)[F,A]. So
by Proposition 5.11 we conclude that A is a RSF residuated lattice and it states
that F is a RS filter.

Theorem 5.18. Let A be a finite residuated lattice and F be a filter of A. Then F
is a RS filter if and only if the interval Fi(A)[F,A] is a Boolean lattice.

Proof. Let F be a RS filter of A. Assume that G ∈ Fi(A)[F,A]. By Proposition 5.11
we obtain that (F : G)r is a filter of A containing F and by Proposition 3.4(6) we have
GZ(F : G)r = G∩(F : G)r = F . Hence, it is enough to prove that GY(F : G)r = A.
Since A is a finite residuated lattice, so G = {g1, · · · , gn} for some integer n. Let
a ∈ A. By Proposition 2.2 we have gi → a ≤ g2

i → a ≤ · · · ≤ gt
i → a ≤ · · · for

any i = 1, · · · , n. Since A is a finite set so for any i there is an integer ni such that
gni

i → a ≤ · · · ≤ gni+k
i → a for any integer k. Set x = (�m

i=1g
ni
i)→ a. We have the

66

Characterization of a New Subquasivariety of Residuated Lattice

following assertions:

(gj → x)→ x = (gj → ((�m
i=1g

ni
i)→ a))→ x

= ((gj � (�m
i=1g

ni
i))→ a)→ x

= ((gnj+1
j � (�i6=jg

ni
i))→ a)→ x

= ((�i6=jg
ni
i)→ ((gnj+1

j → a))→ x

= ((�i6=jg
ni
i)→ ((gnj

j → a))→ x

= ((gnj

j � (�i6=jg
ni
i)→ a)→ x

= ((�m
i=1g

ni
i)→ a)→ x

= x→ x = 1 ∈ F
(1)

It shows that (�m
i=1g

ni
i) → a ∈ (F : G)r. We have (�m

i=1g
ni
i) � ((�m

i=1g
ni
i) →

a) ≤ a and it means that a ∈ G Y (F : G)r. Hence the interval Fi(A)[F,A] is a
Boolean lattice. Conversely, it follows by Corollary 5.17.

Theorem 5.19. Let A be a finite residuated lattice. Then the following statement
are equivalent:

(1) A is a RSF residuated lattice.

(2) The interval Fi(A)[F,A] is a Boolean lattice.

Proof. It is straightforward by Theorem 5.15 and Theorem 5.18.

References
[1] A. Ahadpanah, L. Torkzadeh, Normal filters in residuated filters, LE MATEMATICHE,

Vol. LXX (2015), 81-92.
[2] A. Ahadpanah, L. Torkzadeh, Normal residuated lattices, Afr. Mat. (2015) 26:679Ű688

DOI 10.1007/s13370-014-0239-x.
[3] A. Borumand Saeid, N. Mohtashamnia, Stabilizer in residuated lattices, University Po-

litehnica of Bucharest, Scientific Bulletin Series A - Applied Mathematics and Physics,
74(2), (2012), 65-74.

[4] R. A. Borzooei, A. Paad, Some new types of stabilizers in BL-algebras and their appli-
cations, Indian Journal of Science and Technology, 5(1) (2012) 1910-1915.

[5] W. J. Blok, D. Pigozzi, Algebraizable Logics, Mem. Am. Math. Soc., vol. 396, Amer.
Math. Soc., Providence, 1989.

67

Rasouli, Zarin and Hasankhan

[6] S. Burris, H. P. Sankappanavar, 1981. A Course in Universal Algebra Springer-Verlag.
ISBN 3-540-90578-2 Free online edition.

[7] D. Buşneag, D. Piciu, On the lattice of filters of a pseudo BL-algebra, Journal of
Multiple Valued Logic and Soft Computing, vol. X (2006) 1-32.

[8] D. Buşneag, D. Piciu, Some types of filters in residuated lattices, Soft Comput. 18(5)
(2014) 825-837.

[9] D. Buşneag, D. Piciu, A new approach for classification of filters in residuated lattices,
Fuzzy Sets and Systems, 260 (2015) 121-130.

[10] F. Esteva, L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous
t-norms, Fuzzy Sets and Systems 124 (2001), 271-288.

[11] L. C. Ciungu, Classes of residuated lattices, Annals of University of Craiova. Math.
Comp. Sci. Ser. 33 (2006) 189-207.

[12] L. C. Ciungu, Directly indecomposable residuated lattices, Iranian Journal of Fuzzy
Systems Vol. 6, No. 2, (2009) 7-18.

[13] R. P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc. 44 (1938)
262-268.

[14] R. P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc. 46
(1939) 426-444.

[15] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo BL-algebras: Part I, Multiple Valued
Logic, 8 (2002) 673-714.

[16] A. Dvurec̆enskij, J. Rachu̇nek, Probabilistic averaging in bounded R`-monoids, Semi-
group Forum, 72 (2006) 190-206.

[17] P. Flondor, G. Georgescu, A. Iorgulescu, Pseudo t-norms and pseudo BL-algebras, Soft
Comput. 5 (2001) 355-371.

[18] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated lattices: an algebraic
glimpse at substructural logics, Elsevier, 2007.

[19] G. Georgescu, A. Ioregulescu, Pseudo-MV algebras, Multiple Val. Logic, 6 (2001) 95-
135.

[20] G. Grätzer, Lattice theory, W. H. Freeman and Company, San Francisco, (1979).
[21] M. Haveshki, M. Mohamadhasani, Stabilizer in BL-algebras and its properties. Int

Math Forum 5(57) (2010), 2809-2816.
[22] M. Haveshki, Some Results on Stabilizers in Residuated Lattices, Çankaya University

Journal of Science and Engineering 11(2) (2014) 7-17.
[23] U. Höhle, Commutative residuated monoids, in: U. Höhle, P. Klement (Eds.), Non-

classical Logics and Their Aplications to Fuzzy Subsets, Kluwer Academic Publishers,
1995.

[24] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
[25] M. Haveshki, Some results on stabilizers in residuated lattices, Çankaya University

Journal of Science and Engineering Volume 11, 2 (2014) 7-17.
[26] P. M. Idziak, Lattice operations in BCK-algebras, Mathematica Japonica, 29(1984),

68

Characterization of a New Subquasivariety of Residuated Lattice

839-846.
[27] A. Iorgulescu, Classes of pseudo-BCK algebras I. Multiple-Valued Logic Soft Comput.

12 (2006) 71-130.
[28] K. Iséki, S. Tanaka, Ideal theory of BCK-algebras, Math. Jap. 21 (1976) 351-366.
[29] P. Jipsen, C. Tsinakis, A survey of residuated lattices, In: Ordered Algebraic Struc-

tures,(J.Martinez, ed) Kluwer Academic Publishers, Dordrecht, 2002, 19-56.
[30] T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at logics without con-

traction, Japan Advanced Institute of Science and Technology, 2001.
[31] W. Krull, Axiomatische Begründung der allgemeinen Ideal theorie, Sitzungsberichte

der physikalisch medizinischen Societĺad der Erlangen 56 (1924), 47-63.
[32] S. Motamed, L. Torkzadeh, A new class of BL-algebras, Soft Comput (2016).

doi:10.1007/s00500-016-2043-z.
[33] M. Okada, K. Terui, The finite model property for various fragments of intuitionistic

linear logic, Journal of Symbolic Logic, 64 (1999) 790-802.
[34] H. Ono, Y. Komori, Logics without the contraction rule, Journal of Symbolic Logic, 50

(1985), 169-201.
[35] S. Rasouli, Generalized co-annihilators in residuated lattices, submitted.
[36] B. Van Gasse, G. Deschrijver, C. Cornelis, E.E. Kerre, Filters of residuated lattices and

triangle algebras, Inf. Sci. 180 (16) (2010) 3006-3020.
[37] M. Ward, Residuation in structures over which a multiplication is defined, Duke Math.

Journal 3 (1937) 627-636.
[38] M. Ward, Structure Residuation, Annals of Mathematics, 2nd Ser. 39(3) (1938) 558-

568.
[39] M. Ward, Residuated distributive lattices, Duke Math. J. 6 (1940) 641-651.
[40] M. Ward, R. P. Dilworth, Residuated Lattices, Proceedings of the National Academy

of Sciences 24 (1938) 162-164.
[41] M. Ward, R. P. Dilworth, Residuated lattices, Transactions of the American Mathe-

matical Society 45 (1939), 335-354.
[42] Y. Zhua, Y. Xu, On filter theory of residuated lattices, Information Sciences 180 (2010)

3614-3632.

Received 9 January 201769

70

Tuning the Program Transformers from
LCC to PDL

Pere Pardo
Ruhr-Universität Bochum, Germany.

pere.pardoventura@ruhr-uni-bochum.de

Enrique Sarrión-Morillo, Fernando Soler-Toscano
Universidad de Sevilla, Spain.
{esarrion,fsoler}@us.es

Fernando R. Velázquez-Quesada
Universiteit van Amsterdam, The Netherlands.

F.R.VelazquezQuesada@uva.nl

Abstract

This work proposes an alternative definition of the so-called program trans-
formers used to obtain reduction axioms in the Logic of Communication and
Change (LCC). Our proposal uses an elegant matrix treatment of Brzozowski’s
equational method instead of Kleene’s translation from finite automata to reg-
ular expressions. The two alternatives are shown to be equivalent, with Br-
zozowski’s method having the advantage of generating smaller expressions for
models with average connectivity.

Keywords: Logic of communication and change, dynamic epistemic logic,
propositional dynamic logic, action model, program transformer, reduction axiom

1 Introduction
Dynamic Epistemic Logic [1, 2] (DEL) encompasses several logical frameworks whose
main aim is the study of different single- and multi-agent epistemic attitudes and
the way they change due to diverse epistemic actions. These frameworks typically
have two building blocks: a ‘static’ component, using some ‘epistemic’ model to

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

represent the notion to be studied (e.g., knowledge or belief), and a ‘dynamic’ com-
ponent, using model operations to represent actions that affect such notion (e.g.,
announcements or belief revision).1

Among the diverse existing DEL frameworks, the Logic of Communication and
Change (LCC) of [6] stands as one of the most interesting. It consists of Proposi-
tional Dynamic Logic [7] (PDL), interpreted epistemically (its ‘static’ component),
and the action models machinery [8, 9] for representing knowledge about actions
(its ‘dynamic’ component). The LCC framework allows us to model not only di-
verse epistemic actions (as public, private or secret announcements) but also factual
change.

A key feature of this logic is that it characterises the effect of an action model’s
execution via reduction axioms: valid formulas through which it is possible to rewrite
a formula with action model (update) modalities as an equivalent one without them,
thus reducing LCC to PDL and hence providing a compositional analysis for a wide
range of informational events. For example, the reduction axiom for conjunction
tells us that φ ∧ ψ will be the case true after the pointed action model (U, ei) is
executed, [U, ei](φ ∧ ψ), if and only if both φ and ψ are true after executing such
action, [U, ei]φ ∧ [U, ei]ψ. For another example, the reduction axiom for atoms p
effectively reduces an LCC formula [U, ei]p into a formula about the conditions of
the action ei and its effect on p (see Table 1).

As one might expect, the crucial reduction axiom is the one characterising the
effect of an action model over epistemic modalities π (i.e. over PDL programs):

[U, ei][π]φ ↔
n−1∧

j=0
[TU
ij (π)][U, ej]φ

This axiom, presented in detail in what follows, characterises the epistemic change
that the action model U brings about: after the pointed action model (U, ei) is exe-
cuted, every π-path in the resulting epistemic model leads to a φ-world, [U, ei][π]φ,
if and only if, for every action ej in the action model U, every TU

ij (π)-path in the
original epistemic model ends in a world that, after the execution of (U, ej), will sat-
isfy φ. The axiom is based on the correspondence between action models and finite
automata observed in [10]; its main component, the so-called program transformer
function TU

ij , follows Kleene’s translation from finite automata to regular expressions
[11].2

1This form of representing the dynamics is different from other approaches as, e.g., epistemic
temporal logic [3, 4] (ETL), in which the static model already describes not only the relevant notion
but also all the possible ways it can change due to the chosen epistemic action(s). See [5] for a
comparison between DEL and ETL.

2See [12] for a deep discussion about the meaning of Kleene’s theorem.

72

Tuning the Program Transformers from LCC to PDL

The present work proposes an alternative definition of program transformer,
using instead a matrix treatment of Brzozowski’s equational method for obtaining an
expression representing the language accepted by a given finite automaton [13, 14].

Structure of the paper The paper starts in Section 2 by recalling the LCC frame-
work together with its reduction axioms and its definition of program transformers.
Section 3 explains how we can obtain, through Brzozowski’s equational method, the
corresponding expressions for Kleene closure, and then Section 4 introduces this pa-
per’s proposal, used to define an alternative translation from LCC to PDL. Section
5 comments on the computational complexity of this approach; the computational
costs of the two methods are also compared using Prolog with different test-cases.
Section 6 presents a summary and a discussion of further topics for research.

2 Logic of Communication and Change
This section recalls LCC’s semantic structure, its language and semantic interpreta-
tion, and its axiom system. Throughout this paper, Var will denote a set of atoms
(propositional variables), and Ag will denote a finite set of agents.

We start the definition of LCC by introducing the involved structures. First, the
structure over which LCC formulas are interpreted.

Definition 1 (Epistemic model). An epistemic model M is a triple

(W, ⟨Ra⟩a∈Ag, V)

where W ̸= ∅ is a set of worlds, Ra ⊆ (W ×W) is an epistemic relation for each
agent a ∈ Ag and V : Var → ℘(W) is an atomic evaluation.

Note how the epistemic relations Ra are not required to satisfy any particular
property. As usual, each possible world can be interpreted as a possible state of
affairs (each one of them defined by the atomic valuation), and each relation Ra
represents agent a’s uncertainty about the situation: at world w, for agent a all
worlds u such that wRau are epistemically possible, i.e. are seen as possible by this
agent. Figure 1 shows an example of an epistemic model.

Here is the structure for representing the knowledge about actions in the system.

Definition 2 (Action model). Let L be a language built upon Var and Ag that can
be interpreted over epistemic models. An L action model U is a tuple

(E, ⟨Ra⟩a∈Ag, pre, sub)

73

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

......p . ¬p.
abc

.
abc

.
bc

Figure 1: An epistemic model M with an actual p-world (gray) and a possible world
with ¬p (white). The arrows represent accessibility relations Ra, Rb and Rc, so only
agent a knows that currently p, while b and c ignore whether p.

where E = {e0, . . . , en−1} is a finite non-empty set of actions, Ra ⊆ (E × E) is a
relation for each a ∈ Ag, pre : E → L is a precondition map assigning a formula
pre(e) ∈ L to each action e ∈ E, and sub : (E × Var) → L is a postcondition map
assigning a formula sub(e, p) ∈ L to each atom p ∈ Var at each action e ∈ E. The
postcondition map should only change a finite number of atoms, so sub(e, p) ̸= p
can hold only for a finite number of p ∈ Var.3 We emphasise that, in this definition,
the language L is just a parameter.

Just as each relation Ra describes agent a’s uncertainty about the situation, each
relation Ra represents a’s uncertainty about the executed action: eRaf indicates a
cannot distinguish f from e. Note, again, how the relation is not required to satisfy
any particular property.

Example 1 (Announcements). Figure 2 illustrates three action models for an-
nouncements in a set of three agents Ag = {a, b, c}. Each of the actions, say f,
is purely epistemic (i.e., fact-preserving), so sub(f, p) = p for any p ∈ Var. La-
beled arrows denote accessibility relations Ra, Rb or Rc; a gray circle denotes the
action that is actually being executed, while other actions (wrongly believed by some
agents to possibly take place) are represented by white circles. The preconditions
are written below the corresponding actions.

As mentioned, action models represent both the actions and the knowledge
agents have about these actions. Action models modify epistemic models in the
following way.

Definition 3 (Update execution). LetM = (W, ⟨Ra⟩a∈Ag, V) be an epistemic model
and U = (E, ⟨Ra⟩a∈Ag, pre, sub) an L action model, both over Var and Ag. Recall

3These ‘finiteness’ requirements (finite domain and only a finite number of atoms affected by
the postcondition function) are needed to allow the pointed action model (U, e) —a pair with U an
L action model and e a distinguished action in it— to be associated to a syntactic object and thus
to be used within formulae. For details, the reader is referred to the discussion about action models
in Section 6.1 of [1].

74

Tuning the Program Transformers from LCC to PDL

......
p!aAg

.

p!ab

.

¬p!ab

.
p†ab

.
p!ab

.

skipa

.
p

. ¬p.
p

.

p

.

¬p

.

⊤

.abc .

abc

.

abc

.

c

. a.
ab

.

abc

.
b

.
c

.
c

Figure 2: (Top left) A truthful public announcement by a that p, denoted p!aAg.
(Bottom left) A private announcement by a to b about p, denoted p!ab ; here agent c
only knows about the ‘topic’ of the message. (Right) A secret lie about p made by
a to b, denoted p†ab , is accepted by b as truthful, i.e. as if it was p!ab ; agent c is not
aware of any communication between a and b.

that L is any language built upon Var and Ag that can be interpreted over epistemic
models, so we can assume the existence of a function [·]M returning those worlds
in M in which each formula of L holds.

The update execution of U on M produces an epistemic model

(M ⊗ U) = (WM⊗U, ⟨RM⊗U
a ⟩a∈Ag, V

M⊗U)

given, for every a ∈ Ag and p ∈ Var, by

WM⊗U := { (w, e) ∈W × E | w ∈ [pre(e)]M }
RM⊗U
a := { ⟨(w, e), (v, f)⟩ ∈WM⊗U ×WM⊗U | wRav and e Raf }

VM⊗U(p) := { (w, e) ∈WM⊗U | w ∈ [sub(e, p)]M }

Thus, the update execution of U on M produces an epistemic model M ⊗ U
whose domain is the restricted cartesian product of the original models’ domains.4
In M ⊗ U, a world (w, e) satisfies an atom p if and only if w satisfied the formula
sub(e, p) in M ; finally, an agent a sees a world (u, f) as possible from (w, e) if and
only if she sees u from w (in M) and sees f from e (in U). If one works with a
particular class of epistemic models in which the epistemic relations satisfy specific
properties, then the chosen action models should be such that the update execution
preserves these properties. This is straightforward in some cases as, e.g., reflexivity,
transitivity and symmetry are preserved by update execution when the relations in

4If there is no world in M satisfying pre(e) for some action e in U, then the resulting structure
is not an epistemic model, as its domain is empty.

75

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

the action models are reflexive, transitive and symmetric, respectively. But this is
not always the case: for example, seriality is not preserved, even when the involved
action models are serial. See Figure 3 for an illustration of different updates in an
epistemic model.

......

p

.

¬p

.

p

.

¬p

.e . p!ab. ¬p!ab.

¬p

.

p

.

¬p

.
p 7→ ⊥

.

p

.

p

.

¬p

.

M

.U.

M ⊗ U

.

abc

.

abc

.

bc

.

abc

.

abc

.

bc

.
abc

.
abc

.
abc

.
c

.

abc

.

abc

.

abc

.

c

Figure 3: Two illustrations of update execution in the epistemic model M from Fig.
1 (topmost row here), where only agent a knows that p. (Left) Action e represents
a public (i.e. publicly observable) change to ¬p; note that the postcondition is
written on top of the action. After execution, it becomes common knowledge that
¬p. (Right) A private announcement by a to b about p results in a new model where
it is public that b now knows whether p, and only c remains ignorant about p.

With the semantic structures already defined, it is time now to define the lan-
guage that will be used to describe them. Note that the formulas (and programs)
of the language LLCC are defined simultaneously with the notion of an LLCC action
model (i.e. an action model using LLCC for its precondition and postcondition maps).

Definition 4 (Language LLCC). The formulas φ and programs π of the language
LLCC are given by, respectively:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | [π]φ | [U, e]φ
π ::= a | ?φ | π;π | π ∪ π | π∗

where p ∈ Var, a ∈ Ag and (U, e) is a pair with an LLCC action model U and an
action e in this model.5

5More precisely, the language is defined by a double induction starting from the language
PDL0 = PDL, then defining L0

LCC as PDL0 plus modalities of the form [U, e] for U a PDL0 action
model, then defining PDL1 as L0

LCC plus tests ?φ for φ ∈ L0
LCC, then defining L1

LCC as PDL1 plus
modalities of the form [U, e] for U a PDL1 action model, and so on. The full language LLCC is then
the union of all languages LiLCC with i finite.

76

Tuning the Program Transformers from LCC to PDL

As the definition states, the set of LCC formulas contains the atomic propositions
and ⊤, and it is closed under negation, conjunction, and modalities [π] (for π a
program) and [U, e] (for U an LLCC action model and e an action in it).6 On the
other hand, the set of LCC programs contains basic programs for agents a and
‘tests’ ?φ (with φ a formula), and it is closed under sequential composition (;),
non-deterministic choice (∪) and Kleene closure (∗).

It is only left to define the [·]M function associated to LLCC that collects the
worlds of a given epistemic model M in which a given LLCC formula holds. In the
case of LCC, this function also indicates which pairs of worlds are related by a given
LLCC program.

Definition 5 (Semantics of LLCC). LetM = (W, ⟨Ra⟩a∈Ag, V) be an epistemic model
and U = (E, ⟨Ra⟩a∈Ag, pre, sub) an action model. The function [·]M , returning both
those worlds in W in which an LLCC formula holds and those pairs in W ×W in
which an LLCC program holds, is given by

[⊤]M := W [a]M := Ra

[p]M := V (p) [?φ]M := Id[φ]M

[¬φ]M := W \ [φ]M [π1;π2]M := [π1]M ◦ [π2]M

[φ1 ∧ φ2]M := [φ1]M ∩ [φ2]M [π1 ∪ π2]M := [π1]M ∪ [π2]M

[[π]φ]M := {w ∈W | ∀v((w, v) ∈ [π]M ⇒ v ∈ [φ]M)} [π∗]M := ([π]M)∗

[[U, e]φ]M := {w ∈W | w ∈ [pre(e)]M ⇒ (w, e) ∈ [φ]M⊗U}

where ◦ and ∗ are the composition and the reflexive transitive closure operator,
respectively, and IdU is the identity relation on U ⊆W . Notice two special cases for
test: [?⊥]M = ∅ and [?⊤]M = IdW .

Even though LCC can be seen abstractly as the logic of regular programs (the
PDL part) plus action models (modalities of the form [U, e]), it is also illustrative to
discuss its epistemic interpretation, in particular, that of its PDL programs. Basic
‘agent’ programs a ∈ Ag produce formulas of the form [a]φ, read simply as “agent
a knows/believes φ” as in standard Epistemic Logic. More complex programs also
have epistemic readings. Formulas of the form [π1;π2]φ, relying on the sequential
composition π1 and then π2, can be read as “π1 knows/believes that π2 knows/believes
φ”, and thus can be used to express nested knowledge/belief; formulas of the form
[π1∪π2]φ, relying on the union of the relations for π1 and π2, can be read as “both π1
and π2 know/believe φ”, and thus can be used to express general knowledge/belief
among a group; finally, formulas of the form [π∗]φ, relying on the reflexive and

6From now on, all action models are assumed to be LLCC action models.

77

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

transitive closure of the relations for π, can be read as “φ is the case, π knows it,
π knows that she knows it, and so on”, and thus can be used to express common
knowledge (or, if π+ := π;π∗ is used instead of π∗, common belief). The modalities
involving action models simply state the action’s effects, with formulas of the form
[U, e]φ reading “φ is the case after any execution of the pointed action (U, e)”.

Axiom system The axiom system for LCC, shown in Table 1, combines the known
axiom system of its PDL fragment (the left column; [7]) with recursion axioms for
its action model fragment (the right column). Intuitively, recursion axioms are
valid formulae characterising a situation after an update execution in terms of a
situation before such update, and thus indicating how to rewrite a formula with
an action model modality as a provably equivalent one without them. Then, while
soundness follows from the validity of these new axioms, completeness follows from
the completeness of the basic system.7

(taut) propositional tautologies (top) [U, e]⊤ ↔ ⊤
(K) [π](φ1 → φ2) → ([π]φ1 → [π]φ2) (atm) [U, e]p↔ (pre(e) → sub(e, p))

(test) [?φ1]φ2 ↔ (φ1 → φ2) (neg) [U, e]¬φ↔ (pre(e) → ¬[U, e]φ)
(seq) [π1;π2]φ↔ [π1][π2]φ (conj) [U, e](φ1 ∧ φ2) ↔ ([U, e]φ1 ∧ [U, e]φ2)

(choice) [π1 ∪ π2]φ↔ [π1]φ ∧ [π2]φ (KU) [U, e](φ1 → φ2) → ([U, e]φ1 → [U, e]φ2)
(mix) [π∗]φ↔ φ ∧ [π][π∗]φ (prog) [U, ei][π]φ↔

∧n−1
j=0 [TU

ij(π)][U, ej]φ
(ind) φ ∧ [π∗](φ→ [π]φ)) → [π∗]φ (NU) From ⊢ φ infer ⊢ [U, e]φ
(MP) From ⊢ φ1 and ⊢ φ1 → φ2 infer ⊢ φ2

(Nπ) From ⊢ φ infer ⊢ [π]φ

Table 1: LCC calculus in [6] is that of PDL (left column) plus reduction axioms and
necessitation rule for [U, e] (right column).

In our particular case, recursion axioms for atomic propositions and boolean con-
stants/operators are standard for action models with ontic (i.e., valuation) change
[16]: while axiom (atm) states that an atom p will be the case after any update
execution with action model U and action e, [U, e]p, if and only if, before the up-
date, the formula sub(e, p) holds whenever pre(e) holds, pre(e) → sub(e, p), axioms
(neg) and (conj) state that update execution commutes with negation (modulo its
precondition) and distributes over conjunction, respectively.

7The reader is referred to Chapter 7 of [1] (see also [15]) for an extensive explanation of this
technique.

78

Tuning the Program Transformers from LCC to PDL

The most important recursion axiom, (prog), characterises the effect of an action
model over LCC programs. It states that after any update execution with U on ei
every π-path in the resulting model will lead to a φ-world, [U, ei][π]φ, if and only if,
before the update, every TU

ij (π)-path leads to a world that will satisfy φ after any
update execution with U on ej where ej is any action on U, ∧n−1

j=0 [TU
ij (π)][U, ej]φ.

In this axiom, the program transformer TU
ij is crucial, taking an LCC program π

representing a path on M ⊗U and returning an LCC program TU
ij (π) representing a

‘matching’ path on M , taking additional care that such path can be also reproduced
in the action model U. A program transformer follows Kleene’s translation from
finite automata to regular expressions [11], and it is formally defined as follows.

Note also that the (valid) formula KU is not listed among the LCC axioms in [6].
It has been added here not only because it cannot be derived from the rest of the
system, but also because it allows the derivation of the crucial rule

χ↔ ψ

[U, e]χ↔ [U, e]ψ REU

This rule is needed for the inside-out translation of nested action model modalities
(see footnote 10). The fact that KU is not derivable from the rest of the system is
stated in [15] (in particular, its Thm. 29), a paper which examines axiom systems
for PAL, the logic of public announcements [φ!]. Their analysis of completeness
proofs is based on a reduction from PAL, and thus it applies to LCC as well. (Of
course, another alternative is to add REU directly since, following [15, Prop. 3], KU
is derivable from REU and the original LCC system, Table 1 minus KU.) That the
system on Table 1 is indeed sound and (weakly) complete w.r.t. the given semantic
interpretation can be shown using the same technique as [15, Corollary 12].

Definition 6 (Program transformer [6]). Let U = (E, ⟨Ra⟩a∈Ag, pre, sub) be an action
model with E = {e0, . . . , en−1}. The program transformer TU

ij (i, j ∈ {0, . . . , n− 1})
on the set of LCC programs is defined as:

TU
ij(a) :=

{
?pre(ei); a if eiRaej
?⊥ otherwise

TU
ij(?φ) :=

{
?(pre(ei) ∧ [U, ei]φ) if i = j

?⊥ otherwise

TU
ij(π1;π2) :=

∪n−1
k=0(TU

ik(π1);TU
kj(π2)) TU

ij(π1 ∪ π2) := TU
ij(π1) ∪ TU

ij(π2)

TU
ij(π∗) := KU

ijn(π)

with KU
ijn inductively defined as follows:

79

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

KU
ij0(π) :=

{
?⊤ ∪ TU

ij(π) if i = j

TU
ij(π) otherwise

KU
ij(k+1)(π) =

(KU
kkk(π))∗ if i = k = j

(KU
kkk(π))∗;KU

kjk(π) if i = k ̸= j

KU
ikk(π); (KU

kkk(π))∗ if i ̸= k = j

KU
ijk(π) ∪ (KU

ikk(π); (KU
kkk(π))∗;KU

kjk(π)) if i ̸= k ̸= j

Example 2. In the action model of Fig. 3 (left), the axiom for the public change to
¬p reduces an epistemic consequence [U, e][a]¬p to a claim before execution, namely
[?pre(e); a][U, e]¬p, which is necessarily true –see the left column below–. Similarly,
in the action model of a private lying announcement Fig. 2 (right), enumerate
the actions as p†ab = e0 and p!ab = e1 and skipa = e2. Then, the axiom for the lying
announcement p†ab turns the believed lie [U, p†ab][b]p into a claim before the execution,
also a tautology –see the right column–.

[U, e][a]¬p [U, p†ab][b]p
≡ [?pre(e); a][U, e]¬p ≡ [TU

01(b)][U, p!ab]p
≡ [?p; a]

(
pre(e) → ¬[U, e]p

)
≡ [?pre(p†ab); b][U, p!ab]p

≡ p→ [a]
(
p→ ¬(pre(e) → sub(e, p))

)
≡ [?¬p; b]

(
pre(p!ab) → sub(p!ab , p)

)

≡ p→ [a]
(
p→ ¬(p→ ⊥)

)
≡ ¬p→ [b]

(
p→ p

)

≡ p→ [a]
(
p→ (p ∧ ⊤)

)
≡ ¬p→ [b]⊤

≡ p→ [a]⊤ ≡ ⊤ ≡ ⊤

3 Program transformation through Brzozowski’s equa-
tions

This paper proposes an alternative definition of program transformer, denoted
µU(π)[i, j], that differs from TU

ij (π) mainly in the case for the Kleene closure opera-
tor. Before presenting the formal definitions in Section 4, we introduce the method
in an informal way. In the action models of Figure 4, we tag every edge from ei to ej
with a label π | µU(π)[i, j] with π a program and and µU(π)[i, j] its transformation.
For example, in the agents’ diagram below, the label from e0 to e1

a | ?pre(e0); a means µU(a)[0, 1] = ?pre(e0); a.
i.e. ?pre(e0); a is what we should test in (M,w) to ensure that, after executing (U, e0)
over (M,w), an a-path from (w, e0) to some state (w′, e1) will persist in M ⊗ U. (If
no a-path from e0 to e1 exists, the transformation of a is ?⊥.)

80

Tuning the Program Transformers from LCC to PDL

..e0 . e1..a | ?pre(e0); a
..e0 .

?φ | ?(pre(e0) ∧ [U, e0]φ)

..e0 . e1.e2 .

π1 | S01
1

.

π2 | S01
2

.

π1 | S02
1

.π1 ∪ π2 | S01
1 ∪ S01

2.π1 ∪ π2 | S02
1

..e0 .

e1

.

e2

. e3.
π1

| S
01
1

.

π1 | S 02
1

.

π2 | S 132

.

π2 | S
23
2

.π1;π2 | (S01
1 ;S13

2) ∪ (S02
1 ;S23

2)

Figure 4: An illustration of action models and their program transformers for the
following programs: agent (top left), test (top right), choice (mid) and composition
(bottom). Dashed and solid lines represent, respectively, the original labels and
those obtained after applying choice (mid) or product (bottom).

The construction of the diagrams on Figure 4 proceeds in a very similar way
to that of Def. 6, just simplifying some trivial cases like π ∪ ?⊥, which is reduced
to π. The main novelty of our transformation is for the Kleene closure. We use a
method proposed by Brzozowski [13], presented here in a matrix format (see [17, 18]
for more an in-depth analysis about the improvements that we are applying to LCC
language).

Kleene closure The following example will be used to illustrate the generation
of the transformations of π∗ from those of π. (The π∗-paths from ei to ej will be
denoted by Xij , while the corresponding π-paths are labeled as Sij .)

..e0 .e1. e2.

π | S01

.
π | S10

. π | S21

.

π | S11

.

π | S22

81

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

Generate an equation system8 (Brzozowski [13]). E.g. for paths to e0:

X00 = ?pre(e0) ∪ (S01;X10) (1)
X10 = (S10;X00) ∪ (S11;X10) (2)
X20 = (S22;X20) ∪ (S21;X10) (3)

Solve the system9 using: substitution; associativity, distributivity [19], and Arden’s
Theorem [20] (X = B ∪ (A;X) implies X = A∗;B). E.g.

X00 = ?pre(e0) ∪ (S01; ((S10;S01) ∪ S11)∗;S10; ?pre(e0)) (4)
X10 = ((S10;S01) ∪ S11)∗;S10; ?pre(e0) (5)
X20 = (S22)∗;S21; ((S10;S01) ∪ S11)∗;S10; ?pre(e0) (6)

Similar processes produce labels for π∗-paths to e1 and e2, represented as:

..e0 .e1 . e2.
π∗ | S01; (S11 ∪ S10;S01)∗; ?pre(e1)

.
π∗ | (5) .π∗ | S22∗;S21; (S11 ∪ S10;S01)∗; ?pre(e1).

π∗ | (S11 ∪ S10;S01)∗; ?pre(e1)

.

π∗ | S22∗; ?pre(e2)

.

π∗ | (6)

.

π∗ | (4)

By using a matrix calculus similar to that in Chapter 3 of [14] we calculate all
Xij in parallel and thus avoid repeating the process for each destination node. The
following section presents the formal definition of the matrix calculus; here we just
illustrate the use of the matrix calculus. The equations (1)–(3) used above can be
represented in the following matrix:

8For equation (2), observe how a π∗-path from e1 to e0 might start with S10 and then continue
with X00 (an instance of π∗ from e0 to e0), but it might also start with S11 and then continue with
X10. In equation (1), a π∗-path from e0 to e0 is to do nothing, but then the transformation should
check ?pre(e0), i.e. whether e0 is executable at the target state.

9We illustrate first how equation (2) is solved into (5):

X10 = (S10; (?pre(e0) ∪ (S01;X10))) ∪ (S11;X10) (substitute X00 using (1))
= (S10; ?pre(e0)) ∪ (S10;S01;X10) ∪ (S11;X10) (distributivity)
= (S10; ?pre(e0)) ∪ (((S10;S01) ∪ S11);X10) (associativity)
= ((S10;S01) ∪ S11)∗;S10; ?pre(e0) (Arden’s Theorem)

Next, we use this to substitute X10 in (1) to obtain (4). Finally, we substitute X10 in (3) and apply
Arden’s Theorem to obtain (6).

82

Tuning the Program Transformers from LCC to PDL

e0 e1 e2 e0 e1 e2

e0 ?⊥ S01 ?⊥ ?pre(e0) ?⊥ ?⊥
e1 S10 S11 ?⊥ ?⊥ ?pre(e1) ?⊥
e2 ?⊥ S21 S22 ?⊥ ?⊥ ?pre(e2)

The left part contains the π-paths from one node (row) to another one (column). It is
an accessibility matrix for the π-graph above. Call µU(π)[i, j] the cell corresponding
to row ei and column ej in this left part and AU[i, j] the cell with the same position
at the right part. Observe that AU[i, j] =?pre(ei) if i = j and ?⊥ otherwise. We
may check that the equations for Xij that we created above looking at the π-graph
can be created now by:

Xij = (µU(π)[i, 0];X0j) ∪ (µU(π)[i, 1];X1j) ∪ (µU(π)[i, 2];X2j) ∪AU[i, j] (7)

For example, the equations for X10 and X00 (equivalent to (2) and (1), resp.) are

X10 = (S10;X00) ∪ (S11;X10) ∪ (?⊥;X20) ∪ ?⊥ (8)
X00 = (?⊥;X00) ∪ (S01;X10) ∪ (?⊥;X20) ∪ ?pre(e0) (9)

The greatest advantage of working with matrices is that we can perform several
operations in parallel by working in a row. Applying Arden’s Theorem to the e1 row
of the previous matrix gives:

e0 e1 e2 e0 e1 e2

e1 (S11)∗;S10 ?⊥ (S11)∗; ?⊥ (S11)∗; ?⊥ (S11)∗; ?pre(e1) (S11)∗; ?⊥

We replaced the left cell [e1, e1] with ?⊥ and concatenated its previous value
(S11)∗ with the others cells in the row. After simplifying into ?⊥ cells we get:

e0 e1 e2 e0 e1 e2

e1 (S11)∗;S10 ?⊥ ?⊥ ?⊥ (S11)∗; ?pre(e1) ?⊥

To check that we have applied Arden’s Theorem, look at X10 (using (7) in the
last matrix): X10 = (S11)∗;S10;X00. It is the result of applying Arden’s Theorem
to (8) (or (2)). Substitution can also be done in parallel:

e0 e1 e2 e0 e1 e2

e2
(S21; (S11)∗;S10)

∪ ?⊥ ?⊥ (S21; ?⊥)
∪S22

(S21; ?⊥)
∪ ?⊥

(S21; (S11)∗; ?pre(e1))
∪ ?⊥

(S21; ?⊥)
∪ ?pre(e2)

The above row for e2 was obtained from the previous row by applying the follow-
ing substitution into the original matrix: first, the left position B = [e2, e1] (S21 in
this case) is replaced with ?⊥; second, every other (left/right) position D = [e2, ei]
contains now a program with the form (B;C) ∪D, where C is the program in the

83

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

(resp. left/right) [e1, ei] position in the previous row for e1. After simplifying into
?⊥ cells (where appropriate) we obtain:

e0 e1 e2 e0 e1 e2

e2 (S21; (S11)∗;S10) ?⊥ S22 ?⊥ (S21; (S11)∗; ?pre(e1)) ?pre(e2)

To illustrate that we have done a substitution, consider the value of X21 in the
matrix before the substitution (just as in the initial matrix):

X21 = (S21;X11) ∪ (S22;X21) (10)

And now consider the value of X11 after the application of Arden’s Theorem:

X11 = ((S11)∗;S10;X01) ∪ ((S11)∗; ?pre(e1)) (11)

Using (11) to substitute X11 in (10) we get:

X21 =
(
S21;

(
((S11)∗;S10;X01) ∪ ((S11)∗; ?pre(e1))

))
∪ (S22;X21) (12)

that can be rewritten, using the distributive and associative properties, into:

X21 = (S21; (S11)∗;S10;X01) ∪ (S22;X21) ∪ (S21; (S11)∗; ?pre(e1)) (13)

which is the equation obtained for X21 in the previous matrix, after the substitution.
In the following section we introduce the formal definitions of our matrix calculus

to transform LCC programs.

4 A matrix calculus for program transformation
Definition 7 (Program transformation matrix). Let U = (E,R, pre, sub) be an action
model with E = {e0, . . . , en−1}. The function µU : Π →Mn×n, with Π the set of LCC
programs and Mn×n the class of n-square matrices, takes an LCC program π and
returns a n-square matrix µU(π) in which each cell µU(π)[i, j] is an LCC program
representing the transformation of π from ei to ej in the sense of the program
transformers TU

ij (π) of [6]. The recursive definition of µU(π) is as follows.

• Agents:

µU(a)[i, j] :=

?pre(ei); a if eiRaej
?⊥ otherwise

(14)

84

Tuning the Program Transformers from LCC to PDL

• Test:

µU(?φ)[i, j] :=

?(pre(ei) ∧ [U, ei]φ) if i = j

?⊥ otherwise
(15)

• Non-deterministic choice:

µU(π1 ∪ π2)[i, j] := ⊕
{
µU(π1)[i, j], µU(π2)[i, j]

}
(16)

where ⊕Γ is the non-deterministic choice of the programs in Γ set after re-
moving occurrences of ?⊥, that is,

⊕Γ :=

∪ (Γ \ {?⊥}) if ∅ ̸= Γ ̸= {?⊥}
?⊥ otherwise

(17)

being ∪ the generalised non-deterministic choice of a non-empty set of pro-
grams.

• Sequential composition:

µU(π1;π2)[i, j] := ⊕
{
µU(π1)[i, k]⊙ µU(π2)[k, j] | 0 ≤ k ≤ n− 1

}
(18)

where σ⊙ρ is the sequential composition of σ and ρ after removing superfluous
occurrences of ?⊥ and ?⊤, that is,

σ ⊙ ρ :=

σ; ρ if σ ̸= ?⊥ ̸= ρ and σ ̸= ?⊤ ̸= ρ

σ if σ ̸= ?⊤ = ρ

ρ if σ = ?⊤
?⊥ otherwise

(19)

• Kleene closure:
µU(π∗) := SU

0
(
µU(π) | AU

)
(20)

where µU(π) | AU is the n × 2n matrix obtained by augmenting µU(π) with
AU, an n× n matrix defined as

AU[i, j] :=

?pre(ei) if i = j

?⊥ otherwise
(21)

85

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

The function SU
k (with 0 ≤ k ≤ n), defined as

SU
k (M | A) :=

A if k = n

SU
k+1(Subsk(Ardk(M | A))) otherwise

(22)

receives an argumentM | A and performs an iterative process applying Arden’s
Theorem to row k (via function Ardk : Mn×2n → Mn×2n) and substituting
rows different from k (via function Subsk : Mn×2n →Mn×2n) until a k = n,
then returning the right part of the augmented matrix. The two auxiliary
functions, Ardk and Subsk, are given by

Ardk(N)[i, j] :=

N [i, j] if i ̸= k

?⊥ if i = k = j

N [i, j] if i = k ̸= j and N [k, k] = ?⊥
N [k, k]∗ ⊙N [i, j] otherwise

(23)

Subsk(N)[i, j] :=

N [i, j] if i = k

?⊥ if i ̸= k = j

⊕{N [i, k]⊙N [k, j], N [i, j]} otherwise

(24)

The operators ‘⊕’ and ‘⊙’ used in the previous definition are versions of non-
deterministic choice and sequential composition that remove unnecessary occur-
rences of ?⊥ and ?⊤; thus returning programs that are (potentially) syntactically
shorter but nevertheless semantically equivalent to their PDL counterparts ‘∪’ and
‘;’, as the following propositions show.

Proposition 1. Let M be an epistemic model and Γ a set of LCC programs. Then,

[⊕Γ]M = [
∪

Γ]M

Proof. Take any epistemic model M . Equation (17) states that ⊕Γ is a non-
deterministic choice of the LCC programs in Γ that returns ∪(Γ\{?⊥}) when Γ is dif-
ferent from both ∅ and {?⊥}, and ?⊥ otherwise. In the first case, [⊕Γ]M = [

∪Γ]M

because [
∪Γ]M = [

∪(Γ \ {?⊥})]M ; in the second, [⊕Γ]M = [
∪Γ]M because

[
∪

∅]M = [
∪{?⊥}]M = [?⊥]M = ∅.

Proposition 2. Let M be an epistemic model and σ, ρ two LCC programs. Then,

[σ; ρ]M = [σ ⊙ ρ]M

86

Tuning the Program Transformers from LCC to PDL

Proof. Take any epistemic model M . Equation (19) states that σ ⊙ ρ differs from
σ; ρ only when either σ or else ρ is ?⊥ or ?⊤. But, in such cases:

• [σ; ?⊥]M = [?⊥;σ]M = [?⊥]M ; hence, [σ; ρ]M = [σ ⊙ ρ]M .

• [σ; ?⊤]M = [?⊤;σ]M = [σ]M ; hence, [σ; ρ]M = [σ ⊙ ρ]M .

The rest of this section is devoted to prove that the function µU returns an
LCC program that is semantically equivalent to the one returned by the program
transformer TU of [6].

Lemma 1. Let U = (E,R, pre, sub) be an action model with ei, ej ∈ E; let π be an
LCC program. For any epistemic model M ,

[TU
ij (π)]M = [µU(π)[i, j]]M

Proof. By induction on the complexity of π. Let M be an epistemic model; then

(Base Cases: a and ?φ) Trivial, as the definitions of TU
ij and µU(π)[i, j] are identical

for both a and ?φ.

(Ind. Case π1 ∪ π2) Suppose (Ind. Hyp.) the claim holds for π1 and π2. Then

[TU
ij (π1 ∪ π2)]M = [TU

ij (π1) ∪ TU
ij (π2)]M (Def. 6)

= [TU
ij (π1)]M ∪ [TU

ij (π2)]M (Def. of [·]M)

= [µU(π1)[i, j]]M ∪ [µU(π2)[i, j]]M (Ind. Hyp.)

= [µU(π1)[i, j] ∪ µU(π2)[i, j]]M (Def. of [·]M)

= [⊕{µU(π1)[i, j], µU(π2)[i, j]}]M (Prop. 1)

= [µU(π1 ∪ π2)[i, j]]M (Def. of µU(π1 ∪ π2) in (16))

(Ind. Case π1;π2) Suppose (Ind. Hyp.) the claim holds for π1 and π2. Then

87

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

[TU
ij (π1;π2)]M = [

∪n−1
k=0(TU

ik(π1);TU
kj(π2))]M (Def. 6)

= ∪n−1
k=0

(
[TU
ik(π1)]M ◦ [TU

kj(π2)]M
)

(Def. of [·]M)

= ∪n−1
k=0

(
[µU(π1)[i, k]]M ◦ [µU(π2)[k, j]]M

)
(Ind. Hyp.)

= [
∪n−1
k=0

(
µU(π1)[i, k];µU(π2)[k, j]

)
]M (Def. of [·]M)

= [
∪n−1
k=0

(
µU(π1)[i, k]⊙ µU(π2)[k, j]

)
]M (Prop. 2)

= [⊕{µU(π1)[i, k]⊙ µU(π2)[k, j] | 0 ≤ k ≤ n− 1}]M (Prop. 1)

= [µU(π1;π2)[i, j]]M (Def. of µU(π1;π2) in (18))

(Ind. Case π∗) Suppose (Ind. Hyp.) the claim holds for π and observe how [π∗]M =
[?⊤ ∪ (π;π∗)]M . Now,

[TU
ij (π∗)]

M = [TU
ij (?⊤ ∪ π;π∗)]M

= [TU
ij (?⊤)]M ∪ [

∪n−1
k=0(TU

ik(π);TU
kj(π∗))]

M (Def. 6)

= [TU
ij (?⊤)]M ∪ ∪n−1

k=0

(
[TU
ik(π)]M ◦ [TU

kj(π∗)]
M
)

(Def. of [·]M)

= [TU
ij (?⊤)]M ∪ ∪n−1

k=0

(
[µU(π)[i, k]]M ◦ [TU

kj(π∗)]
M
)

(Ind. Hyp.)

The last equality produces n2 relational equations. By abbreviating [TU
ij (π∗)]

M as
Xij for every 0 ≤ i, j ≤ n− 1, we get

Xij = [TU
ij (?⊤)]M ∪

n−1∪

k=0

(
[µU(π)[i, k]]M ◦ Xkj

)
(25)

Thus, it is enough to prove that [µU(π∗)[i, j]]M is a solution for Xij . This is shown
in the following three propositions about the functions building µU(π∗).

Proposition 3. Take Ω = (µU(π) | AU) (see (20)). Then,

Xij = [Ω[i, j + n]]M ∪
n−1∪

k=0

(
[Ω[i, k]]M ◦ Xkj

)
(26)

Proof. It will be shown that the right-hand side (r.h.s.) of (25) and (26) coincide.
Their respective rightmost parts are equivalent since, for 0 ≤ k ≤ n − 1, Ω[i, k] =
µU(π)[i, k] (recall that Ω is built by adding additional columns at the right of the
n first columns of µU(π), and the matrix’s indexes start from 0). For the leftmost
parts,

88

Tuning the Program Transformers from LCC to PDL

[TU
ij (?⊤)]M =

{
[?(pre(ei) ∧ [U, ei]⊤)]M if i = j

[?⊥]M otherwise
(Def. 6)

=
{

[?pre(ei)]M if i = j

[?⊥]M otherwise
(as [U, ei]⊤ is trivially true)

= [AU[i, j]]M = [Ω[i, j + n]]M ((21) and Def. of Ω)

Proposition 4. For 0 ≤ k ≤ n− 1, if N is a matrix of size n× 2n with all cells in
columns 0, . . . , k−1 equal to ?⊥, then Subsk(Ardk(N)) contains all cells in columns
0, . . . , k equal to ?⊥.

Proof. Start with Ardk(N). Observe in (23) that the only modified cells are in the
kth row. Cell Ardk(N)[k, k] in the kth column is converted into ?⊥. With respect
to cells in columns from 0 to k − 1, if they were ?⊥, they continue being ?⊥: those
cells N [i, j] do not change, if N [k, k] =?⊥, or otherwise are converted by (23) into
N [k, k]∗ ⊙N [i, j] and, by (19), if N [i, j] =?⊥, then N [k, k]∗ ⊙N [i, j] =?⊥.

Now, call N ′ the output of Ardk(N) and observe Subsk(N ′)’s definition (24):
the only cells that change are in rows different to k. With respect to any such row
i, the position in the kth column is made ?⊥. For cells in previous columns, j < k,
the last case in the definition returns ⊕{N ′[i, k]⊙N ′[k, j], N ′[i, j]}. But as N ′ is the
result of Ardk(N), N ′[k, j] is ?⊥ (because, as argued above, Ardk(N) works over the
kth row and keeps the ?⊥ in columns before k). Also, N ′[i, j] =?⊥, as columns j < k
are filled with ?⊥. So ⊕{N ′[i, k] ⊙ N ′[k, j], N ′[i, j]} becomes ⊕{N ′[i, k]⊙?⊥, ?⊥}
and, by (17) and (19), it is ?⊥.

Proposition 5. Given an n × 2n matrix N of LCC programs, the equations built
using (26), with Ω = Subsk(Ardk(N)), 0 ≤ k ≤ n − 1, are correct transformations
of the equations built in the same way with Ω = N .

Proof. As argued in the proof of Proposition 4, Ardk(N) works only on the kth

row. If N [k, k] =?⊥, nothing is done, so according to (26) the equations for Xkj

(0 ≤ j ≤ n−1) do not change. Otherwise, the kth row of N changes: all cells N [k, j]
with j ̸= k become N [k, k]∗ ⊙N [k, j], except N [k, k] which becomes ?⊥. Then, for
every 0 ≤ j ≤ n− 1, the equation for Xkj becomes (using index t instead of k and
removing [?⊥]M ◦ Xkj from the union):

Xkj = [N [k, k]∗ ⊙N [k, j + n]]M ∪
∪

0≤t≤n−1
t̸=k

(
[N [k, k]∗ ⊙N [k, t]]M ◦ Xtj

)

89

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

By Proposition 2 and [·]M ’s definition, this can be rewritten as

Xkj = ([N [k, k]]M)∗ ◦ [N [k, j + n]]M∪
∪

0≤t≤n−1
t̸=k

(
([N [k, k]]M)∗ ◦ [N [k, t]]M ◦ Xtj

) (27)

which is an application of Arden’s Theorem [20] to the corresponding equation for
the original row in N :

Xkj = [N [k, j + n]]M ∪
∪

0≤t≤n−1

(
[N [k, t]]M ◦ Xtj

)
(28)

Arden’s Theorem (which works on regular algebras, such as LCC programs) gives
X = A∗ ◦B as a solution for X = (A ◦X) ∪B. In (28), X is Xkj , A is [N [k, k]]M ,
and B is the union of all terms in the r.h.s. of (28) except [N [k, k]]M ◦ Xkj . Besides
Arden’s Theorem, from (28) to (27) we use ◦’s distribution over ∪, A ◦ (B ∪ C) =
(A ◦B) ∪ (A ◦ C).

Now denote by N ′ the output of Ardk(N). We move to Subsk(N ′) to show that
the equations obtained from it with (26) are correct transformations of the equations
built from N ′. The only modified cells in Subsk(N ′) are in rows different to k, so
it only affects equations for Xij with i ̸= k. According to (26), if Ω = N ′, these
equations are (using t instead of k):

Xij = [N ′[i, j + n]]M ∪
n−1∪

t=0

(
[N ′[i, t]]M ◦ Xtj

)
(29)

The same equation for Ω = Subsk(N ′) becomes the following (we remove from the
union the term [?⊥]M ◦ Xkj , as it is equivalent to ∅):

Xij = [⊕{N ′[i, k]⊙N ′[k, j + n], N ′[i, j + n]}]M∪∪

0≤t≤n−1
t̸=k

(
[⊕{N ′[i, k]⊙N ′[k, t], N ′[i, t]}]M ◦ Xtj

)
(30)

By using Propositions 1 and 2 and the properties of [·]M , equation (30) becomes

Xij = ([N ′[i, k]]M ◦ [N ′[k, j + n]]M) ∪ [N ′[i, j + n]]M∪∪

0≤t≤n−1
t̸=k

(
(([N ′[i, k]]M ◦ [N ′[k, t]]M) ∪ [N ′[i, t]]M) ◦ Xtj

)
(31)

90

Tuning the Program Transformers from LCC to PDL

But note that in the equation for Xkj , which is the same at N ′ and Subsk(N ′), the
kth row of N ′ is not changed by Subsk(N ′):

Xkj = [N ′[k, j + n]]M ∪
∪

0≤t≤n−1
t̸=k

(
[N ′[k, t]]M ◦ Xtj

)
(32)

We have eliminated the term [N ′[k, k]]M ◦ Xkj in (32) because N ′ = Ardk(N) and
by (23), N ′[k, k] =?⊥, which produces [N ′[k, k]]M ◦ Xkj = ∅.

Observe that (31) can be obtained from (29) by replacing Xkj by the r.h.s.
of (32) and applying the distribution of ◦ over ∪. So the modified equation (30) is
equivalent to correct transformations of the original one (29).

The proof of the case π∗ in Lemma 1 can be finished now. Take the set of
relational equations given by (25). By (20), µU(π∗) operates by iterating calls to
SU
k (with k from 0 to n) with Ω = (µU(π) | AU) as the initial argument. Let M−1

be Ω and Mk the output of SU
k (Mk−1). By Proposition 3, (26) gives equations

equivalent to (25). By Proposition 5, the equations are correct for each successive
Mk (0 ≤ k ≤ n− 1). As the calls to SU

k are done iteratively with k from 0 to n− 1,
Proposition 4 guarantees that, in Mn−1, all cells in columns for 0 to n− 1 are equal
to ?⊥. Thus, equations (26) for Mn−1 are:

Xij = [Mn−1[i, j + n]]M (33)

The rightmost union in (26) has disappeared (M [i, k] =?⊥ for 0 ≤ k ≤ n − 1, and
[?⊥]M = ∅). Now, by SU

k ’s definition in (22), Mn−1[i, j+n] = Mn[i, j] = µU(π∗)[i, j],
so Xij = [µU(π∗)[i, j]]M . Then, since Xij represents [TU

ij (π∗)]
M ,

[TU
ij (π∗)]M = [µU(π∗)[i, j]]M

which completes the proof.

We can now define new translation functions t′, r′ as follows. Note that t′ and r′
are defined as the translation functions t, r for formulas φ and programs π proposed
in [6], with the only exception of formulas of the form [U, ei][π]φ.10 Note also the
inside-out approach in the case t([U, e][U′, f]φ) = t([U, e]t([U′, f]φ)), which requires
rule REU (with χ = [U′, f]φ and ψ = t(χ)) in order to prove that the translation is
indeed provably equivalent (i.e. ⊢ ϕ↔ t(ϕ)).

10Two minor typos for the cases [U, e]p and [U, ei][π]φ are also corrected here w.r.t. [6] (the first
was given by t(pre(e)) → sub(e, p), and the second by

∧n−1
j=0 [TU

ij(r(π))]t([U, ej]φ)).

91

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

t′(⊤) = ⊤ r′(a) = a

t′(p) = p r′(B) = B

t′(¬φ) = ¬t′(φ) r′(?φ) =?t′(φ)
t′(φ1 ∧ φ2) = t′(φ1) ∧ t′(φ2) r′(π1;π2) = r′(π1); r′(π2)
t′([π]φ) = [r′(π)]t′(φ) r′(π1 ∪ π2) = r′(π1) ∪ r′(π2)
t′([U, e]⊤) = ⊤ r′(π∗) = (r′(π))∗
t′([U, e]p) = t′(pre(e)) → t′(sub(e, p))
t′([U, e]¬φ) = t′(pre(e)) → ¬t′([U, e]φ)
t′([U, e](φ1 ∧ φ2)) = t′([U, e]φ) ∧ t′([U, e]φ2)
t′([U, ei][π]φ) =

∧
0≤j≤n−1

µU(π)[i,j] ̸=?⊥
[r′(µU(π)[i, j])]t′([U, ej]φ)

t′([U, e][U′, e′]φ) = t′([U, e]t′([U′, e′]φ))

Corollary 1. The translation functions t′, r′ reduce the language of LCC to that of
PDL. This translation is correct.

Proof. The effective reduction from LCC to PDL is immediate by inspection. Its
correctness follows from that in [6], with Lemma 1 for the case [U, ei][π]φ.

Definition 8. We define a new axiom system for LCC by replacing the reduction
axiom for PDL programs with the following

[U, ei][π]φ ↔
∧

0≤j≤n−1
µU(π)[i,j] ̸=?⊥

[µU(π)[i, j]][U, ej]φ (prog)

Corollary 2. The axiom system for LCC from Def. 8 is sound and complete.

Proof. The only new axiom, that for PDL-programs, is sound by Lemma 1. For
completeness, the proof system for PDL is complete, and every LCC formula is
provably equivalent to a PDL formula using Corollary 1.

5 Complexity of the new transformers
The original program transformers in [6] require exponential time due to the use of
Kleene’s method [11]. Moreover, the size of the transformed formulas of type π∗ is
also exponential because of the definition of KU

ijn (Def. 6).
In order to study the complexity of our program transformers, we first imple-

mented in Prolog both the original program transformers and our matrix calculus.
Figure 5 shows the result for our transformers for two kinds of models, complete
and chain models, from 1 to 20 states. The graph’s vertical axis, which is shown in

92

Tuning the Program Transformers from LCC to PDL

logarithmic scale, presents the number of PDL operators in the transformed program
µU(π∗)[n− 1, 0] for n the number of states in the model.

Figure 5: Number of PDL connectives in µU(π∗) for different action models

A model is complete when it is fully connected, i.e., when each µU(π)[i, j] = s(i, j)
is an atomic expression (which is not further analysed by the implementations).
All values s(i, j) in µU(π) are assumed to be different, avoiding simplifications of
repeated patterns. The number of operators in µU(π∗)[n − 1, 0] is in the order of
22n. In the worst case our transformers produce an exponential output, which implies
that the required time is also exponential. In a chain model, each state is connected
with itself, the previous and next one. Thus, µU(π)[i, j] is s(i, j) when i = j or
|i − j| = 1, and ?⊥ otherwise. Now the number of operators in µU(π∗)[n − 1, 0]
is in the order of 2n2, so in this case the length of the output is polynomial. We
chose models with chain-like structure because it makes it easier to generate models
of increasing size with limited connectivity. Similar results can be obtained for
other kinds of models with similar average connectivity, as the key is the number of
instances of ?⊥ spread along the matrices.

The results for the original program transformers are not shown in Figure 5 as
they are, for both the complete and chain models, as our worst case. (The reason is
that they do not benefit from removing superfluous ?⊥.)

An advantage of our transformers is that they do not require exponential space
in cases other than the worst one, in contrast with the original transformers which
always perform in the same (exponential) way. An additional advantage can be
found in the reusability of the information produced during program transforma-
tions. As we argued, working with matrices allows to perform several operations in
parallel. Indeed, matrix µU(π) contains the transformation of program π within all
states in the action model U. As building the matrix with the transformations of a
given program involves building the matrices for its subprograms, the information

93

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

of each generated matrix is properly stored, and then it can be reused in the same or
subsequent transformations within the same action model. This is a practical way
to reduce the computation time required for program transformation.

6 Summary and Future Work
In this work, we presented an alternative definition of the program transformers
used to obtain reduction axioms in LCC. The proposal uses a matrix treatment of
Brzozowski’s equational method in order to obtain a regular expression representing
the language accepted by a finite automaton. While Brzozowski’s method and that
used in the original LCC paper [6] are equivalent, the first is computationally more
efficient in cases different to the worst one; moreover, the matrix treatment presented
here is more synthetic, simple and elegant, thus allowing a simpler implementation.

Towards future work, some definitions used by program transformers (partic-
ularly the ⊙ operation) can be modified to obtain even simpler expressions. For
example, σ ⊙ ρ might be defined as σ if σ ̸= ?⊤ = ρ and as ρ if σ = ?⊤. Moreover,
the algorithm implementing Ardk and Subsk functions can be improved by disre-
garding the N [i, j] elements with j < k or j > n+ k (being N [i, j] a n× 2n matrix),
since those are necessarily equal to ?⊥. These changes, despite not lowering the
translation’s complexity order, would nevertheless make it more efficient.

Acknowledgements
We would like to thank two anonymous reviewers for their helpful comments. This
work is supported by the Spanish Ministry of Economy and Competitiveness, under
Research Project FFI2014-56219-P. The research of P. Pardo was supported by a
Sofja Kovalevkaja award of the Alexander von Humboldt-Foundation, funded by the
German Ministry for Education and Research. This paper is an extended version of
a previous conference paper [21] at JELIA 2014.

References
[1] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic, Vol. 337 of

Synthese Library Series, Springer, 2007.
[2] J. van Benthem, Logical Dynamics of Information and Interaction, Cambridge Univer-

sity Press, 2011.
[3] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about knowledge, The MIT

Press, Cambridge, Mass., 1995.

94

Tuning the Program Transformers from LCC to PDL

[4] R. Parikh, R. Ramanujam, A knowledge based semantics of messages, Journal of Logic,
Language and Information 12 (4) (2003) 453–467.

[5] J. van Benthem, J. Gerbrandy, T. Hoshi, E. Pacuit, Merging frameworks for in-
teraction, Journal of Philosophical Logic 38 (5) (2009) 491–526. doi:10.1007/
s10992-008-9099-x.

[6] J. van Benthem, J. van Eijck, B. Kooi, Logics of communication and change, Informa-
tion and Computation 204 (11) (2006) 1620–1662. doi:10.1016/j.ic.2006.04.006.

[7] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, Cambridge, MA, 2000.
[8] A. Baltag, L. S. Moss, S. Solecki, The logic of public announcements and common

knowledge and private suspicions, in: I. Gilboa (Ed.), TARK, Morgan Kaufmann, San
Francisco, CA, USA, 1998, pp. 43–56.

[9] A. Baltag, L. S. Moss, Logics for epistemic programs, Synthese 139 (2) (2004) 165–224.
[10] J. van Benthem, B. Kooi, Reduction axioms for epistemic actions, in: R. Schmidt,

I. Pratt-Hartmann, M. Reynolds, H. Wansing (Eds.), Advances in Modal Logic (Num-
ber UMCS-04-09-01 in Technical Report Series), Department of Computer Science,
University of Manchester, 2004, pp. 197–211.

[11] S. Kleene, Representation of events in nerve nets and finite automata, in: C. E. Shan-
non, J. McCarthy (Eds.), Automata Studies, Princeton University Press, Princeton,
NJ, 1956, pp. 3–41.

[12] J. Sakarovitch, Automata and rational expressions, CoRR abs/1502.03573.
URL http://arxiv.org/abs/1502.03573

[13] J. A. Brzozowski, Derivatives of regular expressions, Journal of the ACM 11 (4) (1964)
481–494.

[14] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.
[15] Y. Wang, Q. Cao, On axiomatizations of public announcement logic, Synthese 190 (1)

(2013) 103–134. doi:10.1007/s11229-012-0233-5.
[16] H. van Ditmarsch, B. Kooi, Semantic results for ontic and epistemic change, in: G. Bo-

nanno, W. van der Hoek, M. Wooldridge (Eds.), Logic and the Foundations of Game
and Decision Theory (LOFT7), Vol. 3 of Texts in Logic and Games, Amsterdam Uni-
versity Press, Amsterdam, The Netherlands, 2008, pp. 87–117.

[17] H. Gruber, M. Holzer, Finite automata, digraph connectivity, and regular expression
size, in: L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir,
I. Walukiewicz (Eds.), Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II
- Track B: Logic, Semantics, and Theory of Programming & Track C: Security and
Cryptography Foundations, Vol. 5126 of Lecture Notes in Computer Science, Springer,
2008, pp. 39–50. doi:10.1007/978-3-540-70583-3_4.

[18] H. Gruber, M. Holzer, Provably shorter regular expressions from finite automata,
International Journal of Foundations of Computer Science 24 (8) (2013) 1255–1279.
doi:10.1142/S0129054113500330.

[19] D. Kozen, On kleene algebras and closed semirings, in: B. Rovan (Ed.), MFCS, Vol.

95

Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

452 of Lecture Notes in Computer Science, Springer, 1990, pp. 26–47.
[20] D. N. Arden, Delayed-logic and finite-state machines, in: SWCT (FOCS), IEEE Com-

puter Society, 1961, pp. 133–151.
[21] P. Pardo, E. Sarrión-Morillo, F. Soler-Toscano, F. R. Velázquez-Quesada, Efficient

program transformers for translating LCC to PDL, in: E. Fermé, J. Leite (Eds.), Logics
in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings, Vol. 8761 of LNCS, Springer, 2014, pp.
253–266.

Received 22 January 201696

Lighthouse Principle for Diffusion in Social
Networks

Sanaz Azimipour
University of Tehran, Tehran, Iran.

Sanaz.a234@gmail.com

Pavel Naumov
Vassar College, Poughkeepsie, New York, USA.

pnaumov@vassar.edu

Abstract

The article investigates an influence relation between two sets of agents in a
social network. It proposes a logical system that captures propositional proper-
ties of this relation valid in all threshold models of social networks with the same
structure. The logical system consists of Armstrong axioms for functional de-
pendence and an additional Lighthouse axiom. The main results are soundness,
completeness, and decidability theorems for this logical system.

1 Introduction
1.1 Social Networks

In this article we study influence in social networks. When a new product is intro-
duced to the market, it is usually first adopted by a few users that are called “early
adopters”. These users might adopt the product because they are fans of the com-
pany introducing the product, as a result of the marketing campaign conducted by
the company, or because they have a genuine need for this type of product. Once the
early adopters start using the product, they put peer pressure on their friends and
acquaintances in the social network, who might eventually follow them in adopting
the product. The friends of the early adopters might eventually influence their own
friends and so on, until the product is potentially adopted by a significant part of
the network.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Azimipour and Naumov

A similar phenomenon could be observed with the diffusion of certain behaviours,
like smoking, the adoption of new words and technical innovations, and the propa-
gation of beliefs.

There are two most widely used models that formally capture diffusion process
in social networks. One of them is the stochastic model [20, 12]. This model distin-
guishes active and inactive vertices of the network. Once a vertex v becomes active,
it gets a single chance to activate each neighbour u with a given probability pv,u.
This process continues until no more activations can happen.

In this article we focus on the second model, called threshold model [26, 14, 11, 1],
originally introduced by Granovetter [8] and Schelling [21]. In this model each agent
has a non-negative threshold value representing the agent’s resistance to adoption of
a given product. If the pressure from those peers of the agent who already adopted
the product reaches the threshold value, then the agent also adopts the product. We
assume that each of the other agents has a non-negative, but possibly zero, influence
on the given agent. The peer pressure on an agent to adopt a product is the sum
of influences on the agent of all agents who have already adopted the product. It is
assumed in this model that, once the product is adopted, the agent keeps using the
product and putting pressure on her peers indefinitely.

p q r2

1 4

3

5

1 27

Figure 1: Social Network N1

Consider, for example, social network N1 depicted in Figure 1. This network
consists of three agents: p, q, and r that have threshold values 7, 1, and 2 respectively.
The threshold value of a node is shown on the diagram above the node representing
the agent. The influence of one agent on another is shown in this figure by the label
on the directed edge connecting the two agents. For instance, the influence of agent
r on agent p is 5. If an agent has zero influence on another agent, no edge is shown.
Thus, influence of agent p on agent r is zero.

Suppose that a marketing company gives agent p a free sample of the product
and the agent starts using it. Since agent p has influence 2 on agent q and threshold
value of agent q is only 1, she will eventually also adopt the product. In turn, the
adoption of the product by agent q will eventually lead to an adoption by agent r
because threshold value of agent r is only 2 and the influence of agent q on agent r
is 3. Thus, the adoption by agent p eventually leads to an adoption of this product

98

Lighthouse Principle for Diffusion in Social Networks

by agent r. We denote this fact by N1 � p� r.
In this article we study relation A � B between group of agents A and B that

could be informally described1 as “if all agents in set A use the product, then all
agents in set B will eventually adopt the product". For example, for the above
discussed social network N1, we have N1 � {p} � {q, r}, which we usually write as
just N1 � p� q, r.

At the same time, if a free sample of the product is given to agent r, then agent
q will eventually adopt it because her threshold value is 1 and the influence of agent
r on her is 4. Once agent q adopts the product, however, the product diffusion
stops and the product will never be adopted by agent p because her threshold value
is 7 and the total peer pressure from agents q and r on p will be only 1 + 5 = 6.
Therefore, for example, N1 � ¬(r � p).

The properties of relation A � B that we have discussed so far were specific to
social network N1. Let us now consider social network N2 depicted in Figure 2. If

p q r2

1 4

3

5

1 05.5

Figure 2: Social Network N2

a free sample of the product is given in network N2 to agent r and she starts using
it, then, like it was for the network N1, agent q will eventually adopt the product
because her threshold value is only 1 and influence of agent r on agent q is 4. Unlike
network N1, however, the product diffusion does not stop at this point because now
the total peer pressure of agents q and r on agent p is still 1 + 5 = 6, but the
threshold value of agent p in this network is only 5.5. Thus, agent p eventually will
adopt the product. In other words, N2 � r � p.

An interesting property of network N2 is that agent r has threshold value 0.
Thus, she will eventually adopt the product even if no free product samples are
given to any of the agents: N2 � ∅ � r.

1.2 Sociograms
So far, we have discussed properties of specific social networks. In this article we
study properties common to a class of networks. The classes of networks can be
defined on different levels of abstraction. Perhaps the most natural approach is to

1We formally specify this relation in Definition 7.

99

Azimipour and Naumov

study common properties of social networks that have the same topological struc-
ture. In other words, to study properties that do not depend on a specific choice of
influence and threshold values, but only on the (unlabeled) graph of the network.
Although such an approach appears to be the most natural, it unexpectedly re-
sults in a very complicated principles that seems to capture more properties of real
numbers than properties of the influence relation.

We adopt a different level of abstraction in which we assume that the graph and
the distribution of influences is fixed. We study all properties that are universal no
matter what the threshold values are. This level of abstraction results in a simple
set of properties that can be captured by the complete logic system presented in
this paper. In the conclusion we discuss examples of properties of influence that
are true for all graphs without fixing distribution of influences and distribution of
the thresholds. To distinguish graphs labeled with influences and thresholds from
those labeled with influences only, we call the former social networks and the latter
sociograms. To some degree, the threshold values characterize the relation that exists
between the product and the individual agents and the sociogram describes the
influence relation between the agents. The term sociogram has been first introduced
by psychosociologist Jacob Levy Moreno [16]. The sociograms, as defined in this
article, are directed labeled graphs. The original Moreno’s sociograms were neither
directed nor labeled.

For example, the above discussed social networks N1 and N2 are different only
by the threshold values that the agents have. Thus, we say that social networks N1
and N2 have the same sociogram. This common sociogram S1 for networks N1 and
N2 is depicted in Figure 3.

p q r2

1 4

3

5

Figure 3: Sociogram S1

We write S � ϕ if property ϕ is true for all social networks with sociogram S.
For example, as we show in Proposition 1,

S1 � p� r → q � r. (1)

In other words, under any assignment of threshold values on sociogram S1, if giving
a free sample of the product to agent p will eventually lead to agent r adopting the

100

Lighthouse Principle for Diffusion in Social Networks

product, then giving a free sample of the product to agent q would have the same
effect.

1.3 Lighthouse Axiom

The main result of this article is a complete axiomatization of the propositional
properties of relation A�B for any given sociogram. Such an axiomatization consists
of three axioms common to all sociograms and a sociogram-specific fourth axiom.
The first three axioms are

1. Reflexivity: A�B if B ⊆ A,

2. Transitivity: A�B → (B � C → A� C),

3. Augmentation: A�B → (A,C �B,C),

where A,B denotes the union of sets A and B. These axioms were originally pro-
posed by Armstrong [2] to describe functional dependence relation in database the-
ory. They became known in database literature as Armstrong’s axioms [7, p. 81].
Väänänen proposed a first order version of these principles [24] and their generaliza-
tion for reasoning about approximate dependency [25]. Beeri, Fagin, and Howard [4]
suggested a variation of Armstrong’s axioms that describes properties of multi-valued
dependence. Naumov and Nicholls [17] proposed another variation of these axioms
that describes rationally functional dependence. The influence semantics of these
axioms that we introduce in this article does not appear to be connected to the
functional dependency semantics.

The sociogram-dependent fourth axiom captures the fact that in every group of
agents in which at least one agent eventually adopts the product there is always
an agent (or a nonempty subgroup of agents) who adopts the product first. In
marketing such agents are sometimes called lighthouse customers. In any given
group of agents, the distinctive property of lighthouse customers is that they adopt
the product without any peer pressure coming from other agents in this group.
The lighthouse customers adopt the product as a result of the peer pressure from
the outside of the group. Our fourth axiom postulates the existence of lighthouse
customers in any group of agents in which at least one agent eventually will adopt
the product. Thus, we call this postulate Lighthouse axiom.

One possible way to state Lighthouse axiom is to say that if all agents in network
N are partitioned into disjoint sets A and B, see Figure 4, and there is an agent
a ∈ A such that N � B � a, then there must exist a “lighthouse" agent ` ∈ A such
that the total peer pressure of all agents in set B on agent ` is no less than the

101

Azimipour and Naumov

BA

a

`

w1

w2

wk

!

...

Figure 4: Lighthouse Axiom

threshold value of agent `:

θ ≤ w1 + w2 + · · ·+ wk.

Unfortunately, when stated this way, Lighthouse axiom refers to threshold value θ
of agent `. Thus, in this form, it is a property of the social network, rather than the
corresponding sociogram.

It turns out, however, that there is a way to re-word the axiom so that it does
not refer to threshold values. Namely, let us assume that for every agent a ∈ A we
choose a set of agents Ca ⊆ A ∪ B such that peer pressure of set Ca on agent a is
no less than peer pressure of set B on agent a. The new form of Lighthouse axiom
states that, under the above condition, if N � B�a, then there exists a “lighthouse"
agent ` ∈ A such that N � C`�`. The main result of this article is the completeness
theorem for the logical system consisting of this form of Lighthouse axiom and the
three Armstrong axioms.

1.4 Related Literature

Several logical frameworks for reasoning about diffusion in social networks have
been studied before. Seligman, Liu, and Girard [22] proposed Facebook Logic for
capturing properties of epistemic social networks in modal language, but did not
give any axiomatization for this logic. They further developed this approach in
papers [23, 13] where they introduced dynamic friendship relations. Christoff and
Hansen [5] simplified Seligman, Liu, and Girard setting and gave a complete axiom-
atization of the logical system for this new setting. Christoff and Rendsvig proposed
Minimal Threshold Influence Logic [6] that uses modal language to capture dynamic
of diffusion in a threshold model and gave a complete axiomatization of this logic.
Baltag, Christoff, Rendsvig, and Smets [3] discussed logics for informed update and
prediction update. Informally, the languages of the described above systems feel

102

Lighthouse Principle for Diffusion in Social Networks

significantly richer than the more succinct language of our system. However, nei-
ther of these systems capture principles similar to our Lighthouse axiom. Naumov
and Tao [19, 18] used Armstrong’s axioms to describe influence in social networks.
They considered relation A �b B that stands for “given marketing budget b, group
of agents A can influence group of agents B". They gave modified versions of Arm-
strong axioms that capture properties of this relation for preventive and promotional
marketing. Since they do not assume a fixed sociogram of the network, their ap-
proach does not capture any properties similar to our Lighthouse principle.

Diffusion in social networks is a special case of information flow on graphs. Log-
ical systems for reasoning about various types of graph information flow has been
studied before. Lighthouse axiom has certain resemblance with Gateway axiom
for functional dependence on hypergraphs of secrets [15], Contiguity axiom [9] for
graphical games, and Shield Wall axiom for fault tolerance in belief formation net-
works [10].

1.5 Outline
This article is organized as following. In Section 2 we introduce formal syntax and
semantics of our logical system. Section 3 list the four axioms of the system. In Sec-
tion 4, we give several examples of formal proofs in our system. In Section 5 we show
some auxiliary results that are used later. Section 6 and Section 7 prove soundness
and completeness theorems respectively. Section 9 concludes with a discussion of
logical properties of unlabeled sociograms.

2 Syntax and Semantics
In this section we formally define a social network, a sociogram, and the influence
relation.

Definition 1. For any finite set A, let Φ(A) be the minimal set of formulas such
that

1. ⊥ ∈ Φ(A),

2. A�B ∈ Φ(A), for each subsets A,B ⊆ A,

3. ϕ→ ψ ∈ Φ(A) for each ϕ,ψ ∈ Φ(A).

We assume that disjunction ∨ is defined through implication → and false con-
stant ⊥ in the standard way.

103

Azimipour and Naumov

Definition 2. A sociogram is pair (A, w), where

1. A is an arbitrary finite set (of agents),

2. w is a function that maps A2 into non-negative real numbers. Value w(a, b)
represents influence of agent a on agent b.

Definition 3. A social network is triple (A, w, θ), where

1. (A, w) is a sociogram,

2. θ is a function that maps A into non-negative real numbers. Value θ(a) rep-
resents threshold value of agent a ∈ A.

We say that social network (A, w, θ) is based on sociogram (A, w). We now
proceed to define peer pressure on an agent by a group of agents in a given sociogram.

Definition 4. For any sociogram (A, w) and any subset of agents A ⊆ A, let ‖A‖b =∑
a∈Aw(a, b).

In the introduction we said that if, at some moment in time, an agent experiences
peer pressure higher than her threshold value, then at some point in the future she
will adopt the product. For the sake of simplicity, in our formal model we assume
that time is discrete and that if at moment k an agent experiences sufficient peer
pressure, then she adopts the product at moment k+ 1. Although this assumption,
generally speaking, affects the “time dynamics" of product diffusion, it does not
affect the final outcome of diffusion. Thus, this assumption, while simplifying the
formal setting, does not change the properties of influence relation A � B. Given
this assumption, if free samples of the product are given to all agents in set A at
moment 0, then by Ak we mean the set of all agents who will adopt the product by
moment k. The formal definition of Ak is below.

Definition 5. For any A ⊆ A and any k ∈ N, let subset Ak ⊆ A be defined
recursively as follows:

1. A0 = A,

2. Ak+1 = Ak ∪ {x ∈ A | ‖Ak‖x ≥ θ(x)}.

Corollary 1. (An)k = An+k.

If free samples of the product are given to all agents in set A, then by A∗ we mean
the set of all agents who will eventually adopt the product. The formal definition
of A∗ is below.

104

Lighthouse Principle for Diffusion in Social Networks

Definition 6.
A∗ =

⋃

k≥0
Ak.

The next definition specifies the formal semantics of our logical system. In
particular, item 2 in this definition specifies the formal meaning of the influence
relation.

Definition 7. For any social network N = (A, w, θ) and any ϕ ∈ Φ(A), let satisfi-
ability relation N � ϕ be defined as follows

1. N 2 ⊥,

2. N � A�B if B ⊆ A∗,

3. N � ψ → χ if N 2 ψ or N � χ.

3 Axioms

Our logical system for an arbitrary sociogram S = (A, w) consists of propositional
tautologies in language Φ(A) and the following additional axioms:

1. Reflexivity: A�B if B ⊆ A,

2. Transitivity: A�B → (B � C → A� C),

3. Augmentation: A�B → (A,C �B,C),

4. Lighthouse: if AtB is a partition of the set of all agents A and {Ca}a∈A is a
family of sets of agents such that ‖B‖a ≤ ‖Ca‖a for each a ∈ A, then

∨

a∈A
B � a→

∨

a∈A
Ca � a.

We write `S ϕ if formula ϕ can be derived in our system using Modus Ponens
inference rule. We sometimes write just ` ϕ if the value of subscript S is clear from
the context. We also write X `S ϕ if formula ϕ could be derived in our system
extended by a set of additional axioms X.

105

Azimipour and Naumov

4 Examples
In this section we give three examples of formal proofs in our logical system to
illustrate how the system works. Soundness of the system is shown in Section 6. We
start by proving statement (1) from the introduction.

Proposition 1. `S1 p� r → q � r, where S1 is the sociogram depicted in Figure 3.

p q r2

1 4

3

5B

Cr

A

Figure 5: Towards Proof of Proposition 1

Proof. Let A = {r}, B = {p, q}, and Cr = {q}, see Figure 5. Note that

‖B‖r = w(p, r) + w(q, r) = 0 + 3 = 3 = w(q, r) = ‖Cr‖r.

Hence, by Lighthouse axiom,

` p, q � r → q � r. (2)

At the same time, by Transitivity axiom,

` p, q � p→ (p� r → p, q � r).

By Reflexivity axiom, ` p, q � p. Thus, by Modus Ponens inference rule,

` p� r → p, q � r.

Therefore, ` p�r → q�r using statement (2) and propositional logic reasoning.

p q r2 3

Figure 6: Sociogram S2

106

Lighthouse Principle for Diffusion in Social Networks

Let us now consider sociogram S2 depicted in Figure 6. Since in this sociogram
agent r has higher influence on agent q than agent p, one might expect the following
statement to be true for all social networks over sociogram S2:

p� q → r � q. (3)

Surprisingly, this is false. Namely, this statement is false for the social network
depicted in Figure 7. This happens because agent r in this social network has

p q r2 3

1 4 0

Figure 7: Social Network

threshold value 0. In other words, agent r is an “early adopter" who does not need
any external peer pressure in order to buy the product. As a result, see Figure 8,
we have {p}1 = {p, r}. Once agent r adopts the product, the total peer pressure on
agent q becomes 2 + 3 = 5 and she will adopt the product as well. On the other
hand, if the free sample is given to agent r, then neither agent p nor agent q ever
adopt the product.

p q r2 3

1 4 0

{p}0

{p} 1

{p} 2 = {p} 3 = ... = {p}✱

Figure 8: Social Network

Although statement (3) does not hold for some social networks over sociogram
S2, in the next proposition we show that a slightly modified version of this statement
does hold for all such networks.

107

Azimipour and Naumov

Proposition 2. `S2 p� q → (r� q ∨∅� r), where S2 is the sociogram depicted in
Figure 6.

Proof. Let A = {q, r}, B = {p}, Cq = {r}, and Cr = ∅, see Figure 9. Note that

p q r2 3

A
B Cq Cr

Figure 9: Towards Proof of Proposition 2

‖B‖q = w(p, q) = 2 < 3 = w(r, q) = ‖Cq‖q

and
‖B‖r = w(p, r) = 0 = ‖∅‖r = ‖Cr‖r.

Thus, by Lighthouse axiom,

` p� q ∨ p� r → r � q ∨∅ � r.

Therefore, ` p� r → r � q ∨∅ � r.

p q r1 3

4

2

Figure 10: Sociogram S3

Proposition 3. `S3 q�p∨ q� r → p� r∨ r�p, where S3 is the sociogram depicted
in Figure 10.

108

Lighthouse Principle for Diffusion in Social Networks

p q r1 3

4

2

BCr Cp

A

Figure 11: Towards Proof of Proposition 3

Proof. Let A = {p, r}, B = {q}, Cp = {r}, and Cr = {p}, see Figure 11. Note that

‖B‖p = w(q, p) = 1 < 2 = w(r, p) = ‖Cp‖p

and
‖B‖r = w(q, r) = 3 < 4 = w(p, r) = ‖Cr‖r.

Therefore, by Lighthouse axiom, ` q � p ∨ q � r → p� r ∨ r � p.

5 Properties of Star Closure

In this section we prove several technical properties of A∗ that are used later in the
proofs of soundness and completeness.

Lemma 1. If A1 = A, then Ak = A for each k ≥ 0.

Proof. We prove this lemma by induction on k. If k = 0, then A0 = A by Def-
inition 5. If k > 0, then by Corollary 1, assumption A1 = A, and the induction
hypothesis, Ak = (A1)k−1 = Ak−1 = A.

Lemma 2. A∗ = Ak for some k ≥ 0.

Proof. The statement of the lemma follows from the assumption in Definition 3 that
set A is finite.

Lemma 3. If x /∈ A∗, then θ(x) > ‖A∗‖x, for each subset A ⊆ A and each agent
x ∈ A.

109

Azimipour and Naumov

Proof. By Lemma 2, there is k ≥ 0 such that A∗ = Ak. Suppose that ‖A∗‖x ≥
θ(x). Thus, ‖Ak‖x ≥ θ(x). Hence, x ∈ Ak+1, by Definition 5. Thus, x ∈ A∗ by
Definition 6, which is a contradiction to the assumption of the lemma.

Lemma 4. A ⊆ A∗.

Proof. By Definition 5 and Definition 6, A = A0 ⊆ ⋃
k≥0A

k = A∗.

Lemma 5. (A∗)∗ ⊆ A∗.

Proof. By Lemma 2, there are n, k ≥ 0 such that A∗ = An and (A∗)∗ = (A∗)k.
Thus, by Corollary 1 and Definition 6,

(A∗)∗ = (A∗)k = (An)k = An+k ⊆
⋃

m≥0
Am = A∗.

Lemma 6. If A ⊆ B, then Ak ⊆ Bk, for each k ≥ 0.

Proof. We prove the statement of the lemma by induction on k. If k = 0, then
A0 = A ⊆ B = B0 by Definition 5.

Suppose that Ak ⊆ Bk. Let x ∈ Ak+1. It suffices to show that x ∈ Bk+1. Indeed,
by Definition 5, assumption x ∈ Ak+1 implies that either x ∈ Ak or ‖Ak‖x ≥ θ(x). In
the first case, by the induction hypothesis, x ∈ Ak ⊆ Bk. Thus, x ∈ Bk. Therefore,
x ∈ Bk+1 by Definition 5.

In the second case, by Definition 4 and assumption Ak ⊆ Bk,

‖Bk‖x =
∑

b∈Bk
w(b, x) ≥

∑

a∈Ak
w(a, x) = ‖Ak‖x ≥ θ(x).

Therefore, x ∈ Bk+1 by Definition 5.

Corollary 2. If A ⊆ B, then A∗ ⊆ B∗.

Lemma 7. A∗ ∪B∗ ⊆ (A ∪B)∗.

Proof. Note that A ⊆ A∪B and B ⊆ A∪B. Thus, A∗ ⊆ (A∪B)∗ and B∗ ⊆ (A∪B)∗
by Corollary 2. Therefore, A∗ ∪B∗ ⊆ (A ∪B)∗.

110

Lighthouse Principle for Diffusion in Social Networks

6 Soundness
In this section we prove the soundness of our logical system with respect to the
semantics given in Definition 7. The soundness of propositional tautologies and
Modus Ponens inference rule is straightforward. Below we show the soundness of
each of the remaining four axioms as separate lemmas. In the lemmas that follow
we assume that S = (A, w, θ) is a social network and A, B, and C are subsets of A.

Lemma 8. If B ⊆ A, then S � A�B.

Proof. By Lemma 4, A ⊆ A∗. Thus, B ⊆ A∗ by the assumption of the lemma.
Therefore, S � A�B, by Definition 7.

Lemma 9. If S � A�B and S � B � C, then S � A� C.

Proof. By Definition 7, assumption S � A � B implies that B ⊆ A∗. Hence, B∗ ⊆
(A∗)∗ by Corollary 2. Thus, B∗ ⊆ A∗ by Lemma 5. At the same time, C ⊆ B∗ by
assumption S � B � C and Definition 7. Thus, C ⊆ A∗. Therefore, S � A � C by
Definition 7.

Lemma 10. If S � A�B, then S � A,C �B,C.

Proof. Suppose that S � A�B. Thus, B ⊆ A∗ by Definition 7. Note that C ⊆ C∗

by Lemma 4. Thus, B ∪ C ⊆ A∗ ∪ C∗ ⊆ (A ∪ C)∗, by Lemma 7. Therefore,
S � A,C �B,C, by Definition 7.

Lemma 11. If S � B�a0 for some a0 ∈ A, then there is ` ∈ A such that S � C`�`,
where AtB is a partition of the set of all agents A and {Ca}a∈A is a family of sets
of agents such that ‖B‖a ≤ ‖Ca‖a for each a ∈ A.

Proof. Note that assumption S � B�a0 by Definition 7 implies that a0 ∈ B∗. On the
other hand, assumption a0 ∈ A implies that a0 /∈ B because A tB is a partition of
set A. Thus, B∗ 6= B. Hence, by Definition 6, there must exist k such that Bk 6= B.
Then, B1 6= B by Lemma 1. Thus, there must exist ` ∈ B1 \B. Hence, ‖B‖` ≥ θ(`)
by Definition 5. Then, by the assumption of the lemma, ‖C`‖` ≥ ‖B‖` ≥ θ(`). Thus,
` ∈ C1

` , by Definition 5. Hence, ` ∈ C∗` by Definition 6. Therefore, S � C` � ` by
Definition 7. Finally, note that ` ∈ A because ` ∈ B1 \ B and A t B is a partition
of the set A.

This concludes the proof of the soundness of our logical system.

111

Azimipour and Naumov

7 Completeness
In this section we prove the completeness of our logical system with respect to the
semantics given in Definition 7. This result is formally stated as Theorem 1 in
the end of this section. The proof of completeness consists in the construction of
a “canonical” social network. We start, however, we a few technical lemmas and
definitions.

7.1 Preliminaries
Let us first prove a useful property of real numbers.

Lemma 12. If ε > 0 is a real number and x and y are any real numbers such that
either x = y or |x− y| > ε. Then, x+ ε > y implies x ≥ y.

Proof. Suppose y > x. Hence, x 6= y. Thus, |x − y| > ε, by the assumption of the
lemma. Then, y − x > ε, because y > x. Therefore, x+ ε < y.

We now assume a fixed sociogram (A, w) and a fixed maximal consistent subset
X of Φ(A).

Definition 8. Â = {a ∈ A | X ` A� a} for each subset A ⊆ A.

Choose ε to be any positive real number such that ε < ‖A‖a − ‖B‖a for each
agent a ∈ A and each subsets A,B ⊆ A, such that ‖A‖a > ‖B‖a. This could be
achieved because set A is finite.

Lemma 13. For any subsets A,B ⊆ A and any agent a ∈ A if ‖A‖a + ε > ‖B‖a,
then ‖A‖a ≥ ‖B‖a.

Proof. By the choice of ε, we have either ‖A‖a = ‖B‖a or |(‖A‖a − ‖B‖a)| > ε.
Thus, ‖A‖a ≥ ‖B‖a by Lemma 12.

Lemma 14. A ⊆ Â for each subset A ⊆ A.

Proof. Suppose that a ∈ A. Thus, ` A� a by Reflexivity axiom. Therefore, a ∈ Â
by Definition 8.

Lemma 15. X ` A� Â, for each subset A ⊆ A.

Proof. Let Â = {a1, . . . , an}. By the definition of Â, X ` A� ai, for any i ≤ n. We
prove, by induction on k, that X ` A� a1, . . . , ak for each 0 ≤ k ≤ n.
Base Case: X ` A� ∅ by Reflexivity axiom.

112

Lighthouse Principle for Diffusion in Social Networks

Induction Step: Assume that X ` A� a1, . . . , ak. By Augmentation axiom,

X ` A, ak+1 � a1, . . . , ak, ak+1. (4)

Recall that X ` A�ak+1. Again by Augmentation axiom, X ` A�A, ak+1. Hence,
X ` A� a1, . . . , ak, ak+1, by (4) and Transitivity axiom.

7.2 Canonical Social Network
Next, based on the sociogram (A, w) and the maximal consistent set X, we define
the “canonical" social network NX = (A, w, θ). We then proceed to prove the core
properties of this network.

Definition 9.

θ(a) =
{

0, if X ` ∅ � a,
max

a/∈B̂ ‖B̂‖a + ε, otherwise.

The maximum in the above definition is taken over all subsets B of A such that
B̂ does not contain agent a.

Lemma 16. Function θ(a) is well-defined for each a ∈ A.

Proof. We need to show that if X 0 ∅ � a, then there is at least one subset B ⊆ A
such that a /∈ B̂. It suffices to show that a /∈ ∅̂, which is true due to assumption
X 0 ∅ � a and Definition 8.

Lemma 17. For any subset B ⊆ A, if a ∈ A \ B∗, then there is C ⊆ A such that
a /∈ Ĉ and θ(a) = ‖Ĉ‖a + ε.

Proof. If θ(a) = 0, then a ∈ B1 due to Definition 5. Thus, a ∈ B∗ by Definition 6,
which is a contradiction to the assumption a ∈ A \B∗. Suppose now that θ(a) > 0,
thus, by Definition 9, there is at least one C ⊆ A such that a /∈ Ĉ and θ(a) =
‖Ĉ‖a + ε.

Lemma 18. If B ⊆ A and a ∈ A \ B̂, then θ(a) > ‖B̂‖a.

Proof. Case I: X ` ∅ � a. Note that X ` B � ∅ by Reflexivity axiom. Thus,
X ` B � a by Transitivity axiom. Hence, a ∈ B̂ by Definition 8, which is a
contradiction to the assumption of the lemma.

Case II: X 0 ∅ � a. Thus, θ(a) > ‖B̂‖a by Definition 9.

Lemma 19. (B̂)k = B̂ for each B ⊆ A and each k ≥ 0.

113

Azimipour and Naumov

Proof. We prove this statement by induction on k. If k = 0, then (B̂)k = B̂,
by Definition 5. Note next that by Definition 5, the induction hypothesis, and
Lemma 18,

(B̂)k+1 = (B̂)k ∪ {a ∈ A | ‖(B̂)k‖a ≥ θ(a)}
= B̂ ∪ {a ∈ A | ‖B̂‖a ≥ θ(a)}
= B̂ ∪ {a ∈ A \ B̂ | ‖B̂‖a ≥ θ(a)} = B̂ ∪∅ = B̂.

Lemma 20. (B̂)∗ = B̂ for each B ⊆ A.
Proof. By Definition 6 and Lemma 19, (B̂)∗ = ⋃

k≥0(B̂)k = ⋃
k≥0 B̂ = B̂.

Lemma 21. For each B ⊆ A, if a ∈ B∗, then X ` B � a.

Proof. Suppose a ∈ B∗. By Lemma 14, B ⊆ B̂. Then, B∗ ⊆ (B̂)∗ by Corollary 2.
Thus, a ∈ (B̂)∗. Hence, a ∈ B̂ by Lemma 20. Therefore, X ` B� a by Definition 8.

Lemma 22. For each B ⊆ A and each a ∈ A, if X ` B � a, then a ∈ B∗.
Proof. By Lemma 3, θ(x) > ‖B∗‖x for each x ∈ A \ B∗. At the same time, by
Lemma 17, for each x ∈ A \B∗ there is Cx such that x /∈ Ĉx and θ(x) = ‖Ĉx‖x + ε.
Hence, ‖Ĉx‖x+ε > ‖B∗‖x for each x ∈ A\B∗. Thus, by Lemma 13, ‖Ĉx‖x ≥ ‖B∗‖x
for each x ∈ A \B∗.

Consider partition (A \B∗) tB∗ of A. By Lighthouse axiom,

`
∨

x∈A\B∗
B∗ � x→

∨

x∈A\B∗
Ĉx � x. (5)

Suppose that a /∈ B∗, Lemma 4 and Reflexivity axiom imply that ` B∗ �B. Thus,
by assumption X ` B � a and Transitivity axiom, X ` B∗ � a. Hence, statement
(5) implies that

X `
∨

x∈A\B∗
Ĉx � x.

Then, due to the maximality of set X, there must exist x0 ∈ A \ B∗ such that
X ` Ĉx0 � x0. Thus, X ` Cx0 � x0, due to Lemma 15 and Transitivity axiom:
` Cx0 � Ĉx0 → (Ĉx0 � x0 → Cx0 � x0). Hence, x0 ∈ Ĉx0 by Definition 8, which is a
contradiction with the choice of set Cx.

Lemma 23. NX � ϕ if and only if ϕ ∈ X, for each formula ϕ ∈ Φ(A).

114

Lighthouse Principle for Diffusion in Social Networks

Proof. We prove this lemma by induction on structural complexity of formula ϕ.
Cases when formula ϕ is ⊥ or has form ψ1 → ψ2 follow in the standard way from
Definition 7 and the assumptions of maximality and consistency of set X. Suppose
that ϕ has form A�B.

(⇒) : Suppose that NX � A� B. Then B ⊆ A∗ by Definition 7. Hence, b ∈ A∗
for each b ∈ B. Thus, X ` A � b for each b ∈ B by Lemma 21. Hence, b ∈ Â for
each b ∈ B by Definition 8. In other words, B ⊆ Â. Thus, by Reflexivity axiom,
` Â� B. On the other hand, X ` A� Â by Lemma 15. Therefore, X ` A� B by
Transitivity axiom.

(⇐) : Assume X ` A�B. By Reflexivity axiom, ` B�b for every b ∈ B. Hence,
X ` A � b for each b ∈ B by Transitivity axiom. Thus, b ∈ A∗ for each b ∈ B, by
Lemma 22. In other words, B ⊆ A∗. Therefore, NX � A�B by Definition 7.

7.3 Main Result
We are now ready to state and prove the completeness theorem for our logical system
with respect to the semantics given in Definition 7.

Theorem 1. For any sociogram (A, w) and any formula ϕ ∈ Φ(A), if N � ϕ for
each social network N based on sociogram (A, w), then ` ϕ.

Proof. Suppose that 0 ϕ. Let X be a maximal consistent subset of Φ(A) such that
ϕ /∈ X. By Lemma 23, NX 2 ϕ.

8 Decidability
In this section we discuss decidability of our logical system for any fixed sociogram
(A, w). Note that we allow arbitrary real numbers as subscripts in formula A�c B.
Thus, the set of all formulas Φ(A) is uncountable and its elements can not be used
as inputs of a Turing machine. In order to avoid this issue, in this section we modify
Definition 1, Definition 3, and Definition 2 by assuming that only rational numbers
could be used as subscripts in our atomic formulas A�c B, as influence values, and
as threshold values. It is easy to see that the above proof of completeness is still
valid. From this change point of view, the only non-trivial place is the choice of ε
for the given sociogram (A, w) that we have made right after Definition 8. Note,
however, that the required ε could always be choose to be a rational number because
0 is a limit point of the set of positive rational numbers.

Theorem 2. For any given sociogram S = (A, w), set {ϕ ∈ Φ(A) | `S ϕ} is
decidable.

115

Azimipour and Naumov

Proof. According to Theorem 1, `S ϕ if and only if formula ϕ is true for each
social network (A, w, θ) based on sociogram S. This, of course, does not imply the
decidability because there are infinitely many social networks based on sociogram
S. However, it turns out that the proof of Theorem 1 that we gave above actually
shows a stronger result: `S ϕ if and only if formula ϕ is true for each social network
from a specific finite class C(S) of networks based on sociogram S.

Once existence of such finite class of social networks C(S) is establish, we should
be able to claim the decidability result because one can always verify if a formula ϕ
is true for each out of finitely many given networks.

We are now ready to describe the finite class of social networks C(S). The social
network over sociogram S is completely defined by specifying threshold function θ.
In the proof of Theorem 1, this is done in Definition 9. This definition depends on ε
and maximal consistent set of formulas X. Note however that the choice of ε does
not depend on X and could be made based on sociogram S alone. Once ε is fixed,
the set of all values of function θ, as specified in Definition 9, belongs to finite set

{0} ∪ {‖A‖a + ε | a ∈ A, A ⊆ A}.

The set of all social networks over sociogram S whose threshold functions use only
values from the above set is the desired finite class of social networks C(S).

9 Conclusion
In this article we have studied properties of influence common to all social networks
with the same weighted sociogram. We introduced a logical system for reasoning
about these properties and proved soundness and completeness of this system. We
have established that the logical system is decidable if its syntax and semantics are
restricted to rational numbers.

As has been mentioned in that introduction, perhaps more natural question to
consider is axiomatization of all common influence properties of social networks
with the same graph, without fixing distribution of either weights or thresholds.
Surprisingly, such setting yields a much more complicated set of properties. We
discuss some of these properties below.

Consider, for example, unweighted sociogram U1 depicted in Figure 12. Let
N = (A, w, θ) be a social network based on U1. Furthermore, assume that in social
networkN (i) neither of the agents p1, p2, q1, q2 is an early adopter, (ii)N � p1, p2�r,
and (iii)N � q1, q2�r. Thus, w(p1, r)+w(p2, r) ≥ θ(r) and w(q1, r)+w(q2, r) ≥ θ(r).
The first inequality implies that at least one out of w(p1, r) and w(p2, r) is greater
or equal than θ(r)/2. In other words, there is i ∈ {1, 2} such that w(pi, r) ≥ θ/2.

116

Lighthouse Principle for Diffusion in Social Networks

p1

p2

r

q1

q2

Figure 12: Unweighted Sociogram U1

Similarly, the second inequality implies that there is j ∈ {1, 2} such that w(qj , r) ≥
θ/2. Thus,

‖{pi, qj}‖r = w(pi, r) + w(qj ,) ≥ θ/2 + θ/2 = θ.

Hence, r ∈ {pi, qj}1 ⊆ {pi, qj}∗. Then, N � pi, qj�r. So, we have shown that for any
social network N based on unweighted sociogram U1 and satisfying the conditions
(i), (ii), (iii), there are i, j ∈ {1, 2} such that N � pi, qj � r. This could be formally
stated as

U2 � p1, p2 � r ∧ q1, q2 � r →
2∨

i=1

2∨

j=1
pi, qj � r ∨

∨

x∈{p1,p2,q1,q2}
∅ � x,

where disjunction ∨
x∈{p1,p2,q1,q2}∅ � x captures the statement that one of agents

p1, p2, q1, q2 is an early adopter. The above principle is just an example of a non-
trivial property of diffusion common to all social networks with the same unweighted
sociogram. This example can be stated in a more general form as

U2 �
n∧

i=1
pi1, pi2, . . . , pin � q

→
n∨

j1=1

n∨

j2=1
· · ·

n∨

jn=1
p1j1 , p2j2 , . . . , pnjn � q ∨

n∨

i=1

n∨

j=1
∅ � pij ,

where U2 is unweighted sociogram depicted in Figure 13. Complete axiomatization
of properties of influence common to all social networks with a given graph remains
an open problem.

Another possible extension of our work, suggested by an anonymous reviewer,
is to consider common logical principles of all social networks in which all agents
have the same threshold values. Such more narrow class of models would results in
a larger set of universally true principles, some of which will not be provable from
the axioms of our logical system. Formula p � q → p � r is an example of such

117

Azimipour and Naumov

p11

qp12

...

p1n
p21

p22

...

p2n

...

pnn

Figure 13: Unweighted Sociogram U2

p q r3 2

1

Figure 14: Sociogram S4

principle for the sociogram depicted in Figure 14. To see how much different this
new setting is from the one discussed earlier in the article, note that in all models
from this class, either all agents are early adopters or none is.

References
[1] Krzysztof R Apt and Evangelos Markakis. Social networks with competing products.

Fundamenta Informaticae, 129(3):225–250, 2014.
[2] W. W. Armstrong. Dependency structures of data base relationships. In Information

Processing 74 (Proc. IFIP Congress, Stockholm, 1974), pages 580–583. North-Holland,
Amsterdam, 1974.

[3] Alexandru Baltag, Zoé Christoff, Rasmus K. Rendsvig, and Sonja Smets. Dynamic
epistemic logics of diffusion and prediction in social networks. In 12th Conference on
Logic and the Foundations of Game and Decision Theory (LOFT), Maastricht, the
Netherlands, 2016.

[4] Catriel Beeri, Ronald Fagin, and John H. Howard. A complete axiomatization for
functional and multivalued dependencies in database relations. In SIGMOD ’77: Pro-
ceedings of the 1977 ACM SIGMOD international conference on Management of data,
pages 47–61, New York, NY, USA, 1977. ACM.

[5] Zoé Christoff and Jens Ulrik Hansen. A logic for diffusion in social networks. Journal
of Applied Logic, 13(1):48 – 77, 2015.

118

Lighthouse Principle for Diffusion in Social Networks

[6] Zoé Christoff and Rasmus K. Rendsvig. Dynamic logics for threshold models and
their epistemic extension. In Epistemic Logic for Individual, Social, and Interactive
Epistemology workshop, 2014.

[7] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database Systems: The
Complete Book. Prentice-Hall, second edition, 2009.

[8] Mark Granovetter. Threshold models of collective behavior. American journal of soci-
ology, pages 1420–1443, 1978.

[9] Kristine Harjes and Pavel Naumov. Functional dependence in strategic games. In 1st
International Workshop on Strategic Reasoning, March 2013, Rome, Italy, Electronic
Proceedings in Theoretical Computer Science 112, pages 9–15, 2013. Full version to
appear in Notre Dame Journal of Formal Logic.

[10] Sarah Holbrook and Pavel Naumov. Fault tolerance in belief formation networks. In
Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Mengin, editors, JELIA, volume
7519 of Lecture Notes in Computer Science, pages 267–280. Springer, 2012.

[11] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003.

[12] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for
social networks. In Automata, languages and programming, pages 1127–1138. Springer,
2005.

[13] Fenrong Liu, Jeremy Seligman, and Patrick Girard. Logical dynamics of belief change
in the community. Synthese, 191(11):2403–2431, 2014.

[14] Michael W Macy. Chains of cooperation: Threshold effects in collective action. Amer-
ican Sociological Review, pages 730–747, 1991.

[15] Sara Miner More and Pavel Naumov. The functional dependence relation on hyper-
graphs of secrets. In João Leite, Paolo Torroni, Thomas Ågotnes, Guido Boella, and
Leon van der Torre, editors, CLIMA, volume 6814 of Lecture Notes in Computer Sci-
ence, pages 29–40. Springer, 2011.

[16] Jacob Levy Moreno. Who shall survive?: A new approach to the problem of human
interrelations. Nervous and Mental Disease Publishing Co, 1934.

[17] Pavel Naumov and Brittany Nicholls. Rationally functional dependence. Journal of
Philosophical Logic, 43(2-3):603–616, 2014.

[18] Pavel Naumov and Jia Tao. Marketing impact on diffusion in social networks. Journal
of Applied Logic. (to appear).

[19] Pavel Naumov and Jia Tao. Marketing impact on diffusion in social networks. In
12th Conference on Logic and the Foundations of Game and Decision Theory (LOFT),
Maastricht, the Netherlands, 2016.

[20] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of information diffu-
sion probabilities for independent cascade model. In Ignac Lovrek, Robert J. Howlett,
and Lakhmi C. Jain, editors, Knowledge-Based Intelligent Information and Engineer-
ing Systems, volume 5179 of Lecture Notes in Computer Science, pages 67–75. Springer

119

Azimipour and Naumov

Berlin Heidelberg, 2008.
[21] Thomas C. Schelling. Dynamic models of segregation. Journal of Mathematical Soci-

ology, 1:143–186, 1971.
[22] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Logic in the community. In Logic

and Its Applications, pages 178–188. Springer, 2011.
[23] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Facebook and the epistemic logic

of friendship. In 14th conference on Theoretical Aspects of Rationality and Knowledge
(TARK ‘13), January 2013, Chennai, India, pages 229–238, 2013.

[24] Jouko Väänänen. Dependence logic: A new approach to independence friendly logic,
volume 70. Cambridge University Press, 2007.

[25] Jouko Väänänen. The logic of approximate dependence. arXiv preprint
arXiv:1408.4437, 2014.

[26] Thomas W Valente. Social network thresholds in the diffusion of innovations. Social
networks, 18(1):69–89, 1996.

Received 10 September 2016120

A Labelled Sequent Calculus for
Half-Order Modal Logic

Romas Alonderis
Vilnius University Institute of Data Science and Digital Technologies

Akademijos 4, Vilnius 2600, LITHUANIA
r.alonderis@post.penki.lt

Jūratė Sakauskaitė
Vilnius University Institute of Data Science and Digital Technologies

Akademijos 4, Vilnius 2600, LITHUANIA
jurate.sakalauskaite@mii.vu.lt

Abstract

We introduce the labelled Gentzen-type structural rules and cut-free sequent
calculus GHOML for the half-order modal logic without function symbols and
prove that the calculus is sound and complete for the logic. Using syntactic
methods, we prove that the structural and cut rules are admissible in GHOML.
The obtained calculus enables us to present a decision procedure for the half-
order modal logic considered.

Key words: half-order modal logic, sequent calculus, admissibility of cut and
structural rules, decidability

Classification codes: 03B44, 03F03

1 Introduction
In [2], a novel extension of normal propositional modal logic is introduced. The
freeze quantifier is used in the obtained logic (called half-order modal logic) instead
of the traditional universal and existential quantifiers. The freeze quantifier “x.”
binds (“freezes”) the variable x to the unique state-value of the current state of a
Kripke structure. For example, if the unique state-values of the states s1 and s2 are

We thank the anonymous referees for their thorough review, which significantly contributed to
improving the quality of the publication.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Alonderis and Sakauskaitė

5 and 7, respectively, then the formula x.(3 ≤ x) is equivalent to 3 ≤ 5 at the state
s1 and to 3 ≤ 7 at the state s2.

Addition of variables to the language that range over a aet of values and which
can then be quantified over, increases the expressivity of the language without requir-
ing to adopt a full first-order modal logic. This allows us to avoid the complications,
both technical and motivational, inherent in such a move. In this respect, half-order
modal logics are interesting, and, one could argue, understudied.

Half-order modal logic (HOML) is based on the normal modal logic K. The
extensions of this logic are obtained by introducing additional modal operators and
properties for the set of states and the accessibility relation. The corresponding
Hilbert-type proof systems are obtained by adding appropriate axioms and deriva-
tion rules so that the new semantical features are captured.

Modal logics are used to express the properties of e. g., knowledge, belief, desire,
intention, [3, 5]. For example, if the accessibility relation between states of interpre-
tations is the equivalence relation, then we get the modal logic S5 used to describe
the perfect knowledge. The normal modal logics extended to the corresponding half-
order logics provides us additional expression means. For instance, let the half-order
logic of knowledge (HOLK) be obtained from the half-order modal logic S5 or from
some its sub-logic, where the set of values is a domain of agents. The formula

x.Ky.x = y

of HOLK, where “x.” denotes the personal pronoun “I”, which cannot be modeled
adequuately in propositional epistemic logics, captures the assertion “I know who I
am”. If we have two modal operators, K for knowledege and � to change the agent
that is reasoning, then we can express properties such as “I know that everyone who
I know knows that I am smarter than (s)he is”:

x.K�y.K(x smarter-than y),

[2]. The formula
x.K�y.B(x smarter-than y),

where B is the modal operator of belief, expresses the property “I know that everyone
who I know believes that I am smarter than (s)he is”.

The half-order real time temporal logic TPTL, which is the temporal extension
of HOML, is used in verification of real-time systems, [2].

Cut-free sequent calculi are comparatively convenient means for backward proof
search of sequents/formulas. To check if an arbitrary sequent S is derivable in such
a calculus, the derivation rules of the calculus are applied backward to S and the re-

122

A Labelled Sequent Calculus for HOML

sulting sequents. In the cases where the premises of the derivation rules are simpler
than the conclusions, the process is finite and each time the same, routine: deter-
mine the outermost symbol of a formula and apply the corresponding derivation
rule. (If the calculus contain rules the premises of which are not simpler than the
corresponding conclusions, then some additional means is required to ensure termi-
nation of backward proof-search.) The rule of cut destroys such a procedure, since
this rule is not deterministic from the backward perspective. It contains the formula
(called the cut formula) in the premises which is not specified in the conclusion.
Therefore we do not know how many times this rule should be applied and what cut
formula should be chosen each time so that to derive the considered sequent or to
prove that it is not derivable.

Hilbert-type calculi such as HHOML given in Section 3 contain the Modus
Ponens rule which is an analogue of the rule of cut. It would be hard (if possible)
to describe effective proof-search by means of such calculi suitable for all formulas
of a logic.

In the present paper, we consider the proof-theory of function symbols free ver-
sion of HOML, (HOML−f in notation) by introducing the cut-free Gentzen-type
labelled sequent calculus GHOML and by investigating the properties of the cal-
culus. The sequent calculus is obtained by adding new quantifier and equality rules
to the labelled sequent calculus for logic K, introduced in [7]. The shape of the
rules for the freeze quantifier are related to the fact that the quantifier is its own
dual, and thus it makes sense to have a universal-like succedent rule coupled with
an existential-like antecedent one.

We prove that all the rules of GHOML are invertible, that the structural rules
of weakening, contraction, and the rule of cut are admissible in the calculus, and
it is sound and complete for HOML−f . These properties enable us to present the
decision procedure for HOML−f . Given a formula φ, the procedure allows us to
determine effectively if φ is valid in HOML−f (or, in other words, if φ is a theorem
of HOML−f). The decision procedure is based on the backward sequent proof-
search by means of the calculus GHOML. Since the calculus is sound and complete
for HOML−f , we get that a formula is derivable in the calculus, iff it is valid in
HOML−f .

We also show that the calculus GHOML can be extended to the sequent calculi
of the other half-order modal logic such as t based on S5 and its sub-logics, e. g., T.

The fact that function symbols are dropped simplifies the term unification prob-
lem and allows us to focus on the introduced (a = b⇒) and quantifier rules.

Cut-free sequent calculi were introduced and considered for modal logics. For
example, the Gentzen-type sequent calculi for various propositional modal logics are
considered in [10, 5, 4]. The sequent calculus for the temporal logic with time gaps

123

Alonderis and Sakauskaitė

is investigated in [1]. The labelled Gentzen-type sequent calculi for modal logics
are presented in [7]. The Gentzen-type sequent calculus with marks for logic S4 is
considered in [6].

To our knowledge, sequent calculi for half-order logics have not yet been inves-
tigated before in the literature.

This paper is organized as follows. In Section 2, we present the syntax and
semantics of HOML−f . The calculus GHOML is introduced in Section 3. The
properties of the calculus are considered in Section 4. In Section 5, we describe the
decision procedure for the half-order modal logic without function symbols, using
the calculus GHOML. Concluding remarks are in Section 6.

2 Syntax and semantics of HOML−f

The logic HOML−f is obtained from the half-order modal logic introduced in [2]
by removing function symbols.

In this section, we introduce the syntax and semantics of HOML−f . The defi-
nitions are taken from [2] except that:

(1) the function symbols are dropped;

(2) following [8], we separate free and bounded variables by introducing the set
Vy of bound variables and the set Va of free variables such that Vy ∩ Va =
∅. Such separation of free and bound variables assures us that each variable
substitution is safe, where safe substitution of the variable v1 by v2 means, as
usual, that no free occurrence of v1 is within the scope of a quantifier binding
v2.

The formulas of HOML−f are constructed from predicate symbols, including
equality, using implication (‘→’), the constant false (‘⊥’), the modal operator �,
and the freeze quantifier.

Let Vy, Va, and P be infinite, effectively enumerable sets of bound variables,
free variables, and predicate symbols, respectively. Since function symbols are ab-
sent, the notions of ‘term’ and ‘free variable’ coincide. The atomic formulas α, and
formulas φ of HOML−f are inductively defined as follows:

α := a = b | p(b1, . . . , bm) | ⊥,
φ := α |φ1 → φ2 |�φ |x.φ′.

where m ≥ 0; a, b, b1, . . . , bm ∈ Va; x ∈ Vy; p ∈ P , and φ′ is obtained from a formula
φ by replacing some, if any, occurrences of a free variable by x. To avoid confusion,

124

A Labelled Sequent Calculus for HOML

we require that no quantifier ‘x.’ occur within the scope of ‘x.’; the generality is not
lost, since x.x.φ and x.φ are intended to express the same assertion, and the same
is true for, e. g., x.(φ→ x.ψx) and x.(φ→ y.ψy) by renaming variables (here y does
not occur in x.(φ→ x.ψx) and ψy is obtained from ψx by substituting y for x); these
formulas are equivalent in [2].

In the paper, we use: 1) the letters a, b, c, d, e to denote free variables, 2) x, y, z,
to denote bound variables, 3) φ, ψ, ϕ to denote arbitrary formulas. The following
abbreviations are used here:
1) ¬φ for φ → ⊥, 2) φ ∨ ψ for ¬φ → ψ, 2) φ ∧ ψ for ¬(¬φ ∨ ¬ψ), 3) φ ↔ ψ for
(¬φ ∨ ψ) ∧ (¬ψ ∨ φ), 4) and ♦ for ¬�¬.

The complexity of a formula φ is the number of occurrences of predicate symbols,
propositional connectives, the modal operator, and of the freeze quantifier in φ.

The expression obtained from a formula by dropping some quantifiers and con-
taining some bound variables not bound by quantifiers is called a quasi-formula.
For example, α1(x) → y.α2(y) is a quasi-formula obtained from, e. g., the formula
x.α1(x)→ y.α2(y).

The expression ξ[χ := b], where χ ∈ Va∪Vx and ξ is a formula or a quasi-formula,
is obtained from ξ by substituting b for each non-bound by a quantifier occurrence
of χ in ξ. If each occurrence of χ is bound by a quantifier or χ does not occur in ξ,
then ξ[χ := b] is equal to ξ.

The expression ξ〈χ := b〉 is obtained from ξ by replacing zero, one, or more (all,
respectively) non-bound by a quantifier occurrences of χ by b.

In most cases, we use the symbol ‘�’ to denote equality outside the formulas
and quasi-formulas, e. g., the expression S � {φ1, φ2} denotes that S is equal to the
set {φ1, φ2}.

If Γ� (φ1, . . . , φn), then Γ[a := b]� (φ1[a := b], . . . , φn[a := b]).
An interpretation

(S,→�,U , ‖, JaKa∈Vb , JpKp∈P , s0)

for half-order modal logic consists of:

• a non-empty set S of states;

• an accessibility relation →�⊆ S2 on the states;

• a non-empty set U of values;

• a value function ‖: S → U that associates a value |s| with every state s;

• a rigid assignment function JaK ∈ U for all variables a ∈ Vb;

125

Alonderis and Sakauskaitė

• a flexible assignment function JpK : S → 2U×···×U for all predicate symbols
p ∈ P ;

• an initial state s0.

The interpretationM is a model of the formula φ, iffM |= φ, for the following
inductive definition of the truth predicate |=:

M |= a = b iff JaK = JbK,
M |= p(b1, . . . , bn) iff

(Jb1K, . . . , JbnK
) ∈ JpK(s0),

M 6|= ⊥,
M |= φ1 → φ2 iff M 6|= φ1 orM |= φ2,

M |= �φ iff M[s0 := t] |= φ for all t ∈ S with s0 →� t,
M |= x.φ iff M[JaK := |s0|] |= φ[x := a], where a does not occur

in φ

Here M[s0 := t] denotes the interpretation that differs, if any, from M only in its
initial state, t; the interpretation M[JaK := |s0|] differs, if any, from M only in its
assignment function for a. For example,

({s, t}, s→� t, JpK(t)� {|s|, |t|}, JpK(s)� ∅, s)

is the model of the formula x.♦y.p(x, y).
The formula φ is satisfiable (valid, |= φ in notation), iff some (every) interpreta-

tion is a model for φ.

3 Deductive systems

The Hilbert-type calculus HHOML for HOML−f is taken from [2], except that
the function symbols are dropped and different letters are used to denote free and
bound variables. The calculus is defined by the following postulates:

PROP1 Propositional tautologies are axioms.
PROP2 Modus Ponens rule

φ1; φ1 → φ2
φ2

(MP).

126

A Labelled Sequent Calculus for HOML

K1 Modal axiom schema

�(φ1 → φ2)→ (�φ1 → �φ2).

This axiom schema expresses the distributivity of the modal operator ‘�’ over im-
plication.

K2 Modal rule
φ

�φ
(�).

This rule allows us to infer the formula �φ from φ.

Q1 Quantifier axiom schema

x.(φ1 → φ2)↔ (x.φ1 → x.φ2).

The quantifier axiom schema expresses the distributivity of the freeze quantifier over
implication.

Q2 Quantifier rule

φ1 ↪→ · · · ↪→ φn ↪→ ψ[x := b]
φ1 ↪→ · · · ↪→ φn ↪→ x.ψ

,

where 1) φ ↪→ ψ stands for φ→ �ψ and ↪→ associates to the right and 2) the variable
b does not occur in φi for all 1 ≤ i ≤ n. This rule allows us to infer the formula
φ1 ↪→ · · · ↪→ φn ↪→ x.ψ from the formula φ1 ↪→ · · · ↪→ φn ↪→ ψ[x := b].

Q2∗ Quantifier rule
φ[x := b]
x.φ

.

This rule is the instance of the rule Q2 with n = 0. It allows us to infer the formula
x.φ from φ[x := b].

Q3 Quantifier axiom schema

x.φ↔ φ,

where x does not occur in φ. This axiom schema expresses the fact that the formulas
x.φ and φ are equivalent if x does not occur in φ.

127

Alonderis and Sakauskaitė

EQ1 Equality axiom schema

b = b.

This simple axiom schema states that the value assigned to any variable b at a state
of an interpretation is equal to itself.

EQ2 Equality axiom schema

(a = b)→ (
α→ α〈a := b〉).

According this axiom schema, if the values assigned to the variables a and b coincide,
then the implication formula

(
α→ α〈a := b〉) is true.

RIG1 Term rigidity axiom schema

(a = b)→ �(a = b).

This axiom schema states that if any two variables a and b are assigned the same
value at a state s, then the variables are assigned the same value at each state ac-
cessible from s.

RIG2 Term rigidity axiom schema

(a 6= b)→ �(a 6= b).

The statement of this axiom schema is complementary to the previous one: if the
values assigned to any variables a and b differ at a state s, then the values assigned
to the variables differ at each state accessible from s.

QEQ Axiom schema
x.y.(x = y).

This axiom schema states that any two variables x and y bound by the freeze quan-
tifier are assigned the same value at every state, i. e., the value associated with every
state is unique.

Remark 3.1. It follows from [2] that HHOML is sound and complete for the
logic HOML−f : a formula without function symbols is valid in HOML−f , iff it is

128

A Labelled Sequent Calculus for HOML

derivable in HHOML.

The expression a <> b denotes that a and b are different free variables, i. e., the
formula a = b is not of the shape c = c.

3.1 Gentzen-type labelled sequent calculus

For the sequent calculus we introduce additionally:

1. The formulas of the type x.x $ b, which are used in the quantifier rules and
allow us to restrict the number of backward applications of the rule (x.⇒) in
backward proof-search. The sign ‘$’ occurs only in the formulas of this type,
e. g., we do not consider formulas of the type a $ b or (x.x $ b)→ α.

2. Labels, denoted by the letters i, j, and l.

3. Formulas of the type i 7→ j, called relation atoms. Formulas of this type do
not occur within the scope of quantifiers, propositional or modal operators,
e. g., we do not consider formulas of the type x.(i 7→ j), �(i 7→ j), or (i1 7→
j1)→ (i2 7→ j2).

4. Labelled formulas iφ, where φ is an unlabelled formula, except a relation atom.

A multiset is a generalization of the concept of a set that, unlike a set, allows
multiple instances of the multiset’s elements. For example, {a, a, b} and {a, b} are
different multisets although they are the same set. However, order does not matter,
thus {a, a, b} and {a, b, a} are the same multiset.

As usual, sequents are objects of the shape Γ ⇒ ∆, where Γ and ∆ are finite,
possibly empty, multisets consisting of relation atoms and labelled formulas, except
that ‘$’ and relation atoms do not occur in ∆. The letter S (possibly subscripted)
is used in the paper to denote sequents. Any sequent

φ1, . . . , φm ⇒ ψ1, . . . , ψn

is understood informally as the formula

(φ1 ∧ . . . ∧ φm)→ (ψ1 ∨ . . . ∨ ψn).

The Gentzen-type labelled sequent calculus GHOML for the half-order modal
logic HOML−f without function symbols is defined by the following axiom schemata
and derivation rules (the modal rules are taken from [7]):

129

Alonderis and Sakauskaitė

1. Axiom schemata:

Γ, i⊥ ⇒ ∆,

Γ, iα⇒ ∆, iα,

Γ⇒ ∆, ib = b.

2. Propositional rules:

Γ⇒ ∆, iφ iψ,Γ⇒ ∆
iφ→ ψ,Γ⇒ ∆ (→⇒), Γ, iφ⇒ iψ,∆

Γ⇒ iφ→ ψ,∆ (⇒→).

3. Modal rules:
jφ, i�φ, i7→j ,Γ⇒ ∆
i�φ, i7→j ,Γ⇒ ∆ (�⇒), i7→j ,Γ⇒ jφ,∆

Γ⇒ i�φ,∆ (⇒ �),

where j does not occur in the conclusion in the rule (⇒ �).

4. Quantifier rules:

ix.x $ b, iφ[x := b],Γ⇒ ∆
ix.φ,Γ⇒ ∆ (x.⇒),

ix.x $ b,Γ⇒ ∆, iφ[x := b]
Γ⇒ ∆, ix.φ (⇒ x.).

The rules (x. ⇒) and (⇒ x.) require that b not occur in the conclusion. The
rule (x.⇒) requires additionally that φ is not of the shape x.x $ a.

5. Equality rules:

Γ[a := b]⇒ ∆[a := b]
ia = b,Γ⇒ ∆ (a := b),

ia = b, (ix.σ1 θ σ2), (iy.σ3 ξ σ4),Γ⇒ ∆
(ix.σ1 θ σ2), (iy.σ3 ξ σ4),Γ⇒ ∆ (a = b⇒).

In the rule (a = b⇒):

θ, ξ ∈ {=,$}, {σ1, σ2}� {x, a}, {σ3, σ4}� {y, b},

and if θ (ξ) is $, then σ1 (σ3) is x (y). This rule requires the following side
conditions to be met: 1) a <> b, 2) Γ 6� (Γ′, ia = b), and 3) both a and b

130

A Labelled Sequent Calculus for HOML

to occur in (Γ,∆). The side conditions enable us to restrict the number of
applications of the rule in proof-search by prohibiting the useless applications.
From the bottom-up perspective, the rule (a = b⇒) states that, if a and b are
equal to the value associated with the current state, then a and b are equal
between themselves.

The additional active formulas in the quantifier rules together with the rule
(a = b ⇒) allow us to derive formulas of the type x.α(x) → y.α(y); a special
equality sign in the active formulas is used to restrict the number of backward rule
(x.⇒) applications in proof-search.

Applied backwards, the rule (a = b⇒) introduces the equality formula a = b in
the antecedent of the premise, if the free variables a and b are equal to the value
associated with the current state. It is used to derive formulas of the type

(x.x = a ∧ y.b = y)→ a = b or (x.x = a ∧ y.b = y)→ (
α(a)→ α(b)

)
.

Now we recall some definitions. In the rule (⇒→): the explicit formula iφ→ ψ in
the conclusion is the principal formula; iφ and iψ in the premise are active formulas;
the formulas in Γ and ∆ are context formulas. The principal, active, and context
formulas for the remaining propositional, quantifier, and modal rules are defined in
the same way; the rule (� ⇒) has two principal formulas i�φ and i 7→ j; the rules
(x. ⇒) and (⇒ x.) have two active formulas ix.x $ b and iφ[x := b]. The explicit
quantifier formulas in the conclusion of (a = b ⇒) are principal, and the formula
ia = b is active. All the formulas in the conclusion of the rule (a := b) are principal.

Given a sequent S, a GHOML proof-search tree with the sequent S at the
root is obtained in a usual way by subsequently applying backwards the GHOML
derivation rules to S and the sequents obtained in the course of the tree construction.

The height of a proof-search tree is the length of the longest branch in it. The
length of a branch is measured by the number of rule applications present on it.

A proof-search tree, all the branches of which end up in axioms, is called a
derivation tree. Any sequent S at the root of a derivation tree, generated by the
rules of the calculus GHOML, is called derivable in GHOML (GHOML ` S
in notation; for the sake of readability, we omit GHOML when it is clear which
calculus is meant).

Let us consider the example of the backward proof-search tree demonstrating
the above concepts:

131

Alonderis and Sakauskaitė

jα1, i7→j , i�α1 ⇒ iα3 → α2, jα1 (�⇒)
i7→j , i�α1 ⇒ iα3 → α2, jα1 (⇒ �)
i�α1 ⇒ iα3 → α2, i�α1

iα2, i�α1, iα3 ⇒ iα2 (⇒→)
iα2, i�α1 ⇒ iα3 → α2 (→⇒)

i�α1 → α2, i�α1 ⇒ iα3 → α2 (⇒→)
i�α1 → α2 ⇒ i�α1 → (α3 → α2)

This tree is generated by backward applying one by one derivation rules to the
corresponding sequents, starting from the root, i. e., the sequent

i�α1 → α2 ⇒ i�α1 → (α3 → α2).

The topmost sequents

jα1, i7→j , i�α1 ⇒ iα3 → α2,
jα1 and iα2,

i�α1,
iα3 ⇒ iα2

are the leaves of the tree. A branch of a tree is the path from the root to a leaf
inclusive. This tree has two branches; the height of the left branch is 5 and the
height of the right one is 4. Hence the height of the tree is 5. Since all the branches
end up in axioms, this tree is a derivation tree. Hence the root sequent is derivable
in GHOML, denoted by

GHOML ` i�α1 → α2 ⇒ i�α1 → (α3 → α2)

or
` i�α1 → α2 ⇒ i�α1 → (α3 → α2).

Since the derivation rules can be applied in any order, we can construct another
derivation tree with the same root sequent:

jα1, i7→j , i�α1 ⇒ iα3 → α2, jα1 (�⇒)
i7→j , i�α1 ⇒ iα3 → α2, jα1 (⇒ �)
i�α1 ⇒ iα3 → α2, i�α1 (⇒→)
⇒ i�α1 → (α3 → α2), i�α1

iα2, i�α1, iα3 ⇒ iα2 (⇒→)
iα2, i�α1 ⇒ iα3 → α2 (⇒→)

iα2 ⇒ i�α1 → (α3 → α2) (→⇒)
i�α1 → α2 ⇒ i�α1 → (α3 → α2)

A derivation rule is called height-preserving admissible, iff derivability of its
premise(es) implies derivability of its conclusion, the height of the conclusion deriva-
tion being not greater than that of any premise.

A derivation rule is called height-preserving invertible, iff derivability of its con-
clusion implies derivability of its premise(es), the height of the derivation of any
premise being not greater than that of the conclusion.

132

A Labelled Sequent Calculus for HOML

Remark 3.2. The fact that the sequents are of multiset type implies that the struc-
tural rule of permutation is admissible in GHOML.

Since the labels are relevant mainly in the modal rules, we often omit them for
the sake of readability when application of the modal rules is not explicitly involved
into the consideration.

Remark 3.3. If the variable b is allowed to occur in the conclusion of the rules (⇒
x.) and (x.⇒), then these rules are not sound: the non-valid sequents (⇒ ix.x = b)
and

(
ix.¬(x = b)⇒)

are derivable in such a calculus.

Remark 3.4. Without ‘$’, the backward proof-search of, e. g., the sequent ix.x =
b⇒, does not terminate (the labels are omitted):

· · · (x.⇒)
x.x = d, d = c, c = b⇒ (x.⇒)

x.x = c, c = b⇒ (x.⇒)
x.x = b⇒

4 Some properties of GHOML
Lemma 4.1. Any sequent S � (Γ, iφ⇒ iφ,∆) is derivable in GHOML.

Proof. The lemma is proved by induction on the complexity C of φ. If C = 1, then
S is an axiom. Let C > 1:

1. If φ � x.ψ, then, starting from the bottom, we generate the following back-
ward proof-search tree (the labels are omitted):

S1 � (x.x $ a, x.x $ a,Γ, ψ[x := a]⇒ ψ[x := a],∆) (b := a)
b = a, x.x $ b, x.x $ a,Γ, ψ[x := a]⇒ ψ[x := b],∆ (b = a⇒)

x.x $ b, x.x $ a,Γ, ψ[x := a]⇒ ψ[x := b],∆ (⇒ x.)
x.x $ a,Γ, ψ[x := a]⇒ x.ψ,∆ (x.⇒)

S � (Γ, x.ψ ⇒ x.ψ,∆)

By inductive hypothesis, the sequent S1 is derivable; hence S is derivable as
well.

2. If φ� ψ → ϕ, then we generate the following backward proof-search tree (the
labels are omitted):

133

Alonderis and Sakauskaitė

Γ, ψ ⇒ ψ,ϕ,∆ Γ, ϕ, ψ ⇒ ϕ,∆ (→⇒)Γ, ψ → ϕ,ψ ⇒ ϕ,∆ (⇒→)
S � (Γ, ψ → ϕ ⇒ ψ → ϕ,∆)

By inductive hypothesis, the both topmost sequents are derivable; this fact
yields that S is derivable as well.

3. If φ� �ψ, then we generate the following backward proof-search tree:

i7→j , jψ, i�ψ,Γ⇒ jψ,∆ (�⇒)
i7→j , i�ψ,Γ⇒ jψ,∆ (⇒ �)

S � (i�ψ,Γ⇒ i�ψ,∆)

The topmost sequent is derivable, according to inductive hypothesis; hence S
is derivable as well.

All possible types of φ has been considered and the lemma is proved.

Proposition 4.2. The rule
ib = b,Γ⇒ ∆

Γ⇒ ∆ ,

is height-preserving admissible in GHOML.

Proof. The proposition is proved using induction on the height H of the derivation
of the premise. If H = 0, then the premise is an axiom. This fact implies that the
conclusion Γ ⇒ ∆ is an axiom as well and the proof is obtained. Let H > 0 (the
labels are omitted):

· · ·
b = b,Γ⇒ ∆ (r).

1. Let (r) be (→⇒):

b = b,Γ⇒ ∆, φ b = b, ψ,Γ⇒ ∆
b = b, φ→ ψ,Γ⇒ ∆ (→⇒).

According to inductive hypothesis, ` Γ ⇒ ∆, φ and ` ψ,Γ ⇒ ∆. We apply
the rule (→⇒) to these sequents and infer φ→ ψ,Γ⇒ ∆.

2. Let (r) be (c := d):

b = b[c := d],Γ[c := d]⇒ ∆[c := d]
b = b, c = d,Γ⇒ ∆ (c := d).

134

A Labelled Sequent Calculus for HOML

According to inductive hypothesis, ` Γ[c := d]⇒ ∆[c := d]. We apply the rule
(c := d) to this sequent and infer c = d,Γ⇒ ∆.

3. The remaining cases when (r) is another rule of GHOML are dealt with
similarly as the previous one. We get ` S � (Γ′ ⇒ ∆′) from the premise
b = b,Γ′ ⇒ ∆′ of (r), using inductive hypothesis. The required sequent is
obtained by applying (r) to S.

Proposition 4.3. The rule
iα, iα,Γ⇒ ∆
iα,Γ⇒ ∆

is height-preserving admissible in GHOML.

Proof. The proposition is proved using induction on the height H of derivation of
the premise and Proposition 4.2. If H = 0, then the premise is an axiom. This
fact implies that the conclusion is an axiom as well and the proof is obtained. Let
H > 0: · · ·

iα, iα,Γ⇒ ∆ (r).

We consider some characteristic cases of (r) (the labels are omitted).

1. Let (r) be (a := b) and α be a = b:

a = b[a := b],Γ[a := b]⇒ ∆[a := b]
a = b, a = b,Γ⇒ ∆ (a := b).

The facts that a = b[a := b] gives b = b and the premise is derivable yields
` Γ[a := b]⇒ ∆[a := b], using Proposition 4.2. We apply the rule (a := b) to
this sequent and infer a = b,Γ⇒ ∆.

2. Let (r) be (⇒→):
α, α,Γ, φ⇒ ∆, ψ
α, α,Γ⇒ ∆, φ→ ψ

(⇒→).

According to inductive hypothesis, ` α,Γ, φ⇒ ∆, ψ. We apply the rule (⇒→)
to this sequent and infer α,Γ⇒ ∆, φ→ ψ.

3. The cases when (r) is one of the remaining rules of GHOML are considered
in the same way as the previous one: we get ` S � (α,Γ′ ⇒ ∆′) from the
premise α, α,Γ′ ⇒ ∆′ of (r), using inductive hypothesis; the required sequent
is obtained by applying (r) to S.

135

Alonderis and Sakauskaitė

The sequent Γ(i/j)⇒ ∆(i/j) is obtained from the sequent Γ⇒ ∆ by substitut-
ing the label i for j.

Lemma 4.4 (Label substitution). The rule

Γ⇒ ∆
Γ(i/j)⇒ ∆(i/j)

is height-preserving admissible in GHOML.

Proof. The lemma is proved by induction on the height H of the derivation of the
premise. If H = 0, then the premise is an axiom. This fact implies that the
conclusion is an axiom as well. Let H > 0. We consider some typical cases of the
inductive step.

1. Let the derivation of the premise be concluded by

Γ⇒ ∆, jφ jψ,Γ⇒ ∆
jφ→ ψ,Γ⇒ ∆ (→⇒).

According to inductive hypothesis, ` Γ(i/j) ⇒ ∆(i/j), iφ and ` iψ,Γ(i/j) ⇒
∆(i/j). We apply the rule (→⇒) to these sequents and infer the required
sequent iφ→ ψ,Γ(i/j)⇒ ∆(i/j).

2. Let the derivation of the premise be concluded by

S � (j 7→i ,Γ⇒ ∆, iφ)
Γ⇒ ∆, j�φ (⇒ �).

According to inductive hypothesis, ` S(k/i) � (j 7→k ,Γ ⇒ ∆, kφ), where k
does not occur in S. This fact yields

` S(k/i)(i/j)� (i7→k ,Γ(i/j)⇒ ∆(i/j), kφ),

by inductive hypothesis. We apply the rule (⇒ �) to this sequent and infer
the required one Γ(i/j)⇒ ∆(i/j), i�φ.

We had to use the inductive hypothesis twice here, since the label introduced
by (i/j) and the new label introduced in the premise of (⇒ �) coincide.

136

A Labelled Sequent Calculus for HOML

3. Let the derivation of the premise be concluded by

S � (i7→j , jφ, i�φ,Γ⇒ ∆)
i7→j , i�φ,Γ⇒ ∆ (�⇒).

According to inductive hypothesis,

` S(i/j)�
(
i7→i , iφ, i�φ,Γ(i/j)⇒ ∆(i/j)

)
.

We apply the rule (� ⇒) to S(i/j) and infer the required one i�φ,Γ(i/j) ⇒
∆(i/j).

4. The cases when the derivation of the premise is concluded by applying one
of the remaining rules of GHOML are considered in the same way as the
previous one: from the premise S of the considered rule (r), we get ` S(i/j),
using inductive hypothesis; the required sequent is obtained by applying (r)
to S(i/j).

Lemma 4.5 (Variable substitution). The rule

Γ⇒ ∆
Γ[a := b]⇒ ∆[a := b] (Sub)

is height-preserving admissible in GHOML.

Proof. The lemma is proved by induction on the height h of derivation of the premise.
The proof is obvious if h = 0, since the conclusion is an axiom in this case. The
proof is obtained if the substitution (Γ,∆)[a := b] is void. Let the substitution
(Γ,∆)[a := b] be non-void, h > 0, and the derivation of the premise be concluded
by:

1.
S � (ix.x $ c,Γ, iφ[x := c]⇒ ∆)

Γ, ix.φ⇒ ∆ (x.⇒),

where c does not occur in the conclusion.
We consider two sub-cases here (the label ‘i’ is omitted):

(a) the variable c does not occur in {a, b}. According to the inductive hy-
pothesis,

GHOML ` x.x $ c,Γ[a := b], φ[x := b][a := b]⇒ ∆[a := b].

137

Alonderis and Sakauskaitė

(The vacuous substitutions are omitted here and below.) We apply the
rule (x.⇒) to this sequent and infer

Γ[a := b], x.φ[a := b]⇒ ∆[a := b].

(b) the variable c occurs in {a, b}. We choose the variable d which does not
occur either in the conclusion or in {a, b}. According to the inductive
hypothesis,

GHOML ` S[c := d]� (x.x $ d,Γ, φ[x := d]⇒ ∆).

Since the derivation height is not increased, we still can apply the induc-
tive hypothesis to S; hence

GHOML ` x.x $ d,Γ[a := b], φ[x := d][a := b]⇒ ∆[a := b].

We apply the rule (x.⇒) to this sequent and infer

Γ[a := b], x.φ[a := b]⇒ ∆[a := b].

2. let the derivation of the premise of (Sub) be concluded by:

S1 � (c = d, x.x = c, y.y = d,Γ⇒ ∆)
S � (x.x = c, y.y = d,Γ⇒ ∆) (c = d⇒).

We consider two sub-cases here:

(a) let a = c and b = d. The sequent

S1[c := d]� (d = d, x.x = d, y.y = d,Γ[c := d]⇒ ∆[c := d])

is derivable by inductive hypothesis. The proof is obtained by eliminating
d = d from this sequent, using Proposition 4.2.

(b) let a = c and b = e. The sequent

S1[c := e]� (e = d, x.x = e, y.y = d,Γ[c := e]⇒ ∆[c := e])

is derivable, according to the inductive hypothesis. If Γ[c := e] contains
the member e = d, then the proof is obtained by eliminating one oc-
currence of e = d, using Proposition 4.3. Otherwise, we apply the rule
(c = e⇒) to S1[c := e] and infer S[c := e].

138

A Labelled Sequent Calculus for HOML

3. Let the derivation of the premise of (Sub) be concluded by

S1 � (Γ[c := d]⇒ ∆[c := d])
S � (c = d,Γ⇒ ∆) (c := d).

The sequent

S1[a := b]� (Γ[c := d][a := b]⇒ ∆[c := d][a := b])

is derivable in GHOML, based on the inductive hypothesis (if the substitution
[a := b] is void in S1[a := b], e. g., if a and c coincide, then the inductive
hypothesis is not needed). The proof is obtained by applying the rule (c :=
d[a := b]) to this sequent and inferring S[a := b].

4. The cases where the derivation of the premise of (Sub) is concluded by ap-
plying one of the remaining rules of GHOML are easier, since these rules do
not involve manipulation of free variables: from the premise S of the consid-
ered rule (r) application, we get ` S[a := b], using inductive hypothesis; the
required sequent is obtained by applying (r) to S[a := b].

Lemma 4.6. The rule of weakening

Γ⇒ ∆
Π,Γ⇒ ∆,Λ (W),

where Π and Λ are any finite multisets of formulas, is height-preserving admissible
in GHOML.

Proof. The lemma is proved using the inductive hypothesis on height h of the deriva-
tion of the premise.

The base case is obvious, since the premise is an axiom when h = 0.
Let h > 0. We consider the following cases:

1. Let the derivation of the premise be concluded by

(ia = b), (ix.x = a), (iy.y = b),Γ⇒ ∆
(ix.x = a), (iy.y = b),Γ⇒ ∆ (a = b⇒).

We obtain ` Π, (ia = b), (ix.x = a), (iy.y = b),Γ ⇒ ∆,Λ from the premise,
using the inductive hypothesis. If Π 6= (ia = b,Π′), then we apply the rule

139

Alonderis and Sakauskaitė

(a = b⇒) to this sequent and infer

Π, (ix.x = a), (iy.y = b),Γ⇒ ∆,Λ.

Otherwise, we have ` Π′, (ia = b), (ia = b), (ix.x = a), (iy.y = b),Γ ⇒ ∆,Λ.
The latter fact yields

` Π′, (ia = b), (ix.x = a), (iy.y = b),Γ⇒ ∆,Λ,

according to Lemma 4.3, and the lemma is proved in this case.

2. Let the derivation of the premise be concluded by

Γ[a := b]⇒ ∆[a := b]
a = b,Γ⇒ ∆ (a := b).

According to Lemma 4.5, ` Γ[a := b][b := c] ⇒ ∆[a := b][b := c], where c
occurs neither in the conclusion nor in Π,Λ. Hence

` Π,Γ[a := b][b := c]⇒ ∆[a := b][b := c],Λ,

based on inductive hypothesis. The latter fact yields

` S1 � (Π[a := c],Γ[a := b][b := c]⇒ ∆[a := b][b := c],Λ[a := c]),

using Lemma 4.5. We have

S1
S �

(
a = c,Π,Γ[b := c]⇒ ∆[b := c],Λ

) (a := c).

Hence ` S[c := b]�
(
a = b,Π,Γ⇒ ∆,Λ

)
, using Lemma 4.5.

3. Let the derivation of the premise be concluded by

ix.x $ b, iφ[x := b],Γ⇒ ∆
ix.φ,Γ⇒ ∆ (x.⇒).

We obtain ` ix.x $ c, iφ[x := c],Γ ⇒ ∆ from the premise, according to
Lemma 4.5; here c occurs neither in the premise nor in (Π,Λ). Hence

` Π, ix.x $ c, iφ[x := c],Γ⇒ ∆,Λ,

according to the inductive hypothesis. We apply the rule (x.⇒) to this sequent

140

A Labelled Sequent Calculus for HOML

and infer
Π, ix.φ,Γ⇒ ∆,Λ.

4. Let the derivation of the premise be concluded by

Γ⇒ ∆, jφ jψ,Γ⇒ ∆
jφ→ ψ,Γ⇒ ∆ (→⇒).

According to inductive hypothesis, ` Γ,Π ⇒ ∆,Λ, jφ and ` jψ,Γ,Π ⇒
∆,Λ. We apply the rule (→⇒) to these sequents and infer the required one
jφ→ ψ,Γ,Π⇒ ∆,Λ.

5. The remaining cases are considered in the usual way: from the premise Γ′ ⇒ ∆′
of the considered rule (r) application, we get ` S � (Π,Γ′ ⇒ ∆′,Λ). The
required sequent is obtained by applying (r) to S.

Lemma 4.7. All the rules of GHOML are height-preserving invertible.

Proof. The lemma is proved by induction on the height h of the derivation of the
conclusion.

Let us consider the rule (x.⇒). The proof is obvious if h = 0, since the premise
is an axiom in this case. Let h > 0 and let the last step in the derivation of the
conclusion of (x.⇒) be

x.φ,Γ⇒ ∆, ψ1 ψ2, x.φ,Γ⇒ ∆
ψ1 → ψ2, x.φ,Γ⇒ ∆ (→⇒).

(The labels are omitted.) According to inductive hypothesis, ` x.x $ b, φ[x :=
b],Γ ⇒ ∆, ψ1, and ` ψ2, x.x $ b, φ[x := b],Γ ⇒ ∆. We apply (→⇒) to these
sequents and infer the required one

ψ1 → ψ2, x.x $ b, φ[x := b],Γ⇒ ∆.

Let the last step in the derivation of the conclusion be

x.φ,Γ, ψ1 ⇒ ψ2,∆
x.φ,Γ⇒ ψ1 → ψ2,∆

(⇒→).

By inductive hypothesis, ` x.x $ b, φ[x := b],Γ, ψ1 ⇒ ψ2,∆. We apply (⇒→) to
this sequent and infer x.x $ b, φ[x := b],Γ⇒ ψ1 → ψ2,∆.

141

Alonderis and Sakauskaitė

The remaining cases when the last step in the derivation of the conclusion is an
application of another rule (r) of GHOML are dealt with in the same way: from
the premise x.φ,Γ′ ⇒ ∆′ of (r), we get ` x.x $ b, φ[x := b],Γ′ ⇒ ∆′, according to
inductive hypothesis; the required sequent is attained by applying (r) to the latter
sequent.

Invertibility of the remaining rules is proved in the same way, one can see also [7,
9].

Lemma 4.8. The rules of contraction

iφ, iφ,Γ⇒ ∆
iφ,Γ⇒ ∆ (C ⇒), Γ⇒ iφ, iφ,∆

Γ⇒ iφ,∆ (⇒ C)

are height-preserving admissible in GHOML.

Proof. The lemma is proved by induction on the derivation height h of the premise.
If h = 0, then the proof is obtained, since the conclusion is an axiom. Let h > 0 and
the derivation of the premise be concluded by application of a rule (r).

1. Let (r) be (⇒→) (the labels are omitted):

φ, φ,Γ, ψ1 ⇒ ∆, ψ2
φ, φ,Γ⇒ ∆, ψ1 → ψ2

(⇒→).

According to inductive hypothesis, ` φ,Γ, ψ1 ⇒ ∆, ψ2. We apply the rule
(⇒→) to this sequent and infer φ,Γ⇒ ∆, ψ1 → ψ2.

All the cases when the principal formula of (r) is not the contraction formula φ
are considered in the same way: from the premise of (r), we get ` φ,Γ′ ⇒ ∆′ (or
Γ′ ⇒ ∆′, φ, when the second contraction rule is considered), using inductive
hypothesis; the required sequent is obtained by applying (r) to the latter
sequent.

2. Let (r) be (⇒ x.) (the labels are omitted):

x.x $ b,Γ⇒ ∆, x.φ, φ[x := b]
Γ⇒ ∆, x.φ, x.φ (⇒ x.).

From the premise we get

` x.x $ c, x.x $ b,Γ⇒ ∆, φ[x := c], φ[x := b],

142

A Labelled Sequent Calculus for HOML

based on Lemma 4.7. Applying Lemma 4.5 with [c := b] to this sequent we
obtain

` x.x $ b, x.x $ b,Γ⇒ ∆, φ[x := b], φ[x := b].

Hence ` x.x $ b,Γ⇒ ∆, φ[x := b], using inductive hypothesis twice. Applying
the rule (⇒ x.) to this sequent, we infer the required one Γ⇒ ∆, x.φ.
The admissibility of the rule (C ⇒) when the contraction formula x.φ is the
principal formula of (x.⇒) is considered in the same way.

3. Let (r) be (⇒ �):
i7→j ,Γ⇒ ∆, iφ, j�φ

Γ⇒ ∆, i�φ, i�φ (⇒ �).

From the premise we get

` i7→j , i7→k ,Γ⇒ ∆, jφ, kφ,

based on Lemma 4.7. Substituting j for k in this sequent and using Lemma 4.4,
we obtain

` i7→j , i7→j ,Γ⇒ ∆, jφ, jφ.

Hence ` S � (i7→j ,Γ ⇒ ∆, jφ), using inductive hypothesis twice. The re-
quired sequent Γ⇒ ∆, i�φ is obtained by applying (⇒ �) to S.

4. Let (r) be (�⇒):
i7→j , jφ, i�φ, i�φ,Γ⇒ ∆
i7→j , i�φ, i�φ,Γ⇒ ∆ (�⇒).

According to inductive hypothesis, ` i7→j , jφ, i�φ,Γ ⇒ ∆. We apply the rule
(�⇒) to this sequent and infer the required one i7→j , i�φ,Γ⇒ ∆.
The cases when (r) is an equality rule are considered in the same way: from the
premise φ′, φ′,Γ′ ⇒ ∆′ (or Γ′ ⇒ ∆′, φ′, φ′) of (r) we get ` S � (φ′,Γ′ ⇒ ∆′)
(or ` S � (Γ′ ⇒ ∆′, φ′)). The required sequent is obtained by applying (r) to
S. As a special case, see item 1 of the proof of Lemma 4.3.

5. Let (r) be (→⇒) (the labels are omitted):

φ→ ψ,Γ⇒ ∆, φ ψ, φ→ ψ,Γ⇒ ∆
φ→ ψ, φ→ ψ,Γ⇒ ∆ (→⇒).

We get ` Γ ⇒ ∆, φ, φ, from the left premise and ` ψ,ψ,Γ ⇒ ∆ from the
right one, using the fact that the rule (→⇒) is invertible (Lemma 4.7). Hence
` S1 � (Γ ⇒ ∆, φ) and ` S2 � (ψ,Γ ⇒ ∆), based on inductive hypothesis.

143

Alonderis and Sakauskaitė

The required sequent φ→ ψ,Γ⇒ ∆ is obtained by applying (→⇒) to S1 and
S2.
The cases when (r) is one of the remaining propositional rules are considered
in the same way, using Lemma 4.7 and inductive hypothesis.

Proposition 4.9. The rule

S � (ia = b,Γ⇒ ∆)
Γ⇒ ∆ ,

where b does not occur in Γ⇒ ∆, is height-preserving admissible in GHOML.

Proof. If ` S, then ` S[b := a] � (ia = a,Γ ⇒ ∆), based on Lemma 4.5; hence
` Γ⇒ ∆, according to Proposition 4.2.

Proposition 4.10. The rule

ix.x $ b,Γ⇒ ∆
Γ⇒ ∆ ,

where b does not occur in Γ⇒ ∆, is height-preserving admissible in GHOML.

Proof. The proposition is proved by induction on the height h of derivation of the
premise. If h = 0, then the proof is obtained, since the conclusion is an axiom in
this case. Let h > 0 and the derivation of the premise be concluded by:

1.
x.x $ b,Γ, φ⇒ ψ,∆
x.x $ b,Γ⇒ φ→ ψ,∆ (⇒→)

(the labels are omitted). It is true that ` Γ, φ ⇒ ψ,∆, according to the
inductive hypothesis. We apply (⇒→) to this sequent and infer Γ⇒ φ→ ψ,∆.

2. The remaining cases are considered in the same way as the previous one, using
the inductive hypothesis. (Note that he derivation of the premise cannot be
concluded by the application of (b = c⇒), since the side condition of this rule
requires that both b and c occur in the context formulas.)

144

A Labelled Sequent Calculus for HOML

Proposition 4.11. The rule

(ix.σ1 θ σ2), (iy.σ3 ξ σ4),Γ⇒ ∆
(ix.σ1 θ σ2),Γ⇒ ∆

is height-preserving admissible in GHOML. Here: 1) θ, ξ ∈ {=,$}, 2) {σ1, σ2}�
{x, b}, and 3) {σ3, σ4}� {y, b}.
Proof. The proposition is proved by induction on the height h of the derivation of
the premise. If h = 0, then the proof is obtained, since the premise is an axiom in
this case. Let h > 0:

· · ·
(ix.σ1 θ σ2), (iy.σ3 ξ σ4),Γ⇒ ∆ (r).

1. Let (r) be (y.⇒) (the labels are omitted):

S �
(
(x.x $ b), (y.y $ b), d = b,Γ⇒ ∆

)

(x.x $ b), (y.y = b),Γ⇒ ∆ (y.⇒).

We have
` S[d := b]� (x.x $ b), (y.y $ b), b = b,Γ⇒ ∆,

according to Lemma 4.5. Hence

` (x.x $ b), (y.y $ b),Γ⇒ ∆,

based on Proposition 4.2. The latter fact yields ` (x.x $ b),Γ ⇒ ∆, using
inductive hypothesis.

2. The remaining cases are similar or considered using only the inductive hypoth-
esis.

Proposition 4.12. The rule

Γ⇒ ∆, ib = a,

Γ⇒ ∆, ia = b,

is admissible in GHOML.
Proof. The proposition is proved by induction on the height h of derivation of the
premise. Let h = 0 and the premise be the axiom b = a,Γ ⇒ ∆, b = a (the labels
are omitted). The required sequent is derived as follows:

145

Alonderis and Sakauskaitė

Γ[b := a]⇒ ∆[b := a], a = b[b := a] (b := a).
b = a,Γ⇒ ∆, a = b

In the remaining cases, the fact that the premise is an axiom implies that the
conclusion is an axiom as well.

Let h > 0 (the labels are omitted):

· · ·
Γ⇒ ∆, b = a

(r).

1. Let (r) be (b := d):

Γ[b := d]⇒ ∆[b := d], b = a[b := d]
b = d,Γ⇒ ∆, b = a

(b := d).

According to inductive hypothesis, ` S � (Γ[b := d] ⇒ ∆[b := d], a = b[b :=
d]). The required sequent b = d,Γ⇒ ∆, a = b is obtained by applying the rule
(b := d) to S.

2. The cases when (r) is (π1 := π2), where π1 and π2 are some free variables and
{π1, π2} ∩ {a, b} 6� ∅, are considered similarly as case 1.

3. Let (r) be (⇒→):
Γ, φ ⇒ ∆, b = a, ψ

Γ ⇒ ∆, b = a, φ→ ψ
(⇒→).

According to inductive hypothesis, ` S � (Γ, φ ⇒ ∆, a = b, ψ). The required
sequent Γ ⇒ ∆, a = b, φ→ ψ is obtained by applying the rule (⇒→) to S.

4. The cases where:

(a) (r) is not (π1 := π2) (where π1 and π2 are some free variables) or
(b) (r) is (π1 := π2), where {π1, π2} ∩ {a, b}� ∅,

are considered similarly as the previous one: form the premise Γ′ ⇒ ∆′, b = a
of (r), we get S � (Γ′ ⇒ ∆′, a = b), using inductive hypothesis; the required
sequent is obtained by applying (r) to S.

Proposition 4.13. The rule
Γ⇒ ∆,⊥

Γ⇒ ∆
is height-preserving admissible in GHOML.

146

A Labelled Sequent Calculus for HOML

Proof. The proposition is proved by induction on the height of the premise.

Theorem 4.14. The rule of cut

Γ⇒ ∆, iφ iφ,Π⇒ Λ
Γ,Π⇒ ∆,Λ (cut)

is admissible in GHOML.

Proof. The theorem is proved by induction on the ordered pair 〈g, h〉, where g is the
complexity of the formula φ and h is the sum of the derivation heights of the cut
premises.

If h = 0, then the (cut) premises are axioms irrespective of g. One can see that
the (cut) conclusion is an axiom in this case as well, and the proof is obtained. Let
h > 0 and g ≥ 0. We use the expression ‘(cut)-g’ or ‘(cut)-h’ to denote that the rule
of cut is admissible by induction on g or h, correspondingly. First we consider the
cases when one of the (cut) premises is an axiom.

I.1. The left premise of (cut) be an axiom:

Γ⇒ ∆, φ
· · · (r)

φ,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

If φ is an atomic formula and Γ � (φ,Γ′), then the conclusion of (cut) is
obtained from the right premise by weakening and Lemma 4.6.
If φ is b = b, then we get ` Π ⇒ Λ from the right premise, according to
Lemma 4.2. The conclusion of (cut) is obtained from this sequent by weakening
and Lemma 4.6.
Otherwise, the sequent Γ⇒ ∆ is an axiom which implies that the conclusion
of (cut) is an axiom, as well.

I.2. Let the right premise of (cut) be an axiom:

· · · (r)Γ⇒ ∆, φ φ,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

If φ is an atomic formula and Λ � (φ,Λ′), then the conclusion of (cut) is
obtained from the left premise by weakening and Lemma 4.6.

147

Alonderis and Sakauskaitė

If φ� ⊥, then we get ` Γ⇒ ∆ from the left premise, using Proposition 4.13.
The required sequent is obtained from this sequent by the rule of weakening,
using Lemma 4.6.
Otherwise, the sequent Π⇒ Λ is an axiom which implies that the conclusion
of (cut) is an axiom, as well.

From now on, we assume that neither of the (cut) premises is an axiom.

II.1. Let the derivation of the left (cut) premise be concluded by the application of
rule (a := b):

(Γ⇒ ∆, φ)[a := b] (a := b)
a = b,Γ⇒ ∆, φ

· · ·
φ,Π⇒ Λ (cut)

a = b,Γ,Π⇒ ∆,Λ

This derivation is transformed into

(Γ⇒ ∆, φ)[a := b]
φ,Π⇒ Λ

Sub[a := b](φ,Π⇒ Λ)[a := b] (cut)-h(Π,Γ⇒ Λ,∆)[a := b] (a := b)
a = b,Π,Γ⇒ Λ,∆

The rule Sub[a := b] is height-preserving admissible, according to Lemma 4.5.

II.2. Let the derivation of the left (cut) premise be concluded by a rule application
where the cut formula is not principal:

Γ′ ⇒ ∆′, φ (r)1Γ⇒ ∆, φ
· · · (r)2

φ,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

(here (r)1 is not (a := b); this case has been dealt with in case II.1 of the
present proof). These cases are considered as follows:

Γ′ ⇒ ∆′, φ φ,Π⇒ Λ (cut)-h
Γ′,Π⇒ ∆′,Λ (r)1Γ,Π⇒ ∆,Λ

II.3 Let the derivation of the right (cut) premise be concluded by the application
of the rule (a := b). The derivation:

148

A Labelled Sequent Calculus for HOML

· · ·
Γ⇒ ∆, φ

(φ,Π⇒ Λ)[a := b] (a := b)
φ, a = b,Π⇒ Λ (cut)

a = b,Γ,Π⇒ ∆,Λ

is transformed into

Γ⇒ ∆, φ
Sub[a := b](Γ⇒ ∆, φ)[a := b] (φ,Π⇒ Λ)[a := b] (cut)-h(Γ,Π⇒ ∆,Λ)[a := b] (a := b)

a = b,Γ,Π⇒ ∆,Λ

The rule Sub[a := b] is height-preserving admissible, according to Lemma 4.5.
The consideration of derivations of the shape

· · · (r)1Γ⇒ ∆, a = b

(Π⇒ Λ)[a := b] (a := b)
a = b,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

is covered by cases II.1 and II.2 of the present proof.

II.4 Let the derivation of the right (cut) premise be concluded by a rule application
where the cut formula is not principal:

· · · (r)1Γ⇒ ∆, φ
φ,Π′ ⇒ Λ′ (r)2
φ,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

(here (r)2 is not (a := b); this case has been dealt with in case II.3 of the
present proof). These cases are considered as follows:

Γ⇒ ∆, φ φ,Π′ ⇒ Λ′ (cut)-h
Γ,Π′ ⇒ ∆,Λ′ (r)2Γ,Π⇒ ∆,Λ

We have considered the cases where the derivation of the left or the right (cut)
premise is concluded by an application of the rule (a := b) and the cases where the
cut formula is not principal in the derivation of the left or the right (cut) premise.
From now on, we deal with the remaining cases where the derivation of neither (cut)
premise is concluded by the rule (a := b) and where the cut formula is principal in
the last step of the derivations of the left and the right (cut) premises.

149

Alonderis and Sakauskaitė

III.1. If the (cut) formula is ix.φ, where x occurs in φ, then:
(i) the derivation

ix.x $ b,Γ⇒ ∆, iφ[x := b] (⇒ x.)
Γ⇒ ∆, ix.φ

ix.x $ c, iφ[x := c],Π⇒ Λ (x.⇒)
ix.φ,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

is transformed into

x.x $ b,Γ⇒ ∆, φ[x := b]
Sub[b := d]

x.x $ d,Γ⇒ ∆, φ[x := d]
x.x $ c, φ[x := c],Π⇒ Λ

Sub[c := d]
x.x $ d, φ[x := d],Π⇒ Λ

(cut)-h
x.x $ d, x.x $ d,Γ,Π⇒ ∆,Λ (C ⇒)

x.x $ d,Γ,Π⇒ ∆,Λ Proposition 4.10Γ,Π⇒ ∆,Λ

(The labels are omitted.) Here d does not occur in Γ,Π ⇒ ∆,Λ. The rules
Sub[b := d], Sub[c := d], and (C ⇒) are height-preserving admissible, accord-
ing to Lemmas 4.5 and 4.8, respectively.
(ii) the derivation

x.x $ d,Γ⇒ ∆, d = a (⇒ x.)Γ⇒ ∆, x.x = a

a = b, x.x = a, y.y = b,Π⇒ Λ (a = b⇒)
x.x = a, y.y = b,Π⇒ Λ (cut)

y.y = b,Γ,Π⇒ ∆,Λ

is transformed into

x.x $ d,Γ⇒ ∆, d = a (r)
x.x $ b,Γ⇒ ∆, b = a (r1)
x.x $ b,Γ⇒ ∆, a = b

Σ1 a = b, x.x = a, y.y = b,Π⇒ Λ (cut)-h
a = b, y.y = b,Π,Γ⇒ ∆,Λ (cut)-g

x.x $ b, y.y = b,Γ,Γ,Π⇒ ∆,∆,Λ Proposition 4.11
y.y = b,Γ,Γ,Π⇒ ∆,∆,Λ (C ⇒)
y.y = b,Γ,Π⇒ ∆,∆,Λ (⇒ C)
y.y = b,Γ,Π⇒ ∆,Λ

Here Σ1 � (Γ ⇒ ∆, x.x = a). The rules (r) � Sub[d := b] and (r1) are
admissible, according to Lemma 4.5 and Proposition 4.12, respectively; the
rules (⇒ C) and (C ⇒) are admissible, according to Lemma 4.8.

150

A Labelled Sequent Calculus for HOML

III.2 The derivation

i7→k ,Γ⇒ ∆, kφ (⇒ �)
Γ⇒ ∆, i�φ

i7→j , jφ, i�φ,Π⇒ Λ (�⇒)
i7→j , i�φ,Π⇒ Λ (cut)

i7→j ,Γ,Π⇒ ∆,Λ

is transformed into

i7→k ,Γ⇒ ∆, kφ (j/k)
i7→j ,Γ⇒ ∆, jφ

Γ⇒ ∆, i�φ i7→j , jφ, i�φ,Π⇒ Λ (cut)-h
i7→j , jφ,Γ,Π⇒ ∆,Λ (cut)-g

i7→j , i7→j ,Γ,Γ,Π⇒ ∆,∆,Λ
Lemma 4.8

i7→j ,Γ,Π⇒ ∆,Λ

The rule (j/k) is admissible, according to Lemma 4.4.

III.3 The derivation

Γ, φ⇒ ∆, ψ (⇒→)Γ⇒ ∆, φ→ ψ

Π⇒ Λ, φ ψ,Π⇒ Λ (→⇒)
φ→ ψ,Π⇒ Λ (cut)Γ,Π⇒ ∆,Λ

is transformed into

Π⇒ Λ, φ Γ, φ⇒ ∆, ψ (cut)-hΓ,Π⇒ ∆,Λ, ψ ψ,Π⇒ Λ (cut)-gΓ,Π,Π⇒ ∆,Λ,Λ
Lemma 4.8Γ,Π⇒ ∆,Λ

Proposition 4.15. The rule
⇒ iφ

⇒ i�φ
(�)

is admissible in GHOML.

Proof. The proposition is proved as follows:

151

Alonderis and Sakauskaitė

⇒ iφ (j/i), Lemma 4.4
⇒ jφ (W), Lemma 4.6

i7→j ⇒ jφ (⇒ �)
⇒ i�φ

Proposition 4.16. The sequent

i�(φ1 → φ2)⇒ i�φ1 → �φ2

is derivable in GHOML.

Proof. The proposition is proved as follows:

Σ1 i7→j , jφ1, jφ2, i�(φ1 → φ2), i�φ1 ⇒ jφ2 (→⇒)
i7→j , jφ1, jφ1 → φ2, i�(φ1 → φ2), i�φ1 ⇒ jφ2 (�⇒)

i7→j , jφ1, i�(φ1 → φ2), i�φ1 ⇒ jφ2 (�⇒)
i7→j , i�(φ1 → φ2), i�φ1 ⇒ jφ2 (⇒ �)
i�(φ1 → φ2), i�φ1 ⇒ �iφ2 (⇒→)
i�(φ1 → φ2)⇒ i�φ1 → �φ2

Here Σ1 � (i7→j , jφ1, i�(φ1 → φ2), i�φ1 ⇒ jφ2, jφ1). If φ1 and φ2 are non-atomic
formulas, then we make use of Lemma 4.1.

Proposition 4.17. The rule

iφ⇒ iψ
i�φ⇒ i�ψ

(�)1

is admissible in GHOML.

Proof. The proposition is proved as follows:
iφ⇒ iψ (⇒→)
⇒ iφ→ ψ (�)
⇒ i�(φ→ ψ) i�(φ1 → φ2)⇒ i�φ1 → �φ2 (cut)

i�φ⇒ i�ψ

The rules (�) and (cut) are admissible, based on Proposition 4.15 and Theorem 4.14,
respectively. The right premise of (cut) is derivable, according to Proposition 4.16.

152

A Labelled Sequent Calculus for HOML

Proposition 4.18. The sequents
1. ix.(φ1 → φ2)⇒ iφ1 → x.φ2, where x does not occur in φ1, and

2. iφ1 → x.�φ2 ⇒ iφ1 → �x.φ2,
are derivable in GHOML.
Proof. The first sequent is considered by generating the following backward proof-
search tree:

x.x $ a, ix.x $ a, iφ1 ⇒ iφ2[x := a], iφ1[x := a] S (→⇒)
iφ1[x := a]→ φ2[x := a], x.x $ a, ix.x $ a, iφ1 ⇒ iφ2[x := a] (b := a)

b = a, iφ1[x := b]→ φ2[x := b], x.x $ b, ix.x $ a, iφ1 ⇒ iφ2[x := a] (b = a⇒)
iφ1[x := b]→ φ2[x := b], x.x $ b, ix.x $ a, iφ1 ⇒ iφ2[x := a] (x.⇒)

ix.x $ a, ix.(φ1 → φ2), iφ1 ⇒ iφ2[x := a] (⇒ x.)
ix.(φ1 → φ2), iφ1 ⇒ ix.φ2 (⇒→)
ix.(φ1 → φ2)⇒ iφ1 → x.φ2

Here it is true that φ1[x := a] is the same formula as φ1, since x does not occur in
φ1; hence the left leaf is derivable, based on Lemma 4.1; the right leaf

S � (iφ2[x := a], x.x $ a, ix.x $ a, iφ1 ⇒ iφ2[x := a])

is derivable, according to Lemma 4.1.

The consideration of the second sequent is left to the reader.
Proposition 4.19. The sequent

ix.(φ1 ↪→ · · · ↪→ φn ↪→ ψ)⇒ iφ1 ↪→ · · · ↪→ φn ↪→ x.ψ ,

where the notation is the same as in the quantifier rule Q2, is derivable in GHOML.
Proof. The proposition is proved by induction on the number m of ‘↪→’.

Let m = 1. We have:
ix.(φ→ �ψ)⇒ iφ→ x.�ψ iφ→ x.�ψ ⇒ iφ→ �x.ψ (cut).

ix.(φ→ �ψ)⇒ iφ→ �x.ψ

The (cut) premises are derivable (Proposition 4.18) and the rule (cut) is admissible
in GHOML (Theorem 4.14).

Let m > 1. We denote φk ↪→ · · · ↪→ φn ↪→ ψ by F (k, n), and φk ↪→ · · · ↪→
φn ↪→ x.ψ by G(k, n). According to this notation, the required sequent becomes
x.F (1, n)⇒ G(1, n). We have:

153

Alonderis and Sakauskaitė

x.F (1, n)⇒ φ1 → x.�F (2, n) φ1 → x.�F (2, n)⇒ φ1 → �G(2, n) (cut)
x.F (1, n)⇒ G(1, n)

(the labels are omitted). The left premise is derivable, according to item 1 of Propo-
sition 4.18. The right premise is considered as follows:

φ1 → x.�F (2, n)⇒ φ1 → �x.F (2, n) φ1 → �x.F (2, n)⇒ φ1 → �G(2, n) (cut)
φ1 → x.�F (2, n)⇒ φ1 → �G(2, n)

The left premise is derivable, according to item 2 of Proposition 4.18. The right
premise is considered as follows:

φ1 ⇒ φ1,�G(2, n)

x.F (2, n)⇒ G(2, n) (�)1
�x.F (2, n)⇒ �G(2, n) (W)

�x.F (2, n), φ1 ⇒ �G(2, n) (→⇒)
φ1 → �x.F (2, n), φ1 ⇒ �G(2, n) (⇒→)
φ1 → �x.F (2, n)⇒ φ1 → �G(2, n)

The left leaf is derivable, according to Proposition 4.1. The rules (W) and (�)1 are
admissible, based on Lemma 4.6 and Proposition 4.17, respectively. The right leaf
is derivable, by the inductive hypothesis.

We say that the formula φ is derivable in GHOML, iff the sequent ⇒ iφ is
derivable in GHOML.

Proposition 4.20. The rule Q2∗ of HHOML is admissible in GHOML.

Proof. The proposition is proved as follows:

⇒ iφ[x := b] (W)
ix.x $ b⇒ iφ[x := b] (⇒ x.)

⇒ ix.φ

The rule (W) is admissible, based on Lemma 4.6.

Proposition 4.21. The rule Q2 of HHOML is admissible in GHOML.

Proof. The proposition is proved as follows (the labels are omitted):

⇒ φ1 ↪→ · · · ↪→ φn ↪→ ψ[x := b]
Q2∗⇒ x.(φ1 ↪→ · · · ↪→ φn ↪→ ψ) Σ1 (cut)⇒ φ1 ↪→ · · · ↪→ φn ↪→ x.ψ

154

A Labelled Sequent Calculus for HOML

Here Σ1 �
(
x.(φ1 ↪→ · · · ↪→ φn ↪→ ψ)⇒ φ1 ↪→ · · · ↪→ φn ↪→ x.ψ

)
. The right premise

of (cut) is derivable, according to Proposition 4.19. The rules (cut) and Q2∗ are
admissible, based on Theorem 4.14 and Proposition 4.20, respectively.

Lemma 4.22. All the axioms of HHOML are derivable in GHOML and all the
rules of HHOML are admissible in GHOML.

Proof. Propositional tautologies are derivable in GHOML, since the sub-calculus
of GHOML consisting of the axiom schema Γ, iα ⇒ ∆, iα and the propositional
rules is complete for classical propositional logic, [7, 9].

The derivability of axiom schema K1 in GHOML follows from Proposition 4.16.
The rule K2 is admissible in GHOML, according to Proposition 4.15.
To prove that the axiom schema Q1 is derivable in GHOML, we have to show

that the formulas

x.(φ1 → φ2)→ (x.φ1 → x.φ2) and (x.φ1 → x.φ2)→ x.(φ1 → φ2)

are derivable (the labels are omitted). Let us consider the first formula:

x.x $ a, x.x $ c, x. $ c, φ1[x := c]⇒ φ2[x := a], φ1[x := c]
(b := c)

b = c, x.x $ a, x.x $ b, x. $ c, φ1[x := b]⇒ φ2[x := a], φ1[x := c]
(b = c⇒)

x.x $ a, x.x $ b, x. $ c, φ1[x := b]⇒ φ2[x := a], φ1[x := c] S
(→⇒)

x.x $ a, x.x $ b, x. $ c, (φ1 → φ2)[x := c], φ1[x := b]⇒ φ2[x := a]
(x.⇒)

x.x $ a, x.x $ b, x.(φ1 → φ2), φ1[x := b]⇒ φ2[x := a]
(x.⇒)

x.x $ a, x.(φ1 → φ2), x.φ1 ⇒ φ2[x := a]
(⇒ x.)

x.(φ1 → φ2), x.φ1 ⇒ x.φ2 (⇒→)
x.(φ1 → φ2)⇒ x.φ1 → x.φ2 (⇒→)⇒ x.(φ1 → φ2)→ (x.φ1 → x.φ2)

Here the left leaf is derivable, according to Lemma 4.1; the right leaf

S � (x.x $ a, x.x $ b, x.x $ c, φ1[x := b], φ2[x := a]⇒ φ2[x := c])

is considered as follows:

x.x $ c, x.x $ b, x.x $ c, φ1[x := b][a := c], φ2[x := a][a := c]⇒ φ2[x := c][a := c]
(a := c)

a = c, x.x $ a, x.x $ b, x.x $ c, φ1[x := b], φ2[x := a]⇒ φ2[x := c]
(a = c⇒)

S

Note that φ2[x := a][a := c] and φ2[x := c][a := c] are the same formula φ2[x := c],
because of the requirement that the variable introduced in the premise of the rule

155

Alonderis and Sakauskaitė

(x. ⇒) or (⇒ x.) does not occur in the conclusion, i. e., the variable a does not
occur in φ2[x := c] nor in x.φ2. Hence the topmost sequent is derivable, according
to Lemma 4.1.

We leave to the reader to prove that the second formula and the remaining axiom
schemata are derivable in GHOML.

The rules Q2 and Q2∗ are admissible in GHOML, based on Propositions 4.21
and 4.20, respectively.

If the sequents ⇒ iφ1 and ⇒ iφ1 → φ2 are derivable in GHOML, then the
sequent iφ1 ⇒ iφ2 is derivable in GHOML as well, based on Lemma 4.7. Hence
GHOML ` iφ2, using Theorem 4.14. We get that rule PROP2 is admissible in
GHOML.

Theorem 4.23. The calculus GHOML is complete for HOML−f : if |= φ, then
the formula φ is derivable in GHOML.

Proof. The proof follows from the fact that HHOML is complete for HOML−f
and Lemma 4.22.

To prove that GHOML is sound for HOML, we extend the definition ofM |=.

M |= x.x $ b iff M |= x.x = b.

If some state in S ofM is labelled with i and some state with j, then

M |= iφ iff M[s0 := si] |= φ,

M |= i7→j iff (si, sj) ∈ →�,

where si and sj are the states labelled with i and j, respectively.
Let

Sq � (i1 7→j1 , . . . , ik 7→jk , l1φ1, . . . ,
lmφm ⇒ lm+1φm+1, . . . ,

lm+nφm+n)

be a sequent, andM be an interpretation. The members of S inM are labelled with
the elements of the set I � {i1, j1, . . . , ik, jk, l1, . . . , lm+n} according to the function

fI : I 3 i 7→ si ∈ S ′ ⊆ S.

We say:

1. (M, fI) |= Sq iff:

156

A Labelled Sequent Calculus for HOML

(a) there is ι ∈ {1, 2, . . . , k} such thatM 6|= iι 7→jι , or
(b) there is ι ∈ {1, 2, . . . ,m} such thatM 6|= lιφι, or
(c) there is ι ∈ {m+ 1,m+ 2, . . . ,m+ n} such that andM |= lιφι.

2. M |= Sq iff (M, fI) |= Sq for each function fI .

3. |= Sq iffM |= Sq for eachM.

If Γ� (θ1, . . . , θm), where each θi (1 ≤ i ≤ m) is a labelled formula or a relation
atom, then λΓ� (θ1λ · · ·λ θm), where λ ∈ {∨,∧}. We sayM |= ∨Γ (M |= ∧Γ), iff
there is ι ∈ {1, . . . ,m} such that (for each 1 ≤ ι ≤ m it is true that)M |= θι.

Lemma 4.24. If GHOML ` S, then |= S.

Proof. The lemma is proved by induction on the derivation height h of S. The proof
is obvious if h = 0. Let h > 0 and the derivation of S be concluded by

ix.x $ b, iφ[x := b],Γ⇒ ∆
ix.φ,Γ⇒ ∆ (x.⇒).

Let M |= ∧(ix.φ,Γ). If the value ui associated with the state i is assigned to b,
then M |= ∧(ix.x $ b, iφ[x := b],Γ). Hence M |= ∨(∆), by inductive hypothesis.
Assume that ui is not assigned to b inM. LetM′ be obtained fromM by assigning
ui to b. Since M |= ∧(ix.φ,Γ) and b does not occur in (x.φ,Γ), it is true that
M′ |= ∧(ix.x $ b, iφ[x := b],Γ). We get M′ |= ∨(∆), according to inductive
hypothesis. HenceM |= ∨(∆), based on the fact that b does not occur in ∆.

Let the derivation of S be concluded by

x.x $ b,Γ⇒ ∆, iφ[x := b]
Γ⇒ ∆, ix.φ (⇒ x.).

Let M |= ∧(x.x $ b,Γ). This condition implies that: 1) M |= ∨(∆, iφ[x := b]),
according to inductive hypothesis, and 2) M |= x.x $ b. From 2), we have that
the value ui associated with the state i is assigned to b. This fact and 1) yield
M |= ∨(∆, ix.φ), based on the definition of the freeze quantifier.

Let the derivation of S be concluded by

i7→j ,Γ⇒ jφ,∆
Γ⇒ i�φ,∆ (⇒ �).

LetM |= (∧Γ). IfM |= (∨∆), thenM |= S. Assume thatM 6|= (∨∆). If there is
no k such that (si, sk) ∈ →�, thenM |= i�φ and the proof is obtained. Otherwise,

157

Alonderis and Sakauskaitė

let us take any k such that (si, sk) ∈ →�. According to Lemma 4.5,

` S′ � (i7→k ,Γ⇒ kφ,∆),

where S′ � (i7→j ,Γ⇒ jφ,∆)[j := k]. We apply inductive hypothesis to this sequent
and obtainM |= kφ. Hence,M |= i�φ and the proof is obtained.

Let the derivation of S be concluded by

ia = b, (ix.x = a), (iy.y = b),Γ⇒ ∆
(ix.x = a), (iy.y = b),Γ⇒ ∆ (a = b⇒).

If M |= ∧(
(ix.x = a), (iy.y = b),Γ

)
, then M |= a = b, since if the free variables a

and b are equal to the value associated with the same state i, then it is true that the
values of a and b are equal between themselves. This yieldsM |= ∧(

a = b, (ix.x =
a), (iy.y = b),Γ

)
. Hence, M |= ∨(∆), according to inductive hypothesis and the

proof is obtained.
The remaining cases are considered using the inductive hypothesis.

Theorem 4.25. The calculus GHOML is sound for HOML−f : if an arbitrary
formula φ is derivable in GHOML, then |= φ.

Proof. If GHOML ` (⇒ iφ), then |= (⇒ iφ), according to Lemma 4.24. Hence
|= φ, based on the definition of |=.

5 Decision
Lemma 5.1. The equality rules permute up with respect to each GHOML rule.

Proof. The lemma is proved by transforming derivations, e. g., the derivation

x.x $ d, b = c, y.y = b, z.z = c,Γ⇒ φ[x := d] (⇒ x.)
b = c, y.y = b, z.z = c,Γ⇒ x.φ (b = c⇒)

y.y = b, z.z = c,Γ⇒ x.φ

is transformed into

b = c, x.x $ d, y.y = b, z.z = c,Γ⇒ φ[x := d] (b = c⇒)
x.x $ d, y.y = b, z.z = c,Γ⇒ φ[x := d] (⇒ x.)

y.y = b, z.z = c,Γ⇒ x.φ

The remaining cases are considered similarly.

158

A Labelled Sequent Calculus for HOML

An application of a non-equality rule in proof-search is called irregular if it is
above an application of an equality rule on some path of the proof-search.

A derivation of a sequent is called regular if it has no irregular applications.
The range of a derivation is the number of irregular applications in it.

Lemma 5.2. If a sequent is derivable in GHOML, then the sequent has a regular
derivation.

Proof. The lemma is proved by induction on the range r of derivation. If r = 0, then
the proof is obtained. If r > 0, then we choose some uppermost irregular application
ρ on some branch and permute up the corresponding applications of equality rules,
using Lemma 5.1, so that ρ becomes regular. The induction parameter is reduced,
and we apply the inductive hypothesis.

According to Lemma 5.2, application of equality rules can be postponed till the
moment when the propositional, modal, and quantifier rules are no more applied on
the corresponding branch of the backward proof-search tree. This fact allows us to
separate the variable unification, performed by applying the equality rules, from the
rest of the proof-search in each branch.

Lemma 5.3. The rule (� ⇒) permutes down with respect to each GHOML rule
except (⇒ �). It permutes down with (⇒ �) if the principal relation atom of (�⇒)
is not active in (⇒ �).

Proof. The lemma is proved in the same way as Lemma 6.3 in [7].

The application ν of (�⇒) in a proof-search tree is called superfluous if there is
another application of (� ⇒) with the same pair of principal formulas below ν on
the same branch.

The sum of heights of all the branches of a derivation tree is called the absolute
height of the tree.

Lemma 5.4. If a sequent S is derivable in GHOML, then S has a derivation free
of superfluous applications.

Proof. The lemma is proved by induction on the absolute height h of derivation of
S. If h = 0 or there are no superfluous applications in the derivation, then the proof
is obtained. Otherwise, using Lemma 5.3, we eliminate one superfluous application
by permuting it down and diminish the induction parameter in the same way as in
the proof of Corollary 6.5 in [7].

Lemma 5.5. Each backward GHOML proof-search free of superfluous applications
terminates.

159

Alonderis and Sakauskaitė

Proof. Each premise of each GHOML rule, except (�⇒), (x.⇒), (⇒ x.), and (a =
b⇒) is simpler than the conclusion. The number of backward (�⇒) applications is
finite, based on the facts that there are no superfluous applications and the number
of relation atoms is finite. The number of backward applications of (x. ⇒) and
(⇒ x.) is finite, since each such application diminishes the number of formulas that
have the shape of the principal formulas of these rules. One can see that the number
of backward (a = b⇒) applications is finite because of the side conditions introduced
for this rule.

Let Proc(S) be the following procedure: using calculus GHOML, perform back-
ward, free of superfluous applications proof-search of the sequent ⇒ iφ, where φ is
any formula. It follows from Lemma 4.7, Theorems 4.23, 4.25, and Lemmas 5.4, 5.5
that: 1) the proof-search terminates and 2) the formula φ is valid in HOML−f ,
iff the sequent ⇒ iφ is derivable in GHOML; that is to say Proc(S) is a decision
procedure for HOML−f .

Let us consider some examples. Given the formula

φ �
(
α1 → �α2(b)

)→
(((

α1 → �α3(b)
)→ ⊥

)
→ α4

)
,

where αi (1 ≤ i ≤ 4) are unequal in pairs. We want to determine if it is valid
in HOML−f . Using the calculus GHOML, we generate the following bottom-up
proof-search tree with the sequent ⇒ iφ at the root:

iα1 ⇒ iα4,
i�α3(b), iα1

jα2(b), i7→j , i�α2(b), iα1 ⇒ iα4,
jα3(b)

(�⇒)
i7→j , i�α2(b), iα1 ⇒ iα4,

jα3(b)
(⇒ �)

i�α2(b), iα1 ⇒ iα4,
i�α3(b)

(⇒→)
iα1 → �α2(b), iα1 ⇒ iα4,

i�α3(b)
(⇒→)

iα1 → �α2(b)⇒ iα4,
iα1 → �α3(b) S

(⇒→)
iα1 → �α2(b), i

(
α1 → �α3(b)

)
→ ⊥⇒ iα4 (⇒→)

iα1 → �α2(b)⇒ i
((
α1 → �α3(b)

)
→ ⊥

)
→ α4

(⇒→)
⇒ i

(
α1 → �α2(b)

)
→

(((
α1 → �α3(b)

)
→ ⊥

)
→ α4

)

Here S � (iα1 → �α2(b), i⊥ ⇒ iα4). We see that the left leaf is an axiom, since
it has the same atomic formula α1 both on the left and on the right sides of ‘⇒’.
The sequent S is an axiom as well, since it is of the shape Γ, i⊥ ⇒ ∆. The middle
leaf is not an axiom and no other rule can be backward applied to it, since the

160

A Labelled Sequent Calculus for HOML

application of (� ⇒) with the principal pair
(
i7→j , i�α2(b)

)
would be superfluous

and is needless, according to Lemma 5.4. The fact that all rules of GHOML are
invertible (Lemma 4.7) implies that the order of backward rule application have no
impact on derivability of sequents. We conclude that the root sequent is not derivable
in GHOML, and the considered formula is not valid, according to Theorem 4.23.

Let us consider another formula

φ1 �
(
ψ(a)→ y.α(y)

)→
(
a = b→ x.

(
ψ(b)→ α(x)

))
,

where ψ is any formula. As in the previous case, we generate the following bottom-up
proof-search tree with the sequent ⇒ iφ1 at the root:

D

iy.y $ d, ix.x $ d, iα(d), iψ(b)⇒ iα(d) (e := d)
ie = d, iy.y $ e, ix.x $ d, iα(e), iψ(b)⇒ iα(d) (e = d⇒)

iy.y $ e, ix.x $ d, iα(e), iψ(b)⇒ iα(d) (y.⇒)
ix.x $ d, iy.α(y), iψ(b)⇒ iα(d) (⇒→)
ix.x $ d, iy.α(y)⇒ iψ(b)→ α(d) (⇒ x.)

iy.α(y)⇒ ix.
(
ψ(b)→ α(x)

)
(→⇒)

iψ(b)→ y.α(y)⇒ ix.
(
ψ(b)→ α(x)

)
(a := b)

iψ(a)→ y.α(y), ia = b⇒ ix.
(
ψ(b)→ α(x)

)
(⇒→)

iψ(a)→ y.α(y)⇒ ia = b→ x.
(
ψ(b)→ α(x)

)
(⇒→)

⇒ i
(
ψ(a)→ y.α(y)

)→
(
a = b→ x.

(
ψ(b)→ α(x)

))

Here D stands for

ix.x $ d, iψ(b)⇒ iα(d), iψ(b) (⇒→)
ix.x $ d⇒ iψ(b)→ α(d), iψ(b) (→ x.)
⇒ ix.

(
ψ(b)→ α(x)

)
, iψ(b)

The left leaf of this tree is derivable, according to Lemma 4.1, while the right
leaf is an axiom. We conclude that the root sequent is derivable in GHOML and
the formula φ1 is valid, based on Theorem 4.25.

6 Concluding remarks
In the present paper, we have introduced the sequent calculus GHOML and proved
admissibility of the structural and cut rules in the calculus, invertibility of all the

161

Alonderis and Sakauskaitė

rules, soundness and completeness of GHOML with respect to the half-order modal
logic without function symbols. We have showed that the considered half-order
modal logic without function symbols is decidable by describing the decision proce-
dure.

Similar results can be obtained for the other half-order modal logics such as
the logic HOMLS5 based on modal logic S5 and its sub-logics, e. g., HOMLT
based on modal logic T. The sequent calculi for these logics are obtained by adding
additional rules for relation atoms so that the properties of the accessibility relation
are captured, see [7].

The sequent calculus GHOMLT is obtained from GHOML by adding the rule

i7→i ,Γ⇒ ∆
Γ⇒ ∆ (Ref),

where i7→i does not occur in the conclusion, and the label i occurs in the conclusion.
The sequent calculus GHOMLS4 is obtained from GHOMLT by adding the

rule

i7→l , i7→j , j 7→l ,Γ⇒ ∆
i7→j , j 7→l ,Γ⇒ ∆ (Trans),

where i7→l does not occur in the conclusion.
The sequent calculus GHOMLS5 is obtained from GHOMLS4 by adding the

rule

j 7→i , i7→j ,Γ⇒ ∆
i7→j ,Γ⇒ ∆ (Sym),

where j 7→i does not occur in the conclusion.
Since GHOML and the above calculi differ only in the rules for relation atoms,

it is not difficult to adapt the proofs in the present paper to these new calculi. For
decidability proof of HOMLθ (θ ∈ {S4, S5}), Proposition 6.9 given in [7] is needed.
The proof of the proposition can be adapted to the half-order logics. As far as the
eigenvariables of rules (x.⇒) and (⇒ x.) are concerned, we apply Lemma 4.5 along
with Lemma 4.4 instead of Lemma 4.3 in the proof in [7], so that the correspond-
ing formulas could be contracted, if the variables occur in them. We assume that
all derivations are regular, which implies that the eigenvariables occur only in the
active formulas of the quantifier rules and in their offspring at the moment of the
substitution.

The calculus GHOML is not complete for HOML if the function symbols are
presented, e. g., the sequent b = f(b), α

(
f(b)

)⇒ α(b) is not derivable in GHOML

162

A Labelled Sequent Calculus for HOML

(the labels are omitted):

α
(
ff(b)

)⇒ α
(
f(b)

)

b = f(b), α
(
f(b)

)⇒ α(b)
(
b := f(b)

)
,

where f is a unary function symbol and ff(b) stands for f
(
f(b)

)
. Another equality

rule, e. g.,

ib = π, (Γ⇒ ∆)〈b := π〉
ib = π,Γ⇒ ∆ (b := π),

where π is a first-order term, is needed.

References
[1] R. Alonderis, Proof-Theoretical Investigation of Temporal Logic with Time Gaps. Lit.

Math. Journal, 40(3), 255–276, (2000).
[2] T. A. Henzinger. Half-order Modal Logic: How To Prove Real-time Properties. Proceed-

ings of the 9th ACM Symposium on Principles of Distributed Computing, pp. 43–56,
1990.

[3] Halpern, J. Y., and Moses, Y. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54, pp. 319–379 (1992)

[4] J. Hudelmaier. A Contraction-Free Sequent Calculus for S4. Proof Theory of Modal
Logic, Kluwer pp. 3–15 (1996).

[5] N. Nide and S. Takata, Deduction systems for BDI logic using sequent calculus. In
Proc. AAMASâĂŹ02 928–935 (2002).

[6] R. Pliuškevičius, Aida Pliuškevičienė. A New Method to Obtain Termination in Back-
ward Proof Search For Modal Logic S4. J. Log. Comput. 20(1) 353-379 (2010).

[7] S. Negri. Proof analysis in modal logic, Journal of Philosophical Logic 34 pp. 507–544,
(2005).

[8] G. Takeuti. Proof Theory, North-Holland, Amsterdam (1975).
[9] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, Cambridge University Press

second edition (2000).
[10] H. Wansing. Sequent Calculi for Normal Modal Propositional Logics, J. Logic Comput.

4(2) 125–142 (1994).

Received 13 June 2016163

164

On epicomplete MV -algebras

Anatolij Dvurečenskij
Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia and

Palacký University, Olomouc, Czech Republic.
dvurecen@mat.savba.sk

Omid Zahiri
University of Applied Science and Technology, Tehran, Iran.

zahiri@protonmail.com

Abstract
The aim of the paper is to study epicomplete objects in the category of

MV -algebras. A relation between injective MV -algebras and epicomplete MV -
algebras is found, an equivalent condition for an MV -algebra to be epicomplete
is obtained, and it is shown that the class of divisible MV -algebras and the class
of epicomplete MV -algebras coincide. Finally, the concept of epicompletion of
an MV -algebra is introduced, and the conditions under which an MV -algebra
has an epicompletion are obtained. As a result we show that each MV -algebra
has an epicompletion.

AMS Mathematics Subject Classification (2010): 06D35, 06F15, 06F20
Keywords: MV -algebra, Epicomplete MV -algebra, Divisible MV -algebra, In-

jective MV -algebra, Epicompletion, a-closed MV -algebra.

1 Introduction
Epicomplete objects are interesting objects in each category. Many researches stud-
ied these objects in the category of lattice ordered groups (ℓ-group). Pedersen [28]
defined the concept of an a-epimorphism in this category. It is an ℓ-homomorphism
which is also an epimorphism in the category of all torsion free Abelian groups.
Anderson and Conrad [1] proved that each epimorphism in the category of Abelian
ℓ-groups is an a-epimorphism. They showed that an Abelian ℓ-group G is epicom-
plete if and only if it is divisible. They also studied epicomplete objects in some

This work was supported by grant VEGA No. 2/0069/16 SAV and GAČR 15-15286S.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Dvurečenskij and Zahiri

subcategories of Abelian ℓ-groups. In particular, they proved that epicomplete ob-
jects in the category of Abelian o-groups (linearly ordered groups) with complete
o-homomorphisms are the Hahn groups. Darnel [10] continued to study these objects
and showed that any completely distributive epicomplete object in the category C of
Abelian ℓ-groups with complete ℓ-homomorphisms is V (Γ,R) for some root system
Γ, where V (Γ,R) is the set of functions v : Γ → R whose support satisfies the as-
cending chain condition with a special order (see [11, Prop 51.2]). Also, he studied
a new subcategory of C containing completely-distributive Abelian ℓ-groups with
complete ℓ-homomorphisms. That is, the only epicomplete objects in this category
are of the form V (Γ,R). Ton [29] studied epicomplete archimedean ℓ-groups and
proved that epicomplete objects in this category are ℓ-isomorphic to a semicomplete
subdirect sum of real groups. Many other references can be found in [4, 3]. Recently,
Hager [23] posed a question on the category of Archimedean ℓ-groups “Does the epi-
completeness imply the existence of a compatible reduced f -ring multiplication? ”.
His answer to this question was “No” and he tried to find a partial positive answer
for it.

There is an important class of structures called MV -algebras introduced by
Chang [6] as an algebraic counterpart of many-valued reasoning. The principal result
of the theory of MV -algebras is a representation theorem by Mundici [26] saying
that there is a categorical equivalence between the category of MV-algebras and
the category of unital Abelian ℓ-groups. Today the theory of MV -algebras is very
deep and has many interesting connections with other parts of mathematics with
many important applications to different areas. For more details on MV -algebras,
we recommend the monographs [7, 27].

In the present paper, epicomplete objects inMV, the category of MV -algebras,
are studied. The concept of an a-extension inMV is introduced to obtain a condition
on minimal prime ideals of an MV -algebra M under which M is epicomplete. Some
relations between injective, divisible and epicomplete MV -algebras are found. In
the final section, we introduce a completion for an MV -algebra which is epicomplete
and has the universal mapping property. We called it the epicompletion and we show
that any MV -algebra has an epicompletion.

2 Preliminaries

In the section, we gather some basic notions relevant to MV -algebras and ℓ-groups
which will be needed in the next sections. For more details, we recommend to consult
the books [2, 11] for the theory of ℓ-groups and [12, 7, 27] for MV -algebras.

We say that an MV -algebra is an algebra (M ;⊕,′ , 0, 1) (and we will write simply

166

On epicomplete MV -algebras

M = (M ;⊕,′ , 0, 1)) of type (2, 1, 0, 0), where (M ;⊕, 0) is a commutative monoid
with the neutral element 0 and, for all x, y ∈M , we have:

(i) x′′ = x;

(ii) x⊕ 1 = 1;

(iii) x⊕ (x⊕ y′)′ = y ⊕ (y ⊕ x′)′.

In any MV -algebra (M ;⊕,′ , 0, 1), we can define the following further operations:

x⊙ y := (x′ ⊕ y′)′, x⊖ y := (x′ ⊕ y)′.

In addition, let x ∈M . For any integer n ≥ 0, we set

0.x = 0, 1.x = x, n.x = (n− 1).x⊕ x, n ≥ 2,

and
x0 = 1, x1 = 1, xn = xn−1 ⊙ x, n ≥ 2.

Moreover, the relation x ≤ y ⇔ x′⊕ y = 1 is a partial order on M and (M ;≤) is
a lattice, where x ∨ y = (x⊖ y)⊕ y and x ∧ y = x⊙ (x′ ⊕ y). Let (M,⊕,′ , 0, 1) and
(N,⊕,′ , 0, 1) beMV -algebras. A map f : M → N is called an MV -homomorphism if
f preserves the operations ⊕, ′, 0 and 1. We useMV to denote the category of MV -
algebras whose objects are MV -algebras and morphisms are MV -homomorphisms.
A non-empty subset I of an MV -algebra (M ;⊕,′ , 0, 1) is called an ideal of M if I
is a down set which is closed under ⊕. The set of all ideals of M is denoted by
I(M). For each ideal I of M , the relation θI on M defined by (x, y) ∈ θI if and
only if x⊖ y, y⊖x ∈ I is a congruence relation on M , and x/I and M/I will denote
{y ∈ M | (x, y) ∈ θI} and {x/I | x ∈ M}, respectively. A prime ideal is a proper
ideal I of M such that M/I is a linearly ordered MV -algebra, or equivalently, for all
x, y ∈M , x⊖y ∈ I or y⊖x ∈ I. The set of all minimal prime ideals of M is denoted
by Min(M). If M1 is a subalgebra of an MV -algebra M2, we write M1 ≤M2.

Remark 2.1. Let M1 be a subalgebra of an MV -algebra M2. For any ideal I of M2,
the set

⋃
x∈M1 x/I is a subalgebra of M2 containing I which is denoted by M1 + I

for simplicity.

An element a of an MV -algebra (M ;⊕,′ , 0, 1) is called boolean if a ⊕ a = a.
The set of all boolean elements of M is denoted by B(M). An ideal I of M is
called a stonean ideal if there is a subset S ⊆ B(M) such that I =↓ S, where
↓ S = {x ∈ M | x ≤ a for some a ∈ S }. An element x ∈ M is called archimedean
if there is an integer n ∈ N such that n.x is boolean. An MV -algebra M is said to

167

Dvurečenskij and Zahiri

be hyperarchimedean if all elements of M are archimedean. For more details about
hyperarchimedean MV -algebras see [7, Chap 6]

A group (G; +, 0) is said to be partially ordered if it is equipped with a partial
order relation ≤ that is compatible with +, that is, a ≤ b implies x+a+y ≤ x+b+y
for all x, y ∈ G. An element x ∈ G is called positive if 0 ≤ x. A partially ordered
group (G; +, 0) is called a lattice ordered group or simply an ℓ-group if G with its
partially order relation is a lattice. The lexicographic product of two po-groups
(G1; +, 0) and (G2; +, 0) is the direct productG1×G2 endowed with the lexicographic
ordering ≤ such that (g1, h1) ≤ (g2, h2) iff g1 < g2 or g1 = g2 and h1 ≤ h2 for
(g1, h1), (g2, h2) ∈ G1 × G2. The lexicographic product of po-groups G1 and G2 is
denoted by G1

−→× G2.
An element u of an ℓ-group (G; +, 0) is called a strong unit if, for each g ∈ G,

there exists n ∈ N such that g ≤ nu. A couple (G,u), where G is an ℓ-group and u
is a fixed strong unit for G, is said to be a unital ℓ-group.

If (G; +, 0) is an Abelian ℓ-group with strong unit u, then the interval [0, u] :=
{g ∈ G | 0 ≤ g ≤ u} with the operations x ⊕ y := (x + y) ∧ u and x′ := u − x
forms an MV -algebra, which is denoted by Γ(G,u) = ([0, u];⊕,′ , 0, u). Moreover,
if (M ;⊕, 0, 1) is an MV -algebra, then by Mundici’s categorical equivalence, [26],
there exists a unique (up to isomorphism) unital Abelian ℓ-group (G,u) with strong
u such that Γ(G,u) and (M ;⊕, 0, 1) are isomorphic (as MV -algebras). Let A be
the category of unital Abelian ℓ-groups whose objects are unital Abelian ℓ-groups
and morphisms are unital ℓ-group morphisms (i.e. homomorphisms of ℓ-groups
preserving fixed strong units). It is important to note thatMV is a variety whereas
A is not because it is not closed under infinite products. Then Γ : A → MV is
a functor between these categories. Moreover, there is another functor from the
category of MV -algebras to A sending M to a Chang ℓ-group induced by good
sequences of the MV -algebra M , which is denoted by Ξ : MV → A. For more
details relevant to these functors, please see [7, Chaps 2 and 7].

Theorem 2.2. [7, Thms 7.1.2, 7.1.7] The composite functors ΓΞ and ΞΓ are natu-
rally equivalent to the identity functors of MV and A, respectively. Therefore, the
categories A and MV are categorically equivalent.

Next theorem states that MV satisfies the amalgamation property.

Theorem 2.3. [27, Thm 2.20] Given one-to-one homomorphisms A α←− Z
β−→ B of

MV -algebras, there is an MV -algebra D together with one-to-one homomorphisms
A

µ−→ D
ν←− B such that µ ◦ α = ν ◦ β.

An MV -algebra (M ;⊕,′ , 0, 1) is called divisible if, for all a ∈M and all n ∈ N, there
exists x ∈M such that

168

On epicomplete MV -algebras

• n.x = a.

• a′ ⊕ ((n − 1).x) = x′.

Let (M ;⊕,′ , 0, 1) be an MV -algebra and (G,u) be the unital Abelian ℓ-group
corresponding to M , that is M = Γ(G,u). It can be easily seen that M is divisible
if and only if, for all a ∈ M and for all n ∈ N, there exists x ∈ M such that the
group element nx is defined in M and nx = a. Moreover, M is divisible if and only
if G is divisible (see [12, Lem. 2.3] or [19, Prop 2.13]). It is possible to show that
if nx = a = ny, then x = y (see [14]). If (G(M), u) is the unital Abelian ℓ-group
corresponding to an MV -algebra M and G(M)d is the divisible hull of the ℓ-group
G(M), then G(M)d is an ℓ-group with strong unit u and we use Md to denote the
MV -algebra Γ(G(M)d, u). By [14], Md is a divisible MV -algebra containing M ; we
call Md the divisible hull of M . For more details about divisible MV -algebras we
recommend to see [13, 14, 12, 25].

Definition 2.4. [19] An MV -algebra A is injective if for each MV -algebra B and
each MV -homomorphism h : C → A, where C is an MV -subalgebra of B, h can be
extended to an MV -homomorphism from B into A.

Definition 2.5. [15] An ideal I of an MV -algebra M is called a summand-ideal if
there exists an ideal J of M such that 〈I ∪ J〉 = M and I ∩ J = {0}, where 〈I ∪ J〉
is the ideal of M generated by I ∪ J . In this case, we write M = I ⊞ J . The set of
all summand-ideals of M is denoted by Sum(M). Evidently, {0},M ∈ Sum(M).

3 Epimorphisms on class of MV-algebras
In this section, epicomplete objects and an epimorphism in the category of MV -
algebras are defined and their properties are studied. Some relations between epi-
complete MV -algebras, a-extensions of MV -algebras and divisible MV -algebras are
obtained. We show that any injective MV -algebra is epicomplete. Finally, we prove
that an MV -algebra is epicomplete if and only if it is divisible.

Recall that a morphism f : M1 → M2 of MV is called an epimorphism if, for
each MV -algebra M3 and all MV -homomorphisms α : M2 →M3 and β : M2 →M3,
the condition α◦f = β ◦f implies α = β. An object M ofMV is called epicomplete
if, for each MV -algebra A and for each one-to-one (note that monics coincide with
one-to-one homomorphisms in MV) epimorphism α : M → A in MV, we get that
α is a surjection (see [23, p. 1969]).

Definition 3.1. Let M1 be a subalgebra of an MV -algebra M2. Then M2 is an
a-extension of M1 if the map f : I(M2) → I(M1) defined by f(J) = J ∩ M1,

169

Dvurečenskij and Zahiri

J ∈ I(M2), is a lattice isomorphism. An MV -algebra is called a-closed if it has no
proper a-extension.

It can be easily seen that M2 is an a-extension for M1 if and only if for all
0 < y ∈M2 there are n ∈ N and 0 < x ∈M1 such that y < n.x and x < n.y.

Proposition 3.2. If f : M1 → M2 is an epimorphism, then M2 is an a-extension
for f(M1).

Proof. Let I and J be two ideals of M2 such that I ∩ f(M1) = J ∩ f(M1). Then by
the Third Isomorphism Theorem [5, Thm 6.18], we get that

M2
J
⊇ f(M1) + J

J
∼= f(M1)
J ∩ f(M1)

= f(M1)
I ∩ f(M1)

∼= f(M1) + I

I
⊆ M2

I
. (3.1)

Let αI : f(M1)
I∩f(M1) →

M2
I and αJ : f(M1)

J∩f(M1) → M2
J be the canonical morphisms induced

from (3.1). Then by the amalgamation property (Theorem 2.3), there exist an
MV -algebra A and homomorphisms βI : M2

I → A and βJ : M2
J → A such that

βI ◦ αI = βJ ◦ αJ . Consider the following maps

µI : M2
πI−→ M2

I

βI−→ A, µJ : M2
πJ−→ M2

J

βJ−→ A,

where πI and πJ are the natural projection homomorphisms. For all x ∈M1,

µI(f(x)) = βI(
f(x)
I

) = βI(αI(
f(x)

I ∩ f(M1)
)) = βJ(αJ (f(x)

J ∩ f(M1)
)) =

= βJ(f(x)
J

) = µJ(f(x)).

It follows that µI ◦ f = µJ ◦ f and so by the assumption µI = µJ , which implies
that I = J . Therefore, M2 is an a-extension for f(M1).

The next theorem helps us to prove Corollaries 3.4 and 3.5.

Theorem 3.3. Let M1 be a subalgebra of an MV -algebra (M2;⊕,′ , 0, 1) such that
M2 is an a-extension of M1 and M1+I = M2 for all I ∈Min(M2). Then M1 = M2.

Proof. Choose b ∈M2 \M1 and set S := {x⊖b | x ∈M1, x∨b ∈M1 and x⊖b > 0}.
Clearly, S 6= ∅ and 0 /∈ S. First we show that S is closed under ∧. Let x, y ∈ M1
be such that x ⊖ b, y ⊖ b ∈ S. Then x ∨ b, y ∨ b ∈ M1 and x ⊖ b, y ⊖ b > 0. We
claim that (x ∧ y) ⊖ b > 0. From [16, Props 1.15, 1.16, 1.21, 1.22] it follows that
(x ∧ y)⊖ b = (x⊖ b) ∧ (y ⊖ b).

170

On epicomplete MV -algebras

If (x ∧ y)⊖ b = 0, then

x ∧ y ≤ b⇒ (x ∧ y) ∨ b = b⇒ (x ∨ b) ∧ (y ∨ b) = b

but (x ∨ b) ∧ (y ∨ b) ∈ M1 (since x ∨ b, y ∨ b ∈ M1), which is a contradiction. So
0 < (x∧y)⊖b. Similarly, we can show that (x∧y)∨b ∈M1. Hence (x⊖b)∧(y⊖b) ∈ S.
It follows that there is a proper lattice filter of M1 containing S which implies that
there exists a maximal lattice filter of M1 containing S, say S, whence S = M1 \ P
for some minimal prime lattice ideal P of M1. By [7, Cor 6.1.4], P is a minimal
prime filter of M1, and so there exists Q ∈Min(M2) such that P = Q∩M1. By the
assumption and by the Third Isomorphism Theorem,

M1
Q ∩M1

∼= M1 +Q

Q
∼= M2

Q
.

Then there exists a ∈ M1 such that a/Q = b/Q, so b ⊖ a, a ⊖ b ∈ Q. Clearly,
(b⊖ a) ∨ (a⊖ b) 6= 0 (otherwise, b = a ∈M1 which is a contradiction).
(i) If a ⊖ b = 0, then b ⊖ a > 0. Let 0 < b ⊖ a = t ∈ Q. Then there are n ∈ N and
z ∈M1 such that t < n.z and z < n.t, so z, n.z ∈ Q which implies that n.z ∈ Q∩M1.
From b ⊖ a ≤ n.z, we have b ≤ a ⊕ n.z. Clearly, b < a⊕ n.z (since a ⊕ n.z ∈ M1).
Thus (a⊕ n.z)⊖ b > 0 and (a⊕ n.z) ∨ b = a⊕ n.z ∈M1 and hence by definition

(a⊕ n.z)⊖ b ∈ S. (3.2)

On the other hand, in view of

(a⊕ n.z)⊖ b

Q
= (a

Q
⊕ n.z

Q
)⊖ b

Q
= a

Q
⊖ b

Q
= 0
Q
,

we get

(a⊕ n.z)⊖ b ∈ Q. (3.3)

From relations (3.2) and (3.3) it follows that (a ⊕ n.z) ⊖ b ∈ S ∩ Q which is a
contradiction.

(ii) If b ⊖ a = 0, then b ≤ a and a ⊖ b > 0, so a ⊖ b ∈ S ∩ Q (note that
b ∨ a = a ∈M1) which is a contradiction.

(iii) If b⊖ a > 0 and a⊖ b > 0, then a⊖ b = t ∈ Q, so similarly to (i) there are
n ∈ N and z ∈M1 such that a⊖ b < n.z ∈ Q∩M1. It follows that a⊖n.z ≤ b. Since
a ⊖ n.z ∈ M1, we have a ⊖ n.z < b. Hence, (a ⊖ n.z) ⊖ b = 0, a⊖n.z

Q∩M1
= a

Q∩M1
and

a⊖n.z
P = b

P . Now, we return to (i) and replace a with a⊖ n.z. Then we get another
contradiction. Therefore, the assumption was incorrect and there is no b ∈M2 \M1.
That is, M2 = M1.

171

Dvurečenskij and Zahiri

Corollary 3.4. An MV -algebra (A;⊕,′ , 0, 1) is epicomplete if and only if for each
epimorphism f : A→ B, we have Im(f) + I = B for all I ∈Min(B).

Proof. The proof is straightforward by Proposition 3.2 and Theorem 3.3.

Corollary 3.5. An MV -algebra (M ;⊕,′ , 0, 1) is divisible if and only if M/P is
divisible for each P ∈Min(M).

Proof. Let Md be the divisible hull of the MV -algebra M . First, we claim that Md

is an a-extension of M . It suffices to show that, for each y ∈Md, there exists x ∈M
and n ∈ N such that y ≤ n.x and x ≤ n.y. Put y ∈Md. Consider the unital Abelian
ℓ-groups Ξ(M) and Ξ(M)d with a strong unit u, in Theorem 2.2. Then y ∈ Ξ(M)d
and y ≤ u. Since Ξ(M)d is an a-extension of Ξ(M), see [1], then there is a positive
element x ∈ Ξ(M) and n ∈ N such that and x ≤ ny and y ≤ nx. It follows from
[11, Thm. 3.12] that y = y ∧ u ≤ ((nx) ∧ u) ∧ u ≤ (n(x ∧ u)) ∧ u = n.(x ∧ u) and
x ∧ u ≤ x ≤ (ny) ∧ u = n.y. Since x ∧ u ∈ M , the claim is true. So, Md is an
a-extension for M . It follows that Min(M) = {P ∩M | P ∈Min(Md)}. Moreover,
for each P ∈ Min(Md), we have M

P∩M = P+M
P ⊆ Md

P and so by the assumption
P+M
P is divisible. It follows that P+M

P = Md

P (since Md

P is a divisible extension of
P+M
P), hence P + M = Md. Now, by Theorem 3.3, we conclude that M = Md.

Therefore, M is divisible. The proof of the converse is straightforward.

We recall that in Definition 3.1 an MV -algebra was called a-closed if has no
proper a-extension. In Theorem 3.8, we show a condition under which an MV -
algebra is a-closed.

Remark 3.6. If M2 is an a-extension for an MV -algebra M1, then for all I ∈
I(M2), the MV -algebra M2

I is an a-extension for the MV -algebra M1+I
I . Indeed,

clearly, M1 ≤ M1 + I ≤ M2. Let K1 and K2 be ideals of M2
I . Then there exist

two ideals H1 and H2 of M2 containing I such that H1
I = K1 and H2

I = K2. If
K1 ∩ M1+I

I = K2 ∩ M1+I
I , then

H1 ∩ (M1 + I)
I

= H1
I
∩ M1 + I

I
= H2

I
∩ M1 + I

I
= H2 ∩ (M1 + I)

I
.

Since H1 ∩ (M1 + I) and H2 ∩ (M1 + I) are ideals of M1 + I containing I, then we
have

H1 ∩ (M1 + I)=∪{x ∈M1 + I | x
I
∈ H1 ∩ (M1 + I)

I
}=

∪{x ∈M1 + I | x
I
∈ H2 ∩ (M1 + I)

I
}=H2 ∩ (M1 + I).

172

On epicomplete MV -algebras

It follows that H1∩M1 = H1∩(M1+I)∩M1 = H2∩(M1+I)∩M1 = H2∩M1, which
implies that H1 = H2 and so K1 = K2. Clearly, the map f : I(M2

I) → I(M1+I
I)

sending K to K ∩ M1+I
I is onto and a lattice homomorphism. Therefore, M2

I is an
a-extension for M1+I

I .

Definition 3.7. An ideal I of an MV -algebra (M ;⊕,′ , 0, 1) is called an a-ideal if
M
I is an a-closed MV -algebra. Clearly, M is an a-closed ideal of M . Moreover, M
is a-closed if and only if {0} is an a-closed ideal.

Theorem 3.8. If every minimal prime ideal of an MV -algebra (M ;⊕,′ , 0, 1) is
a-closed, then M is a-closed.

Proof. Let A be an a-extension for M . For each P ∈ Min(A), we have M
P∩M

∼=
M+P
P

⊆−→ A
P . By the above remark, A

P is an a-extension for M+P
P . Since M+P

P is
a-closed, then M+P

P = A
P . Now, from Theorem 3.3, it follows that M = A.

Clearly, the converse of Theorem 3.8 is true, when M is linearly ordered. Indeed,
if M is a chain, {0} is the only minimal prime ideal of M and so M ∼= M

{0} is a-closed.
In the following proposition and corollary, we try to find a better condition under
which the converse of Theorem 3.8 is true.

Proposition 3.9. If I is a summand ideal of an a-closed MV -algebra (M ;⊕,′ , 0, 1),
then M

I is a-closed.

Proof. Let M be an a-closed MV -algebra and I be a summand ideal of M . By [15,
Cor 3.5], there exists a ∈ B(M) such that I =↓ a, I⊥ =↓ a′ and M =↓ a⊕ ↓ a′ :=
{x ⊕ y | x ∈↓ a, y ∈↓ a′}. Moreover, for each x ∈ M , there are x1 ≤ a and x2 ≤ a′

such that x = x1 ⊕ x2 and so x/I = x2/I. Hence for each x, y ∈M ,

x/I = y/I ⇔ x2/I = y2/I ⇔ x2 ⊖ y2, y2 ⊖ x2 ∈ I
⇒ x2 ⊖ y2 ≤ x2 ∈ I⊥, y2 ⊖ x2 ≤ y2 ∈ I⊥
⇒ x2 ⊖ y2, y2 ⊖ x2 ∈ I ∩ I⊥ = {0} ⇒ x2 = y2.

That is, M
I = {x/I| x ∈ I⊥}. Now, we define the operations ⊞ and ∗ on ↓ a′ by

x⊞ y = x⊕ y and x∗ = t, where t is the second component of x′ in ↓ a⊕ ↓ a′. It can
be easily seen that I⊥ with these operations and 0 and 0′ as the least and greatest
elements, respectively, is an MV -algebra. Moreover, M

I
∼= I⊥. Similarly, I is an

MV -algebra and I =↓ a ∼= M
I⊥ . Now, let A be an a-extension for the MV -algebra

M
I . Then

φ : M x 7→x1⊕x2−−−−−−→↓ a⊕ ↓ a′ x⊕y 7→(x/I,y/I⊥)−−−−−−−−−−−→ M

I
× M

I⊥
⊆−→ A× M

I⊥
.

173

Dvurečenskij and Zahiri

(1) Since M ∼= M

I
× M

I⊥
, then M

I
× M

I⊥
is a-closed.

(2) A× M

I⊥
is an a-extension for M

I
× M

I⊥
.

It follows that M

I
× M

I⊥
= A × M

I⊥
and so A = M

I⊥
. In a similar way, we can

show that M/I is a-closed.

Corollary 3.10. Let (M ;⊕,′ , 0, 1) be a closed hyperarchimedean MV -algebra. Then
each principal ideal of M is an a-ideal.

Proof. By [7, Thm 6.3.2] every principal ideal of M is a stonean ideal. Hence by
[15, Cor 3.5(iii)], we get that every principal ideal of M is a summand ideal of M
and so M

I is a-closed for each principal ideal I of M . That is, each principal ideal
of M is an a-ideal.

We note that an MV -algebra M is simple if I(M) = {{0},M}.

Example 3.11. (1) Consider the standard MV -algebra defined on the real unit
interval A = [0, 1]. Let B be an a-extension for it. Then B is a simple MV -algebra
that contains [0, 1] (since [0, 1] is simple and I(A) ∼= I(B)). By [7, Thm 3.5.1], B is
isomorphic to a subalgebra of [0, 1]; let f : B → [0, 1] be a one-to-one MV -algebra
homomorphism. Then A and f(A) are also isomorphic. Due to [7, Cor 7.2.6],
two subalgebras of [0, 1] are isomorphic if and only if they coincide. Therefore,
[0, 1] = A = f(A) ⊆ f(B) ⊆ [0, 1]. Thus f(A) = f(B) and A = B which proves A is
a-closed.

(2) Let A be a subalgebra of the real interval MV -algebra [0, 1] = Γ(R, 1). Then
A is a-closed if and only if A = [0, 1]. Indeed, one direction was proved in the
forgoing case (1). Now let A be a proper subalgebra of [0, 1]. Then the MV -algebra
[0, 1] is an a-extension of A such that A 6= [0, 1].

(3) A simple MV -algebra A is a-closed if and only if A is isomorphic to the
MV -algebra [0, 1].

Theorem 3.12. Every injective MV -algebra is epicomplete.

Proof. The proof is straightforward by Figure 1.

It is well known that divisible and complete MV -algebras coincide with injective
MV -algebras (see [24, Thm 1] and [19, Thm 2.14]). So we have the following result.

Corollary 3.13. Every complete and divisible MV -algebra is epicomplete.

174

On epicomplete MV -algebras

✲

❄

✲✲

M

M E E
f

Id
M

Id
E

g

Figure 1: Injective MV -algebra is epicomplete

Let (M ;⊕,′ , 0, 1) be an MV -algebra and (G,u) be a unital Abelian ℓ-group such
that M = Γ(G,u). Set Md = Γ(Gd, u), where Gd is the divisible hull of G. Let
i : M →Md be the inclusion map. Then i is an epimorphism. Indeed, if A is another
MV -algebra and α, β : Md → A be MV -homomorphisms such that α ◦ i = β ◦ i,
then by Theorem 2.2, we have the following homomorphisms in A

Ξ(i) : (G,u) 7→ (Gd, u), Ξ(α),Ξ(β) : Ξ(Md, u) 7→ (Ξ(A), v),

where v is a strong unit of Ξ(A) such that Γ(Ξ(A), v) = A. Since Ξ is a functor from
MV to A, then we have Ξ(α) ◦ Ξ(i) = Ξ(α ◦ i) = Ξ(β ◦ i) = Ξ(β) ◦ Ξ(i). By [1, Sec
2], we know that the inclusion map Ξ(i) : (G,u) → (Gd, u) is an epimorphism, so
Ξ(α) = Ξ(β), which implies that α = β. That is, i : M →Md is an epimorphism in
MV . Thus if M is epicomplete, i is onto. As i is always one-to-one, it is a bijection
and so M ∼= Md, and we have the following result.

Theorem 3.14. Epicomplete MV -algebras are divisible.

Theorem 3.15. Let (M ;⊕,′ , 0, 1) be an MV -algebra. Then M is epicomplete if
and only if each epimorphism of M into a linearly ordered MV -algebra is onto.

Proof. Suppose that each epimorphism of M into a linearly ordered MV -algebra H
is onto. If f : M → H is an epimorphism, then for each P ∈ Min(H), the map
M

f−→ H
πP−−→ H

P is an epimorphism, where πP is the natural homomorphism. Since
H
P is a linearly ordered MV -algebra, then by the assumption, πP ◦ f is onto and
so f(M)

P = H
P or equivalently, ⋃x∈M f(x)/P = H. Hence f(M) + P = H for all

P ∈Min(H). By Proposition 3.2, we know that H is an a-extension for f(M) and
so by Theorem 3.3, f(M) = H. Therefore, M is epicomplete. The proof of the other
direction is clear.

Definition 3.16. Let (M1;⊕,′ , 0, 1), (M2;⊕,′ , 0, 1) and (M3;⊕,′ , 0, 1) be MV -
algebras such that M1 ≤ M2 and M1 ≤ M3. An element b ∈ M2 is equivalent
to an element c ∈ M3 if there exists an isomorphism f between 〈M1 ∪ {b}〉M2

and

175

Dvurečenskij and Zahiri

〈M1 ∪ {c}〉M3
such that f(b) = c and f |

M1
= Id

M1
, where 〈M1 ∪ {b}〉M2

is the MV -
subalgebra of M2 generated by M1 ∪ {b}. An element b ∈ M2 is algebraic over M1
if no extension of M1 contains two elements equivalent to b. Moreover, M2 is an
algebraic extension of M1 if every element of M2 is algebraic over M1.

Proposition 3.17. Let (M1;⊕,′ , 0, 1) and (M2;⊕,′ , 0, 1) be two MV -algebras such
that M1 ≤ M2. Then y ∈ M2 is algebraic over M1 if and only if the inclusion map
i : M1 → 〈M1 ∪ {y}〉M2 is an epimorphism.

Proof. Let y ∈ M2 be algebraic over M1. If i : M1 → 〈M1 ∪ {y}〉 is not an epi-
morphism, then there exist an MV -algebra M3 and two homomorphisms α, β :
〈M1 ∪ {y}〉 →M3 such that α ◦ i = β ◦ i and α 6= β. Then α(y) 6= β(y) (otherwise,
α = β). Consider the maps λ, µ : 〈M1 ∪ {y}〉M2

→ M3 × 〈M1 ∪ {y}〉M2
defined by

λ(x) = (α(x), x) and µ(x) = (β(x), x) for all x ∈ 〈M1 ∪ {y}〉M2
. Clearly, λ and µ

are one-to-one homomorphisms. We have λ(M1) = {(α(x), x) | x ∈ M1} = µ(M1)
and M1 ∼= λ(M1) ∼= µ(M1). Set M = M3 × 〈M1 ∪ {y}〉M2

. We identify M1 with its
image in M under λ. Then M is an extension for M1. Since λ : 〈M1 ∪ {y}〉M2

→
〈M1 ∪{(α(y), y)}〉

M
and µ : 〈M1 ∪{y}〉M2

→ 〈M1 ∪{(β(y), y)}〉
M

are isomorphisms,
then y is equivalent to (α(y), y) and (β(y), y), which is a contradiction. Therefore,
i : M1 → 〈M1 ∪ {y}〉 is an epimorphism.

Conversely, let i : M1 → 〈M1 ∪ {y}〉 be an epimorphism. We claim that y
is algebraic over M1. Otherwise, there are an extension E of M1 and e1, e2 ∈
E such that y is equivalent to e1 and e2. So, there exist two isomorphisms f1 :
〈M1 ∪ {y}〉M2

→ 〈M1 ∪ {e1}〉E and f2 : 〈M1 ∪ {y}〉M2
→ 〈M1 ∪ {e2}〉E such that

f1|M1
= Id

M1
= f2|M1

and f1(y) = e1 and f2(y) = e2. It follows that f1 ◦ i = f2 ◦ i
but f1 6= f2, which is a contradiction.

Corollary 3.13 showed that complete and divisible MV -algebras are epicomplete.
In the sequel, we will use the same argument as in the proof of [1, Thm 2.1] with a
little modification to show that every divisible MV -algebra is epicomplete.

Theorem 3.18. Let (M ;⊕,′ , 0, 1) be an MV -algebra.

(i) If (L;⊕,′ , 0, 1) is a linearly ordered MV -algebra and f : M → L is an epimor-
phism, then L ⊆ f(M)d.

(ii) If M is divisible, then it is epicomplete.

Proof. (i) Let (G,u) and (H, v) be the unital Abelian ℓ-groups such that Γ(G,u) =
M and Γ(H, v) = L. By Theorem 2.2, Ξ(f) : G → H is a unital ℓ-group homo-
morphism. Let K = B/Im(Ξ(f)) be the torsion subgroup of H/Im(Ξ(f)) (clearly

176

On epicomplete MV -algebras

B is a subgroup of H and x ∈ B ⇔ nx ∈ Im(Ξ(f)) for some n ∈ N). Since
H/B ∼= H/Im(Ξ(f))

B/Im(Ξ(f)) is torsion free, by [2, Prop 1.1.7], H/B admits a linearly ordered
group structure. By [17, Exm 3], (H/B)−→× H is an ℓ-group. Since v is a strong
unit of an ℓ-group H, for each (x + B, y) ∈ (H/B)−→× H, there exists n ∈ N such
that x, y < nv and so (x + B, y) < n(v + B, v). It follows that w := (v + B, v)
is a strong unit for the ℓ-group (H/B)−→× H. Let α, β : L → Γ((H/B)−→× H,w) be
defined by α(x) = (B,x) and β(x) = (x + B,x) for all x ∈ L (both of them are
MV -homomorphisms). We have α ◦f(x) = (B, f(x)) = β ◦f(x) for all x ∈ L. Since
f is an epimorphism, then α = β, hence for all x ∈ L = Γ(H, v), we have x ∈ B
and so there is n ∈ N such that nx ∈ Im(Ξ(f)). That is, x belongs to the divisible
hull of Im(Ξ(f)). Since x ≤ v, then x ∈ Γ((Im(Ξ(f)))d, v) = f(M)d. Therefore,
L ⊆ f(M)d.

(ii) Let M be divisible. We use Theorem 3.15 to show that M is epicomplete. Let
(L;⊕,′ , 0, 1) be a linearly ordered MV -algebra and f : M → L be an epimorphism
into L. By (i), f(M) ⊆ L ⊆ (f(M))d. Clearly, f(M) is divisible, so f(M) = L =
(f(M))d. It follows from Theorem 3.15 that M is epicomplete.

Concerning the proof of (i) in the latter theorem, we note that since f : M →
f(M) is onto, by [26, Lem. 7.2.1], Ξ(f) : Ξ(M)→ Ξ(f(M)) is onto (Ξ(M) = G), so
Im(Ξ(f)) = Ξ(f(M)). It follows that f(M)d = Γ((Ξ(f(M)))d, v) =
Γ((Im(Ξ(f)))d, v).

4 Epicompletion of MV -algebras
The main purpose of the section is to introduce an epicompletion for an MV -algebra
and to discuss the conditions under which an MV -algebra has an epicompletion.
First we introduce an epicompletion in MV. An epicompletion for an MV -algebra
A is an MV -algebra M epically containing A with the universal property. Then
we use some results of the second section and prove that any MV -algebra has an
epicompletion. Indeed, the epicompletion of A is Ad.

Definition 4.1. Let (A;⊕,′ , 0, 1) be an MV -algebra.

(i) A pair (A,α), where A is an MV -algebra and α : A → A is a one-to-one
epimorphism (epiembedding for short), is called an e-extension for A. For
simplicity, we called it A containing A epically.

(ii) An e-extension (E,α) for A is called an epicompletion for A if, for each epi-
morphism f : A → B, there is an e-extension (B,β) for B and a surjective

177

Dvurečenskij and Zahiri

homomorphism f : E → B such that β ◦f = f ◦α, or equivalently, the diagram
given by Figure 2 commutes.

A
f−−−−→ B

α

y
y β

E
f−−−−→ B

Figure 2: Epicompletion property

Proposition 4.2. Let (A;⊕,′ , 0, 1) be an MV -algebra.

(i) Each epicompletion of A is epicomplete.

(ii) If A has an epicompletion, then it is unique up to isomorphism.

Proof. (i) Let (A,α) be an epicompletion for A and f : A → B be a one-to-one
epimorphism. Then f ◦ α : A → B is an epimorphism and so there exists an e-
extension (B,β) for B and an onto morphism h : A → B such that the diagram in
Figure 3 commutes. From h ◦ α = β ◦ f ◦ α it follows that h = β ◦ f , whence β ◦ f

A
f◦α−−−−−−→ B

α

y
y β

A
h−−−−→ B

Figure 3: Figure of Proposition 4.2(i)

is onto. Hence β(f(A)) = B. Also, β(f(A)) ⊆ β(B) ⊆ B, so β(f(A)) = β(B) = B.
Thus, B is an isomorphism, which implies that f = β−1 ◦h must be onto. Therefore,
A is epicomplete.

(ii) Let (A,α) and (A′, β) be two epicompletions for A. Since α : A → A is an
epiembedding, then by Proposition 3.2, A is an a-extension for f(A) ∼= A. By (i)
and Theorem 3.14, A is divisible. Consider the functor Ξ from Theorem 2.2. Let
(G(A), u) and (G(A), v) be the unital Abelian ℓ-groups induced from MV -algebras A
and A, respectively. Since there is an epiembedding A →֒ A, we have u = v. We have
an embedding Ξ(α) : G(A) → G(A), and G(A) is divisible (see [14]). Also, G(A)

178

On epicomplete MV -algebras

is an a-extension for the ℓ-group G(A) (since there is a one-to-one correspondence
between the lattice of ideals of A and the lattice of convex ℓ-subgroups of G(A),
see [8, Thm 1.2]), so by [22, Chap 1, Thm 20], G(A) ∼= (G(A))d. In a similar way,
G(A′) ∼= (G(A))d. Therefore, G(A) ∼= G(A′). We note that the final isomorphism
is an extension for the identity map on G, so it preserves the strong units of G(A)
and G(A′), which is a strong unit of G(A), too. Using the functor Γ, it follows that
A ∼= A′.

Let (A;⊕,′ , 0, 1) be an MV -algebra. By the last proposition if A has an epicom-
pletion, then it is unique up to isomorphic image; this epicompletion is denoted by
(Ae, α).

Corollary 4.3. Let (Ae, α) be an epicompletion for an MV -algebra (A;⊕,′ , 0, 1).
Then the epicompletion of Ae is equal to Ae.

Proof. It follows from Proposition 4.2(i).

Now, we try to answer to a question “whether does an MV -algebra have an
epicompletion”. First we simply use Theorem 3.18(i) to show that each linearly
ordered MV -algebra has an epicompletion. Then we prove it for any MV -algebra.
For this purpose we try to extend the result of [28, Cor 1]. We show that each
unital ℓ-group has an epicompletion. Then we use this result and we show that any
MV -algebra has an epicompletion.

Proposition 4.4. Let (A;⊕,′ , 0, 1) be a linearly ordered MV -algebra. Then A has
an epicompletion.

Proof. Let f : A → B be an epimorphism. Since A is a chain, f(A) is also a chain
and so, I(f(M)) is a chain. It follows from Proposition 3.2 that I(B) is a chain and
so B is a linearly ordered MV -algebra. Hence by Theorem 3.18(i), B ⊆ (f(A))d
(thus Bd = (f(A))d). By [28, Prop 5] and Theorem 2.2, there is a homomorphism
g : Ad → Bd such that the diagram in Figure 4 commutes. Then g(Ad) ⊆ Bd is a

A
f−−−−→ B

⊆
y

y ⊆

Ad g−−−−→ Bd

Figure 4: Figure of Proposition 4.4

179

Dvurečenskij and Zahiri

divisible MV -algebra containing B, so g is onto. Therefore, Ad is an epicompletion
for the MV -algebra A.

Remark 4.5. Let G and H be two ℓ-groups and f : G → H be an epimorphism.
Let Gd and Hd be the divisible hull of G and H, respectively. By [1, p. 230], there
is a unique extension of f to an epimorphism f : Gd → Hd. Clearly, if G and H are
unital Abelian ℓ-groups and f is a unital ℓ-group morphism, then so is f (for more
details see [1] the paragraph after Theorem 2.1 and [28, Prop 5]). We know that the
inclusion maps i : G → Gd and j : H → Hd are epimorphisms (by the corollary of
[1, Thm 2.1]), hence we have the following commutative diagram (Figure 5).

G
i−−−−→ Gd

f

y
y f

H
j−−−−→ Hd

Figure 5: Gd is an epicompletion for G

Since f : Gd → Hd is an epimorphism and Gd is epicomplete (by [1, Thm 2.1]),
then f is onto and so Gd is an epicompletion for G.

Theorem 4.6. Any MV -algebra has an epicompletion.

Proof. Let (A;⊕,′ , 0, 1) be an MV -algebra and f : A → B be an epimorphism.
Then Ξ(f) : Ξ(A) → Ξ(B) is a homomorphism of unital ℓ-groups. By Remark 4.5,
we have the commutative diagram in Figure 6, where Ξ(f) is the unique extension
of Ξ(f). Applying the functor Γ to the diagram in Figure 6, we get the commutative

Ξ(A) Ξ(f)−−−−−−→ Ξ(B)
⊆
y

y ⊆

(Ξ(A))d Ξ(f)−−−−−−→ (Ξ(B))d

Figure 6: Applying the functor Ξ.

diagram in Figure 7 on MV . Set F := Γ(Ξ(f)). We claim that F : Ad → Bd

is an epimorphism. Let α, β : Bd → C be two homomorphisms of MV-algebras
such that α ◦ F = β ◦ F . Then clearly, α|

B
◦ F = β|

B
◦ F , so by the assumption

180

On epicomplete MV -algebras

A
f−−−−−−−−→ B

⊆
y

y ⊆

Ad Γ(Ξ(f))−−−−−−−−→ Bd

Figure 7: Applying the functor Γ.

α|
B

= β|
B
, which implies that Ξ(α|

B
) = Ξ(β|

B
). Thus by [1], Ξ(α|

B
) = Ξ(β|

B
),

where Ξ(α|
B
),Ξ(β|

B
) : (Ξ(B))d → (Ξ(C))d are the unique extensions of Ξ(α|

B
)

and Ξ(β|
B
), respectively. It can be easily seen that the diagrams in Figure 8 are

commutative. So by the uniqueness of the extension of Ξ(α|B) : Ξ(B) → Ξ(C)

Ξ(B)
Ξ(α|

B
)−−−−−−−−→ Ξ(C)

⊆
y

y ⊆

(Ξ(B))d
Ξ(α|

B
)−−−−−−−−→ (Ξ(C))d

Ξ(B)
Ξ(α|

B
)−−−−−−→ Ξ(C)

⊆
y

y ⊆

(Ξ(B))d Ξ(α)−−−−−−→ (Ξ(C))d

Figure 8: Final step.

to a map (Ξ(B))d → (Ξ(C))d, we get that Ξ(α) = Ξ(α|
B
). In a similar way,

Ξ(β) = Ξ(β|
B
) and so Ξ(α) = Ξ(β). It follows that α = Γ(Ξ(α)) = Γ(Ξ(β)) = β.

Therefore, F is an epimorphism. Since Ad is divisible, by Corollary 3.13, it is
epicomplete and so F is onto. That is, Ad is an epicompletion for A. Therefore, any
MV -algebra has an epicompletion.

Corollary 4.7. Let (A;⊕,′ , 0, 1) be an MV -algebra. Then E is an epicompletion
of A if and only if E is an epicomplete MV -algebra containing A epically.

Proof. Let E be an epicomplete MV -algebra containing A epically. Then there is
a one-to-one epimorphism α : A → E. By the proof of Theorem 4.6, we have an
epimorphism αd : Ad → Ed which is one-to-one (so as α). Since Ad is epicomplete,
then αd is an isomorphism. On the other hand, by Theorem 3.14, E ∼= Ed and so
Ad ∼= E. Therefore, by the proof of Theorem 4.6, E is an epicompletion of A. The
proof of the converse follows from definition and Proposition 4.2(i).

Acknowledgement: The authors are very indebted to anonymous referees for

181

Dvurečenskij and Zahiri

their careful reading and suggestions which helped us to improve the readability of
the paper.

References
[1] M. Anderson, P. Conrad, Epicomplete ℓ-groups, Algebra Universalis 12 (1981), 224–241.
[2] M. Anderson and T. Feil, Lattice-Ordered Groups: An Introduction, Springer Science and

Business Media, USA, 1988.
[3] R.N. Ball, A.W. Hager, Epicomplete archimedean ℓ-groups and vector lattices, Transactions

of the American Mathematical Society 322 (1990), 459–478.
[4] R.N. Ball, A.W. Hager, Epicompletetion of archimedean ℓ-groups and vector lattices with

weak unit, Journal of the Australian Mathematical Society (Series A) 48 (1990), 25–56.
[5] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York,

1981.
[6] C.C. Chang, Algebraic analysis of many valued logics, Transaction of the American Math-

emetacal Society 88 (1958), 467–490.
[7] R. Cignoli, I.M.L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Rea-

soning, Springer Science and Business Media, Dordrecht, 2000.
[8] R. Cignoli, A. Torrens, The poset of prime ℓ-ideals of an Abelian ℓ-group with a strong unit,

Journal of Algebra 184 (1906), 604–612.
[9] P. Conrad, D. McAlister, The completion of a lattice ordered group, Journal of the Australian

Mathematical Society 9 (1869), 182–208.
[10] M.R. Darnel, Epicomplete completely-distributive ℓ-groups, Algebra Universalis 21 (1985),

123–132.
[11] M.R. Darnel, Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York, Basel, Hong

Kong, 1995.
[12] A. Di Nola, S. Sessa, On MV-algebras of continuous functions, In: Non-classical Logics and

Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy
Set Theory, U. Höhle et al. (eds), Kluwer Academic Publishers, Dordrecht, 1995, pp. 23–32.

[13] D. Diaconescu, I. Leuştean, The Riesz hull of a semisimple MV-algebra, Mathematica Slovaca
65 (2015), 801–816.

[14] A. Dvurečenskij, B. Riečan, Weakly divisible MV -algebras and product, Journal of Mathe-
matical Analysis and Applications 234 (1999), 208–222.

[15] A. Dvurečenskij, O. Zahiri, Orthocomplete pseudo MV-algebras, International Journal of Gen-
eral Systems 45 (2016), 889–909. DOI: 10.1080/03081079.2016.1220008

[16] G. Georgescu and A. Iorgulescu, Pseudo MV -algebras, Multiple-Valued Logics 6 (2001), 193–
215.

[17] A.M.W. Glass, W. Holland, Lattice-Ordered Groups: Advances and Techniques, 48, Kluwer
Academic Publishers, Dordrecht, 1989.

[18] A.M.W. Glass, J. Rachůnek, R. Winkler, Functional representations and universals for MV-
and GMV-algebras, Tatra Mountains Mathematical Publications 27 (2003), 91–110.

[19] D. Gluschankof, Prime deductive systems and injective objects in the algebras of Łukasiewicz
infinite-valued calculi, Algebra Universalis 29 (1992), 354–377.

182

On epicomplete MV -algebras

[20] K.R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Mathematical Surveys
and Monographs No. 20, American Mathematical Society, Providence, Rhode Island, 1986.

[21] S. Gottwald, Many-valued logic and fuzzy set theory, In: Mathematics of Fuzzy Sets Logic,
Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, 3, U. Höhle, S.E. Rod-
abough (eds), Kluwer Academic Publishers, Dordrecht, 1999, pp. 5–90.

[22] P.A. Griffith, Infinite Abelian Group Theory, University of Chicago Press, Chigaco, London,
1970.

[23] A.W. Hager, Some unusual epicomplete Archimedean lattice-ordered groups, Proceedings of
the American Mathematical Society, 143 (2015), 1969–1980.

[24] F. Lacava, Sulle L-algebre iniettive, Bolletino della Unione Matemàtica Italiana 3-A(3) (1989),
319–324.

[25] S. Lapenta, I. Leuştean, Notes on divisible MV -algebras, Soft Computing, (2016), To appear.
doi: 10.1007/s00500-016-2339-z

[26] D. Mundici, Interpretation of AF C∗-algebras in Łukasiewicz sentential calculus, Journal of
Functional Analysis 65 (1986), 15–63.

[27] D. Mundici, Advanced Łukasiewicz calculus and MV-algebras, Springer, Dordrecht, Heidelberg,
London, New York, 2011.

[28] F.D. Pedersen, Epimorphisms in the category of abelian ℓ-groups, Proceedings of the American
Mathematical Society 53 (1975), 311–317.

[29] D.R. Ton, Epicomplete archimedean lattice-ordered groups, Bulletin of the Australian Math-
ematical Society 39 (1989), 277–286. doi: 10.1017/S0004972700002768.

Received 31 October 2016183

184

Paraconsistent Rule-Based Reasoning with
Graded Truth Values

Francesco Luca De Angelis, Giovanna Di Marzo Serugendo
Institute of Services Science, University of Geneva, Switzerland.

{francesco.deangelis,giovanna.dimarzo@unige.ch}@unige.ch

Andrzej Szałas
Institute of Informatics, University of Warsaw, Poland and Department of

Computer and Information Science, Linköping University, Sweden.
andrzej.szalas@{mimuw.edu.pl, liu.se}

Abstract

Modern artificial systems, such as cooperative traffic systems or swarm
robotics, are made of multiple autonomous agents, each handling uncertain,
partial and potentially inconsistent information, used in their reasoning and
decision making. Graded reasoning, being a suitable tool for addressing phe-
nomena related to such circumstances, is investigated in the literature in many
contexts – from graded modal logics to various forms of approximate reasoning.
In this paper we first introduce a family of many-valued paraconsistent logics
parametrised by a number of truth/falsity/inconsistency grades allowing one
to handle multiple truth-values at the desired level of accuracy. Second, we
define a corresponding family of rule-based languages with graded truth-values
as first-class citizens, enjoying tractable query evaluation. In addition, we in-
troduce introspection operators allowing one to resolve inconsistencies and/or
lack of information in a non-monotonic manner. We illustrate and discuss the
use of the framework in an autonomous robot scenario.

1 Introduction and Motivations
Modern artificial systems exhibit characteristics such as autonomy, collectiveness,
situatedness and uncertain and changing environment. Examples of such systems in-
clude autonomous cars, intelligent cooperative traffic systems, smart systems, swarm
robotics, systems exploiting edge computing [41], spatial computing [9, 71] and spa-
tial services [23], or more generally collective adaptive systems [3]. Entities or agents,

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

De Angelis,Di Marzo Serugendo, and A. Szałas

constituting these systems, are autonomous, spatially-distributed, geographically
dispersed, interconnected and interacting through a communication network. Every
individual agent holds its own perceived local and therefore partial, incomplete and
potentially inconsistent information about the system, and uses it to identify its
current situation, and subsequently take adaptation actions.

Due to technological limitations of sensors, the analysis of multiple factors, and
dynamically changing environments, information perception is often affected by
a certain grade of uncertainty or associated with several levels of quality. Such
phenomena are, for instance, exhibited by knowledge bases of intelligent context-
aware systems: information sources may be equipped with different sensors or clas-
sifiers, providing better or worse approximations of the perceived reality. Also, the
transition from an absolute to a graded (multiple) partial perception of reality is
implicitly prone to the emergence of contradictory information. Latency of informa-
tion dissemination also contributes to propagating slightly outdated or contradictory
information.

Therefore, in such circumstances, several factors have to be addressed to per-
form adequate formal reasoning, like: modelling the uncertainty and quality level
of information; aggregating coherently multiple graded information, arising from
distinct partial views of the system; resolving inconsistencies generated by contra-
dictory knowledge, obtaining representative information useful to underpin decision
making analysis and further reasoning processes.

One way to model such uncertainty is to resort to many-valued or paraconsistent
logics [2, 12, 16, 17]. To avoid triviality, paraconsistent approaches handle incon-
sistent information by resorting to non-explosive consequence relations, limiting the
set of conclusions inferred by contradictory premises [12, 17, 18, 50, 58].

Contemporary many-valued logics, underpinning query languages that accom-
modate positive and negative literals in premises and conclusions of rules, are based
on predefined sets of truth-degrees. Also, such languages do not fully develop logical
mechanisms to reason about truth-degrees of inferred information.

The current paper first defines a family of paraconsistent many-valued logic,
parametrised by a set of finitely many truth-degrees. Second, it embeds this logic
into a tractable rule-based language usable by teams of heterogeneous agents with
different perception and reasoning capabilities. Third, it introduces a generalised
logical mechanism to reason on truth-degrees of inferred literals.

We develop paraconsistency through a family of many-valued logic that supports
arbitrarily large finite sets of logical values of truth, falseness and inconsistency;
this aspect empowers knowledge with desired grades of accuracy. For example,
a single agent may use rules of different quality. When heterogeneous techniques are
involved in reasoning, their relative strengths may vary: conclusions based on sure

186

Paraconsistent Rule-Based Reasoning with Graded Truth Values

facts and certain rules are stronger than those ones obtained from heuristic non-
monotonic rules. However, in common sense reasoning, non-monotonic conclusions
typically have the same status as monotonic ones which may lead to wrong decisions,
especially when rules provide conflicting conclusions. Of course, there are approaches
where the strength of arguments and conclusions is one among many important
factors (see, e.g. [26, 31, 60]).

Our language allows agents to distinguish among conclusions, to compare their
relative strengths, as well as to react on potential conflicts and lack of knowledge.
More precisely, given an integer N ≥ 1, allowing one to fine-tune the accuracy of
reasoning, we define a logic where we consider the following truth-values τN :

• representing degrees of truth: t1,. . . , tN , where t1 is the weakest and tN the
strongest truth;

• representing degrees of falsity: f1,. . . , fN , where f1 is the weakest and fN

the strongest falsity;

• representing degrees of inconsistency: i1,1 . . . ,iN,N , where ii,j is the inconsis-
tency level involving ti and f j ;

• representing unknown: u.

In addition, we develop a rule-based language, RLN , involving these graded truth-
values and allowing agents to compute queries over finite domains in deterministic
polynomial time. The language accommodates positive and negative literals both
in premises and conclusions of rules. It is based on the Open World Assumption
and we also introduce introspection operators, a logical machinery used to close the
world locally and globally and to apply other forms of non-monotonic reasoning.

The RLN language turns out to be a natural candidate for reasoning with con-
textual information in multi-agent systems. Also, we notice that the set of truth-
degrees allows one to easily model information obtained through approximate rea-
soning techniques [22]. For example, a natural way to understand τN in the context
of fuzzy reasoning [69, 70, 46, 59], where inconsistencies are not explicitly present,
is to select 2∗N pairwise disjoint subintervals ιfN , . . . , ι

f
1 , ι

t
1, . . . ι

t
N from the interval

[0, 1] and then define a mapping δF : [0, 1] −→ {fN , . . . ,f1,u, t1, . . . , tN}, deriving
truth-degrees from values belonging to the subintervals. Such a methodology can
be extended to many other approximate techniques, such as intuitionistic fuzzy sets
[7], rough sets [25, 56, 57], graded rough sets [68], etc. For details, see [22], where
we also present other scenarios motivating the use of RLN . By tuning the under-
lying family of logics, we obtain a rule-based language used to reason on graded

187

De Angelis,Di Marzo Serugendo, and A. Szałas

paraconsistent information, gathered by combining heterogeneous approximate rea-
soning techniques. The language can also be adopted as the main internal language
in Logic Fragments [20, 19] to handle coordination in context-aware self-organizing
systems, extend paraconsistent approaches to knowledge bases [18, 27, 48, 50, 63],
belief structures [29, 30], argumentation [28], or defeasible reasoning [37, 54].

Paper Structure
The paper is structured as follows. Section 2 introduces our family of logics, in par-
ticular knowledge, monotonicity-preservering ordering and connectives. Section 3
defines syntax and model-theoretic semantics of the proposed family of rule lan-
guages. Section 4 defines fixpoint semantics providing the basis for computational
engine for the language. It also discusses relationships among monotonicity and
the monotonicity-preservering ordering. To provide tools for resolving inconsisten-
cies, lack of knowledge and introducing arbitrary truth orderings, Section 5 extends
the language with introspection operators. In Section 6 we show some examples of
the use of our language. In Section 7 we discuss related work. Finally, Section 8
concludes the paper.

2 The Family of Logics

2.1 Knowledge-ordering and Monotonicity-preservering ordering
Definition 2.1: (Truth-degrees) Given N ≥ 1, we define the set of truth-degrees
(also called truth-values) τN

def= {0, 1, ..., N} × {0, 1, ..., N}. For the sake of clarity,
we adopt the following notation, where 1 ≤ i, j ≤ N :

u
def= (0, 0) ti

def= (i, 0) f i
def= (0, i) ii,j

def= (i, j). (1)

For (p, q) ∈ τN , we call p and q respectively the positive and negative component
of the truth-degree. Truth-values (i, 0) and (0, i) are called positive and negative
truth-degrees, respectively. �

Let us now define two partial orders over τN (see also Figure 1):

• the knowledge partial order, to manage information at the level of multiple
information sources;

• the truth-partial order, to perform computations on the information of a single
source.

188

Paraconsistent Rule-Based Reasoning with Graded Truth Values

Definition 2.2: (Knowledge-ordering) We define the knowledge ordering ≤k as the
transitive closure of the binary relation ≤k, defined by:

(i, j) ≤k (p, q) iff i ≤ p and j ≤ q. (2)
�

The monotonicity-preservering ordering defined below is useful in many contexts
(see, e.g. Section 6 and examples of applications in [22]). It appears that it is the
only ordering making program operators monotonic (see Lemmas 4.1 and 4.2). Fur-
ther details about this ordering and its use in RLN are explained Section 4.2. It
is also worth emphasizing that arbitrary truth-orderings, required in other applica-
tion domains, can be introduced using introspection operators and then applied in
a stratified manner (see Section 5.4).
Definition 2.3: (Monotonicity-preservering ordering) We define the monotonicity-
preservering ordering ≤m as the reflexive and transitive closure of the binary relation
≤m, defined by:

(0, i) ≤m (0, j) ≤m (0, 0) ≤m (k, l) ≤m (m, 0) ≤m (n, 0),
for 1 ≤ j ≤ i ≤ N, 1 ≤ k, l ≤ N, 1 ≤ m ≤ n ≤ N,

(i, j) ≤m (p, q) if (i = p+ 1 and j = q) or (i = p and j = q + 1).
(3)

�

Observe that in terms of notation introduced in (1), with respect to knowledge
ordering we obtain: (i) u ≤k τ for all τ ∈ τN as it represents the absence of
information; (ii) ti and f j are never comparable in terms of ammount of information;
(iii) ti ≤k ip,q and f j ≤k ip,q for all i ≤ p and j ≤ q, given that those specific
inconsistent literals contain more information. For what concerns the definition of
monotonicity-preservering ordering, we have:

f i ≤m f j ≤m u ≤m ip,q ≤m tm ≤m tn

for 1 ≤ j ≤ i ≤ N, 1 ≤ p, q ≤ N, 1 ≤ m ≤ n ≤ N, (4)
ii,j ≤m ip,q iff ip,q ≤k ii,j , for 1 ≤ p ≤ i ≤ N and 1 ≤ q ≤ j ≤ N.

That is (see Figure 1): (i) fN is less true than fN−1, . . . ,f2, being less true than
f1; (ii) unknown (u) is less false than all f i and less true than all ii,j , tk; (iii) all
ii,j are more true than u and less true than tk (they have a negative component
greater than zero); (iv) t1 is less true than t2, . . . , tN−1 being less true than tN The
ordering among inconsistencies is the reversed knowledge-ordering. Such a choice
allows us to evaluate truth-degrees of conjunctions of inconsistent literals w.r.t. the
monotonicity-preservering ordering, used in bodies of rules, treating the degree of

189

De Angelis,Di Marzo Serugendo, and A. Szałas

truth and falsity symmetrically, without favoring one over the other; the conjunction
keeps track of truth and falsity levels of its operands. Such properties are better
discussed in Section 4.2.

u

i1;1

t1 f1

t2

t3

f2

f3

i2;1 i1;2

i2;2i3;1 i1;3

tN fN

iN;1 i1;N

iN;N

iN;N−1 iN−1;N

iN−1;N−1

(a) 〈τN ,≤k〉.

u

i1;1

t1

f1

t2

t3

f3

i2;1 i1;2

i2;2i3;1 i1;3

tN

fN

iN;1 i1;N

iN;N

iN;N−1 iN−1;N

iN−1;N−1

f2

(b) 〈τN ,≤m〉.

Figure 1: (a) Knowledge and (b) monotonicity-preservering ordering over τN .

Notice that 〈τN ,≤k〉 and 〈τN ,≤m〉 are complete lattices.1

Definition 2.4: (Infimum and supremum) Given a subset S ⊆ τN and a partial
order over τN , we define glbpS and lubpS respectively as the greatest lower bound
and least upper bound of S w.r.t. the ordering ≤p. �

We notice that:
glbk{(i, j), (p, q)} = (min{i, p},min{j, q}),
lubk{(i, j), (p, q)} = (max{i, p},max{j, q}). (5)

1A complete lattice is a partially ordered set (L,≤) in which every subset of L has both a greatest
lower bound and a least upper bound in (L,≤).

190

Paraconsistent Rule-Based Reasoning with Graded Truth Values

u

i1;1

t1 f1

t2

t3

f2

f3

i2;1 i1;2

i2;2i3;1 i1;3

i3;2 i2;3

i3;3

(a) 〈τ3,≤k〉.

u

i1;1

t1

f1

t2

t3

f2

f3

i2;1 i1;2

i3;1 i1;3
i2;2

i3;2 i2;3

i3;3

(b) 〈τ3,≤m〉.

Figure 2: (a) Knowledge and (b) monotonicity-preservering ordering over τ3.

According to Definitions 2.1, 2.2 and 2.3, the set of truth-degrees and the order-
ings are parametrised w.r.t. N . This means that one can derive specific instances
of truth-degrees and orderings; for example, Figure 2 shows the orderings for the
instance τ3.

2.2 Logical Connectives
Let us now define logical connectives: conjunctions ∧k,∧m, disjunctions ∨k,∨m,
implication ⇒k and negation ¬.
Definition 2.5: Given {a1, ...,an}⊆τN (with n≥2), we define:

a ∧k b
def= glbk{a, b}, a ∨k b

def= lubk{a, b},
a ∧m b

def= glbm{a, b}, a ∨m b
def= lubm{a, b}.

For a, b ∈ τN , implication is defined as follows:

a⇒k b
def=

tN if a ≤k b

or a = f i for some 1 ≤ i ≤ N ;
fN otherwise.

191

De Angelis,Di Marzo Serugendo, and A. Szałas

For (i, j) ∈ τN , ¬(i, j) def= (j, i). �

Example 2.1: In τ3: i3,1 ∧k f3 = f1, i3,1 ∨m t2 = t2 and t2 ⇒k i2,2 = t3. �

The implication⇒k is an extension of classical implication. In rule languages one
attempts to derive conclusions in order to satisfy all rules understood as implications
(typically, but not necessarily, in a minimal manner). Implications should be already
satisfied when conclusion need not be derived (program rules interpreted w.r.t. ⇒k

are like true assertions concerning a given scenario). In the case of RLN we derive
conclusions only on the basis of premises evaluating to truth values involving some
truth (that is, to ti, ii,j with 1 ≤ i, j ≤ N). Given an implication B ⇒k H, when
the truth value of B is smaller or equal (w.r.t. ≤k) than the truth value of H,2 or
B evaluates to f i for some 1 ≤ i ≤ N , the implication is true (tN) and there is no
need to “correct” its value.

Given a, b ∈ τN and 1 ≤ i ≤ N , we have the following inference rule, extending
the Modus Ponens rule of classical logic:

a ≥k ti (a⇒k b) = tN

b ≥k ti
. (6)

Rule (6) passes the degree of truth of premises into conclusions (notice that this is
true also w.r.t. positive components of inconsistent truth-degrees associated with
conclusions). As detailed in the subsequent sections, in particular Section 3.2, the
semantics of RLN programs is founded on (6), with the final goal of minimising the
value of b with respect to a and the knowledge ordering; in particular, no inconsistent
conclusions are inferred when no contradictory information is expressed through
rules of programs.

3 The Family of Rule Languages

3.1 Syntax
In the rest of the paper, by Pred we denote a set of predicate symbols, by Var a set
of variables and by Cons a finite set of constants. We assume that these sets are
pairwise disjoint.

2In particular, when B evaluates to u.

192

Paraconsistent Rule-Based Reasoning with Graded Truth Values

Definition 3.1: (Literals) Given a set of truth-degrees τN , we define:

L+
def= {P (t1, ..., tn) | P ∈ Pred and for 1 ≤ i ≤ n, ti ∈ Cons ∪Var};

L− def= {¬P (t1, ..., tn) | P ∈ Pred and for 1 ≤ i ≤ n, ti ∈ Cons ∪Var};
L def= L+ ∪ L− ∪

N⋃
i=1
{truei, falsei} ∪

⋃
1≤i,j≤N

{inci,j},

where each n, called the arity of a predicate, is a nonnegative integer (n ≥ 0).
Every element of L is called a literal. L+ (respectively, L−) is the set of positive
(respectively, negative) literals. A literal without variables is called ground literal.

�

Semantically, logical constants truei, falsei, inci,j are interpreted as ti,f i, ii,j ,
respectively. We simplify expressions of the form ¬¬l to l.
Definition 3.2: (Rules) A rule R is an expression of the form:3

H ← B1, ..., Bn (7)

where n ≥ 0, H ∈ L+ ∪ L− and B1, ..., Bn ∈ L.
H is called the head or a conclusion of the rule and B is called its body. If n = 0

and H is ground then (7) is called a fact and is understood as an abbreviation for
the rule H ← trueN . �

We sometimes abbreviate rules as H ← B, assuming B = B1, ..., Bn.
Definition 3.3: (Logic programs) A (base RLN) logic program P is a finite set of
rules. By P ′ we denote the ground version of P , i.e., the program with all ground
instances of rules from P . By GP we denote the set of all ground literals of P ′. By
the set of positive ground literals of P ′ we understand the set G+

P
def= GP ∩ L+ and

by the set of negative ground literals of P ′ we understand G−P
def= GP ∩ L−. �

Example 3.1: Given the logic program P
def= {Q(X) ← P (X), P (a) ←}, its

ground version is P ′ = {Q(a) ← P (a), P (a) ←}. Also, G+
P = {Q(a), P (a)},

G−P = {¬Q(a),¬P (a)}. �

3.2 Model-Theoretic Semantics
We define the interpretation of logic programs in terms of many-valued Herbrand
models, which are many-valued extensions of traditional Herbrand models [24], as

3As usual, we assume that all the rules are (implicitly) universally quantified.

193

De Angelis,Di Marzo Serugendo, and A. Szałas

explained in Section 3.2.1. In Section 4 we show how to define such semantics in
terms of fixpoints of program operators providing a basic engine for computing least
Herbrand models.

3.2.1 Many-valued Herbrand Interpretations

Definition 3.4: (Many-valued Herbrand interpretations) Let P be a program.
A many-valued Herbrand interpretation for P is a set:

I ⊆ G+
P × (τN \ {u})

such that each positive literal of G+
P appears in I in at most one pair. By V we

denote the set of all many-valued Herbrand interpretations. �

We treat many-valued Herbrand interpretations as canonical interpretations of
symbols, in which every constant is interpreted as itself and the interpretation of
predicate symbols is defined by truth-values assigned to literals. Note that Defini-
tion 3.4 allows one to obtain compact representations for interpretations, dropping
all the elements that are unknown (u) and simplifying further definitions in the
sections that follow.
Definition 3.5: (Interpretation of literals) Given a many-valued Herbrand inter-
pretation I and a ground literal l∈G+

P , the truth-degree associated to l is defined by:

I(l) def=
{
τ if (l, τ) ∈ I, for (a unique) τ ∈ τN ;
u otherwise.

We extend the above definition to truth constants, negative literals, conjunctions of
literals and rules by setting:

I(truei)
def= ti, I(falsei)

def= f i, I(incij) def= iij ;
I(¬l) def= (q, p) iff I(l) = (p, q);
I(l1 ∧m . . . ∧m lk) def= I(l1) ∧m . . . ∧m I(lk);
I(H ← B) def= I(B)⇒k I(H).

If B=B1, ..., Bn is a body of a rule and n ≥ 1 then I(B) def= I(B1) ∧m ... ∧m I(Bn).
If n = 0 then I(B) def= tN . �

Note that negation transforms a true literal (ti) into a false literal (f i) and vice
versa, whereas it swaps the components of inconsistent literals (from ip,q to iq,p).
Negation of u remains u.

194

Paraconsistent Rule-Based Reasoning with Graded Truth Values

Example 3.2: Given I def= {(P (a), t2)}, I(¬P (a)) = f2, I(P (c)) = u. �

We extend the partial order ≤k to many-valued Herbrand interpretations as
follows.
Definition 3.6: (Knowledge-ordering over interpretations) Given a program P and
many-valued Herbrand interpretations I1 and I2, we define:

I1 ≤k I2 iff for every literal l in GP , I1(l) ≤k I2(l). �

By resorting to standard results of domain theory, it can be shown that 〈V,≤k〉
is a complete lattice (the reader can find an ad hoc proof in [21]). We also have the
following lemma (again a proof is reported in [21]).
Lemma 3.1: Let I1 and I2 be two many-valued Herbrand interpretations for a pro-
gram P and let H ← B a ground rule in P ′ with B = B1, ..., Bn. If I1 ≤k I2 and
t1 ≤k I1(B) then I1(B) ≤k I2(B). �

Definition 3.7: (Many-valued Herbrand models) Let P be a program and P ′ its
ground version. A many-valued Herbrand interpretation I is a model of P if, for
every ground rule H ← B ∈ P ′, I(H ← B) = tN . �

Example 3.3: Let P be the following program over τ3:

T (a) ← true1
T (b) ← true2

For many-valued Herbrand interpretation I = {(T (a), t1
)
,
(
T (b), t2

)}, we have:

I
(
T (a)← true1

)
= (t1 ⇒k t1) = t3

I
(
T (b)← true1

)
= (t1 ⇒k t2) = t3

I
(
T (a)← T (a)

)
= (t1 ⇒k t2) = t3

Note that I satisfies all the ground rules of P ′, so I is also a model of P . �

We are now ready to define the model-theoretic semantics of RLN .
Definition 3.8: (Entailment) Let τN be a set of truth values, P be an RLN program,
A be a formula and 1≤n ≤ N . Then we say that P entails A to the degree n, denoted
by P |=n A, iff M(A) ≥k tn for every model M of P .

We say that P entails A (P |= A) iff for every many-valued Herbrand model M
of P we have M(A) ≥k t1. �

We have the following theorem.

195

De Angelis,Di Marzo Serugendo, and A. Szałas

Theorem 3.1: (Soundness of RLN semantics) Given a program P , its least many-
valued Herbrand model IP and a ground literal A, if IP (A) ≥k tn then P |=n A. In
particular, if IP (A) ≥k t1 then P |= A.
Proof Straightforward as IP is the least Herbrand model of P . �

Note that the least model IP , referred to in Theorem 3.1, exists for any RLN

program P , as shown in Theorem 4.3(b).

4 Fixpoint Semantics
In this section we introduce the semantics of logic programs in terms of minimal
many-valued Herbrand models. Like for other model-theoretic semantics [24, 34],
the strategy used to find minimal models consists in a recursive construction of
a fixpoint for a specific operator defined over the set of many-valued Herbrand
interpretations.

4.1 Program Operators
We define the operator used to build minimal many-valued Herbrand models as
follows.
Definition 4.1: (Many-valued program operator) Let P be a program, P ′ its ground
version and let I be a many-valued Herbrand interpretation. We define the operator
TP : V → V as follows:

TP (I)def=
{
(l, τ) | l ∈ G+

P and
τ = lubk

({(p, q) | (l← B) ∈ P ′ and I(B) = (p, q) ≥k t1}∪
{(q, p) | (¬l← B) ∈ P ′ and I(B)=(p, q) ≥k t1}

)
}

�

TP is a many-valued generalisation of the immediate consequence operator for
definite programs [24]. According to the definition, TP (I) is a many-valued Herbrand
interpretation that “minimally" satisfies the rules of P ′ whose bodies are evaluated
by I to a value greater than or equal to t1. Given that ⇒k is satisfied when the
antecedent is unknown or false, we only consider bodies with I(B) ≥k t1 that refer
to the same head literal (perhaps negated).

Example 4.1: Let the set of truth values be τ2 and P consist of rules:
Q(X) ← P (X)
¬Q(a) ←

196

Paraconsistent Rule-Based Reasoning with Graded Truth Values

Then, for I = {(P (a), t2)} we have TP (I) = {(P (a), t2), (Q(a), i1,2)}. �

Definition 4.2: (Semantics of programs) The semantics of a logic program P is
defined as the least many-valued Herbrand model w.r.t. the knowledge-ordering. �

As shown in Theorem 4.3(b), the least many-valued Herbrand model is the least
fixpoint of operator TP . In terms of RLN logic programs and many-valued Her-
brand interpretations, given a program P and a rule H ← B ∈ P ′, we can rewrite
Equation (6) as follows:

I(B) ≥k ti I(H ← B) = tN

I(H) ≥k ti
.

In particular, if I is the least many-valued Herbrand model of P and H ← B is the
unique rule with head H or ¬H in P ′ then we obtain a many-valued extension of
modus ponens:

I(B) = ti I(H ← B) = tN

I(H) = ti
.

If I(H) = tj > ti then we conclude that there is a rule H ← B̂ ∈ P ′ such that
I(B̂) = tj . I(H) is inconsistent if (i) there is a rule in H ← B̂ ∈ P ′ with I(B̂)
inconsistent or (ii) there are two rules H ← B̂1 ∈ P ′ and H ← B̂2 ∈ P ′ such that
I(B1) ≥k t1 and I(B2) ≥k t1. In all cases, the semantics of a program preserves the
grade of truth of premises into conclusions (eventually in the positive components
of inconsistent truth-degrees).

In the next theorems we analyse some fundamental results used to prove that
the many-valued semantics of a program P is the least fixpoint of the operator TP .
Theorem 4.1: Let P be a program, I1 and I2 be many-valued Herbrand interpre-
tations. If I1 ≤k I2 then TP (I1) ≤k TP (I2).
Proof The truth-degrees considered in the least upper bound of Definition 4.1 are
associated with interpretations of bodies of rules that are greater than t1 w.r.t. ≤k.
Thus, from Lemma 3.1, for every ground body B whose evaluation appears in the
set of truth-degrees, we have t1 ≤k I1(B) ≤k I2(B). Given that in the operator
TP we consider least upper bounds of such (possibly negatd) evaluations, we obtain
TP (I1) ≤k TP (I2). �

Theorem 4.1 states that TP : V → V is monotone w.r.t. ≤k. This is an important
property: being 〈V,≤k〉 a complete lattice, it paves the way for applying the Knaster-
Tarski theorem [45, 65] to the operator TP : V → V, as shown in the following
theorem.

197

De Angelis,Di Marzo Serugendo, and A. Szałas

Theorem 4.2: The operator TP : V → V has a unique least fixpoint w.r.t. the
knowledge-ordering.4

Proof By Theorem 4.1, TP is monotone w.r.t. ≤k and 〈V,≤k〉 is a complete lattice.
By the Knaster-Tarski theorem we then conclude that TP has a unique least fixpoint
lfpP . �

A proof of the following theorem is reported in [21].
Theorem 4.3: Let P be a program. Then:

(a) Every fixpoint of TP : V → V is a model of P .

(b) The least fixpoint of TP : V → V is the least model of P w.r.t. ≤k. �

The fixpoint characterisation gives rise to the following important theorem.
Theorem 4.4: Over finite domains, computing the least many-valued Herbrand
model of P can be done in deterministic polynomial time w.r.t. the size of the
domain.
Proof Given that we assume logic programs to have a fixed number of rules, this is
similar to the computation of the data complexity of Datalog [55]. Let |U | be the size
of the universe (|U | = |Cons|) and cv the maximum number of variables appearing
in the bodies of rules (cv is a constant). Then |P ′| = O(|U |cv). In the worst case,
the evaluation of a new rule implies a change in the evaluation of bodies of the rules
already evaluated. Thus, the least many-valued Herbrand model can be computed
in O(|U |2cv) steps (where a step depends on computing the truth-degree associated
with the whole body of a rule). �

4.2 Monotonicity-preservering ordering and Monotonicity of con-
sequence operators

We observe that the result of Theorem 4.3 is achieved by resorting to the property
expressed in Lemma 3.1. Such a property is supported by the current definitions of
the orderings (see Definition 2.2). The rationale behind the definition of ≤m is the
following one.

I. In conjunctions of consistent truth-degrees (true, unknown or false), ≤m intu-
itively preserves the truth-degree associated with the minimum level of truth
(see Figure 1 and Definition 2.5).

4F ∈ V is a fixpoint of TP iff TP (F) = F . F is the least fixpoint of TP w.r.t ≤k iff F is a fixpoint
of TP and F ≤k F

′ for every F ′ such that TP (F ′) = F ′.

198

Paraconsistent Rule-Based Reasoning with Graded Truth Values

II. In conjunctions of inconsistent truth-degrees, ≤m preserves the maximum val-
ues of the positive and negative components of the truth-degrees (i.e. ii,j ∧m

ip,q = imax(i,p),max(j,q)). This assures that a truth-value obtained from a con-
junction of inconsistent literals is in turn inconsistent and it has the maximum
positive and negative components of the inconsistent truth-degrees.

Example 4.2: Consider the rule A← B,C,D when B is evaluated to i2,3, C to i4,1
and D to t3. When interpreted according to the semantics of Section 4, we expect
A to be associated with the truth-degree i4,3 (or with a greater one w.r.t. ≤k in
presence of further rules with head A or ¬A); rephrased, we say that: (i) there is
evidence supporting the thesis that A is inconsistent and (ii) they attest that the
level of inconsistency is at most 4 for the positive component and 3 for the negative
one. �

Point (ii) in the previous example is useful when using introspection operators
(Section 5) to reason on inconsistency bounded above by some given values. More-
over, point (i) refers to a quite general and appealing property for truth-degrees.
This means that:

ip,q <m ti for every p ≥ 0, q ≥ 0, i > 1;
ip,q >m fi for every p ≥ 0, q ≥ 0, i > 1;
ti <m tj for every 0 < i < j;
fi <m fj for every 0 < j < i.

(8)

Thus, the definition of further truth-orderings satisfying (8) involves the definition
of relations among inconsistent truth-degrees. Technically, these relations can affect
the monotonicity of TP , as stated in the following lemmas.
Lemma 4.1: For every linear order 〈τN ,≤nt〉 satisfying (8) with N ≥ 2 there exists
a program P such that TP of Definition 4.1 is not monotonic.
Proof Consider the program:

P
def= {H ← B1, B2}. (9)

We define:

I1
def= {(B1, ip,q

)
,
(
B2, t1

)} and I2
def= {(B1, ip,q

)
,
(
B2, ir,s

)}
such that 1≤p, q, r, s≤N , ir,s≤nt ip,q and ir,s and ip,q are not comparable w.r.t. ≤k

(notice that such conditions can be always satisfied for N ≥ 2). Then I1 ≤k I2 but
TP (I1)(H) = ip,q and TP (I2)(H) = ir,s are not comparable w.r.t. ≤k. �

199

De Angelis,Di Marzo Serugendo, and A. Szałas

Lemma 4.2: Let 〈τN ,≤nt〉 be a complete lattice satisfying (8) with N ≥ 2. If there
exist two elements ip,q ∈ τN and ir,s ∈ τN such that 1 ≤ p, q, r, s ≤ N , ir,s <k ip,q

and ir,s <nt ip,q then there exists a program P such that TP of Definition 4.1 is not
monotone w.r.t. ≤k.
Proof Let P be the program defined by (9) and let I1

def= {(B1, ip,q
)
,
(
B2, t1

)} and
I2

def= {(B1, ip,q
)
,
(
B2, ir,s

)}. Then I1 ≤k I2 but:
TP (I2)(H) = ir,s <k TP (I1)(H) = ip,q. �

Thus, Lemmas 4.1–4.2 state that to preserve the monotonicity of TP , truth-
orderings satisfying point (i) (i.e., (8)) must not be linear and its inconsistent truth
values have to satisfy ip,q <nt ir,s when ir,s <k ip,q, for every ip,q ∈ τN , ir,s ∈ τN .
We observe that such conditions are satisfied by 〈τN ,≤m〉.

5 Introspection Operators
In this section we extend the language defined so far by tools to express non-
monotonic/defeasible rules. Non-monotonicity can appear when inconsistencies or
lack of knowledge is resolved with rules drawing tentative conclusions (e.g., reflecting
some heuristics) that are assumed to be defeasible when gathering more information.
The mechanism that we introduce makes it possible to compare truth-values of (sets
of) literals, handling inconsistent information and lack of knowledge. Moreover, it
provides support to enrich the language with further orderings that would break the
monotonicity of the TP operator of Definition 4.1. In this way, ad-hoc orderings
accommodating different interpretations of conjunctions and disjunctions of literals
can be employed.

5.1 Definition of Introspection Operators
Definition 5.1: (Introspection operators) An introspection operator is an expression
of the form O(S, T), where O is the operator’s name, S ⊆ L and T ⊆ τN .5 From the
semantic point of view, introspections operators map sets of literals and truth-values
into τN . �

In the rest of the paper we assume that the considered introspection operators
are computable in deterministic polynomial time in the size of the domain. This
assumption is needed to retain tractability of query evaluation.

5For the sake of readability, we use here truth-degrees rather than logical constants. Of course,
an equivalent definitions can be given defining T as a subset of logical constant.

200

Paraconsistent Rule-Based Reasoning with Graded Truth Values

Let I be a many-valued Herbrand interpretation. We define the following sample
introspection operators, where we also provide more convenient notation for these
operators.

• Operator O∈({l}, {τ1, . . . , τN}), denoted by l ∈ {τ1, . . . , τN}:

I(l ∈ {τ1, . . . , τN}) def=
{

tN when I(l) ∈ {τ1, . . . , τN};
fN otherwise. (10)

• Operator O≤k,∅({l1, l2}, ∅), denoted by l1 ≤k l2:

I(l1 ≤k l2) def=
{

tN when I(l1) ≤k I(l2);
fN otherwise. (11)

• Operator O≤k
({l}, {τ}), denoted by l ≤k τ :

I(l ≤k τ) def=
{

tN when I(l) ≤k τ ;
fN otherwise; (12)

• Operator O≤m,∅({l1, l2}, ∅), denoted by l1 ≤m l2:

I(l1 ≤m l2) def=
{

tN when I(l1) ≤m I(l2);
fN otherwise; (13)

• Operator O≤m({l}, {τ}), denoted by l ≤m τ :

I(l ≤m τ) def=
{

tN when I(l) ≤m τ ;
fN otherwise; (14)

• Operator O∆N
n

({l}, ∅), denoted by l ≤∆ n:

I(l ≤∆ n) def=
{

tN when I(l) ∈ ∆N
n ;

fN otherwise, (15)

where ∆N
n

def= {(p, q) | (p, q) ∈ τN and p− q ≤ n}.

• Other useful operators can be defined using the strict partial order <truth

defined by:

(p1, p2) <truth (q1, q2) when (p1 − p2) < (q1 − q2) or
(p1 − p2) = (q1 − q2) and p1 < q1.

(16)

201

De Angelis,Di Marzo Serugendo, and A. Szałas

In particular, O≤truth
({l1, l2}, ∅), denoted by l1 ≤truth l2:

I(l1 ≤truth l2) def=
{

tN when I(l1) ≤truth I(l2);
fN otherwise. (17)

For all such operators we consider also their versions corresponding to respective
strict partial orders l1 <k l2, l1 <m l2, l1 <k τ , l1 <m τ , l1 <truth l2 and l1 <∆ n.

5.2 Extending Programs with Introspection Operators
Let us now define extended rules allowing for introspection operators.
Definition 5.2: (Extended rules) Let be O the set of introspection operators. An
extended rule is an expression of the form:

H ← B1, ..., Bn (18)

with n ≥ 0, H ∈ L+ ∪ L− and B1, ..., Bn ∈ L ∪O. �

Introspection operators introduce non-monotonicity of reasoning. Therefore, to
keep our solutions tractable, we have to structure rules in layers in a way similar to
stratification used in logic programming [1, 4].
Definition 5.3: (Stratification and extended programs) Let S be a finite set of ex-
tended rules. Then S is an extended program (or RLN program) iff there is a mapping
κS : L+ ∪ L− −→ N such that for every literal l ∈ L+, κS(l)=κS(¬l), and for every
rule H←B1, . . . , Bn ∈ S and every 0 ≤ i ≤ n,

1. if Bi is a literal then κS(H) ≥ κS(Bi);

2. if Bi is an introspection expression and l is a literal occurring in Bi then
κS(H) > κS(l). �

One can easily observe that κS defines a partition of rules such that a rule
H ← B1, . . . , Bn ∈ S belongs to a component i ∈ N when κ(H) = i. Moreover,
when a given literal occurs in a body of a rule in the scope of an introspection
operator then it is fully defined by rules “smaller” (w.r.t. κS) than the current rule.
This allows us to compute rules component by component:

1. first rules with heads having the smallest κs are computed (observe that no
introspection operators occur in bodies of such rules);

2. next rules with heads in the next (w.r.t. κS) component are interpreted; truth-
degrees of literals appearing in introspection operators (if any) are already
computed in the previous component;

202

Paraconsistent Rule-Based Reasoning with Graded Truth Values

3. iteration step: rules with heads in the component i+ 1 are computed after all
component j ≤ i; once again, truth-degrees of literals belonging to introspec-
tion operators (if any) are obtained from previous iterations.

Such a procedure allows one to compute extended rules incrementally, without
increasing too much the complexity of fixpoint semantics.

Example 5.1: The sets of rules:
P1 = {Q(X)← P (X) ∈ {t1}} and P2 = {P (a)←,¬P (a)←}

represent a partition of the extended program P :
Q(X) ← P (X) ∈ {t1}
P (a) ←
¬P (a) ← �

In the following definition we provide semantics of extended programs.
Definition 5.4: (Semantics of extended programs) Let P = P1 ∪ ... ∪ Pm be an
extended program with a partition P1, ..., Pm and let I∅

def= ∅. We define a sequence
of programs P t

1, ..., P
t
m related to P1, ..., Pm as follows:

• P t
0 = ∅ (no rules and no facts).

• Let T stand for an introspection operator in Pi or a literal appearing in the
head of a rule of a program Pj with j < i. Then P t

i is obtained from Pi

by replacing, in its rules, every such T by the logical constant representing
the truth value

(⋃i−1
j=0Mj

)
(T), where Mj is the least Herbrand model of P t

i

(M0 = ∅ for P t
0 = ∅).

The semantics of P is ⋃m
j=0Mj and we call it the least Herbrand model of the extended

program P . �

We call ⋃m
j=0Mj the “least model” of P because it is the least Herbrand model of

a program consisting of P t
1, ..., P

t
m (see Lemma 3.1 in [21]).

Example 5.2: Let P be the following program, evaluated w.r.t N = 2:

b← a ≥m u
a←

We have P = P1 ∪ P2, where P1 = {a ←} and P2 = {b ← a ≥m u}. Thus we
obtain M0 = ∅, P t

1 = P1 with M1 = {(a, t2)}. It follows that P t
2 = {b ← true2},

thus M2 = {(b, t2)}. The semantics of P is then M0 ∪M1 ∪M2 = {(a, t2), (b, t2)}.
�

203

De Angelis,Di Marzo Serugendo, and A. Szałas

5.3 Fixpoint Semantics of Extended Programs
The semantics of extended programs is defined by an iterated fixpoint construction
analogous to the one for stratified programs [1, 4].
Definition 5.5: (Consequence operator for extended programs)
Let be P = P1∪ ...∪Pm an extended program with a partition P1, ..., Pm. We define
the “progressive" version of immediate consequence operator :

T ′Pi
(I) def=

{
(l, τ) | l ∈ G+

P and
τ = lubk

({(p, q) | (l← B) ∈ P ′i and I(B) = (p, q) ≥k t1}∪
{(q, p) | (¬l← B) ∈ P ′i and I(B)=(p, q)≥k t1}∪
{I(l)}) }.

(19)

�

For each i ≥ 1, the least fixpoint of T ′Pi
always exists over finite domains and is

defined by T ′Pi
↑ni, for a natural number ni such that T ′Pi

↑ni = T ′Pi
↑ (ni + 1), where

T ′P0↑n0
def= ∅, and:

T ′Pi
↑0 def= T ′Pi−1

↑ni−1,

T ′Pi
↑(k + 1) def= T ′Pi

(T ′Pi
↑k).

(20)

We notice that this version of the consequence operator is very close to the one
for definite programs. In this case, the set {I(l)} in (19) keeps track of the truth-
degrees for literals appearing in the heads of components associated with lower
indexes. Such a definition assures that the interpretation contains at most one
truth-degree for a positive literal (Definition 3.4).

We have the following theorem (for a proof see [21]).
Theorem 5.1: Let be P = P1 ∪ ... ∪ Pm an extended program with a partition
P1, ..., Pm. Then T ′Pm

↑nm is the least Herbrand model of P (Figure 3). �

We observe that the way of partitioning the extended program does not affect its
interpretation. Concerning the complexity of the semantics computation, we have
the following theorem.
Theorem 5.2: Let P be any extended program. Computing the least Herbrand
model of P can be done in deterministic polynomial time in the size of the number
of constants occurring in P . �

It is important to note that one can verify whether a finite set S of rules is an
extended program in deterministic time polynomial in the number of the size of

204

Paraconsistent Rule-Based Reasoning with Graded Truth Values

... ...

... ...

... ...

... ...

...

... ...

... ...

used bybased on

... ...

... ...

... ...

... ...

... ...

... ...

...
m�1[

j=0

Mi = T 0
Pm�1

" nm�1

model

Model of P

Figure 3: Fixpoint construction for extended programs.

the domain (or, equivalently, literals occurring in the program). For that purpose
one can adjust the construction for stratified logic programs (see, e.g. [1]). By
a positive part of a literal l we understand l when l is positive, and l′ when l = ¬l′.
We construct a graph GS with nodes labeled by positive literals. For each rule
H ← B1, . . . , Bn ∈ S:

• if Bi is a literal then there is an edge from the positive part of Bi to the positive
part of H, labeled with ‘+’ (a “positive” edge);

• if Bi is an introspection expression and l is a literal occurring in Bi then there
is an edge from the positive part of l to the positive part of H, labeled with
‘−’ (a “negative” edge).

We have the following property.

Lemma 5.1: A finite set of rules S is an extended program if GS has no cycle
containing a negative edge. �

Of course, checking for existence of a cycle with negative cycle indicated in
Lemma 5.1 takes deterministic polynomial time in the size of S.

205

De Angelis,Di Marzo Serugendo, and A. Szałas

5.4 Arbitrary Truth-orderings as Introspection Operators

Introspection operators can be used to introduce alternative orderings including
those violating monotonicity of the operator TP of Definition 4.1. This is useful
especially when a different interpretation of conjunctions and disjunctions of literals
is needed to evaluate a subset of rules, i.e., when a truth-ordering replacing the
monotonicity-preservering ordering can capture some important semantic aspects in
a given application domain.

Let 〈τN ,≤o〉 be a complete lattice. By luboS and glboS we denote the least
upper bound of a set of truth values S ⊆ τN w.r.t. ≤o and the greatest lower bound
of S w.r.t. ≤o, respectively.

Definition 5.6: (Orderings over introspection operators) Let L = 〈τN ,≤o〉 be
a complete lattice. We then define the interpretations for the following introspection
operators induced by L:

I(O∧o({l1, ..., ln}, ∅)) def= glbo{l1, ..., ln}; (21)

I(O∨o({l1, ..., ln}, ∅)) def= lubo{l1, ..., ln} (22)

�

In what follows,

O∧o({l1, ..., ln}, ∅) is abbreviated by l1 ∧o ... ∧o ln;
O∨o({l1, ..., ln}, ∅) is abbreviated by l1 ∨o ... ∨o ln.

These operators can be used to evaluate respectively conjunctions and disjunctions
of literals w.r.t. ≤o. Such a way of introducing generic orderings is restricted in the
sense that the stratification requirement is to be met. Even though, in some cases,
this aspect may represent a too restrictive constraint, such a limitation represents the
trade-off for benefiting from the flexibility of easily introducing additional orderings
exploiting, at the same time, the results of Theorem 5.1 and Theorem 5.2; indeed,
such theorems assure that the extended program using the additional ordering still
has a many-valued Herbrand model computable in polynomial time w.r.t. the size
of the domain.

Example 5.3: In the following program we want the conjunction u(X), r(X) in
rule (23) to be interpreted according to the ordering ≤truth defined by (16) instead

206

Paraconsistent Rule-Based Reasoning with Graded Truth Values

of the basic one ≤m.

w(X)← u(X), r(X) (23)
u(X)← p(X), q(X) (24)
p(a)← true1 (25)
q(a)← true3 (26)
q(b)← true1 (27)
r(b)← true2 (28)

We then use O∧truth
({l1, ..., ln}, ∅), replacing (23) by:

w(X)← u(X) ∧truth r(X). (29)

We notice that the new program is extended; one possible stratification is:
{(24), . . . , (28)} ∪ {(29)}. �

Note that conjunctions and disjunctions based on any other (polynomially com-
putable) truth-orderings can be defined by introducing new relations and defining
them in terms of rules. In such a case introspection operators are not needed so
stratification is not required.

6 Examples of Applications

6.1 A Robotics Scenario

Example 6.1: Consider an exploratory robot moving in a hostile environment to
search and collect ground samples for analysis of minerals. The robot is equipped
with some sensors that analyse the surrounding space detecting:

• the presence of a good concentration of minerals in a given area (min predi-
cate);

• rocky areas (rock predicate);

• potential holes in the ground (holes predicate).

The robot also receives information from other sources that may cause inconsisten-
cies in its knowledge base.

207

De Angelis,Di Marzo Serugendo, and A. Szałas

A dangerous area for the robot (dang predicate) is an area that is either rocky
or containing some holes. Every safe (not dangerous) area containing minerals has
to be analysed (move predicate). The behavior of the robot is defined as follows:

move(X) ← min(X),¬dang(X)
¬dang(X) ← ¬rock(X),¬holes(X)
dang(X) ← rock(X)
dang(X) ← holes(X)

(30)

We now consider an instance of the problem in which sensor measurements for areas
a1 and a2 are associated with grades, reflecting the perception quality. The following
set of facts represents sample sensed contextual-information:

rock(a1) ← true2 ¬rock(a2) ← true2
¬rock(a1) ← true1 ¬holes(a2) ← true3
¬holes(a1) ← true3 min(a2) ← true3
min(a1) ← true3

(31)

We notice that two distinct sensors have generated contradictory information
about the geomorphology of area a1, so we expect to obtain some inconsistency
regarding the action to take in that location. We now consider the program P given
by the union of the rules of equations (30) and (31); computing its fixpoint semantics
we obtain:

TP↑1 = TP (I∅) =
{(
rock(a1), i2,1

)
,
(
(rock(a2),f2

)
,(

holes(a1),f3
)
,
(
holes(a2),f3

)
,(

min(a1), t3
)
,
(
min(a2), t3

)}
;

TP↑2 = TP (TP↑1) = TP↑1 ∪ {(dang(a1), i2,1
)
,
(
dang(a2),f2

)}
;

TP↑3 = TP (TP↑2) = TP↑2 ∪ {(move(a1), i1,2
)
,
(
move(a2), t2

)}
;

TP↑4 = TP (TP↑3) = TP↑3.

(32)

TP ↑ 1 is obtained from the rules of (31) and it has assigned i2,1 to rock(a1) due
to the contradictory facts remarked above. In this case TP ↑ 1

(
rock(a1)

)
= i2,1 is

founded on rock(a1) ← true2 (the first component) and ¬rock(a1) ← true1 (the
second component).

TP↑2 and TP↑3 are obtained from (30); the inconsistency of rock(a1) propagates
through the rules of (30) and is reflected in dang(a1) and move(a1). For the area
a2 there are no contradictory facts and TP ↑ 2 assigns the degree t2 to ¬dang(a2).
¬holes(a2) is associated with t3 and the truth-level assigned by sensors to rock(a2)
is f2; thus, the maximum degree of certainty that can be associated with the con-
junction ¬rock(a2),¬holes(a2) is t2 (i.e., there is enough information to assign t2

208

Paraconsistent Rule-Based Reasoning with Graded Truth Values

to ¬dang(a2), but it is not sufficient to ensure the highest value t3). An analogous
reasoning explains the value t2 entailed for move(a2). �

Example 6.2: We now consider program P given by rules (30) and facts (31)
with the additional fact ¬min(a1) ← true1. In this case there is contradictory
information also about min(a1). Computing the fixpoint semantics of the program
we obtain:

TP↑1 = TP (I∅) =
{(
rock(a1), i2,1

)
,
(
(rock(a2),f2

)
,
(
holes(a1),f3

)
,(

holes(a2),f3
)
,
(
min(a1), i3,1

)
,
(
min(a2), t3

)}
;

TP↑2 = TP (TP↑1) = TP↑1 ∪ {(dang(a1), i2,1
)
,
(
dang(a2),f2

)}
;

TP↑3 = TP (TP↑2) = TP↑2 ∪ {(move(a1), i3,2
)
,
(
move(a2), t2

)}
;

TP↑4 = TP (TP↑3) = TP↑3.

The facts concerning area a2 are the same as in the case of facts (31), that is
the reason why TP↑ 3, for the literals referring to a2, infers the same truth-degrees
of (32).

Due to the contradictions in the facts for a1, min(a1) and rock(a1) are both
inconsistent (TP ↑ 2

(
min(a1)

)
= i3,1, TP ↑ 2

(
dang(a1)

)
= i2,1) and move(a1) is

evaluated to i3,1 ∧m i1,2 = imax(3,1),max(1,2) = i3,2 in TP↑3. Thus, when inconsistent
truth-degrees are involved in conjunctions, the evaluation of bodies preserves the
maximum values of the literal components being evaluated. This mechanism makes
it possible, during the computation, to keep track of the global amount of collected
information supporting both the head of a rule and its negation; such knowledge can
be exploited to manage contradictory information, as shown in the next section. �

6.2 Resolving Inconsistencies
In this section we show how to use the introspection operators defined in Section 5
to resolve inconsistent information. Graded values allow for fine-grained modelling
of predicate truth-degrees: the intuition behind inconsistency resolution is then
grounded on the comparison of truth-degree components, as a form of analysis and
categorization of inferred information.

Example 6.3: We consider an improved version of the exploratory robot of Sec-
tion 6.1: the robot moves in an area affected by inconsistent information if the
global knowledge indicates that the location is “sufficiently attractive" to encourage
the movement. Area attractiveness is defined by analysing literals concerning the

209

De Angelis,Di Marzo Serugendo, and A. Szałas

existence of dangers and minerals; more specifically, in the case of contradictory
knowledge the robot moves when two primary conditions are met:

(i) There may be evidence confirming that the location is dangerous but glob-
ally there are also stronger facts supporting the opposite (i.e. the positive
component of dang(X) is greater then the negative one).

(ii) The certitude of finding minerals is higher than a given threshold (i.e. the
difference between the positive and negative component of min(X) is greater
than a specific value).

We introduce the concept of explorable area (explorable predicate - expl) to
designate non-dangerous areas containing minerals. In the following rules we use
introspection operators ≤m, ≤truth and <∆ defined by (14), (17) and (15), respec-
tively.

move(X) ← expl(X) ≥m t1
move(X) ← expl(X) >m u, expl(X) <m t1,

¬dang(X) >truth dang(X),min(X) ≥∆ 2
¬move(X) ← expl(X) >m u, expl(X) <m t1,

¬dang(X) ≤truth dang(X)
¬move(X) ← expl(X) >m u, expl(X) <m t1,min(X) <∆ 2
expl(X) ← min(X),¬dang(X)
¬dang(X) ← ¬rock(X),¬holes(X)
dang(X) ← rock(X)
dang(X) ← holes(X)

(33)

Consistent explorable areas (expl(X) ≥m t1) can be directly analysed by the
robot. In case of contradictory information about expl(X), the second, third and
fourth rule are concerned. ¬dang(X) >truth dang(X) expresses condition (i): it is
satisfied when the first component of ¬dang(X) is greater than the second one, i.e.,
when ¬dang(X) is more strongly supported than dang(X). min(X) ≥∆ 2 defines
condition (ii): it is satisfied when the difference between the components supporting
min(X) and ¬min(X) is greater or equal to 2; this value implies that min(X)
must have a truth-degree greater or equal to t2 w.r.t. the knowledge-ordering. The
condition expl(X) >m u, expl(X) <m t1 ensures that these rules are applied only
to resolve inconsistent explorable areas.

We consider the following set of facts in which we add information also about

210

Paraconsistent Rule-Based Reasoning with Graded Truth Values

area a3:

rock(a1) ← true2 rock(a3) ← true1
¬rock(a1) ← true1 ¬rock(a3) ← true2
¬holes(a1) ← true3 ¬holes(a3) ← true3
min(a1) ← true3 min(a3) ← true4
¬min(a1) ← true1 ¬min(a3) ← true2
¬rock(a2) ← true2
¬holes(a2) ← true3
min(a2) ← true3

(34)

P given by (33) and (34) is an extended program (Definition 5.3). One possible
partition is given by P = P1 ∪ P2, with P1 containing all the facts and:

expl(X) ← min(X),¬dang(X)
¬dang(X) ← ¬rock(X),¬holes(X)
dang(X) ← rock(X)
dang(X) ← holes(X)

(35)

and P2 containing:

move(X) ← expl(X) ≥m t1
move(X) ← expl(X) >m u, expl(X) <m t1,

¬dang(X) >truth dang(X),min(X) ≥∆ 2
¬move(X) ← expl(X) >m u, expl(X) <m t1,

¬dang(X) ≤truth dang(X)
¬move(X) ← expl(X) >m u, expl(X) <m t1,min(X) <∆ 2

(36)

Computing the fixpoint semantics we obtain:

T ′P1↑1 = T ′P1(I∅) =
{(
rock(a1), i2,1

)
,
(
(rock(a2),f2

)
,
(
rock(a3), i1,2

)
,(

holes(a1),f3
)
,
(
holes(a2),f3

)
,
(
holes(a1),f3

)
,(

min(a1), i3,1
)
,
(
min(a2), t3

)
,
(
min(a3), i4,2

)}
;

T ′P1↑2 = T ′P1(T ′P1↑1) = T ′P1↑1 ∪ {(dang(a1), i2,1
)
,
(
dang(a2),f2

)
,(

dang(a3), i1,2
)}

;
T ′P1↑3 = T ′P1(T ′P1↑2) = T ′P1↑2 ∪ {(ex(a1), i3,2

)
,
(
ex(a2), t2

)
,
(
ex(a3), i4,2

)}
;

T ′P1↑4 = T ′P1(T ′P1↑3) = T ′P1↑3 = T ′P1↑n1;
T ′P2↑1 = T ′P2(T ′P1↑n1) = T ′P1↑n1 ∪

{(
move(a1),f3

)
,
(
move(a2), t3

)
,(

move(a3), t3
)}

;
T ′P2↑2 = T ′P2(T ′P2↑1) = T ′P2↑1 = T ′P2↑n2.

211

De Angelis,Di Marzo Serugendo, and A. Szałas

Area a2 is directly explorable (since T ′P1↑ 3
(
ex(a2)

)
= t2). Therefore we obtain

T ′P2↑ 1
(
move(a2)

)
= t3. Area a1 is associated with inconsistent information as to

dang and T ′P1↑n1
(¬dang(a1)

)
= i1,2 <truth i2,1 = T ′P1↑n1

(
dang(a1)

)
, which entails

T ′P2↑1
(
move(a1)

)
= f3.

Also for area a3 there is contradictory information as to dang but:
T ′P1↑n1

(¬dang(a3)
)

= i2,1 >truth i1,2 = T ′P1↑n1
(
dang(a3)

)
, and

T ′P1↑n1
(
min(a3)

)
= i4,2 ≥∆ 2.

Thus we obtain T ′P2↑1
(
move(a3)

)
= f3.

The only difference between a1 and a3 concerns the information about dangers.
Indeed, even though the evaluation of min(a1)≥∆2 and min(a3)≥∆2 is the same,
facts contain stronger evidence supporting the positive component of dang(a1), vi-
olating condition (i).

By resorting to introspection all contradictions are solved, producing as output
truth-values f3, t3 for the move predicate. The intuition applied to handle incon-
sistent information consisted in comparing the positive and negative components of
the truth-degrees obtained for predicates expl(X), dang(X) and min(X), figuring
out a strategy to define some thresholds to consider an area directly explorable or
at least sufficiently not dangerous and rich in minerals to be explored. �

6.3 Negation as Failure and Universal Quantification
Negation as failure [15] is a non-monotonic inference rule used to entail a negative
sentence of the form not p when the predicate p cannot be derived from inference
rules of the program (depending on the formal system used, the sentence not p and
¬p can have different interpretations – see, e.g., [38]). In two-valued logic negation as
failure can be used to easily model universal quantification; without such an inference
rule, expressing universal quantification is more difficult because the whole set of
facts must be known in advance. This restriction imposes some limitations when we
consider programs as deductive databases (see, e.g., [1]), where logic rules represent
reasoning components (called intensional database - IDB) using collections of facts
(called extensional database - EDB) that may change over time; in this context, to
define universal quantification, EDB should be known before defining IDB.

In our logic, the meaning of a sentence of type not p can be expressed using
a sentence of type p ∈ {u}, i.e. we are able to reproduce negation as failure. For
more details, we refer to [21].

212

Paraconsistent Rule-Based Reasoning with Graded Truth Values

7 Related Work

Graded reasoning is investigated in many contexts, including modal reasoning (for
a survey see, e.g., [47]) and approximate reasoning (see, e.g., [26, 68]), to mention
just a few of them. The language presented in this paper aims to support monotonic
as well as non-monotonic graded reasoning. Non-monotonicity is particularly useful
to reason about incomplete and/or inconsistent information arising from partial
views of the system, making conclusions defeasible. Historically, many techniques
have been proposed to realize non-monotonic reasoning. In particular, these ones
include: drawing negative conclusions from a global/local limitation of the accessible
information (e.g., (Local) Closed World Assumption [32]); extending theories with
additional rules/operators handling non-conclusive information (e.g., default logic
[61, 62], circumscription [52]), filling the lack of knowledge (autoepistemic logic [53])
or resolving inconsistencies [54] (defeasible reasoning).

Our language is based on a family of many-valued paraconsistent logics to tackle
the principle of explosion (ex contradictione quodlibet) of the consequence relation;
graded truth-values underpin both paraconsistency and paracompleteness. Observ-
ing Definition 2 we notice three important properties of our family of many-valued
logics: (i) x = ¬¬x for every x in τN ; (ii) x ≤k y ⇒ ¬x ≤k ¬y for every x, y in
τN ; (iii) ≤m does not satisfy: x ≤m y ⇒ ¬y ≤m ¬x for every x, y in τN . We
conclude that 〈τN ,≤k,≤m,¬〉 is not a bilattice [39, 40]. Bilattices are truth-value
structures with interesting properties for handling inconsistent and incomplete infor-
mation. The simplest example of a bilattice is the one used in Belnap’s four-valued
logic [10], based on Kleene’s strong three-valued logic [44]. Bilattices have been
widely used during the last three decades to define several types of many-valued
logics having general unified properties. Among other important results, Ginsberg
defined bilattices for truth maintenance systems, first order, default and prioritised
default logic [39, 40], allowing for a given theorem prover to reason, at the same
time, on these three different domains. Also, Fitting [33] proved that the seman-
tics of a wide family of logic languages, based on interlaced bilattices and devoid of
negations in the heads of rules, can be expressed in terms of fixpoint semantics of
a specific monotone operator. In our case, even though the current definition of the
monotonicity-preservering ordering prevents 〈τN ,≤k,≤m,¬〉 from being a bilattice,
introspection operators can help introducing the same orderings employed in logics
defined on bilattices (e.g., the ones in [39, 40]), as shown in Section 5.4.

The first modern approach to address paraconsistent reasoning is provided in [42]
(for English version see [43]). The need for addressing inconsistencies is discussed
in many sources, including [35, 36]. For many other references see, e.g. [12]. Among
other important applications, many-valued logics represent a natural framework to

213

De Angelis,Di Marzo Serugendo, and A. Szałas

model inconsistent information using paraconsistent logic programs [17]. One of the
first approaches towards this direction dates back to Belnap’s four-valued logic [10].

Paraconsistent rough sets [51, 66] are different, in spirit, from our approach
and are usually restricted to four truth-values. 4QL [48, 49, 50] is a rule-based
language supporting negation both in bodies and heads of rules. It extends proposals
included in [51, 66] by allowing disjunction in bodies of rules and a specific form of
introspection operators, called external literals. Compared to Belnap’s lattices, 4QL
uses a different (linear) truth-ordering entailing more intuitive results in practical
reasoning. It is important to notice that 4QL can be instantiated from our language
by considering τ1, i.e., it represents a particular instance with only one level for
truth and falseness.

Another approach, based on quasi-possibilistic logic [26] also uses pairs of de-
grees. However, rather than representing degrees of truth and falseness, these values
reflect the possibility and the necessity of a property expressed by a formula. Also,
unlike our approach, quasi-possibilistic logic addresses paraconsistent reasoning by
considering consistent fragments of knowledge bases as well as via consequence rela-
tion allowing one to isolate formulas with degree not smaller than a given one. The
complexity of the inference problem is co-NP complete. In our approach we con-
centrate on a family of rule languages enjoying tractability. Moreover, introspection
operators we introduced allow to treat inconsistency and uncertainty in a more flex-
ible way. This is important when such disambiguation is dependent on a particular
application domain.

A well-known approach based on stable models, Answer Set Programming [13,
38], also allows for negation in bodies and heads of rules. Its default negation can
be considered as a particular introspection operator. However, this approach is
basically three-valued and does not address inconsistent information. Also, it is not
tractable.

Another direction of research on inconsistent knowledge bases depends on re-
pairing inconsistencies and computing consistent answers to queries [5, 6, 11]. How-
ever, we apply a different methodology: rather than compute consistent answers
to queries by (locally) repairing databases, we provide introspection operators as
a tool too disambiguate inconsistencies in a nonmonotonic and highly contextual
manner. Grading truth values allows one to compute meaningful answers also when
they are inconsistent. Indeed, when an answer’s truth value is iij , we know what is
the support of its truth and its falsity and comparing i with j provides additional
information not present in consistent answers. Also, repair checking is sometimes
ΠP

1 or even ΠP
2 -complete [14].

Fuzzy set-based reasoning [70, 69] is frequently used as a basis for decision mak-
ing. It belongs to a larger area of quantitative approaches to reasoning, like those

214

Paraconsistent Rule-Based Reasoning with Graded Truth Values

concentrated around models involving probability, credibility and plausibility, possi-
bility and necessity, degrees of belief and disbelief (mass distributions), fuzzy truth-
degrees (see [46, 59]). Intuitionistic fuzzy sets [7, 8] serve to model incomplete
information and provide separate grades for truth and falsity. This idea is further
developed to paraconsistent intuitionistic fuzzy sets [67], applied to model uncer-
tainty, lack of knowledge as well as inconsistency. Understanding of paraconsistent
fuzziness [64] is closer to the approach developed in the current paper; however,
specific examples are restricted to four truth-values. Also, orderings considered are
different and no rule language is developed.

8 Conclusions

In this paper we have presented a family of rule-based languages, RLN , grounded
on paraconsistent many-valued logics with graded truth-values. Truth-degrees are
selected from an arbitrarily large finite set of logical values; this aspect empowers
modelling to shape information with a desired grade of accuracy, endowing expres-
siveness with an arbitrarily large set of values for defining truth, falseness and incon-
sistency. Such truth values appear natural in many real-world scenarios, as indicated
in the current paper as well as in [22].

Every RLN language is founded on a twofold basis: a core language based on
the Open World Assumption and a logical machinery, called introspection, is used
to confine and analyse inferred information, generating a local/global world closure.
The rules of the core language are suitable to enforce non-monotonic reasoning on
graded paraconsistent information, allowing for the presence of negative and positive
literals both in conclusions and premises.

For a wider scope, we introduce introspection; its flexibility permits, for example,
to realize Negation As Failure through instantiation of a particular operator, whereas
further defined operators can be used to resolve inconsistent information arising
during the computation or to introduce new truth-orderings.

The semantics of programs has been defined in terms of many-valued models
and over finite domains. It enjoys deterministic polynomial data complexity for any
instantiation of the generic family of paraconsistent many-valued logics.

Acknowledgments

The third author has been supported by the Polish National Science Centre grant
2015/19/B/ST6/02589.

215

De Angelis,Di Marzo Serugendo, and A. Szałas

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] J. Alcântara, C.V. Damásio, and L.M. Pereira. An encompassing framework for para-

consistent logic programs. J. Applied Logic, 3(1):67–95, 2005.
[3] S. Anderson, N. Bredeche, A. E. Eiben, G. Kampis, and M. van Steen. Adaptive

Collective Systems Herding black sheep. VU University Amsterdam, 2013.
[4] K.R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
89–148. Morgan Kaufmann Publishers Inc., 1988.

[5] M. Arenas, L.E. Bertossi, and J. Chomicki. Consistent query answers in inconsis-
tent databases. In V. Vianu and C.H. Papadimitriou, editors, Proc. of the 18th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 68–79.
ACM Press, 1999.

[6] M. Arenas, L.E. Bertossi, and J. Chomicki. Answer sets for consistent query answering
in inconsistent databases. TPLP, 3(4-5):393–424, 2003.

[7] K.T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20:87–96, 1986.
[8] K.T. Atanassov. On Intuitionistic Fuzzy Sets Theory, volume 283 of Studies in Fuzziness

and Soft Computing. Springer, 2012.
[9] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll. Organizing the Aggregate:

Formal and Practical Aspects of Domain-Specific Languages: Recent Developments,
pages 436–501. Hershey: IGI Global, 2013.

[10] N.D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors, Modern
Uses of Multiple-Valued Logic, pages 7–37. Reidel Publishing Company, Boston, 1977.

[11] L.E. Bertossi and J. Chomicki. Query answering in inconsistent databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Ap-
plications of Databases, pages 43–83. Springer, 2003.

[12] J-J. Bézieau, W. Carnielli, and D.M. Gabbay, editors. Handbook of Paraconsistency.
College Publications, 2007.

[13] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance.
Commun. ACM, 54(12):92–103, 2011.

[14] J. Chomicki. Consistent query answering: Five easy pieces. In T. Schwentick and
D. Suciu, editors, Database Theory - ICDT 2007, 11th Int. Conf., volume 4353 of
LNCS, pages 1–17. Springer, 2007.

[15] K.L. Clark. Negation as failure. In J. Minker, editor, Logic and Data Bases, volume 1,
pages 293–322. Plenum Press, New York, London, 1978.

[16] N.C.A. da Costa and E.H Alves. Relations between paraconsistent logic and many-
valued logic. Bulletin of the Section of Logic, 10(4):185–190, 1981.

[17] C.V. Damásio and L.M. Pereira. A survey of paraconsistent semantics for logic pro-
grams. In Ph. Besnard and A. Hunter, editors, Reasoning with Actual and Potential
Contradictions, pages 241–320. Springer, 1998.

216

Paraconsistent Rule-Based Reasoning with Graded Truth Values

[18] S. de Amo and M.S. Pais. A paraconsistent logic approach for querying inconsistent
databases. International Journal of Approximate Reasoning, 46:366–386, 2007.

[19] F.L. De Angelis and G. Di Marzo Serugendo. Logic fragments: A coordination model
based on logic inference. In Coordination Models and Languages: 17th IFIP WG 6.1
International Conference, COORDINATION 2015, DisCoTec 2015, Grenoble, France,
pages 35–48, 2015.

[20] F.L. De Angelis and G. Di Marzo Serugendo. Logic Fragments: Coordinating Entities
with Logic Programs, pages 589–604. Springer International Publishing, Cham, 2016.

[21] F.L. De Angelis, G. Di Marzo Serugendo, and A. Szałas. Foundation of paraconsis-
tent rule-based reasoning with graded truth values. Technical Report Archive Ouverte
University of Geneva, 2017. https://archive-ouverte.unige.ch/unige:94264.

[22] F.L. De Angelis, B. Dunin-Kȩplicz, G. Di Marzo Serugendo, and A. Szałas. Heteroge-
neous approximate reasoning with graded truth values. In Proc. of International Joint
Conference on Rough Sets. Springer, 2017. To appear.

[23] G. Di Marzo Serugendo, J.L. Fernandez-Marquez, and F.L. De Angelis. Engineering
spatial services: Concepts, architecture, and execution models. In R. Ramanathan
and K. Raja, editors, Handbook of Research on Architectural Trends in Service-Driven
Computing, pages 136–159. IGI Global, 2014.

[24] K. Doets. From logic to logic programming. Foundations of computing. MIT Press,
Cambridge (Mass.), 1994.

[25] P. Doherty, W. Łukaszewicz, A. Skowron, and A. Szałas. Knowledge Representation
Techniques. A Rough Set Approach, volume 202 of Studies in Fuziness and Soft Com-
puting. Springer-Verlag, 2006.

[26] D. Dubois, S. Konieczny, and H. Prade. Quasi-possibilistic logic and its measures of
information and conflict. Fundamenta Informaticae, 57(2-4):101–125, 2003.

[27] B. Dunin-Kȩplicz, A.L. Nguyen, and A. Szałas. A framework for graded beliefs, goals
and intentions. Fundamenta Informaticae, 100(1-4):53–76, 2010.

[28] B. Dunin-Kȩplicz and A. Strachocka. Paraconsistent argumentation schemes. Web
Intelligence, 14(1):43–65, 2016.

[29] B. Dunin-Kȩplicz and A. Szałas. Taming complex beliefs. Transactions on Computa-
tional Collective Intelligence XI, LNCS 8065:1–21, 2013.

[30] B. Dunin-Kȩplicz and A. Szałas. Indeterministic belief structures. In Proc. KES-
AMSTA 2014: Agents and Multi-agent Systems: Technologies and Applications, volume
296 of Advances in Intelligent and Soft Computing, pages 57–66. Springer, 2014.

[31] E.P. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Weighted argu-
ment systems: Basic definitions, algorithms, and complexity results. Artificial Intelli-
gence, 175(2):457 – 486, 2011.

[32] O. Etzioni, K. Golden, and D.S. Weld. Tractable closed world reasoning with updates.
In J. Doyle, E. Sandewall, and P. Torasso, editors, Proc. KR’94, pages 178–189. Morgan
Kaufmann, 1994.

[33] M. Fitting. Bilattices and the semantics of logic programming. The Journal of Logic
Programming, 11(2):91 – 116, 1991.

217

De Angelis,Di Marzo Serugendo, and A. Szałas

[34] M. Fitting. Fixpoint semantics for logic programming a survey. Theoretical Computer
Science, 278(1–2):25 – 51, 2002. Mathematical Foundations of Programming Semantics
1996.

[35] D.M. Gabbay and A. Hunter. Making inconsistency respectable: A logical framework
for inconsistency in reasoning, part I — a position paper. In Ph. Jorrand and J. Kele-
men, editors, Fundamentals of Artificial Intelligence Research: Int. Workshop FAIR’91,
pages 19–32. Springer, 1991.

[36] D.M. Gabbay and A. Hunter. Making inconsistency respectable: Part 2 - meta-level
handling of inconsistency. In M. Clarke, R. Kruse, and S. Moral, editors, Proc. EC-
SQARU’93, volume 747 of LNCS, pages 129–136. Springer, 1993.

[37] D.M. Gabbay, P. Smets, and J. Kohlas. Handbook of Defeasible Reasoning and Un-
certainty Management Systems: Volume 5: Algorithms for Uncertainty and Defeasible
Reasoning. Springer, 2000.

[38] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents - The Answer-Set Programming Approach. Cambridge University
Press, 2014.

[39] M.L. Ginsberg. Multi-valued logics. In Proc. of AAAI-86, pages 243–247, 1986.
[40] M.L. Ginsberg. Multivalued Logics: A Uniform Approach to Inference in Artificial

Intelligence. Computational Intelligence, 4:256–316, 1988.
[41] M. Hajibaba and S. Gorgin. A review on modern distributed computing paradigms:

Cloud computing, jungle computing and fog computing. CIT - Journal of Computing
and Information Technology, 22(2), 2014.

[42] S. Jaśkowski. Rachunek zdań dla systemów dedukcyjnych sprzecznych. Studia Soc. Sci.
Torunensis, 5:55–77, 1948.

[43] S. Jaśkowski. Propositional calculus for contradictory deductive systems. Studia Logica,
24:143–157, 1969.

[44] S. Kleene. Introduction to Metamathematics, 1952.
[45] B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise

de Mathématique, (6):133–134, 1928.
[46] R. Kruse, E. Schwecke, and J. Heinsohn. Uncertainty and Vagueness in Knowledge

Based Systems. Numerical Methods. Springer-Verlag, 1991.
[47] D. Lassiter. Graded Modality: Qualitative and Quantitative Perspectives. Oxford Uni-

versity Press, 2016. to appear.
[48] J. Małuszyński and A. Szałas. Living with inconsistency and taming nonmonotonicity.

In O. de Moor et al., editor, Datalog Reloaded, volume 6702 of LNCS, pages 384–398.
Springer, 2011.

[49] J. Małuszyński and A. Szałas. Logical Foundations and Complexity of 4QL, a
Query Language with Unrestricted Negation. Journal of Applied Non-Classical Log-
ics, 21(2):211–232, 2011.

[50] J. Małuszyński and A. Szałas. Partiality and inconsistency in agents’ belief bases. In
D. Barbucha et al., editor, Proc. KES-AMSTA, volume 252 of Frontiers of AI and
Applications, pages 3–17. IOS Press, 2011.

218

Paraconsistent Rule-Based Reasoning with Graded Truth Values

[51] J. Małuszyński, A. Szałas, and A. Vitória. Paraconsistent logic programs with four-
valued rough sets. In C-C. Chan, J.W. Grzymala-Busse, and W.P. Ziarko, editors,
Proc. RSCTC 2008, volume 5306 of LNCS, pages 41–51. Springer, 2008.

[52] J. McCarthy. Circumscription a form of non-monotonic reasoning. Artificial Intelli-
gence, 13(1–2):27 – 39, 1980. Special Issue on Non-Monotonic Logic.

[53] R.C. Moore. Semantical considerations on nonmonotonic logic. Artif. Intell., 25(1):75–
94, 1985.

[54] D. Nute. Defeasible logic. In Handbook of Logic in Artificial Intelligence and Logic
Programming, pages 353–395, 1994.

[55] Ch.H. Papadimitriou and M. Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407 – 427, 1999.

[56] Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic
Publishers, Dordrecht, 1991.

[57] Z. Pawlak, L. Polkowski, and A. Skowron. Rough set theory. In B.W. Wah, editor,
Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc.,
2008.

[58] S. G. Pimentel and W. L. Rodi. Belief revision and paraconsistency in a logic pro-
gramming framework. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors,
Proc. Logic Programming and Non-Monotonic Reasoning, pages 228–242. MIT Press,
Cambridge, MA, 1991.

[59] H. Prade. A quantitative approach to approximate reasoning in rule-based expert
systems. In L. Bolc and M.J. Coombs, editors, Expert System Applications, pages
199–256. Springer-Verlag, 1988.

[60] G. Rainbolt and S. Dwyer. Critical Thinking: The Art of Argument. Cengage Learning,
2014.

[61] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81 – 132, 1980.
Special Issue on Non-Monotonic Logic.

[62] E. Sandewall. A functional approach to non-monotonic logic. In Proc. of the 9th IJCAI
- Volume 1, IJCAI’85, pages 100–106. Morgan Kaufmann Publishers Inc., 1985.

[63] A. Szałas. How an agent might think. Logic Journal of the IGPL, 21(3):515–535, 2013.
[64] A. Szałas. Symbolic explanations of generalized fuzzy reasoning. In R. Neves-Silva,

G.A. Tshirintzis, V. Uskov, R.J. Howlett, and L.C. Jain, editors, Smart Digital Futures
2014, page 7–16. IOS PRESS, 2014.

[65] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math.,
5(2):285–309, 1955.

[66] A. Vitória, J. Maluszyński, and A. Szałas. Modeling and reasoning in paraconsistent
rough sets. Fundamenta Informaticae, 97(4):405–438, 2009.

[67] H. Wang and R. Sunderraman. A data model based on paraconsistent intuitionistic
fuzzy relations. In M-S. Hacid, N.V. Murray, Z.W. Ras, and S. Tsumoto, editors,
ISMIS, volume 3488 of LNCS, pages 669–677. Springer, 2005.

219

De Angelis,Di Marzo Serugendo, and A. Szałas

[68] Y.Y Yao and T.Y. Lin. Graded rough set approximations based on nested neighborhood
systems. In Proc. 5th European Congress on Intelligent Techniques and Soft Computing,
volume 1, pages 196–200, 1997.

[69] L. Zadeh. From computing with numbers to computing with words – from manipulation
of measurements to manipulation of perceptions. Int. J. Appl. Math. Comput. Sci.,
12(3):307–324, 2002.

[70] L.A. Zadeh. Fuzzy sets. Information and Control, 8:333–353, 1965.
[71] F. Zambonelli and M. Mamei. Spatial computing: An emerging paradigm for autonomic

computing and communication. In Proc. of the 1st Int. IFIP Conf. on Autonomic
Communication, WAC’04, pages 44–57. Springer, 2005.

Received 30 November 2016220

Paracomplete Logic Kl — Natural
Deduction, its Automation,Complexity and

Applications

Alexander Bolotov∗
University of Westminster, London, UK.

a.bolotov@westminster.ac.uk

Daniil Kozhemiachenko
Lomonosov Moscow State University, Russian Federation.

kodaniil@yandex.ru

Vasilyi Shangin†
Lomonosov Moscow State University, Russian Federation.

shangin@philos.msu.ru

Abstract
In the development of many modern software solutions where the under-

lying systems are complex, dynamic and heterogeneous, the significance of
specification-based verification is well accepted. However, often parts of the
specification may not be known. Yet reasoning based on such incomplete speci-
fications is very desirable. Here, paracomplete logics seem to be an appropriate
formal setup: opposite to Tarski’s theory of truth with its principle of biva-
lence, in these logics a statement and its negation may be both untrue. An
immediate result is that the law of excluded middle becomes invalid. In this
paper we show how to apply an automatic proof searching procedure for the
natural deduction formulation of the paracomplete logic Kl to reason about
incomplete information systems. We provide an original account of complex-
ity of natural deduction systems, which leads us closer to the efficiency of the
presented proof search algorithm. Moreover, we have turned the assumptions
management into an advantage by showing the applicability of the proposed
technique to assume-guarantee reasoning.

The authors are grateful to the referees for their fruitful advice which greatly improved the paper.
∗The first author thanks the University of Westminster for supporting his Sabbaticals in January-

June 2017.
†The third author is supported by Russian Foundation for Humanities, grant 16-03-00749 Logical-

epistemic problems of knowledge representation.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Bolotov, Kozhemiachenko and Shangin

1 Introduction
1.1 Problem Setup — Reasoning with Incomplete Information
The significance of formal specification with subsequent verification in Software En-
gineering is well accepted. It is quite standard to classify two types of verification —
the explorative approach (with model checking as its typical representative) and the
deductive one. In this paper, we are interested in specification-based deductive
verification. Incorporating the notation of [22], we represent the task of deduc-
tive verification, DV, of a system Sys with its specification Spec by the following
signature:

DV :: Sys× Spec −→ B × [Proof]

where the Boolean result of deductive verification based on theorem proving is either
a proof that a system satisfies a given property or a demonstration that no proof
can be established — B × [Proof].

Traditionally, specifications follow two general classical principles: completeness
and consistency. The former assumes that a statement — φ — about the specifica-
tion Spec, or its negation — ¬φ — is true. Under the latter, a member of Spec — φ
— and its negation — ¬φ — cannot be both true. As a consequence, completeness
and consistency govern reasoning applied to such formal specifications — regardless
whether it is model checking, or deductive reasoning, classical or not (temporal,
modal, etc). Inconsistent or incomplete specifications are results of rejecting one of
(or both) the principles mentioned above. Here paraconsistent and paracomplete
logics come into play [1]. We strongly believe such cases are of more interest when
one considers the development of modern software solutions with their underlying
complex, dynamic and heterogenous systems. This definitely applies to such areas
as clouds or robotics, where software systems are defined to work in a complex, dy-
namic and heterogeneous environment. However, our thorough research of software
engineering formal methods literature has not shown many works where authors
tackle incomplete specifications. Perhaps one of the main reasons for this is the
lack of deductive methods for such a non-standard setting. Among few of those
that address this problem are [17, 18, 29, 28, 43]. However, none of the techniques
proposed in these papers, gives any account of automation, and, to our believe, they
are not open to an easy way of automation. Below we identify the following cases
relevant to the account of incompleteness of specifications:

(a) the problem to simplify complex software requirements in incomplete specifi-
cations,

(b) a typical integration task of various resources, which could be the problem

222

Automated natural deduction, complexity and applications for Kl

of forming of heterogeneous resources into networks or clouds, or component-
based system engineering where components are not fully specified, or

(c) the problem of finding assumptions in assume-guarantee reasoning in the con-
text of incomplete specifications.

We argue that reasoning following the classical principles is unsuitable when one
deals with incomplete information as such reasoning validates the excluded middle
(bivalence) principle1. Informally, it says that a truth-value of any statement is either
true or false. One may also say that under the given specification, any statement
is fully defined. In case this principle does not hold (i.e. some statement is not
fully defined, or, in other words, we have here a truth-value gap) we are required
to propose both specification languages of high level and corresponding deductive
methods.

In the paper, we deal with the paracomplete logic where the law of excluded
middle and some other classical laws are invalid. For example, one can not deduce
A ⊃ B from ¬A ∨ B. We confine ourselves to the sentential reasoning, and at the
moment, abstract from temporal or dynamic dimensions. We assume the language of
the paracomplete logic Kl [1] (which is called PComp in [38] and [8]) is the language
to write incomplete specifications. One must find efficient deductive techniques to
deal with the reasoning which corresponds to clauses (a)–(c) above. When we choose
among available formalisms and methods of deduction which use assumptions, we
believe it is reasonable to take into account the following considerations.

(i) Efficient management of assumptions: tracking assumptions, making sure the
assumptions occur in the proof with some reasons, not randomly, and to man-
aging the way how assumptions occur in the proof.

(ii) Availability of automated proof searching that enables implementation.

(iii) Potential to reuse and adapt deductive techniques and proof searching for to
the various kinds of formal specifications; for instance, an option to deal with
incomplete or inconsistent specifications as well as with specifications which
are both incomplete and inconsistent, or an option to extend our results to
such richer formalisms as dynamic systems.

We argue now that natural deduction seems to be an appropriate framework if
one wants to satisfy (i)–(iii).

1Although the principles of bivalence and excluded middle are different, in the paper we will
use them as synonyms.

223

Bolotov, Kozhemiachenko and Shangin

In the framework of automated reasoning, provers are usually based upon ei-
ther resolution method, analytic tableaux or Fitch-style natural deduction (see, for
example [31, 34, 27, 35, 30, 40] for provers based on classical natural deduction). Au-
tomated theorem proving in many-valued logic is usually conducted via the method
of analytic tableaux, which provides a useful way of constructing counter-models to
non-provable formulas. Our target is different. We are interested in a proof tech-
nique that explicitly constructs proofs. Considering automated natural deduction
for the three-valued paracomplete logic, we use a Fitch-style calculus. Furthermore,
in contrast to analytic tableaux we aim at developing a proof search algorithm which
constructs explicit proofs for tautologies, not only counter-models for non-provable
formulae.

In the rest of this introductory section we first provide some argumentation
in favour of our choice of the underlying logic, Kl, to reason about incomplete
specifications and then we will analyse possible approaches to build a desired natural
deduction proof technique.

1.2 Choice of Logic — Paracomplete Logic Kl as a Many-valued
Logic

The logic Kl was originally introduced by Avron [1]. In Avron’s paper, Kl plays an
important role in the definition of a family of paracomplete natural logics (though,
Avron himself doesn’t use the term ‘paracomplete’; in his terminology, such logics
are logics with the ’undefined’ interpretation). This family includes strong Kleene’s
logic, logic of partial functions LPF and Łukasiewicz’s 3-valued logic. In the fol-
lowing we highlight the importance of Kl in the context of these logics and explore
some arguments in favour of our natural deduction presentation in comparison to
Carnielli’s approach to systematization of finite many-valued logics [14].

Considering strong Kleene’s logic we note its famous property of not having
theorems. As in our paper we want to tackle both derivations and proofs we find
this logic inappropriate for our purposes. The logic of partial functions, LPF, has an
additional unary connective (so to speak, another kind of negation), and for this rea-
son we consider LPF being not in the scope of our research. Finally, Łukasiewicz’s
3-valued logic lacks the deduction theorem which is crucial for our proof searching
procedure, where the deduction theorem is incorporated in the form of the impli-
cation introduction rule. However, these arguments only justify our choice of logic
and do not mean that proof searching procedures for these logics won’t be a task
for a future research that may be carried out. We note that these systems can be
tackled, for example, in the spirit of [16].

It is also worth to analyse here Sette and Carnielli’s weakly-intuitionistic logic I1

224

Automated natural deduction, complexity and applications for Kl

[39]. Note that I1 is both a counterpart of Sette’s maximal paraconsistent logic P 1

and an extension of strong three-valued Kleene’s logic K3. First, we observe that
I1 is different from our target logic, Kl, with respect to the validity of the formulae
representing the law of excluded middle. In particular, A ∨ ¬A is invalid in Kl for
an arbitrary A while in I1 it is invalid for an atomic A only. Another difference lies
within the matrix definitions of both implication and negation. The valuation of
A ⊃ B when A = 1 and B = f is ‘f ’ in the semantics of Kl but it is ‘0’ in the
semantics of I1. The valuation of ¬A when A = f is ‘f ’ in the semantics of Kl but
it is ‘0’ in the semantics of I1. Last, not least, logics I1 and Kl don’t coincide in
respect to their notions of theoremhood. For example, only a restricted version of
¬¬A ⊃ A is valid in I1 while in Kl this law holds without restriction.

1.3 Choice of Deductive Approach — Natural Deduction for Kl

Considering the nature of our approach to build a natural deduction system, it is
worth to compare it to [14, 13] and [1]. Carnielli’s approach essentially uses the
idea of signed formulae. Following this approach, a prefix of a formula used in
a tableaux or natural deduction, would have been the corresponding matrix evalu-
ation for this formula. For instance, given three values 1, T, 0 we would formulate
in a sequent calculus (and with a slight adaptation, a natural deduction system)
exactly three rules for each signed formula, 1 ⊃, T ⊃, and 0 ⊃. A different approach
was adapted by Avron, (see in particular [1], p. 277, footnote 2) and we follow this
approach. Also note that some natural deduction system can be routinely extracted
from Avron’s paper, however, it would be considerably different from our natural
deduction construction.

Natural deduction allows not only to establish that the proof one wants to achieve
exists, but it also makes it very explicit. Both a natural deduction system for Kl and
its proof searching (as presented in [10]) satisfy (i)–(ii). To the best of our knowledge,
no other (direct) natural deduction system for Kl has been proposed. We believe this
can be explained by the following. Both paraconsistent and paracomplete logics are
likely to be analysed with some philosophical motivation and, therefore, in computer
science framework the preferential methods have been Hilbert-style systems [24],
analytic tableaux [12] or sequent-style calculi [20]. The only exception here is [4],
where a kind of natural deduction system for a paracomplete setting is introduced.
However, one can’t consider such an approach as a direct method of deduction as it
is based on the translation techniques to Isabelle [26]. We remind the reader that
the system PCont, the dual of Kl (named as three-valued paraconsistent logic [1,
p.278]), deals with inconsistent systems. Both a natural deduction system for PCont
and its proof searching can be found in [7] and [33]. Consequently, the latter paper

225

Bolotov, Kozhemiachenko and Shangin

together with the results of this paper, imply that our choice of natural deduction
satisfies (iii).

The novelty of our paper is in the following. First, we show the way an automated
natural deduction for Kl in [10] is applicable to reason about incomplete information
systems. We also provide proofs of some statements previously announced and
presented without proof in [8], thus significantly improving and expanding the latter.
We present substantial conceptual and methodological considerations, introduce new
technical concepts, refine and polish proofs and provide several examples. Finally,
we provide an account of complexity and efficiency.

The paper is organised as follows. To make reading self-contained, §2 reviews
the formulation of the natural deduction system for classical propositional logic.
Next, §3 introduces the underlying logic Kl, its axiomatics, and natural deduction
calculus, it also contains sketches of results in [10]. In §4 we discuss the complexity
account. This follows by an overview of the proof searching procedure and the core
algorithm in §5. We also provide a detailed example of the algorithmic proof search.
The next section, §6, classifies problems to which natural deduction is applicable as
a tool for deductive verification. We also present a methodology for solving some
of the problems of the type (a)–(c) mentioned above and consider typical scenarios
of component-based system synthesis and assume-guarantee technique. Finally, §7
contains the conclusion and the roadmap to future work.

2 Natural Deduction System for Classical Propositional
Logic — CPLND

We commence with the review of the natural deduction system for classical proposi-
tional logic, CPLND. The natural deduction system presented below is a standard
Fitch-style natural deduction system. One of the specifics of this type of natural
deduction systems is that a derivation is defined in a linear format, opposite to
Gentzen-style, or tree-like format. The rules of derivation are traditionally divided
into elimination and introduction rules — the former allow to decompose compound
formulae while the latter allow to construct compound formulae. Recall that in
constructing proofs in natural deduction systems, we introduce assumptions. In
some cases we need to discard alive assumptions. To indicate that a natural de-
duction rule with the conclusion C discards the last alive assumption, A, and all
formulae A, . . . , C− (where C− is the formula preceding C), we will use a standard
abbreviation, [A]C.

The system CPLND has the following rules of derivation.

226

Automated natural deduction, complexity and applications for Kl

Elimination rules:

∧el1
A ∧B
A

, ∧el2
A ∧B
B

, ¬el
¬¬A
A

, ∨el
¬A,A ∨B

B
,⊃el

A ⊃ B,A
B

Introduction rules:

∧in
A,B

A ∧B , ∨in1
A

A ∨B , ∨in2
B

A ∨B , ⊃in
[A]B
A ⊃ B , ¬in

[A]B, [A]¬B
¬A

Definition 1 (CPLND-derivation). An CPLND-derivation of a formula A from
a set of formulae Γ is a finite sequence of formulae, each of which is either a member of
Γ (an assumption) or is derived from the previous formulae by one of the elimination
or introduction rules. In case ⊃ in or ¬ in are used, all formulae from the last alive
assumption to the resulting formula should be discarded from the derivation.

Definition 2 (Proof). A proof in the system CPLND is a derivation with the empty
set of alive assumptions.

Note that this and the other definitions of a derivation in natural deduction
systems in the paper are ‘standard’ textbook ones and are sufficient for the purposes
of the paper. For a more accurate definition of proof see [42].

It has been shown that CPLND is sound and complete [5]. The natural deduction
system for paracomplete logic Kl given in §3 is a modification of the CPLND which
reflects its characteristic features.

3 Paracomplete Logic Kl and its natural deduction cal-
culus KlND

Here, to make the presentation self-contained, we define fully the logic Kl, its syntax
and semantics, give a full set of rules of the natural deduction calculus and provide
an account of its metatheoretical properties — the main results of [10].

3.1 Kl and Its Axiomatics

Kl is a propositional logic with the infinite number of propositional symbols Prop =
p, q, r, . . . and the semantics assigning to each propositional symbol from Prop one of
the three truth-values 1 — ‘true’ (the designated one), 0 — ‘false’, and 1/2 — ‘none’

227

Bolotov, Kozhemiachenko and Shangin

such that A∨B = max(A,B) and A∧B = min(A,B) The matrices for connectives
are defined as follows.

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2
0 1 1/2 0

∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

⊃ 1 1/2 0
1 1 1/2 0

1/2 1 1 1
0 1 1 1

p ¬p
1 0

1/2 1/2
0 1

It is the presence of the third truth assignment, 1/2, that makes the calculus
paracomplete allowing to identify the cases of incompleteness (uncertainty, etc.) and
thus allowing to consider systems with incomplete information, (see §6 for details).
Often the properties and the flavour of the logic become more transparent in the
axiomatic construction. For these reasons we export the axiomatic of Kl from [1]
which is a subset of the set of axioms of classical propositional logic.

1. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))
2. A ⊃ (A ∨B)
3. A ⊃ (B ∨A)
4. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
5. (A ∧B) ⊃ A
6. (A ∧B) ⊃ B
7. (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧B)))
8. A ⊃ (B ⊃ A)
9. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
10. ((A ⊃ B) ⊃ A) ⊃ A
11. ¬(A ∨B) ⊃ (¬A ∧ ¬B)
12. (¬A ∧ ¬B) ⊃ ¬(A ∨B)
13. ¬(A ∧B) ⊃ (¬A ∨ ¬B)
14. (¬A ∨ ¬B) ⊃ (¬A ∧ ¬B)
15. ¬(A ⊃ B) ⊃ (A ∧ ¬B)
16. (A ∧ ¬B) ⊃ ¬(A ⊃ B)
17. ¬¬A ⊃ A
18. A ⊃ ¬¬A
19. ¬A ⊃ (A ⊃ B)

The only rule of inference of Kl is modus ponens: from A and A⊃B infer B.
Note that this axiomatics reflects the failure of the law of excluded middle so,

for example, p ∨ ¬p is not provable in this system. We also observe that Axiom 19
is equivalent to (B ⊃ ¬A) ⊃ ((B ⊃ A) ⊃ ¬B) [1, p.288].

228

Automated natural deduction, complexity and applications for Kl

3.2 KlND — Natural Deduction Calculus for Kl.
Definition 3 (KlND-derivation). A derivation in the system KlND is a finite non-
empty sequence of formulae where each formula is an alive assumption or is derived
from the previous ones by one of the following KlND-rules.

Elimination rules:

∧el1
A ∧B
A

, ∧el2
A ∧B
B

, ¬∧el
¬(A ∧B)
¬A ∨ ¬B ,¬el

¬¬A
A

,

¬ ∨el1
¬(A ∨B)
¬A , ¬ ∨el2

¬(A ∨B)
¬B , ⊃el

A,A ⊃ B
B

,

¬⊃el1
¬(A ⊃ B)

A
, ¬⊃el2

¬(A ⊃ B)
¬B , ∨el

A ∨B, [A]C, [B]C
C

,

∨⊃el1
(A ∨B) ⊃ C

A ⊃ C , ∨⊃el2
(A ∨B) ⊃ C

B ⊃ C .

Introduction rules:

∧in
A,B

A ∧B , ¬∧in
¬A ∨ ¬B
¬(A ∧B) , ∨in1

A

A ∨B , ∨in2
B

A ∨B ,

¬∨in
¬A,¬B
¬(A ∨B) , ⊃in

[A]B
A ⊃ B , ¬⊃in

A,¬B
¬(A ⊃ B) ,

¬in
B

¬¬B , ⊃p
[A ⊃ B]A

A
, Kl¬in

A,¬A
B

Definition 4 (Proof). A proof in the system KlND is a derivation with the empty
set of alive assumptions.

Let us give now a short, but indicative, example of proof for ((p∧q)∨(p∧r)) ⊃ (p∧
(q∨r)) in the described natural deduction calculus. Below we use the square brackets
to indicate which formulae are discarded from the proof. Thus, the application of
∨el rule to p∧ (q∨r) on step 12 requires to discard all formulae from the assumption
p∧ q on step 2 up to p∧ (q∨ r) on step 6 and all formulae from the assumption p∧ r
on step 7 up to formula p∧ (q∨r) on step 11. Finally, applying ⊃in rule to p∧ (q∨r)
on step 12, we obtain the desired derivation for ((p ∧ q) ∨ (p ∧ r)) ⊃ (p ∧ (q ∨ r))
discarding all formulae from the last alive assumption (p∧ q)∨ (p∧ r) on step 1, up
to the conclusion of this rule.

229

Bolotov, Kozhemiachenko and Shangin

1. (p ∧ q) ∨ (p ∧ r) — assumption

2. p ∧ q — assumption
3. p — ∧el1 : 2
4. q — ∧el2 : 2
5. p ∨ r — ∨in1 : 4
6. p ∧ (q ∨ r) — ∧in: 3, 5

7. p ∧ r — assumption
8. p — ∧el1 : 7
9. r — ∧el2 : 7
10. q ∨ r — ∨in2 : 9
11. p ∧ (q ∨ r) — ∧in: 8, 10

12. p ∧ (q ∨ r) — ∨el: 1, 6, 11
13. ((p ∧ q) ∨ (p ∧ r)) ⊃ (p ∧ (q ∨ r)) — ⊃in: 12

As the derivation does not have any alive assumptions it is also a proof for
((p ∧ q) ∨ (p ∧ r)) ⊃ (p ∧ (q ∨ r)).

The presented natural deduction calculus is sound and complete, below |= stands
for KlND logical consequence:

Theorem 1. Γ `KlND A ⇐⇒ Γ |= A [10]

Theorem 1 semantically justifies applications of derivations based on natural
deduction. We argue that the natural deduction style of a proof is a powerful
technique to tackle formal specification/verication software engineering problems.
It is particularly important when there is an obvious need to not only establish if
a desired proof exists but to also explicitly show how the proof (for some desired
property) is constructed. Let us give here an informal insight into the way how the
proof in natural deduction is formed. Assume we have a specification S, and would
like to investigate if some statement B ∈ S holds under some set of assumptions
Γ. In this introductory case, we have a task to derive B from the specification
S, given the assumptions Γ. Following the specifics of natural deduction, now, we
either simplify compound formulae in the proof by elimination rules, or synthesise
formulae by introduction rules. In the subsequent sections we present a proof search
algorithm which guides such applications of elemination/introduction rules in an
efficient manner, and give an annotated example.

4 Complexity of Natural Deduction
Convention 1. We will, according to Reckhow [41] and Pelletier [32], say that a given
calculus is natural if it allows to use arbitrary assumptions in the proofs of theorems

230

Automated natural deduction, complexity and applications for Kl

and incorporates the deduction theorem as one of its rules.
It is evident then that systems CPLND and KlND are “natural” systems.
Now we will consider three sound and complete classical propositional natural

calculi, namely, CPLND described in §2, nested deduction Frege system and general
deduction Frege system described in [11].

Definition 5 (Nested deduction Frege system — ndF). The system ndF is char-
acterised by the following constraints:

• it has two rules of derivation:

1. mpn — A A ⊃ B
B

2. drn — [A]B
A ⊃ B (where A is the last alive assumption)

• it uses a finite number of axiom schemas.

An ndF -derivation of a formula A from a set of formulae Γ is a finite sequence of
formulae, each of which is

• either a member of Γ (an assumption), or

• an instance of an axiom schema or

• is derived from previous formulae by mpn or drn. In case drn rule is used, all
formulae from the last alive assumption up to (but not including) formula A
should be discarded from derivation.

We write Γ|ndF
n A if there is an ndF -derivation of A from Γ with the length of

no more than n formulae. We use here and below, in the formulation of the rules,
a lower index n to indicate that these are derivations and rules in Nested deduction
Frege system.

Definition 6 (General deduction Frege system — dF). Derivations in dF have
steps presented as sequents of the form Γ 7→ A with Γ being a set of formulae and
A being a formula. We use below, in the formulation of the rules, a lower index g
to indicate that these are derivations and rules in General deduction Frege system.
There are four rules of derivation in dF :

1. 7→ A, where A is an instance of an axiom schema of a consistent and complete
set of axioms taken, for example, from [21].

2. {A} 7→ A, where A is either a member of Γ or an assumption

231

Bolotov, Kozhemiachenko and Shangin

3. mpg — Γ1 7→ A Γ2 7→ A ⊃ B
Γ1 ∪ Γ2 7→ B

4. drg — Γ 7→ B

Γ \ {A} 7→ A ⊃ B
We define a dF -derivation of a formula A from a set of formulae Γ as a finite

sequence of sequents, each of which is obtained by one of the rules above, and the
last sequent is Γ 7→ A. We write Γ|dF

n A to indicate that there is a dF -derivation of
Γ 7→ A containing no more than n sequents.

We will now prove some theorems related to speedups (better performance) of
these calculi.

Theorem 2. Γ|CPLND
n C ⇒ Γ|ndF

O(n)C

Proof. We prove the theorem by induction on the number of steps n of CPLND-
derivation.

The proof splits into two cases depending on how the last formula C in CPLND-
derivation was inferred.

Case 1 C is an assumption or a member of Γ. Then an ndF -derivation consists
of only one formula — C itself.

Case 2 C was derived by a rule of a derivation. We will now show that the con-
clusion of every CPLND-rule can be derived from its premises in ndF in a constant
number of steps. This is obvious in case of rules ∧in, ∧el1 , ∧el2 , ∨in1 , ∨in2 , ⊃el, and
¬el. Next, we substitute each application of ⊃in with drn and each application of
⊃el with mpn.

In case C was derived by ¬in, let C = ¬A. We have a CPLND-derivation of
length n. We proceed as follows. We will also provide necessary comments explaining
how steps of the proofs are derived.

...

A — the last alive assumption
...
B
...
¬B

¬A — ¬in applied to B and ¬B

232

Automated natural deduction, complexity and applications for Kl

The ndF -derivation will be as follows:
...

A — the last alive assumption
...
B
...
¬B
...
B ∧ ¬B — in a constant number of steps using A ⊃ (B ⊃ (A ∧B))

A ⊃ (B ∧ ¬B) — drn

A — assumption
...
B — in a constant number of steps using (B ∧ ¬B) ⊃ B

A ⊃ B — drn

A — assumption
...
¬B — in a constant number of steps using (B ∧ ¬B) ⊃ B

A ⊃ ¬B — drn
...
¬A — in a constant number of steps using (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)

Theorem 3. Γ|ndF
n C ⇒ Γ|CPLND

O(n) C

Proof. To prove this we simply note that assumptions and formulae of Γ in an
ndF -derivation become, respectively, assumptions and formulae ofΓ in a CPLND-
derivation. Similarly, each application of mpn becomes an application of ⊃el, and
each application of drn becomes an application of ⊃in. We substitute all instances
of axiom schemata with their proofs which are constructed in a constant number of
steps.

Theorem 4. Assume, there is a CPLND-derivation of C from Γ in n steps. Then,
there is a dF -derivation of C from Γ in O(n) steps.

The proof is similar to the proof of Theorem 2.

233

Bolotov, Kozhemiachenko and Shangin

Theorem 5. Assume, there is a dF -derivation of C from Γ in n steps. Then, there
is a CPLND-derivation of C from Γ in O(n2) steps.

Proof. For this theorem, let
m∧

i=1
Ai be a conjunction of m formulae Ai which are or-

dered arbitrarily. Also, if Γ is a finite set of formulae, then ∧(Γ1∪Γ2) is a conjunction
of its members ordered and associated arbitrarily.

It suffices to prove that if {A1, . . . , Am} 7→ C has a dF -proof of the length n,
then

m∧
i=1

Ai ⊃ C has a CPLND-proof of the length O(n2). The proof of this theorem

is similar to the proof of Theorem 4 in [11]. We substitute each sequent in a dF -
derivation with its relevant formula and then fill in the gaps. Now we show that all
gaps can be filled in O(n) steps. The proof splits into four cases depending on how
the sequent in a dF -derivation was inferred.

Case 1 The sequent has the form 7→ A, where A is an instance of an axiom schema.
Then we substitute it with the formula A which can be proved in a constant number
of steps (since A is a tautology).

Case 2 The sequent has the form A 7→ A, where A is an assumption. We substitute
it with the formula A ⊃ A which has a CPLND-derivation of a constant number of
steps.

Case 3 The sequent was inferred by mpg. Then it has the form Γ1 ∪ Γ2 7→ B and
there are also two sequents prior to it, namely, Γ1 7→ A ⊃ B and Γ2 7→ A. It suffices
to show that ∧(Γ1 ∪ Γ2) ⊃ B can be inferred from ∧ Γ1 ⊃ (A ⊃ B) and ∧ Γ2 ⊃ A.
The derivation proceeds as follows.

...∧ Γ1 ⊃ (A ⊃ B)

...∧ Γ2 ⊃ A

234

Automated natural deduction, complexity and applications for Kl

∧(Γ1 ∪ Γ2) — assumption
...∧ Γ1 applying ∧el to

∧(Γ1 ∪ Γ2) and then ∧in
...∧ Γ2 applying ∧el to

∧(Γ1 ∪ Γ2) and then ∧in

A ⊃ B — applying ⊃el to
∧ Γ1 ⊃ (A ⊃ B) and ∧ Γ1

A — ⊃el applying ⊃el to
∧ Γ2 ⊃ A and ∧ Γ2

B — ⊃el applying ⊃el to A ⊃ B and A∧(Γ1 ∪ Γ2) ⊃ B — applying ⊃in to B

If there are m formulae in ∧(Γ1 ∪ Γ2), it can be shown by induction on m that∧ Γ1 and ∧ Γ2 can be inferred from ∧(Γ1 ∪Γ2) in O(m) steps via ∧el and ∧in rules.
Since m 6 n, we can infer both ∧ Γ1 and ∧ Γ2 in O(n) steps which proves the case.

Case 4 The sequent was inferred by drg. Then it has the form Γ 7→ A ⊃ B
and there is also the sequent Γ \ {A} 7→ B prior to it. It suffices to show that∧(Γ \ {A}) ⊃ (A ⊃ B) can be inferred from ∧ Γ ⊃ B in O(n) steps. We proceed as
follows.

...∧ Γ ⊃ B

∧(Γ \ {A}) — assumption (if A /∈ Γ)

A — assumption
...∧ Γ — from ∧(Γ \ {A}) and A using ∧el and ∧in

B — ⊃el

A ⊃ B — ⊃in∧(Γ \ {A}) ⊃ (A ⊃ B) — ⊃in

If there are m formulae in Γ, then it can be shown by induction on m that∧ Γ can be derived in O(m) steps from A and ∧(Γ \ {A}). Since m 6 n, we infer∧(Γ \ {A}) ⊃ (A ⊃ B) from ∧ Γ ⊃ B in O(n) steps which proves the case.

We will prove theorems showing the speedup of KlND over the axiomatic calculus
for Kl presented above which we will further designate as KlAx.

Definition 7 (proof simulation, speedup). A proof system S1 simulates S2 with an
f(n) increase in number of steps if for any S2-proof of formula A in n steps there is

235

Bolotov, Kozhemiachenko and Shangin

a proof of A in S1 in O(f(n)) steps. We say that S2 provides at most f(x) speedup
w.r.t. S1 if S1 simulates S2 with an increase of number of steps in f(x).

Theorem 6. KlND linearly simulates KlAx.

The proof of this theorem is straightforward since KlND has modus ponens rule
(⊃el) and all axioms have KlND-proofs of a constant length. The details are left to
the reader.

As it had been shown in [1], KlAx is sound and complete (and so is KlND).
This means that we can add ⊃in rule to KlAx thus transforming it into the natural
calculus which we will further denote as KlAxn. One can see that KlAxn is actually
a nested deduction Frege system for Kl — hence our use of the index n for this
system.

Theorem 7. KlND and KlAxn linearly simulate one another.

Proof. It is obvious that KlND linearly simulates KlAxn since all axioms can be
proven in a constant number of steps while instances of modus ponens and ⊃in

as well as assumptions in a KlAxn-derivation become, without loss of generality,
instances of ⊃el, ⊃in and assumptions in a KlND-derivation.

Next we show that KlAxn linearly simulates KlND. It suffices to show that we
can obtain conclusions of all rules of derivation from their premises in a constant
number of steps. We will prove the cases of ∨el and ⊃p rules only.

∨el KlND-proof has the following form:

A ∨B

A — assumption
...
C

B — assumption
...
C

C — ∨el

236

Automated natural deduction, complexity and applications for Kl

We proceed here as follows.

A ∨B

A — assumption
...
C

A ⊃ C — ⊃in — to C

B — assumption
...
C

B ⊃ C — ⊃in — to C
...
C — in a constant number of steps using (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))

⊃p KlND-proof has the following form:

A ⊃ B — assumption
...
A

A — ⊃p

We proceed here as follows.

A ⊃ B — assumption
...
A

(A ⊃ B) ⊃ A — ⊃in to A
...
A — in a constant number of steps using ((A ⊃ B) ⊃ A) ⊃ A

Theorem 8. If there is an KlND-proof of A of length n, then there is a KlAx-proof
of A of length O(n · α(n)) with α being the inverse Ackermann function.

Theorem 7 shows that KlAxn linearly simulates KlND. The former is, by virtue
of definition, a nested deduction Frege system. This means that we can apply the
result of Buss and Bonet (Main Theorem 6 proved in [11]) which states that nested

237

Bolotov, Kozhemiachenko and Shangin

deduction Frege systems provide a near-linear speedup over Frege systems (and
KlAx is a Frege system).

The above observations at least give us an idea how some fragments of proof
search technique perform from the point of view of complexity. It also gives us
grounds to expect that similar developments can be applied to the case of non-
classical logics.

Concluding this section, we note that Theorems 6-8 provide us with an important
tool of checking whether or not our proof-search algorithm presented in the next
section is optimal. We know that natural deduction for Kl gives at most a near-
linear speedup over Frege system for Kl. This means that we can test our algorithm
on known examples that are hard for proof systems like analytical tableaux but have
Frege proofs in a polynomial number of steps. If an algorithmic proof happens to be
near-linearly faster than Frege proof, the algorithm works optimally at least on these
examples. On the other hand, if the algorithm proves these examples polynomially
slower than Frege system does, we will learn that it is not optimal. Finally, if the
algorithm proves these formulae in an exponential number of steps, we will find out
that it is considerably less effective than Frege systems.

Concluding this section, we observe that these general theoretical discussions
should be supported by the study of the implementation of the proof searching
algorithm, which forms part of our future work.

5 Algorithmic Proof Searching for KlND

The potential of the application of a logical deductive method to some practical
specification/verification problem depends on the existence of the proof search and
its efficiency. Here, we review the proof search technique for the logic Kl originally
defined in [10]. To keep the presentation self-contained, we describe the procedures
behind this search and then present the searching algorithm referring an interested
reader to [10] for full details.

The proof search strategy is goal-directed, which means that it runs over two
sequences: list proof and list goals. The former is a list of formulae in the proof,
while the latter is a list of goals to be reached. A specific goal, the last goal in
list goals, is called current goal. We identify three types of goals in list goals.

Definition 8 (Types of goals). A goal, Gi, 0 ≤ i ≤ n, occurring in list goals =
〈G0, G1, . . . , Gn〉, is one of the following

• Gi is a formula B, or

238

Automated natural deduction, complexity and applications for Kl

• Gi is of the form [A]B, i.e, it is a derivation of a formula B from an assumption
A, or

• Gi is a contradiction, i.e. two contradictory Kl formulae, A and ¬A. In this
case we will write Gi = ⊥.

In our introductory case, we have a task to derive B from the specification S,
given the assumptions Γ, or S,Γ B. Note that here and below we distinguish
the task of establishing that B is derivable from S,Γ (abbreviated by S,Γ B)
from the statement that such a derivation exists (S,Γ ` B). We will see that our
searching procedures transform derivation tasks. Thus, list proof = {A|A ∈ S ∪ Γ}
and list goals = B. Now, if our goal is not reachable, we either simplify compound
formulae in list proof invoking applicable elimination rules, or manage list goals to
generate new goals, applying introduction rules only when and if necessary. Each
step of the algorithmic proof is associated with the current goal. In our introductory
case current goal = B. Checking the reachability of the current goal, one of the core
procedures, is introduced below and is based on Definition 8.

Definition 9 (Current goal reachability). Current goal, Gn, 0 ≤ n, occurring in
list goals = 〈G0, G1, . . . , Gn〉, is reached if

• Gn is some formula B and there is a formula A ∈ list proof such that A is not
discarded and A = B or

• Gn is of the form [A]B and there is a derivation of B from a non-discarded
assumption A, or

• Gn is a contradiction and there are two contradictory formulae, A ∈ list proof
and ¬A ∈ list proof.

5.1 Proof-Searching Algorithm KlNDALG

Now we are ready to introduce the notion of an algo-derivation and searching pro-
cedures involved.

Definition 10 (Algo-derivation KlNDALG). A Kl algo-derivation, abbreviated as
KlNDALG, is a pair (list proof, list goals) whose construction is determined by the
searching Procedures (1)–(4) outlined below.

5.1.1 Searching Procedures

Searching Procedures below update list proof, list goals or both of them.

239

Bolotov, Kozhemiachenko and Shangin

Procedure (1) Here we follow one of the main ideas of natural deduction proof to
simplify structures of obtained formulae: list proof is updated due to an applicable
elimination rule. If we find a formula, or two formulae, which can serve as premises
of one of these rules, the rule is enforced and the sequence list proof is updated by
the relevant conclusion.

Procedure (2) We apply Procedure (2) when Procedure (1) terminates but the
current goal is not reached. Here we distinguish two subroutines.

Procedure (2.1). This procedure applies when the current goal is not reached.
Analysing the structure of the current goal we update list proof and list goals, respec-
tively, by new goals or new assumptions. Let list proof = P1, . . . Pk and list goals =
G1, . . . , Gn, where Gn is the current goal. A new goal, Gn+1, is generated by apply-
ing the subroutines (2.1.1)–(2.1.9) below which depends on the possible structures
of Gn:

Gn = A ∧B|A ∨B|A ⊃ B|¬(A ∧B)|¬(A ∨B)|¬(A ⊃ B)|L|¬¬A|⊥|[C]A

where A,B are any formulae, L ∈ Lit and [C]A states for the derivation of A from
assumption C. The rules below have structure Γ α −→ Γ′ α′ indicating that
the rule modifies some given derivation task Γ α to a new derivation task Γ′ α′.
The procedures depend on the structure of the current goal: they tackle the cases
when the current goal is a compound Kl formula. The last type of the goal — ⊥ —
is managed as follows.

(2.1.1) Γ ∆, A ∧B −→ Γ ∆, A ∧B,B,A
In the above, Procedure (2.1.1) splits the current conjunctive goal into two conjuncts.

(2.1.2.1) Γ ∆, A ∨B −→ Γ ∆, A ∨B,A
(2.1.2.2) Γ ∆, A ∨B −→ Γ ∆, A ∨B,B

Procedure (2.1.2) tackles a disjunctive goal A∨B setting each disjunct as a sep-
arate goal. We need some clarifications for Procedures (2.1.2.1) and (2.1.2.2) to
explain the way how we avoid infinite loops invoking a dedicated marking tech-
nique. For the former, when the current goal is disjunction, we try to reach the
left disjunct (Procedure 2.1.2.1), and if we fail this subroutine is deleted and we
apply Procedure (2.1.2.2). Similarly, if the latter fails we delete this subroutine and
terminate the whole Procedure (2.1.2).

(2.1.3) Γ ∆, A ⊃ B −→ Γ, A ∆, A ⊃ B,B

240

Automated natural deduction, complexity and applications for Kl

Procedure (2.1.3) tackles A ⊃ B as a goal, requiring to update list proof with A and
list goals with B.

(2.1.4) Γ ∆,¬(A ⊃ B) −→ Γ ∆,¬(A ⊃ B), A,¬B
(2.1.5) Γ ∆,¬(A ∨B) −→ Γ ∆,¬(A ∨B),¬A,¬B
(2.1.6) Γ ∆,¬(A ∧B) −→ Γ ∆,¬(A ∧B),¬A ∨ ¬B

Procedures (2.1.4)–(2.1.6) transform negative compound goals ¬(A ⊃ B), ¬(A∨B),
¬(A ∧B) into A ∧ ¬B, ¬A ∧ ¬B and ¬A ∨ ¬B, respectively.

(2.1.7.1) Γ ∆, F −→ Γ ∆, F,⊥
(2.1.7.2) Γ ∆, F −→ Γ, F ⊃ p ∧ ¬p ∆, [F ⊃ p ∧ ¬p]F

Here F is a literal (a proposition or its negation) or F = A∨B and variable p should
be fresh.

In the paracomplete setting, we also reason by refutation. When the current goal
is not reached, and it is either a literal or disjunction (not reached by Procedure
(2.1.2)) we first look for the contradictions in the proof — Procedure (2.1.7.1) which
sets up a new goal, ⊥.

If no contradictions are found, then we turn into the refutation style proof ap-
plying Procedure (2.1.7.2). The application of this procedure is linked to the rule
⊃p which allows us to introduce to list proof the derivation of F from F ⊃ p ∧ ¬p,
the goal of Procedure (2.1.7.2), once this goal is achieved.

(2.1.8) Γ ∆,¬¬A −→ Γ ∆,¬¬A,A
(2.1.9) Γ ∆, [A]B −→ Γ, A ∆, B

Procedure (2.1.9) corresponds to our interpretation of assumptions — the given goal
[A]B means to infer B from the assumption A, hence we update list goals by B and
list proof by the assumption A.

Marking Various marking routines are applied to prevent infinite looping dur-
ing the search. For example, applying Procedure (2.1) we mark literals and formulae
of the type A ∨ B. This mark serves proof by refutation — in reaching relevant
goals we cannot any longer apply reasoning by refutation. Also, applying Procedure
(2.1.7.2), we mark the assumption that this procedure defines, and these marks
indicate that this assumption, and any formula which is derivable from it, cannot
serve as source of a new goal, i.e. Procedure (2.2) described below, is not applicable
(otherwise, the proof search will enter an infinite loop). Our example in §5.2 will
further clarify how marking technique affects proof search.

241

Bolotov, Kozhemiachenko and Shangin

Procedure (2.2). Here we analyse compound disjunctive and implicative for-
mulae (but not of the type A ⊃ ⊥, where ⊥ is any contradiction, as explained above)
contained in list proof in order to find sources for new goals. If one of these formulae
is found then its structure determines the generation of a new goal.

(2.2.1) Γ, A ∨B ∆, C −→ Γ ∆, [A]C Γ ∆, [B]C
(2.2.2) Γ, A ⊃ B ∆, C −→ Γ ∆, C,A

Procedure (3) Here we check the application of Definition 9. If the current goal
Gn, (n > 0) is reached, we delete Gn from the sequence list goals and set Gn−1 as
the current goal. If the current goal G0 is reached, we delete G0 from the sequence
list goals.

Procedure (4) This is a search for an applicable introduction rule. It is based on
the association of Procedures (2.1.1)–(2.1.8) with correspondent introduction rules
presented below.

Procedure (2.1.1) −→ ∧in

Procedure (2.1.2.1) −→ ∨in1

Procedure (2.1.2.2) −→ ∨in2

Procedure (2.1.3) −→ ⊃in

Procedure (2.1.4) −→ ¬⊃in

Procedure (2.1.5) −→ ¬∨in

Procedure (2.1.6) −→ ¬∧in

Procedure (2.1.7) −→ ⊃p

Procedure (2.1.8) −→ ¬in

Note that Procedure (4) represents the unique specifics of our searching technique
— it makes the application of the introduction rules completely determined by the
analysis of the structure of the current goal (reached) and its preceding goals.

5.1.2 Algorithm KlNDALG

Let us introduce the following abbreviations

• ‘Gcur’ abbreviates the current goal in list goals

• ‘last(list goals)’ returns the last element of list goals, and

• list goals — Gn deletes the last formula, Gn, from list goals.

Now, based on the procedures (1)-(4) we introduce the proof search algorithm
KlNDALG making comments to the steps of the algorithm within the ‘//’.

(0) list proof(), list goals(), go to (1) // initialisation of sequences list proof and
list goals//

242

Automated natural deduction, complexity and applications for Kl

(1) Given a task Γ G0, Gcur = G0 // initialisation of Gcur as G0

(Γ 6= ∅) −→ (list proof = Γ, list goals = G0, go to (2))// when Γ is not empty
update list proof with formulae of Γ and list goals with G0//

ELSE

list goals = G0, go to (2) // when there are no given assumptions in Γ only
update list goals with G0//

(2) Procedure (3)(Gcur) = true //checks the reachability of the current goal//

(2a) IF Reached (Gcur) = true, then list goals = list goals−Gcur // when the
current goal is reached it is deleted from list goals, the new current goal
is the previous goal in list goals//
THEN

IF (Gcur = G0) −→ go to (6a) // If the initial goal is reached, go to
the terminating step//
ELSE
Gcur 6= G0, then Gcur = last(list goals) go to (3)//If the reached goal
is not the initial goal determine a new Gcur as the last goal in Gcur =
last(list goals) and proceed with the relevant introduction rule//

(2b) IF Reached (Gcur) = false, THEN go to (4)//If (Gcur) is not reached
proceed further with elimination rules//

(3) Procedure (4)(〈list proof, list goals〉) = true //apply a relevant introduction
rule// go to (2).

(4) Procedure (1)(〈list proof〉) = true //apply elimination rules//

(4a) Elimination rule is applicable, go to (2) ELSE

(4b) if there are no compound formulae in list proof to which an elimination rule
can be applied, go to (5).

(5) Procedure (2)((〈list proof, list goals〉) = true) // update list proof and list goals
based on the structure of Gcur//

(5a) Procedure (2.1)(〈list proof, list goals〉) = true) //analysis of the structure
of Gcur//

243

Bolotov, Kozhemiachenko and Shangin

go to
(2) ELSE

(5b) Procedure (2.2)(〈list proof, list goals〉) = true) //searching for the sources
of new goals in list proof//

go to
(2) ELSE

(5c) if all compound formulae in list proof are marked, i.e. have been consid-
ered as sources for new goals, go to (6b).

(6) Terminate KlNDALG.

(6a) The desired ND proof has been found. EXIT.
(6b) No ND proof has been found, counterexample found. EXIT.

5.2 Algo-Proof Example
As an example of an algorithmic ND proof we apply KlNDALG as an attempt to
prove the following formula

(\) (p ⊃ q) ⊃ (¬p ∨ q)

Note that this formula is valid in the classical setting and is not in the setting of
paracomplete logic. Its validity would have led to the validity of ¬p∨ p as shown in
the following: if (\) is valid then so would be

(]) (p ⊃ p) ⊃ (¬p ∨ p),

now since p ⊃ p is valid, by modus ponens, we would derive ¬p ∨ p.
This is an indicative formula which contains a disjunctive constraint and as

the reader will see in the proof attempt, all core procedures related to disjunctive
formulae are invoked.

Let us introduce a useful concept of algo-step which will make the understand-
ing of the application of proof search easier. Recall that an algo-proof is a pair
(list proof, list goals). At each step of the application of the procedures described
above we have the sequences list proof and list goals of specific lengths, say i and
j. Let’s abbreviate them by (list proofi, list goalsj), respectively, and let list proof =
B1, . . . , Bi and list goals = G0, . . . , Gj , where Gj is the last goal, that is it is the
current goal. So an algo-step is the task to find a derivation B1, . . . , Bi G0, . . . , Gj .
Thus, the algo-proof for some formula C (with no given assumptions) commences
with the first algo-step G0, where G0 = C.

244

Automated natural deduction, complexity and applications for Kl

Now, for the input (p ⊃ q) ⊃ (¬p ∨ q), we commence the proof with the main
goal, (p ⊃ q) ⊃ (¬p ∨ q). According to the classical search Procedure (2.1.3), the
antecedent of the main goal, p ⊃ q, becomes the new assumption, and its consequent,
¬p∨ q — the new goal, G1 = ¬p∨ q. So the next algo-step would be p ⊃ q ¬p∨ q.
In the representation of the algo-proof below we will have the following columns
indicating, in order, a step of the algo proof (step), so the abbreviation as0 stands
for the first algo-step, formulae in the proof (list proof), an annotation explaining
how a formula appears in list proof, and finally, a list of the goals (list goals).

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q

The current goal G1 = ¬p∨ q cannot be reached so we apply Procedure (2.1.2.1)
and set a new goal G2 = ¬p, hence list goals = ¬p∨ q,¬p. Since ¬p is not reachable,
we delete it from list goals, and applying Procedure (2.1.2.2) we set a new goal
G2 = q, hence list goals = ¬p ∨ q, q. Since q is not reachable, we delete it from
list goals. At this stage we have failed to reach both disjuncts of G1. Hence we
start the refutation, applying first Procedure (2.1.7.1). Thus, we set up a new goal
G2 = ⊥. This new goal, in turn, is not derivable, so we delete G2 from list goals,
and apply Procedure (2.1.7.2) adding (a) a new assumption, (¬p∨ q) ⊃ (r∧¬r) and
(b) a new goal, [(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q. Here we mark the assumption on step
‘as3’ indicating that it should not be subject to Procedure (2.2).

Note that, according to the definition of Procedure (2.1.7.1), in the r ∧ ¬r con-
straint, the variable r should be fresh.

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q

Now, looking for the applicable elimination rule, we notice that ∨⊃el1 and ∨⊃el2

are applicable to formula 2, thus we derive steps 3 and 4.

245

Bolotov, Kozhemiachenko and Shangin

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q
as4 3. ¬p ⊃ (r ∧ ¬r) ∨ ⊃el1 G0, G1, G2
as5 4. q ⊃ (r ∧ ¬r) ∨ ⊃el2 G0, G1, G2

At this stage, the current goal, G2 is not reachable, so we look for the sources
of new goals analysing compound formulae in the proof applying Procedure (2.2.2).
Hence by analysing step 1, we set up a new goal G3 = p. This is not reachable, so
we again apply Procedure (2.1.7.1), setting a new goal, G4 = ⊥.

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q
as4 3. ¬p ⊃ (r ∧ ¬r) ∨ ⊃el1 G0, G1, G2
as5 4. q ⊃ (r ∧ ¬r) ∨ ⊃el2 G0, G1, G2
as6 G0, G1, G2, G3 = p,G4 = ⊥

The current goal, G4 is not reachable, so we delete it and applying Procedure
(2.1.7.2) we set up a new assumption, p ⊃ (s ∧ ¬s) and a new goal, G4 = [p ⊃
(s ∧ ¬s)]p. Note that s is a fresh variable.

step list proof annotation list goals
as0 G0 = (p ⊃ q) ⊃ (¬p ∨ q)
as1 1. p ⊃ q assumption G0, G1 = ¬p ∨ q
as2 G0, G1, G2 = ⊥
as3 2. (¬p ∨ q) ⊃ (r ∧ ¬r) assumption G0, G1, G2 =

[(¬p ∨ q) ⊃ (r ∧ ¬r)]¬p ∨ q
as4 3. ¬p ⊃ (r ∧ ¬r) ∨⊃el1 G0, G1, G2
as5 4. q ⊃ (r ∧ ¬r) ∨⊃el2 G0, G1, G2
as6 G0, G1, G2, G3 = p,G4 = ⊥
as7 5. p ⊃ (s ∧ ¬s) assumption G0, G1, G2, G3, G4 =

[p ⊃ (s ∧ ¬s)]p

246

Automated natural deduction, complexity and applications for Kl

At this stage the searching algorithm terminates as there are no procedures to
apply and all formulae in list proof are marked: as a result, we still have goals to
reach, however, no more elimination rules can be applied, we do not have any more
formulae in list proof that could give us new goals and, once again, introduction rules
are only applied as a result of Procedure (4), which is now void. Note that although
formula 2 in list proof is compound, it was set up as an assumption due to Procedure
(2.1.7.2), hence it is marked and is not considered as a source for new goals. These
marks are carried on for the derivable formulae on steps 3 and 4.

Now, looking at the list proof we can extract the counterexample as follows.
Formula p ⊃ (s ∧ ¬s) means that p has the value f while q ⊃ (r ∧ ¬r) means q has
the value f . Under these values for p and q, formula (p ⊃ q) ⊃ (¬p ∨ q) also takes
the value f .

5.3 Correctness
The following theorems reflect the metatheoretical properties of the above algorithm
[10].

Theorem 9. KlNDALG terminates for any input formula.

Theorem 9 guarantees that for any input formula for the KlNDALG the sequences
list proof and list goals are finite.

Theorem 10. KlNDALG is sound.

Theorem 10 ensures that every formula for which an ND proof is constructed
according with KlNDALG is valid.

Theorem 11. KlNDALG is complete.

Theorem 11 establishes that for every valid formula, A, KlNDALG finds a KlND
proof.

Altogether, theorems 9, 10 and 11 imply the following fundamental property of
our algorithm:

Theorem 12. For any input formula A, the KlNDALG terminates either building
up a KlND-proof for A or providing a counter-model.

Let us now present some important observations on the proof search and on some
of its core and important features.

As in the other ND calculi, in constructing an ND derivation, we are allowed to
introduce arbitrary formulae as new assumptions. Note that for many researchers,

247

Bolotov, Kozhemiachenko and Shangin

this opportunity to introduce arbitrary formulae as assumptions has been a point of
great scepticism regarding the very possibility of the automation of the proof search.
It is true that without the proof search technique assumptions can be introduced
arbitrarily. However, due to the goal-directed feature of the presented algorithm, any
assumption that appears in the proof is well justified serving a specific target. Let
us emphasise that we also turned the assumptions management into an advantage
showing the applicability of the proposed technique to assume-guarantee reasoning
as shown in §6.

We also note that, according to the algorithm, the order in which assumptions
are discharged, is the reverse order to their introduction into the proof.

Finally, introduction rules that have been another point of scepticism concerning
the automation of natural deduction, in our algorithm are completely determined.
Namely, the reachability of the current goal and the type of the previous goal deter-
mine the relevant introduction rule. Also, though ¬in rule of our system KlND, in
general, allows to derive any formula from the contradiction, the application of this
rule is strictly determined by the searching procedures. Therefore, the formula that
we derived from a contradiction is always the one mentioned in list goals.

6 Applications in Specification-Based Verification
Our development of the automated reasoning technique tackles at this stage only
the propositional basis. However, even at this more or less simple level, we argue
that it can significantly contribute in specification-based verification.

6.1 Methodology of applying KlNDALG as Deductive Verification
Here we draw several routes of applying natural deduction enhanced with the proof
search.

Below we list relevant problems and indicate the relevant methodology of their
solution based on natural deduction.

1. To find if a system satisfies some desired property

1.1. obtain the specification of the system, Spec, with some core properties,
Γ and the specification of the desired property, say, B;

1.2. find an ND derivation Γ B.

2. To reason about requirements

2.1. specify the requirements;

248

Automated natural deduction, complexity and applications for Kl

2.2. for a given requirement B, find if there is an ND proof of B;
2.3. drop such requirements since they are valid regardless of a system.

3. To check the consistency of a given system

3.1. obtain the specification, Spec, of a system and run the searching technique
to obtain the contradiction, i.e. setting up the goal ⊥;

3.2. if ⊥ has been reached, the given system is inconsistent.
We will show in the present section how this works in the framework of
component-based system.

4. To look for non-explicit assumptions, apply the presented Kl proof search
algorithm, and the procedures will automatically upgrade list proof with new
assumptions.
We will show in this section how this works in finding assumptions in the
framework of assume-guarantee reasoning.

In the following subsections we tackle problem setting 3–4 leaving the discussion
of problems 1–2 for the conclusion.

6.2 Component-Based Systems
Here we justify the application of the natural deduction to component-based system
assembly. Thus, we aim to apply the searching algorithm KlNDALG as the deductive
verification technique for a component system.

As an example, let us consider a simple component system interpreted in The
Grid Component Model (GCM) based on Fractal [3].

Let our component system, Sys have the following specification Spec. Compo-
nents interact together by being bound through interfaces. The system has four
core components P , Q, R and S. Let p, q, r and s represent properties that core
components, P , Q, R and S are bound to the system (one that should be always
available and should not be “touched”).

Consider as an example the following set of global requirements and their for-
malisation:

• whenever P is bound R should be bound: p ⊃ r

• whenever P is not bound S should be bound: ¬p ⊃ s.

• whenever Q is bound both R and S should not be bound: q ⊃ (¬r ∧ ¬s).

• Q should be bound to the system: q.

249

Bolotov, Kozhemiachenko and Shangin

Consider now the verification task to establish if the above configuration of com-
ponents is consistent. We commence the proof (see below) by the given conditions
of the Spec and set up the goal of the procedure to derive the contradiction, abbre-
viated in the proof annotation below as ⊥. If the contradiction is derivable, then
we would have been able to see its sources tracing the proof backwards. Otherwise,
the Spec would have been shown consistent.

We commence the proof by listing all four given formulae on steps 1-4. From 3
and 4 by eliminating implication we derive ¬r∧¬s and then eliminating conjunction
from the latter, derive steps 6 and 7. We have not reached the goal ⊥. By Procedure
(2.2) we analyse compound formulae in the proof. Thus, analysing formula on step
1 we apply Procedure (2.2.2) and set up p, the antecedent of 1, as the new goal.

step list proof annotation goals
as0 ⊥
as1 1. p ⊃ r given ⊥
as2 2. ¬p ⊃ s given ⊥
as3 3. q ⊃ (¬r ∧ ¬s) given ⊥
as4 4. q given ⊥
as5 5. ¬r ∧ ¬s 3, 4 ⊃el ⊥
as6 6. ¬r 5,∧el ⊥
as7 7. ¬s 5,∧el ⊥
as8 ⊥, p

The current goal, p has not been reached — we apply Procedure (2.1.7.1) setting
up the new goal, ⊥. If we derive ⊥, then by Kl¬in we would be able to derive the
desired p. However, ⊥ is not reachable so we delete it and apply Procedure (2.1.7.2)
so the new assumption is p ⊃ (t∧¬t) (where t∧¬t is the formula ⊥ in the formulation
of Procedure (2.1.7.2)) and our task is now to derive p. Since we cannot do it we
apply Procedure (2.2.2) and analyse formula 2 putting its antecedent, ¬p, as the
new goal.

Again, as it is reachable we apply Procedures (2.1.7.1) and (2.1.7.2) consequently.
The latter procedure sets up the new assumption ¬p ⊃ (u ∧ ¬u) on step 9 and the

250

Automated natural deduction, complexity and applications for Kl

new goal ¬p, where u ∧ ¬u is ⊥ in Procedure (2.1.7.2).

step list proof annotation list goals
as0 ⊥
as1 1. p ⊃ r given ⊥
as2 2. ¬p ⊃ s given ⊥
as3 3. q ⊃ (¬r ∧ ¬s) given ⊥
as4 4. q given ⊥
as5 5. ¬r ∧ ¬s 3, 4 ⊃el ⊥
as6 6. ¬r 5,∧el ⊥
as7 7. ¬s 5,∧el ⊥
as8 ⊥, p
as9 8. p ⊃ (t ∧ ¬t) assumption ⊥, p, p
as10 ⊥, p, p,¬p
as11 9. ¬p ⊃ (u ∧ ¬u) ⊥,¬p,¬p

At this moment, the proof search stops. A model is extractable as follows: p is
assigned f because p ⊃ (t ∧ ¬t) is in the list proof or because ¬p ⊃ (t ∧ ¬t) is in the
list proof. Note that p is assigned f if, and only if, ¬p is assigned f . Next, r gets
the value 0 because ¬r is in the list proof and s is assigned 0 because ¬s is in the
list proof. Under this valuation, each formula p ⊃ r,¬p ⊃ s, q ⊃ (¬r ∧ ¬s) and q is
assigned 1. So, this set of formulae in Spec is consistent.

This explicitly shows the nature of the applicability of paracomplete logic — the
given Spec does not have a precise information about p — if this component should
be bound or not. So the reasoning stops.

Had we reasoned about this specification in the classical set up, we would have
been able to use classically valid formula p∨¬p (which is not valid in Kl) to derive
the contradiction. We will give the corresponding proof a little later, after presenting
a derivable rule which we will use in the proof:

A ⊃ B, C ⊃ D
(A ∨ C) ⊃ (B ∨D)

Note that this rule is also derivable in logic KlND, so we will construct the proof
applying our algorithm KlNDALG. It will return the conclusion of this rule, (A∨C) ⊃
(B ∨D), given that the premisses are constituted.

The KlNDALG (hence the classical algorithm [9] as well) would set up (A∨C) ⊃
(B ∨ D) as the main goal G0 to be derived from the given set A ⊃ B, C ⊃ D.
Because the goal is implicative, by Procedure (2.1.3), its antecedent A∨C becomes

251

Bolotov, Kozhemiachenko and Shangin

the new assumption, and its consequent, B ∨D — the new goal, G1.

step list proof annotation list goals
as0 G0 = ((A ∨ C) ⊃ (B ∨D))
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D

The current goal, G1, is disjunctive, therefore, by Procedure (2.1.2.1), the left
disjunct of G1 is set up as the new goal G2 = B.

This goal cannot be reached so it is deleted from list goals, and, by Procedure
(2.1.2.2), the right disjunct is set up as the new goal G2 = D.

This goal cannot be reached so it is deleted from list goals. Therefore, we have
a disjunctive goal G1 which so far has not been reached.

Next, the Procedure (2.2.1) is fired. The algorithm finds a disjunctive formula
A ∨ C in list proof and it should take in turn two branches.

First, to derive G1 adding A as the new assumption and then to derive G1 adding
C as the new assumption.

Solving the first derivation, A is the new assumption on step 4 as below. Now
G1 is a disjunctive goal and its antecedent becomes the new goal G2 = B.

This can be reached by eliminating implication from 1 and 4 obtaining B on step
5 and then introducing disjunction to the latter obtaining B ∨D on step 6.

step list proof annotation list goals
as0 G0 = ((A ∨ C) ⊃ (B ∨D))
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D
as4 G0, G1, G2 = B
as5 4. A assumption G0, G1, G2
as6 5. B 1, 4 ⊃el G0, G1
as7 6. B ∨D 5,∨in G0, G1

Although we have obtained B ∨D on step 6, we have not reached the goal G1
— to reach the latter we also need to achieve the second subderivation — from
the set of formulae 1, 2, 3, C where C is the new assumption, to derive B ∨D. The

252

Automated natural deduction, complexity and applications for Kl

application of the algorithm is similar to the above, so the proof continues as follows:

step list proof annotation list goals
as0 G0 = ((A ∨ C) ⊃ (B ∨D))
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D
as4 G0, G1, G2 = B
as5 4. A assumption G0, G1, G2
as6 5. B 1, 4 ⊃el G0, G1
as7 6. B ∨D 5,∨in G0, G1
as8 G0, G1, G2 = D
as9 7. C assumption G0, G1, G2
as10 8. D 2, 7 ⊃el G0, G1
as11 9. B ∨D 8,∨in G0, G1

Both subderivations tasks have been completed so the algorithm applies ∨el rule
as we have the disjunctive formula A∨C in the proof and from either of its disjuncts
we have derived B ∨D. The result of this rule is B ∨D on step 10 with annotations
as below.

Finally, introducing implication to the formula on step 10 we derive the desired
goal G0 from the formulae on steps 1 and 2.

step list proof annotation list goals
as0 G0 = (A∨C)⊃(B∨D)
as1 1. A ⊃ B given G0
as2 2. C ⊃ D given G0
as3 3. A ∨ C assumption G0, G1 = B ∨D
as4 G0, G1, G2 = B
as5 4. A assumption G0, G1, G2
as6 5. B 1, 4 ⊃el G0, G1
as7 6. B ∨D 5,∨in G0, G1
as8 G0, G1, G2 = D
as9 7. C assumption G0, G1, G2
as10 8. D 2, 7 ⊃el G0, G1
as11 9. B ∨D 8,∨in G0, G1
as12 10. B ∨D 3, 4, 7, [4−6], [7−9] G0
as13 11. (A ∨ C) ⊃ (B ∨D) 10,⊃in, [3−10]

253

Bolotov, Kozhemiachenko and Shangin

Now we use this derivable rule returning to the task of showing that in the
classical setting the given SPEC is inconsistent. We will not show below the algo-
steps as they would correspond to the steps of the proof.

list proof annotation
1. p ⊃ r given
2. ¬p ⊃ s given
3. q ⊃ (¬r ∧ ¬s) given
4. q given
5. (p ∨ ¬p) ⊃ (r ∨ s) 1, 2, derived rule
6. ¬r ∧ ¬s 3, 4,⊃el

7. ¬r 6,∧el

8. ¬s 6,∧el

9. p ∨ ¬p classical validity
10. r ∨ s 5, 9,⊃el

11. s 7, 10,∨el

Now steps 8 and 11 constitute the contradiction hence the classical reasoning
would have detected the contradiction while, in fact, in our initial setup with in-
complete knowledge on p we do not have any inconsistency due to this lack of the
exact information about the truth conditions of p.

6.3 Assume-Guarantee Reasoning

We consider here how the reasoning based upon natural deduction can be applied
to the automation of the assume-guarantee reasoning [19, 36] technique, the most
used technique in the framework of compositional analysis.

In assume-guarantee reasoning, a verification problem is represented as a triple,
〈A 〉S〈P 〉, where S is the subsystem being analyzed, P is the property to be verified,
and A is an assumption about the environment in which S is used.

The standard interpretation of 〈A〉S〈P 〉 suggests that A is a constraint on S and
if S as constrained by A satisfies P , then the formula 〈A〉S〈P 〉 is true.

Let us formulate the semantics of 〈A 〉S〈P 〉 in the following way: S/A |= P
where S/A means the system S with the additional information A. Now, the typ-
ical example of the application of assume-guarantee reasoning is in the context of
decomposing a given system S into two subsystems S1 and S2 that run in parallel.
Suppose we need to verify that the property P is satisfied in S. Then we can apply
the assume-guarantee rule † as follows.

254

Automated natural deduction, complexity and applications for Kl

(†)
〈A〉S1〈P 〉
〈true〉S2〈A 〉
〈true〉S1||S2〈P 〉

Here 〈true〉S2〈A〉 and 〈true〉S1||S2〈P 〉 mean, respectively, that A is verified in
S2 (without any constraints) and P is verified in S1||S2 (without any constraints).

In terms of natural deduction we can rewrite this rule as ‡ below.

(‡)
S1, A ` P
S2 ` A

S1||S2 ` P

Now new tasks are to find the natural deduction derivations S1, A P and
S2 A in order to conclude that S1||S2 ` P and the application of the proof search
technique is the next logical step here.

One of the major obstacles in the efficient application of assume-guarantee ap-
proach [15] is that once decomposition is selected, to manually find an assumption
A to complete an assume-guarantee proof is difficult. Indeed, the assumption must
be strong enough to sufficiently constrain the behavior of S1 so that S1, A ` P
holds, and must be weak enough so that S2 ` A holds. The problem of finding such
as assumption A would become even more difficult if the systems in question are
constrained with an incomplete information. The application of the proof search
algorithm of paracomplete logic Kl described above would represent an efficient so-
lution. (Of course we would need to introduce the rigorous reasoning here defining
what are ‘strong’ and ‘weak’ conditions.)

Let us draw here some directions of the application of the presented proof search
towards the automation of assume-guarantee technique.

In the reasoning below we rigorously follow the proof search algorithm for KlND.
When solving the problem S1||S2 P we look for the assumption A such that

S1, A P and S2 A. Assume that S1 and S2 are systems with the specifica-
tions containing statements B1, . . . , Bm and C1, . . . , Cn, respectively. Our task is
to find an assumption A, following rule (†) above, such that B1, . . . , Bm, A P
and C1, . . . , Cn A. In the description of our reasoning, we will use the con-
cept of the algo-step, introduced above. Now we commence KlND proof setting

255

Bolotov, Kozhemiachenko and Shangin

list proof = B1, . . . , Bn and list goals = P :

step list proof annotation list goals
as0 1. B1 given P
as1 . given P
as2 . given P
as m m. Bm given P
as m+ 1 m+ 1. P,⊥

On algo-stepm, since the goal P is not reachable, we update list goals by ⊥. If on
algo-stepm+1 list proof contains contradictory elements, then the new goal ⊥ would
be reachable and we would have two contradictory statements within B1, . . . , Bm,
say, C and ¬C at the stages 1 ≤ i < j ≤ m. Thus, our new goal would have been P
again which we would reach by applying Kl¬in rule:

step list proof annotation list goals
as0 1. given P
as1 . given P
as3 i. C given P
. given P
as j. ¬C given P
as m m. given P
as m+ 1. P,⊥
as m+ 2. P
as m+ 3. P i, j, Kl¬in

Now we found our first candidate for A — contradiction. Hence we set up the
new task — C1, . . . , Cn ⊥ and thus check if we can establish the latter.

Alternatively, we consider the second case on step m above, when the goal ⊥ on
algo-step m is not reachable. In this case we would have the following continuation
of the proof:

step list proof annotation list goals
as0 1. B1 given P
. . given P
. . given P
as m m. Bm given P
as m+ 1 m+ 1. P ⊃ r ∧ ¬r assumption P, [P ⊃ r ∧ ¬r] P

At this stage, since P was not reachable, it is not contained in list proof hence
no elimination rules are applicable and we search for new assumptions. Namely, we

256

Automated natural deduction, complexity and applications for Kl

would be looking for disjunctive and implicative formulae in list proof (but ignoring
the formula P ⊃ r ∧ ¬r on step m+ 1).

If successful, we would introduce into the proof the corresponding assumption
and proceed further applying the searching algorithm until it terminates with either
finding the desired proof for P or failing to do so.

In the former case, P would be the last formula of list proof and we will be able
to consider assumptions appearing in list proof between algo-step m+1 to test them
in the second task C1, . . . , Cn A.

7 Conclusion and Roadmap to Future Work

The contribution of this paper is twofold. On one hand, we provided the complex-
ity analysis of the classical natural deduction system and its modified version, for
paracomplete logic Kl. This has led us closer to the important question on the
efficiency of the presented proof search technique and enables us to speak about the
second aspect of the contribution of the paper — application issues. We have shown
how paracomplete logic Kl can be used in providing high level specifications for
incomplete systems and how natural deduction system for this logic, supported by
the algorithmic proof search, can be used to reason about obtained specifications.
To the best of our knowledge, there is no other similar work on the automation of
paracomplete natural deduction systems or on an application of natural deduction
techniques in general to the reasoning about incomplete specifications.

We have shown how these developments can be integrated into the existing ap-
proaches dealing with component-based system assembly.

It is notable that for many researchers, one of the core features of natural de-
duction, the opportunity to introduce arbitrary formulae as assumptions, has been
a point of great scepticism regarding the very possibility of the automation of the
proof search. In this paper, not only we show the contrary, but we also turned
the assumptions management into an advantage showing the applicability of the
proposed technique to assume-guarantee reasoning.

The results presented in this paper have important methodological aspects form-
ing the basis for the development of automated goal-directed techniques for more
expressive formalisms, for example, temporal and normative extensions. The feasi-
bility of these extensions is based on the systematic, generic nature of the natural
deduction construction and algorithmic proof search. This will, in turn, enable the
application of the powerful natural deduction based reasoning to tackle dynamic
systems defined in heterogeneous environments, with such complicated cases as the
combinations of time / paraconsitency / paracompleteness. Thus we envisage the

257

Bolotov, Kozhemiachenko and Shangin

extensions of the applicability of our methodology to the specification of complex
dynamic systems, to the specification of normative systems (i.e. protocols) and to
reasoning about systems that are both inconsistent and incomplete.

One specific area, where we have obtained some preliminary results, is Require-
ments Engineering. In a series of works authors indicate the importance of the
specification of high-level requirements of a partial model such that these specifi-
cations are built incrementally from higher-level goal formulations in a way that
guarantees their correctness by construction [23]. In [44] the approach to tackle the
problem of reduction of complex software requirements to simpler ones and to reason
about the requirements is given.

However, we are not aware of any approach which would tackle this task under
the following constraints:
(i) considering this problem in the context of incomplete specifications;

(ii) using the advances of automated deduction.
We argue that the natural deduction searching technique, which enables us to

trace the dependencies of the formulae in the proof, opens a very important prospect
of finding solutions to the above (i) and (ii). The methodology here is as follows:
set the formally specified requirements as the goals for the searching technique so
the latter returns the set of assumptions upon which these goals depend.

This corresponds to the layer of ‘global invariants’ mentioned in [23], where the
authors give a very reasonable taxonomy of goal patterns (see [23, P.26]).

Now, our solution looks as follows: setting the requirements Req as goals for the
proof searching technique, we aim at finding such global invariants.

Thus, applying to each such requirement r ∈ Req our proof searching algorithm,
KlNDALG, we aim at finding the assumptions, Depend(r), on which r depends in
the proof. This set of formulae Depend(r) represents the desired set of reduced
requirements (global invariants).

Acknowledgements
The authors should acknowledge here Prof. Vladimir Popov (Lomonosov Moscow
State University), who acquainted them with matrix definitions for Kl which we are
utilised in this paper.

References
[1] A. Avron. Natural 3-valued Logics — Characterization and Proof Theory. The Journal

of Symbolic Logic, Vol. 56(1): 276–294, 1991.

258

Automated natural deduction, complexity and applications for Kl

[2] A. Avron and I. Lev. A formula-preferential Base for Paraconsistent and Plausible
Non-monotonic Reasoning. In Proceedings of the Workshop on Inconsistency in Data
and Knowledge (KRR-4), Int. Joint Conf. on AI (IJCAI 2001), pages 60-70, 2001.

[3] Basic Features of the Grid Component Model Deliverable D.PM.04. CoreGRID, March
2007 (http://coregrid.ercim.eu/mambo/).

[4] D. Basin, S. Matthews, and L. Vigano. Natural deduction for non-classical Logics.
Studia Logica, 60(1), (1998): 119–160.

[5] V. Bocharov and V. Markin, Introduction to Logic. Moscow, Higher Education, 2008
(in Russian).

[6] A. Bolotov, O. Grigoriev and V. Shangin: Automated Natural Deduction for Proposi-
tional Linear-Time Temporal Logic. Proceedings of TIME 2007: 47–58.

[7] A. Bolotov and V. Shangin. Natural Deduction System in Paraconsistent Setting: proof
search for PCont. Journal of Intelligent Systems, Vol. 21(1), (2012): 1–24.

[8] A. Bolotov and V. Shangin. Tackling Incomplete System Specifications Using Natural
Deduction in the Paracomplete Setting. Proceedings of COMPSAC 2014: 91–96.

[9] A. Bolotov, V. Bocharov, A. Gorchakov and V. Shangin. Automated First Order
Natural Deduction. Proceedings of IICAI 2005: 1292–1311.

[10] A. Bolotov and V. Shangin. Natural Deduction in a Paracomplete Setting. Logical
Investigations, Vol. 20, (2014): 224–247.

[11] M. Bonet and S. Buss. The Deduction Rule and Linear and Near-Linear Proof Simu-
lations. Journal of Symbolic Logic, Vol. 58/2 (1993): 688-709.

[12] A. Buchsbaum and T. Tarcisio. A Reasoning Method for a Paraconsistent Logic. Studia
Logica, 52(2), (1993): 281-290.

[13] W. Carnielli. Systematization of Finite Many-Valued Logics Through the Method of
Tableaux. Journal of Symbolic Logic Volume 52, Issue 2 (1987), 473–493.

[14] W. Carnielli. On Sequents and Tableaux for Many-valued Logics. Journal of Non-
Classical Logic 8(1), (1991): 59–76.

[15] J. Cobleigh and G. Avrunin and L. Clarke. Breaking Up Is Hard To Do: An Eval-
uation of Automated Assume-guarantee Reasoning. ACM Transactions on Software
Engineering and Methodology 17(2), (2008): 104–155.

[16] V. Degauquier. Partial and Paraconsistent Three-valued Logics. Logic and Logical
Philosophy, Volume 25, (2016): 143–171.

[17] A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications: Reasoning, Analysis
and Action. ACM Transactions on Software Engineering and Methodology, 7(4), (1998):
335–367.

[18] A. Hunter and S. Parsons. Introduction to Uncertainty Formalisms. Hunter, A and
Parsons, S, (eds.) Applications of Uncertainty Formalisms. (pp. 1-7). Springer. Lecture
notes in computer science; Vol. 1455, ISBN 3-540-65312-0, Springer, (2001): 1–7

[19] C. Jones. Specification and Design of (parallel) Programs. Proceedings of the IFIP 9th
World Congress: IFIP: North Holland, (1983): 321–332.

[20] N. Kamide. Natural Deduction Systems for Nelson’s Paraconsistent Logic and its Neigh-

259

Bolotov, Kozhemiachenko and Shangin

bors. Journal of Applied Non-Classical Logics. Vol. 15 (4), (2005): 405–435.
[21] S. Kleene. Introduction to Metamathematics. Wolters-Noordhoff Publishing and North

Holland Publishing Company, Amsterdam, 1971, 7th Edition.
[22] J. Kreiker, A. Tarlecki, M. Vardi, and R. Wilhelm. Modeling, Analysis, and Verifica-

tion — The Formal Methods Manifesto 2010 (Dagstuhl Perspectives Workshop 10482).
Dagstuhl Manifestos, 1(1), (2011): 21–40.

[23] E. Letier and A. van Lamsweerde. Deriving Operational Software Specifications from
System Goals. SIGSOFT 2002/FSE-10, Charleston, SC, USA, (2002): 18–22.

[24] C. Middelburg. A Survey of Paraconsistent Logics. The Computing Research Reposi-
tory (CoRR), vol. 1103/4324, 2011.

[25] A. Naddeo. Axiomatic Framework Applied to Industrial Design Problem Formulated
by Paracomplete Logics Approach: the Power of Decoupling on Optimization-Problem
solving. Proceedings of Fourth International Conference on Axiomatic Design, (2006):
1-8.

[26] T. Nipkow, L. Paulson and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer, 2002.

[27] D. Li. Using the Prover ANDP to Simplify Orthogonality. Annals of Pure and Applied
Logic, 124-1, (2003): 49–70.

[28] J. Noppen, P. van den Broek and M. Aksit. Software Development with Imperfect
Information. Soft Computing: 12, (2008): 3–28.

[29] B. Nuseibeh, S. Easterbrook, and A. Russo. Making Inconsistency Respectable in
Software Development. Journal of Systems and Software, Vol. 58, No. 2, (2001): 171–
180.

[30] D. Pastre. Muscadet2.3 : A Knowledge-based Theorem Prover based on Natural De-
duction. International Joint Conference on Automated Reasoning - Conference on
Automated Deduction (2001): 685—689.

[31] F. J. Pelletier. Natural Deduction Theorem Proving in THINKER. Studia Logica, 60
(1998): 3–43.

[32] F. J. Pelletier. A Brief History of Natural Deduction. History and Philosophy of Logic,
20 (1999): 1–31.

[33] Y. Petrukhin and V. Shangin Automated correspondence analysis for the bi-
nary extensions of the logic of paradox. The Review of Symbolic Logic, 1–26
(doi:10.1017/S1755020317000156).

[34] John L. Pollock. Rational Cognition in OSCAR. Agent Theories, Architectures, and
Languages (1999): 71—90.

[35] F. Portoraro. Strategic Construction of Fitch-style Proofs. Studia Logica, 60 (1998):
45–66.

[36] A. Pnueli. In Transition from Global to Modular Temporal Reasoning about Programs.
Logics and Models of Concurrent Systems, K. R. Apt, Ed. NATO ASI: vol. 13. Springer-
Verlag, (1984): 123–144.

[37] V. Popov. Between the logic Par and the set of all formulae in ’The Proceeding of the

260

Automated natural deduction, complexity and applications for Kl

6th Smirnov Readings in logic’, Contemporary notebooks, Moscow, 93–95 (In Russian).
[38] V. Popov. Between Int< ω, ω > and Intuitionistic Propositional Logic. Logical Inves-

tigations, Issue 19, 2013, 197–199 (in Russian).
[39] A. Sette and W. Carnielli. Maximal Weakly-intuitionistic Logics. Studia Logica, 55, 1

(1995): 181—203.
[40] W. Quine. On Natural Deduction. The Journal of Symbolic Logic, 2-15 (1950): 93–102.
[41] R. A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. Ph.D. thesis /

Reckhow R.A. ; University of Toronto, 1976.
[42] Shangin V.O. A Precise Definition of an Inference (by the example of natural deduction

systems for logics I < α, β >) Logical investigation 23(1), (2017): 83–104
[43] L. V. Tien, Q. T. Tho, and L. D. Anh. Specification-based Verification of Incomplete

Programs. ACEEE Int. Journal on Information Technology, Vol. 02, No. 02, (2012):
56–61.

[44] B. Wei, Z. Jin, D. Zowghi, and B. Yin. Automated Reasoning with Goal Tree Models for
Software Quality Requirements. Proceedings of COMPSAC 2012 Workshops, (2012):
373–378.

Received 8 February 2017261

262

Suzumura Consistency, an Alternative
Approach

Peter Schuster
Università degli Studi di Verona, Verona, Italy.

peter.schuster@univr.it

Daniel Wessel
Università degli Studi di Trento, Trento, Italy.

daniel.wessel@unitn.it

Abstract
Suzumura consistency is known as a sufficient and necessary condition for a

binary relation to have an order extension. We advocate the use of equivalent
but negation-free forms of Suzumura consistency and of the related notion of
compatible extension. From a methodological perspective, our proposals make
possible to work more abstractly, in the algebra of relations, and to give more
direct proofs. To illustrate this we reconsider various forms and proofs of the
order extension principle. As a complement we adopt to quasi-orders J.L. Bell’s
argument that Gödel–Dummett logic is necessary for order extension.

1 Introduction
Order extension principles are originally due to Szpilrajn [47] for strict partial orders;
for quasi-orders they were phrased by Arrow [3] and proved by Hansson [34]. They

The present paper has emerged from the project “Abstract Mathematics for Actual Computation:
Hilbert’s Program in the 21st Century” funded by the John Templeton Foundation. The opinions
expressed in this publication are those of the authors and do not necessarily reflect the views of
the John Templeton Foundation. Initial studies were undertaken when the first author was visiting
the Munich Center for Mathematical Philosophy upon kind invitation by Hannes Leitgeb and with
a research fellowship “Erneuter Aufenthalt” by the Alexander-von-Humboldt Foundation. Both
authors would like to thank Sara Negri for the enlightening discussions during her “Cooperint
Azione 3” senior visiting fellowship provided by the University of Verona in 2016; and Thomas
Streicher for the helpful advice he gave during his INdAM-GNSAGA visiting professorship at the
University of Padua in 2016. Both authors would further like to thank the anonymous referees for
carefully reading the manuscript and giving fair critique and helpful suggestions.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Schuster and Wessel

play a seminal role in mathematical economics, game theory, and in the theory of
social choice, preferences, and utility (see, e.g., [2, 18] for an exhaustive overview,
and [16] for the rising field of computational social choice). Suzumura [45] specified a
notion of consistency which is sufficient and necessary for a binary relation to have an
order extension. With the customary definition of consistency, however, proofs often
require indirect reasoning and arguments on pairs, i.e., arguments involving specific
elements of the underlying set. We now show how Suzumura consistency can be put
in a logically equivalent and negation-free form, which allows for a somewhat slicker
treatment. In fact, this has an interesting methodological effect: we can keep to a
minimum arguments on pairs, and largely avoid proofs by contradiction—instead
we argue abstractly within the algebra of relations.

Yet one cannot do with constructive means only, as J.L. Bell made clear. While
Zorn’s Lemma, the key tool for order extension, allegedly is “constructively neutral”
[5], order extension is not: it results in Gödel–Dummett logic not only for partial
orders [6] but also, as we show below (Section 8.4), for quasi-orders. Negri et al. [38]
proved practicable a proof–theoretic study of order extension; see also [43].

This paper is organised as follows. We first list the most necessary preliminaries
in Section 2. In Section 3 we discuss the notion of consistency, and in Section 4 we
make precise a notion of (compatible) extension intimately related with consistency.
Then, in Section 5, we concentrate on the extendability of consistent relations to
complete quasi-orders, while in Section 6 we rephrase a classic result of Dushnik and
Miller [28] in terms of consistent relations. In Section 7 we present another proof
of Arrow’s generalization, along the lines of [3, 36, 46, 18]. In the complementary
Section 8 we explain an alternative proof of the order extension principle by way of
Open Induction [40] rather than Zorn’s Lemma; carry over from partial orders to
quasi-orders J.L. Bell’s argument [6] that Gödel–Dummett logic is necessary for the
order extension principle; and revisit Richter’s theorem [41] on rationalizability of
choice functions.

2 Preliminaries

For the purposes of this paper, a certain amount of fairly standard terminology
needs to be fixed. In the following, let R and S denote binary relations on a set X,
i.e., subsets of the cartesian product X × X. By “relation” we shall always mean
“binary relation”, and henceforth we skip “binary”. The opposite (or reciprocation)
of R is

R◦ = { (x, y) ∈ X ×X : (y, x) ∈ R } .

264

Suzumura Consistency, an Alternative Approach

Note that (R◦)◦ = R, and if R ⊆ S, then R◦ ⊆ S◦. Furthermore, (R∪S)◦ = R◦∪S◦.
The asymmetric part of R is P (R) = R−R◦, which is to say that

P (R) = { (x, y) : (x, y) ∈ R ∧ (y, x) /∈ R } .

The transitive closure of R is
tc(R) =

⋃

i>1
Ri,

with R1 = R and Ri+1 = Ri ◦R, where

R ◦ S = { (x, z) : ∃ y ∈ X (x, y) ∈ R ∧ (y, z) ∈ S }

denotes the relational composition.1 A relationR is transitive if and only ifR◦R ⊆ R,
which in turn holds if and only if tc(R) = R. If R,S are relations, then R ⊆ tc(S) if
and only if tc(R) ⊆ tc(S); that is to say that tc is a closure operator on the powerset
P(X ×X). As composition obeys (R ◦ S)◦ = S◦ ◦ R◦ and distributes over unions,
we see that the transitive closure commutes with reciprocation, tc(R◦) = tc(R)◦.

We say that R is complete2 if R ∪R◦ = X ×X, which is also known as R being
linear or total. Mind that a complete relation is reflexive, i.e., ∆ ⊆ R, where

∆ = { (x, y) ∈ X ×X : x = y }

is the diagonal, and notice that ∆ ∩ R = ∆ ∩ R◦. The diagonal is neutral for
composition, i.e., ∆ ◦R = R = R ◦∆. The reflexive closure of R is R ∪∆.

A quasi-order (or preorder) is a reflexive transitive relation. The hull R of a
relation R, viz.

R =
⋃

i>0
Ri

where R0 = ∆, is the least quasi-order which contains R. Note that R = tc(R)∪∆ =
tc(R ∪∆).

If Y is a subset of X, then

R
∣∣
Y

= R ∩ (Y × Y)

is the restriction of R on Y . The restricted diagonal is denoted by ∆Y . Occasionally
we write R, (x, y) instead of R ∪ { (x, y) }. If S is a set and X,Y ⊆ S, then X G Y
is shorthand for X ∩ Y being inhabited.3

1We adhere to the traditional, Tarskian convention about composition which is customary in
the context of preference relations [14], and even in certain abstract categorical settings [31].

2The notion of “completeness” is prevalent in the context of logical theories and Lindenbaum’s
Lemma.

3We have adopted this notation from Giovanni Sambin.

265

Schuster and Wessel

An antisymmetric quasi-order R on X, i.e., one for which R∩R◦ ⊆ ∆, is a partial
order ; the underlying set X in which case is called a poset. If R is complete, then X
is said to be linearly ordered. By a chain in a poset X we understand an inhabited
subset of X that is linearly ordered by the restricted relation. We say that X is
chain-complete, if X is inhabited and every chain C has a least upper bound ∨C in
X. A maximal element x in X is such that

∀y ∈ X (x 6 y → x = y) .

One of the standard forms of Zorn’s Lemma (ZL) reads as follows:

ZL. Every chain-complete poset has a maximal element.

It is as such that the Axiom of Choice (AC) gets involved in proving the order
extension principle in its full generality. In fact, a strictly weaker form of AC suffices
[37, 29], but this shall not be of our concern.4

3 Consistency
Suzumura [45] gave a sufficient and necessary condition for a relation R to have
a complete quasi-order extension which preserves the asymmetric part P (R). A
relation R is Suzumura consistent if

∀x, y ∈ X [
(x, y) ∈ tc(R) → (y, x) /∈ P (R)

]
.

Unfolding the definition of P (R), Suzumura consistency amounts to

∀x, y ∈ X [
(x, y) ∈ tc(R) → ¬((y, x) ∈ R ∧ (x, y) /∈ R)]

,

which (with classical logic) is equivalent to

∀x, y ∈ X [
(x, y) ∈ tc(R) ∧ (y, x) ∈ R → (x, y) ∈ R]

.

This condition on R can now be written succinctly as set containment. We replace
Suzumura consistency by this equivalent, and simply call it consistency, as follows.

Definition 1. A relation R is consistent if

tc(R) ∩R◦ ⊆ R.
4The Axiom of Choice is not entirely indispensable: syntactical conservation works for Horn

sequents [38]; see also [43].

266

Suzumura Consistency, an Alternative Approach

Remark 1. A relation is consistent if and only if R ∩ R◦ ⊆ R. Moreover, a relation
R is consistent if and only if every cycle in R is “reversible”, by which we mean that
every cycle in R forces its reciprocal to be in R as well. Really this concerns cycles
of any length—here is another, equivalent way to put consistency:

∀n > 0 Rn ∩R◦ ⊆ R.

In terms of preferences, consistency “rules out . . . all cycles with at least one strict
preference” [14, p. 36].
Remark 2. Every transitive relation is consistent. In particular, ∆, tc(R) and R
are consistent. On the other hand, it is well-known that consistency is weaker than
transitivity. For instance, R = { (x, y), (y, x) } is consistent on X = {x, y } but not
transitive unless x = y, in fact tc(R) = R ∪∆ and R◦ = R.

But what is missing for a consistent relation to be transitive? Compositions need
to be comparable.

Proposition 1. For a relation R, each of the following items implies the next.
(i) R is transitive,
(ii) tc(R) ⊆ R ∪R◦,
(iii) R ◦R ⊆ R ∪R◦.
If R is consistent, then the above assertions are equivalent. In particular, transitivity
is equivalent to consistency together with any of (ii) and (iii) above.

Proof. Of course, if R is transitive, then tc(R) = R, whence (ii) follows from (i).
Furthermore, from R ◦ R ⊆ tc(R), we know that (ii) implies (iii). Next, if R is
consistent and R2 = R ◦R ⊆ R ∪R◦, then

R2 = R2 ∩ (R ∪R◦) = (R2 ∩R) ∪ (R2 ∩R◦) ⊆ R ∪ (tc(R) ∩R◦) ⊆ R

Therefore, transitivity is implied by (iii), given that R is consistent.

Remember that we have defined a relation R on X to be complete if R ∪ R◦ =
X × X. The following corollary is a direct consequence of Proposition 1. This
observation has also been made in [14].

Corollary 1. A complete consistent relation is transitive.5 In particular, a relation
is complete and consistent if and only if it is a complete quasi-order.

5This is readily proved element-wise too. Here is another direct argument: if R is complete and
consistent, then

tc(R) = tc(R) ∩ (X ×X) = tc(R) ∩ (R ∪R◦) = cc(R) = R,

whence R is transitive—see below for the consistent closure cc(R) of R.

267

Schuster and Wessel

Consider again conditions (ii) and (iii) in Proposition 1 above. Neither of them
follows from consistency, just because a consistent relation need not be transi-
tive. In turn, neither (ii) nor (iii) implies consistency. For example, if R =
{ (x, y), (y, z), (z, x) } on a set {x, y, z } with pairwise distinct elements x, y, z, then
the reflexive closure R∪∆ is not a consistent relation, yet it satisfies (ii). Therefore,
consistency is independent of each of these assertions (ii) and (iii). Furthermore, as
the example we have just given also shows (ii) and (iii) to be strictly weaker than
transitivity, by Proposition 1 we have at hand a proper decomposition of transitivity.

It has been observed [13] that consistency—just as transitivity—can be expressed
by means of a closure condition. Here this takes the following form.

Definition 2. The consistent closure of R is

cc(R) = tc(R) ∩ (R ∪R◦).

Note that R ⊆ cc(R) ⊆ tc(R). The consistent closure reverses cycles and thus
“eliminates” strict preference from any such cycle. Consider for example once more
a set X = {x, y, z } with three pairwise distinct elements x, y, z, together with the
“cyclic” relation R = { (x, y), (y, z), (z, x) }. This relation is not consistent, and the
transitive closure of R is universal, i.e., tc(R) = X ×X. The consistent closure, on
the other hand, adds the opposite, but neither is reflexive nor transitive.

Lemma 1. Let R and S be relations.
(i) R is consistent if and only if cc(R) = R.
(ii) R ⊆ cc(S) if and only if cc(R) ⊆ cc(S).

Proof.
(i) We have cc(R) = (tc(R) ∩ R) ∪ (tc(R) ∩ R◦) = R ∪ (tc(R) ∩ R◦). Therefore,

cc(R) = R if and only if tc(R) ∩R◦ ⊆ R.
(ii) Notice that the consistent closure is defined as intersection of transitive closure

and symmetrization R 7→ R∪R◦. Therefore, it suffices to show that the latter
satisfies the corresponding equivalence, which is immediate from the properties
of reciprocation: if R ⊆ S ∪ S◦, then R◦ ⊆ (S ∪ S◦)◦ = S◦ ∪ S◦◦ = S◦ ∪ S,
whence R ∪R◦ ⊆ S ∪ S◦. The converse implication is trivial.

In other words, the assignment R 7→ cc(R) defines a closure operator the fixed
points of which are precisely the consistent relations. Furthermore, cc(R) is the least
consistent relation which contains R.

268

Suzumura Consistency, an Alternative Approach

4 Compatible Extensions
The following definition is equivalent to the one employed in the context of preference
relations [26].

Definition 3. Let R,S be relations. We say that S is a compatible extension of R
if

R ⊆ S and S ∩R◦ ⊆ R.

In fact, if R ⊆ S, then S ∩ R◦ ⊆ R precisely when P (R) ⊆ P (S) holds for the
asymmetric parts.
Remark 3. If S is a compatible extension of R ∪ { (y, x) }, then (x, y) ∈ S implies
(x, y) ∈ R, provided that either R is reflexive or x 6= y. For compatibility of S over
R ∪ { (y, x) } means that

R∪{ (y, x) } ⊇ S∩(R∪{ (y, x) })◦ = S∩(R◦∪{ (x, y) }) =
(
S∩R◦)∪(S∩{ (x, y) }).

Compatible extension can thus be regarded as “reflecting opposite elements”.
On the other hand, Remark 3 also has the following reading: if S is a compatible
extension of R ∪ { (y, x) }, and if (x, y) /∈ R, then (x, y) /∈ S.

The containment R ⊆ X ×X is a compatible extension if and only if R◦ ⊆ R,
which is to say that R is symmetric. The reason why compatibility needs to be
involved, is to avoid the universal relation to be an extension of every R [34, p. 453],
and hence to be a solution of the problem of extending a relation to a complete quasi-
order in the absence of any further restrictive assumption as, say, antisymmetry.6
Mind that every relation R is a compatible extension of itself; whence a compatible
extension need not necessarily be consistent. Not even a compatible extension of a
consistent relation needs to be consistent.7

Caveat. For brevity’s sake, following a certain tradition [45, 25, 18], whenever
referring to an extension we will henceforth always mean a compatible extension.

Remark 4. Suppose that R ⊆ S ⊆ T . If T extends R, then so does S, because
S ∩R◦ ⊆ T ∩R◦ ⊆ R.
Remark 5. Suppose that S is an extension of R. Then S = R already if S ⊆ R∪R◦,
for in that case S = S ∩ (R ∪ R◦) = (S ∩ R) ∪ (S ∩ R◦) ⊆ R. In particular, every

6On the other hand, notice that if R is reflexive, then every extension of R by an antisymmetric
relation S automatically is compatible, for in that case S ∩R◦ ⊆ S ∩ S◦ = ∆ ⊆ R.

7In fact, the empty relation ∅ is consistent, and is compatibly extended by any—possibly non-
consistent—relation whatsoever.

269

Schuster and Wessel

complete relation R is maximal for extension, i.e., if S extends R and R is complete,
then S = R. An extension might thus be very close; in fact, the consistent closure
cc(R) of a relation R cannot extend R unless R itself is consistent, simply because
cc(R) ⊆ R ∪R◦.

In any case, the reflexive closure always gives an extension, which is the special
case R = S of the following.
Remark 6. Extensions carry over to reflexive closures. In fact, R ⊆ S is compatible
if and only if R ⊆ S ∪∆ is compatible, because

(S ∪∆) ∩R◦ = (S ∩R◦) ∪ (∆ ∩R◦) = (S ∩R◦) ∪ (∆ ∩R).

Lemma 2. Extension defines a partial order on relations.
Proof. Extension clearly is reflexive, and inherits antisymmetry from inclusion. It
remains to verify transitivity, i.e., if S extends R and T extends S, then T extends
R. To this end, we calculate, using that R◦ ⊆ S◦ whenever R ⊆ S,

T ∩R◦ = (T ∩R◦) ∩R◦ ⊆ (T ∩ S◦) ∩R◦ ⊆ S ∩R◦ ⊆ R.
With the following proposition we adapt and extend an interesting result from

[18]. The proof is straightforward in terms of our notion of consistency.
Proposition 2. The following are equivalent for every relation R.
(i) R is consistent.
(ii) cc(R) extends R.
(iii) tc(R) extends R.
(iv) R extends R.
(v) R has a consistent extension.
(vi) R has a transitive extension.
(vii) R has a quasi-order extension.
Proof. Notice first that whenever a quasi-order S contains R, we actually have

R ⊆ cc(R) ⊆ tc(R) ⊆ R ⊆ S.
Hence, if S extends R, then (Remark 4) so do R, tc(R), and cc(R); the latter
extension is tantamount to R being consistent, by way of Remark 5. On the other
hand, if R is consistent, then cc(R) = R, and tc(R) extends R, simply by definition.
Adding the diagonal does not do any harm, so R extends R, if tc(R) does, in which
case R has a quasi-order extension.

As noticed in [18], because of R ⊆ cc(R) ⊆ tc(R), it follows that tc(R) =
tc(cc(R)). In view of Lemma 1 and Proposition 2, then tc(R) is an extension of
cc(R). Moreover, notice that R = cc(R).

270

Suzumura Consistency, an Alternative Approach

5 Extension Principles
Suzumura singled out that for a relation R to have a complete quasi-order extension,
it suffices for R to be consistent. But as long as there are no further assumptions
made on the underlying set X, some form of the Axiom of Choice has to be involved.

We still need some preparation on our way to Suzumura’s variant of order ex-
tension: first we have to make sure that the consistent extensions of a relation form
a chain-complete poset (Lemma 3 below). Then we need to verify, typical indeed
for many an application of Zorn’s Lemma [5], that a consistent relation can be
“step-wise” extended. Once all this has been done, Zorn’s Lemma may be invoked.

Lemma 3.
(i) Every union of a chain (Ri)i∈I of consistent relations is consistent.
(ii) If (Ri)i∈I is a chain with respect to extension, then ⋃i∈I Ri is the least upper

bound of (Ri)i∈I also with respect to extension.

Proof.
(i) This is a standard argument. Suppose that (Ri)i∈I is a chain of consistent

relations, and let
(x, y) ∈ tc(

⋃

i∈I
Ri) ∩ (

⋃

i∈I
Ri)◦.

By the definition of tc, finitely many Ri suffice. As we have a chain, there
in fact is i0 ∈ I with (x, y) ∈ tc(Ri0) ∩ R◦i0 . Then (x, y) ∈ Ri0 since Ri0 is
consistent, and therefore (x, y) ∈ ⋃i∈I Ri.

(ii) Of course Ri0 ⊆
⋃
i∈I Ri for every i0 ∈ I. Furthermore, as we have a chain of

extensions, for every i ∈ I either Ri extends Ri0 or vice versa, and in each case
we have Ri ∩R◦i0 ⊆ Ri0 . From this we get

(⋃

i∈I
Ri) ∩R◦i0 =

⋃

i∈I
(Ri ∩R◦i0) ⊆ Ri0 .

Next, if S is a relation such that S extends Ri for every i ∈ I, then of course⋃
i∈I Ri ⊆ S, and

S ∩ (
⋃

i∈I
Ri
)◦ = S ∩ (

⋃

i∈I
R◦i
)

=
⋃

i∈I
(S ∩R◦i) ⊆

⋃

i∈I
Ri,

which is to say that S extends the union ⋃i∈I Ri.

Simply adding some pair to a consistent relation need not in general result in
a consistent relation. If x, y, z are pairwise distinct, then R = { (x, y), (y, z) } is

271

Schuster and Wessel

consistent, yet R′ = R ∪ { (z, x) } is not. Now one might be tempted to work with
cc(R′) instead, which, as we have seen, is the least consistent relation to contain R′.
But still there is a problem, since R ⊆ cc(R′) is not compatible, for cc(R′) ∩ R◦ =
R◦ * R.

The following, somewhat technical lemmas are crucial in this regard, and when
it comes to proving the order extension principle. We need to provide means for
extending consistent relations by suitable pairs of elements.

Lemma 4. If R is a quasi-order, then for all x, y ∈ X
(i) if

(
R ◦ { (x, y) } ◦R)

G R◦, then (y, x) ∈ R,
(ii) tc

(
R, (x, y)

)
= R ∪ (

R ◦ { (x, y) } ◦R)
,

(iii) if (y, x) ∈ tc
(
R, (x, y)

)
, then (y, x) ∈ R, and

(iv) if tc
(
R, (x, y)

)
extends R, then R, (x, y) is consistent.

Proof.
(i) Suppose that (a, b) ∈ (R ◦ { (x, y) } ◦ R) ∩ R◦. This means (a, x), (y, b) ∈ R

and (b, a) ∈ R. By transitivity of R we get (y, x) ∈ R.8
(ii) One inclusion is easily verified; as for the converse inclusion we show

(
R, (x, y)

)n ⊆ R ∪ (
R ◦ { (x, y) } ◦R)

for every n > 1. We have

R ∪ { (x, y) } = R ∪ ∆ ◦ { (x, y) } ◦∆ ⊆ R ∪ (
R ◦ { (x, y) } ◦R)

which takes care of n = 1 (mind that R needs to be reflexive in order for this
to go through). Next we argue by induction, which gives

(
R, (x, y)

)n+1 =
(
R, (x, y)

)n ◦ (R, (x, y)
)

⊆ [R ∪ (
R ◦ { (x, y) } ◦R)] ◦ (R, (x, y)

)
.

This is left to the reader; take into account the transitivity of R, and

{ (x, y) } ◦R ◦ { (x, y) } ⊆ { (x, y) } .

(iii) By (ii), if (y, x) ∈ tc
(
R, (x, y)

)
, then (y, x) ∈ R or (y, x) ∈ R ◦ { (x, y) } ◦R. In

case of the latter, due to the definition of relational composition, we get again
(y, x) ∈ R.

(iv) From (iii) we know that tc
(
R, (x, y)

)∩{ (y, x) } ⊆ R. Therefore, if tc
(
R, (x, y)

)

is an extension of R, then

tc
(
R, (x, y)

)∩(R, (x, y)
)◦ =

[
tc
(
R, (x, y)

)∩R◦]∪ [tc(R, (x, y)
)∩{ (y, x) }] ⊆ R.

8Notice that reflexivity of R is irrelevant for this argument.

272

Suzumura Consistency, an Alternative Approach

Lemma 5. If R is a quasi-order and (y, x) /∈ R, then R, (x, y) is a consistent
extension of R.

Proof. By Lemma 4(i), if (y, x) /∈ R, then (R◦{ (x, y) }◦R)∩R◦ = ∅. Now Lemma
4(ii) implies tc

(
R, (x, y)

) ∩ R◦ ⊆ R, which is to say that tc
(
R, (x, y)

)
extends R;

whence R, (x, y) is consistent, according to Lemma 4(iv). Finally, R, (x, y) is an
extension of R, simply because (y, x) /∈ R.

In terms of [26], Lemma 5 establishes that the set of quasi-orders on X is arc-
receptive. We will now see that, with a maximal extension at hand, proving com-
pleteness boils down to just one application of Lemma 5, as we will end up with a
quasi-order, anyway.

Lemma 6. For consistent relations, ordered by extension, maximality implies com-
pleteness.

Proof. Let R be maximal among consistent relations, ordered by extension. Ac-
cording to Proposition 2, R extends R, hence R = R by maximality, i.e., R is a
quasi-order. This R cannot fail to compare any two elements from X, hence must
be complete. To be precise, we need to verify X × X = R ∪ R◦, and to this end
consider x, y ∈ X such that (x, y) /∈ R◦, i.e., (y, x) /∈ R. Then R, (x, y) is consistent
and extends R by Lemma 5. Therefore, again by way of maximality, R, (x, y) = R,
which is to say that (x, y) ∈ R.

We are now ready to put everything together. Recall that a complete relation
is consistent if and only if it is a quasi-order (Corollary 1). We have been working
towards the following extension principle for consistent relations [45, Theorem 3]:

Consistent Extension Principle (CEP). Every consistent relation can be ex-
tended to a complete quasi-order.

Proof. If R is consistent, then the set E of consistent extensions of R is inhabited,
and it is chain-complete by Lemma 3. As we have seen in Lemma 6, every maximal
element of E is a complete consistent extension of R, hence a complete quasi-order.
The existence of at least one such maximal extension is ensured by Zorn’s Lemma.

It is in order to list also the following two slight variants and immediate conse-
quences of CEP:

273

Schuster and Wessel

Transitive Extension Principle (TEP). Every transitive relation can be ex-
tended to a complete quasi-order.

Quasi-Order Extension Principle (QEP). Every quasi-order can be extended
to a complete quasi-order.

Proof. QEP is a special case of TEP, and TEP follows from CEP as transitivity
implies consistency.

6 Intersection Principles
We also want to adapt a well-known observation due to Dushnik and Miller [28],
which has been phrased for quasi-orders by Donaldson and Weymark [25], and
Bossert [11], and put into general terms by Duggan [26]. We present a slight varia-
tion (Proposition 3) from which some immediate consequences can be drawn.

If R is consistent, then it has at least one complete consistent extension, ac-
cording to CEP. Hence we can reasonably talk about the intersection S of all such
extensions of R. Since every complete consistent extension of R is a quasi-order, S
too is a quasi-order. This observation sets S apart from R whenever R happens to
lack either reflexivity or transitivity. However, we will now see that S coincides with
the hull R, which is the intersection of all quasi-orders containing R. In fact, every
pair of elements which is comparable under every complete extension of a consistent
relation R must already be comparable by way of its hull.

Lemma 7. For a quasi-order R, the intersection S of all complete consistent ex-
tensions of R compares the same elements as R, i.e., R ∪R◦ = S ∪ S◦.

Proof. Of course R ∪ R◦ ⊆ S ∪ S◦. In order to show the reverse inclusion, suppose
(x, y) /∈ R ∪ R◦. i.e., (x, y) /∈ R and (y, x) /∈ R. Then, according to Lemma 5,
both R, (x, y) and R, (y, x) are consistent extensions of R, and both have complete
consistent extensions by CEP, say S(x,y) and S(y,x), respectively, the former of which
avoids (y, x), the latter (x, y) (Remark 3). Hence neither (x, y) nor (y, x) is common
to all complete consistent extensions of R, which is to say that (x, y) /∈ S ∪ S◦.

The key observation is that any pair of elements x, y ∈ X which a quasi-order R
fails to compare provides a choice: either adjoin (x, y) or go with (y, x), arbitrarily.
In general there is no hope for a unique complete extension.

We can now state and prove the following Intersection Principle which in fact is
equivalent to CEP.

274

Suzumura Consistency, an Alternative Approach

Proposition 3. The hull of a relation R is the intersection of all complete consistent
extensions of cc(R).

Proof. Recall that R = cc(R) extends cc(R), hence every extension of R is an
extension of cc(R). Therefore

⋂
{ T : T ⊇ cc(R) is compatible } ⊆

⋂{
T : T ⊇ R is compatible

}
,

where T ranges over complete consistent relations, i.e., complete quasi-orders. As
an intersection of quasi-orders all of which contain R, the left-hand side contains
R. On the other hand, since any intersection of extensions still is an extension, we
know that the right-hand side S extends R. The assertion now follows from Lemma
7 and Remark 5.

While CEP results in Proposition 3, it is clear that Proposition 3 in turn implies
CEP. In fact, if R is consistent, and R is not yet complete, then every pair (x, y)
avoided by R yields a complete quasi-order which extends cc(R) = R, and which
avoids (x, y), as well.

Here is an equivalent way to put the Intersection Principle; recall that cc(R) is
consistent even if R is not, and that R = cc(R).

Corollary 2. The hull of a consistent relation R is the intersection of all complete
consistent extensions of R.

The following is an immediate consequence. It is implicit already in Lemma 7.

Corollary 3. Every quasi-order is the intersection of its complete consistent exten-
sions.

We have been very careful in distinguishing compatible extension from simple
containment: the former is a special case of the latter, so, given a quasi-order R,
the intersection of all complete consistent relations containing R cannot exceed the
intersection of all complete consistent compatible extensions of R; and R is contained
in the former. Since a complete consistent relation is the same as a complete quasi-
order, we thus have

Corollary 4. Every quasi-order is the intersection of all complete quasi-orders con-
taining it.

275

Schuster and Wessel

7 Relative Extensions
Arrow [3] gave a slightly more general form of the extension principle; Inada [36]
provided a brief and detailed proof of this variant. A further variation was phrased
by Suzumura [46] for consistent relations; recently Cato [18] suggested another gen-
eralization. We want to give a short account, focusing on Cato’s result. We are not
going to go into painstaking detail, and leave out a few details which can be easily
verified by “chasing elements”. The point we wish to make is that the algebraic
method suffices at large.

Lemma 8. If Q is a quasi-order on Y ⊆ X, and R is a quasi-order with R
∣∣
Y

= ∆Y ,
then
(i) Q ◦R ◦Q = Q,
(ii) (Q ∪R)n ⊆ Q ∪ (Q ◦R) ∪ (R ◦Q ◦R) ∪ (R ◦Q) ∪R for every n > 1, and
(iii) Q ∪R is consistent.

Proof. We omit the symbol ◦ for relational composition, writing RS for R ◦ S, etc.
(i) With R

∣∣
Y

= ∆ we have QRQ = QR
∣∣
Y
Q = Q∆YQ = QQ = Q.

(ii) This is a simple argument by induction; apply (i) and take into account tran-
sitivity of R and Q.

(iii) From (ii) we get

tc(Q ∪R) = Q ∪QR ∪RQR ∪RQ ∪R.

This can be used to show that Q∪R is consistent, which [36, 14] demonstrate
in detail, but element-wise. However, an algebraic proof is possible too, the
key to which is given by the law of modularity [31]:

RS ∩ T ⊆ (R ∩ TS◦)S, (†)

which can be put equivalently as

RS ∩ T ⊆ R(S ∩R◦T). (‡)

E.g., we calculate

RQ ∩R◦
(‡)
⊆ R(Q ∩R◦R◦) ⊆ R(Q ∩R◦) ⊆ R∆Y ⊆ R, (∗)

and then

RQR ∩R◦
(†)
⊆ (RQ ∩R◦R◦)R = (RQ ∩R◦)R

(∗)
⊆ RR = R.

The remaining inclusions can be shown similarly.

276

Suzumura Consistency, an Alternative Approach

The first additional principle we consider reads as follows [3, 36, 46, 18]:

Relative Extension Principle (REP). Let Q be a relation on Y ⊆ X, and let P
be a relation on X such that P

∣∣
Y

= ∆Y . If both P and Q are consistent, then P has
a complete consistent extension which restricts to a complete consistent extension
on Y of Q,

Notice that the assumption is put in positive form: instead of assuming [18] that
P satisfies (x, y) /∈ tc(P) for every pair of distinct elements x, y ∈ Y , we stipulate
tc(P)

∣∣
Y
⊆ ∆Y . This makes possible a more perspicuous proof.

Proof of REP. Suppose that P and Q are consistent as in CEP. The hull P is a
quasi-order on X which extends P . By means of CEP, there is a complete consistent
extension Q∗ of Q on Y . According to Lemma 8(iii), the union Q∗ ∪P is consistent,
and it extends P on X, because of

Q∗ ∩ P ◦ ⊆ P ◦
∣∣
Y
⊆ (P

∣∣
Y

)◦ = ∆Y ⊆ P .

Another invocation of CEP gives rise to a complete consistent extension S of P ∪Q∗
on X. This S is an extension of P , and the restriction of S on Y coincides with
Q∗. In fact, since Q∗ is complete on Y , it suffices to show that S

∣∣
Y

extends Q∗
(remember Remark 5):

S
∣∣
Y
∩Q∗◦ = (S ∩Q∗◦)

∣∣
Y
⊆ [S ∩ (P ∪Q∗)◦]

∣∣
Y
⊆ (P ∪Q∗)

∣∣
Y

= Q∗.

This REP is the special case n = 1 of the following principle:

Nested Extension Principle (NEP). If Y0 ⊆ Y1 ⊆ · · · ⊆ Yn is a chain of
sets, each of which is equipped with a consistent relation Pi in such a way that
Pi+1

∣∣
Yi

= ∆Yi for every i < n, then Pn has a complete consistent extension, which
restricts for every i < n to a complete consistent extension on Yi of Pi.

Proof. By a straightforward inductive argument NEP follows from REP.

8 Complements
8.1 Complementing Consistency

In Proposition 1 we have seen that if a consistent relation R ranks composed pairs,
i.e., if R is consistent and such that R ◦ R ⊆ R ∪ R◦, then R is transitive. If R

277

Schuster and Wessel

is even reflexive, then transitivity follows already in case R ranks (endpoints of)
compositions for some length n > 2, which is to say that

Rn ⊆ R ∪R◦.

For if ∆ ⊆ R, then R2 = R2 ◦ ∆n−2 ⊆ Rn, and one can proceed with a similar
argument as in the proof of Proposition 1.

Another condition on consistent relations, which brings about transitivity, has
been given by Bossert and Suzumura [15]. Their SC-complementarity can be put as

∀x, y, z ∈ X [
xRy ∧ yRz → (

xRz ∨ (ztc(R)x ∧ ¬(zRy ∧ yRx))
)]
,

writing xRy for (x, y) ∈ R. Along with Proposition 1, it then follows that a consis-
tent relation R satisfies SC-complementarity if and only if R ◦R ⊆ R ∪R◦.

We should point out that R ◦ R ⊆ R ∪ R◦ occurs in [15] equivalently as TSC-
complementarity

∀x, y, z ∈ X[xRy ∧ yRz → ¬xNz],
where N = { (x, y) : (x, y) /∈ R ∧ (y, x) /∈ R } is the non-comparable factor of R. We
have preferred to put it positively.

8.2 Equivalent Principles
While to prove the order-extension principles CEP, TEP, QEP, REP and NEP we
have tacitly worked in customary Zermelo–Fraenkel Set Theory with the Axiom of
Choice (ZFC), to establish their equivalence requires to drop the Axiom of Choice
and move to Zermelo–Fraenkel Set Theory (ZF) without the Axiom of Choice. Most
likely even weaker set theories would suffice, but this shall not be our concern here.

Proposition 4. In ZF the following principles are equivalent: CEP, TEP, QEP,
REP and NEP.

Proof. We already know the following implications:

QEP← TEP← CEP→ REP↔ NEP

In view of this we only have to verify that each of QEP and REP implies CEP.
As for QEP implies CEP, let R be consistent. Now R is a quasi-order which,

by Proposition 2, extends R. By QEP, this hull can be extended to a complete
quasi-order S, which is an extension of R too (Lemma 2). As for REP implies CEP,
to prove the latter apply the former with X = Y , Q = R and P = ∆.

278

Suzumura Consistency, an Alternative Approach

8.3 Order Extension by Open Induction
Several theorems which commonly are proved by means of Zorn’s Lemma have been
reproved in a more direct way via the principle of Open Induction [40].9 In this vein
we now present an alternative proof of CEP which rests on Open Induction. First
some terminology is required.

Let (E,6) be a chain-complete poset, and let O be a predicate on E.10 One says
that O is progressive if

∀x (∀y > x O(y) → O(x)
)
,

where y > x is understood as the conjunction of x 6 y and x 6= y. Furthermore, O
is said to be open if

O(
∨
C) → ∃x ∈ C O(x)

for every chain C ⊆ E; recall that ∨C stands for the least upper bound of C. For
example, a predicate O is open whenever it is downward monotone, i.e., satisfies

O(x) ∧ y 6 x → O(y).

Indeed, for if O is downward monotone, and if C is a chain such that O(∨C), then
even ∀x ∈ C O(x); note that in this paper every chain is required to have an element.

Raoult [40] has coined the following principle:

Open Induction (OI). If E is a chain-complete poset, and O is open and progres-
sive, then ∀x O(x).

Moreover, Raoult [40] has deduced OI from ZL; in fact, both principles are
equivalent by complementation and thus in ZF—see, e.g., [42]. Here is how to prove
CEP by means of OI:

We have seen (Lemma 2 and Lemma 3) that the set E of consistent relations on
X is partially ordered and chain-complete with respect to the order of (compatible)
extension. On E we consider the predicate O of “being completely extendable”,
formally, for R ∈ E :

O(R) ≡ ∃S ∈ E (R ⊆ S ∧ S ∩R◦ ⊆ R ∧ S ∪ S◦ = X ×X)
.

E.g., the universal relation X×X is completely extendable, for trivial reasons. This
predicate O is downward monotone, hence open. As for O being progressive, suppose
that R ∈ E is such that every strict extension of R is completely extendable. The

9For the use of Open Induction in diverse contexts see [8, 21, 44, 42, 20].
10This O may be identified with its extension { x ∈ E : O(x) } in E.

279

Schuster and Wessel

hull R is a consistent extension of R, which either is complete—by which R has
itself as complete extension—or else fails to compare a certain pair of elements. In
the latter case, say x, y ∈ X are such that (x, y) /∈ R ∪ R◦. Then R ∪ { (x, y) } is a
consistent extension of R by Lemma 5, and strictly extends R because of (x, y) /∈ R.
Now R ∪ { (x, y) } is completely extendable, whence R is, as well. Then, by way of
OI, we get ∀R ∈ E O(R), which is to say that every consistent relation R on X has
a complete consistent extension.

Any concrete enough instance, i.e., one for which the underlying set X of alterna-
tives is finite, should then allow to reduce the invocation of OI to one of what in [44]
is called Finite Induction, which in turn can be proved by means of mathematical
induction only.

8.4 From Order Extension to Gödel–Dummett Logic
As alluded to in the Introduction, we now briefly sketch how Gödel–Dummett logic
[33, 27] is necessary for QEP, adapting to quasi-orders an argument given by Bell [6,
p. 162] for partial orders. We recall that Gödel–Dummett logic,11 which “naturally
turns up in different fields in logic and computer science” [30, 4], is an intermediate
logic between intuitionistic and classical logic. Roughly speaking, intuitionistic logic
[35, 48] is classical logic without the law of excluded middle but with the principle
ex falso sequitur quodlibet. Now Gödel–Dummett logic is intuitionistic logic plus

Gödel–Dummett Principle (GDP). (ϕ → ψ) ∨ (ψ → ϕ) for all well-formed
formulas ϕ and ψ.

In order to adapt Bell’s argument, we first make the following observation:

Lemma 9. Let X be a set and R ⊆ X ×X antisymmetric. Assume that X has top
element 1, i.e., xR1 for every x ∈ X. If S is a compatible extension of R, then 1 is
S-maximal.

Proof. Since 1 is R-top we have 1R◦x for every x ∈ X. Therefore, if 1Sy, we get
1Ry because of S ∩R◦ ⊆ R. As R is antisymmetric, y = 1 follows.

Note that if 1 is R-top and R ⊆ S, then of course 1 is S-top too, but this does
not mean that 1 is S-maximal unless S is antisymmetric.

In the following, we work in Friedman’s Intuitionistic Zermelo-Fraenkel set theory
IZF [32, 1, 22, 7]. This IZF is as standard Zermelo–Fraenkel set theory (ZF) but
with intuitionistic rather than classical logic; to make this move possible, the axiom

11As von Plato points out, Gödel–Dummett logic “was actually introduced by Skolem already
in 1913” [49].

280

Suzumura Consistency, an Alternative Approach

of foundation needs to be replaced by the schema of set induction, whereas the
principles of power set and full separation are part of IZF.

In IZF one thus has the so-called set of intuitionistic truth values Ω = P(1), i.e.,
the set of subsets of 1 = { 0 } partially ordered by inclusion ⊆. Every formula ϕ in
the first-order language of set theory gives rise to its truth value Vϕ ∈ Ω, viz.

Vϕ = {x ∈ 1 : ϕ} ,

for which ϕ is equivalent to 0 ∈ Vϕ and thus to Vϕ = 1. Conversely, every U ∈ Ω
is of the form Vϕ, for ϕ being U = 1. Note that an implication ϕ → ψ between
formulas ϕ and ψ is equivalent to Vϕ ⊆ Vψ in Ω; and that U ⊆ W in Ω amounts to
U = 1→W = 1.

Bell [6, p. 162] deduced GDP from the principle that every partial order is con-
tained in a complete one. To do so he needed that ⊆ is maximal, with respect to
containment, among antisymmetric relations on Ω. As quasi-orders lack antisym-
metry, we have to adapt Bell’s tool as follows.

Lemma 10. Every compatible extension 6 of ⊆ on Ω coincides with ⊆, i.e., ⊆ is
maximal with respect to compatible extension of relations on Ω.

Proof. Now suppose that 6 is a compatible extension of ⊆ on Ω. By Lemma 9, and
since 1 is ⊆-top, we get

U 6W → (U = 1 → W = 1)

or, equivalently, U 6W → U ⊆W , for all U,W ∈ Ω.

Proposition 5 (IZF). QEP implies GDP.

Proof. Applying QEP, and taking into account Lemma 10, we may consider ⊆ on Ω
to be complete, which is tantamount to (ϕ → ψ) ∨ (ψ → ϕ) for arbitrary formulas
ϕ and ψ.

The same assertion holds true if QEP in Proposition 5 is replaced by any of
its equivalents from Theorem 4, because proving these forms equivalent is possible
already in IZF.

To get GDP we have used the same data as Bell [6, p. 162]: the relation ⊆ on
the set Ω. In particular, we have invoked the consequence of QEP that every partial
order ⊆ can be extended to a complete quasi-order. Any such extension of ⊆ on Ω,
however, a fortiori is a partial order anyway (Lemma 10).

281

Schuster and Wessel

8.5 Further directions
By now our focus has been on methodological advantage which our choice of pos-
itive notions for consistency and compatible extension entails. Now we sketch an
important application of order extension in the theory of preference relations—that
is, rationalizability.

We follow [14, 41]. Let again the set X denote our domain of discourse. A choice
function is a mapping

c : T → P(X)

which assigns to each inhabited member Y ∈ T , where T ⊆ P(X), an inhabited
subset c(Y) ⊆ Y . A relation R on X rationalizes c if

c(Y) = { x ∈ Y : ∀y ∈ Y xRy }

for every Y in the domain of c; notice that no further assumption on R is made.
This version of rationalizability is known as greatest-element rationalizability [14] of
the choice function c. The (indirect) revealed preference relation of a choice function
c is defined to be (the transitive closure of)

{ (x, y) : ∃Y ∈ T (x ∈ c(Y) ∧ y ∈ Y) } .

A choice function c is said to satisfy the congruence axiom [41] if it is rationalized
by its indirect revealed preference relation. This is the setting for a fundamental
application of order extension in the theory of preference relations, viz.

Richter’s Theorem ([41, Theorem 1]). A choice function satisfies the congruence
axiom if and only if it can be rationalized by a complete quasi-order.

A key step to proving this is the following observation.

Lemma 11. Let c : T → P(X) be a choice function. If R is transitive and ratio-
nalizes c, then so does every compatible extension of R.

Proof. We redraft an argument laid out in [14, Theorem 3.2]. Suppose that S is a
compatible extension of R. Given that R rationalizes c, and since R ⊆ S, it suffices
to show

{ x ∈ Y : ∀y ∈ Y xSy } ⊆ { x ∈ Y : ∀y ∈ Y xRy }
whenever Y ∈ T . To this end, let Y ∈ T , and let x ∈ Y be such that ∀y ∈ Y xSy.
Pick any z ∈ c(Y). As R rationalizes c, we have ∀y ∈ Y zRy, so in particular zRx.
But we also know xSz. Hence xRz by compatibility of S over R. Now ∀y ∈ Y xRy
is immediate, since R is supposed to be transitive.

282

Suzumura Consistency, an Alternative Approach

Therefore, if a choice function c satisfies the congruence axiom, then every com-
patible complete extension of its indirect revealed preference relation rationalizes c
as well. This is how Richter’s theorem rests on order extension.12 Conversely, it is
not hard to show that if c can be rationalized by means of a complete quasi-order,
then it satisfies the congruence axiom. In his proof Richter applies Szpilrajn’s theo-
rem in its original reading that every irreflexive transitive relation, i.e., every strict
partial order, is contained in one which compares every pair of distinct elements.
While Cato has recently deemed this form of Szpilrajn’s theorem “not useful for
economic analyses because partial orders do not allow two alternatives to be indif-
ferent” [19, p. 60], there is again a definite point to make from the methodological
perspective. In order to have (strict) partial orders at hand, Richter performs a
quotient construction—a move which has turned out avoidable by way of an appro-
priate extension principle for quasi-orders, as considered before.

Further applications of our method might be possible in the directions that re-
search on order and extension principles has taken. For instance, the topological
notion of continuity comes into play in [12, 10, 9]. In [24], transitive closure is re-
placed by several other closure operators, thus leading to further extension theorems.
In [23] conditions for a collection of binary relations to have a common ordering ex-
tension are provided. The classic closure-complement problem has been revisited for
consistent closure in [17]. Last but not least, extensions have been considered with
regard to the existence of maximal elements in quasi-orders. In [39] it is shown that
any maximal element of a quasi-order R is the greatest element for some complete
extension of R.

References
[1] Peter Aczel and Michael Rathjen. Constructive set theory. Book draft, 2010.
[2] Athanasios Andrikopoulos. Szpilrajn-type theorems in economics. MPRA Paper No.

14345, 2009. URL: https://mpra.ub.uni-muenchen.de/14345/.
[3] Kenneth J. Arrow. Social Choice and Individual Values. Wiley, New York, 1951.
[4] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. Gödel logic: from nat-

ural deduction to parallel computation. In Proceedings of the Thirty-Second Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), Reykjavik 2017, pages
1–12.

12Incidentally, Richter mentions that “both representability and rationality have existential
clauses in their definitions, so proofs of these properties are likely to involve tools like the axiom of
choice and other nonconstructive techniques.” [41, p. 637]

283

Schuster and Wessel

[5] John L. Bell. Zorn’s lemma and complete Boolean algebras in intuitionistic type theo-
ries. Journal of Symbolic Logic, 62(4):1265–1279, 1997.

[6] John L. Bell. Set Theory. Boolean-Valued Models and Independence Proofs. Oxford
Logic Guides. Oxford University Press, 2005.

[7] John L. Bell. Intuitionistic Set Theory, volume 50 of Studies in Logic. College Publi-
cations, 2014.

[8] Ulrich Berger. A computational interpretation of open induction. In F. Titsworth,
editor, Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer
Science, pages 326–334. IEEE Computer Society, 2004.

[9] Gianni Bosi and Gerhard Herden. On a strong continuous analogue of the Szpilrajn
theorem and its strengthening by Dushnik and Miller. Order, 22(4):329–342, 2005.

[10] Gianni Bosi and Gerhard Herden. On a possible continuous analogue of the Szpilrajn
theorem and its strengthening by Dushnik and Miller. Order, 23(4):271–296, 2006.

[11] Walter Bossert. Intersection quasi-orderings: An alternative proof. Order, 16(3):221–
225, 1999.

[12] Walter Bossert, Yves Sprumont, and Kotaro Suzumura. Upper semicontinuous exten-
sions of binary relations. Journal of Mathematical Economics, 37(3):231–246, 2002.

[13] Walter Bossert, Yves Sprumont, and Kotaro Suzumura. Consistent rationalizability.
Economica, 72(286):185–200, 2005.

[14] Walter Bossert and Kotaro Suzumura. Consistency, Choice, and Rationality. Harvard
University Press, Cambridge, 2010.

[15] Walter Bossert and Kotaro Suzumura. Quasi-transitive and Suzumura consistent rela-
tions. Social Choice and Welfare, 39(2):323–334, 2012.

[16] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia,
editors. Handbook of Computational Social Choice. Cambridge University Press, New
York, 2016.

[17] Susumu Cato. Complements and consistent closures. Discrete Mathematics,
312(6):1218–1221, 2012.

[18] Susumu Cato. Szpilrajn, Arrow and Suzumura: concise proofs of extension theorems
and an extension. Metroeconomica, 63(2):235–249, 2012.

[19] Susumu Cato. Rationality and Operators. The Formal Structure of Preferences.
Springer, Singapore, 2016.

[20] Francesco Ciraulo, Davide Rinaldi, and Peter Schuster. Lindenbaum’s lemma via open
induction. In R. Kahle, T. Strahm, and T. Studer, editors, Advances in Proof Theory,
volume 28 of Progress in Computer Science and Applied Logic, pages 65–77. Springer
International Publishing Switzerland, Cham, 2016.

[21] Thierry Coquand. A note on the open induction principle. Technical report, Göteborg
University, 1997. URL: www.cse.chalmers.se/~coquand/open.ps.

[22] Laura Crosilla. Set Theory: Constructive and Intuitionistic ZF. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stan-
ford University, summer 2015 edition, 2015. URL: https://plato.stanford.edu/

284

Suzumura Consistency, an Alternative Approach

archives/sum2015/entries/set-theory-constructive/.
[23] Thomas Demuynck. Common ordering extensions. Working paper, Ghent University,

Faculty of Economics and Business Administration, 2009. URL: http://econpapers.
repec.org/paper/rugrugwps/09_2f593.htm.

[24] Thomas Demuynck. A general extension result with applications to convexity, homo-
theticity and monotonicity. Mathematical Social Sciences, 57(1):96–109, 2009.

[25] David Donaldson and John A. Weymark. A quasiordering is the intersection of order-
ings. Journal of Economic Theory, 78(2):382–387, 1998.

[26] John Duggan. A general extension theorem for binary relations. Journal of Economic
Theory, 86(1):1–16, 1999.

[27] Michael Dummett. A propositional calculus with denumerable matrix. Journal of
Symbolic Logic, 24(2):97–106, 1959.

[28] Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathe-
matics, 63(3):600–610, 1941.

[29] Ulrich Felgner and John K. Truss. The independence of the prime ideal theorem from
the order-extension principle. Journal of Symbolic Logic, 64(1):199–215, 1999.

[30] Christian G. Fermüller and Agata Ciabattoni. From intuitionistic logic to Gödel-
Dummett logic via parallel dialogue games. In Proceedings of IEEE International
Symposium on Multiple-Valued Logic (ISMVL 2003), pages 188–193, 2003.

[31] Peter J. Freyd and Andre Scedrov. Categories, Allegories. North-Holland, Amsterdam,
1990.

[32] Harvey Friedman. The consistency of classical set theory relative to a set theory with
intuitionistic logic. Journal of Symbolic Logic, 38(2):315–319, 1973.

[33] Kurt Gödel. Zum intuitionistischen Aussagenkalkül. In Solomon Feferman, editor, Kurt
Gödel: Collected Works, volume 1, pages 222–225. Oxford University Press, 1986.

[34] Bengt Hansson. Choice structures and preference relations. Synthese, 18(4):443–458,
1968.

[35] Arend Heyting. Intuitionism. An Introduction. North-Holland, Amsterdam, 1956.
[36] Ken-ichi Inada. Elementary proofs of some theorems about the social welfare function.

Annals of the Institute of Statistical Mathematics, 6(1):115–122, 1954.
[37] Thomas Jech. The Axiom of Choice. North-Holland, Amsterdam, 1973.
[38] Sara Negri, Jan von Plato, and Thierry Coquand. Proof-theoretical analysis of order

relations. Archive for Mathematical Logic, 43:297–309, 2004.
[39] Vladislav V. Podinovski. Non-dominance and potential optimality for partial preference

relations. European Journal of Operational Research, 229(2):482–486, 2013.
[40] Jean-Claude Raoult. Proving open properties by induction. Information Processing

Letters, 29(1):19–23, 1988.
[41] Marcel K. Richter. Revealed preference theory. Econometrica, 34(3):635–645, 1966.
[42] Davide Rinaldi and Peter Schuster. A universal Krull-Lindenbaum theorem. Journal

of Pure and Applied Algebra, 220(9):3207–3232, 2016.

285

Schuster and Wessel

[43] Davide Rinaldi, Peter Schuster, and Daniel Wessel. Eliminating disjunctions by dis-
junction elimination. Bulletin of Symbolic Logic, 23(2):181–200, 2017.

[44] Peter Schuster. Induction in algebra: a first case study. Logical Methods in Computer
Science, 9(3:20), 2013.

[45] Kotaro Suzumura. Remarks on the theory of collective choice. Economica, 43(172):381–
390, 1976.

[46] Kotaro Suzumura. An extension of Arrow’s lemma with economic applications. Tech-
nical report, Institute of Economic Research, Hitotsubashi University, 2004.

[47] Edward Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae,
16(1):386–389, 1930.

[48] Dirk van Dalen. Logic and Structure. Springer-Verlag, Berlin, fourth edition, 2004.
[49] Jan von Plato. Skolem’s discovery of Gödel-Dummett logic. Studia Logica, 73(1):153–

157, 2003.

Received 19 May 2017286

Maximum EntropyModels for Σ1 Sentences

Soroush Rafiee Rad
Institute for Logic, Language and Computation, UvA, The Netherlands.

soroush.r.rad@gmail.com

Abstract

In this paper we investigate the most uninformative models of Σ1 sentences. We
will show that the two main approaches for defining the Maximum Entropy models on
first order languages are well defined for Σ1 sentences and that they agree on sets of
sentences consisting of only Σ1 sentences.
Keywords: Maximum Entropy, probabilistic models, existential sentence, Objective
Bayesian Epistemology

1 Introduction

The Maximum Entropy model for a sentence φ represents the most uninformative model of
φ. To be more precise, given a consistent sentence φ and a formula ψ(x1, . . . , xn) from a
first order language L, let M be an structure for L with domain {a1, a2, . . .} which we only
know to be a model of φ. A natural question about this M is to ask how likely it is for M
to be also a model of ψ, in other words, what probability should one assign to M being also
a model of ψ. When φ identifies a unique model N (i.e. M = N), this question may be
answered by checking the validity of ψ(ai1 , . . . , ain) in N. If φ admits more than one model,
however, knowing that M is a model of φ under-determines M and the validity of ψ in M
may be uncertain. In this sense φ induces an assignment of probabilities to the sentences
of the language, where the probability assigned to ψ is intended as the probability that a
random model of φ is also a model of ψ. This will in turn induce a probability distribution
on the set of structures for L with domain {a1, a2, . . . , }.
We are interested in the least informative of such assignments with respect to M which
we shall call the Maximum Entropy model of φ, i.e., the Maximum Entropy model of φ is
identified with the assignment of probabilities that leaves M as unconstrained as possible
beyond being a model of φ. In this sense it gives a probabilistic description that specifies

I would like to thank the referees for their helpful comments. I would also like to thank Jeff Paris for his
invaluable guidance and advice in the development of these results.

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Rafiee Rad

M to the extent that it is characterised by φ while remaining as free as possible beyond that.
Note, however, that a Maximum Entropy model is not a model in the sense of a structure for
the language, but rather a probability function on the set of sentences of the language that
characterises an uncertain (i.e. under-determined) structure. It is important to emphasise at
this point that in what follows, we shall say “model” to refer to these probability functions.
We shall instead say “term models” to refer to the structures. More generally, given a set
of linear constraints K the Maximum Entropy model of K is the probability function over
the sentences of L which satisfies the constraints given in K while remaining maximally
uninformative beyond that. When considering a set of linear constraints K, we use “models
of K” and “solutions for K”, interchangeably.
These probability functions have been extensively investigated and applied in various dis-
ciplines from statistics [5] and physics, [7] to computer science, pattern recognition [3],
computational linguistics [2] as well as economics and finance [6]. Another prototypical
example where Maximum Entropy models are of great relevance is formal epistemology
and the study of rational belief formation [8, 16, 17]. In this setting the problem of in-
terest is how should an agent in possession of some evidence form rational belief? To be
slightly more precise, the question is; given sentences φ1, . . . , φn as the agent’s evidence,
what would be the credence x she has to assign to some arbitrary sentence ψ such that x
represents a rational belief of the agent in the context of her evidence. Equivalently, one
can ask which probability function over the sentences of the language best represents the
degrees of belief of the agent.
The most popular proposal for formalising the concept of least informative is to take Shan-
non’s entropy as the measure for the informational content of a probability function. Given
a set of constraints, one approach, see for example [11], is to choose the probability function
satisfying the constraints with maximum Shannon entropy as the least informative one. A
second approach, followed for example by Williamson [16, 17], uses the relative Shannon
entropy instead. To make the idea clear, consider the problem we started with and a case in
which there is no information (and thus no restrictions) concerning the structure M. In this
case the satisfaction of a sentence ψ in M is maximally uncertain and thus the assignment of
probabilities should be maximally equivocal. We shall call this probability function (which
we shall shortly define precisely) P=. The second approach for defining the “least infor-
mative", requires the assignment of probabilities to satisfy the given constraints and remain
informationally as close as possible to P=, where the informational difference between two
probability functions is measured by their relative entropy. It is not hard to check that on
propositional languages both approaches are well defined and result in the same unique an-
swer [13].
The literature on justification of Maximum Entropy or its underlying principles is exten-
sive and it remains the strongest candidate for the formalisation of the least informative
probability function [11, 15, 17]. The major part of this literature is concerned with propo-

288

Maximum EntropyModels for Σ1 Sentences

sitional languages, however, there have been attempts to generalise both these approaches
to the first order case. To generalise the first approach, Barnett and Paris, [1], propose to
define the Maximum Entropy models on a first order language as the limit of the Maxi-
mum Entropy models on finite sub-languages. They showed that for constraint sets from
languages with only unary predicates, this limit exists and the resulting probability function
does satisfy the constraints. To generalise the second approach one has to move to a more
sophisticated notion of informational distance.
This paper further investigates the Maximum Entropy models and the extent to which they
can be defined for first order languages; in particular we shall investigate the Maximum
Entropy models for existential sentences. The paper unfolds as follows: Section 2 reviews
preliminaries and notation, as well as the definition of the Maximum Entropy probability
functions over propositional and first order languages; and Section 3 proves the main theo-
rems. We will then conclude with a discussion in Section 4.

2 Preliminaries and Notation

Throughout this paper, we will work with a first order language L with finitely many re-
lation symbols, no function symbols, no equality and countably many constant symbols
a1, a2, a3, Furthermore we assume that these constants exhaust the universe. Let RL, S L
and T L denote the sets of relation symbols, sentences and the term models for L respectively,
where a term model is a structure M for the language L with domain M = { ai | i = 1, 2, ...}
where every constant symbol is interpreted as itself. For more details on the preliminary
definitions and results please see [9, 12].

Definition 1. w : S L→ [0 , 1] is a probability function if for every θ, φ,∃xψ(x) ∈ S L,
P1. If |= θ then w(θ) = 1.
P2. If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).
P3. w(∃xψ(x)) = limn→∞ w(

∨n
i=1 ψ(ai)).

Definition 2. Let L be a finite propositional language with propositional variables p1, ..., pn.
Atoms of L are the sentences {αi | i = 1, ...J}, of the form

∧n
i=1 pεi

i where εi ∈ {0, 1}, p1 = p
and p0 = ¬p.

Take a propositional language L. For every sentence φ ∈ SL, there is unique set Γφ ⊆
{αi| i = 1, ..., J } such that |= φ ↔ ∨

αi∈Γφ αi. It can be easily checked that Γφ = {α j |α j �
φ }. Thus if w is a probability function w(φ) = w(

∨
αi�φ αi) =

∑
αi�φ w(αi) as the αi’s are

mutually inconsistent. On the other hand since |= ∨J
i=1 αi we have

∑J
i=1 w(αi) = 1. So the

probability function w will be uniquely determined by its values on the αi’s, i.e., by the
vector < w(α1), ...,w(αJ) >∈ DL = { ~x ∈ RJ | ~x ≥ 0,

∑J
i=1 xi = 1}. Conversely if ~a ∈ DL we

can define a probability function w′ : SL → [0 , 1] such that < w′(α1), ...,w′(αJ) >= ~a by

289

Rafiee Rad

setting w′(φ) =
∑
αi�φ ai.

Now consider a first order language L. Although the atoms of L are not expressible in the
language (as they will require infinite conjunctions), the state descriptions for the finite
sub-languages will play a similar role to that of atoms in the propositional case.

Definition 3. Let L be a first order language with the finite set of relation symbols RL and
let Lk be the sub-language of L with only constant symbols a1, ..., ak. The state descriptions
of Lk are the sentences Θk

1, ...,Θ
k
nk

of the form
∧

i1 ,...,i j≤k
Ri∈RL j−ary

Ri(ai1 , ..., ai j)
εi1 ,...,i j

where εi1,...,i j ∈ {0, 1} and R1
i = Ri and R0

i = ¬Ri.

Throughout this paper we will denote the set of state descriptions for L and Lr by Γ and Γr

respectively. Furthermore, we will write Γφ (res. Γr
φ) for the set of state descriptions of L

(res. Lr) that are consistent with the sentence φ.
For a quantifier free sentence θ ∈ S L let k be an upper bound on the i such that ai appears in
θ. Then θ can be thought of as being from the propositional language Lk with propositional
variables Ri(ai1 , ..., ai j) for i1, ..., i j ≤ k, Ri ∈ RL. The sentences Θk

i will be the atoms of Lk

and as before � θ ↔ ∨
Θk

i �θ
Θk

i and for every probability function w, w(θ) = w(
∨

Θk
i �θ

Θk
i) =

∑
Θk

i �θ
w(Θk

i). Thus to determine w(θ) we only need to determine the values w(Θk
i) and to

require

w(Θk
i) ≥ 0 and

nk∑

i=1

w(Θk
i) = 1 (1)

w(Θk
i) =

∑

Θk+1
j �Θ

k
i

w(Θk+1
j) (2)

to ensure that w satisfies P1 and P2. The following theorem due to Gaifman [4], ensures
that this is indeed enough to determine w on all sentences. Let QFS L be the set of quantifier
free sentences of L.

Theorem 1. Let v : QFS L → [0 , 1] satisfy P1 and P2 for θ, φ ∈ QFS L. Then v has a
unique extension w : S L → [0 , 1] that satisfies P1, P2 and P3. In particular if w : S L →
[0 , 1] satisfies P1, P2 and P3 then w is uniquely determined by its restriction to QFS L.

Just as a probability function on the set of sentences of a propositional language is deter-
mined by its values on the atoms, a probability function on the set of sentences of a first
order language is determined by its values on the state descriptions. We note that the set of
state descriptions of Lk is the same as the set of term models for Lk with domain {a1, . . . , ak}.

290

Maximum EntropyModels for Σ1 Sentences

Definition 4. Define the equivocator, P=, as the probability function that for each k, assigns
equal probabilities to the Θk

i ’s (the state descriptions of Lk), i.e., the most non-committal
probability function.

Notice that this determines P= on all of S L by Theorem 1 and the preceding argument.

Definition 5. A sentence φ from a first order language L is called a Σ1 sentence iff φ is
logically equivalent to a sentence of the form ∃~xθ(~x) where θ(~x) is quantifier free.

Definition 6. A constraint set K is a finite satisfiable set of linear constraints of the from
{∑n

j=1 ai jw(θ j) = bi | i = 1, . . . ,m}, where θ j ∈ S L, ai j, bi ∈ R and w is a probability
function. Every finite satisfiable set of sentences K = {φ1, . . . , φn} is identified with the
constraint set {w(φ1) = 1, . . . ,w(φn) = 1} induced by it and in particular we shall identify
every sentence φ with the constraint w(φ) = 1.

We shall next give the definition of Maximum Entropy solutions for a set of linear con-
straints K as above. Our results in Section 3, however, are concerned only with the con-
straints that are induced by a sentence. In particular, by the Maximum Entropy model of
the sentences φ we mean the Maximum Entropy probability function that satisfies the cor-
responding constraint w(φ) = 1.

Definition 7. The Shannon entropy of the probability function, W, defined on a set X =

{x1, . . . , xn} (so 0 ≤ W(xi) ≤ 1 and
∑

i W(xi) = 1), is given by

E(W) = −
n∑

i=1

W(xi) log(W(xi)).

The Shannon entropy is the most commonly used measures for the informational content of
a probability function, [14].

Definition 8. An inference process, N, on L, is a function that on each set of linear con-
straints K, returns a probability function on SL, N(K), that satisfies K.

We will write ME for the inference process that on each set of constraints K, returns the
maximum entropy probability function that satisfies K, denoted as ME(K). There are
two approaches for defining Maximum Entropy probability functions that satisfy a set of
constraints. We shall start from a propositional case first and then move to the first or-
der languages. Let L be a propositional language with atoms α1, . . . , αJ and K a set of
linear constraints. The first approach is to define ME(K) as the unique probability func-
tion over the sentences of the language that satisfies K and for which the Shannon entropy
−∑J

i=1 w(αi) log(w(αi)) is maximised. Since K consists of only linear constraints, the set of
probability functions that satisfy K is convex and so is the function f (x) = −∑J

i=1 xi log(xi),

291

Rafiee Rad

hence the uniqueness.
An alternative approach is studied by Williamson [16], which we will denote by MEW . In
this approach Maximum Entropy probability functions that satisfy a set of constraints K
are defined by minimising the divergence from the probability function P=, which has the
maximum Shannon entropy. The information theoretic divergence of a probability function
W from the probability function V is given by their relative entropy and defined as:

RE(W,V) =

J∑

i=1

W(αi) log(
W(αi)
V(αi)

).1

Williamson defines the Maximum Entropy probability function for a set of constraints K,
MEW(K), as the probability function w, that satisfies K and has the minimum relative en-
tropy to P=, i.e.

∑J
i=1 w(αi) log

(
w(αi)
P=(αi)

)
, amongst all those probability functions that satisfy

K.

Proposition 1. Let L be a propositional language and K a set of linear constraints. Then
ME(K)(φ) = MEW(K)(φ) for all φ ∈ SL.

Proof. Let α1, . . . , αJ be the atoms of L. Notice that

RE(w, P=) =

J∑

i=1

w(αi) log
(

w(αi)
P=(αi)

)
=

J∑

i=1

w(αi) log(w(αi)) −
J∑

i=1

w(αi) log(P=(αi)) =

J∑

i=1

w(αi) log(w(αi)) −
J∑

i=1

w(αi) log(1/J) = −E(w) + log(J).

Let w be a probability function that satisfies K then w minimises RE(w, P=) if and only if w
maximises E(w). Hence MEW(K) and ME(K) specify the same probability function. �
Thus the two approaches agree for constraint sets from a propositional language. The main
difficulty for extending these definitions to first order languages is that in the case of a first
order language one does not have access to the atomic sentences in order to express the en-
tropy or the relative entropy. In the first order case one has only access to state descriptions
over finite sub-languages.
To extend the first approach to a first order language L, Barnett and Paris [1], propose to
define the Maximum Entropy probability function that satisfies K as the limit of the Maxi-
mum Entropy models of K restricted to finite sub-languages, Lk. These finite sub-languages
can essentially be treated as propositional languages where the Maximum Entropy models
are well defined for every set of linear constraints. To be more precise let L be a first order

1Notice that RE is not a distance measure since it is not symmetric, so it is not the distance between W and
V but rather the divergence of W from V .

292

Maximum EntropyModels for Σ1 Sentences

language with relation symbols RL = {R1, . . . ,Rt} and constant symbols {a1, a2, . . .}, and let
K be a set of linear constraints as above. Define Lr to be the propositional language with
propositional variables Ri(ai1 , . . . , ai j) for Ri ∈ RL and ai1 , . . . , ai j ∈ {a1, . . . ar}. If k is the
maximum such that ak appears in K, for r ≥ k define (−)(r) : S Lk → SLr as

(Ri(ai1 , . . . , ain))(r) = Ri(ai1 , . . . , ain)

(¬φ)(r) = ¬(φ)(r)

(φ ∨ ψ)(r) = (φ)(r) ∨ (ψ)(r)

(∃xφ(x))(r) =

r∨

i=1

(φ(ai))(r)

For a set of linear constraints K, let K(r) be the result of replacing every θ appearing in K
with θ(r) and notice that for a state description Θk of Lk and r ≥ k, (Θk)(r) = Θk. Barnett
and Paris [1], propose to define the Maximum Entropy probability function on first order
languages as follows:

Definition 9. (ME) Let L be a first order language and K a set of linear constraints. For a
state description Θk

i of Lk, let ME(K)(Θk
i) = limr→∞ ME(K(r))(Θk

i).
This determines ME(K) on all state descriptions and thus on all quantifier free sentences,
which is uniquely extended to all ψ ∈ S L by Theorem 1.

For the second approach, MEW , Williamson first defines the r-divergence of a probability
function W from a probability function V by

REr(W,V) =

Jr∑

i=1

W(Θr
i) log

(
W(Θr

i)
V(Θr

i)

)

where Θr
i ’s are state descriptions of Lr. Thus the r-divergence of W from V is the divergence

of W from V when they are restricted to Lr. Then for probability functions U,V and W, U is
closer to V than W if there exists N such that for all r > N, dr(U,V) < dr(U,W). Williamson
[16] defines the Maximum Entropy probability functions on first order languages as:

Definition 10 (MEW). Let K be a set of linear constraints as before. The Maximum Entropy
model of K, MEW(K), is the probability function, w, satisfying K such that there is no
probability function v that satisfies K and dr(v, P=) < dr(w, P=) for all r eventually.

The main questions here are whether or not the Maximum Entropy probability functions,
given by Definitions 9 and 10, are well defined for every constraint set K from a first order
language, i.e, whether or not the limit in Definition 9, or the closest probability function to
P= as in Definition 10, exist for every K, and when they are well defined, whether or not the

293

Rafiee Rad

resulting probability functions satisfy K. In [1] Barnett and Paris showed that for any set
of linear constraints over monadic first order languages, the Maximum Entropy probability
function is indeed well defined and that it satisfies the constraints. On the other hand in
the general case for constraint sets containing sentences with quantifier complexity of Σ2,
Π2 or higher the Maximum Entropy probability functions that satisfy the constraints are not
always well defined (see [13]). The case of Π1 sentences has been studied and partially
answered by Paris and Rafiee Rad in [10] and in this paper we will focus on knowledge
bases consisting of a Σ1 sentence, i.e., constraint sets of the form {w(∃~x φ(~x)) = 1} where
φ(~x) is quantifier free.

3 The Maximum Entropy Models for Σ1 Sentences

We will now turn to our main result concerning the Maximum Entropy models of sentences
with quantifier complexity of Σ1. We will show that both approaches for defining Maxi-
mum Entropy models are well defined for these sentences and agree with each other. As
was pointed out before, for our purpose, every Σ1 sentence ∃~xθ(~x) is identified with the
constraint set {w(∃~xθ(~x)) = 1}.
Lemma 2. Let φ ∈ S L be a satisfiable Σ1 sentence of the form ∃x1, ..., xtθ(a1, . . . , al, ~x) and
let Γl

φ be the set of state descriptions of Ll that are consistent with φ. Then P=(φ | ∨ Γl
φ) = 1.

Proof. Let γ = ¬φ = ∀x1, ..., xt¬θ(~a, ~x). Let ~a be all the constants appearing in θ with l
the largest such that al appears in ~a and let Γl be the set of state descriptions of Ll. First
notice that for Θ

(l)
j ∈ Γl if Θ

(l)
j � γ then Θ

(l)
j � ¬φ and thus Θ

(l)
j < Γl

φ. We show that for

every Θ
(l)
j ∈ Γl

φ, P=(Θ(l)
j ∧ γ) = 0. If Θ

(l)
j is inconsistent with γ(l) then2 P=(Θ(l)

j ∧ γ) = 0.

This is so because if Θ
(l)
j is inconsistent with γ(l) then Θ

(l)
j �

∨
i1,...,it≤l θ(~a, ai1 , . . . , ait) so

Θ
(l)
j � ∃~xθ(~a, ~x) ≡ ¬γ. So P=(Θ(l)

j ∧ γ) ≤ P=(¬γ ∧ γ) = 0.

Let Γl
φ, γ(l) be the set of state descriptions in Γl

φ that are consistent with γ(l). For Θ
(l)
j ∈ Γl

φ, γ(l)

let Qi(~a, x1, ..., xt), i ∈ I enumerate formulae of the form

Θ
(l)
j ∧

∧

yi1
,...,yi j

∈{a1 ,...,al}∪{x1 ,...,xt }
{yi1

,...,yi j
}∩{x1 ,...,xt },∅

R∈RL, j−ary

±R(yi1 , ..., yi j).

Since ¬θ(~a, ~x) is not a tautology, and since Θ
(l)
j 2 γ there is some strict subset J of I such

that � Θ
(l)
j ∧ ¬θ(~a, ~x) ↔ ∨

j∈J Q j(~a, ~x). To see this notice that the sentences Qi(~a, x1, ..., xt)

2Remember that γ(l) =
∧

i1 ,...,it≤l ¬θ(~a, ai1 , . . . , ait)

294

Maximum EntropyModels for Σ1 Sentences

are state descriptions of a language L but with constants a1, . . . , al, x1, . . . xt, which extend
the state description Θ

(l)
j ∈ Γl

φ, γ(l) . Then since Θ
(l)
j ∧ ¬θ(~a, ~x) is a sentence in the language

La1,...,an,x1,...xt that implies Θ
(l)
j , it will be equivalent to a disjunction of some of these state

descriptions. Now, for i1 < i2 < ... < it < r the number of extensions of Qi(~a, ai1 , ..., ait) to
a state description of Lr is the same for each i so P=(Qi(~a, ai1 , ..., ait)) = 1

|I| and for disjoint
~a1, ..., ~ar, P=(Qn1(~a, ~a1) ∧ ... ∧ Qnr (~a, ~a

r)) = 1
|I|r . So

P=(Θ(l)
j ∧∀x1, ..., xt¬θ(~a, ~x)) ≤ P=(Θ(l)

j ∧
r∧

i=1

¬θ(~a, ~ai)) =
∑

n1,...,nr∈J

P=(
r∧

i=1

Qni(~a, ~a
i)) =

(|J|
|I|

)r

.

And
(|J|
|I|
)r → 0 as r → ∞. Thus for all Θ

(l)
j ∈ Γl

φ, P=(Θ(l)
j ∧ γ) = 0 and thus P=(γ |Θ(l)

j) = 0.

So for every Θ
(l)
j ∈ Γl

φ, P=(φ |Θ(l)
j) = 1 and thus P=(φ | ∨ Γl

φ) = 1 as required. �

Theorem 3. Let φ be a satisfiable Σ1 sentence of the form ∃x1, ..., xtθ(a1, . . . , al, ~x) and let
Γl
φ be the set of state descriptions of Ll that are consistent with φ. For K = {w(φ) = 1} and
ψ ∈ S L, MEW(K)(ψ) = P=(ψ | ∨ Γl

φ).

Proof. First by Lemma 2, P=(− | ∨ Γl
φ) satisfies K. It is also the closest probability function

to P= that satisfies K. To see this notice that if w is a probability function that satisfies K
then w(φ) = 1. Thus for all k ≥ l, both w and P=(−| ∨ Γl

φ) assign probability zero to the
state descriptions of Lk that are inconsistent with φ(k). For those state descriptions that are
consistent with φ(k), P=(− | ∨ Γl

φ) assigns equal probability while w assigns different proba-
bility to at least some of them. Thus for k ≥ l on each Lk, P=(− | ∨ Γl

φ) has a higher entropy
that w and thus has a smaller k-divergence from P=. Hence by definition P=(− | ∨ Γl

φ) is
closer than w to P=. �

Theorem 3 specifies the Maximum Entropy models for Σ1 sentences as characterised by
MEW and Definition 10. We shall now turn to the Maximum Entropy models as charac-
terised by ME and the limit in the Definition 9.

Theorem 4. Let φ be the satisfiable Σ1 sentence ∃~xθ(a1, . . . , al, ~x), Γl
φ be the set of state

descriptions of Ll that are consistent with φ and K = {w(φ) = 1}. Then for ψ ∈ S L,
ME(K)(ψ) = P=(ψ | ∨ Γl

φ).

Proof.
Let Λ =

∨
Γl
φ. We will show that for quantifier free ψ, ME(K)(ψ) = P=(ψ |Λ). This estab-

lishes that ME(K) agrees with P=(− |Λ) on quantifier free sentences and thus, by Theorem
1, they will agree on all S L, that is, for all ψ ∈ S L, ME(K)(ψ) = P=(ψ |Λ).

295

Rafiee Rad

Let Γr be the set of state descriptions of Lr and Γr
K be the subset of Γr that satisfy φ(r). For

Θk
i ∈ Γk define for r ≥ k, Γr

k,i = {Ψr
j ∈ Γr |Ψr

j � Θk
i }. In other words, Γr

k,i is the set of state
description of Lr that extend the state description Θk

i of Lk. Notice that |Γr
k,i| = |Γr

k, j| for
Θk

i ,Θ
k
j ∈ Γk because state descriptions of Lk will all have the same number of extensions

to state descriptions of Lk+1. Let KΓr
k,i = Γr

K ∩ Γr
k,i be the set of extensions of Θk

i to a state
description of Lr that satisfies φ(r). Take Γl

φ as the set of state descriptions of Ll that are
consistent with φ, and let Γl

¬φ = Γl − Γl
φ.

Notice that ME(K(r)) assigns probability zero to those state descriptions of Lr that are in-
consistent with φ(r) (so those not in Γr

K) since it should assign probability 1 to φ(r),

Ψr ∈ Γr \ Γr
K , ME(K(r))(Ψr) = 0. (3)

Next notice also that ME(K(r)) assigns equal probability to those state descriptions that are
consistent with φ(r) (i.e to those in Γr

K). To see this, suppose not and define the probability
function w on S Lr that agrees with ME(K(r)) (i.e. assigns zero probability) on those state
descriptions that are inconsistent with φ(r) but divides the full probability measure equally
among those in Γr

K . Then w satisfies K(r) but it is easy to check that w has strictly higher
entropy than ME(K(r)), on Lr, which is a contradiction with the choice of ME(K(r)) as the
Maximum Entropy probability function on Lr that satisfies K(r), so

Ψr ∈ Γr
K , ME(K(r))(Ψr) =

1
|Γr

K |
. (4)

Thus by (3) and (4), for the state description Θk
i , k ≥ l,

ME(K(r))(Θk
i) =

∑

Ψr∈Γr

Ψr�Θk
i

ME(K(r))(Ψr) =
∑

Ψr∈Γr
K

Ψr�Θk
i

ME(K(r))(Ψr) =
|KΓr

k,i|
|Γr

K |
.

The state descriptions in Γl
¬φ are inconsistent with φ and thus have no extension to a state

description of Lr that satisfies φ(r). Hence Γr
K includes only extensions of state descriptions

in Γl
φ and we have Γr

K =
⋃

Θl
j∈Γl

φ

KΓr
l, j and since KΓr

l, j’s include extensions of different state

description of Ll and are thus disjoint,

|Γr
K | =

∑

Θl
j∈Γl

φ

|KΓr
l, j|. (5)

On the other hand, for k ≥ l, P=(− |Λ) assigns equal probabilities to all state descriptions
of Lk that are consistent with Λ =

∨
Γl
φ and zero to those that are not. Thus those with

296

Maximum EntropyModels for Σ1 Sentences

non-zero probability are exactly those state descriptions of Lk that are extensions of some
state description in Γl

φ and the number of these state descriptions is
∑

Θl
j∈Γl

φ
|Γk

l, j|. Thus

P=(Θk
i |Λ) = 0 if Θk

i extends a state description in Γl
¬φ and P=(Θk

i |Λ) = 1∑
Θl

j∈Γ
l
φ
|Γk

l, j |
if Θk

i

extends a state description in Γl
φ.

To show ME(K)(ψ) = P=(ψ |Λ) for quantifier free ψ, it is enough to show that for each k
and each state description Θk

i ∈ Γk, ME(K)(Θk
i) = P=(Θk

i |Λ). By definition, this is

lim
r→∞ME(K(r))(Θk

i) = P=(Θk
i |Λ). (6)

For k ≥ l, the state descriptions of Lk are extensions of either a state description in Γl
φ or a

state description in Γl
¬φ. The state description in Γl

¬φ are inconsistent with φ and thus have
no extension to Lr that satisfies φ(r), that is

KΓr
k,s = ∅ for Θk

s ∈ Γl
¬φ,

and so ME(K(r))(Θk
s) = 0. Hence for those Θk

i that extend a state description in Γl
¬φ,

lim
r→∞ME(K(r))(Θk

i) = 0 = P=(Θk
i |Λ).

For those Θk
i that extend a state description in Γl

φ, we have to show that

lim
r→∞
|KΓr

k,i|
|Γr

K |
=

1
∑

Θl
j∈Γl

φ
|Γk

l, j|
. (7)

Using, (5) and the fact that |Γk
l, j| is the same for all Θl

j ∈ Γl
φ, to show 7 we will show that3

lim
r→∞

|KΓr
k,i|

∑
Θl

j∈Γl
φ
|Γk

l, j|
∑

Θl
j∈Γl

φ
|KΓr

l, j|
= lim

r→∞
|KΓr

k,i| |Γl
φ| |Γk

l, j|∑
Θl

j∈Γl
φ
|KΓr

l, j|
= 1. (8)

Lemma 5. Let K, KΓr
k,i and Γr

k,i be as defined above then limr→∞
|KΓr

k,i |
|Γr

k,i | = 1.

Proof.
Notice that |

KΓr
k,i

Γr
k,i
| is the probability that a random extension of the state description Θk

i ∈
Γk to a state description of Lr will satisfy the K(r).4 Remember that K consists of a Σ1

3Notice that
∑

Θl
j∈Γl

φ
|Γk

l, j| , 0 and does not depend on r.
4The denominator is the total number of extensions of Θk

i ∈ Γk to a state description of Lr and the nominator
is the number of those extensions of Θk

i ∈ Γk to a state description of Lr that satisfy K(r).

297

Rafiee Rad

sentence ∃x1, ..., xtθ(~a, x1, ..., xt), l is the largest that al appears in θ(~a, ~x), and that Θk
i extends

description in Γl
φ, say Ψl, and let’s calculate this probability.

Take Θk
i ∈ Γk and let’s consider its extensions to state descriptions of Lk+t. Let Lai1 ,...ain

be language L with only constant symbols ai1 , ..., ain and let ∆i i = 1, ...,M enumerate
the state descriptions of L{a1,...,al}∪{ak+1,...,ak+t} that extend Ψl (thus they agree with Θk

i when
restricted to a1, . . . , al) . Then state descriptions of Lk+t that are extension of Θk

i can be
written in the form Θk+t

i,m ≡ Θk
i ∧ ∆ j ∧ Vh(a1, ..., ak+t)5 with m = 1, ..., |Γk+t

k,i |, j = 1, ...,M, and

h = 1, ...,
|Γk+t

k,i |
M . At least one of the ∆ j’s satisfies θ(~a, ak+1, ..., ak+t) and will hence satisfies

K(k+t). The probability that an arbitrary Θk+t
i,m satisfies K(k+t) will be the number of Θk+t

i,m ’s

that satisfies K(k+t) divided by the total number of Θk+t
i,m ’s that is at least,

|Γk+t
k,i |
M . 1

|Γk+t
k,i |

= 1
M , and

so the probability that a random Θk+t
i,m does not satisfy K(k+t) will be at most as much as the

maximum probability that ∆ j does not satisfy θ(~a, ak+1, ..., ak+t) that is 1− 1
M . Now consider

the extension of Θk
i to a state description of Lk+pt,

Θ
k+pt
i,m ≡ Θk

i ∧ ∆1
j1 ∧ ∆2

j2 ∧ ... ∧ ∆
p
jp
∧ V ′h(a1, ..., ak+pt)

with m = 1, ..., |Γk+pt
k,i |, j1, ..., jp = 1, ...,M, h = 1, ...,

|Γk+pt
k,i |
Mp and where ∆s

j enumerate the

state description of L{a1,...,al}∪{ak+(s−1)t+1,...,ak+st} that extend Ψl. The probability that Θ
k+pt
i,m does

not satisfy K(k+pt) is at most as high as the probability that ∆1
j 2 θ(~a, ak+1, ..., ak+t), ...,∆

p
j 2

θ(~a, ak+(p−1)t+1, ..., ak+pt) so 0 ≤ 1 − |
KΓ

k+pt
k,i |

|Γk+pt
k,i |

≤ (1 − 1
M)p. Let p → ∞, then 0 ≤ limr→∞ 1 −

|KΓr
k,i |

|Γr
k,i | ≤ limp→∞(1 − 1

M)p = 0. Hence, we have limr→∞ 1 − |
KΓr

k,i |
|Γr

k,i | = 0 and limr→∞
|KΓr

k,i |
|Γr

k,i | = 1
as required. �
All state descriptions of Lk have the same number of extensions to a state description of Lr

for k < r thus |Γr
k,i| = |Γr

k, j| for Θk
i ,Θ

k
j ∈ Γk and also |Γr

l, j| is the same for all Θl
j ∈ Γl

φ. Hence,
|Γk

l, j| |Γr
k,i| = |Γr

l, j|6 and so,

lim
r→∞

∑
Θl

j∈Γl
φ
|KΓr

l, j|
|Γk

l, j| |Γr
k,i|

= lim
r→∞

∑

Θl
j∈Γl

φ

|KΓr
l, j|

|Γr
l, j|

=
∑

Θl
j∈Γl

φ

lim
r→∞
|KΓr

l, j|
|Γr

l, j|
= |Γl

φ|

5Vh(a1, ..., ak+t) enumerate sentence of the form
∧

i1 ,...,i j≤k+t
R∈RL j−arey

Ri(ai1 , . . . , ai j)
εi1 ,...,i j where {ai1 , . . . , ai j } inter-

sects both {al+1, . . . ak} and {ak+1, . . . , ak+t}.
6What this says is that the number of extensions of Θl

j to a state description of Lk times the number of
extensions of a state description of Lk to an state description of Lr (which is the same for all Θk

i ∈ Γk), is equal
to the number of extensions of Θl

j to an state description of Lr.

298

Maximum EntropyModels for Σ1 Sentences

where the last equality follows from Lemma 5. Then

lim
r→∞
|KΓr

k,i| |Γl
φ| |Γk

l, j|∑
Θl

j∈Γl
φ
|KΓr

l, j|
= |Γl

φ| limr→∞
|KΓr

k,i|
|Γr

k,i|
lim
r→∞

|Γk
l, j| |Γr

k,i|∑
Θl

j∈Γl
φ
|KΓr

l, j|
= 1

and this establishes 8 as required and completes the proof. �

Corollary 1. For a knowledge base K consisting of a Σ1 sentence, and a sentence ψ ∈ S L,
ME(K)(ψ) = MEw(K)(ψ).

4 Discussion
We studied the Maximum Entropy probability functions as the canonical characterisation
of some under-determined structure about which we have some partial information. The
strongest candidate for this characterisation is the “least informative” probability function
that satisfies the given partial information which is in turn formalised in terms of (relative)
Shannon Entropy.
For propositional languages, the Maximum Entropy probability function that satisfies a
given set of linear constraints is well defined and has been extensively studied. Our goal
in this paper was to contribute to the investigation of these probability functions for first
order languages. Barnett and Paris had shown in [1] that such probability functions are well
defined for constraint sets from a monadic first order language. The case of Π1 sentences
has been investigated and partially answered by Paris and Rafiee Rad in [10] while for the
sentences with the quantifier complexity of Σ2, Π2 or above these models are not necessarily
well defined.
In this paper we have proved that the Maximum Entropy models are well defined for Σ1
sentences and showed how these models are closely related to P=, the most non-committal
probability function. Furthermore, we showed that the two main approaches to defining
Maximum Entropy models on first order languages, agree on the Σ1 sentences.

References
[1] Barnett, O.W. and Paris, J.B., “Maximum Entropy inference with qualified knowledge", in

Logic Journal of the IGPL, 16(1):85-98, 2008.
[2] Berger, A., Della Pietra, S. & Della Pietra, V., “A maximum Entropy Approach to Natural

Language Processing”, in Com. Linguistics, 22(1):39–71, 1996.
[3] Chen, C. H., “Maximum Entropy Analysis for Pattern Recognition”, in Maximum Entropy

and Bayesian Methods, P. F. Fougere (eds), Kluwer Academic Publisher, 1990.
[4] Gaifman, H. “Concerning measures in first order calculi”, in Israel J. of Mathematics, 24:

1–18, 1964.
[5] Jaynes, E. T., “Notes on Present Status and Future Prospects” in Maximum Entropy and

Bayesian Methods, W.T. Grandy & L.H. Schick, (ed), 1–13, 1990.

299

Rafiee Rad

[6] Jaynes, E. T., “How Should We Use Entropy in Economics?”, 1991, manuscript available at:
http://www.leibniz.imag.fr/LAPLACE/Jaynes/prob.html.

[7] Kapur, J. N., “Non-Additive Measures of Entropy and Distributions of Statistical Mechanics”,
in Ind Jour Pure App Math, 14(11):1372–1384, 1983.

[8] Landes, J. and Williamson, J. “Objective Bayesianism and Maximum Entropy Principle”, in
Entropy,15(9):3528–3591, 2013.

[9] Paris, J.B., The Uncertain Reasoner’s Companion, Cambridge University Press, 1994.
[10] Paris, J.B. and Rad, S.R., “A note on the least informative model of a theory", in Programs,

Proofs, Processes, CiE 2010, Eds. F. Ferreira, B. Löwe, E. Mayordomo, and L. Mendes
Gomes, Springer LNCS 6158, 342–351, 2010.

[11] Paris, J.B. and Vencovská, “In defence of the maximum entropy inference process", in Inter-
national Journal of Approximate Reasoning, 17(1):77–103, 1997.

[12] Paris, J.B. and Vencovská, Pure Inductive Logic, Cambridge University Press, 2015.
[13] Rafiee Rad, S., Inference Processes for First Order Probabilistic Lan-

guages, PhD Thesis, University of Manchester 2009. available at
http://www.maths.manchester.ac.uk/~jeff/

[14] Shannon,C. E. & Weaver, W. The Mathematical Theory of Communication, University of
Illinois Press, 1949.

[15] Williamson, J., “From Bayesian epistemology to inductive logic", in Journal of Applied
Logic, 2, 2013.

[16] Williamson, J., “Objective Bayesian probabilistic logic", in Journal of Algorithms in Cogni-
tion, Informatics and Logic, 63:167-183, 2008.

[17] Williamson, J., In Defence of Objective Bayesianism, Oxford University Press, 2010.

Received 13 June 2016300

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

PHILIPPE BALBIANI

CNRS, Toulouse University, France.
Philippe.Balbiani@irit.fr

TINKO TINCHEV

Sofia University, Bulgaria.
tinko@fmi.uni-sofia.bg

Abstract

KD45 is the least modal logic containing the formulas 2x → 3x, 2x → 22x
and 3x → 23x. It is determined by the class of all serial, transitive and Euclidean
frames. The elementary unifiability problem in KD45 is to determine, given a formula
ϕ(x1, . . . , xn), whether there exists formulas ψ1, . . . , ψn such that ϕ(ψ1, . . . , ψn) is
in KD45. It is well-known that the elementary unifiability problem in KD45 is NP-
complete. In our paper, we show that every KD45-unifiable formula has a projective
unifier. As a corollary, we conclude that KD45 has unitary type for elementary unifi-
cation.

Keywords: Modal logic KD45. Elementary unification. Most general unifier. Projective
formula. Unification type.

1 Introduction

Modal logics like S5 or KD45 are essential to the design of logical systems that capture
elements of reasoning about knowledge [13, 21]. There exists variants of these logics with
one or several agents, with or without common knowledge, etc. As in any modal logic, the
questions addressed in their setting usually concern their axiomatizability and their decid-
ability. Another desirable question which one should address whenever possible concerns
the unifiability of formulas. A formulaϕ(x1, . . . , xn) is unifiable in a modal logic L iff there
exists formulas ψ1, . . . , ψn such that ϕ(ψ1, . . . , ψn) is in L. See [1, 11, 14, 15] for details.

Special acknowledgement is heartly granted to the referees for the feedback we have obtained from them. Their
comments and suggestions have greatly helped us to improve the correctness and the readability of our paper.
Philippe Balbiani and Tinko Tinchev were partially supported by the programme RILA (contracts 34269VB
and DRILA01/2/2015).

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

BALBIANI AND TINCHEV

Results about the unifiability problem have been already obtained in many modal logics.
Rybakov [22, 23] demonstrated that the unifiability problem in transitive modal logics like
K4 and G is decidable. Wolter and Zakharyaschev [24] showed that the unifiability problem
is undecidable for any modal logic between K and K4 extended with the universal modality.
The notion of projectivity has been introduced by Ghilardi [15] to determine the unification
type, finitary, of transitive modal logics like K4 and G. The unification type, nullary, of
modal logics like K, KD and KT has been established in [6, 18].

Within the context of description logics, checking subsumption of concepts is not suffi-
cient and new inference capabilities are required. One of them, the unifiability of concept
terms, has been introduced by Baader and Narendran [4] for FL0. Baader and Küsters [2]
established the EXPTIME-completeness of the unifiability problem in FLreg whereas
Baader and Morawska [3] established the NPTIME-completeness of the unifiability problem
in EL. Much remains to be done, seeing that the computability of the unifiability problem
and the unification types are unknown in multifarious modal logics and description logics.

KD45 is the least modal logic containing the formulas 2x → 3x, 2x → 22x and
3x → 23x. It is determined by the class of all serial, transitive and Euclidean frames.
The elementary unifiability problem in KD45 is to determine, given a parameter-free for-
mula ϕ(x1, . . . , xn), whether there exists parameter-free formulas ψ1, . . . , ψn such that
ϕ(ψ1, . . . , ψn) is in KD45. It is well-known that the elementary unifiability problem in
KD45 is NP-complete. Moreover, as proved by Ghilardi and Sacchetti [16], the unifiability
problem in KD45 is directed and, consequently, KD45 has either unitary type, or nullary
type. See also [7, 19]. The directedness of KD45 is a consequence of the characterization
by Ghilardi and Sacchetti of the normal extensions of K4 with a directed unifiability prob-
lem. This characterization uses advanced notions from algebraic and relational semantics
of normal modal logics.

In our paper, we directly show that every KD45-unifiable parameter-free formula has
a projective unifier. As an immediate corollary, we conclude that KD45 has unitary type
for elementary unification. Section 2 defines the syntax and the semantics of KD45. In
Section 3, definitions about the elementary unifiability problem in KD45 are given. Sec-
tions 4–6 introduce and study arrows, setarrows and tips which will be our main tools for
proving our results. In Section 7, definitions about acceptable agreements as a simplified
version of bounded morphisms are given. Section 8 introduces and studies types which are
sets of tips. In Sections 9–11, intermediate results about types needed to show that every
KD45-unifiable parameter-free formula has a projective unifier are proved.

302

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

2 Syntax and semantics

Let VAR be a countable set of variables (with typical members denoted x, y, etc). Let
(x1, x2, . . .) be an enumeration of VAR without repetitions. The set FOR of all formulas
(with typical members denoted ϕ, ψ, etc) is inductively defined as follows:

• ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∨ ψ) | 2ϕ.

We write ϕ(x1, . . . , xn) to denote a formula whose variables form a subset of {x1, . . . , xn}.
The result of the replacement in ϕ(x1, . . . , xn) of variables x1, . . . , xn in their places with
formulas ψ1, . . . , ψn will be denoted by ϕ(ψ1, . . . , ψn). We define the other Boolean con-
structs as usual. We will follow the standard rules for omission of the parentheses. Let ϕ be
a formula. We will write 3ϕ for ¬2¬ϕ. We will respectively write ϕ⊥ and ϕ> for ¬ϕ and
ϕ. Let Γ be a finite set of formulas. Considering that

∨ ∅ = ⊥ and
∧ ∅ = >, we will write

OΓ for the conjunction of the following formulas:

• 2
∨{ϕ : ϕ is a formula in Γ},

• ∧{3ϕ : ϕ is a formula in Γ}.
A model is a function V : VAR −→ 2N associating to each variable x a set V (x) of non-
negative integers. We inductively define the truth of a formula ϕ in model V at nonnegative
integer s, in symbols V, s |= ϕ, as follows:

• V, s |= x iff s ∈ V (x),

• V, s 6|= ⊥,

• V, s |= ¬ϕ iff V, s 6|= ϕ,

• V, s |= ϕ ∨ ψ iff either V, s |= ϕ, or V, s |= ψ,

• V, s |= 2ϕ iff for all positive integers t, V, t |= ϕ.

As a result, V, s |= 3ϕ iff there exists a positive integer t such that V, t |= ϕ. Moreover,
V, s |= ϕ⊥ iff V, s 6|= ϕ and V, s |= ϕ> iff V, s |= ϕ. In other respect, V, s |= OΓ iff

• for all positive integers t, there exists ϕ ∈ Γ such that V, t |= ϕ,

• for all ϕ ∈ Γ, there exists a positive integer t such that V, t |= ϕ.

We shall say that a model V is uniform iff for all variables x, either V (x) = ∅, or V (x) = N.
We shall say that a formula ϕ is satisfiable iff there exists a model V such that V, 0 |= ϕ. We
shall say that a formula ϕ is valid, in symbols |= ϕ, iff for all models V , V, 0 |= ϕ. The fol-
lowing result is well-known and can be proved by using the canonical model construction,
the technique of the generated subframe and the bounded morphism lemma [10].

303

BALBIANI AND TINCHEV

Proposition 1. For all formulas ϕ, |= ϕ iff ϕ ∈ KD45.

Proof. Left to the reader.

3 Unification

A substitution is a function σ : VAR −→ FOR associating to each variable a formula. We
shall say that a substitution σ is closed iff for all variables x, σ(x) is a variable-free formula.
For all formulas ϕ(x1, . . . , xn), let σ(ϕ(x1, . . . , xn)) be ϕ(σ(x1), . . . , σ(xn)). The com-
position σ ◦ τ of the substitutions σ and τ is the substitution associating to each variable x
the formula τ(σ(x)). We shall say that a substitution σ is equivalent to a substitution τ , in
symbols σ ' τ , iff |= σ(x)↔ τ(x) for all variables x. We shall say that a substitution σ is
more general than a substitution τ , in symbols σ � τ , iff there exists a substitution υ such
that σ ◦ υ ' τ . Note that the notation τ � σ is also used in many papers. We shall say that
a formula ϕ is unifiable iff there exists a substitution σ such that |= σ(ϕ). In that case, σ is
a unifier of ϕ. We shall say that a unifiable formula ϕ is projective iff there exists a unifier
σ of ϕ such that |= ϕ ∧ 2ϕ → (σ(x) ↔ x) for all variables x. The following results are
well-known [1].

Proposition 2. Let ϕ be a formula. If ϕ is unifiable then ϕ possesses a closed unifier.

Proof. Since the set of all valid formulas is closed with respect to the rule of uniform sub-
stitution, therefore if σ is a unifier of ϕ then for all closed substitutions τ , σ ◦ τ is a closed
unifier of ϕ.

Proposition 3. Let ϕ(x1, . . . , xn) be a 2-free formula. The following conditions are equiv-
alent:

1. ϕ(x1, . . . , xn), considered as a Boolean formula, is satisfiable.

2. ϕ(x1, . . . , xn), considered as a modal formula, is unifiable.

Proof. Suppose ϕ(x1, . . . , xn), considered as a Boolean formula, is satisfiable. Hence,
there exists (ψ1, . . . , ψn) in {⊥,>}n such that ϕ(ψ1, . . . , ψn) is classically equivalent to>.
Thus, ϕ(ψ1, . . . , ψn) is KD45-equivalent to>. Consequently, ϕ(x1, . . . , xn), considered as
a modal formula, is unifiable.
Reciprocally, suppose ϕ(x1, . . . , xn), considered as a modal formula, is unifiable. Let σ
be a unifier of ϕ(x1, . . . , xn). Let V be a model. Since σ is a unifier of ϕ(x1, . . . , xn),
therefore V, 0 |= ϕ(σ(x1), . . . , σ(xn)). Let (ψ1, . . . , ψn) in {⊥,>}n be such that for all i ∈
{1, . . . , n}, if V, 0 6|= σ(xi) then ψi = ⊥ else ψi = >. Since V, 0 |= ϕ(σ(x1), . . . , σ(xn)),
therefore ϕ(ψ1, . . . , ψn) is classically equivalent to >. Hence, ϕ(x1, . . . , xn), considered
as a Boolean formula, is satisfiable.

304

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

Proposition 4. The elementary unifiability problem in KD45 is NP-complete.

Proof. Remark that every variable-free formula is either KD45-equivalent to ⊥, or
KD45-equivalent to >. Hence, by Proposition 2, in order to determine if a given formula
ϕ(x1, . . . , xn) is unifiable, it suffices to nondeterministically choose (ψ1, . . . , ψn) in {⊥,>}n
such that |= ϕ(ψ1, . . . , ψn). Since the validity of a given variable-free formula can be
checked in polynomial time, therefore the elementary unifiability problem in KD45 is in
NP. As for the NP-hardness of the elementary unifiability problem in KD45, it follows from
Proposition 3.

Proposition 5. Let ϕ be a unifiable formula. If ϕ is projective then ϕ possesses a most
general unifier.

Proof. Suppose ϕ is projective. Let σ be a unifier of ϕ such that |= ϕ∧2ϕ→ (σ(x)↔ x)
for all variables x. Let τ be a unifier of ϕ and x be a variable. Hence, |= τ(ϕ) and
|= ϕ ∧ 2ϕ → (σ(x) ↔ x). Thus, |= τ(ϕ) ∧ 2τ(ϕ). Since |= ϕ ∧ 2ϕ → (σ(x) ↔ x),
therefore |= τ(ϕ) ∧ 2τ(ϕ) → ((σ ◦ τ)(x) ↔ τ(x)). Since |= τ(ϕ) ∧ 2τ(ϕ), therefore
|= (σ ◦ τ)(x)↔ τ(x). Since x is an arbitrary variable, therefore σ ◦ τ ' τ . Consequently,
σ � τ .

From now on, let us fix n ∈ N.

Formulas of the form ϕ(x1, . . . , xn) will be called n-formulas. From now on, they will be
denoted ϕ(~x).

4 Arrows

We define An = {⊥,>}n. Elements of An are n-tuples of bits. They will be called n-
arrows. They will be denoted α, β, etc. Remark that Card(An) = 2n. For all n-arrows
α = (α1, . . . , αn), we will write α̃(~x) for the associated n-formula

• α̃(~x) = xα1
1 ∧ . . . ∧ xαnn .

The following result says that the n-formula associated to an n-arrow is always satisfiable.

Lemma 6. Let α be an n-arrow. There exists a model V such that V, 0 |= α̃(~x).

Proof. Left to the reader.

Remark that for all n-arrows α = (α1, . . . , αn) and for all n-tuples ~ψ of formulas,
α̃(~ψ) = ψα1

1 ∧ . . . ∧ ψαnn . As a result,

305

BALBIANI AND TINCHEV

Lemma 7. Let ~ψ be an n-tuple of formulas, V be a model and s be a nonnegative integer.
For all n-arrows α, β, if V, s |= α̃(~ψ) and V, s |= β̃(~ψ) then α = β.

Proof. Let α, β be n-arrows. Suppose V, s |= α̃(~ψ), V, s |= β̃(~ψ) and α 6= β. Let i ∈
{1, . . . , n} be such that either αi = ⊥ and βi = >, or αi = > and βi = ⊥. Without loss
of generality, assume αi = ⊥ and βi = >. Since V, s |= α̃(~ψ) and V, s |= β̃(~ψ), therefore
V, s |= ¬ψi and V, s |= ψi: a contradiction.

For all n-tuples ~ψ of formulas, for all models V and for all nonnegative integers s, let
α[~ψ, V, s] be the n-arrow such that for all i ∈ {1, . . . , n},

• if V, s 6|= ψi then αi[~ψ, V, s] = ⊥ else αi[~ψ, V, s] = >.

As a result, α̃[~ψ, V, s](~x) = x
α1[~ψ,V,s]
1 ∧ . . . ∧ xαn[~ψ,V,s]

n and

Lemma 8. Let ~ψ be an n-tuple of formulas, V be a model and s be a nonnegative integer.
V, s |= α̃[~ψ, V, s](~ψ).

Proof. By definition of α[~ψ, V, s].

Moreover,

Lemma 9. Let ~ψ be an n-tuple of formulas, V be a model and s be a nonnegative integer.
α[~ψ, V, s] is the unique n-arrow α such that V, s |= α̃(~ψ).

Proof. By Lemmas 7 and 8.

The following result will be useful when we study the most general unifiers of unifiable
n-formulas.

Lemma 10. Let V be a model. For all n-arrows α, there exists a model V ′ such that
V ′, 0 |= α̃(~x) and for all variables x and for all positive integers s, s ∈ V ′(x) iff s ∈ V (x).

Proof. Left to the reader.

5 Setarrows

Let Sn = 2An \ {∅}. Elements of Sn are nonempty sets of n-arrows. They will be called
n-setarrows. They will be denoted a, b, etc. Remark that Card(Sn) = 22n − 1. For all
n-setarrows a = {α0, . . . , αk}, we will write ã(~x) the associated n-formula

• ã(~x) = O{α̃0(~x), . . . , α̃k(~x)}.

306

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

The following result says that the n-formula associated to an n-setarrow is always satisfi-
able.

Lemma 11. Let a be an n-setarrow. There exists a model V such that V, 0 |= ã(~x).

Proof. Left to the reader.

Remark that for all n-setarrows a = {α0, . . . , αk} and for all n-tuples ~ψ of formulas,
ã(~ψ) = O{α̃0(~ψ), . . . , α̃k(~ψ)}. As a result,

Lemma 12. Let ~ψ be an n-tuple of formulas and V be a model. For all n-setarrows a, b, if
V, 0 |= ã(~ψ) and V, 0 |= b̃(~ψ) then a = b.

Proof. Let a, b be n-setarrows. Suppose V, 0 |= ã(~ψ), V, 0 |= b̃(~ψ) and a 6= b. Let α be an
n-arrow such that either α ∈ a and α 6∈ b, or α 6∈ a and α ∈ b. Without loss of generality,
assume α ∈ a and α 6∈ b. Since V, 0 |= ã(~ψ), therefore there exists a positive integer s such
that V, s |= α̃(~ψ). Since V, 0 |= b̃(~ψ) and α 6∈ b, therefore by Lemma 7, for all positive
integers s, V, s 6|= α̃(~ψ): a contradiction.

For all n-tuples ~ψ of formulas and for all models V , let a[~ψ, V] be the n-setarrow

• a[~ψ, V] = {α[~ψ, V, s] : s is a positive integer}.

As a result, ã[~ψ, V](~x) = O{xα1[~ψ,V,s]
1 ∧ . . . ∧ xαn[~ψ,V,s]

n : s is a positive integer} and

Lemma 13. Let ~ψ be an n-tuple of formulas and V be a model. V, 0 |= ã[~ψ, V](~ψ).

Proof. By definition of a[~ψ, V].

Moreover,

Lemma 14. Let ~ψ be an n-tuple of formulas and V be a model. a[~ψ, V] is the unique
n-setarrow a such that V, 0 |= ã(~ψ).

Proof. By Lemmas 12 and 13.

The following result will be useful when we study the most general unifiers of unifiable
n-formulas. It can be proved by induction on ϕ(~x).

Lemma 15. Let ~ψ be an n-tuple of formulas. Let V, V ′ be models such that a[~ψ, V] =
a[~ψ, V ′]. Let ϕ(~x) be an n-formula. For all nonnegative integers s, s′, if α[~ψ, V, s] =
α[~ψ, V ′, s′] then V, s |= ϕ(~ψ) iff V ′, s′ |= ϕ(~ψ).

Proof. Left to the reader.

307

BALBIANI AND TINCHEV

6 Tips

Let Pn = An×Sn. Elements of Pn are couples consisting of an n-arrow component and an
n-setarrow component. They will be called n-tips. They will be denoted p, q, etc. Remark
thatCard(Pn) = 2n×(22n−1). For all n-tips p = (α, a), we will write p̃(~x) the associated
n-formula

• p̃(~x) = α̃(~x) ∧ ã(~x).

The following result says that the n-formula associated to an n-tip is always satisfiable.

Lemma 16. Let p be an n-tip. There exists a model V such that V, 0 |= p̃(~x).

Proof. Left to the reader.

Remark that for all n-tips p = (α, a) and for all n-tuples ~ψ of formulas, p̃(~ψ) = α̃(~ψ)∧
ã(~ψ). As a result,

Lemma 17. Let ~ψ be an n-tuple of formulas and V be a model. For all n-tips p, q, if
V, 0 |= p̃(~ψ) and V, 0 |= q̃(~ψ) then p = q.

Proof. By Lemmas 7 and 12.

For all n-tuples ~ψ of formulas and for all models V , let p[~ψ, V] be the n-tip

• p[~ψ, V] = (α[~ψ, V, 0], a[~ψ, V]).

As a result, p̃[~ψ, V](~x) = x
α1[~ψ,V,0]
1 ∧ . . . ∧ xαn[~ψ,V,0]

n ∧ O{xα1[~ψ,V,s]
1 ∧ . . . ∧ xαn[~ψ,V,s]

n : s
is a positive integer} and

Lemma 18. Let ~ψ be an n-tuple of formulas and V be a model. V, 0 |= p̃[~ψ, V](~ψ).

Proof. By definition of p[~ψ, V].

Moreover,

Lemma 19. Let ~ψ be an n-tuple of formulas and V be a model. p[~ψ, V] is the unique n-tip
p such that V, 0 |= p̃(~ψ).

Proof. By Lemmas 17 and 18.

308

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

7 Acceptable agreements

In this section, we give definitions of acceptable agreements as a simplified version of
bounded morphisms. We shall say that a function f : N −→ N associating to each nonneg-
ative integer a nonnegative integer is acceptable iff for all positive integers s, f(s) is a posi-
tive integer and f−1(s) contains a positive integer. We shall say that a function f : N −→ N
associating to each nonnegative integer a nonnegative integer is an n-agreement between
models V and V ′ iff for all i ∈ {1, . . . , n} and for all nonnegative integers s, s ∈ V (xi) iff
f(s) ∈ V ′(xi).

Lemma 20. Let f be an acceptable n-agreement between models V and V ′. Let ϕ(~x) be
an n-formula. For all nonnegative integers s, V, s |= ϕ(~x) iff V ′, f(s) |= ϕ(~x).

Proof. By induction on ϕ(~x).

We shall say that a function f : N −→ N associating to each nonnegative integer a
nonnegative integer is an ω-agreement between models V and V ′ iff for all variables x and
for all nonnegative integers s, s ∈ V (x) iff f(s) ∈ V ′(x).

Lemma 21. Let f be an acceptable ω-agreement between models V and V ′. Let ϕ be a
formula. For all nonnegative integers s, V, s |= ϕ iff V ′, f(s) |= ϕ.

Proof. By induction on ϕ.

8 Types

Let Tn = 2An×Sn . Elements of Tn are sets of n-tips. They will be called n-types. They will
be denoted T , U , etc. Remark that Card(Tn) = 22n×(22n−1). We shall say that an n-type
T is complete for an n-setarrow a iff for all n-arrows α, (α, a) ∈ T . We shall say that an
n-type T is empty for an n-setarrow a iff for all n-arrows α, if α ∈ a then (α, a) 6∈ T . We
shall say that an n-type T is full for an n-setarrow a iff for all n-arrows α, if α ∈ a then
(α, a) ∈ T . We shall say that an n-type T is saturated iff for all n-arrows α, β and for all
n-setarrows a, if (α, a) ∈ T and β ∈ a then (β, a) ∈ T . The following result will be of
crucial importance in the remaining sections of our paper.

Proposition 22. Let T be a saturated n-type. For all n-setarrows a, exactly one of the
following conditions holds: (i) T is complete for a; (ii) T is not complete for a and T is
empty for a; (iii) T is not complete for a and T is full for a.

Proof. Left to the reader.

309

BALBIANI AND TINCHEV

We shall say that an n-type T is closed iff for all n-setarrows a, there exists an n-arrow
γ such that if T is not complete for a then either T is empty for a and (γ, {γ}) ∈ T , or T is
full for a and (γ, a) ∈ T . We shall say that an n-type is perfect iff it is saturated and closed.

9 From tuples of formulas to perfect types

Let ~ψ be an n-tuple of formulas. Let T [~ψ] be the n-type

• T [~ψ] = {p[~ψ, V] : V is a model}.
The aim of this section is to demonstrate that T [~ψ] is perfect.

Lemma 23. T [~ψ] is saturated.

Proof. Let β, γ be n-arrows and b be an n-setarrow such that (β, b) ∈ T [~ψ] and γ ∈ b. Let
V be a model such that β = α[~ψ, V, 0] and b = a[~ψ, V]. Recall that γ ∈ b. Let s be a
positive integer such that γ = α[~ψ, V, s]. Let V ′ be the model such that for all variables x,
if s 6∈ V (x) then V ′(x) = V (x) \ {0} else V ′(x) = V (x) ∪ {0}. Let f be the acceptable
function such that f(0) = s and for all positive integers t, f(t) = t. The reader may easily
verify that f is an ω-agreement between V ′ and V . Since γ = α[~ψ, V, s] and f(0) = s,
therefore by Lemma 21, γ = α[~ψ, V ′, 0]. Moreover, since b = a[~ψ, V], therefore by
Lemma 21, b = a[~ψ, V ′]. Hence, (γ, b) ∈ T [~ψ]. Since β, γ are arbitrary n-arrows and b is
an arbitrary n-setarrow such that (β, b) ∈ T [~ψ] and γ ∈ b, therefore T [~ψ] is saturated.

Lemma 24. There exists an n-arrow γ such that (γ, {γ}) ∈ T [~ψ].
Proof. Let V be a uniform model. The reader may easily verify that a[~ψ, V] = {α[~ψ, V, 0]}.
Hence, (α[~ψ, V, 0], {α[~ψ, V, 0]}) ∈ T [~ψ].

Lemma 25. T [~ψ] is closed.

Proof. By Lemma 23, T [~ψ] is saturated. Hence, by Proposition 22, for all n-setarrows a,
exactly one of the following conditions holds: (i) T [~ψ] is complete for a; (ii) T [~ψ] is not
complete for a and T [~ψ] is empty for a; (iii) T [~ψ] is not complete for a and T [~ψ] is full
for a. By Lemma 24, let γ be an n-arrow such that (γ, {γ}) ∈ T [~ψ]. For all n-setarrows
a, let γT,a be an arbitrary n-arrow if condition (i) holds, the n-arrow γ if condition (ii)
holds and an arbitrary n-arrow in a if condition (iii) holds. The reader may easily verify
that for all n-setarrows a, if T [~ψ] is not complete for a then either T [~ψ] is empty for a and
(γT,a, {γT,a}) ∈ T [~ψ], or T [~ψ] is full for a and (γT,a, a) ∈ T [~ψ].

From all this, it follows that

Proposition 26. T [~ψ] is perfect.

Proof. By Lemmas 23 and 25.

310

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

10 From perfect types to tuples of formulas

Let T be a perfect n-type. Hence, T is saturated and closed. Thus, by Proposition 22, for
all n-setarrows a, exactly one of the following conditions holds: (i) T is complete for a;
(ii) T is not complete for a and T is empty for a; (iii) T is not complete for a and T is full
for a. Since T is closed, therefore for all n-setarrows a, let γT,a be an n-arrow such that if
T is not complete for a then either T is empty for a and (γT,a, {γT,a}) ∈ T , or T is full for
a and (γT,a, a) ∈ T . For all n-tips p = (α, a), let δT,p be the n-arrow such that if p 6∈ T
then δT,p = γT,a else δT,p = α. Let ~ψ[T](~x) be the n-tuple of n-formulas such that for all
i ∈ {1, . . . , n},

• ψi[T](~x) = ∨{p̃(~x) ∧ δT,pi : p is an n-tip}.
The aim of this section is to demonstrate that T = T [~ψ[T](~x)].

Lemma 27. Let p be an n-tip. If p ∈ T then |= p̃(~x)→ p̃(~ψ[T](~x)).

Proof. Suppose p ∈ T . Let β be the n-arrow component of p and b be the n-setarrow
component of p. Let V be a model such that V, 0 |= p̃(~x). Let i ∈ {1, . . . , n}. Since V, 0 |=
p̃(~x), therefore by Lemma 17, V, 0 |= ψi[T](~x) ↔ δT,pi . Since p ∈ T , therefore δT,pi = βi.
Since V, 0 |= ψi[T](~x) ↔ δT,pi , therefore V, 0 |= ψi[T](~x) ↔ βi. Since V, 0 |= p̃(~x),
therefore V, 0 |= β̃(~x). Since V, 0 |= ψi[T](~x)↔ βi, therefore V, 0 |= ψi[T](~x)↔ xi. Let
s be a positive integer. Since V, 0 |= p̃(~x), therefore V, s |= b̃(~x). Recall that s is a positive
integer. Let α be an n-arrow such that α ∈ b and V, s |= α̃(~x). Let q be the n-tip with
n-arrow component α and n-setarrow component b. Since V, s |= b̃(~x) and V, s |= α̃(~x),
therefore V, s |= q̃(~x). Hence, by Lemma 17, V, s |= ψi[T](~x) ↔ δT,qi . Since T is
saturated, p ∈ T and α ∈ b, therefore q ∈ T . Thus, δT,qi = αi. Since V, s |= ψi[T](~x) ↔
δT,qi , therefore V, s |= ψi[T](~x) ↔ αi. Since V, s |= α̃(~x), therefore V, s |= ψi[T](~x) ↔
xi. Since s is an arbitrary positive integer, therefore V, 0 |= 2(ψi[T](~x) ↔ xi). Since
V, 0 |= ψi[T](~x) ↔ xi, therefore V, 0 |= (ψi[T](~x) ↔ xi) ∧ 2(ψi[T](~x) ↔ xi). Since
i is arbitrary in {1, . . . , n}, therefore V, 0 |= (ψ1[T](~x) ↔ x1) ∧ . . . ∧ (ψn[T](~x) ↔
xn) ∧ 2((ψ1[T](~x) ↔ x1) ∧ . . . ∧ (ψn[T](~x) ↔ xn)). Since V, 0 |= p̃(~x), therefore
V, 0 |= p̃(~ψ[T](~x)). Since V is an arbitrary model such that V, 0 |= p̃(~x), therefore |=
p̃(~x)→ p̃(~ψ[T](~x)).

Lemma 28. T ⊆ T [~ψ[T](~x)].

Proof. Let p be an n-tip such that p ∈ T . By Lemma 16, let V be a model such that
V, 0 |= p̃(~x). Since p ∈ T , therefore by Lemma 27, |= p̃(~x) → p̃(~ψ[T](~x)). Since
V, 0 |= p̃(~x), therefore V, 0 |= p̃(~ψ[T](~x)). Hence, by Lemma 19, p = p[~ψ[T](~x), V].
Thus, p ∈ T [~ψ[T](~x)]. Since p is an arbitrary n-tip such that p ∈ T , therefore T ⊆
T [~ψ[T](~x)].

311

BALBIANI AND TINCHEV

Lemma 29. Let p be an n-tip with n-setarrow component b. If p 6∈ T then |= p̃(~x) →
γ̃T,b(~ψ[T](~x)).

Proof. Suppose p 6∈ T . Let V be a model such that V, 0 |= p̃(~x). Let i ∈ {1, . . . , n}. Since
V, 0 |= p̃(~x), therefore by Lemma 17, V, 0 |= ψi[T](~x) ↔ δT,pi . Since p 6∈ T , therefore
δT,pi = γT,bi . Since V, 0 |= ψi[T](~x) ↔ δT,pi , therefore V, 0 |= ψi[T](~x) ↔ γT,bi . Since i
is arbitrary in {1, . . . , n}, therefore V, 0 |= γ̃T,b(~ψ[T](~x)). Since V is an arbitrary model
such that V, 0 |= p̃(~x), therefore |= p̃(~x)→ γ̃T,b(~ψ[T](~x)).

Lemma 30. Let b be an n-setarrow. If T is empty for b then |= b̃(~x)→ {̃γT,b}(~ψ[T](~x)).

Proof. Suppose T is empty for b. Let V be a model such that V, 0 |= b̃(~x). Let i ∈
{1, . . . , n}. Let s be a positive integer. Since V, 0 |= b̃(~x), therefore V, s |= b̃(~x). Recall
that s is a positive integer. Let α be an n-arrow such that α ∈ b and V, s |= α̃(~x). Let p
be the n-tip with n-arrow component α and n-setarrow component b. Since V, s |= b̃(~x)
and V, s |= α̃(~x), therefore V, s |= p̃(~x). Hence, by Lemma 17, V, s |= ψi[T](~x) ↔
δT,pi . Since T is empty for b and α ∈ b, therefore p 6∈ T . Thus, δT,pi = γT,bi . Since
V, s |= ψi[T](~x) ↔ δT,pi , therefore V, s |= ψi[T](~x) ↔ γT,bi . Since s is an arbitrary
positive integer, therefore V, 0 |= 2(ψi[T](~x) ↔ γT,bi). Since i is arbitrary in {1, . . . , n},
therefore V, 0 |= 2((ψ1[T](~x)↔ γT,b1)∧ . . .∧ (ψn[T](~x)↔ γT,bn)). Consequently, V, 0 |=
{̃γT,b}(~ψ[T](~x)). Since V is an arbitrary model such that V, 0 |= b̃(~x), therefore |= b̃(~x)→
{̃γT,b}(~ψ[T](~x)).

Lemma 31. Let b be an n-setarrow. If T is full for b then |= b̃(~x)→ b̃(~ψ[T](~x)).

Proof. Suppose T is full for b. Let V be a model such that V, 0 |= b̃(~x). Let i ∈ {1, . . . , n}.
Let s be a positive integer. Since V, 0 |= b̃(~x), therefore V, s |= b̃(~x). Recall that s is
a positive integer. Let α be an n-arrow such that α ∈ b and V, s |= α̃(~x). Let p be the
n-tip with n-arrow component α and n-setarrow component b. Since V, s |= b̃(~x) and
V, s |= α̃(~x), therefore V, s |= p̃(~x). Hence, by Lemma 17, V, s |= ψi[T](~x)↔ δT,pi . Since
T is full for b and α ∈ b, therefore p ∈ T . Thus, δT,pi = αi. Since V, s |= ψi[T](~x)↔ δT,pi ,
therefore V, s |= ψi[T](~x) ↔ αi. Since V, s |= α̃(~x), therefore V, s |= ψi[T](~x) ↔ xi.
Since s is an arbitrary positive integer, therefore V, 0 |= 2(ψi[T](~x) ↔ xi). Since i is
arbitrary in {1, . . . , n}, therefore V, 0 |= 2((ψ1[T](~x) ↔ x1) ∧ . . . ∧ (ψn[T](~x) ↔ xn)).
Since V, 0 |= b̃(~x), therefore V, 0 |= b̃(~ψ[T](~x)). Since V is an arbitrary model such that
V, 0 |= b̃(~x), therefore |= b̃(~x)→ b̃(~ψ[T](~x)).

Lemma 32. T [~ψ[T](~x)] ⊆ T .

312

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

Proof. Let p be an n-tip such that p ∈ T [~ψ[T](~x)]. Let V be a model such that p =
p[~ψ[T](~x), V]. Hence, by Lemma 18, V, 0 |= p̃(~ψ[T](~x)). Let q = p[~x, V]. Thus, by
Lemma 18, V, 0 |= q̃(~x). Case “q ∈ T ”: Hence, by Lemma 27, |= q̃(~x) → q̃(~ψ[T](~x)).
Since V, 0 |= q̃(~x), therefore V, 0 |= q̃(~ψ[T](~x)). Since V, 0 |= p̃(~ψ[T](~x)), therefore by
Lemma 17, p = q. Since q ∈ T , therefore p ∈ T . Case “q 6∈ T ”: Let a be the n-setarrow
component of q. Since q 6∈ T , therefore by Lemma 29, |= q̃(~x) → γ̃T,a(~ψ[T](~x)). Since
V, 0 |= q̃(~x), therefore V, 0 |= γ̃T,a(~ψ[T](~x)). Since V, 0 |= p̃(~ψ[T](~x)), therefore by
Lemma 7, γT,a is the n-arrow component of p. Since q 6∈ T , therefore T is not complete
for a. Since T is saturated, therefore by Proposition 22, either T is empty for a, or T is
full for a. In the former case, (γT,a, {γT,a}) ∈ T . Moreover, by Lemma 30, |= ã(~x) →
{̃γT,a}(~ψ[T](~x)). Since V, 0 |= q̃(~x), therefore V, 0 |= {̃γT,a}(~ψ[T](~x)). Since V, 0 |=
p̃(~ψ[T](~x)), therefore by Lemma 12, {γT,a} is the n-setarrow component of p. Since γT,a

is the n-arrow component of p and (γT,a, {γT,a}) ∈ T , therefore p ∈ T . In the latter case,
(γT,a, a) ∈ T . Moreover, by Lemma 31, |= ã(~x) → ã(~ψ[T](~x)). Since V, 0 |= q̃(~x),
therefore V, 0 |= ã(~ψ[T](~x)). Since V, 0 |= p̃(~ψ[T](~x)), therefore by Lemma 12, a is the
n-setarrow component of p. Since γT,a is the n-arrow component of p and (γT,a, a) ∈
T , therefore p ∈ T . Since p is an arbitrary n-tip such that p ∈ T [~ψ[T](~x)], therefore
T [~ψ[T](~x)] ⊆ T .

From all this, it follows that

Proposition 33. T = T [~ψ[T](~x)].

Proof. By Lemmas 28 and 32.

11 About most general unifiers

Let ϕ(~x) be an n-formula. Let T be the n-type

• T = {p : |= p̃(~x)→ ϕ(~x) ∧2ϕ(~x)}.

Lemma 34. T is saturated.

Proof. Let α, β be n-arrows and a be an n-setarrow such that (α, a) ∈ T and β ∈ a. Hence,
|= α̃(~x)∧ã(~x)→ ϕ(~x)∧2ϕ(~x). Let V be a model such that V, 0 |= β̃(~x) and V, 0 |= ã(~x).
By Lemma 10, let V ′ be a model such that V ′, 0 |= α̃(~x) and for all variables x and for all
positive integers s, s ∈ V ′(x) iff s ∈ V (x). Since V, 0 |= ã(~x), therefore V ′, 0 |= ã(~x).
Since |= α̃(~x)∧ ã(~x)→ ϕ(~x)∧2ϕ(~x) and V ′, 0 |= α̃(~x), therefore V ′, 0 |= ϕ(~x)∧2ϕ(~x).
Moreover, recall that β ∈ a. Let sβ be a positive integer such that V ′, sβ |= β̃(~x). Since
V ′, 0 |= ϕ(~x) ∧ 2ϕ(~x), therefore V ′, sβ |= ϕ(~x) ∧ 2ϕ(~x). Let f : N −→ N be the

313

BALBIANI AND TINCHEV

function associating to each nonnegative integer a nonnegative integer such that f(0) = sβ
and for all positive integers s, f(s) = s. The reader may easily verify that f is an acceptable
n-agreement between V and V ′. Since V ′, sβ |= ϕ(~x) ∧ 2ϕ(~x) and f(0) = sβ , therefore
by Lemma 20, V, 0 |= ϕ(~x) ∧2ϕ(~x). Since V is an arbitrary model such that V, 0 |= β̃(~x)
and V, 0 |= ã(~x), therefore |= β̃(~x) ∧ ã(~x)→ ϕ(~x) ∧2ϕ(~x). Thus, (β, a) ∈ T .

Lemma 35. Let ~χ be an n-tuple of variable-free formulas. There exists an n-arrow γ such
that |= γ̃(~χ).

Proof. Left to the reader.

From now on, let us assume ϕ(~x) is unifiable.

The aim of this section is to demonstrate that ϕ(~x) is projective.

Lemma 36. There exists an n-arrow γ such that (γ, {γ}) ∈ T .

Proof. Since ϕ(~x) is unifiable, therefore by Proposition 2, let σ be a closed substitution
such that |= σ(ϕ(~x)). Let ~χ be the n-tuple of variable-free formulas such that for all
i ∈ {1, . . . , n}, χi = σ(xi). Since |= σ(ϕ(~x)), therefore |= ϕ(~χ). Hence, |= ϕ(~χ)∧2ϕ(~χ).
Since ~χ is an n-tuple of variable-free formulas, therefore by Lemma 35, let γ be an n-arrow
such that |= γ̃(~χ). Thus, |= γ̃(~χ) ∧ 2γ̃(~χ). Let V be a model such that V, 0 |= γ̃(~x) and
V, 0 |= {̃γ}(~x). Since |= γ̃(~χ) ∧ 2γ̃(~χ), therefore V, 0 |= γ̃(~χ) and V, 0 |= 2γ̃(~χ). Let
i ∈ {1, . . . , n}. Since V, 0 |= γ̃(~x) and V, 0 |= γ̃(~χ), therefore V, 0 |= χi ↔ xi. Let s
be a positive integer. Since V, 0 |= {̃γ}(~x) and V, 0 |= 2γ̃(~χ), therefore V, s |= γ̃(~x) and
V, s |= γ̃(~χ). Hence, V, s |= χi ↔ xi. Since s is an arbitrary positive integer, therefore
V, 0 |= 2(χi ↔ xi). Since V, 0 |= χi ↔ xi, therefore V, 0 |= (χi ↔ xi) ∧ 2(χi ↔ xi).
Since i is arbitrary in {1, . . . , n}, therefore V, 0 |= (χ1 ↔ x1)∧. . .∧(χn ↔ xn)∧2((χ1 ↔
x1) ∧ . . . ∧ (χn ↔ xn)). Since |= ϕ(~χ) ∧ 2ϕ(~χ), therefore V, 0 |= ϕ(~χ) ∧ 2ϕ(~χ).
Since V, 0 |= (χ1 ↔ x1) ∧ . . . ∧ (χn ↔ xn) ∧ 2((χ1 ↔ x1) ∧ . . . ∧ (χn ↔ xn)),
therefore V, 0 |= ϕ(~x) ∧ 2ϕ(~x). Since V is an arbitrary model such that V, 0 |= γ̃(~x) and
V, 0 |= {̃γ}(~x), therefore |= γ̃(~x) ∧ {̃γ}(~x)→ ϕ(~x) ∧2ϕ(~x) Thus, (γ, {γ}) ∈ T .

Lemma 37. T is closed.

Proof. By Lemma 34, T is saturated. Hence, by Proposition 22, for all n-setarrows a,
exactly one of the following conditions holds: (i) T is complete for a; (ii) T is not complete
for a and T is empty for a; (iii) T is not complete for a and T is full for a. By Lemma 36,
let γ be an n-arrow such that (γ, {γ}) ∈ T . For all n-setarrows a, let γT,a be an arbitrary
n-arrow if condition (i) holds, the n-arrow γ if condition (ii) holds and an arbitrary n-arrow
in a if condition (iii) holds. The reader may easily verify that for all n-setarrows a, if T is

314

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

not complete for a then either T is empty for a and (γT,a, {γT,a}) ∈ T , or T is full for a
and (γT,a, a) ∈ T .

Lemma 38. T is perfect.

Proof. By Lemmas 34 and 37.

By Lemma 37, T is closed. Hence, for all n-setarrows a, let γT,a be an n-arrow such
that if T is not complete for a then either T is empty for a and (γT,a, {γT,a}) ∈ T , or T is
full for a and (γT,a, a) ∈ T . For all n-tips p = (α, a), let δT,p be the n-arrow such that if
p 6∈ T then δT,p = γT,a else δT,p = α. Let ~ψ[T](~x) be the n-tuple of n-formulas such that
for all i ∈ {1, . . . , n}, ψi[T](~x) = ∨{p̃(~x) ∧ δT,pi : p is an n-tip}. Thus, by Proposition 33
and Lemma 38, T = T [~ψ[T](~x)].

Lemma 39. |= ϕ(~ψ[T](~x)).

Proof. Let V be a model. Since T = T [~ψ[T](~x)], therefore p[~ψ[T](~x), V] ∈ T . Hence,
|= p̃[~ψ[T](~x), V](~x)→ ϕ(~x)∧2ϕ(~x). Thus, |= p̃[~ψ[T](~x), V](~ψ[T](~x))→ ϕ(~ψ[T](~x))∧
2ϕ(~ψ[T](~x)). By Lemma 18 it holds V, 0 |= p̃[~ψ[T](~x), V](~ψ[T](~x)). Since it holds
|= p̃[~ψ[T](~x), V](~ψ[T](~x))→ ϕ(~ψ[T](~x))∧2ϕ(~ψ[T](~x)), therefore V, 0 |= ϕ(~ψ[T](~x))∧
2ϕ(~ψ[T](~x)). Consequently, V, 0 |= ϕ(~ψ[T](~x)). Since V is an arbitrary model, therefore
|= ϕ(~ψ[T](~x)).

Lemma 40. For all i ∈ {1, . . . , n}, |= ϕ(~x) ∧2ϕ(~x)→ (ψi[T](~x)↔ xi).

Proof. Let i ∈ {1, . . . , n}. Let V be a model such that V, 0 |= ϕ(~x) ∧ 2ϕ(~x). Let q =
p[~x, V]. By Lemma 18, V, 0 |= q̃(~x). Case “q ∈ T ”: Hence, by Lemma 17, V, 0 |=
ψi[T](~x)↔ δT,qi . Let α be the n-arrow component of q. Since q ∈ T , therefore δT,qi = αi.
Since V, 0 |= ψi[T](~x) ↔ δT,qi , therefore V, 0 |= ψi[T](~x) ↔ αi. Since V, 0 |= q̃(~x),
therefore V, 0 |= αi ↔ xi Since V, 0 |= ψi[T](~x) ↔ αi, therefore V, 0 |= ψi[T](~x) ↔ xi.
Case “q 6∈ T ”: Hence, 6|= q̃(~x)→ ϕ(~x)∧2ϕ(~x). Let V ′ be a model such that V ′, 0 |= q̃(~x)
and V ′, 0 6|= ϕ(~x) ∧ 2ϕ(~x). Since V, 0 |= q̃(~x), therefore by Lemma 15, V, 0 6|= ϕ(~x) ∧
2ϕ(~x): a contradiction. Since V is an arbitrary model such that V, 0 |= ϕ(~x) ∧ 2ϕ(~x),
therefore |= ϕ(~x) ∧2ϕ(~x)→ (ψi[T](~x)↔ xi).

From all this, it follows that

Proposition 41. ϕ(~x) is projective.

Proof. Let σ be the substitution such that for all positive integers i, if i ∈ {1, . . . , n} then
σ(xi) = ψi[T](~x) else σ(xi) = xi. By lemma 39, the reader may easily verify that σ
is a unifier of ϕ(~x). Moreover, by Lemma 40, |= ϕ(~x) ∧ 2ϕ(~x) → (σ(x) ↔ x) for all
variables x.

315

BALBIANI AND TINCHEV

As a corollary, we conclude that

Corollary 42. KD45 has unitary type for elementary unification, i.e. every unifiable for-
mula possesses a most general unifier.

Proof. By Propositions 5 and 41.

12 Conclusion
Much remains to be done. For example, one may consider the unifiability problem when the
language is extended by a countable set of parameters (with typical members denoted p, q,
etc). In this case, the unifiability problem is said to be non-elementary. It consists to deter-
mine, given a formula ϕ(p1, . . . , pm, x1, . . . , xn), whether there exists formulas ψ1, . . . , ψn
such that |= ϕ(p1, . . . , pm, ψ1, . . . , ψn). Another example, one may also consider the unifi-
ability problem, the elementary one or the non-elementary one, this time in modal logic K45
or in modal logic K5. More generally, the unifiability problem, the elementary one or the
non-elementary one, in modal logics extending K5 is of interest, knowing that these modal
logics are coNP-complete [17]. Other coNP-complete modal logics are all proper exten-
sions of S5×S5 [8, 9] and all finitely axiomatizable tense logics of linear time flows [20].
Thus, one may consider whether our method is applicable to the unifiability problem in
these modal logics. A similar question can be asked as well with respect to the linear tem-
poral logic considered by Babenyshev and Rybakov [5]. In other respect, what becomes of
the unifiability problem, the elementary one or the non-elementary one, when the language
is extended by the universal modality or the difference modality? Finally, considering the
tight relationships between unifiability of formulas and admissibility of inference rules as
explained in [1, 12, 15], one may ask whether all normal modal logics extending K5 are al-
most structurally complete, i.e. one may ask whether all admissible non-derivable inference
rules are passive in these logics.

References
[1] Baader, F., Ghilardi, S.: Unification in modal and description logics. Logic Journal of the IGPL

19 (2011) 705–730.
[2] Baader, F., Küsters, R.: Unification in a description logic with transitive closure of roles. In

Nieuwebhuis, R., Voronkov, A. (editors): Logic for Programming and Automated Reasoning.
Springer (2001) 217–232.

[3] Baader, F., Morawska, B.: Unification in the description logic EL. In Treinen, R. (editor):
Rewriting Techniques and Applications. Springer (2009) 350–364.

[4] Baader, F., Narendran, P.: Unification of concept terms in description logics. Journal of Sym-
bolic Computation 31 (2001) 277–305.

[5] Babenyshev, S., Rybakov, V.: Unification in linear temporal logic LTL. Annals of Pure and
Applied Logic 162 (2011) 991–1000.

316

ELEMENTARY UNIFICATION IN MODAL LOGIC KD45

[6] Balbiani, P., Gencer, Ç.: KD is nullary. Journal of Applied Non-Classical Logics (to appear).
[7] Balbiani, P., Gencer, Ç.: Unification in epistemic logics. Journal of Applied Non-Classical Log-

ics 27 (2017) 91–105.
[8] Bezhanishvili, N., Hodkinson, I.: All normal extensions of S5-squared are finitely axiomatizable.

Studia Logica 78 (2004) 443–457.
[9] Bezhanishvili, N., Marx, M.: All proper normal extensions of S5-square have the polynomial

size model property. Studia Logica 73 (2003) 367–382.
[10] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001).
[11] Dzik, W.: Unification Types in Logic. Wydawnicto Uniwersytetu Slaskiego (2007).
[12] Dzik, W., Stronkowski, M.: Almost structural completeness: an algebraic approach. Annals

of Pure and Applied Logic 167 (2016) 525–556.
[13] Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press (1995).
[14] Gencer, Ç., de Jongh, D.: Unifiability in extensions of K4. Logic Journal of the IGPL 17 (2009)

159–172.
[15] Ghilardi, S.: Best solving modal equations. Annals of Pure and Applied Logic 102 (2000)

183–198.
[16] Ghilardi, S., Sacchetti, L.: Filtering unification and most general unifiers in modal logic. The

Journal of Symbolic Logic 69 (2004) 879–906.
[17] Halpern, J., Rêgo, L.: Characterizing the NP-PSPACE gap in the satisfiability problem for

modal logic. Journal of Logic and Computation 17 (2007) 795–806.
[18] Jer̆ábek, E.: Blending margins: the modal logic K has nullary unification type. Journal of Logic

and Computation 25 (2015) 1231–1240.
[19] Jer̆ábek, E.: Rules with parameters in modal logic I. Annals of Pure and Applied Logic 166

(2015) 881–933.
[20] Litak, T., Wolter, F.: All finitely axiomatizable tense logics of linear time flows are coNP-

complete. Studia Logics 81 (2005) 153–165.
[21] Meyer, J.-J., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge

University Press (1995).
[22] Rybakov, V.: A criterion for admissibility of rules in the model system S4 and the intuitionistic

logic. Algebra and Logic 23 (1984) 369–384.
[23] Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier (1997).
[24] Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility problems for

modal and description logics. ACM Transactions on Computational Logic 9 (2008) 25:1–25:20.

Received 16 November 2016317

318

Probabilistic Formal Verification of
Communication Network-based Fault

Detection, Isolation and Service
Restoration System in Smart Grid

Syed Atif Naseem
Izmir University of Economics, Izmir, Turkey.

syedatifnaseem@gmail.com

Riaz Uddin
Department of Electrical Engineering, Faculty of Electrical and Computer

Engineering, NED University of Engineering and Technology, Karachi, Pakistan.

Osman Hasan
Faculty of Engineering, National University of Science and Technology, Islamabad,

Pakistan.

Diaa E. Fawzy
Faculty of Engineering, Izmir University of Economics, Izmir, Turkey.

Abstract
Communication network plays a significant task in distribution system of

smart grid when it comes to sending and receiving the bi-directional flows of
communication data, information and important control messages between the
sending (Intelligent Electrical Device) IED and receiving IED of the components
of smart grid in a coupling network (Power and Communication Network).
Occurrence of fault in the power network does not affect the communication
network because of the introduction of back up battery and power supplies
provided to the main router of communication system. This motivated us to
study the accuracy of the flow of information in the communication network
that gives commands to the power network at the time of fault detection and
restoration etc. In this regard, the major contribution of this paper is (i) to
develop the Markovain model of the FDIR behavior in distribution network of
Smart Grid and (ii) formally verify the model in PRISM model checker tool in

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Naseem, Uddin, Hasan and Fawzy

order to analyze the system (a) accuracy, (b) efficiency and (c) reliability by
developing logical properties in tool. More-over the Markovian model of the (iii)
mechanism of sending/receiving of the data packet (IEEE 802.11 DCF) is also
develop and integrate it with FDIR in PRISM model checker to investigate the
overall system behavior. Another main purpose to construct the probabilistic
Markovian model of FDIR along with communication network is to (iv) analyze
the frequency of fault occurrence in distribution network in terms of probabil-
ity and (v) predict the failure probability of different component of distribution
network in order to take a corrective action, maintenance. So that, the faulty
component can be replaced in advance to avoid the complete failure of system.
Moreover, we also (vi) analyze and predict the probability at which the load
switches of distribution network work properly by making the faulty compo-
nent detach itself upon the occurrence of fault. Finally, (vii) predicting the
probability to recover the system through particular non-active switch is also
analyzed and verified along with the comparison between FDIR model with
wireless communication network and FDIR model with ideal communication
network (such as Ethernet or Fiber-optics) is also analyzed and discussed.

Keywords: FDIR, DMS, Smart Grid, Formal Verification, Probabilistic Model
Checker, PRISM, Wireless Communication Network.

1 Introduction
The conventional electricity networks [1, 2] were developed more than a century
ago when the concepts of power generation and consumption off electricity was not
much complicated (i.e., without high-level automation and communication inputs
etc.). The traditional or existing grids is also called a one way flow of energy where
electricity produced at the centralized generation end increases its voltage through
step up transformer and sends the energy through the transmission line and upon
reaching to consumer end decreases its voltage through step down transformer. It
is difficult for the conventional network to make the grid to fulfill the requirement
of average variation of demand of electricity in the real time period. Up-grading the
traditional electric power grid to the future power grid by accumulating the compo-
nents (such as voltage sensors, current sensors, fault detectors and two ways digital
communication networks etc.) is being done. Therefore, it is possible for the future
grid [3-5] giving a concept of bi-directional flow of energy along with communica-
tion data [6] and control messages of power network in a coupling network. It also
consists of communication technology, sensing and measuring instrument, electric
storage, demand response, renewable energies integration and information technolo-
gies. In addition, it can store the electrical energy in electrical vehicle system [7, 8]
and used it when-ever it is necessary. The renewable energies like bio-mass energy,

320

Probabilistic Formal Verification . . .

solar and wind energy are also integrated into the distribution system of future grid
to fulfill the requirement of high demand of electricity in the 21st century [9].

A. FDIR with Communication Network

Fault detection, Isolation and service restoration system (FDIR) [10, 11] plays
a significant task in the distribution system of smart grid where it finds the exact
location of fault whenever any malfunction occurs due to failure of switches or fault
current. Usually, the first step is to trip off the main circuit breaker of substation;
when protection relay detects the over current exceeding the set value in it. The
IED [12] installed on the circuit breaker sends the FDIR start message (FASM) to
other IEDS installed at load switches to start the process of FDIR which detects
the exact location of fault in order to detach this component from the system and
restore the power system through another Tie switch which were present in a circuit
as a non-active component [10, 11]. Communication network [13-15] plays a very
crucial part in detecting and restoring the power of the substation of smart grid.
As fault occurs in distribution network, the communication network of smart grid
is also separately energized from the backup power battery [16, 17] and the IEDs
of different component present in smart grid starts communicating with each other.
In this regard, the control messages of power devices are sent by the circuit breaker
IED of the substation to the other connected components. If the IEDs of different
component of substation is connected through Ethernet [18] or Fiber optics [13, 19],
then there is a small probability of failure of communication network possibly due
to less delay [20] (in sending/receiving the control signals/messages) as compared
to wireless communication network [21] which not only suffer from large delay of
control messages due to network congestion [12], time consuming message process
[22] and malicious jamming attacks [23] but also depends on weather conditions
which plays the important role in power distribution network in order to avoid the
ultimate cascading failures.

B. Existing Analysis Approaches of FDIR with Communication Network

There are variety of procedures reported for the analyses pertaining to FDIR
in Smart grid system such as integrated with wired communication networks [18,
19] and integrated with wireless communication network [21], which include either
the numerical [24, 25] or simulation based approach [26]. The numerical based
approach is basically dependent on a number of iterative methods that produce
outcome generally based on the purpose of the number of iterations. In contrast,
simulations-based approaches depend on generating the result by taking into account

321

Naseem, Uddin, Hasan and Fawzy

the subset of all possible scenarios of the system. Thus both techniques are scalable
and user friendly but have some limitations to generate the accurate, reliable and
absolute results of the study. Both these techniques cannot take out the whole bugs
while doing the study of the system is due to investigate the models with a subset
of all likely combination and rounding off errors of sampling based approach of the
study. The above mentioned issues in iterative- or simulation-based method also
encourages researchers to use formal methods [27, 28] in the safety critical domain
(whose failure may result in loss or severe damage to human/equipment/property)
which tests the model and taken out the bugs after rigorous verification of the model
through temporal logic specification. Formal methods basically build a Markov
model in a mathematical form which is related to the genuine structure and formally
verify the accuracy of mathematical model with in a computer through temporal
logic specification which in turn increases the probability of finding design errors.
A mathematical model is then translated in to the language of model checker and
LTL, CTL or PCTL property [29] is fed in to model checker along the translated
mathematical model which gives the result true, if the model satisfies the temporal
logic property, otherwise false result with counter example will be given by the model
checker. Basically formal verification of system [27, 30] can be done in three different
ways based on its reason, judgment, self-expression and clarity. Theorem proving,
symbolic simulation and model checking are the three methods often used to verify
the reactive system, stochastic process and mathematically model of suitable reason
[31]. Up till now, a variety of approaches are used to implement FDIR in distribution
system but probabilistic model checker i.e., formal verification of FDIR along with
wireless communication network has never been done before and to support this
claim, a table of related literature is presented below to compare and summarize the
work which have been performed on FDIR of the distribution network.

2 Related work and contribution

To connect the IEDS of different component of smart grid with each other, dif-
ferent communication network such as Ethernet, Wifi, PLC etc., are used and in
this regards, [20] discusses the coupling network of communication network with
power network and analyzes the IEEE test cases (9, 14, 30, 118, 300 Bus case) of
different sizes network with the communication network. The main theme in this
work is to find the probability of communication network failure on two different
timing condition i.e., 3ms and 10ms. It also suggests that the probability of failure
of Ethernet communication network is much lower as compared to wireless commu-
nication network. The work in [43] proposes the multi-hop wireless network with a

322

Probabilistic Formal Verification . . .

Fault Detection, Isolation &
Restoration System (FDIR)
Technique Literature Formal

Reference Verification
Compare centralized & decentralized architecture [32] No
Restoration Scheme [33] No
Decentralized Structure [34] No
Different kinds of Agents to restore power system [35] No
MAS design for restoration [36] No
Integration Of Technique [37] No
Restoration Scheme [38] No
Restoration Scheme [39] No
Substation Restoration Technique [40] No
Shortening of restoration Time [41] No
Monitoring the Limited current [42] No

Table 1: Comparison of FDIR approach with Formal Verification

frequency-reprocess configuration of cellular network and addresses the challenges
to send and receive the huge information in future grid applications. It presents the
planning of system for analyzing the reporting of network and capability. The Work
in [44] describes the wireless smart grid communication system and explain the home
area network in which the sensors are installed in the home appliances and form the
wireless mesh network. The work also inspects the topologies of networking and
wireless data packet simulation result is also shown. In [45], the important issues
on smart grid technologies specifically related to the communication network tech-
nology and information technology network are discussed and provides the present
situation regarding the ability of smart grid communication system. Work in [46]
analyzes the reliability and resilience of smart grid communication network by us-
ing the IEEE 802.11 communication technology in both infrastructure single-hop
and mesh multiple-hop topologies for upgraded meters in a system called Building
Area Network (BAN). Another work in [47] proposes the wireless mesh network
for a smart distributing grid and then analyzed the security framework under this
communication architecture.

Besides the wireless communication network to make a reliable communication
link between the IEDS of different element of the substation of future grid, a vast
number of work is also presented to show that communication of IEDS through
Power line communication is possible and suggests that it is a more reliable medium

323

Naseem, Uddin, Hasan and Fawzy

as compared to other communication technology. In this regard, [48] proposes a
narrow band power line communication (PLC) network for outdoor communication
component from smart meters to data centers on low voltage or medium voltage
power lines in the 3-500 kHz spectrum band. It also presented detailed information
on the different types of interference occurred over the power lines which degrade
the quality of communication system of the smart grid. The work in [49] develops
the iterative algorithm called water filling for PLC system in order to analyze the
multichannel modulation techniques. It also describes the different kinds of noises
available at the PLC channel and the power spectral density phenomenon is used to
represent the intensity of channel noises. In [50], the general model of the broadband
PLC network architecture is presented to connect the high voltage lines, substation
and low voltage lines of the consumer end. It also proposes the algorithm called
recursive to approximate the carrier frequency equalization and its performance is
evaluated through the maximum likelihood approach. Another work in [51] presents
the overview on PLC system from two different standardization bodies i.e., IEEE
and ITU, which presents the similarities and dissimilarities between these two stan-
dards. The paper also gives detailed information on physical layer specification and
Mac protocol of PLC network of both standards respectively. Work in [52] suggested
a solution to integrate two heterogeneous network architectures by combining PLC
with back bone of IP based network. It also discussed the critical issues of en-
ergy management application by highlighting the reliability, availability, coverage
distance, communication delay and security standard of communication network.
Literature in [53] presents a solution to integrate the active management system in
the network infrastructure when number of distribution and generation setups are
involved in the substation of smart grid. It also discussed the standard protocol and
technology of different communication network in terms of data rate, bit error rate
and installation cost of each wired and wireless medium.

Keeping the above issues in iterative- or simulation-based method in mind,
achieving the absolute correctness and system reliability analysis in real world prob-
lem, we become motivated to use the formal methods [27, 28] in the safety critical
domain (whose failure may result in loss or severe damage to human/equipmen-
t/property) which tests the model and takes out the bugs after rigorous verification
of the model through temporal logic specification. Up till now, probabilistic formal
verification of FDIR along with communication network has never been performed
for the study and verification of FDIR classification in distribution network of fu-
ture/Smart grids. However a number of approaches used to implement FDIR in
distribution system but no one performed the probabilistic verification as summa-
rized in the Table 1. On the other hand, above mentioned FDIR approaches in Table

324

Probabilistic Formal Verification . . .

1, section A,B mainly discussed the restoration of fault in distribution network but
they did not give any idea on switching and communication failures (possibly in
terms of probabilities) of FDIR in distribution network with communication net-
works (Ethernet or Wifi), so that some preventive actions may be designed for fast
isolation and restoration of Smart Grid system. This mainly motivated us to analyze
the switching failure of FDIR component along with the failure probability of com-
munication network in order to determine the expected time necessary to recover
a system after the switching fault or communication fault has occurred in FDIR of
smart grid. Furthermore, the above approaches in Table 1 also did not perform any
formal verification on FDIR in their respective system which is important to verify
the switching and communication logics among different components in a distribu-
tion/smart grid. In order to implement our proposed formal verification notion,
(i) a Markovian representation (shown in section VI) of FDIR for an established
Tianjin Electric Power Corporation network [10] is integrated along with a mecha-
nism of sending/receiving the data packet (IEEE 802.11 DCF) (considered as smart
grid). (ii) This Markovian FDIR model is employed in PRISM [54] model checker
tool to formally verify the system accuracy, availability, efficiency and reliability
with wireless communication network. Furthermore, several more important stud-
ies (contributions) such as (iii) the comparison between FDIR model with wireless
communication network and with ideal communication network (such as Ethernet or
Fiber-optics) is performed and (iv) the probability of (a) switching and communica-
tion failures of FDIR in any distribution network / Smart Grid (b) tripping-off the
switch within the limited time period (c) to recover the system automatically within
the least possible time after the occurrence of fault is also predicted and discussed
in detail.

The rest of the paper is organized as follows: Section III presents a summary
on probabilistic model checker (PRISM tool), FDIR behavior and justification of
formal model. Section IV explains the exploitation of an established Tianjin Electric
Power architecture as Smart Grid. Section V discusses the proposed methodology
of modeling FDIR in PRISM. Section VI explains the FDIR model with wireless
communication network. Section VII is dedicated to formal verification of FDIR with
wireless communication network and Ideal communication network. Section VIII
explains the comparison between the FDIR with wireless communication network
and FDIR with Ideal communication network. Section XI concludes the paper with
future research work.

325

Naseem, Uddin, Hasan and Fawzy

3 Preliminaries

In this section, the general summary on the probabilistic model checking and prism
model checker tool [54-56] along with a brief introduction on FDIR is presented that
is later formally verified in this paper. The important interdependent behavior in
fault management scenario of communication network with power network is also
provided. In this regard, it is required to go through some preliminaries as follows:

A. Probabilistic Model Checking

1) What is Probabilistic Model Checking

A classification that exhibits random behavior, probabilistic model checker is
used [55], [56] for the formal study and verification of such system and therefore can
be represented as Markov chains [57].However, depending upon its nature, applica-
tion and usefulness, a system behavior which is probabilistic in nature is represented
as DTMC [58], CTMC [59], MDP [60] and PTA [61], [57]. Fig. 1 shows the working
example of the probabilistic model where every state transition to the other state is
based on the applied probabilities. In DTMC, the present states move to next state
by fulfilling the certain condition with the applied probabilities, whereas in CTMC
the present state transit to next state does not depend only the probabilities to make
such transition but also include the delay before making the transition and move to
the next state. These random delays usually are represented as exponential prob-
ability distributions [57]. MDPs and PTAs are with non-deterministic transitions
whereas DTMCs and CTMC are fully probabilistic transitions.

Once the probabilistic Markov model of the random behavior of system is final-
ized, the verification and analyzing of such system can be done through the prob-
abilistic temporal logic properties of the model checking tool. There are number
of specification language available for probabilistic model checking verification and
some of the specification language is mentioned here i.e., PLTL, CTL and LTL etc.,
[29]. The probabilistic linear temporal logic property along with the Markov model
of the random system which is uttered in the form of prism language i.e., Alur’s
Reactive modules formalism is fed in to the probabilistic model checker tool in order
to check all possible execution by reaching each state of the model and satisfying
the specification by applying the certain condition through temporal logic property.
In addition, PRISM tool [54] supports model checking for every Markov model i.e.,
for DTMC [58], CTMC [59], MDP [60] and PTAs [61]. It is a generic tool and we
found it quite appropriate for our work.

326

Probabilistic Formal Verification . . .

Figure 1: Working of Probabilistic Models

2) PRISM Model Checker

The system which show probabilistic behavior can be analyzed, verified and in-
vestigated through PRISM tool [54], [62]. The Prism model checker is basically
based on probabilistic modeling technique in which the probabilistic performance
of a structure is formulated depends on the reactive modules formalism and then
transformed this probabilistic behavior in to prism language [70]. The Prism tool
has a built-in Simulation tab which is discrete in nature and it can be used for sta-
tistical data analysis. Furthermore, it is designed for the verification of every kind
of Markov processes, i.e., CTMC [59], DTMC [63], MDP [60] and PTA [61]. Details
of how to fed a Morkovian model in prism tool with command in prism language
can be seen in [76].

B. Details of Fault Localization, Isolation and Restoration

1) Fault Detection, Isolation and Supply Restore Behavior in Distribution Net-
work

Whenever the fault occurs in the substation of smart grid due to the malfunction
of transformer or the fault current exceeds the set value, the over current relay of

327

Naseem, Uddin, Hasan and Fawzy

substation trips-off the circuit breaker of that particular substation and the IED
associated to this circuit breaker transmits the alarm message along with ’FDIR start
message’ (FASM) to other load switches IEDs which are connected and controlled
by the IEDs of the circuit breaker of substation. Tie switch which is present in
the substation (but not alive) discard the FASM message by their IEDs. The IEDs
of other load switches which are connected to the substation receive the FASM
message and starts the process of fault localization and check the fault flag status
at the feeder terminal unit (FTU) of load switches. The error flags of load switches
are raised by FTU whenever the protection relay sense the faulty current in the
substation of distribution network and trips-off the CB of the substation. The IEDs
of CB communicates with each IEDs of load switches in order to find the exact
location of fault by checking the fault flags set at the local feeder terminal unit of
the load switches. The IED of circuit breaker synchronizes itself with each IEDs of
load switches by sending and receiving the important control data messages. Once
the fault is determined and the fault flag raised at the FTU of any load switch, the
fault localization process is completed and the IED of that particular load switch
begins the fault isolation process, trips-off the particular load switch and detach this
load switch from the rest of the circuit with in a limited time period and send the
ISOM message to each IEDs of load components (such as switches, circuit breaker,
protection relay) and Tie switches of the feeder of substation in order to restore
the power of substation through Tie switch and start the process of the closing
preparation of Tie switch. Basically the isolation results message (ISOM) sends the
two types of messages i.e., error result of isolation and the plan of restoration of the
power supply of the system. After the completion of fault localization process and
fault isolation process, the supply restoration process starts and its main purpose
is to restore the power supply of substation through Tie switch within the limited
time and connect the Tie switch to core feeder or reserve feeder depending upon the
lesser energy space between each other. If the non-active switch cannot re-establish
the power delivery of substation through main source then it will select the reserve
energy feeder from the faultless energy side of the substation off smart grid.

Fault flags play a significant task in defining the state of each IED of the com-
ponent of smart grid as shown in Fig. 2. Basically there are four possible states to
each IED of the component present in the substation i.e., Fault, Restore, Outage
and Normal and it is given in Fig. 2. During normal operation of substation, all
IEDs of components are in normal state whereas fault flags set IEDs are in outage
state. Whenever the fault occurs in the substation, the over current protection relay
detects the faulty current in a substation and trips-off the circuit breaker, the fault
flags set IED of the associate component which changes its state from normal to
faulty state and the other de-energized section i.e. Tie switches IEDs in the distri-

328

Probabilistic Formal Verification . . .

Figure 2: State of Section

bution network turns into the restore section. The faulty state load switch starts
the process of FDIR and if the isolation process is successful within the limited time
by tripping-off the load switch successfully, then the faulty state status of the load
switch changes into outage state but if the isolation process fails and the load switch
does not trip-off within a limited time then the faulty section will expand and take
more de-energized load switch from restore section and change them into the faulty
section. After completing the process of fault localization and isolation process,
supply restoration service automatically powers the restore section and tries to con-
nect the Tie switch with the other load switches of substation. If the restore switch
is successfully closed within a limited time in the restore section then the state of
restore section turns into the normal state but if the restore switch does not close
and the process is failed then the restore section is changed into the outage state.
When the fault is cleared either automatically or manually in the outage section,
then the outage state changes back to normal state.

2) Behavior of coupling networks when fault is occurred in distribution system

It is of the interest to analyze the interdependent behavior of two coupled net-
work i.e., communication network and power network in a fault management scenario
and discuss each step of network in brief in order to understand the whole working
condition of coupled network when fault occurs on the arrangement as given in Fig. 3.

329

Naseem, Uddin, Hasan and Fawzy

Figure 3: Coupling Network [20]

At the initial stage when time T=to, both coupled network runs normally and
the nodes of communication network communicates with each other normally with
full of reliability and availability. At T =T1, a fault is occurred in the power network
due to faulty current in the substation because of malfunction of transformer and
over-current relay trips-off the main circuit breaker. The IED associated to power
nodes captures the malfunction state and starts sending the alarm messages to all
the nodes connected to it. Since time delay plays a very crucial part in smart grid,
at T= t2 the alarm message propagate in all direction and is received at the receiver
node in three direction within the possible time delay missing the one direction indi-
cated as purple color node. The reason not to reach the particular node within the
time period is because of time consuming message process, malicious jamming attack
and network congestion. Without the expected coordination, the three IEDs which
received earlier the alarm message will not clear the actual fault and the missed IED
node will remain in the same state and will become a fault node to possibly damage
other nearby device. At T =t3 more devices can be damaged due to this alarm
missed IED node and the number of faulty devices may possibly increase. Based on
this situation a reliable communication network is required for the proper operation
of IEDS where probability of failure of communication network is very low such as
in wired system liked Ethernet and Fiber-optics networks but installation cost is
much higher as compare to wireless communication network or PLC network.

3) Justification of the formal model of FDIR with Wireless communication net-
work

330

Probabilistic Formal Verification . . .

The work in [11] overviewed and discussed the fault processing technologies dis-
tribution systems in smart grid and mentioned the fault detection, isolation and
supply restore system due to short circuit occurred. In addition to this it defines
the ground fault processing of the single phase. It describes the principle of the
self-healing control of an open-loop/closed-loop of the distribution system and es-
tablished the simplified model of FDIR system. It defines the standard of distribu-
tion automation system of fault processing depending upon centralized intelligence
together with the master station, sub-station, feeder terminal unit and the com-
munication system through which data is transferred to all controllers of the load
switches. The rule of DAS fault processing program, fault isolation program and ser-
vice restoration program are also illustrated in the book. In addition, the approach
[10] gives the principle and flow chart of the complete process of fault localization,
isolation and supply restoration system of the distribution network of Future Grid.

The Literature in [64-67] describe the principle and standard of the IEEE 802.11
DCF. We are now interested to analyze that how the switches, circuit breaker and
relays of smart grid communicates with each other wirelessly by sending and receiv-
ing the important messages of FDIR algorithm in smart grid after the occurrence
of fault and performed their function properly in least possible time with accuracy.
Therefore, we developed the Markovian model of the basic access mechanism of the
IEEE802.11 DCF (see Fig.11) along with receiving station of wireless communica-
tion system and then integrate the model with the overall model of FDIR in order
to formally verify the model in prism model checker through temporal properties to
predict and analyze the failure probability of the certain component of the substation
of smart grid.

4 Tianjin electric power architecture

A radial distribution system of Tianjin Electric Power Corporation [10] is given in
Fig. 4 along with IEDs connected to each component of the distribution system.
The overview on china’s smart grid can be found in literature [68-70] and Tianjin
Eco city is one of the pilot project of smart grid where integration of the necessary
component of smart grid is demonstrated and accomplished in 2011. In this way, this
Tianjin Electric Power architecture along with communication IEDs is considered
as Intelligent/Smart Grid. The IEDs of associated component is wired connected
(Ethernet) to other IEDs of the component of substation in order to send and receive
the control messages of power network. The distribution system of Tianjin Electric
Power Architecture is basically consist of four feeders in which the substation A
carries the feeder represented as 101 and substation B carries the feeder named as

331

Naseem, Uddin, Hasan and Fawzy

102 while the substation C carries two feeders named as 103 and 104. Each feeder
of the substation has a circuit breaker which is controlled through the over-current
protection relay. To communicate the circuit breaker, over current protection relay
and load switches of substation, Intelligent Electrical Device (IED) is installed on
each element of the future grid. The switches present in the distribution network are
load switches which are operated and controlled through IEDs and feeder terminal
unit (FTU) also connected with every load switch to define the status of the load
switch through various flags. The IED of circuit breaker implements the FDIR
process by sending the alarm message along with FASM messages to each IEDs of
load switch. When the error occurs in the substation of the distribution network,
the protection relays of circuit breaker is energized and trip-off the circuit breaker
and sending the FASM message to each load switches of the substation. The IED
installed on each load switches starts the process of FDIR by checking the fault flags
in each feeder terminal unit of load switches. The switches around faulty section
is tripped-off for some time in order to isolate the fault by detaching the faulty
load switch from the circuit and restore the substation through tie switches which
is located at the non-faulty section of substation. The embedded software of IEDs
of each load switch sends the information together with the voltage, current, power,
position and fault flags status to the other IEDs of circuit breaker and relays. The
IED of each component is also synchronized itself with the neighboring IED in order
to send and receive the data and perform its function properly.

5 Proposed methodology

For proper execution of FDIR process in smart grid, some general requirement should
be met. The proposed formal verification methodology for fault detection, isolation
and recovery system along with wireless communication network is depicted in Fig.
5 and each block of proposed methodology are explain below:

A. Modeling FDIR Algorithm in Prism

The proposed method can be used to verify and study the probabilistic Markov
model of FDIR along with wireless communication network in PRISM model checker
[54]. The Markov model of FDIR and wireless communication network consists
of circuit breaker, protection relay, IEDs, Wireless communication network, Load
switches and feeder terminal unit. From the Nordel statistics [71], the realistic
values of failure probabilities of components in substation are taken for all kinds
of faults occurring (due to Power Transformer, Instrument Transformer, Circuit

332

Probabilistic Formal Verification . . .

Figure 4: Tianjin Electric Power Network showing Wireless Communication Link

Figure 5: Proposed Methodology

333

Naseem, Uddin, Hasan and Fawzy

Breaker, Disconnector, Surge Arresters and spark Gap, Bus bar, Control equipment,
Common ancillary equipment, and other substation faults) in a substation during
the years (2000-2007). In this regard, we have selected the worst case of 0.476
failure probability of all the components of substation of Norway Country among
other Nordic Countries to be used for the Tianjin Electric Power System. More
specifically, 0.316 failure probability of control equipment (i.e., IEDs) and 0.023
failure probability of load switches (i.e., disconnector and Ancillary equipment) are
taken as a reference failure probabilities from [71] to be used in Eq. (1) for the
calculation of the overall failure probabilities of components and IEDs which comes
out to be 0.6415.

PFDIRCC = (PFDIR+ PCC)− (PFDIR ∗ PCC) , (1)

Where PFDIRCC is the overall failure probability of the system PFDIR is the
FDIR component failure probability PCC is the control and communication com-
ponent (IED) failure probability Similarly, [20] presented and derived the realistic
values of probabilities of failures of alarm message transmission to load switch IED
within the specified time (e.g., 3ms for 9 bus system). To cater realistic scenario,
we have considered our network to be a 9 - bus system whose failure probability is
found to be 0.57 (57The following step allows us to model the FDIR process with
communication network in PRISM tool.

1) Identifying Modules

The first step to construct the Markov model of any system is to identifying
and defines the number of modules present in the whole process. FDIR process
along with wireless communication network of the substation basically consists of
five modules in which three modules define the FDIR complete process where as
two modules will construct the wireless communication network. Each module of
the whole process consists of number of states and these states of each module tran-
sit to another state by satisfying the condition of augmented probabilities.

2) Identify Variable

Unique Variables are initialized by giving its data type in each modules of FDIR
along with wireless communication network which can be used in other modules of
the whole system by sharing its data. The variables in each module act as a global
variable and therefore can be used in other module of the system.

334

Probabilistic Formal Verification . . .

Figure 6: Simulation Result of FDIR Behavior along Wireless Communication Net-
work

B. Functional Verification using Simulation

One of the most significant benefit of using PRISM tool [54] is that it has a built-
in simulation tablet which is useful to check and simulate the model first and take
out the bugs in the initial state before going to formal verification process which is
exhaustive and time consuming. The main concept is to construct the probabilistic
model in PRISM language and then compiled it in order to check the errors. Once
the error has taken out from the model with the help of built-in simulator of prism
model checker tool, then we can verify the model through probabilistic temporal
logic property. The simulator of PRISM model checker manually check the model
step by step and often detect some critical errors in the initial state which can be
corrected in the model at this stage before assigning the temporal logic property in
the model as shown in Fig.6.

C. Formal Function Verification

As illustrated in Fig. 5, after completing the process of simulation and now we
need to test the model by applying certain condition in the form of probabilistic
specification in PRISM model checker and verify the model rigorously and exhaus-
tively. We are interested to develop the following temporal logic property to check

335

Naseem, Uddin, Hasan and Fawzy

and verify the FDIR model along with wireless communication network.

1) Deadlock Freedom

It is of the interest to verify our FDIR model through Deadlock freedom property
which is very essential to find the bugs in the model at the initial state. Deadlock
is a very important check for any system, which defines that the algorithm is per-
forming well. It basically reaches to every state of the model and checks whether
this state of model will move further or remain at the present state.

2) Fault Localization Model Turned On

This property will ensure that when the fault localization process is going on and
simultaneously the controller of switches and circuit breaker communicates with each
other in order to find the exact location of fault in the substation of Smart Grid,
the other process of FDIR will remain idle and switch off and we will verify this by
assigning the property in our model.

3) Fault Isolation Model Turned On

When the fault isolation process begins, the others process of FDIR will remains
in an idle position. The objective of the fault isolation process is to detach/trip the
faulty component of FDIR with in the short possible time and we are interested to
verify this through temporal logic property.

4) No Two Process run at same time

To avoid malfunctioning, no two process of FDIR will run at the same time. This
is very important as the output of one process is required by the second process to
perform its task properly. We need to verify this by assigning the temporal property
in the model.

5) Restoration Model should not take more than 60 sec

The proposed model is developed in such a way that it will take a least possi-
ble time to restore the power supply of the substation of the distribution network
through non faulty zone and we will verify this by assigning the appropriate prop-
erty in our model.

336

Probabilistic Formal Verification . . .

6) To find the probability that fault will occur in switch no. 1 of the system

As Prism is a probabilistic model checker, we are interested to find the proba-
bility at which the fault will occur on switch no. 1 of the distribution system and
fault flag 1 is high after the completion of the process of fault localization. We need
to develop the probabilistic property in order to get the probability that switch 1 is
the faulty switch.

7) To find the probability that fault flag 2 is high in switch no. 2

It is of the interest to find the probability at which the fault flag 2 is high on
load switch 2 after the completion of the fault localization process. We will verify
this by assigning the probabilistic property in our model.

8) To find the probability that switch no. 2 trip off at the limited time

Find the probability at which any switch trip off with in the limited time when-
ever it gets the ISOM message is very important. In this regard, we need to verify
the FDIR model through this probabilistic property. Therefore, switch no. 2 is
taken as a reference to find the probability at which it will be tripped-off from the
circuit.

9) To find the probability to recover the system through switch no. 3

It is of the interest to find the probability at which the system is recovered by Tie
switch. As this is very essential property, switch no. 3 is dedicated as a recovery or
Tie switch in order to find the probability at which it will recover the FDIR model
of the smart grid after the occurrence of fault.

10) Finding probability of CB’s IED transmitting the data
In the end, the probability is found at which the IED of circuit breaker sends the
data to another IED of load switches. We develop the temporal logic property and
fed into model checker to find the probability at which IED sends the data.

6 Markov model

To analyze the behavior of FDIR in PRISM [54], it mainly involves three modules
i.e. fault detection, isolation and service restoration system and the model of FDIR

337

Naseem, Uddin, Hasan and Fawzy

behavior is selected as DTMC [63, 72-74]. The first step is to initialize the variables
in PRISM tool and translate the Finite State Machine (FSM) i.e., Markov chain
into PRISM language. After modeling the behavior of FDIR in PRISM tool, we
need to compile it and test its functionality. It is good to perform the simulation
first in order to find many unpredicted errors or bugs in the models before formal
verification. With the purpose of staying away from the ’state space explosion’ in
formal verification approach [54], we apply the abstraction on the whole system and
verify the FDIR behavior on substation A along with three load switches. Other
substation of Tianjin electric power corporation is also connected with three load
switches where FDIR algorithm is running in order to detect and restore the system.
The Probabilistic model of FDIR and wireless communication network along with
the brief description of each module is given below:

A. Fault Detection Model

In Markov model of Fig. 7, all variables and constants are initialized in the
Loc_State′ = 1 as explained in Fig. 8. The fault permit probability (0.476) is
initially taken from the Nordel analysis of Norway country as explained in section
V.A. The Tianjin distribution network runs smoothly until the permanent fault
(Fl_permit) does not occur. There are two possibilities (1) When the fault occurs
due to switching failure of distribution network (with the probability fl_permt =
0.476), the FDIR process starts at Loc_State′ = 2 using ideal communication
medium. (2) When the fault occurs due to IED plus switching failure of distri-
bution network (with the probability fl_permt = 0.64158) the FDIR process starts
at Loc_State′ = 2 using wireless communication medium. As the fault current
exceeds the maximum value in Loc_State′ = 2 with probability =1, the protection
relay sense this faulty over-current and trip the circuit breaker. The circuit breaker
IEDs/controller is activated and sends the FASM message along with ACMP mes-
sage to its connected load switches IEDs in the Loc_State′ = 3. To send the data
packet with probability 1, it uses the parameters of FHSS i.e., frequency hopping
spread spectrum [64-67] as a physical layer to send and receive the data at a trans-
mission bit rate of 2 Mbps. Due to weather condition, delay and noisy environment,
0.43 is the probability [20] that each load switch controller received the FASM and
ACMP message correctly without any delay and distortion. Once the load switches
receive this signal, it initially checks whether it is a Tie switch or not. If it is not a Tie
switch, fault processing start and check the fault flag status (Fl_flg) in the Feeder
terminal unit. If Fl_flg status is active then this is the faulty switch otherwise it
forward the FASM and ACMP messages to another load switches. If fault location
does not find in any load switches, then the FASM message will be discarded and

338

Probabilistic Formal Verification . . .

send back to circuit breaker controller (Loc_state′ = 3).

B. Fault Isolation Model

After completing the process of fault detection and finding the fault flags in the
particular load switch, the fault isolation process starts in order to isolate this faulty
load switch from the rest of the network as shown in Fig. 9. The variables and con-
stants are initialized in the Iso_State′ = 1 as explained in Fig. 10 of Fault isolation
model. In Iso_State′ = 2, 0.977 is the probability [71] that the load switch trip off
with in the limited time with-out any delay. If the load switch trips-off, the isolation
is successful and send the ISOM message to the other load switches indicating the
faulty section and starts the process of closing preparation in the restoration section
through Tie switch within the limited time. On the other hand if the load switch
does not trip-off within the limit time (0.023 probability) [71], the isolation fails
by sending the ISOM message and expands its faulty area by including more de-
energized switch from the restore section with control switch ID=0. It is necessary
for the Tie switch to receive the ISOM message at the time of closing; otherwise it
cancels the process of closing preparation of the Tie switch.

C. Supply Restoration Model

In Rest_State′ = 1, variable and constants are initialized as defined in the Fig.
12 of the supply restoration model. The Tie Switch receives the ISOM message with
a probability of 0.43 [20], starts the reclosing process with probability of 0.977 [71]
and issues the RESM message to its neighboring switches. But if it fails to receive
the ISOM message (failure probability 0.57) [20] or reclosing (failure probability
0.023) [71], it issues the RESM message by putting Tie switch ID=0 and develops
a new restoration scheme with another Tie switch. ISOM message compares the
actual load needed with the available power source and sends the restoration policy
to all the Tie load switches connected with it.

D. IEEE 802.11 DCF of Basic Access Mechanism

Approaches [64-67] describe the principle and standard of the IEEE 802.11 DCF.
We are interested to analyze that how the switches, circuit breaker and relays of
smart grid communicates with each other wirelessly by sending and receiving the
important messages of FDIR algorithm in smart grid after the occurrence of fault and
performed their function properly in least possible time with accuracy. We developed
the Markovian model of the basic access mechanism of the IEEE802.11 DCF along

339

Naseem, Uddin, Hasan and Fawzy

Figure 7: Fault Detection Model

340

Probabilistic Formal Verification . . .

Figure 8: Fault Detection Model Parameters

Figure 9: Fault Isolation Model

341

Naseem, Uddin, Hasan and Fawzy

Figure 10: Fault Isolation Model Parameters

Figure 11: Supply Restoration Model

Figure 12: Supply Restoration Model Parameters

342

Probabilistic Formal Verification . . .

with receiving station of wireless communication system and then integrate the
model with the overall model of FDIR in order to formally verify the model in PRISM
model checker through temporal properties and analyze the failure probability of the
certain component of the substation of smart grid. In our model, we take circuit
breaker IED of substation of smart grid along with three load switches IEDs of
the distribution network and construct the Discrete Time Markov Chain (DTMC)
of these four IEDs in which substation IED sends the fault messages to each load
switch connected to it. To send the data packet with probability 1, it uses the
parameters of FHSS i.e., frequency hopping spread spectrum as a physical layer to
send and receive the data at a transmission bit rate of 2 Mbps. With probability
0.43 at 3ms delay, all the data packets are sent and received by switches and circuit
breaker of the smart grid. The probability 0.43 through which circuit breaker IED
can send the data, if the channel is open, the sender sends the data and enter into
vulnerable period where back-off value (a random number generator) is ’0’ and if the
channel is not free the station enters into random period where it waits for back-off
value reaching to ’0’in order to send the data. The total instance for sending the
data can be varied i.e., non deterministic. If the data packet is sent by the sender
is successfully received at the receiving end then it waits for the acknowledgement.
After getting the acknowledgement, the sender checks the value of back-off, if it is
’0’ then the sender sends the another data packet but if back-off value is not ’0’, it
will wait till the back-off value reaches to 0 in order to send the data packet again.

The sender waits 200 µs, if it receives the acknowledgement, it means the data
packet sent accurately otherwise the time-out occurs and it enter into the random
process where the sender waits for the medium to check a back-off value reaching
to ’0’ in order to resume its transmission by sending again the data packets. The
back-off value only reaches to ’0’ when the channel is idle for certain instances and
if the channel is active by sending and receiving the data packets of another station,
the back-off decreasing value is stopped and wait for a channel to be free in order
to decrease its value and reaches to ’0’ so that the sender can send and receive the
data packets with another station. The new Markovian model of the IEEE 802.11
DCF is developed and is given in fig. 13.

E. Receiving Station Markovian Model

The new Discrete Time Markovain model (DTMC) of the receiving station for
the wireless system is developed by considering the three elements in which the
state transition occurs from one state to another state with probability 1. Again,
0.43 is the probability at which each receiving station waits for the data packet to
receive. If the data packets received accurately then it wait for SIFS and send the

343

Naseem, Uddin, Hasan and Fawzy

Figure 13: Basic Access Mechanism of IEEE 802.11 DCF

Figure 14: Basic Access Mechanism of IEEE 802.11 DCF Parameter Explanation

344

Probabilistic Formal Verification . . .

Figure 15: Receiving Station of the Wireless System

Figure 16: Receiving Station of the Wireless System Parameters

acknowledgment but if the data packet does not receive correctly (0.57 probability),
the receiving station do nothing. The probabilistic Markovain model of receiving
station is given below in Fig. 15.

F. Integration of FDIR model with Wireless Communication model via Prism
Model Checker.

Approach in [75] defines the rule to add two different probabilities of independent
events. As communication network has a backup power battery, the power failure
of substation will not affect the communication network. Thus, from Eq. (1), the
failure probability of communication network (PCC=0.316) can be added up with

345

Naseem, Uddin, Hasan and Fawzy

the failure probability of power network (PFDIR=0.476) by subtracting the joint
probability of coupling network (PFDIR * PCC=0.150) with the purpose of getting
the whole failure probability (Components + IED) of the Smart Grid system to be
(PFDIRCC=0.641584).

7 Formal function verification of FDIR with wireless
communication network

In this section, we will put a number of properties in PRISM [54] in order to verify
the model formally. In this regard, following important properties fed into the model
checker.

A. Property Verification of FDIR with Wireless Communication through PRISM

Property 1: Dead Lock freedom

A desired characteristic of FDIR process is that it never gets stuck in particular
position which can be checked by ensuring the deadlock freedom property for the
FDIR behavior. Therefore, the deadlock freedom property can be applied for this
verification with the purpose that every state of model is reachable.

E[F deadlock]
The temporal operator “E” represents eventually in the future and F represents
the value true always if the deadlock occur on the system. The deadlock freedom
property checks the whole model in PRISM tool and gives us the result that the
algorithm was found to be deadlock free showing result as ‘false’, meaning that there
is no deadlock in the model. In our case study, the dead lock property checks the
(0-14) states of fault localization process, (0-16) states of Isolation process and (0-
19) states of restoration process and found that all states are deadlock free. Fig.
20 shows the verification result of the property (from PRISM) which is available in
Appendix.

Property 2: Fault Localization Model Turned On

When the fault localization process is going on and the controller of circuit
breaker communicates with each controller of switches, with the intention to find
the exact position of the fault, the isolation process and restoration process should
be ‘off’. Now, we can verify this by putting the below mentioned property in our
model.

346

Probabilistic Formal Verification . . .

A[FLoc_state = 0&iso_state = 1&rest_state = 0]

Where temporal operator “A” represents always and “&” represents conjunc-
tion and symbol “F” will always be true when fault current equals to 1 and send
the FASM message to each load switch to start the fault localization process. The
PRISM tool verified this property by giving the result ‘true’ i.e., when the process
of fault localization is continue, the other two process (Isolation and Restoration)
is turned off. The result of this property is shown in Fig. 21 which is available in
Appendix.

Property 3: Fault Isolation Model Turned On

When the fault isolation process is going on and the controller of circuit breaker
tries to trip off the switch as well as isolate this switch with the other connected
switches, relays or component of Smart Grid, it is necessary that the fault localiza-
tion process and the restoration process should be turned off and we can verify this
by assigning the below mentioned property in our model.

A[Fiso_state = 1&!rest_state = 1&!Loc_state = 1]

The prism tool verified this property by giving the result ’true’ i.e., whenever
switches, relays or any other component of Smart grid trying to isolate itself with
the other connected component, the other two process will remain in idle position
and will start only once the fault isolation process finishes off. The result of this
property is shown in Fig. 22.Available in Appendix.

Property 4 : No Two Process Run At same Time

Another most important property to verify in our model is that the two process
will not start at the same time. This can be verified by putting the below mentioned
property

A[FLoc_state = 1&(!(iso_state = 1&rest_state = 1))|iso_state = 1&
((Loc_state = 1&rest_state = 1))|rest_state = 1&
((Loc_state = 1&iso_state = 1))]

The PRISM tool verified this property by giving the result true and in this way
the two processes, fault localization or fault isolation or restoration system will not
be started and perform their function at the same time. The result of this property
is shown in Fig. 23.

347

Naseem, Uddin, Hasan and Fawzy

Property 5: Restoration Model should not take more than 60 seconds

The restoration process of the substation of smart grid will start after the fault
localization and fault isolation process completed successfully and within 60 s it will
complete its process by restoring the substation through the Tie switch.

A[Frest_state = 0&time2 <= 60]

The notation represents that “A” always now and in the future, the restoration
process starts at restoration state= 1 will take only 60 sec time with probability 1 to
recover the system will always be true by symbol “F". The PRISM tool verified this
property by giving the result true and in this way restoring model will not take more
than 60secs in restoring the power of the Smart Grid. The result of this property is
shown in Fig.24.

B. Finding Probabilities of FDIR with Communication Network through PRISM

Property 6: To find the probability that fault will occur in switch no. 1 of the
system

It is important to find the probability at which the fault will occur on switch no. 1
of the distribution system after integrating the failure probability of communication
system with the FDIR model. The fault flag 1 is high after the completion of the
process of fault localization. We developed the probabilistic property in order to
get the probability that switch no. 1 is the faulty switch. Result 0.212 is obtained
probability by the Prism tool that fault will occur at switch no. 1.The syntax and
the result of the temporal logic property is given in Fig 25.

P =?[trueU(Loc_state = 11)]
True always hold probability until locstate 11 hold probability.

Property 7: Probability of fault flag 2 is high in switch no. 2

It is of the interest to find the probability at which the fault flag 2 is high on load
switch no. 2 after the completion of the fault localization process. We developed the
probabilistic property and assign on the FDIR model in order to get the probability
of fault flag high on switch no. 2. The syntax and result of the probability is shown
in Fig. 26

P =?[trueU(Loc_state = 12)]
The PRISM tool results with the 0.349 probability at which the fault flag is high

at load Switch no. 2, which can be seen in Fig. 26.

348

Probabilistic Formal Verification . . .

Property 8: Probability that Switch no. 2 trips off within a limited time

It is also required to find the probability at which any switch trips- off within
the limited time whenever it gets the ISOM message. We have taken Switch no.
2 as a reference in order to find the probability at which it will trips-off properly.
We developed the temporal property and apply on FDIR model. Then, the Prism
model checker has given us the probability of 0.427. The syntax and result of the
Prism model checker is shown in Fig. 27

P =?[trueU(iso_state = 12)]
True always hold probability until the isolation state=12 hold probability.

Property 9: Probability to recover the system through Switch no. 3

Now, finding the probability at which the system is recovered by Tie switch is
performed in PRISM. As this is very essential property, we take switch no. 3 as a
recovery or Tie switch in order to find the probability at which it will recover in
the FDIR model of the smart grid after the occurrence of fault and integrating the
communication system failure probability. The PRISM model checker has given us
the probability of 0.0918 at which it will restore the system through switch no. 3.
The syntax and result of the prism model checker is given below in Fig. 28.

P =?[trueU(rest_state = 32)] True always hold probability until the restoration
state=32 hold probability.

Property 10: To find the probability that IED of CB transmit the Data

Let’s find another important probability at which the IED of circuit breaker
transmit the data to the other load switches. We develop this property and assign
on FDIR model with wireless communication system in order to get the probability
of sending the data by IED of circuit breaker. The syntax and result of the property
is given below in Fig. 29.

P =?[trueU(Com_State = 25)]

C. Formal Function Verification of FDIR with Ideal communication medium

Literature [20] discusses the communication failure probability in different IEEE
test cases and suggest that the communication failure probability of wired system
such as Ethernet, Fiber-optics network is very low compared to wireless communi-
cation system and PLC network. Due to lower failure probability of Ethernet and

349

Naseem, Uddin, Hasan and Fawzy

fiber-optics communication network, we are integrating the FDIR model with these
ideal communication networks by assuming and neglecting the failure probability of
wired communication system and then formally verify the FDIR model along with
ideal communication system and analyze the failure probability of different compo-
nent of substation.

Property 1: To find the probability that fault will occur in Switch no. 1 of the
system

The probability at which the fault will occur on switch no. 1 of the distribution
system can be found, in which fault flag 1 is high after the completion of the process
of fault localization. We developed the probabilistic property in order to get the
probability that switch no. 1 is the faulty switch 0.197 is the probability given by
the Prism tool that fault will occur at switch no. 1 .The syntax and the result of
the temporal logic property is given below in Fig. 30.

P =?[true U(Loc_state = 11)]

Property 2: Probability that fault flag 2 is high in switch no. 2

Now, we find the probability at which the fault flag 2 is high on load switch no.
2 after the completion of the fault localization process. We develop the probabilistic
property and assign on the FDIR model in order to get the probability of fault flag
high on switch 2. The syntax and result of the probability is shown below in Fig.
31.

P =?[trueU(Loc_state = 12)]
The Prism tool gives the probability result of 0.3456 at which the fault flag is

high at load switch no. 2.

Property 3: Probability that switch no. 2 trip off at the limited time

Now, it is required to find the probability at which any switch trips-off within
the limited time whenever it gets the ISOM message. We have taken switch no. 2
as a reference in order to find the probability at which at will trip off properly. We
developed the property and apply on FDIR model. The Prism model checker has
given us 0.446 probability at which the switch no. 2 trip off properly at the limited
time. The syntax and result of the Prism model checker is shown below in Fig. 32.

P =?[trueU(iso_state = 12)]

Property 4 : Probability to recover the system through Switch no. 3

350

Probabilistic Formal Verification . . .

Figure 17: Comparison of Probabilities for Failure of Components

Now, we find the probability at which the system is recovered by Tie switch.
As this is very essential property, we take switch no. 3 as a recovery or Tie switch
in order to find the probability at which it will recover the FDIR model of the
smart grid after the occurrence of fault. The Prism model checker has given us the
probability of 0.0959 at which it will restore the system through switch no. 3 as
shown in Fig. 33.

8 Comparison of FDIR with ideal communication
medium versus FDIR with wireless communication
medium

In this section, a valuable comparison done to analyze the failure probabilities of load
switches when FDIR connected to ideal communication medium such as Ethernet or
Fiber optics medium versus FDIR connected to the wireless communication medium.
From graphs, it can be observed that the failure probability of load switches when
FIDR connected to ideal communication medium is slightly less as compared to
FDIR module integrated in to the wireless communication medium. The failure
probability of components in FDIR with ideal communication system ranges from
0.192 to 0.456 where as in wireless communication network with FDIR the ranges
extend from 0.212 to 0.437. The comparison graph of two different medium with
FDIR module is given below in Fig. 17.

351

Naseem, Uddin, Hasan and Fawzy

Figure 18: Components Tripping off Probabilities

Figure 18 depicts the probabilities of tripping off load switch within the limited
time in order to isolate the load switch from the system. We compare and ana-
lyze the probability of tripping off load switches when FDIR module integrated to
an ideal communication medium (like Ethernet and Fiber optics medium) versus
the FDIR model connected to wireless communication medium. The FDIR with
ideal communication system, the Probabilities lies between 0.192 to 0.446 where
as in FDIR with wireless communication system, the probabilities lies between the
0.207 to 0.4274. Fig. 18 also shows the comparison result of two different medium
integrated with FDIR.

Figure 19 shows the overview on the probabilities of different load switches to
recover the system. We compared and analyzed the probabilities of different load
switches in order to recover the system when FDIR model integrated with ideal com-
munication medium against the FDIR model connected to wireless communication
medium. The probabilities to recover the system in ideal communication system
with FDIR ranging from 0.0726 to 0.0959 whereas in wireless communication sys-
tem with FDIR, the probabilities lies between the 0.0312 to 0.0734. The comparison
of two different mediumwith FDIR model can also be seen from Fig. 19 below.

9 Conclusion

The probabilistic Markovian model (DTMC) of FDIR behavior in distribution net-
work of Smart Grid has been successfully developed along with the Markovian model
of IEEE 802.11 DCF and integrate it in PRISM model checker in order to verify
the whole system and analyze its accuracy, efficiency and reliability by developing

352

Probabilistic Formal Verification . . .

Figure 19: Load Switch Restoration Probabilities

and applying the logical properties in the model. More-over failure probabilities of
different component of distribution network in smart grid is predicted when FDIR
is connected with wireless communication system and wired communication system.
Similarly, we also analyze and predicted the probability at which the load switches
of distribution network work properly by making the faulty component detach itself
upon the occurrence of fault in wireless communication network as well as wired
communication network. More over we also predicted the probability to recover
the system through particular non-active switch in wired and wireless communica-
tion network. In addition, we also analyze and concluded that restoration process
of FDIR will not take more than 60s to restore the power of distribution network
of this Smart Grid. Moreover, no malfunction will occur as verified (via PRISM)
that two processes will not run at the same time. In the same way, all together
ten important probabilistic properties are verified and significant probabilities are
predicted to analyze the performance of the Smart Grid Model. Finally, some im-
portant comparison results are obtained and discussed when FDIR connected with
ideal communication medium as compared to FDIR connected with wireless com-
munication network, which clearly showed ideal communication network has less
failure probabilities in Smart Grid.

353

Naseem, Uddin, Hasan and Fawzy

Appendix

Figure 20: Property of Dead Lock Freedom

Figure 21: Property of Fault Localization Model

354

Probabilistic Formal Verification . . .

Figure 22: Property of Fault Isolation Model

Figure 23: Property of No-Two-Process Run at Same Time

355

Naseem, Uddin, Hasan and Fawzy

Figure 24: Property of Restoration Model should not take more than 60

Figure 25: Fault Occurrence Probability of Switch # 1

356

Probabilistic Formal Verification . . .

Figure 26: Fault Flag 2 Probability of Switch # 2

Figure 27: Probability of Switch # 2 Tripping-off within the limited time

357

Naseem, Uddin, Hasan and Fawzy

Figure 28: Probability to recover the system through Switch # 3

Figure 29: Probability to send the data by IED of CB

358

Probabilistic Formal Verification . . .

Figure 30: Probability that Switch # 1 is the Faulty Switch

Figure 31: Probability that fault flag 2 is high in switch # 2

359

Naseem, Uddin, Hasan and Fawzy

Figure 32: Probability that switch # 2 trip off at the limited time

Figure 33: Probability to recover the system through Switch # 3

360

Probabilistic Formal Verification . . .

References

[1] V. Mehta and R. Mehta, “Principles of power system,” S. Chand, New Delhi, 2004.
[2] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control vol. 7:

McGraw-hill New York, 1994.
[3] E. Platform, “Vision and strategy for europes electricity networks of the future,” Eu-

ropean SmartGrids Technology Platform, Tech. Rep, 2006.
[4] H. Farhangi, “The path of the smart grid,” IEEE power and energy magazine, vol. 8,

2010.
[5] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid-The new and improved power

grid: A survey,” IEEE communications surveys & tutorials, vol. 14, pp. 944-980, 2012.
[6] N. Framework, “Roadmap for Smart Grid Interoperability Standards, Release 1.0, Of-

fice of the National Coordinator for Smart Grid Interoperability,” Director, 2010.
[7] S. Biradar, R. Patil, and M. Ullegaddi, “Energy storage system in electric vehicle,” in

Power Quality’98, 1998, pp. 247-255.
[8] M. Hannan, M. Hoque, A. Mohamed, and A. Ayob, “Review of energy storage systems

for electric vehicle applications: Issues and challenges,” Renewable and Sustainable
Energy Reviews, vol. 69, pp. 771-789, 2017.

[9] M. Liserre, T. Sauter, and J. Y. Hung, “Future energy systems: Integrating renew-
able energy sources into the smart power grid through industrial electronics,” IEEE
industrial electronics magazine, vol. 4, pp. 18-37, 2010.

[10] W. Ling and D. Liu, “A distributed fault localization, isolation and supply restoration
algorithm based on local topology,” International Transactions on Electrical Energy
Systems, vol. 25, pp. 1113-1129, 2015.

[11] J. G. Liu and X. Zhang, Fault Location and Service Restoration for Electrical Distri-
bution Systems: John Wiley & Sons, 2016.

[12] X. Lu, Z. Lu, W. Wang, and J. Ma, “On network performance evaluation toward
the smart grid: A case study of DNP3 over TCP/IP,” in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, 2011, pp. 1-6.

[13] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in
smart grid,” Computer Networks, vol. 55, pp. 3604-3629, 2011.

[14] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication
infrastructures: Motivations, requirements and challenges,” IEEE communications sur-
veys & tutorials, vol. 15, pp. 5-20, 2013.

[15] E. M. Rogers and D. L. Kincaid, “Communication networks: Toward a new paradigm
for research,” 1981.

[16] “Cisco, “Connecting cables to cisco 3800 series routers," http://www.cisco.com/en/
US/docs/routers/access/3800/hardware/installation/guide/38cable.html#
wp10084492009.

[17] “Grass Valley, Trinix - digital video router back-up power supplies,” http://www.
grassvalley.com/docs/Manuals/routers/trinixnxt/071-8443-02.pdf2009.

361

Naseem, Uddin, Hasan and Fawzy

[18] J.-D. Decotignie, “Ethernet-based real-time and industrial communications,” Proceed-
ings of the IEEE, vol. 93, pp. 1102-1117, 2005.

[19] G. P. Agrawal, Fiber-optic communication systems vol. 222: John Wiley & Sons, 2012.
[20] X. Lu, W. Wang, J. Ma, and L. Sun, “Domino of the smart grid: An empirical study

of system behaviors in the interdependent network architecture,” in Smart Grid Com-
munications (SmartGridComm), 2013 IEEE International Conference on, 2013, pp.
612-617.

[21] T. S. Rappaport, Wireless communications: principles and practice vol. 2: prentice hall
PTR New Jersey, 1996.

[22] X. Lu, W. Wang, Z. Lu, and J. Ma, “From security to vulnerability: Data authentica-
tion undermines message delivery in smart grid,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011-MILCOM 2011, 2011, pp. 1183-1188.

[23] Z. Lu, W. Wang, and C. Wang, “From jammer to gambler: Modeling and detection of
jamming attacks against time-critical traffic,” in INFOCOM, 2011 Proceedings IEEE,
2011, pp. 1871-1879.

[24] W. H. Tang and A. Ang, Probability Concepts in Engineering: Emphasis on Applica-
tions to Civil & Environmental Engineering: Wiley, 2007.

[25] R. Haverkamp, M. Vauclin, J. Touma, P. Wierenga, and G. Vachaud, “A comparison
of numerical simulation models for one-dimensional infiltration,” Soil Science Society
of America Journal, vol. 41, pp. 285-294, 1977.

[26] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization
methods applied to building performance analysis,” Applied Energy, vol. 113, pp. 1043-
1058, 2014.

[27] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future directions,”
ACM Computing Surveys (CSUR), vol. 28, pp. 626-643, 1996.

[28] A. Diller, Z: An introduction to formal methods: John Wiley & Sons, Inc., 1990.
[29] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking: MIT press,

2008.
[30] J. M. Wing, “A specifier’s introduction to formal methods,” Computer, vol. 23, pp.

8-22, 1990.
[31] O. Hasan and S. Tahar, “Formal verification methods,” in Encyclopedia of Information

Science and Technology, Third Edition, ed: IGI Global, 2015, pp. 7162-7170.
[32] R. Uluski, “Using distribution automation for a self-healing grid,” in Transmission and

Distribution Conference and Exposition (T&D), 2012 IEEE PES, 2012, pp. 1-5.
[33] S.-I. Lim, S.-J. Lee, M.-S. Choi, D.-J. Lim, and B.-N. Ha, “Service restoration method-

ology for multiple fault case in distribution systems,” IEEE Transactions on Power
Systems, vol. 21, pp. 1638-1644, 2006.

[34] C. P. Nguyen and A. J. Flueck, “Agent based restoration with distributed energy storage
support in smart grids,” IEEE Transactions on Smart Grid, vol. 3, pp. 1029-1038, 2012.

[35] J. M. Solanki, S. Khushalani, and N. N. Schulz, “A multi-agent solution to distribution
systems restoration,” IEEE Transactions on Power systems, vol. 22, pp. 1026-1034,

362

Probabilistic Formal Verification . . .

2007.
[36] C. H. Lin, C. S. Chen, T. T. Ku, C. T. Tsai, and C. Y. Ho, “A multiagent?based

distribution automation system for service restoration of fault contingencies,” European
transactions on electrical power, vol. 21, pp. 239-253, 2011.

[37] N. Higgins, V. Vyatkin, N.-K. C. Nair, and K. Schwarz, “Distributed power system
automation with IEC 61850, IEC 61499, and intelligent control,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, pp.
81-92, 2011.

[38] T. Nagata, Y. Tao, H. Sasaki, and H. Fujita, “A multiagent approach to distribution
system restoration,” in Power Engineering Society General Meeting, 2003, IEEE, 2003,
pp. 655-660.

[39] W. Khamphanchai, S. Pisanupoj, W. Ongsakul, and M. Pipattanasomporn, “A multi-
agent based power system restoration approach in distributed smart grid,” in Utility
Exhibition on Power and Energy Systems: Issues & Prospects for Asia (ICUE), 2011
International Conference and, 2011, pp. 1-7.

[40] I. Lim, Y. Kim, H. Lim, M. Choi, S. Hong, S. Lee, et al., “Distributed restoration system
applying multi-agent in distribution automation system,” in Power and Energy Society
General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,
2008 IEEE, 2008, pp. 1-7.

[41] I.-H. Lim, T. S. Sidhu, M.-S. Choi, S.-J. Lee, S. Hong, S.-I. Lim, et al., “Design and im-
plementation of multiagent-based distributed restoration system in DAS,” IEEE Trans-
actions on Power Delivery, vol. 28, pp. 585-593, 2013.

[42] J. Ghorbani, M. A. Choudhry, and A. Feliachi, “Fault location and isolation using multi
agent systems in power distribution systems with distributed generation sources,” in
Innovative Smart Grid Technologies (ISGT), 2013 IEEE PES, 2013, pp. 1-6.

[43] A. Abdrabou, “A wireless communication architecture for smart grid distribution net-
works,” IEEE Systems Journal, vol. 10, pp. 251-261, 2016.

[44] M. H. U. Ahmed, M. G. R. Alam, R. Kamal, C. S. Hong, and S. Lee, “Smart grid coop-
erative communication with smart relay,” Journal of Communications and Networks,
vol. 14, pp. 640-652, 2012.

[45] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, et al., “Smart
grid technologies: Communication technologies and standards,” IEEE transactions on
Industrial informatics, vol. 7, pp. 529-539, 2011.

[46] Y. Tsado, D. Lund, and K. Gamage, “Resilient wireless communication networking for
Smart grid BAN,” in Energy Conference (ENERGYCON), 2014 IEEE International,
2014, pp. 846-851.

[47] X. Wang and P. Yi, “Security framework for wireless communications in smart distri-
bution grid,” IEEE Transactions on Smart Grid, vol. 2, pp. 809-818, 2011.

[48] M. Elgenedy, M. Sayed, M. Mokhtar, M. Abdallah, and N. Al-Dhahir, “Interference
mitigation techniques for narrowband powerline smart grid communications,” in Smart
Grid Communications (SmartGridComm), 2015 IEEE International Conference on,

363

Naseem, Uddin, Hasan and Fawzy

2015, pp. 368-373.
[49] D. Jiang, “Optimal bit loading algorithm for power-line communication systems sub-

ject to individual channel power constraints,” in Communication Technology, 2006.
ICCT’06. International Conference on, 2006, pp. 1-4.

[50] S. S. Prakash and J. D. S. Lakshmi, “Carrier frequency offset estimation in power line
communication networks,” in Circuit, Power and Computing Technologies (ICCPCT),
2015 International Conference on, 2015, pp. 1-6.

[51] M. M. Rahman, C. S. Hong, S. Lee, J. Lee, M. A. Razzaque, and J. H. Kim, “Medium
access control for power line communications: an overview of the IEEE 1901 and ITU-T
G. hn standards,” IEEE Communications Magazine, vol. 49, 2011.

[52] T. Sauter and M. Lobashov, “End-to-end communication architecture for smart grids,”
IEEE Transactions on Industrial Electronics, vol. 58, pp. 1218-1228, 2011.

[53] Q. Yang, J. A. Barria, and T. C. Green, “Communication infrastructures for distributed
control of power distribution networks,” IEEE Transactions on Industrial Informatics,
vol. 7, pp. 316-327, 2011.

[54] http://www.prismmodelchecker.org/.
[55] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic symbolic model

checker,” in International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2002, pp. 200-204.

[56] H. Oldenkamp, “Probabilistic model checking: A comparison of tools,” University of
Twente, 2007.

[57] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in practice:
CRC press, 1995.

[58] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” in SFM,
2007, pp. 220-270.

[59] V. G. Kulkarni, Modeling and analysis of stochastic systems: CRC Press, 2016.
[60] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming:

John Wiley & Sons, 2014.
[61] D. Beauquier, “On probabilistic timed automata,” Theoretical Computer Science, vol.

292, pp. 65-84, 2003.
[62] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic symbolic model

checker,” Computer performance evaluation: modelling techniques and tools, pp. 113-
140, 2002.

[63] A. Ahmed, A. Rashid, and S. Iqbal, “Analysis of Weather Forecasting Model in
PRISM,” in Frontiers of Information Technology (FIT), 2014 12th International Con-
ference on, 2014, pp. 355-360.

[64] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination func-
tion,” IEEE Journal on selected areas in communications, vol. 18, pp. 535-547, 2000.

[65] G. Bianchi, “IEEE 802.11-saturation throughput analysis,” IEEE communications let-
ters, vol. 2, pp. 318-320, 1998.

[66] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of reliable transport pro-

364

Probabilistic Formal Verification . . .

tocol over IEEE 802.11 wireless LAN: analysis and enhancement,” in INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, 2002, pp. 599-607.

[67] D. Jiunn and R.-S. Chang, “A priority scheme for IEEE 802. 11 DCF access method,”
IEICE transactions on communications, vol. 82, pp. 96-102, 1999.

[68] http://sites.ieee.org/isgt2014/files/2014/03/Day2_Panel2C_Ni.pdf.
[69] http://www.sciencedirect.com/science/article/pii/S1364032114003761.
[70] Y. Yu, J. Yang, and B. Chen, “The smart grids in China-A review,” Energies, vol. 5,

pp. 1321-1338, 2012.
[71] http://www.fingrid.fi/fi/asiakkaat/asiakasliitteet/Kayttotoimikunta/

2008/19.9.2008/nordel_fault_statistics_2007.pdf.
[72] http://www.me.utexas.edu/~jensen/ORMM/models/unit/markchain/index.html.
[73] http://www.me.utexas.edu/~jensen/ORMM/models/unit/markchain/subunits/

example/index.html.
[74] Y. Kwon and G. Agha, “iLTLChecker: a probabilistic model checker for multiple

DTMCs,” in Quantitative Evaluation of Systems, 2005. Second International Confer-
ence on the, 2005, pp. 245-246.

[75] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers:
John Wiley & Sons, 2010.

[76] R. Alur and A. Thomas, “ Reactive modules,” Formal Methods in System Design, vol.
15, no. 1, pp. 7-48, 1993.

Received 7 July 2017365

366

Elementary-base Cirquent Calculus I:
Parallel and Choice Connectives

Giorgi Japaridze
Department of Computing Sciences, Villanova University, USA.

giorgi.japaridze@villanova.edu

Abstract

Cirquent calculus is a proof system manipulating circuit-style constructs
rather than formulas. Using it, this article constructs a sound and complete
axiomatization CL16 of the propositional fragment of computability logic (the
game-semantically conceived logic of computational problems) whose logical
vocabulary consists of negation and parallel and choice connectives, and whose
atoms represent elementary, i.e. moveless, games.

MSC: primary: 03B47; secondary: 03B70; 03F03; 03F20; 68T15.
Keywords: Proof theory; Cirquent calculus; Resource semantics; Deep inference;
Computability logic

1 Introduction
Computability logic, or CoL for short, is a long-term project for developing a logic
capable of acting as a comprehensive formal theory of computability in the same
sense as classical logic is a formal theory of truth (see [24] for a survey). The approach
starts by asking what kinds of mathematical objects “computational problems” are
in their full generality, and finds that they can be most adequately understood
as games played by a machine against its environment, with computability meaning
existence of an (algorithmic) winning strategy for the machine. As its next step, CoL
tries to identify a collection of the most natural, meaningful and potentially useful
operations on games. These operations then form the connectives, quantifiers and
other constructs of the logical vocabulary of CoL. Validity of a formula is understood
as being “always computable”, i.e. computable in virtue of the meanings of its logical
operators regardless of how the non-logical atoms are interpreted. The final and most
challenging step in developing CoL is finding sound and complete axiomatizations

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Japaridze

for ever more expressive fragments of this semantically construed logic. The present
contribution adds one more brick to this edifice under construction.

Among the main connectives of the language of CoL are negation (“not”) ¬,
parallel conjunction (“pand”) ∧, parallel disjunction (“por”) ∨, choice conjunction
(“chand”) ⊓, and choice disjunction (“chor”) ⊔. Where G,H are games, the game-
semantical meanings of the above connectives can be briefly characterized as follows.
The game ¬G is nothing but G with the roles of the two players interchanged.
G ∧ H is a game playing which means playing G and H in parallel, where the
machine wins if it wins in both components. G ∨ H differs from G ∧ H only in
that here winning in just one of the components is sufficient. G ⊓ H is the game
where, at the beginning, the environment chooses one of the two components, after
which the game continues according to the rules of the chosen component. G⊔H is
similar, only here it is the machine who makes an initial left-or-right choice. Game
operations with similar intuitive characterizations have been studied by Lorenzen
[32], Hintikka [11] and Blass [4, 5] in their dialogue/game semantics, with Blass [5]
being the first to systematically differentiate between the parallel and choice sorts
of operations and pointing out their resemblance with the multiplicative (∧,∨) and
additive (⊓,⊔) connectives of Girard’s [9] linear logic. Many other operators of CoL
have no known analogs in the literature. CoL also has two sorts of atoms: general
atoms stranding for any games, and elementary atoms standing for propositions. The
latter are understood as games with no moves, automatically won by the machine
when true and lost when false. The fragments of CoL with only general atoms
[3, 16, 20, 23, 27, 29, 30, 33, 34, 36, 37] are called general-base, the fragments with
only elementary atoms [14, 17, 28, 31] are called elementary-base, and the fragments
where both sorts of atoms are present [15, 18, 22, 25, 35] are called mixed-base.

All attempts to axiomatize the (whatever-base) full {¬,∧,∨,⊓,⊔}-fragment of
CoL within the framework of traditional proof calculi had failed, and it was con-
jectured [5, 16] that such an axiomatization was impossible to achieve in principle
even for the {¬,∧,∨}-subfragment. The recent work [8] by Das and Strassburger
has positively verified this conjecture. As a way to break the ice, [16] introduced the
new sort of a proof calculus called cirquent calculus, in which a sound and complete
axiomatization of the general-base {¬,∧,∨}-fragment of CoL was constructed; this
result was later lifted to the mixed-base level in [35]. Rather than being limited
to tree-like objects such as formulas, sequents, hypersequents [1] or deep-inference
structures [6, 7, 10], cirquent calculus deals with circuit-style constructs dubbed
cirquents. Cirquents come in a variety of forms and sometimes, as in the present
work or in [38, 39], they are written textually rather than graphically, but their
essence and main distinguishing feature remains the same: these are syntactic con-
structs explicitly allowing sharing of components between different subcomponents.

368

Elementary-base Cirquent Calculus I

Ordinary formulas of CoL are nothing but special cases of cirquents — they are
degenerate cirquents where nothing is shared.

Sharing, itself, also takes different forms, such as two ∨-gates sharing a child, or
two ⊔-gates sharing the left-or-right choice associated with them without otherwise
sharing descendants. Most cirquent calculus systems studied so far [3, 16, 21, 29,
30, 35] only incorporate the first sort of sharing. The idea of the second sort of shar-
ing, dubbed clustering, was introduced and motivated in [26]. Among the potential
benefits of it outlined in [26] was offering new perspectives on independence-friendly
logic [12]. Later work by Wenyan Xu [38, 39] made a significant progress towards
materializing such a potential. The present work materializes another benefit offered
by clustering: it constructs a sound and complete cirquent calculus axiomatization
CL16 of the full elementary-base {¬,∧,∨,⊓,⊔}-fragment of CoL. No axiomatiza-
tions of any ⊓,⊔-containing fragments of CoL had been known so far (other than
the brute-force constructions of [14, 15, 17, 18, 22, 25], with their deduction mech-
anisms more resembling games than logical calculi). Generalizing from formulas to
cirquents with clustering thus offers not only greater expressiveness, but also makes
the otherwise unaxiomatizable CoL or certain fragments of it amenable to being
tamed as logical calculi.

2 Games and strategies
As noted, CoL understands computational problems as games played between two
players, called the machine and the environment. The symbolic names for these
players are ⊤ and ⊥, respectively. ⊤ is a deterministic mechanical device only
capable of following algorithmic strategies, whereas there are no restrictions on the
behavior of ⊥. Our sympathies are with ⊤, and by just saying “won” or “lost”
without specifying a player, we always mean won or lost by ⊤. ℘ is always a variable
ranging over {⊤,⊥}. ¬℘ means ℘’s adversary, i.e. the player that is not ℘.

A move is a finite string over the standard keyboard alphabet. A labeled move
is a move prefixed with ⊤ or ⊥, with such a prefix (label) indicating which player
has made the move. A run is a (finite or infinite) sequence of labeled moves, and a
position is a finite run. Runs will be often delimited by “〈” and “〉”, with 〈〉 thus
denoting the empty run.

Definition 2.1. A game1 is a pair A = (LrA,WnA), where:

1In CoL, the proper name of the concept defined here is “constant game”, with the word “game”
reserved for a more general concept; however, since constant games are the only kinds of games we
care about in the present paper, we omit the word “constant” and just say “game”.

369

Japaridze

1. LrA is a set of runs satisfying the condition that a finite or infinite run is in
LrA iff all of its nonempty finite — not necessarily proper — initial segments are in
LrA (notice that this implies 〈〉 ∈ LrA). The elements of LrA are said to be legal
runs of A, and all other runs are said to be illegal. We say that α is a legal move
for a player ℘ in a position Φ of A iff 〈Φ, ℘α〉 ∈ LrA; otherwise α is an illegal move.
When the last move of the shortest illegal initial segment of Γ is ℘-labeled, we say
that Γ is a ℘-illegal run of A; ℘-legal means “‘not ℘-illegal”.

2. WnA is a function that sends every run Γ to one of the players ⊤ or ⊥,
satisfying the condition that if Γ is a ℘-illegal run of A, then WnA〈Γ〉 = ¬℘.2 When
WnA〈Γ〉 = ℘, we say that Γ is a ℘-won (or won by ℘) run of A; otherwise Γ is
lost by ℘. Thus, an illegal run is always lost by the player who has made the first
illegal move in it.

It is clear from the above definition that, when defining a particular game A, it
would be sufficient to specify what positions (finite runs) are legal, and what legal
runs are won. Such a definition will then uniquely extend to all — including infinite
and illegal — runs. We will implicitly rely on this observation in the sequel.

Here is an example of a game, namely, the problem of computing a function f
understood as a game. Every legal position of such a game is either 〈⊥n,⊤m〉 or
〈⊥n〉 or 〈〉, where n and m are numbers written in (for instance) decimal notation.
The empty run 〈〉 is won by ⊤, every length-1 run 〈⊥n〉 is won by ⊥, and a length-2
run 〈⊥n,⊤m〉 is won by ⊤ if and only if m = f(n). The intuitions that determine
these arrangements are as follows. A move ⊥n is the “input”, making which amounts
to asking the machine “what is the value of f at n?”. A move ⊤m is the “output”,
amounting to answering that m is the value of f(n). The machine wins the run
〈⊥n,⊤m〉 if and only if it answered the question correctly, i.e., if m = f(n). The
run 〈⊥n〉 corresponds to the situation where there was an input (n) but the machine
failed to generate any output, so the machine loses. And the run 〈〉 corresponds to
the situation where there was no input either, so the machine has nothing to answer
for and it therefore wins.

A game is said to be elementary iff it has no legal runs other than the (always
legal) empty run 〈〉. That is, an elementary game is a “game” without any (legal)
moves, automatically won or lost. There are exactly two such games, for which we
use the same symbols ⊤ and ⊥ as for the two players: the game ⊤ automatically won
by player ⊤, and the game ⊥ automatically won by player ⊥.3 Computability logic
is a conservative extension of classical logic, understanding classical propositions as
elementary games. And, just like classical logic, it sees no difference between any

2We write WnA〈Γ〉 for WnA(Γ).
3Precisely, we have Wn⊤〈〉 = ⊤ and Wn⊥〈〉 = ⊥.

370

Elementary-base Cirquent Calculus I

two true propositions such as “0 = 0” and “Snow is white”, and identifies them with
the elementary game ⊤; similarly, it treats false propositions such as “0 = 1” or
“Snow is black” as the elementary game ⊥.

An HPM (“Hard-Play Machine”) is a Turing machine with the additional capa-
bility of making moves. The adversary can also move at any time, with such moves
being the only nondeterministic events from the machine’s perspective. Along with
the ordinary read/write work tape,4 the machine also has an additional tape called
the run tape. The latter, at any time, spells the “current position” of the play. The
role of this tape is to make the interaction history fully visible to the machine. It is
read-only, and its content is automatically updated every time either player makes
a move. A more detailed description of the HPM model, if necessary, can be found
in [13].

In these terms, a solution (⊤’s winning strategy) for a given game A is un-
derstood as an HPM M such that, no matter how the environment acts during its
interaction with M (what moves it makes and when), the run incrementally spelled
on the run tape is a ⊤-won run of A. When this is the case, we write M |= A and
say that M wins, or solves, A, and that A is a computable game.

There is no need to define ⊥’s strategies, because all possible behaviors by ⊥ are
accounted for by the different possible nondeterministic updates of the run tape of
an HPM.

In the above outline, we described HPMs in a relaxed fashion, without being
specific about technical details such as, say, how, exactly, moves are made by the
machine, how many moves either player can make at once, what happens if both
players attempt to move “simultaneously”, etc. As it happens, all reasonable design
choices yield the same class of winnable games as long as we consider a certain
natural subclass of games called static. Intuitively, these are games where the relative
speeds of the players are irrelevant because, as Blass has once put it, “it never hurts a
player to postpone making moves”. Below comes a formal definition of this concept.

For either player ℘, we say that a run Υ is a ℘-delay of a run Γ iff:
• for both players ℘′ ∈ {⊤,⊥}, the subsequence of ℘′-labeled moves of Υ is the

same as that of Γ, and

• for any n, k ≥ 1, if the nth ℘-labeled move is made later than (is to the right
of) the kth ¬℘-labeled move in Γ, then so is it in Υ.

The above conditions mean that in Υ each player has made the same sequence of
moves as in Γ, only, in Υ, ℘ might have been acting with some delay.

4In computational-complexity-sensitive treatments, an HPM is allowed to have any (fixed) num-
ber of work tapes.

371

Japaridze

Now, we say that a game A is static iff, for either player ℘, whenever a run Υ
is a ℘-delay of a run Γ, we have:

• if Γ is a ℘-legal run of A, then so is Υ;

• if Γ is a ℘-won run of A, then so is Υ.
All games that we shall see in this paper are static. In fact, they are not merely

static, but belong to a special subclass of static games called “enumeration games”,
where even the order in which the players make their moves is irrelevant, and thus
runs can be seen as multisets rather than sequences of labeled moves. Precisely, an
enumeration game is a game A such that, for any run Γ and any permutation ∆
of Γ, Γ is a legal (resp. won) run of A iff so is ∆.

Dealing only with static games, which makes timing technicalities fully irrele-
vant, allows us to describe and analyze strategies (HPMs) in a relaxed fashion. For
instance, imagine HPM N works by simulating and mimicking the work and actions
of another HPM M in the scenario where M’s imaginary adversary acts in the
same way as N ’s own adversary. Due to the simulation overhead, N will generally
be much slower than M in responding to its adversary’s moves. Yet, we may safely
assume/pretend that the speeds of the two machines do not differ and thus they will
be generating identical runs. This is “even more so” when we deal with enumeration
games. In what follows we will often implicitly rely on this observation.

3 Syntax
We fix an infinite list of syntactic objects called elementary game letters, for
which we will be using p, q, r as metavariables. A positive (resp. negative) literal
is the expression p (resp. ¬p), where p is an elementary game letter. Here p is said
to be the type of the literal.

We further fix two pairwise disjoint infinite sets C(⊔) and C(⊓) of decimal nu-
merals. The elements of C(⊔) ∪C(⊓) are said to be clusters. A cluster c is said to
be disjunctive if c ∈ C(⊔), and conjunctive if c ∈ C(⊓).

The symbol ∨ (resp. ∧) is said to be parallel disjunction (resp. parallel
conjunction). A choice disjunction (resp. choice conjunction) is a pair ⊔c
(resp. ⊓c), where c is a disjunctive (resp. conjunctive) cluster. A common name for
disjunctions and conjunctions of either sort is “connective”, and the corresponding
symbol ∨,∧,⊔ or ⊓ is said to be the type of the connective. Given a choice con-
nective ⊔c or ⊓c, c is said to be its cluster; in this case we may as well say that the
connective belongs to — or is in — cluster c.

Definition 3.1. A cirquent is defined inductively as follows:

372

Elementary-base Cirquent Calculus I

• ⊤ and ⊥ are cirquents.

• Each literal is a cirquent.

• If A and B are cirquents, then (A) ∨ (B) is a cirquent.

• If A and B are cirquents, then (A) ∧ (B) is a cirquent.

• If A and B are cirquents and c is a conjunctive cluster, then (A) ⊓c (B) is a
cirquent.

• If A and B are cirquents and c is a disjunctive cluster, then (A) ⊔c (B) is a
cirquent.

By a cluster of a cirquent C we shall mean the cluster c of some choice con-
nective occurring in C. In such a case we may as well say that cluster c occurs in
C.

Sometimes we may write an expression such as A1 ∨ . . . ∨ An, where n is a
(possibly unspecified) natural number with n ≥ 2. This is to be understood as any
(unspecified) order-respecting ∨-combination of the cirquents A1, . . . , An. “Order-
respecting” in the sense that A1 is the leftmost item of the combination, then comes
A2, then A3, etc. Similarly for A1∧ . . .∧An. So, for instance, both (A∧B)∧C and
A ∧ (B ∧ C) — and no other cirquent — can be written as A ∧B ∧ C.

Officially, as we see, ¬ (negation) is only allowed to be applied to elementary
game letters. Shall we write ¬E where E is not an elementary game letter, it is
to be understood as an abbreviation defined by: ¬¬A = A; ¬(A ∧ B) = ¬A ∨ ¬B;
¬(A ∨ B) = ¬A ∧ ¬B; ¬(A ⊓c B) = ¬A ⊔c ¬B; ¬(A ⊔c B) = ¬A ⊓c ¬B. Similarly,
A → B is an abbreviation of (¬A) ∨ B. When writing cirquents, parentheses will
usually be omitted if this causes no ambiguity. When doing so, it is our convention
that ¬ has the highest precedence, then comes →, then come the choice connectives,
and finally the parallel connectives. So, for instance, ¬A ∨B → C ∧D ⊓c E means
((¬(A)) ∨ (B)) → ((C) ∧ ((D) ⊓c (E))), i.e., ((A) ∧ (¬(B))) ∨ ((C) ∧ ((D) ⊓c (E))).

We define the root of a cirquent C to be C itself if C is ⊤, ⊥ or a literal, and ∨
(resp. ∧, resp. ⊔c, resp. ⊓c) if C is of the form A ∨ B (resp. A ∧ B, resp. A ⊔c B,
resp. A ⊓c B). When r is the root of C, we say that C is r-rooted.

4 Semantics
We define LegalRuns as the set of all runs Γ satisfying the following conditions:

1. Every move of Γ is the string c.0 or c.1, where c is a cluster.

373

Japaridze

2. Whenever Γ contains a move c.i where c is a disjunctive cluster, the move is
⊤-labeled.

3. Whenever Γ contains a move c.i where c is a conjunctive cluster, the move is
⊥-labeled.

4. For any cluster c, Γ contains at most one move of the form c.i.

The intuitive meaning of condition 1 is that every move signifies a choice “left”
(0) or “right” (1) in some cluster; conditions 2 and 3 say that ⊤ moves (chooses)
only in disjunctive clusters and ⊥ only in conjunctive clusters; and condition 4 says
that, in any given cluster, a choice can be made only once.

Given a run Γ ∈ LegalRuns, we say that a cirquent of the form A ⊔c B or
A ⊓c B is Γ-resolved iff Γ contains (exactly) one of the moves c.0 or c.1; then by
the Γ-resolvent of the cirquent we mean A if such a move is c.0, and B if it is c.1.
“Γ-unresolved” means “not Γ-resolved”. When Γ is clear from the context, we may
omit a reference to it and simply say “resolved”, “unresolved” or “resolvent”.

An interpretation is a function ∗ which assigns to each elementary game letter
p an element p∗ of {⊤,⊥}. Intuitively, such a function tells us whether p, as a
proposition, is true or false.

Definition 4.1. Each cirquent C and interpretation ∗ induces a unique game C∗,
which we may refer to as “C under the interpretation ∗”. The set LrC∗ of legal runs
of such a game is nothing a but LegalRuns. Since LrC∗ does not depend on C or
∗, subsequently we shall simply say “legal run” rather than “legal run of C∗”. The
WnC∗ component of the game C∗ is defined by stipulating that a legal run Γ is a
won (by the machine) run of C iff one of the following conditions is satisfied:

1. C is ⊤.
2. C is a positive (resp. negative) literal and, where p is the type of that literal,

p∗ = ⊤ (resp. p∗ = ⊥).
3. C is A0 ∨ A1 (resp. A0 ∧ A1) and, for at least one (resp. both) i ∈ {0, 1}, Γ

is a won run of Ai.
4. C is A0 ⊔c A1, it is resolved and, where Ai is the resolvent, Γ is a won run of

Ai.
5. C is A0 ⊓c A1 and either it is unresolved, or else, where Ai is the resolvent, Γ

is a won run of Ai.

Definition 4.2. Consider a cirquent C.
1. For an interpretation ∗, a solution of C under ∗, or simply a solution of C∗,

is an HPM H such that H |= C∗. We say that C is computable under ∗, or simply
that C∗ is computable, iff C∗ has a solution.

374

Elementary-base Cirquent Calculus I

2. A logical (or uniform) solution of C is an HPM H such that, for any
interpretation ∗, H is a solution of C∗. We say that C is valid iff it has a logical
solution.5

Remark 4.3. The cirquents in the present sense can be understood as generaliza-
tions of the formulas of system CL1 of CoL constructed in [14]. Syntactically, the
formulas differ from cirquents only in that no clusters are attached to ⊔,⊓. Each
formula F can be seen as a cirquent C where no two different occurrences of a choice
connective belong to the same cluster, i.e., as a cirquent with no sharing of choices
associated with ⊔,⊓. More specifically, C is a cirquent obtained from F via super-
scripting each occurrence of ⊔ by a unique disjunctive cluster and each occurrence
of ⊓ by a unique conjunctive cluster. Let us call such a C a cirquentization of F .
We claim without a proof that, given a formula F and a cirquentization C of it, the
two are semantically equivalent. Namely, any HPM F can be transformed into an
HPM C — and vice versa — so that, for any interpretation ∗, we have F |= F ∗ iff
C |= C∗ (with F ∗ understood as in [14]). Consequently, F is valid iff C is so.

5 Axiomatics
The system CL16 introduced in this section is by all accounts a deep inference sys-
tem: for the exception of the Splitting rule, it allows the inference rules to operate on
any part of an expression rather than just on the root. One of the most extensively
studied deep-inference formalisms is the calculus of structures (CoS) [6, 7, 10]. The
approach of cirquent calculus and of CL16 in particular can be seen as a generaliza-
tion of CoS in that it adds a sharing mechanism to the latter. Namely, even though
graphically the cirquents of CL16 look like formulas, it should be remembered that
the indexes attached to ⊔,⊓ are not to generate different “versions” of these op-
erators but to indicate the presence (in the case of identical indexes) or absence
(in the case of different indexes) of choice-sharing between different occurrences of
otherwise the same logical operator.

By a rule of inference we mean a set R of pairs ~A ❀ B, called applications
of R, where ~A is a tuple consisting of one or two cirquents, called the premise(s),
and B is a cirquent, called the conclusion. When ~A ❀ B is in R, we say that B
follows from ~A by rule R.

5In CoL, this sort of validity is called logical (or uniform) validity. There is also another
natural sort of validity, called nonlogical (or multiform) validity. Namely, a cirquent (or formula)
C is multiformly valid iff, for any interpretation ∗, C∗ is computable. Nonlogical validity will not
be considered in this paper.

375

Japaridze

In this section and later we will be using the notation X[E1, . . . , En] to stand
for a cirquent (intuitively “of structure X”) together with some fixed subcirquents
E1, . . . , En. Then, if we later write X[F1, . . . , Fn] in the same context, it should be
understood as the result of replacing, in X[E1, . . . , En], all occurrences of E1, . . . , En

by F1, . . . , Fn, respectively. When this notation is used in the formulation of a rule
of inference, our convention is that the context is always set by the conclusion. So,
for instance, if we have a (sub)expression X[E] in the conclusion and X[F] in a
premise, then X[F] is the result of replacing all occurrences of E by F in X[E]
rather than vice versa.

Below is a full list of the rules of inference of our system CL16. The first seven
rules come in two versions, between which we shall later differentiate by suffixing the
name of the rule with “(a)” for the first version and “(b)” for the second version. The
last rule takes two premises, while all other rules take a single premise. The rules are
written schematically, with A,B,C,D (possibly with indices) acting as variables for
subcirquents, a, b, c as variables for clusters, and X,Y as variables for “structures”.
The names of these rules have been chosen according to the conclusion-to-premises
(rather than premises-to-conclusion) intuitions.

Commutativity: X[B ∨A] ❀ X[A ∨B] and X[B ∧A] ❀ X[A ∧B].

Associativity: X[A ∨ (B ∨ C)] ❀ X[(A ∨ B) ∨ C)] and X[A ∧ (B ∧ C)] ❀

X[(A ∧B) ∧C)].

Identity: X[A] ❀ X[A ∨ ⊥] and X[A] ❀ X[A ∧ ⊤].

Domination: X[⊤] ❀ X[A ∨⊤] and X[⊥] ❀ X[A ∧ ⊥].

Choosing: X[A1, . . . , An] ❀ X[A1 ⊔c B1, . . . , An ⊔c Bn] and X[B1, . . . , Bn] ❀

X[A1 ⊔c B1, . . . , An ⊔c Bn], where A1 ⊔c B1, . . . , An ⊔c Bn are all ⊔c-rooted
subcirquents of the conclusion.

Cleansing: X
[
Y [A] ⊓c C]

❀ X
[
Y [A ⊓c B] ⊓c C]

and X
[
C ⊓c Y [B]

]
❀ X

[
C ⊓c

Y [A ⊓c B]
]
.

Distribution: X[(A∨C)∧(B∨C)] ❀ X[(A∧B)∨C] and X[(A∨C)⊓c (B∨C)] ❀
X[(A ⊓c B) ∨ C].

Trivialization: X[⊤] ❀ X[¬p ∨ p], where p is an elementary letter.

Quadrilemma: X
[(
A∧ (C ⊓bD)

)⊓a (B∧ (C ⊓bD)
))⊓c

((
((A⊓aB)∧C)⊓b ((A⊓a

B)∧D))]
❀ X[(A⊓aB)∧(C⊓bD)], where c does not occur in the conclusion.

376

Elementary-base Cirquent Calculus I

Splitting: A,B ❀ A ⊓c B, where neither A nor B has an occurrence of c.

A proof of a cirquent A is a sequence C1, . . . , Cn (n ≥ 1) of cirquents such that
C1 = ⊤, Cn = A and, for each i ∈ {2, . . . , n}, Ci follows by one of the rules of
inference from some earlier cirquents in the sequence. Thus, ⊤ is the only axiom of
CL16.

Example 5.1. Below is a proof of p∧ q ⊔c r→ (p∧ q)⊔d (p∧ r), i.e. of (¬p∨¬q ⊓c
¬r) ∨ (p ∧ q) ⊔d (p ∧ r). For brevity, consecutive applications of Commutativity or
Associativity have been combined together in single steps.

1. ⊤ Axiom
2. ⊤ ∧⊤ Identity(b): 1
3. (¬q ∨ ⊤) ∧ (¬p ∨ ⊤) Domination(a): 2 (twice)
4.

(¬q ∨ (¬p ∨ p)) ∧ (¬p ∨ (¬q ∨ q)) Trivialization: 3 (twice)
5.

(
(¬q ∨ ¬p) ∨ p) ∧ (

(¬p ∨ ¬q) ∨ q) Associativity(a): 4 (twice)
6.

(
p ∨ (¬q ∨ ¬p)) ∧ (

q ∨ (¬q ∨ ¬p)) Commutativity(a): 5 (three times)
7. (p ∧ q) ∨ (¬q ∨ ¬p) Distribution(a): 6
8. (¬q ∨ ¬p) ∨ (p ∧ q) Commutativity: 7
9. (¬q ∨ ¬p) ∨ (p ∧ q) ⊔d (p ∧ r) Choosing(a): 8
10. (¬r ∨ ⊤) ∧ (¬p ∨⊤) Domination(a): 2 (twice)
11.

(¬r ∨ (¬p ∨ p)) ∧ (¬p ∨ (¬r ∨ r)) Trivialization: 10 (twice)
12.

(
(¬r ∨ ¬p) ∨ p) ∧ (

(¬p ∨ ¬r) ∨ r) Associativity(a): 11 (twice)
13.

(
p ∨ (¬r ∨ ¬p)) ∧ (

r ∨ (¬p ∨ ¬r)) Commutativity(a): 12 (twice)
14. (p ∧ r) ∨ (¬r ∨ ¬p) Distribution(a): 13
15. (¬r ∨ ¬p) ∨ (p ∧ r) Commutativity(a): 14
16. (¬r ∨ ¬p) ∨ (p ∧ q) ⊔d (p ∧ r) Choosing(b): 15
17.

(
(¬q ∨¬p)∨ (p∧ q)⊔d (p∧ r))⊓c ((¬r∨¬p)∨ (p∧ q)⊔d (p∧ r)) Splitting:

9,16
18. (¬q ∨ ¬p) ⊓c (¬r ∨ ¬p) ∨ (p ∧ q) ⊔d (p ∧ r) Distribution(b): 17
19. (¬q ⊓c ¬r ∨ ¬p) ∨ (p ∧ q) ⊔d (p ∧ r) Distribution(b): 18
20. (¬p ∨ ¬q ⊓c ¬r) ∨ (p ∧ q) ⊔d (p ∧ r) Commutativity(a): 19

6 The preservation lemma
Lemma 6.1. Consider an arbitrary interpretation ∗.

1. Each application of any of the rules of CL16 preserves computability under
∗ in the premises-to-conclusion direction, i.e., if all premises are computable under
∗, then so is the conclusion.

377

Japaridze

2. Each application of any of the rules of CL16 other than Choosing also pre-
serves computability under ∗ in the conclusion-to-premises direction, i.e., if the con-
clusion is computable under ∗, then so are all premises.

Proof. Consider an arbitrary interpretation ∗. Since ∗ is going to be fixed throughout
this proof, for readability we agree to omit explicit references to it. So, for instance,
where E is a cirquent, we may write E instead of E∗, or say “. . . solution of E”
instead of “. . . solution of E under ∗”. Throughout this and some later proofs, when
trying to show that a given machine H is a solution of a given game G, we implicitly
rely on what is called the “clean environment assumption”. According to it, H’s
environment never makes moves that are not legal moves of G. Assuming that
this condition is satisfied is legitimate, because, if H’s environment makes an illegal
move, H automatically wins.

If E ❀ F is an application of any of the rules other than Splitting or Choosing,
it is not hard to see that E and F are identical as games. So, a solution of E is
automatically a solution of F , and vice versa. Let us just look at Cleansing(a) as an
illustrative example. Consider an application X

[
Y [A] ⊓c C]

❀ X
[
Y [A ⊓c B] ⊓c C]

of this rule. Let Γ be an arbitrary legal run. We want to show that Γ is a won
run of E iff it is a won run of F . If c is unresolved in Γ, then the Y [A ⊓c B] ⊓c C
component of the conclusion will be won just like the Y [A] ⊓c C component of the
premise. Since the two cirquents only differ in that one has Y [A ⊓c B] ⊓c C where
the other has Y [A]⊓cC, we find that Γ is a won run of both games or neither. Now
assume c is resolved, i.e., Γ contains the move c.i (i = 0 or i = 1). If i = 1, then
Γ is a won run of X[Y [A ⊓c B] ⊓c C] iff it is a won run of X[C] iff it is a won run
of X[Y [A] ⊓c C]. And if i = 0, then Γ is a won run of X

[
Y [A ⊓c B] ⊓c C]

iff it
is a won run of X

[
Y [A ⊓c B]

]
iff it is a won run of X

[
Y [A]

]
iff it is a won run of

X
[
Y [A ⊓c C]

]
. Thus, in either case, the conclusion is won iff so is the premise.

Consider an application A,B ❀ A ⊓c B of Splitting.
For the premises-to-conclusion direction, assume the premises are computable,

namely, HPMs MA and MB are solutions of A and B, respectively. Let N be
an HPM which, at the beginning of the play, waits till the environment makes one
of the moves c.0 or c.1. After that, where α1, . . . , αn are the moves made by the
environment before the move c.0 (resp. c.1) was made, N starts simulating MA

(resp. MB), with ⊥α1, . . . ,⊥αn on the imaginary run tape of the latter at the very
first clock cycle. Whenever N sees that the simulated machine MA (resp. MB)
made a move, N makes the same move; N also periodically checks its own run
tape to see if the environment has made any new moves in the real play and, if
yes, it appends those (⊥-prefixed) moves to the imaginary run tape of the simulated
machine. In more relaxed and intuitive terms, what we just said about the actions

378

Elementary-base Cirquent Calculus I

of N after the environment has moved c.0 (resp. c.1) can be put as “N plays
exactly like MA (resp. MB) would play in the scenario where, at the very start of
the play, the environment made the moves α1, . . . , αn”. Later, in similar situations,
we shall usually describe and analyze HPMs in relaxed terms, without going into
technical details of simulation and without even using the word “simulation”. Since
we exclusively deal with static games, this relaxed approach is safe and valid (see
the end of Section 2). Anyway, it is not hard to see that our N is a solution of
A ⊓c B.

For the conclusion-to-premises direction, assume N is a solution of A ⊓c B. Let
MA (resp. MB) be an HPM which plays just like N would in the scenario where, at
the very start of the play, N ’s adversary made the move c.0 (resp. c.1). Obviously
MA and MB are solutions of A and B, respectively.

Consider an application X[A1, . . . , An] ❀ X[A1 ⊔c B1, . . . , An ⊔c Bn] of Choos-
ing(a), and assume M is a solution of the premise. Let N be an HPM which, at
the beginning of the game, makes the move c.0, after which it plays exactly as M
would. Obviously N is a solution of the conclusion. Choosing(b) will be handled in
a similar way.

The following is an immediate corollary of Lemma 6.1:

Corollary 6.2. 1. Each application of any of the rules of CL16 preserves validity
in the premise-to-conclusion direction, i.e., if all premises are valid, then so is the
conclusion.

2. Each application of any of the rules of CL16 other than Choosing also pre-
serves validity in the conclusion-to-premise direction, i.e., if the conclusion is valid,
then so are all premises.

Remark 6.3. Lemma 6.1 and Corollary 6.2 state the existence of certain solutions.
A look back at our proof of those statements reveals that, in fact, this existence is
constructive. Namely, in the case of clause (a) of Lemma 6.1, for any given rule,
there is a ∗-independent effective procedure which extracts an HPM M from the
premise(s), the conclusion and HPMs that purportedly solve the premises under ∗;
as long as these purported solutions are indeed solutions, M is a solution of the
conclusion under ∗. Similarly for clause (b). In the case of clause (a) of Corollary
6.2, for any given rule, there is an effective procedure which extracts an HPM M
from the premise(s), the conclusion and purported logical solutions of the premises;
as long as these purported logical solutions are indeed logical solutions, M is a
logical solution of the conclusion. Similarly for clause (b).

379

Japaridze

7 Soundness and completeness
Below we use the standard notation na (“tower of a’s of height n”) for tertration,
defined inductively by 1a = a and n+1a = a(na). So, for instance, 35 = 555 .

Definition 7.1. The rank C of a cirquent C is the number defined as follows:
1. If C is ⊤, ⊥ or a literal, then C = 1.
2. If C is A ⊔c B or A ⊓c B, then C = A +B.
3. If C is A ∧B, then C = 5A+B.
4. If C is A ∨B, then C = A+B5.

Lemma 7.2. The rank function is monotone in the following sense. Consider a
cirquent A with a subcirquent B. Assume B′ is a cirquent with B′ < B, and A′ is
the result of replacing an occurrence of B by B′ in A. Then A′ < A.

Proof. This is so due to the monotonicity of the functions x+ y, 5x and x5.

A surface occurrence of a subcirquent or a connective in a given cirquent is
an occurrence which is not in the scope of a choice connective.

Definition 7.3. We say that a cirquent D is pure iff the following conditions are
satisfied:

1. D has no surface occurrences of ⊥ unless D itself is ⊥.
2. D has no surface occurrence of ∧ which is in the scope of ∨.
3. D has no surface occurrence of ⊓c (whatever cluster c) which is in the scope

of ∨.
4. D has no surface occurrence of the form A1 ∨ . . . ∨ An such that, for some

elementary letter p, both p and ¬p are among A1, . . . , An.
5. D has no surface occurrences of ⊤ unless D itself is ⊤.
6. If D is of the form A1 ∧ . . . ∧An (n ≥ 2), then at least one Ai (1 ≤ i ≤ n) is

not of the form B ⊓c C.
7. If D is of the form A ⊓c B, then neither A nor B contains the cluster c.

Below we describe a procedure which takes a cirquent D and applies to it a
series of modifications. Each modification changes the value of D so that the old
value of D follows from the new value by one of the single-premise rules (other than
Choosing) of CL16. The procedure is divided into 7 stages, and the purpose of each
stage i ∈ {1, . . . , 7} is to make D satisfy the corresponding condition i of Definition
7.3.

Procedure Purification applied to a cirquent D: Starting from Stage 1, each
of the following 7 stages is a loop that should be iterated until it no longer modifies

380

Elementary-base Cirquent Calculus I

(the current value of) D; then the procedure goes to the next stage, unless the
current stage was Stage 7, in which case the procedure returns (the then-current
value of) D and terminates.

Stage 1: If D has a surface occurrence of the form ⊥ ∨ A or A ∨ ⊥, change the
latter to A using Identity(a) perhaps in combination with Commutativity(a). Next,
if D has a surface occurrence of the form ⊥ ∧ A or A ∧ ⊥, change it to ⊥ using
Domination(b) perhaps in combination with Commutativity(b).

Stage 2: If D has a surface occurrence of the form (A ∧B) ∨ C or C ∨ (A ∧B),
change it to (A∨C)∧ (B ∨C) using Distributivity(a) perhaps in combination with
Commutativity(a).

Stage 3: If D has a surface occurrence of the form (A⊓cB)∨C or C ∨ (A⊓cB),
change it to (A∨C)⊓c (B ∨C) using Distributivity(b) perhaps in combination with
Commutativity(a).

Stage 4: If D has a surface occurrence of the form A1 ∨ . . . ∨ An and, for some
elementary letter p, both p and ¬p are among A1, . . . , An, change A1∨ . . .∨An to ⊤
using Trivialization, perhaps in combination with Domination(a), Commutativity(a)
and Associativity(a).

Stage 5: If D has a surface occurrence of the form ⊤∨A or A ∨⊤, change it to
⊤ using Domination(a) perhaps in combination with Commutativity(a). Next, if D
has a surface occurrence of the form ⊤∧A or A∧⊤, change it to A using Identity(b)
perhaps in combination with Commutativity(b).

Stage 6: If D has a surface occurrence of the form (A ⊓a B) ∧ (E ⊓b F), change
it to

((
A∧ (E⊓b F)

)⊓a (B∧ (E⊓b F)
))⊓c

((
(A⊓aB)∧E)⊓b ((A⊓aB)∧D))

using
Quadrilemma.

Stage 7: If D is of the form X[E ⊓c F]⊓cA (resp. A⊓cX[E ⊓c F]), change it to
X[E] ⊓c A (resp. A ⊓c X[F]) using Cleansing.

Lemma 7.4. Each stage of the Purification procedure strictly reduces the rank of
D.

Proof. Each stage replaces an occurrence of a subcirquent A of D by some cirquent
B. In view of Lemma 7.2, in order to show that such a replacement reduces the
rank D of D, it is sufficient to show that B < A. Keep in mind that the rank of a
cirquent is always at least 1.

Stage 1: Each iteration of this stage replaces in D an occurrence of ⊥∨A, A∨⊥,
⊥∧A or A∧⊥ by A or ⊥. Of course, both A and ⊥ are smaller than ⊥∨A, A ∨ ⊥,
⊥ ∧A and A ∧ ⊥.

Stage 2: Each iteration of this stage replaces in D an occurrence of (A∧B)∨C
or C ∨ (A ∧B) by (A ∨ C) ∧ (B ∨ C). (A ∧B) ∨ C (or C ∨ (A ∧B)) is [5(A+B)+C]5

381

Japaridze

and (A ∨ C) ∧ (B ∨ C) is 5[(A+C)5+(B+C)5]. We want to show that 5[(A+C)5+(B+C)5] <
[5A+B+C]5. We of course have A+B+1 < 5A+B, whence A+B+C+1 < 5A+B +C,
whence [A+B+C+1]5 <[5A+B+C] 5. We also have

5[(A+C)5+(B+C)5] = 5[(A+C)5] × 5[(B+C)5] =(A+C+1) 5×(B+C+1) 5 ≤[A+B+C+1] 5.

Consequently, 5[(A+C)5+(B+C)5] <[5A+B+C] 5, as desired.
Stage 3: (A ⊓c B) ∨ C (or C ∨ (A ⊓c B) is (A+B+C)5, and (A ∨C) ⊓c (B ∨ C) is

(A+C)5 +(B+C) 5. Taking into account that ranks are always positive, we obviously
have (A+C)5 +(B+C) 5 <(A+B+C) 5.

Stage 4: ⊤ = 1 < A1 ∨ . . . ∨An.
Stage 5: Similar to Stage 1.
Stage 6: (A ⊓a B) ∧ (E ⊓b F) is 5[A+B+E+F], and
((
A ∧ (E ⊓b F)

) ⊓a (
B ∧ (E ⊓b F)

)) ⊓c
((

(A ⊓a B) ∧E) ⊓b ((A ⊓a B) ∧D))

is 5(A+E+F) + 5(B+E+F) + 5(A+B+E) + 5(A+B+F). Obviously the latter is smaller
than the former.

Stage 7: Each iteration of this stage replaces a subcirquent E ⊓c F by E (resp.
F). The rank E + F of E ⊓c F is greater than the rank E of E (resp. the rank F
of F).

Where A is the initial value of D in the Purification procedure and B is its final
value (which exists by Lemma 7.4), we call B the purification of A.

Lemma 7.5. For any cirquent A and its purification B, we have:
1. If B is provable, then so is A.
2. A is valid iff so is B.
3. B is pure.
4. The rank of B does not exceed the rank of A.

Proof. Clause 1: When obtaining B from A, each transformation performed during
the Purification procedure applies, in the conclusion-to-premise sense, one of the
inference rules of CL16. Reversing the order of those transformations, we get a
derivation of A from B. Appending that derivation to a proof of B (if one exists)
yields a proof of A.

Clause 2: Immediate from the two clauses of Lemma 6.2 and the fact that, when
obtaining B from A using the Purification procedure, the rule of Choosing is never
used.

382

Elementary-base Cirquent Calculus I

Clause 3: One by one, Stage 1 eliminates all surface occurrences of ⊥ in D (unless
D itself is ⊥). So, at the end of the stage, D satisfies condition 1 of Definition 7.3.
None of the subsequent steps make D violate that condition, so B, too, satisfies
that condition. Similarly, a routine examination of the situation reveals that Stage
2 (resp. 3, . . . , resp. 7) of the Purification procedure makes D satisfy condition 2
(resp. 3, . . . , resp. 7) of Definition 7.3, and D continues to satisfy that condition
throughout the rest of the stages. So, B is pure.

Case 4: Immediate from Lemma 7.4.

Theorem 7.6. A cirquent is valid if (soundness) and only if (completeness) it is
provable in CL16.

Proof. The soundness part is immediate from clause 1 of Lemma 6.2 and the fact
that the axiom ⊤ is valid. The rest of this section is devoted to a proof of the
completeness part. Pick an arbitrary cirquent A and assume it is valid. We proceed
by induction on the rank of A. Let B be the purification of A.

In view of clauses 2-4 of Lemma 7.5, B is a valid, pure cirquent whose rank
does not exceed that of A. We shall implicitly rely on this fact below. By clause
1 of Lemma 7.5, if B is provable, then so is A. Hence, in order to show that A is
provable, it suffices to show that B is provable. B cannot be ⊥ because then, of
course, it would not be valid. Similarly, B cannot be a literal because obviously no
literal is valid. In view of this observation and B’s being pure, it is clear that the
following cases cover all possibilities for B.

Case 1: B is ⊤. Then B is an axiom and hence provable.
Case 2: B is E ⊔c F . Let H be a logical solution of B. Consider the work of

H in the scenario where the environment does not move until H makes the move
c.i, where i ∈ {0, 1}. Sooner or later H has to make such a move, for otherwise
B would be lost due to being ⊔c-rooted. Since in the games that we deal with
the order of moves is irrelevant, without loss of generality we may assume that the
move c.i is made before any other moves. Let B′ be the result of replacing in B all
subcirquents of the form X0 ⊔cX1 by Xi. Observe that, after the move c.i is made,
in any scenario that may follow, H has to continue and win B′. In other words, H
is a logical solution of (not only B but also) B′. The rank of B′ is of course smaller
than that of B. Hence, by the induction hypothesis, B′ is provable. Then B follows
from B′ by Choosing.

Case 3: B is E ⊓c F , and neither E nor F contains the cluster c. By clause 2
of Lemma 6.2, both E and F are valid, because B follows from them by Splitting.
The rank of either cirquent is smaller than that of B. Hence, by the induction
hypothesis, both E and F are provable. Therefore, by Splitting, so is B.

383

Japaridze

Case 4: B is E1 ∨ . . .∨En (n ≥ 2), where each Ei is either a literal or a cirquent
of the form F ⊔c G; besides, for no elementary letter p do we have that both p and
¬p are among E1, . . . , En. Not all of the cirquents E1, . . . , En can be literals, for
otherwise B would be automatically lost under an interpretation which interprets
all those literals as ⊥, contradicting our assumption that B is valid. With this
observation in mind, without loss of generality, we may assume that, for some k
with 1 ≤ k ≤ n, the first k cirquents E1, . . . , Ek are of the form F1 ⊔c1 G1, . . . ,
Fk ⊔ck Gk and the remaining n− k cirquents Ek+1, . . . , En are literals. Let H be a
logical solution of B. Consider the work of H in the scenario where the environment
makes no moves. Note that, at some point, for some 1 ≤ j ≤ k, H should make
the move cj .i (i ∈ {0.1}), for otherwise B would be lost under an(y) interpretation
which interprets all of the literal cirquents Ek+1, . . . , En as ⊥. Fix such j, i. Let
B′ be the result of replacing, in B, every subcirquent of the form X0 ⊔cj X1 by
Xi. With some analysis left to the reader, H can be seen to be a logical solution of
B′. Thus, B′ is valid. The rank of B′ is smaller than that of B and hence, by the
induction hypothesis, B′ is provable. But then so is B, because it follows from B′

by Choosing.

Case 5: B is E1 ∧ . . . ∧ En (n ≥ 2), where, for some e (1 ≤ e ≤ n), Ee — fix it
— is not of the form F ⊓c G or F ∧G, nor do we have Ee ∈ {⊤,⊥}. The validity of
B, of course, implies that Ee, as one of its ∧-conjuncts, is also valid. This rules out
the possibility that Ee is a literal, because, as we observed earlier, a literal cannot
be valid. We are therefore left with one of the following two possible subcases:

Subcase 5.1: Ee is of the form F ⊔c G. Let H be a logical solution of B. As
in Case 4, consider the work of H in the scenario where the environment makes no
moves. Note that, at some point, H should make the move c.0 or c.1, for otherwise B
would be lost (under any interpretation). Let us just consider the case of the above
move being c.0 (the case of it being c.1 will be handled in a similar way). Let B0 be
the result of replacing, in B, every subcirquent of the form X ⊔c Y (including the
conjunct F ⊔c G) by X. Then, as in Case 4, H can be seen to be a logical solution
of B0. Thus, B0 is valid. The rank of B0 is smaller than that of B and hence, by
the induction hypothesis, B0 is provable. But then so is B, because it follows from
B0 by Choosing(a).

Subcase 5.2: Ee is of the form F1 ∨ . . .∨Fm, where each Fi (1 ≤ i ≤ m) is either
a literal or a cirquent of the form G⊔cH, and for no elementary letter p do we have
that both p and ¬p are among F1, . . . , Fm. This case is very similar to Case 4 and,
almost literally repeating our reasoning in the latter, we find that B is provable.

384

Elementary-base Cirquent Calculus I

References
[1] A. Avron. A constructive analysis of RM. Journal of Symbolic Logic 52 (1987),

No.4, pp. 939-951.
[2] M. Bauer. A PSPACE-complete first order fragment of computability logic. ACM

Transactions on Computational Logic 15 (2014), No 1, Paper 1.
[3] M. Bauer. The computational complexity of propositional cirquent calculus. Logical

Methods is Computer Science 11 (2015), Issue 1, Paper 12, pp. 1-16.
[4] A. Blass. Degrees of indeterminacy of games. Fundamenta Mathematicae 77 (1972)

151-166.
[5] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic 56

(1992), pp. 183-220.
[6] K. Brünnler and A. Tiu. A local system for classical logic. In: Lecture Notes in

Computer Science 2250 (2001), pp. 347–361.
[7] P. Bruscoli and A. Guglielmi. On the proof complexity of deep inference. ACM Trans-

actions on Computational Logic 10 no. 2, Article 14, (2009), pp. 1–34.
[8] A. Das and L. Strassburger. On linear rewriting systems for Boolean logic and some

applications to proof theory. Logical Methods in Computer Science 12 (2016), pp.
1-27.

[9] J.Y. Girard. Linear logic. Theoretical computer science 50 (1887), pp. 1-102.
[10] A. Guglielmi and L. Strassburger. Non-commutativity and MELL in the calculus of

structures. In: Lecture Notes in Computer Science 2142 (2001), pp. 54-68.
[11] J. Hintikka. Logic, Language-Games and Information: Kantian Themes in

the Philosophy of Logic. Clarendon Press 1973.
[12] J. Hintikka and G. Sandu. Game-theoretical semantics. In: Handbook of Logic and

Language. J. van Benthem and A ter Meulen, eds. North-Holland 1997, pp. 361-410.
[13] G. Japaridze. Introduction to computability logic. Annals of Pure and Applied Logic

123 (2003), pp. 1-99.
[14] G. Japaridze. Propositional computability logic I. ACM Transactions on Compu-

tational Logic 7 (2006), pp. 302-330.
[15] G. Japaridze. Propositional computability logic II. ACM Transactions on Compu-

tational Logic 7 (2006), pp. 331-362.
[16] G. Japaridze. Introduction to cirquent calculus and abstract resource semantics. Jour-

nal of Logic and Computation 16 (2006), pp. 489-532.
[17] G. Japaridze. From truth to computability I. Theoretical Computer Science 357

(2006), pp. 100-135.
[18] G. Japaridze. From truth to computability II. Theoretical Computer Science 379

(2007), pp. 20-52.
[19] G. Japaridze. The logic of interactive Turing reduction. Journal of Symbolic Logic

72 (2007), pp. 243-276.
[20] G. Japaridze. The intuitionistic fragment of computability logic at the propositional

385

Japaridze

level. Annals of Pure and Applied Logic 147 (2007), pp. 187-227.
[21] G. Japaridze. Cirquent calculus deepened. Journal of Logic and Computation 18

(2008), pp. 983-1028.
[22] G. Japaridze. Sequential operators in computability logic. Information and Compu-

tation 206 (2008), pp. 1443-1475.
[23] G. Japaridze. Many concepts and two logics of algorithmic reduction. Studia Logica

91 (2009), pp. 1-24.
[24] G. Japaridze. In the beginning was game semantics. In: Games: Unifying Logic,

Language, and Philosophy. O. Majer, A.-V. Pietarinen and T. Tulenheimo, eds.
Springer 2009, pp. 249-350.

[25] G. Japaridze. Toggling operators in computability logic. Theoretical Computer Sci-
ence 412 (2011), pp. 971-1004.

[26] G. Japaridze. From formulas to cirquents in computability logic. Logical Methods is
Computer Science 7 (2011), Issue 2 , Paper 1, pp. 1-55.

[27] G. Japaridze. Separating the basic logics of the basic recurrences. Annals of Pure and
Applied Logic 163 (2012), pp. 377-389.

[28] G. Japaridze. A logical basis for constructive systems. Journal of Logic and Com-
putation 22 (2012), pp. 605-642.

[29] G. Japaridze. The taming of recurrences in computability logic through cirquent calculus,
Part I. Archive for Mathematical Logic 52 (2013), pp. 173-212.

[30] G. Japaridze. The taming of recurrences in computability logic through cirquent calculus,
Part II. Archive for Mathematical Logic 52 (2013), pp. 213-259.

[31] G. Japaridze. On the system CL12 of computability logic. Logical Methods is Com-
puter Science 11 (2015), Issue 3, paper 1, pp. 1-71.

[32] P. Lorenzen. Ein dialogisches Konstruktivitätskriterium. In: Infinitistic Methods. In:
PWN, Proc. Symp. Foundations of Mathematics, Warsaw, 1961, pp. 193-200.

[33] I. Mezhirov and N. Vereshchagin. On abstract resource semantics and computability
logic. Journal of Computer and System Sciences 76 (2010), pp. 356-372.

[34] M. Qu, J. Luan, D. Zhu and M. Du. On the toggling-branching recurrence of com-
putability logic. Journal of Computer Science and Technology 28 (2013), pp.
278-284.

[35] W. Xu and S. Liu. Soundness and completeness of the cirquent calculus system CL6 for
computability logic. Logic Journal of the IGPL 20 (2012), pp. 317-330.

[36] W. Xu and S. Liu. The countable versus uncountable branching recurrences in com-
putability logic. Journal of Applied Logic 10 (2012), pp. 431-446.

[37] W. Xu and S. Liu. The parallel versus branching recurrences in computability logic.
Notre Dame Journal of Formal Logic 54 (2013), pp. 61-78.

[38] W. Xu. A propositional system induced by Japaridze’s approach to IF logic. Logic
Journal of the IGPL 22 (2014), pp. 982-991.

[39] W. Xu. A cirquent calculus system with clustering and ranking. Journal of Applied

386

Elementary-base Cirquent Calculus I

Logic 16 (2016), pp. 37-49.

Received 1 August 2017387

388

Boolean-valued Models as a Foundation for
Locally L0-Convex Analysis and

Conditional Set Theory

Antonio Avilés ∗
Universidad de Murcia, Dpto. Matemáticas, 30100 Espinardo, Murcia, Spain

avileslo@um.es

José Miguel Zapata †
Universidad de Murcia, Dpto. Matemáticas, 30100 Espinardo, Murcia, Spain

jmzg1@um.es

Abstract

Locally L0-convex modules were introduced in [D. Filipovic, M. Kupper,
N. Vogelpoth. Separation and duality in locally L0-convex modules. J. Funct.
Anal. 256(12), 3996-4029 (2009)] as the analytic basis for the study of multi-
period mathematical finance. Later, the algebra of conditional sets was intro-
duced in [S. Drapeau, A. Jamneshan, M. Karliczek, M. Kupper. The algebra of
conditional sets and the concepts of conditional topology and compactness. J.
Math. Anal. Appl. 437(1), 561-589 (2016)]. By means of Boolean-valued mod-
els and its transfer principle we show that any known result on locally convex
spaces has a transcription in the frame of locally L0-convex modules which is
also true, and that the formulation in conditional set theory of any theorem of
classical set theory is also a theorem. We propose Boolean-valued analysis as
an analytic framework for the study of multi-period problems in mathematical
finance.

The authors would like to thank an anonymous referee for a careful review of the manuscript and
valuable comments, and for pointing out a stem of excellent related works.
∗The first author was supported by projects MTM2014-54182-P and MTM2017-86182-P

(MINECO,AEI/FEDER, UE) and 19275/PI/14 (Fundación Séneca).
†The second author was supported by the grant associated to the project MTM2014-57838-C2-

1-P (MINECO).

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Avilés and Zapata

Introduction

Boolean-valued models are a tool in mathematical logic that was developed as a
way to formalize the method of forcing that Paul Cohen created to solve the first
problem in the famous Hilbert’s list: it is impossible neither to prove nor to disprove
that every infinite set of reals can be bijected either with the natural numbers of
with the whole real line [9]. The theory was first formulated by Scott [43] based
on some ideas of Solovay, while Vopěnka created independently a similar theory. In
this paper we shall see that Boolean-valued models provide a natural framework for
certain problems in financial mathematics which involve a multi-period setting, such
as representation of dynamic and conditional risk measures and stochastic optimal
control. Several recent developments, like the study of locally L0-convex modules
and the algebra of conditional sets are covered by this theory. The advantage is not
only a unified approach for several scattered results in the literature; the important
point is that we get at our disposal all the powerful tools of a well developed deep
mathematical theory. In particular, the so-called transfer principle claims that any
known result of set theory has a transcription in the Boolean-valued setting, which
is also true.

In order to provide an analytical basis to problems of mathematical finance in
a multi-period set-up with a dynamic flow of information, Filipovic et al. [14] con-
sidered L0 := L0(Ω,Σ,P), the ordered lattice ring of equivalence classes modulo
almost sure equality of Σ-measurable random variables, where (Ω,Σ,P) is a prob-
ability space that models the market information that is available at some future
time. They introduced the topology of almost sure dominance on L0 and the notion
of locally L0-convex module, and succeeded in developing a randomized version of
classical convex analysis. We will show that a locally L0-convex module can be em-
bedded into a Boolean-valued universe and will systematically study the meaning of
several related objects within this framework. Thus, we will show that not only the
main results of [14] are consequence of this connection but that any known result
of locally convex analysis has a modular transcription which also holds as a conse-
quence of the transfer principle of Boolean-valued models. For instance, we provide
randomized versions of celebrated theorems such as the Brouwer’s fixed point and
the James’ compactness theorem.

Conditional set theory was introduced in [11]. The authors need to give a def-
inition of the conditional version of each mathematical concept they want to use
(conditional real number, conditional topological space, etc.) and also formulate
and prove the conditional version of known results. All this is automatic within the
context that we propose: the conditional version of any known result is automatically
true. Nevertheless, we should mention that this connection exhibits that conditional

390

Boolean-valued models and L0-convex analysis

set theory provides a practical tool to manage objects from Boolean-valued mod-
els and gives intuition to anyone who is not familiarized with the formalisms of
Boolean-valued models.

These developments have been applied to mathematical finance. For instance, we
find applications to representation of conditional risk measures (see eg [5, 15, 18]),
to equilibrium theory (see [2, 7]), to optimal stochastic control (see [28]) and to
financial preferences (see [10]). Also, as commented, there is a significant number of
related works. For instance, modules endowed with L0-valued norms have been ap-
plied to the study of ultrapowers of Lebesgue-Bochner spaces by Haydon et al. [27].
Guo together with other co-authors have widely studied generalizations of functional
analysis results in L0-modules endowed with the topology of stochastic convergence
with respect to a family of L0-valued seminorms, also called the (ε, λ)-topology (see
eg [21, 23, 24] and references therein). In this regard, a study of the relations between
the (ε, λ)-topology and the locally L0-convex topology induced by L0-valued semi-
norms can be found in [22]. Eisele and Taieb [13] extended some functional analysis
results to modules over the ring L∞. A randomized version of finite-dimensional
analysis in (L0)d is developed in [8] and also a version of the Brouwer fixed point
theorem in this context is established in [12]. Other results and counter-examples
on locally L0-convex modules can be found in [48, 46]. Further studies of dual pairs
and weak topologies in the context of conditional sets are provided in [41, 47].

In addition, we should highlight that the Boolean-valued model approach shows
that the study of locally L0-convex modules naturally fits the framework of the
well-developed theory of lattice-normed spaces (i.e. norms that take values in a
vector lattice) and dominated operators, originated in the 1930s by L.V. Kantorovich
(see [32]), field that has been widely researched and fruitfully exploited by A. G.
Kusraev and S. S. Kutateladze. For a thorough account we refer the reader to
eg [36, 39] and their extensive lists of references.

The paper is organized as follows: In the first section we give a short introduction
to Boolean-valued models, provide some intuition and recall the basic elements and
principles of the Boolean-valued machinery. In Section 2, we explain a precise con-
nection between the framework of locally L0-convex modules and Boolean-valued
locally convex analysis; give a list of basic elements of locally L0-convex analysis
and explain their meanings within Boolean-valued locally convex analysis; and as
example of application we derive the main theorems of [14] and modular versions
of James’ compactness theorem and Brouwer’s fixed point theorem. Finally, Sec-
tion 3 is devoted to provide a precise connection between conditional set theory and
Boolean-valued models.

391

Avilés and Zapata

1 Foundations of Boolean-valued models

Let us try to give an intuitive idea of what Boolean-valued analysis is and how it
can fit in mathematical finance. We would like to talk about what will happen in a
particular moment in the future. This future is uncertain, it is influenced by events
that we do not know yet. These possible events that might influence the future
will be coded by a complete Booolean algebra A = (A,∨,∧, c, 0, 1). The simplest
case that we can think of is that the future that we are interested in is completely
determined by the result of flipping a coin. In that case, the algebra of events is
A0 = {a, ac, 0, 1} where a is the event “we get head”, and its negation ac is “we
get tail”. In the algebra of events we also have all the events that we can formulate
combining others, and so a ∨ ac = 1 is the event “we get either head or tail”, which
is just the true event, and a∧ ac = 0 is the event “we get both head and tail” which
is just the false event. Another example is that our future depends on a randomly
chosen (say with Gaussian probability) real number. In that case, the algebra of
events would be the measure algebra: measurable subsets of R modulo null sets. In
that case, for example, the class of [1, 2] is interpreted as the event “the random
number happened to fall inside the interval [1, 2]”.

So let us fix the algebra A of all the events that we can talk about and influence
the future. The next element of our theory are the names. The names are the
nouns of the language with which we talk about objects in the future despite the
uncertainties. In the flipping coin example, suppose that I have five dollars and I
bet two dollars that the outcome will be tail. Then I can consider the name ẋ that
represents the amount of money that I will have in the future. The actual value of
ẋ is unknown, it could be 3 or 7 depending on the coin. In the very simple flipping
coin case, a name can be identified with a pair (r, s) of mathematical objects, one
for head and one for tail. In the random real case, names will look more complicated
but the idea is similar. Examples of names would be ẏ that would take value 1 if the
random real is positive or -1 if it is negative, and also ż the name for the random
real itself. A special kind of names are those which do not really depend on the
unknown events, and those are represented with a ∨ symbol above. For example, 5̌
is a name which represents the number 5, no matter what the coin did or what the
random real actually happens to be.

Once we understand the idea of a name, the next step is formulating statements
about names and deciding what are the truth values of such statements. Playing
with the names given above in the flipping coin case, it makes sense to make the
following statements: P1. ẋ is a positive real number, P2. ẋ = 7̌, P3. ẋ < 4̌,

392

Boolean-valued models and L0-convex analysis

P4. ẋ = ẋ2. While P1 is clearly true and P4 is clearly false, for P2 and P3 we
may say that it depends on what the coin will do. In Boolean-valued analysis, these
statements are not assigned a binary truth value of true or false. The truth valued
of a sentence P , denoted by JP K is an element of the Boolean algebra A that cor-
responds to the event that describes when this sentence is true. Thus JP3K = ac

because I have 8 dollars if and only if the flipping will give a tail, and similarly
JP4K = a. In the random case, for instance, the truth value of the sentence 2̌ż < 4̌
is exactly the representative of the interval (−∞, 2) of the measure algebra, while
Jż > ẏK is the representative of (−1, 0) ∪ (1,+∞). In all these examples, we are
using names for real numbers, but the idea is more general, we can have names
for functions, sets, Banach spaces or any mathematical object we want, and state
any kind of properties we wish in formal mathematical language. In the framework
of set theory, any mathematical object can be considered as a set and any mathe-
matical statement can be re-stated in terms of the belonging relation ∈ between sets.

The precise formulation of Boolean-valued analysis requires some familiarity with
the basics of set theory and logic, and in particular with first order logic, ordinals
and transfinite induction. However, if one understands the key ideas and principles,
it is possible to work with Boolean-valued models avoiding the underlying machinery
that can be conveniently hidden in a black box. For a detailed description we can
refer the reader to [4], [30, Chapter 14], or [39, Chapter 2]. We make now a quick
review.

Let us consider a universe of sets V satisfying the axioms of the Zermelo-Fraenkel
set theory with the axiom of choice (ZFC), and a first-order language L which allows
the formulation of statements about the elements of V . In the universe V we have all
possible mathematical objects (real numbers, topological spaces, etc.) that we can
talk about in a context of total certainty. The language L consists of the elements of
V plus a finite list of symbols for logic symbols (∀, ∧, ¬ and parenthesis), variables
(with the symbol x we can express any variables we need as x, xx, xxx, . . .) and
the verbs = and ∈. Though we usually use a much richer language by introducing
more and more intricate definitions, in the end any usual mathematical statement
can be written using only those mentioned. The elements of the universe V are
classified into a transfinite hierarchy: V0 ⊂ V1 ⊂ V2 ⊂ · · ·Vω ⊂ Vω+1 ⊂ · · · , where
V0 = ∅, Vα+1 = P(Vα) is the family of all sets whose elements come from Vα, and
Vβ = ⋃

α<β Vα for limit ordinal β.

Now consider the complete Boolean algebra of events A = (A,∨,∧, c, 0, 1) which
is an element of V . For given a, b ∈ A, we will write a ≤ b whenever a∧ b = a. For a

393

Avilés and Zapata

family {ai}i∈I in A, we denote its supremum by ∨i∈I ai and its infimum by ∧i∈I ai.
A family {ai}i∈I in A is said to be a partition of a if ∨i∈I ai = a and ai ∧ aj = 0 for
all i 6= j, i, j ∈ I (notice that I could be infinite in this definition). For given a ∈ A
we denote by p(a) the set of all partitions of a.

Given this complete Boolean algebra A, one constructs now V (A), the Boolean-
valued model of A, whose elements are the names that we mentioned earlier, that we
interpret as nouns with which we talk about the future. We proceed by induction
over the class Ord of ordinals of the universe V . We start by defining V (A)

0 := ∅; if
α+ 1 is the successor of α, we define

V
(A)
α+1 :=

{
x : x is an A-valued function with dom(x) ⊂ V (A)

α

}
.

The idea is that for y ∈ dom(x), y will become an element of x in the future if x(y)
happens. If α is a limit ordinal V (A)

α := ⋃
ξ<α

V
(A)
ξ . Finally, let V (A) := ⋃

α∈Ord
V

(A)
α .

Given an element x in V (A) we define its rank as the least ordinal α such that x
is in V (A)

α+1.
We consider a first-order language which allows to produce statements about

V (A). Namely, let L(A) be the first-order language which is the extension of L
by adding nouns for each element of V (A). Suppose that ϕ is any formula of the
language L(A), its Boolean truth value JϕK is defined by induction in the length of ϕ.
If one got the right intuition, all the formulas that follow should look natural. We
start by defining the Boolean truth value of the atomic formulas x ∈ y and x = y
for x and y in V (A). Namely, proceeding by transfinite recursion we define

Jx ∈ yK =
∨

t∈dom(y)
y(t) ∧ Jt = xK,

Jx = yK =
∧

t∈dom(x)
(x(t)⇒ Jt ∈ yK) ∧

∧

t∈dom(y)
(y(t)⇒ Jt ∈ xK) ,

where, for a, b ∈ A, we denote a⇒ b := ac ∨ b. For non-atomic formulas we have

J∃xϕ(x)K :=
∨

u∈V (A)

Jϕ(u)K and J∀xϕ(x)K :=
∧

u∈V (A)

Jϕ(u)K;

Jϕ ∧ ψK := JϕK ∧ JψK and J¬ϕK := JϕKc.
It is well-known that every theorem of ZFC is true in V (A) with the Boolean truth
value:

394

Boolean-valued models and L0-convex analysis

Theorem 1.1. (Transfer Principle) If ϕ is a theorem of ZFC, then JϕK = 1.

Also, it will be important to keep in mind the following results, which will allow
to manipulate V (A) and are well-known within Boolean-valued models theory:

Theorem 1.2. (Maximum Principle) Let ϕ(x) be a formula with one free variable
x. Then there exists an element u of V (A) such that Jϕ(u)K = J∃xϕ(x)K.
Theorem 1.3. (Mixing Principle) Let {ai} ∈ p(1) and let {xi} be a family in V (A).
Then there exists an element x in V (A) such that Jx = xiK ≥ ai for all i. Moreover,
if y is another element of V (A) which satisfies the same, then Jx = yK = 1.

Let us say that two names x, y are equivalent, and write x ∼ y, when Jx = yK = 1.
The truth value of a formula is not affected when we change a name by an equivalent
one. Given a set x in V we define its canonical name x̌ in V (A). Namely, we put
∅̌ := ∅ and for x in V (A) we define x̌ : D → A, where D := {y̌ : y ∈ x} and x̌(y̌) := 1
for y ∈ x. It is not difficult to show that x̌ is an element of V (A). If x, y, f ∈ V (A)

and we say, for instance, that f is a name for a function f : x→ y, this means that
J“f is a function from x to y”K = 1. The transfer and maximum principles provide
us with names N(A) and R(A) for the sets of natural numbers and real numbers,
respectively. This means: J“N(A) is the set of natural numbers”K = 1.

Let V (A) be the subclass of V (A) defined by choosing a representative of the least
rank in each class of the equivalence relation {(x, y) : Jx = yK = 1}.1 Given a name
x with Jx 6= ∅K = 1 we define its descent by

x↓ = {y ∈ V (A) : Jy ∈ xK = 1}.

Notice that, if x ∈ V (A)
α , then any element of the class x↓ is also in V (A)

α . Therefore,
we have that x↓ is a set in V .

The following result will be useful later:

Theorem 1.4. Let x, y be elements of V (A) with J(x 6= ∅) ∧ (y 6= ∅)K = 1, let
f : x↓ → y↓ be a function such that

Ju = vK ≤ Jf(u) = f(v)K for all u, v ∈ x↓.

Then there exists g in V (A), which is a name for a function between x and y, such
that Jf(u) = g(u)K = 1 for all u ∈ x↓.

1The construction can be done by transfinite induction. We choose a representative of each
class {(x, y) : x, y ∈ V

(A)
α+1 : Jx = yK = 1, Jx = zK < 1 for al z ∈ V

(A)
α } and define V (A)

α+1 the set
of all theses representatives. For a limit ordinal α we put V (A)

α :=
⋃
ξ<α

V
(A)
ξ . The class V (A) is

frequently defined in literature and is called the separated universe, see eg [39, 45].

395

Avilés and Zapata

2 A precise connection between locally L0-convex anal-
ysis and Boolean-valued locally convex analysis

Let (Ω,Σ,P) be a probability space of the universe V and let L0 denote the set
of Σ-measurable random variables, which are identified whenever their difference is
P-negligible. We denote by F the measure algebra, which is defined by identifying
events whose symmetric difference has probability 0. Then, F has structure of
complete Boolean algebra which satisfies the countable chain condition, that is, all
partitions are at most countable. Since F is a complete Boolean algebra, one can
consider the corresponding boolean-valued model V (F).

As shown by Takeuti [44], there exists a canonical bijection φ between R(F)↓ and
L0. Moreover, the image of N(F) and Q(F) under φ are precisely L0(N), the set of
(equivalence classes) of N-valued random variables; and L0(Q), the set of (equiva-
lence class) of Q-valued random variables, respectively. Besides, φ(r + s) = φ(r) +
φ(s), φ(rs) = φ(r)φ(s), φ(0) = 0, φ(1) = 1, Jr = sK = ∨ {A ∈ F : 1Aφ(r) = 1Aφ(s)},
and Jr ≤ sK = ∨ {A ∈ F : 1Aφ(r) ≤ 1Aφ(s)}, for all r, s ∈ R(F)↓.
Remark 2.1. Gordon [19] proved that, in general, if A is an arbitrary complete
Boolean algebra, the descent R(A)↓ is a universally complete vector lattice (i.e. every
family of pairwise disjoint elements is bounded) such that A is isomorphic to the
Boolean algebra of band projections in R(A)↓. Then, as a particular case, we find
that R(F)↓ is isomorphic to the universally complete vector lattice L0. Moreover,
Takeuti [44] also proved that, in the case that A is the complete Boolean algebra of
orthogonal projections in a Hilbert space, then R(A)↓ is isomorphic to the universally
complete vector lattice of self-adjoint operators whose spectral resolution takes values
in A.

Suppose that E is an L0-module; that is, E is a module over the ordered lattice
ring L0. We say that E has the countable concatenation property whenever for every
sequence {xk} in E and every partition {Ak} ∈ p(Ω) there exists a unique x ∈ E
(denoted by x = ∑ 1Akxk) such that 1Akx = 1Akxk for each k ∈ N. This property
and other related are technical assumptions that are typically assumed in literature
cf.[14, 22, 48]. It should be pointed out that not every L0-module has this prop-
erty (for instance, see [14, Example 2.12] and [46, Example 1.1]). However, every
L0-module E can be made into an L0-module with this property by considering the
quotient of a suitable equivalence relation on EN × p(Ω) (see eg [41]).

The next result describes the relation between L0-modules and names for real
vector spaces in V (F). Gordon [20] provided an equivalence of categories between the
category of names for vector spaces and linear functions in V (A) and the category

396

Boolean-valued models and L0-convex analysis

of unital separated injective K-modules and K-module morphisms, where K is a
rationally complete semiprime commutative ring and A is the Boolean algebra of
annihilator ideals (see [39] for terminology). It can be verified that L0 is a rationally
complete semiprime commutative ring whose annihilator ideals coincide with band
projections. Besides, it can be checked that the countable concatenation property
of an L0-module E is equivalent to the injectivity of E. Thus Theorem 2.1 below
is a particular case of the mentioned equivalence of categories in [20]. However, for
the convenience of the reader, we provide a self-contained proof for this particular
case.2

Theorem 2.1. For fixed an underlying measure algebra F , there is an equivalence of
categories between the category of names for real vector spaces and linear functions
in V (F), and the category of L0-modules with the countable concatenation property
and L0-module morphisms.

Proof. If we take any E in V (F), which is a name for a real vector space, then E↓ can
be endowed with structure of L0-module with the countable concatenation property.
Indeed, for x, y ∈ E↓ and η ∈ L0, we define x+y := u where u is the unique element
of E↓ such that Jx+y = uK = Ω; we define ηx = v, where v is the unique element of
E↓ such that Jφ−1(η)x = vK = Ω. It follows by inspection that E↓ is an L0-module.
In addition, if {Ak} ∈ p(Ω) and {uk} ⊂ E↓, then by the mixing principle (Theorem
1.3) there exists a unique u ∈ E↓ such that Ak ≤ Ju = ukK for all k ∈ N. Let
1̃Ak := φ−1(1Ak). One has J1̃Ak = 1K = Ak and J1̃Ak = 0K = Ack each k. Then

J1̃Aku = 1̃AkukK ≥ J((u = uk) ∧ (1̃Ak = 1)) ∨ (1̃Ak = 0)K

= (Ju = ukK ∧ J1̃Ak = 1K) ∨ J1̃Ak = 0K = Ak ∨Ack = Ω for all k.

That is, 1Aku = 1Akuk for each k. This shows that E↓ has also the countable
concatenation property.

Now, suppose that f,E, F are elements in V (F) such that E,F are names for
real vector spaces and f is a name for a linear function from E to F in V (F). Then,
slightly abusing the notation, let f↓ denote the unique map from E↓ to F↓ satisfying
Jf↓(x) = f(x)K = Ω for all x ∈ E↓. Then it can be verified that f↓ : E↓ → F↓ is an
L0-module morphism.

Thus, we define the functor G(E) := E↓, G(f) := f↓.
Let us turn to the description of the inverse functor. Let E be an L0-module

with the countable concatenation property. We will show that E can be made into
2In general, for any Boolean-algebra A, one has that R(A)↓ is also a rationally complete

semiprime commutative ring whose annihilator ideals coincide with bands, thus the equivalence
of categories in [20] also applies. For a proof of this particular case see [39, p. 198].

397

Avilés and Zapata

an element Ẽ of V (F) which is a name for a real vector space. Indeed, for each x ∈ E
we define x̄ : Dx → F with

Dx := {y̌ : y ∈ E} , and x̄(y̌) := Ax,y for y ∈ E,

where Ax,y := ∨ {B ∈ F : 1B(x− y) = 0}. Then, let Ẽ : D → F where D :=
{x̄ : x ∈ E} with Ẽ(x̄) := Ω for each x ∈ E.

One has that Ẽ is an element of V (F). Moreover, we claim that Jx̄ = ȳK = Ax,y
for all x, y ∈ E. Indeed, given x, y ∈ E one has

Jx̄ = ȳK =
∧

u∈E
(Ax,u ⇒ Jǔ ∈ ȳK) ∧

∧

v∈E
(Ay,v ⇒ Jv̌ ∈ x̄K) . (1)

In addition,
Jǔ ∈ ȳK =

∨

w∈E
(Ay,w ∧ Jǔ = w̌K) = Ay,u,

since Jǔ = w̌K = Ω if u = w, and Jǔ = w̌K = ∅ otherwise. Analogously, we obtain
Jv̌ ∈ x̄K = Ax,v.

Therefore, replacing in (1), one has

Jx̄ = ȳK =
∧

u∈E

(
Acx,u ∨Ay,u

)
∧
∧

v∈E

(
Acy,v ∨Ax,v

)
.

By considering above u = x and v = y, it follows Jx̄ = ȳK ≤ Ax,y. Now, if we
show that Ax,y ≤ Acx,u ∨ Ay,u for each u ∈ E, we obtain the assertion. Aiming at
a contradiction, suppose that ∅ < A := Ax,y ∧ (Acx,u ∨ Ay,u)c. First, let us show
that the supremum that defines Ax,y is in fact attained for every x, y ∈ E. That
is just to show that 1Ax,y(x − y) = 0. Consider a maximal family M of pairwise
disjoint elements B ∈ F such that 1B(x − y) = 0. By maximality, M ∈ p(Ax,y),
and by countable chain condition this partition is countable. The uniqueness in
the countable concatenation property yields that 1Ax,yx = 1Ax,yy. Finally, since
A ≤ Ax,y ∧Ax,u one has 1Ay = 1Ax = 1Au. But A ≤ Acy,u, hence 1Ay 6= 1Au, which
is a contradiction.

For any x ∈ E, let x̃ be the representative in V (F) of the name x̄. The function
E → Ẽ↓ given by x 7→ x̃ is a bijection. Indeed, if x̃ = ỹ, then Ω = Jx̄ = ȳK = Ax,y;
since Ax,y is attained, it follows that x = y. Now, suppose that z ∈ Ẽ↓. Then

Ω = Jz ∈ ẼK =
∨

x∈E
Jx̄ = zK.

We can find a partition {Ak} ∈ p(Ω) such that Ak ≤ Jx̄k = zK for some xk ∈ E,
each k. The countable concatenation property yields an x so that 1Akx = 1Akxk

398

Boolean-valued models and L0-convex analysis

for all k. One has Jx̄ = x̄kK = Ax,xk ≥ Ak. Due to the mixing principle we obtain
Jz = x̄K = Ω, and taking representatives in V (F), we conclude that z = x̃.

For x, y ∈ E and r ∈ R(F)↓ we put Jx̃+ ỹ = uK = Ω whenever J(x+y)∼ = uK = Ω
and Jz = r · x̃K = Ω if J(φ(r)x)∼ = zK = Ω. Since the mapping x 7→ x̃ is bijective and
due to Theorem 1.4, the operations are well-defined and Ẽ is a name for a vector
space in V (F).

Now, suppose that f : E → F is a morphism between L0-modules with the
countable concatenation property. Then we define the application g : Ẽ↓ → F̃↓,
x̃ 7→ (f(x))∼, which is well defined as x 7→ x̃ is one-to-one. Using that f is L0-linear,
we have that for every x, y ∈ E, Jx̃ = ỹK = Ax,y ≤ Af(x),f(y) = J(f(x))∼ = (f(y))∼K.
Then according to Theorem 1.4, there exists f̃ in V (F) such that Jf̃ : Ẽ → F̃ K = Ω
and J(f(x))∼ = f̃(x̃)K = Ω for all x ∈ E. In particular, we have that Jf̃(x̃ + ỹ) =
f̃(x̃) + f̃(ỹ)K = Ω and Jf̃(r · x̃) = r · f̃(x̃)K = Ω for all x, y ∈ E and r ∈ R(F)↓.

We define the functor H(E) := Ẽ, H(f) := f̃ . Then the functors F and H are
inverse equivalences. Indeed, suppose that E is an L0-module with the countable
concatenation property. We have proved that E → (Ẽ)↓, x 7→ x̃ is a bijection. It
is easy to verify that it is in fact an isomorphism of L0-modules which defines a
natural isomorphism between the functor GH and the identity functor.

Also, given a name E for a vector space in V (F), we consider the map E↓ →
((E↓)∼)↓, x 7→ x̃. By applying Theorem 1.4, we obtain a name for an isomorphism
of vector spaces in V (F); that is, J(E↓)∼ ∼= EK = Ω. Inspection shows that HG is
naturally isomorphic to the functor identity.

Let us introduce some terminology:
If E is an L0-module with the countable concatenation property:

• S ⊂ E is said to be:

1. L0-convex: if ηx+(1−η)y ∈ S for all x, y ∈ S and η ∈ L0 with 0 ≤ η ≤ 1;
2. L0-absorbing: if for every x ∈ E there is η ∈ L0, η > 0, such that x ∈ ηS;
3. L0-balanced: if ηx ∈ S whenever x ∈ S and η ∈ L0 with |η| ≤ 1.

• A non-empty subset S ⊂ E is said to be stable under countable concatenations,
or simply stable, if for every countable family {xk} ⊂ S and partition {Ak} ∈
p(Ω), it holds that ∑ 1Akxk ∈ S.

• A non-empty collection C of subsets of E is called stable if every S ∈ C is
stable and for every countable family {Sk} ⊂ C and partition {Ak} ∈ p(Ω), it
holds that ∑ 1AkSk ∈ C .

399

Avilés and Zapata

Filipovic et al. [14] introduced the notion of locally L0-convex module. Let us re-
call the following particular case, which was introduced in [41] and is a transcription
in the present setting (via the equivalence of categories provided in [41, Theorem
1.2]) of the notion of conditionally locally topological vector space introduced in [11].

Definition 2.1. A topological L0-module E[T] with the countable concatenation
property is said to be a stable locally L0-convex module if there exists a neighborhood
base U of 0 ∈ E such that:

(i) U is a stable collection;

(ii) Every U ∈ U is L0-convex, L0-absorbing and L0-balanced.

In this case, T is called a stable locally L0-convex topology on E.

To our knowledge, the next result is new in literature; it describes the connec-
tion between names for locally convex spaces in V (F) and stable locally L0-convex
modules:

Theorem 2.2. For fixed an underlying measure algebra F , there is an equivalence
of categories between the category of names for locally convex spaces and continuous
linear functions, and the category of stable locally L0-convex modules and continuous
L0-module morphims.

Proof. We consider the same functor G as in Theorem 2.1, but restricted to the
category of names for locally convex spaces and continuous linear functions in V (F).

Let E[T] be a name for a locally convex space in V (F); that is, T is a name for
a locally convex topology in V (F). Let U be a name for a neighborhood base of the
origin, such that

J∀U ∈ U(“U is convex” ∧ “U is absorbing” ∧ “U is balanced”)K = Ω.

We know that E↓ is an L0-module with the countable concatenation property.
Let U⇓ := {U↓ : U ∈ U↓}. Then every U ∈ U⇓ is stable due to the mixing principle.
In the same way, again due to the mixing principle, it holds that ∑ 1AkUk ∈ U⇓
whenever {Uk} ⊂ U⇓ and {Ak} ∈ p(Ω). Therefore, U⇓ is a stable collection. Also,
it is not difficult to show that each U ∈ U⇓ is L0-convex, L0-absorbing and L0-
balanced, and U⇓ is a neighborhood base of 0 ∈ E↓ of a topology T . Therefore
E↓[T] is a stable locally L0-convex module.

Now, let f,E, F be elements of V (F) such that E,F are names for locally convex
spaces and f is a name for a continuous linear function between E and F in V (F);
that is, Jf ∈ L(E,F)K = Ω. Then we can consider f↓, which is an L0-module

400

Boolean-valued models and L0-convex analysis

morphism between E↓ and F↓ such that Jf↓(x) = f(x)K = Ω for all x ∈ E↓. The
function f↓ is also continuous. To see this, consider U↓ a basic neighborhood of 0
in F . Then, since f is continuous, there is a name for a basic neighborhood W in
E such that JW ⊂ f−1(U)K = Ω. Then W↓ ⊂ f↓−1(U↓) and this proves that f↓ is
continuous.

Conversely, let E[T] be a stable locally L0-convex module. We consider Ẽ as in
the proof of Theorem 2.1. Let U be a neighborhood base of 0 ∈ E as in Definition
2.1. For every U ∈ U , we can define Ũ : DU → F , where DU := {x̃ : x ∈ U}
and Ũ(x̃) := Ω. Note that Ũ is an element of V (F). The map x 7→ x̃ gives a
bijection between U and Ũ↓. Injectivity was checked in the proof of Theorem 2.1.
For surjectivity, if w ∈ Ũ↓ then 1 = Jw ∈ ŨK = ∨{Jw = x̃K : x ∈ U}. Take a maximal
family of pairs Ak, xk such that xk ∈ U , the Ak are nonzero and pairwise disjoint
and Ak ≤ Jw = x̃kK. Using that U is stable3, we obtained the desired preimage of
w. Now, we consider Ũ : DU → F where DU :=

{
Ũ : U ∈ U

}
and Ũ (Ũ) = Ω.

For each U, V ∈ U , let

AU,V :=
∨
{A ∈ F : 1AU = 1AV } .

We claim that AU,V = JŨ = Ṽ K. Indeed,

JŨ = Ṽ K =
∧

x∈U
Jx̃ ∈ Ṽ K ∧

∧

y∈V
Jỹ ∈ ŨK =

∧

x∈U

∨

y∈V
Ax,y ∧

∧

y∈V

∨

x∈U
Ax,y.

For every x ∈ U , by using that V is stable similarly as above, one has that
1AU,V x = 1AU,V yx for some yx ∈ V . Then AU,V ≤ Ax,yx for all x ∈ U . Likewise, for
every y ∈ V we can find xy ∈ U with AU,V ≤ Axy ,y. We conclude that AU,V ≤ JŨ =
Ṽ K.

By using again that V is stable, for each x ∈ U one can find yx ∈ V such
that ∨y∈V Ax,y = Ax,yx . Similarly, for every y ∈ V one can pick up xy ∈ U with∨
x∈U Ax,y = Axy ,y. By using this in the expression above for JŨ = Ṽ K, we get that

always JŨ = Ṽ K ≤ Ax,yx and JŨ = Ṽ K ≤ Ay,xy , and hence for every x ∈ U we find
that 1JŨ=Ṽ Kx = 1JŨ=Ṽ Ky

x and for every y ∈ V we have that 1JŨ=Ṽ Kx
y = 1JŨ=Ṽ Ky.

It follows that 1JŨ=Ṽ KU = 1JŨ=Ṽ KV , and therefore JŨ = Ṽ K ≤ AU,V .
We proved before that the image of any U ∈ U via the mapping x 7→ x̃ is

Ũ↓. Now we claim that the assignment U 7→ Ũ↓ is a bijection from U to Ũ ⇓.
The assignment is injective because x 7→ x̃ is injective. It is surjective because if
W↓ ∈ Ũ ⇓ with W ∈ Ũ ↓, then Ω = JW ∈ UK = ∨

U∈U JW = ŨK, we can take
3In the sequel, we will omit the details of this usage of the countable concatenation property,

that follows always the same scheme through a maximal disjoint family of nonzero elements.

401

Avilés and Zapata

a maximal disjoint family {Bk} such that Bk ≤ JŨk = W K, and using the mixing
principle and that U is a stable collection, we get that V := ∑ 1AkUk is a preimage
for W .

Using that U is a neighborhood base of 0 ∈ E, it can be verified that Ũ is a
name for a neighborhood base of the origin of a locally convex topology in V (F).

Now, suppose that f : E1[T1] → E2[T2] is a continuous L0-module morphism.
Then we know that f̃ : Ẽ1 → Ẽ2 is a name for a linear function. It is in fact a name
for a continuous linear functional, because if basic neighborhoods satisfy f(U) ⊂ V ,
then Jf̃(Ũ) ⊂ Ṽ K = Ω.

Let E[T] be a stable locally L0-convex module. We know that the map E → Ẽ↓,
x 7→ x̃ is an isomorphism of L0-modules. Moreover, we proved before that U and
Ũ ⇓ are one-to-one relation via x 7→ x̃. Consequently, E → Ẽ↓, x 7→ x̃ is also a
homeomorphism.

If E[T] is a name for a locally convex space, then E[T]↓ is a stable locally L0-
convex module and, by the argument above, the map E[T]↓ → ((E[T]↓)∼)↓ is an
isomorphism of L0-modules which is also a homeomorphism. Then, Theorem 1.4
provides a name for a homeomorphism between E[T] and (E[T]↓)∼. A close look
shows that all these correspondences are natural transformations.

The important conclusion of the result above is not the equivalence of categories
itself, but that, for any stable locally L0-convex module E[T], we can find a tailored
name Ẽ[T] for a locally convex space such that E[T] is isomorphic to the descent
Ẽ[T]↓. This will allow to reinterpret certain objects related to E[T] within the
Boolean-valued universe.

Henceforth, we will fix a stable locally L0-convex module E[T] and its corre-
sponding name Ẽ[T] for a vector space given by the equivalence of categories above.
Since E[T] and Ẽ[T]↓ are isomorphic stable locally L0-convex modules and the
properties that we will study are preserved by the isomorphism, for simplicity, we
will assume w.l.o.g. that one recovers the initial L0-module by means of the descent,
that is, E[T] = Ẽ[T]↓. For the same reasons, we will assume that L0 = R(F)↓. Let
L̄0 denote the set of equivalence classes of Σ-measurable functions with values in
[−∞,+∞] and let R(F) be a name for the extended real numbers. Clearly, we can
also assume L̄0 = R(F)↓.

Next, we will list different relevant objects related to E[T]. All of them are either
introduced in the existing literature of L0-convex analysis [8, 14, 22, 41] or come from
transcriptions in the modular setting of elements of conditional set theory [11, 29,
41]. Also, some of these concepts came earlier from Boolean valued analysis as we
will explain later in Remark 2.2. Our purpose is to discuss their meanings within

402

Boolean-valued models and L0-convex analysis

Boolean-valued analysis, providing a bunch of ’building blocks’ for the construction
of module analogues of known statements of locally convex analysis, which will be
also true due to the transfer principle:

• Stable subsets: For a given stable subset S of E we define the name S̃ : DS → F
where DS := {x̃ : x ∈ S} and S̃(x̃) := Ω. Then, S̃ is a name for a subset of Ẽ
with S̃↓ = S. Conversely, if S0 is a name with J∅ 6= S0 ⊂ ẼK = Ω, then S0↓ is
a stable subset of E satisfying J(S0↓)∼ = S0K = Ω.
Moreover, S is L0-convex if, and only if, J“S̃ is convex”K = Ω; S is L0-absorbing
if, and only if, J“S̃ is absorbing”K = Ω; and S is L0-balanced if, and only if,
J“S̃ is balanced”K = Ω.

• Stable collections of subsets: For a given stable collection C of subsets of E
we define the name C̃ : DC → F with DC :=

{
S̃ : S ∈ C

}
and C̃ (S̃) := Ω.

Conversely, if C is a name for a non-empty collection of non-empty subsets of
Ẽ, we define C⇓ := {S↓ : S ∈ C↓}, which is a stable collection of subsets of E.
Moreover, if C is a stable collection of subsets of E, one has that C = C̃⇓;
and if C is a name for a non-empty collection of non-empty subsets of Ẽ, then
we have J(C⇓)∼ = CK = Ω.
In particular, we know from the proof of Theorem 2.2 that, if U is a neighbor-
hood base of 0 ∈ E as in Definition 2.1, then Ũ is a name for a neighborhood
base of the origin and

Ũ ⇓ = U . (2)

Let C be a stable collection of subsets of E. We denote by (∪C̃)F , (∩C̃)F
names for the union and intersection of C̃ , respectively. Then, it holds that

∪C = (∪C̃)F↓ and ∩ C = (∩C̃)F↓. (3)

• Stable open subsets: Let O ⊂ E be stable. It follows from the relation (2),
that O is open if and only if, J“Õ is open”K = Ω.
Moreover, for any stable subset S of E, one has J(int(S))∼ = int(S̃)K = Ω.

• Stable closed subsets: Let C ⊂ E be stable. Then relation (2) allows to show
that C is closed if, and only if, J“C̃ is closed”K = Ω.
Moreover, for any stable subset S of E, it holds J(cl(S))∼ = cl(S̃)K = Ω.

403

Avilés and Zapata

• Stable filters: A stable filter on E is a filter F , which admits a filter base B
which is a stable collection of subsets of E.
If F is a stable filter with base B, where B is a stable collection, then it can
be verified that J“B̃ is a filter base”K = Ω. Conversely, if B is a name for a
filter base, then B⇓ is the base of some stable filter.

• Stably compact subsets: A stable subset S of E is said to be stably compact,
if every stable filter base B on S has a cluster point in S.
We have that K ⊂ E is stably compact if, and only if, J“K̃ is compact”K = Ω.
This follows because, due to (2), a stable filter base B has a cluster point if,
and only if, J“B̃ has a cluster point”K = Ω; and a name for a filter base B
satisfies J“B has a cluster point”K = Ω if, and only if, B⇓ has a cluster point.
We will say that a stable subset K of E is relatively stably compact, if cl(K) is
stably compact. Notice that K ⊂ E is relatively stably compact if, and only
if, J“K̃ is relatively compact”K = Ω.
Just mention that it was proven in [29, Proposition 5.2] that, when the under-
lying probability space is atomless, then any Hausdorff stable locally L0-convex
module is anti-compact; that is, the only compact subsets are the finite sub-
sets. This means that the conventional compactness is not interesting because
does not allow to establish any meaningful theorem. On the other hand, the
transfer principle brings a huge range of theorems involving stable compact-
ness, which shows that stable compactness is by far much richer than classical
compactness.

• Stable functions: Suppose that S1, S2 ⊂ E are stable. A function f : S1 → S2
is said to be stable if f(∑ 1Akxk) = ∑ 1Akf(xk) for all {xk} ⊂ S1 and {Ak} ∈
p(Ω).
Since Jx = yK ≤ Jf(x) = f(y)K for all x, y ∈ S1, Theorem 1.4 yields a name for
a function f̃ between S̃1 and S̃2 such that f̃↓ = f . Moreover, it can be verified
that f is continuous if, and only if, J“f̃ is continuous”K = Ω.
A function f : E → L̄0 has the local property, if 1Af(x) = 1Af(1Ax) for all
A ∈ F . If f has the local property, once again, Theorem 1.4 allows to define
a name f̃ for a function from Ẽ to R(F) so that f̃↓ = f .
A function f : E → L̄0 is:

1. L0-convex: if f(ηx+ (1− η)y) ≤ ηf(x) + (1− η)f(y) for all η ∈ L0 with
0 ≤ η ≤ 1 and x, y ∈ E;

404

Boolean-valued models and L0-convex analysis

2. proper : if f(x) > −∞ for all x ∈ E and there is some x0 ∈ E with
f(x0) ∈ L0;

3. lower semi-continuous: if the sublevel Vf (η) := {x ∈ E : f(x) ≤ η} is
closed for every η ∈ L̄0.

The domain of f is defined by dom(f) :=
{
x ∈ E : f(x) ∈ L0} .

When f has the local property, one has that f is L0-convex if, and only if
J“f̃ is convex”K = Ω; and f is proper if, and only if, J“f̃ is proper”K = Ω.
Further, it can be verified that Vf (η) is a stable set for each η ∈ L0 such that
Vf (η) 6= ∅. Thus, we can conclude that, f is lower semi-continuous if, and only
if, J“f̃ is lower semi-continuous”K = Ω.
Finally, just mention that if f is L0-convex, then f has automatically the local
property (see [14, Theorem 3.2]), hence in the statements we will not have to
require the latter property whenever f is L0-convex.

• Topological dual: We consider E∗ := E∗[T] the set of all continuous L0-module
morphisms µ : E → L0. Then, we can consider the name F : DE∗ → F with
DE∗ := {µ̃ : µ ∈ E∗} and F (µ̃) := Ω. Then we have JF = Ẽ∗[T]K = Ω, where
Ẽ∗[T] denotes a name for the topological dual of Ẽ[T]. Moreover, note that
we have the relation E∗[T] = {µ↓ : µ ∈ Ẽ∗[T]↓}.

• Stable sequences: A net χ = {xn}n∈L0(N) in E is called a stable sequence
whenever xn = ∑

k∈N 1{n=k}xk for all n ∈ L0(N). Then, again, Theorem 1.4
provides us with a name χ̃ for a function from N(F) to Ẽ; that is, a name for
a sequence in Ẽ. Besides, we have χ̃↓ = χ.
Bearing in mind relation (2), it can be verified that the net χ converges to
x ∈ E if, and only if, J“χ̃ converges to x̃ ∈ Ẽ”K = Ω.
A stable sequence κ = {yn}n∈L0(N) ⊂ E is called a stable subsequence of χ =
{xn}n∈L0(N) if there exists a stable sequence {nm}m∈L0(N) ⊂ L0(N), with nm <
nm′ whenever m < m′, such that ym = xnm for all m ∈ L0(N). In this case, it
can be verified that J“κ̃ is a subsequence of χ̃”K = Ω.

• L0-norms: An L0-norm on E is a function ‖ · ‖ : E → L0 such that for all
x, y ∈ E and η ∈ L0 satisfies:

(i) ‖x‖ ≥ 0, with ‖x‖ = 0 if and only if x = 0;
(ii) ‖ηx‖ = |η|‖x‖;
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

405

Avilés and Zapata

In this case (E, ‖ · ‖) is called an L0-normed module.
The collection of sets Bε := {x ∈ E : ‖x‖ < ε}, where ε ∈ L0 with ε > 0, is a
neighborhood base of 0 ∈ E for a stable locally convex topology T .
Due to (ii), ‖ · ‖ has the local property. Then we can define ‖ · ‖∼, which is a
name for a norm on Ẽ. Furthermore, one has that J“‖ · ‖∼ induces T ”K = Ω.

• Stable completeness: Suppose that (E, ‖ ·‖) is an L0-normed module. A stable
sequence {xn}n∈L0(N) ⊂ E is said to be Cauchy if for every ε ∈ L0, ε > 0, there
exists n0 ∈ L0(N) such that ‖xn−xn′‖ ≤ ε for all n, n′ ∈ L0(N) with n, n′ ≥ n0.
We say that (E, ‖ · ‖) is stably complete, if every Cauchy stable sequence is
convergent.
Then, one has that (E, ‖ · ‖) is stably complete if, and only if,

J“(Ẽ, ‖ · ‖∼) is a Banach space”K = Ω.

• Stable weak topologies: The collection of sets

U{Fk},{Ak},ε := {x ∈ E :
∑

1Akess. sup
µ∈Fk

|µ(x)| < ε},

where {Ak} ∈ p(Ω), {Fk} is a countable collection of non-empty finite subsets
of E∗ and ε ∈ L0 with ε > 0, is a neighborhood base of 0 ∈ E for a stable
locally L0-convex topology, which is called the stable weak topology and is
denoted by σs(E,E∗).
Then the corresponding name for a locally convex topology provided by the
equivalence of categories in Theorem 2.2 is precisely a name for the weak
topology of Ẽ[T].
Analogously, we can define the stable weak-∗ topology σs(E∗, E).

Remark 2.2. As mentioned previously, some of the notions listed above were intro-
duced earlier in literature of Boolean-valued analysis under different nomenclature.
Stable compactness was formulated in [29] as a transcription of the notion of con-
ditional compactness introduced in [11]. However, stable compactness was first time
studied by Kusraev [33] giving rise to the notion of cyclic compact set. Later, the
notion of mix-compactness was introduced by Gutman and Lisovskaya [26]. It turns
out that cyclic compactness and mix-compactness are equivalent notions (see [38,
Theorem 2.12.C.5]). These types of compactness have been fruitfully exploited, see
for instance results in [35, Sections 1.3 and 1.4], [36, Section 8.5] and the analogues
of the boundedness and uniform boundedness principles obtained in [26].

406

Boolean-valued models and L0-convex analysis

The notion of stable completeness is a transcription of the notion of conditional
completeness introduced in [11]. Descents of complete spaces and Banach spaces
were studied earlier by Kusraev [34], originating the notion of Banach-Kantorovich
space, which are descents of real Banach spaces as proven in [34] (for further details
see [36, Section 8.3] and [39, Section 5.4]).

Finally, the stably weak and stably weak-∗ topologies defined above are tran-
scriptions of the notion of conditional initial topology induced by conditional dual
pairs introduced in [11] applied to the pairing 〈E,E∗〉. Descents of dual pairs, which
give rise to dual systems with R(A)↓-bilinear forms, were studied earlier in [35]. In
particular, [35, Theorem 3.3.10(b)] is related to Theorem 2.2. This type of pair-
ings covers the stably weak and stably weak-∗ topologies defined above in the more
general framework of modules over universally complete vector lattices.

Once we have the ’building blocks’, let us see some examples to exhibit how
they can be assembled to give rise to different statements. Of course, this list is not
exhaustive and we can create many other pieces for our puzzle.

Let us start by the main theorems of [14]. For instance, we will see that Theorems
2.8, 3.7 and 3.8 in [14] follow from the transfer principle of Boolean-valued models.

Although, these results apply to the more general structure of locally L0-convex
module, they are proved under the assumption that the locally L0-convex topology is
induced by a family of L0-seminorms (see [14, Definition 2.3]), which is closed under
finite suprema and with the so-called countable concatenation property.4 It is not
difficult to prove that these properties amount to the existence of a neighborhood
base U of 0 ∈ E as in Definition 2.1. Thus, these results implicitly apply to stable
locally L0-convex modules.

We have the following:5

Theorem 2.3. Let E[T] be a stable locally L0-convex module, and suppose that
S1, S2 are stable L0-convex subsets of E with S1 stably compact and S2 closed. If

1AS1 ∩ 1AS2 = ∅ for all A ∈ F with A > ∅,

then there exists a continuous L0-module morphism µ : E → L0 and ε ∈ L0, ε > 0,
such that

µ(x) > µ(y) + ε for all x ∈ S1, y ∈ S2.
4Here, we refer to the countable concatenation property for families of L0-seminorms, which

has not to be missed up with the algebraic countable concatenation property introduced at the
beginning of the section.

5This statement is more general than [14, Theorem 2.8] as the latter applies to the particular
case in which S1 is a singleton. This statement is also a transcription of [11, Theorem 5.5(ii)] as
shown in [29].

407

Avilés and Zapata

Remember the classical separation theorem: If C,K are non-empty convex sub-
sets with C closed, K compact, and C and K have empty intersection, then there
is a lineal functional that separates C from K. What we have above is just a refor-
mulation of the statement Jseparation theoremK = Ω, so no proof needed.

In literature, there is a long tradition of studying conjugates and subgradients of
functions taking values in different types of ordered lattice rings such as Kantorovich
spaces (see eg [37, chap. 4]), and addressing versions of the classical Fenchel-Moreau
theorem in these settings (see eg [37, Theorem 4.3.10(1)] and [35, Theorem 1.2.11]).
More recently, Filipovic et al [14] worked with versions of conjugates and subgradi-
ents for L̄0-valued functionals defined on L0-modules. Namely, the conjugate of a
function f : E → L̄0 is defined by

f∗ : E∗ → L̄0, f∗(µ) := ess. sup
x∈E

(µ(x)− f(x)),

and its biconjugate is defined by

f∗∗ : E → L̄0, f∗∗(x) := ess. sup
µ∈E∗

(µ(x)− f∗(µ)).

An element µ ∈ E∗ is a subgradient of f : E → L̄0 at x0 ∈ dom(f), if

µ(x− x0) ≤ f(x)− f(x0) for all x ∈ E.

The set ∂f(x0) stands for the set of all subgradients of f at x0.
The notion of L0-barrel was introduced in [14]. Namely, a subset S of E is an

L0-barrel if it is L0-convex, L0-absorbing, L0-balanced and closed. We will say that
a topological L0-module is stably barreled if every stable L0-barrel is a neighborhood
of 0 ∈ E.

[14, Theorem 3.8] is a module analogue of the classical Fenchel-Moreau theorem.
We have the following statement, which does not need a proof as it follows from its
conventional version [3, Theorem 2.22] by means of the transfer principle by just
noting that Jf̃∗∗ = (f∗∗)∼K = Ω:

Theorem 2.4. Let E[T] be a stable locally L0-convex module and let f : E → L̄0

be proper lower semi-continuous and L0-convex. Then f∗∗ = f .

Concerning subgradients, we have the following result, which is a generalization
of [14, Theorem 3.7] and follows from the transfer principle applied to the so-called
Fenchel-Rockafellar theorem, see eg [6, Theorem 1]:

408

Boolean-valued models and L0-convex analysis

Theorem 2.5. Let E[T] be a stable locally L0-convex module which is stably bar-
reled. Let f : E → L̄0 be a proper lower semicontinuous L0-convex function. Then,

∂f(x) 6= ∅ for all x ∈ int(dom(f)).

The notion of L0-barreled topological L0-module was introduced in [14]; namely,
E[T] is L0-barreled if every L0-barrel is a neighborhood of 0 ∈ E. Thus, the notion
of stably barreled topological L0-module is more general. This was already pointed
out in [25], where the statement above was already proven by using the techniques
introduced in [14].

Let us see more examples of application of our method. Next, we provide module
analogues of the classical James’ compactness theorem and also a version of the
important Brouwer fixed point theorem.

The following statement is a modular version of a non-linear variation of classical
James’ compactness theorem, which plays an important role in the study of robust
representation of risk measures (see eg [31, Theorem A.1] and [40, Theorem 2]). The
statement we present follows from the transfer principle applied to its most general
version [42, Theorem 2.4].

Theorem 2.6. Let (E, ‖ · ‖) be a stably complete L0-normed module and let f :
E → L̄0 be a proper function with the local property. If for every µ ∈ E∗ there is
an x0 such that µ(x0) − f(x0) = f∗(µ), then the set Vf (η) = {x ∈ E : f(x) ≤ η} is
relatively stably compact w.r.t. σs(E,E∗) for every η ∈ L0 with Vf (η) 6= ∅.

Of course, we also have a modular version of the celebrated James’ compactness
theorem, which is a consequence of the statement above, and also follows from the
transfer principle applied to its classical version:

Theorem 2.7. Let (E, ‖ · ‖) be a stably complete L0-normed module and let K ⊂ E
be stable, L0-convex and L0-norm bounded (i.e. ess. sup x∈K ‖x‖ < ∞). Then, K
is stably compact w.r.t. σs(E,E∗) if, and only if, each µ ∈ E∗ there exists x0 ∈ K
such that µ(x0) := ess. sup x∈K µ(x).

A version of the Brouwer Fixed Point Theorem for (L0)d was provided in [12],
which corresponds to the finite-dimensional case in our context. Next, we will state a
Brouwer fixed point theorem for Hausdorff6 stable locally L0-convex modules, which
is a direct application of the transfer principle to the so-called Schauder-Tychonov
Theorem.

6In view of (2) and (3), It is not difficult to show that E[T] is Hausdorff if, and only if,⋂
U = {0}, if, and only if, J⋂ Ũ = {0}K = Ω and if, and only if, J“Ẽ[T] is Hasdorff”K = Ω

409

Avilés and Zapata

Theorem 2.8. If S is an L0-convex stably compact subset of a Hausdorff stable
locally L0-convex module E[T], then any stable continuous function f : S → S has
a fixed point in S.

Obviously, all these Theorems are just some examples: we can state a version
of any theorem T on locally convex spaces and it immediately renders a version for
locally L0-modules of the form JT K = Ω.

Finally, let us turn to the discussion of an example of financial application:
The notion of convex risk measure was independently introduced by Föllmer and

Schied [16] and Fritelli and Gianin [17] as an extension of the notion of coherent risk
measure introduced in Artzner et al. [1]. Let X be an ordered vector space with
R ⊂ X which models all the financial positions in a financial market. A convex
risk measure is a proper convex function ρ : X → R which satisfies the following
conditions for all x, y ∈X :

• Monotonicity: if x ≤ y, then ρ(y) ≤ ρ(x);

• Cash invariance: ρ(x+ r) = ρ(x)− r, for all r ∈ R.

Now, suppose that (Ω,Σ,P) models the market events at some future date t > 0.
In this case, from a modelling point of view, the risk of any financial position is
contingent on the information encoded in the measure algebra F . For instance, the
risk measurably depends on the decisions taken by the risk manager in virtue of the
market eventualities arisen at time t. Therefore, in this case, the different financial
positions can be modelled by an ordered L0-module X with L0 ⊂ X . Filipovic
et al. [15] proposed the following definition: a conditional convex risk measure is a
proper L0-convex function ρ : X → L̄0 which satisfies the following conditions for
all x, y ∈X :

• Monotonicity: if x ≤ y, then ρ(y) ≤ ρ(x);

• Cash invariance: ρ(x+ η) = ρ(x)− η, for all η ∈ L0.

Since a conditional convex risk measure ρ : X → L̄0 is L0-convex, in particular,
it has the local property, and Theorem 1.4 defines a name for a function ρ̃ from X̃

to R(F). Moreover, it can be verified that

J“ρ̃ is convex, monotone and cash-invariant”K = Ω.

We conclude that a conditional convex risk measure ρ can be identified with a name
ρ̃ for a convex risk measure within V (F). Thus, the machinery of Boolean-value
models and its transfer principle can be applied.

410

Boolean-valued models and L0-convex analysis

From a modelling point of view, we have that, in the same manner the available
market information is encoded in F , the financial strategy followed by the risk man-
ager in order to maximize or hedge future payments can be analytically expressed in
terms of the formal language L(F), which consistently depends on the information
of F . Thus the Boolean-valued analysis makes available to us a powerful technol-
ogy to incorporate trading rules based on equilibrium prices or risk constraints in
the mathematical analysis of certain problems of mathematical finance involving a
multi-period setting.

3 A precise connection between Conditional set theory
and Boolean-valued models

In [11] it was introduced the notion of conditional set:

Definition 3.1. [11, Definition 2.1] Let X be a non-empty set and let A be a
complete Boolean algebra. A conditional set of X and A is a set X such that there
exists a surjection (x, a) 7→ x|a from X ×A onto X satisfying:

(C1) if x, y ∈ X and a, b ∈ A with x|a = y|b, then a = b;

(C2) (Consistency) if x, y ∈ X and a, b ∈ A with a ≤ b, then x|b = y|b implies
x|a = y|a;

(C3) (Stability) if {ai}i∈I ∈ p(1) and {xi}i∈I ⊂ X, then there exists a unique x ∈ X
such that x|ai = xi|ai for all i ∈ I.

The unique element x ∈ X provided by C3, is called the concatenation of the
family {xi} along the partition {ai}, and is denoted by ∑xi|ai.

Let X,Y be conditional sets. According to [11, Definition 2.1] a function f :
X → Y is said to be stable if

f
(∑

xi|ai
)

=
∑

f(xi)|ai, for {ai} ∈ p(1), {xi} ⊂ X.

If f : X → Y is a stable function, it is simply to verify that

Gf := {(x|a, f(x)|a) x ∈ X, a ∈ A}

is a conditional set of the graph of f and A. Gf is called the conditional graph of a
conditional function f : X→ Y (see [11, Definition 2.1]).

411

Avilés and Zapata

A conditional function f : X → Y is conditionally injective if x|a 6= x′|a for
all a > 0 implies that f(x)|a 6= f(x′)|a for all a > 0; it is conditionally surjective
whenever f is surjective; and it is a conditional bijection if it is conditionally injective
and surjective.

Then the following result gives the relation between conditional sets of the uni-
verse V and the boolean-valued universe V (A).

Theorem 3.1. For fixed a Boolean algebra A, there is an equivalence of categories
between the category of conditional sets of A whose morphisms are conditional func-
tions, and the category of elements x of V (A) such that Jx 6= ∅K = 1 whose morphisms
are names for functions in V (A).

Proof. First, suppose that x is an element of V (A) with Jx 6= ∅K = 1. Then we
consider the equivalence relation on (x↓)×A given by

(u, a) ∼ (v, b) whenever a = b, Ju = vK ≥ a.

Let us denote by x|a the class of (x, a) and let x↓ be the corresponding quotient
set. Then x↓ is a conditional set of x↓ and A. Indeed, (C1) and (C2) from Definition
3.1 are trivially satisfied. Further, (C3) follows from the mixing principle (Theorem
1.3).

Suppose that f,X, Y are in V (A) and Jf : X → Y K = 1. Then f↓ is a function
from X↓ to Y ↓ such that Jf↓(u) = f(u)K = 1 for all u ∈ X↓. Now, we claim that
f↓ : X↓ → Y ↓ is a stable function of the conditional sets X↓, Y↓. Indeed, given
{ai} ∈ p(1) and {ui} ⊂ X we take u := ∑

ui|ai ∈ x↓. We have that Jf↓(u) =
f↓(ui)K = Jf(u) = f(ui)K ≥ Ju = uiK ≥ ai, and thus f↓(u)|ai = f↓(ui)|ai each
i. This shows that f↓(u) = ∑

f↓(ui)|ai, hence f↓ is stable. We can consider the
corresponding conditional function f↓.

Thereby, we define the functor G(x) := x↓, G(f) := f↓. Let us construct the
inverse functor. Suppose now that X is a conditional set of X and A. We will
construct from X an element X̃ of V (A). Indeed, for every u ∈ X we define ũ : Du →
A where Du := {v̌ : v ∈ X}, and ũ(v̌) = au,v with au,v := ∨ {b ∈ A : u|a = v|a} for
each v ∈ X. Notice that u|au,v = v|au,v. The proof is similar to others we have done
before: take a maximal disjoint family of elements b such that u|b = v|b and then
use uniqueness of (C3) of Definition 3.1.

Let X̃ : D → A where

D = {ū : u ∈ X} and X̃(ū) = 1 for each u ∈ X.

One has that X̃ is an element of V (A). Moreover, we claim that Jū = v̄K = au,v

412

Boolean-valued models and L0-convex analysis

for all u, v ∈ X. Indeed,

Jū = v̄K =
∧

t∈X

(
au,t ⇒ Jť ∈ v̄K

)
∧
∧

s∈X
(av,s ⇒ Jš ∈ ūK) . (4)

In addition,
Jť ∈ v̄K =

∨

w∈X
av,w ∧ Jť = w̌K = av,t,

because Jť = w̌K = 1 if t = w, Jť = w̌K = 0 otherwise. Similarly, one has Jš ∈ ūK =
au,s.

Therefore, replacing in (4), one has

Jū = v̄K =
∧

t∈X
(acu,t ∨ av,t) ∧

∧

s∈X
(acv,s ∨ au,s).

By considering above t = u and s = v, we obtain

Jū = v̄K ≤ au,v

For the converse inequality, suppose by contradiction that 0 < a := au,v ∧ (acu,t ∨
av,t)c for some t. Since a ≤ au,v, au,t one has v|a = u|a = t|a by (C2). But a ≤ acv,t
implies that v|a 6= t|a, which is a contradiction.

For any u ∈ X, let ũ denote the canonical representative of ū in V
(A). We

claim that the map X → X̃↓ given by u → ũ is one-to-one. Indeed, if ũ = ṽ, then
1 = Jū = v̄K = au,v, hence u = v. On the other hand, given w ∈ X̃↓, one has

1 = Jw ∈ X̃K =
∨

u∈X
Jū = wK.

As we have done before, we can find by maximality a partition {ai} ∈ p(1) so that
ai ≤ Jūi = wK for some ui ∈ X, each i. Then, (C3) of Definition 3.1 provides us
with u ∈ X such that u|ai = ui|ai for all i. We have that Jū = ūiK = au,ui ≥ ai.
Hence ai ≤ Jū = ūiK ∧ Jūi = wK for all i, and so Jw = ūK = 1 and thus ũ = w.

Now suppose that f : X → Y is a conditional function between the conditional
sets X,Y. We consider the stable function f : X → Y . Let g : X̃↓ → Ỹ ↓ be with
g(x̃) := (f(x))∼, which is well defined since the map x 7→ x̃ is one-to-one. Given
x, y ∈ X, using that f is stable we can show that Jx̃ = ỹK = ax,y ≤ af(x),f(y) =
Jg(x̃) = g(ỹ)K. Due to Theorem 1.4, we can find f̃ in V (A) with Jf̃ : X̃ → Ỹ K = 1
and such that Jg(x̃) = f̃(x)K = 1 for all x ∈ X.

Thereby, we take the functor H(X) := X̃ and H(f) := f̃ . We will show that
G and H are inverse equivalences. Suppose that x is an element of V (A) with

413

Avilés and Zapata

Jx 6= ∅K = 1. We consider the map x↓ → ((x↓)∼)↓, u 7→ ũ. Due to Theorem 1.4 it
defines a name for a bijection between x and (x↓)∼. It follows by inspection that
there is a natural isomorphism between HG and the identity functor.

If X is a conditional set, then we can consider the mapping X 7→ (X̃)↓, x 7→
x̃. This is a stable bijection, which defines a conditional bijection between the
conditional sets X and X̃↓. This also gives a natural isomorphism between GH and
the identity functor.

Remark 3.1. The Boolean-valued part of the proof of Theorem 3.1 is covered by
the well-known theorem from Boolean-valued analysis stating the equivalence of the
category of names for non-empty sets and names for functions and the category of
non-empty mix-complete Boolean sets and contractive functions (see Kusraev and
Kutateladze [39, Theorem 3.5.10]). Thus, Theorem 3.1 actually establishes that
the category of conditional sets of A and conditional functions is equivalent to the
category of non-empty mix-complete Boolean sets over A and contractive functions.

One more time, the important message is not the equivalence of categories pro-
vided above, but that for any conditional set X we build a tailored name X̃ for a
set that induces a conditional set X̃↓ which is essentially X.

Let us fix a conditional set X. For the forthcoming discussion, we will suppose
w.l.o.g. that X = X̃↓.

Next, we will briefly explain how the main elements of the framework of condi-
tional sets are connected to Boolean-valued analysis. A comprehensive introduction
to conditional set theory is given in [11], thus for each unexplained notion we will
give an exact reference to its definition in [11]:

• Conditional subsets: A non-empty subset S of X is stable if ∑xi|ai ∈ S
whenever {xi} ⊂ S and {ai} ∈ p(1). A conditional subset of X is a conditional
set S := {x|a : x ∈ S, a ∈ A}, where S is a stable subset of X. For short, we
will write S @ X.
Suppose that S @ X. We define Ŝ : DS → A with DS := {x̃ : x ∈ S} and
Ŝ(x̃) := 1. Then it can be verified that Ŝ is a name with JŜ ⊂ X̃K = 1 and
Ŝ↓ = S.
Now, suppose that S0 is a name with J∅ 6= S0 ⊂ X̃K = 1. Then S0↓ @ X and
JS0 = (S0↓)∧K = 1.

• Conditional power set: Let P (X) be the collection of all stable subsets of
E. For S ∈ P (X) and a ∈ A, we define S|a := {x|b : x ∈ S, b ≤ a}. The
set P(X) := {S|a : S is stable, a ∈ A} is a conditional set which is called
conditional power set.

414

Boolean-valued models and L0-convex analysis

Suppose that C @ P(X). Let Ĉ : DC → A with DC :=
{
Ŝ : S ∈ C

}
and

Ĉ(Ŝ) := 1. Then Ĉ is a name for a set of subsets of X̃.
Now, given a name C0 for a non-empty collection of non-empty sets of X̃, we
define C0⇓ := {S↓ : S ∈ C0↓}. Then C0⇓ is a stable set of subsets of X and
we can consider the corresponding conditional set C0⇓ @ P(X).
Moreover, if C @ P(X) one has that Ĉ⇓ = C and if C0 is a name for a
non-empty collection of non-empty sets of X̃ one has JC0 = (C0⇓)∧K = 1.
In particular, ifC = P(X), then Ĉ is a name for the collection of all non-empty
subsets of X̃ in V (A).

• Conditional step functions: If E is a non-empty set, consider the conditional
set of step functions, let us say Es, see [11, Examples 2.3(5)]. Then, the name
Ẽs is precisely the canonical name Ě of E in V (A).
The conditional natural numbers N and the conditional rational numbers Q
are introduced in [11] as a particular case of the step functions. It is known
that JN(A) = ŇK = Ω and JQ(A) = Q̌K = Ω, see eg [44]. Thus, it is satisfied
that Ñ and Q̃ are names for the natural numbers and the rational numbers of
V (A), respectively.

• Conditional real numbers: In [11] a conditional setR which is called conditional
real numbers is defined, see [11, Definition 4.3]. Then it can be verified that
R̃ is a name for the real numbers of V (A).

• Conditional topologies: Suppose that T is a conditional topology on X, see
[11, Definition 3.1]. Then T̂ is a name for the set of non-empty open sets of a
topology on X̃.
If T0 is a name for the set of non-empty open sets of a topology on X̃ then
T 0⇓ is a conditional topology.
Moreover, O is a conditional open subset if and only if Ô is a name for an open
set. C is a conditional closed subset if and only if Ĉ is a name for a closed set.
S is a conditionally compact subset (see [11, Definition 3.24]) if and only if Ŝ
is a name for a compact subset.
Furthermore, T is conditionally Hausdorff (see [11, Section 3]) if and only if
J“T0 is Hausdorff”K = 1.

• Conditional functions: Given a conditional function f : S1 → S2, where S1,S2
are conditional subsets of X, then we have a stable function g : S1 → S2.

415

Avilés and Zapata

Theorem 1.4 allows to define a name f̂ for a function from S1 to S2 with
f̂↓ = f .
Conversely, if f is name for a function between non-empty subsets of X̃, then
f↓ is a stable function between stable subsets of X and it defines a conditional
function f↓ between conditional subsets of X.
The same applies to conditional families, conditional nets and conditional se-
quences, see [11, Definition 2.20].

Bearing in mind the construction given in the proof of Theorem 3.1, the following
is easy to check: X is a conditional metric space, see [11, Definition 4.5], if and only
if X̃ is a name for a metric space; X is a conditional locally convex space, see [11,
Definition 5.4], if and only if X̃ is a name for a locally convex space; X is a conditional
normed space, see [11, Definition 5.11], if and only if X̃ is a name for a normed space;
X is a conditional Banach space, see [11, Section 5], if and only if X̃ is a name for
a Banach space.

Again, we see that all these objects are some of the building blocks for the main
results provided in [11]. Clearly, names for more and more conditional versions of
classical objects can be defined by using the same logic.

As an instance of application, we can provide a conditional version of the
Schauder–Tychonov fixed point theorem:

Proposition 3.1. Let X be a conditional locally convex space which is conditionally
Hausdorff. If C is a conditionally compact conditional subset of X and f : C→ C is
a conditionally continuous conditional function, then there exists x in C such that
f(x) = x.

We can consider the names X̃, Ĉ and f̂ as described above. If T denotes the
statement of the Schauder-Tychonov Theorem, then the statement above, let us say
T, is nothing else but a reformulation of the statement ’JT K = 1’, which holds due
to the transfer principle of Boolean-valued models. Thus T is also a theorem. Of
course, this is just an example. In general, this method can be systematically ap-
plied to the different theorems of [11].

References
[1] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent measures of risk. Mathe-

matical Finance, 9:203–228, 1999.
[2] J. Backhoff and U. Horst. Conditional analysis and a Principal-Agent problem. SIAM

Journal on Financial Mathematics, 7(1):477–507, 2016.

416

Boolean-valued models and L0-convex analysis

[3] V. Barbu and T. Precupanu. Convexity and optimization in Banach spaces. Springer
Science & Business Media, 2012.

[4] J. L. Bell. Set Theory: Boolean-Valued Models and Independence Proofs. Oxford Logic
Guides. Clarendon Press, 2005.

[5] T. R. Bielecki, I. Cialenco, S. Drapeau, and M. Karliczek. Dynamic assessment indices.
Stochastics, 88(1):1–44, 2016.

[6] J. M. Borwein and Q. J. Zhu. Variational methods in convex analysis. Journal of Global
Optimization, 35(2):197–213, 2006.

[7] P. Cheridito, U. Horst, M. Kupper, and T. Pirvu. Equilibrium pricing in incomplete
markets under translation invariant preferences. Mathematics of Operations Research,
41(1):174 – 195, 2016.

[8] P. Cheridito, M. Kupper, and N. Vogelpoth. Conditional analysis on Rd. Set Op-
timization and Applications, Proceedings in Mathematics & Statistics, 151:179 – 211,
2015.

[9] P. J. Cohen. Set theory and the continuum hypothesis. w.a. benjamin. Inc., New York,
1966.

[10] S. Drapeau and A. Jamneshan. Conditional preferences and their numerical represen-
tations. Journal of Mathematical Economics, 63:106–118, 2016.

[11] S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper. The algebra of conditional
sets, and the concepts of conditional topology and compactness. Journal of Mathemat-
ical Analysis and Applications, 437(1):561– 589, 2016.

[12] S. Drapeau, M. Karliczek, M. Kupper, and M. Streckfuss. Brouwer fixed point theorem
in (L0)d. Fixed Point Theory and Applications, 301(1), 2013.

[13] K-T. Eisele and S. Taieb. Weak topologies for modules over rings of bounded random
variables. Journal of Mathematical Analysis and Applications, 421(2):1334–1357, 2015.

[14] D. Filipović, M. Kupper, and N. Vogelpoth. Separation and duality in locally L0-convex
modules. Journal of Functional Analysis, 256:3996 – 4029, 2009.

[15] D. Filipović, M. Kupper, and N. Vogelpoth. Approaches to conditional risk. SIAM
Journal of Financial Mathematics, 3(1):402 – 432, 2012.

[16] H. Föllmer and A. Schied. Convex measures of risk and trading constraints. Finance
and stochastics, 6(4):429–447, 2002.

[17] M. Frittelli and E. R. Gianin. Putting order in risk measures. Journal of Banking &
Finance, 26(7):1473–1486, 2002.

[18] M. Frittelli and M. Maggis. Dual representation of quasi-convex conditional maps.
SIAM Journal on Financial Mathematics, 2(1):357–382, 2011.

[19] E. I. Gordon. K-spaces in Boolean-valued models of set theory. Dokl. Akad. Nauk
SSSR, 258(4):777–780, 1981.

[20] E. I. Gordon. Rationally complete semiprime commutative rings in boolean valued
models of set theory. Gor kiı, VINITI, (3286-83), 1983.

[21] T. Guo. The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-
Šmulian theorem in complete random normed modules to stratification structure. Sci-

417

Avilés and Zapata

ence in China Series A Mathematics, 51:1651–1663, 2008.
[22] T. Guo. Relations between some basic results derived from two kinds of topologies for

a random locally convex module. Journal of Functional Analysis, 258:3024–3047, 2010.
[23] T. Guo. On Some Basic Theorems of Continuous Module Homomorphisms between

Random Normed Modules. Journal of Function Spaces and Applications, pages 1–13,
2013.

[24] T. Guo and X. Chen. Random duality. Science in China Series A: Mathematics,
52(10):2084–2098, 2009.

[25] T. Guo, S. Zhao, and X. Zeng. Random convex analysis (I): separation and Fenchel-
Moreau duality in random locally convex modules. arXiv preprint arXiv:1503.08695,
2015.

[26] A. E. Gutman and S. A. Lisovskaya. The boundedness principle for lattice-normed
spaces. Siberian Mathematical Journal, 50(5):830–837, 2009.

[27] R. Haydon, M. Levy, and Y. Raynaud. Randomly normed spaces. Hermann, 1991.
[28] A. Jamneshan, M. Kupper, and J. M. Zapata. Parameter-dependent stochastic optimal

control in finite discrete time. arXiv preprint arXiv:1705.02374, 2017.
[29] A. Jamneshan and J. M. Zapata. On compactness in L0-modules. arXiv preprint

arXiv:1711.09785, 2017.
[30] T. Jech. Set theory. Springer Science & Business Media, 2013.
[31] E. Jouini, W. Schachermayer, and N. Touzi. Law invariant risk measures have the fatou

property. Advances in mathematical economics, pages 49–71, 2006.
[32] L. V. Kantorovich. To the general theory of operations in semiordered spaces, volume 1.

Dokl. Akad. Nauk SSSR (Russian), 1936.
[33] A. G. Kusraev. Boolean valued analysis of duality between universally complete mod-

ules. Dokl. Akad. Nauk SSSR, 267(5):1049–1052, 1982.
[34] A. G. Kusraev. Banach-kantorovich spaces. Siberian Mathematical Journal, 26(2):254–

259, 1985.
[35] A. G. Kusraev. Vector duality and its applications, 1985.
[36] A. G. Kusraev. Dominated operators. In Dominated Operators, pages 141–186.

Springer, 2000.
[37] A. G. Kusraev and S. S. Kutateladze. Subdifferentials: Theory and applications, volume

323. Springer Science & Business Media, 2012.
[38] A. G. Kusraev and S. S. Kutateladze. Boolean valued analysis: Selected topics.

Vladikavkaz: SMI VSC RAS, 1000(6), 2014.
[39] A. G. Kusraev and S. S. Kutateladze. Boolean Valued Analysis. Mathematics and Its

Applications. Springer Netherlands, 2012.
[40] J. Orihuela and M. Ruiz-Galán. A coercive james’s weak compactness theorem and

nonlinear variational problems. Nonlinear Analysis: Theory, Methods & Applications,
75(2):598–611, 2012.

[41] J. Orihuela and J. M. Zapata. Stability in locally L0-convex modules and a condi-

418

Boolean-valued models and L0-convex analysis

tional version of James’ compactness theorem. Journal of Mathematical Analysis and
Applications, 452(2):1101 – 1127, 2017.

[42] J. Saint-Raymond. Weak compactness and variational characterization of the convexity.
Mediterranean journal of mathematics, 10(2):927–940, 2013.

[43] D. Scott. A proof of the independence of the continuum hypothesis. Theory of Com-
puting Systems, 1(2):89–111, 1967.

[44] G. Takeuti. Two Applications of Logic to Mathematics. Publications of the Mathemat-
ical Society of Japan. Princeton University Press, 2015.

[45] D. A. Vladimirov. Boolean algebras in analysis, volume 540. Springer Science & Busi-
ness Media, 2013.

[46] J. M. Zapata. Randomized versions of Mazur lemma and Krein-Šmulian theorem.
Journal of Convex Analysis, 25(3), 2018 (To appear).

[47] J. M. Zapata. Versions of Eberlein-Šmulian and Amir-Lindenstrauss theorems in
the framework of conditional sets. Applicable Analysis and Discrete Mathematics,
10(2):231–261, 2016.

[48] J. M. Zapata. On the Characterization of Locally L0-Convex Topologies Induced by a
Family of L0-Seminorms. Journal of Convex Analysis, 24(2):383–391, 2017.

Received 30 September 2017419

420

About Relationships Between two
Individuals

Robert Demolombe
IRIT, Toulouse University, France.

robert.demolombe@orange.fr

Abstract

If an internet user wants to access information about two given individuals,
he can submit a request with the names of these individuals. However, the
occurrences of these two names do not guarantee that the obtained information
expresses a relationship between these individuals. The aim of this paper is to
propose a clear definition of sentences which express a relationship between two
individuals. We first present an informal analysis, based on examples, of this
notion of relationship in the context of atomic sentences, or complex sentences
which combines logical connectives or quantifiers. In the next section, we give
formal definitions, assuming that sentences are expressed in First Order Logic.
We define the notion of “path” between individuals, the notion of link between
individuals and the notion of relationship between individuals. A Theorem
shows how the relationships which are implicitly expressed in complex formulas
can be represented in equivalent formulas expressed with “basic relationships”.

In the conclusion we suggest possible extensions where the language involves
equality, function symbols or modal operators.

1 Introduction
At the beginning of the seventies, requests to retrieve information using Relational
Data Base Systems had the form: what are the individuals, or tuples of individuals,
which fulfill some properties?, where the properties were formulated either with
Relational Algebra [11, 10, 1] or First Order Predicate Calculus [6, 8, 12]. Now, to
retrieve information, requests expressed by internet users have the form: what are
the documents which “match” a combination of key words or of short sentences?
However, there are no general formal definition of this concept of “matching”.

Key words may denote topics or individuals. Roughly speaking, in the case of
individuals the returned documents are documents which contain occurrences of the

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Demolombe

individual names and, in the case of topics, the returned documents are those which
are about these topics.

To have more precise definitions of what should be returned it can be assumed
that the content of the documents is represented by sentences expressed in a formal
language

In [3, 4] a formal characterization of sentences which are about some topics has
been proposed, where the notion of “aboutness” may be understood as a kind of
matching (see [9, 7] for a more philosophical analysis of aboutness). That could be
used, for instance, to retrieve the information about the topics “employment” and
“climate change”.

In [5] is proposed a formal definition of all the sentences which express infor-
mation about a given individual. For instance, all the sentences which express
information about the individual named “Alan Turing”.

Here, we propose a formal definition of all the sentences which express relation-
ships between two individuals. For instance, the sentences which express a rela-
tionship between the individuals named “Alan Turing” and “Albert Einstein”. This
allows to retrieve more specific information than information where “Alan Turing”
and “Albert Einstein” occur.

In section 2 we give an informal justification of our definition of relationship
between two individuals. A formal definition is presented in section 3. After the
analysis of related works in section 4 several possible extensions are presented in the
conclusion.

2 Intuitive analysis

The fact that the names of two individuals occur in the same sentence does not
guarantee that this sentence expresses a relationship between these individuals.

Let’s see, for instance, the sentence: Romeo is a man and Juliet is a woman. It
does not express a relationship between Romeo and Juliet. Indeed, in semiformal
terms, the information expressed by:

f1: (Romeo is a man) ∧ (Juliet is a woman)
can be represented as well by the two independent sentences:
f2: (Romeo is a man)
and
f3: (Juliet is a woman)
At the opposite, the atomic sentence: Romeo loves Juliet:
f4: Romeo loves Juliet

422

About Relationships Between two Individuals

expresses a relationship between Romeo and Juliet since the information ex-
pressed by this sentence cannot be expressed by two independent sentences.

The conclusion shown with this example can be extended to any atomic formula
where a predicate is used to represent a relationship between two individuals. Now,
the question is: “are there other ways than atomic formulas to express this kind of
relationships?”.

Let’s see first atomic formulas which are combined by the logical connectives:
negation, conjunction and disjunction.

For the negation it seems to be clear that we should accept that a sentence like:
Romeo does not love Juliet, in semiformal terms:

f5: ¬ (Romeo loves Juliet)
informs about a relationship between Romeo and Juliet. This conclusion can be

extended to the negation of any formula which expresses a relationship between two
individuals.

For the conjunction, we also should accept that if two sentences express rela-
tionships between two individuals, then any conjunction of these sentences express
relationships between these individuals. For instance: Romeo loves Juliet and Juliet
loves Romeo, which is represented in semiformal terms by:

f6: (Romeo loves Juliet) ∧ (Juliet loves Romeo)
In addition, we do not see any objection to accept that the conjunction: Romeo

loves Juliet and Juliet is a woman, which is represented by:
f7: (Romeo loves Juliet) ∧ (Juliet is a woman)
expresses a relationship between Romeo and Juliet, even if the formula Juliet is

a woman is not about this relationship.
However, we can have some doubts to accept a conjunction of the kind: Romeo

loves Juliet and Romeo does not love Juliet:
f8: (Romeo loves Juliet) ∧ ¬ (Romeo loves Juliet)
because it is an inconsistent formula. Nevertheless, even if it does not express

information about a relationship between Romeo and Juliet it is about Romeo and
Juliet in the sense of aboutness presented in [4]. That is the reason why we have
accepted that f8 expresses a relationship between Romeo and Juliet.

For the disjunction, we should accept that the disjunction of two sentences which
express relationships between two individuals expresses a relationship between these
individuals. For instance, the sentence: Romeo loves Juliet or Juliet loves Romeo,
represented by:

f9: (Romeo loves Juliet) ∨ (Juliet loves Romeo)
expresses a relationship between Romeo and Juliet. We also can accept that a

sentence expresses a relationship between Romeo and Juliet in the cases where only

423

Demolombe

one term of the disjunction expresses this relationship. For instance, the sentence:
If we are on Sunday, Romeo meets Juliet, represented by:

f10: ¬ (on Sunday) ∨ (Romeo meets Juliet)
can express information about the fact that Romeo meets Juliet if we know that

we are on Sunday.
For the same reason as we have accepted that inconsistent sentences may be

about a relationship between Romeo and Juliet, we have accepted that some tau-
tologies may be about a relationship between Romeo and Juliet. For instance the
sentence: Romeo loves Juliet or Romeo does not love Juliet, represented by:

f11: (Romeo loves Juliet) ∨ ¬ (Romeo loves Juliet)
It may be that the relationship between two individuals in a sentence is not rep-

resented by the composition of atomic formulas where these relationships explicitly
appear. The link between the individuals may be represented by a kind of “path”
which relates an individual to another individual which is itself related to another
individual and so on ... For instance, in the sentence: Romeo leaves in Verona and
Juliet leaves in Verona, represented by:

f12: (Romeo leaves in Verona) ∧ (Juliet leaves in Verona)
there is a path from Romeo to Verona and from Verona to Juliet (the ordering

in the past is irrelevant). In general, we call a “path” a conjunction of positive or
negative atomic formulas. For instance, in: Juliet knows Paris and Paris does not
know Mercutio and Romeo knows Mercutio, which is represented by:

f13: (Juliet knows Paris) ∧ ¬ (Paris knows Mercutio) ∧ (Romeo knows Mercutio)
we have a path from Juliet to Romeo via Paris and Mercutio.
In some sentences we may have what we call a “link” between two individuals

where the paths between these individuals is not explicit. For instance, in the
sentence: Romeo is in Verona or Juliet is in Verona, represented by:

f14: (Romeo is in verona) ∨ (Juliet is in Verona)
there is no explicit path between Romeo and Juliet in the sense that we have

defined before. Nevertheless, it is clear that there is a link between Romeo and
Juliet. This link can be made explicit if we observe that if f14 is true there is at
least one the atomic sentences: Romeo leaves in Verona, or Juliet leaves in Verona
which is true, and f14 is logically equivalent to f15:

f15: ((Romeo is in verona) ∧ (Juliet is in Verona)) ∨
((Romeo is in verona) ∧ ¬ (Juliet is in Verona)) ∨
(¬ (Romeo is in verona) ∧ (Juliet is in Verona))

In f15 we have a disjunction of three sentences such that each one expresses a
path between Romeo and Juliet.

In the following we shall call “basic relationship” between two individuals a
relationship which is explicitly represented by a path, that is a conjunction of literals.

424

About Relationships Between two Individuals

For quantifiers we may have quantified variables which are involved in the def-
inition of a path. For instance, for the universal quantifier, the sentence: Romeo
does everything that Juliet wants he does, represented by:

f16: ∀x ((Juliet wants x) → (Romeo does x))
In a similar way, for existential existential quantifiers we may have sentences like:

Romeo and Juliet leaves in the same city, represented by:
f17: ∃x ((Romeo leaves in x) ∧ (Juliet leaves in x))
It is worth noting that relationships may be “hidden” inside complex sentences.

For instance, in the sentence: Juliet loves Romeo or Marutio and she does not love
Paris, represented by:

f18: ((Juliet loves Romeo) ∨ (Juliet loves Marutio)) ∧ ¬ (Juliet loves Paris)
it is not easy to perceive that there is a relationship between Romeo and Paris.
In the next section, formal syntactical criteria are defined to characterize the fact

that a formula contains some kinds of implicit relationships between two individuals.

3 Formalization
In this section, after to define the formal language which is used to represent the
sentences, we define the notion of Link. The intuitive interpretation of Linka,bφ
is that in the sentence φ there are predicates and logical connectives or quantifiers
that define a relationship between the individuals denoted by a and b.

Since it may be difficult to intuitively see this relationship, we have defined the
notion of Path which is much more simple to percieve. A Path is just a set of
literals where the predicate names could be interpreted as the edges of a graph and
the names of the constants or of the variables could be interpreted as the nodes.
According to this intuitive interpretation, Patht1,t2(Lit) holds in the set of literals
Lit if there is a path in this graph from t1 to t2. In addition it is required that Lit
is minimal, in the sense that it does not contain literals which could be removed
without eliminating the existence of this path in Lit.

Latter on is defined the notion of basic relationship. The main difference be-
tween a path and a basic relationship is that a path is a set of literals which are
implicitly connected by conjunctions, while a basic relationship is a formula which
is a conjunction of these literals. The notion of path is justified by technical mo-
tivations. Indeed, a path allows to have a unique representation for several formu-
las which express the same basic relationship. For instance, in the set of literals:
{p(a, x),¬q(x, c), r(c, a)}, there is a path from a to b which corresponds to formulas
like: r(c, a) ∧ ¬q(x, c) ∧ r(a, x) or: ¬q(x, c) ∧ r(c, a) ∧ p(a, x).

425

Demolombe

Definition 1. Language L.
The language L′ is a First Order Language defined as follows.
Let P be a set of predicate symbols, C a set of constant symbols and V a set of

variable symbols, the set A of atomic formulas is the set of formulas of the form:
p(t1, t2, . . . , tn) such that p is in P and the ti are either in C or in V .

The formulas φ in L′ are defined by:
φ := Atom | ¬φ | φ ∧ φ | ∀xφ
where Atom is in A and x is in V .
The formulas in the language L are the formulas φ in L′ such that, if φ contains

a sub-formula of the form ∀xψ(x), there is no other sub-formula in φ of the form
∀xθ(x).

Definition 2. Relationship between two individuals.
Let φ be a formula in L and ti and tj which denote two different symbols either

in C or in V , the formula φ expresses one, or several relationships between ti and
tj iff φ satisfies the property Linkti,tjφ, where Linkti,tjφ is recursively defined as
follows:

• If φ is an atomic formula of the form p(t1, t2, . . . , tn), then we have Linkti,tjφ
iff there exist tk and tl in φ such that ti is the symbol tk and tj is the symbol
tl

1.

• If φ = ¬φ1, then we have Linkti,tjφ iff we have Linkti,tjφ1.

• If φ = φ1 ∧ φ2, then we have Linkti,tjφ iff we have Linkti,tjφ1 or Linkti,tjφ2
or there exists t in C or in V such that we have Linkti,tφ1 and Linkt,tjφ2.

• If φ = ∀xφ1, then we have Linkti,tjφ iff we have Linkti,tjφ1.

The language L can be extended to disjunctions and existential quantifiers. Ac-
cording to the standard definitions we have:

φ1 ∨ φ2
def= ¬(¬φ1 ∧ ¬φ2) and ∃xφ def= ¬∀x¬φ

Then, we can easily show that, according to these definitions, the property
Linkti,tjφ is extended as follows:

• If φ = φ1 ∨φ2, then we have Linkti,tjφ iff we have Linkti,tjφ1 or Linkti,tjφ2 or
there exists t in C or in V such that we have Linkti,tφ1 and Linkt,tjφ2.

• If φ = ∃xφ1, then we have Linkti,tjφ iff we have Linkti,tjφ1.
1Here and in the following the symbols ti, tj , tk and tl are in the metalanguage. They are used

to denote constant symbols or variable symbols in the language L.

426

About Relationships Between two Individuals

Examples. The following examples show how to derive properties of the kind:
Linka,bφ.

Let G1 = ¬∃x(p(a, x) ∧ ¬q(x, b)). We have:
(1) Linka,xp(a, x) and (2) Linkx,bq(x, b)
From (2) we have: (3) Linkx,b¬q(x, b).
From (1) and (3) we have: (4) Linka,b(p(a, x) ∧ ¬q(x, b)).
From (4) we have: (5) Linka,b∃x(p(a, x) ∧ ¬q(x, b)).
From (5) we have: Linka,bG1.
Let G2 = ¬((p(a, c) ∨ p(a, d)) ∧ (p(c, b) ∨ r(d, b))).
We have:
(1) Linka,cp(a, c) and (2) Linka,dp(a, d) and (3) Linkc,bp(c, b) and

(4) Linkd,br(d, b).
From (1) we have: (5) Linka,c(p(a, c) ∨ p(a, d)).
From (3) we have: (6) Linkc,b(p(c, b) ∨ r(d, b)).
From (5) and (6) we have: (7) Linka,b((p(a, c) ∨ p(a, d)) ∧ (p(c, b) ∨ r(d, b))).
From (7) we have: Linka,bG2.
Let G3 = (p(a, b) ∨ p(a, d)) ∧ r(d, b).
We have: (1) Linka,bp(a, b) and (2) Linka,dp(a, d) and (3) Linkd,br(d, b).
From (1) we have: (4) Linka,b(p(a, b) ∨ p(a, d)).
Then, we have: Linka,bG3.
From (2) we also have: (5) Linka,d(p(a, b) ∨ p(a, d)).
From (5) and (3) we also have: Linka,bG3.

Lemma 1. We have: Linka,bφ iff we have: Linkb,aφ.
Proof. The proof follows from the definition of Linka,bφ.

Lemma 2. We can have ` φ1 ↔ φ2 and Linka,bφ1 and not Linka,bφ2.
Proof. Example: φ1 = (p(a, c) ∧ q(c, b)) ∨ (p(a, c) ∧ ¬q(c, b)) and φ2 = p(a, c).

Definition 3. Path in a set of literals.
A literal l in L is a formula φ in L such that φ is an atomic formula or φ is the

negation of an atomic formula.
Let Lit be a set of literals {l1, l2, . . . , ln}, there is a path between t1 and t2 in

Lit, where t1 and t2 are either in C or in V , iff we have Patht1,t2(Lit), where
Patht1,t2(Lit) is defined as follows.

We have Patht1,t2(Lit) iff 1) there exists a literal li in Lit such that t1 and t2
are in li, or 2) there exists t in C or in V such that Patht1,t(Lit) and Patht2,t(Lit),
and 3) Lit is minimal, in the sense that if we remove a literal, then for the new set
of literals Lit′, we do not have Patht1,t2(Lit′)

427

Demolombe

Examples: Lit1 = {p(a, b)}, Lit2 = {p(a, c),¬q(c, d), r(d, b)}, Lit3 = {p(a, c),
¬q(c, d)}. We have: Patha,b(Lit1), Patha,b(Lit2) and Patha,d(Lit3). However, we
do not have Patha,d(Lit2) because Lit2 is not minimal for the path < a, d >.

Definition 4. Basic relationship between two individuals.
Let Lit be a set of literals.
The formula φ is a basic relationship between the constant symbols a and b iff φ

is a conjunction of all the literals in Lit and we have Patha,b(Lit).

Examples. If φ1 = p(a, c) ∧ ¬q(c, d) ∧ r(d, b) and φ2 = r(d, b) ∧ p(a, c) ∧ q(c, d),
then φ1 and φ2 are basic relationships between a and b.

Lemma 3. If φ is in L and φ is a basic relationship between a and b, then there is
a relationship in φ between a and b in the sense that we have: Linka,bφ.

Proof. The proof is by induction on the number of literals in φ.

Lemma 4. Let φ be a formula in L of the form φ = l1 ∨ l2 ∨ . . . ∨ ln, where the lis
are literals in L. The formula φ is logically equivalent to
φ′ = ∨(l′1 ∧ l′2 ∧ . . . ∧ l′n) where the disjunction ∨ is extended to all the conjunctions
of the l′is such that l′i is either li or ¬li (if li is a negative literal of the form ¬Ai,
then ¬li is replaced by Ai) and such that there exist at least one l′i such that l′i = li
2.

Example. Let φ be the formula A1 ∨ ¬A2 ∨ A3. φ is logically equivalent to
φ′ = (A1 ∧ ¬A2 ∧ A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ ¬A3) ∨
(¬A1 ∧A2 ∧A3) ∨ (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (A1 ∧A2 ∧ ¬A3).

Lemma 5. If ra,b = l1 ∧ l2 ∧ . . .∧ ln is a basic relationship between a and b, then its
negation ¬ra,b is logically equivalent to a disjunction of basic relationships between
a and b of the form: ∨(l′′1 ∧ l′′2 ∧ . . .∧ l′′n), where the l′′i s are obtained from the ¬lis in
the same way as the l′is are obtained from the lis in the Lemma 4.

Example. Let ra,b = ¬A1 ∧A2 ∧A3 be a basic relationship between a and b. We
have ¬ra,b logically equivalent to:
(A1 ∧ ¬A2 ∧ ¬A3) ∨ (A1 ∧ ¬A2 ∧ ¬A3) ∨ (A1 ∧ A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ ¬A3) ∨
(A1 ∧A2 ∧A3) ∨ (¬A1 ∧ ¬A2 ∧A3) ∨ (¬A1 ∧A2 ∧ ¬A3).

Theorem 1. If φ is a formula of the language L extended with the disjunction ∨
and the existential quantifier ∃, such that we have Linka,bφ, then there exists a set
of basic relationships between a and b, denoted by ra,b, such that we have:

2The formula φ′ =
∨

(l′1 ∧ l′2 ∧ . . . ∧ l′n) is a shorthand for the: formula
φ′′ = (l′1,1 ∧ l′1,2 ∧ . . . l′1,n1) ∨ (l′2,1 ∧ l′2,2 ∧ . . . l′2,n2) ∨ . . . ∨ (l′m,1 ∧ l′m,2 ∧ . . . l′m,nm)) .

428

About Relationships Between two Individuals

` φ↔ QX(∧(∨(ra,b ∧ C) ∨D))
where QX(∧(∨(ra,b ∧C) ∨D)) is in prenex normal form and QX is a list of quan-
tifiers of the form: q1x1q2x2 . . . qnxn where the qi may be ∀ or ∃ and x1, . . . , xn are
the variables in ∧(∨(ra,b ∧ C) ∨D) and C and D are formulas in L.∧(∨(ra,b ∧ C) ∨D) is a simplified notation for formulas of the kind:
((r1,1

a,b ∧ C1
1) ∨ (r1,2

a,b ∧ C2
1) ∨ . . . ∨ (r1,i

a,b ∧ Ci1) ∨ . . . ∨ (r1,n1
a,b ∧ Cn1

1) ∨D1)∧
. . .
((ri,1a,b ∧ C1

i) ∨ (ri,2a,b ∧ C2
i) ∨ . . . ∨ (ri,ja,b ∧ C

j
i) ∨ . . . ∨ (ri,nia,b ∧ Cnii) ∨Di)∧

. . .
((rn,1a,b ∧ C1

n) ∨ (rn,2a,b ∧ C2
n) ∨ . . . ∨ (rn,ka,b ∧ Ckn) ∨ . . . ∨ (rn,nna,b ∧ Cnnn) ∨Dn)

where the ri,ja,bs are basic relationships between a and b.

Proof. The proof is by induction on the complexity degree deg(φ) of φ.
Case deg(φ) = 0. In that case φ is an atomic formula and if we have Linka,bφ,

then φ is a basic relationship between a and b.
Induction assumption: (H) Theorem 1 holds for every formula φ such that
deg(φ) ≤ n.
Case deg(φ) = n+ 1.

Case of negation
If φ = ¬φ1 Linka,bφ entails Linka,bφ1. From (H) we have:

φ1 ↔ QX(∧(∨(ra,b ∧ C) ∨D))
and

φ↔ ¬QX(∧(∨(ra,b ∧ C) ∨D))
If the negation is distributed on the quantifiers we have:

φ↔ Q′X¬(∧(∨(ra,b ∧ C) ∨D))
If the negation is distributed on the conjunctions and after that it is distributed

on the disjunctions, we have:
φ↔ Q′X(∨(∧(¬(ra,b ∧ C) ∧ ¬D))

If the disjunctions are distributed on the conjunctions we have:
φ↔ Q′X(∧(∨(¬(ra,b ∧ C) ∧ ¬D))

The formula F1 = ¬(ra,b ∧ C) ∧ ¬D is equivalent to F2 = (¬ra,b ∨ ¬C) ∧ ¬D
which is equivalent to: F3 = (¬ra,b ∧ ¬D) ∨ (¬C ∧ ¬D).

From Lemma 5 ¬ra,b is equivalent to a disjunction of basic relationships between
a and b which is denoted by: ∨

r′
a,b. Then, F3 is equivalent to: F4 = ∨(r′

a,b ∧¬D)∨
(¬C ∧ ¬D) which is of the kind: ∨(r′

a,b ∧ C ′) ∨D′.
Therefore, we have:

φ↔ Q′X(∧(∨(r′
a,b ∧ C ′) ∨D′))

429

Demolombe

Case of conjunction
If φ = φ1 ∧ φ2 Linka,bφ entails Linka,bφ1 or Linka,bφ2 or there exists t in C or

in V such that we have Linka,tφ1 and Linkt,bφ2.
Subcase 1) If we have Linka,bφ1 and not Linka,bφ2, from (H) we have:

φ1 ↔ QX(∧(∨(ra,b ∧ C1) ∨D1))
then, we have:

φ↔ QX(∧(∨(ra,b ∧ C1) ∨D1)) ∧ φ2
If φ2 is distributed on all the terms of the conjunction and then on the disjunc-

tions, we have:
φ↔ QX(∧(∨(ra,b ∧ C1 ∧ φ2) ∨ (D1 ∧ φ2)))

which is of the kind:
φ↔ QX(∧(∨(ra,b ∧ C) ∨D))

Subcase 2) If we have not Linka,bφ1 and Linka,bφ2, the proof is very similar to
the proof in 1).

Subcase 3) If we have Linka,bφ1 and Linka,bφ2, from (H) we have:
φ1 ↔ Q1X1(∧(∨(ra,b ∧ C1) ∨D1))

and
φ2 ↔ Q2X2(∧(∨(ra,b ∧ C2) ∨D2))

The variable names in φ2 are changed in order to have different variable names
in φ1 and φ2. That leads to:

φ2 ↔ Q′
2X

′
2(∧(∨(r′

a,b ∧ C ′
2) ∨D′

2))
where the variable names in (r′

a,b ∧ C ′
2) ∨D′

2 are changed according to the changes
in Q′

2X
′
2.

Then, we have (see [2] section 3.3):
φ↔ Q1X1Q′

2X
′
2((∧(∨(ra,b ∧ C1) ∨D1)) ∧ (∧(∨(r′

a,b ∧ C ′
2) ∨D′

2)))
Therefore, if we aggregate the conjunctions we have:

φ↔ QX(∧(∨(ra,b ∧ C) ∨D))
Subcase 4) If we have not Linka,bφ1 and not Linka,bφ2, there exists t in C or

in V such that we have Linka,tφ1 and Linkt,bφ2, and from (H) we have:
φ1 ↔ Q1X1(∧(∨(ra,t ∧ C1) ∨D1))

and
φ2 ↔ Q2X2(∧(∨(rt,b ∧ C2) ∨D2))

For the same reason as in 3) we have:
φ↔ Q1X1Q′

2X
′
2(∧((∨(ra,t ∧ C1) ∨D1) ∧ (∧(∨(r′

t,b ∧ C ′
2) ∨D′

2)))
then, we have:

φ↔ Q1X1Q′
2X

′
2(∧((∨(ra,t ∧ C1) ∨D1) ∧ (∨(r′

t,b ∧ C ′
2) ∨D′

2)))
In the formula (∨(ra,t ∧ C1) ∨ D1) ∧ (∨(r′

t,b ∧ C ′
2) ∨ D′

2) if we distribute the
conjunction on the disjunctions, we have a disjunction of terms of the following
forms:

430

About Relationships Between two Individuals

∨(ra,t ∧ C1) ∧∨(r′
t,b ∧ C ′

2) or ∨(ra,t ∧ C1) ∧D′
2 or D1 ∧

∨(r′
t,b ∧ C ′

2) or D1 ∧D′
2

which are the forms:
ra,t ∧ C1 ∧ r′

t,b ∧ C ′
2 or ra,t ∧ C1 ∧D′

2 or D1 ∧ (r′
t,b ∧ C ′

2) or D1 ∧D′
2

From the definition of basic relationships between a and b, ra,t∧C1∧r′
t,b∧C ′

2 is of
the kind ra,b∧C, while the other terms are not necessarily about basic relationships
between a and b and they are denoted by D

Therefore, we have:
φ↔ QX(∧(∨(ra,b ∧ C) ∨D))

Case of disjunction
If φ = φ1 ∨ φ2 Linka,bφ entails Linka,bφ1 or Linka,bφ2 or there exists t in C or

in V such that we have Linka,tφ1 and Linkt,bφ2.
Subcase 1) If we have Linka,bφ1 and not Linka,bφ2, from (H) we have:

φ1 ↔ QX(∧(∨(ra,b ∧ C1) ∨D1))
then, we have:

φ↔ QX(∧(∨(ra,b ∧ C1) ∨D1)) ∨ φ2
if the disjunction of φ2 is distributed on the conjunctions, we have:

φ↔ QX(∧(∨(ra,b ∧ C1) ∨D1 ∨ φ2))
Therefore, we have:

φ↔ QX(∧(∨(ra,b ∧ C) ∨D))
Subcase 2) If we have not Linka,bφ1 and Linka,bφ2, the proof is very similar to

the proof in 1).
Subcase 3) If we have Linka,bφ1 and Linka,bφ2, from (H) we have:

φ1 ↔ Q1X1(∧(∨(ra,b ∧ C1) ∨D1))
and

φ2 ↔ Q2X2(∧(∨(ra,b ∧ C2) ∨D2))
Then, if the variables in X2 a renamed, we have:

φ↔ Q1X1Q′
2X

′
2((∧(∨(ra,b ∧ C1) ∨D1)) ∨ (∧(∨(r′

a,b ∧ C ′
2) ∨D′

2)))
The formula in the scope of the quantifiers is of the form:

F1 = (δ1 ∧ δ2 ∧ . . . ∧ δi ∧ . . . ∧ δn) ∨ (γ1 ∧ γ2 ∧ . . . ∧ γj ∧ . . . ∧ γm)
If the disjunction is distributed on the conjunctions, we have:

F2 = (δ1 ∨ γ1) ∧ (δ1 ∨ γ2) ∧ . . . ∧ (δi ∨ γj) ∧ . . . ∧ (δn ∨ γm)
In this formula the terms of the kind (δi ∨ γj) have the form:

(∨(ra,b ∧ Ci) ∨Di) ∨ (∨(ra,b ∧ Cj) ∨Dj)
which are of the form: ∨(ra,b ∧ C) ∨D.
Then F2 is equivalent to:

F3 = ∧(∨(ra,b ∧ C) ∨D)
Therefore, we have:

φ↔ QX(∧(∨(ra,b ∧ C) ∨D))

431

Demolombe

Subcase 4) If we have not Linka,bφ1 and not Linka,bφ2, there exists t in C or
in V such that we have Linka,tφ1 and Linkt,bφ2, and from (H) we have:

In the same way as in case 3) we have:
φ↔ Q1X1Q′

2X
′
2((∧(∨(ra,t ∧ C1) ∨D1)) ∨ (∧(∨(r′

t,b ∧ C ′
2) ∨D′

2)))
The terms which are named (δi ∨ γj) in case 3) have in case 4) the form:

(∨(ra,t ∧ Ci) ∨Di) ∨ (∨(rt,b ∧ Cj) ∨Dj)
which is equivalent to:

F1 = ∨((ra,t ∧ Ci) ∨ (rt,b ∧ Cj)) ∨Di ∨Dj)
the formula: (ra,t ∧ Ci) ∨ (rt,b ∧ Cj) is equivalent to :

F2 = ((ra,t ∧Ci)∧ (rt,b ∧Cj))∨ ((ra,t ∧Ci)∧¬(rt,b ∧Cj))∨ (¬(ra,t ∧Ci)∧ (rt,b ∧Cj))
the term ((ra,t∧Ci)∧¬(rt,b∧Cj)) in F2 is equivalent to: ((ra,t∧Ci)∧(¬(rt,b∨¬Cj))

which is equivalent to:
F3 = ((ra,t ∧ ¬rt,b ∧ Ci) ∨ (rt,b ∧ Ci ∧ ¬Cj)

From Lemma 5 ¬rt,b is equivalent to a disjunction of the form: ∨
r′
t,b. Then,

ra,t ∧ ¬rt,b is equivalent to:
∨(ra,t ∧ r′

t,b).
Then, F3 is equivalent to a formula of the form F4:

F4 = ∨(ra,t ∧ r′
t,b) ∧ Ci ∨ Ei

Since ra,t ∧ r′
t,b is equivalent to a basic relationship ra,b between a and b, F4 is

equivalent to F5:
F5 = ∨(ra,b ∧ Ci ∨ Ei)

It can be shown in a similar way that (¬(ra,t ∧Ci) ∧ (rt,b ∧Cj)) is equivalent to
a formula F ′

5 of the form:
F ′

5 = ∨(ra,b ∧ C ′
i) ∨ E′

i

We also have (ra,t∧Ci)∧(rt,b∧Cj) which is equivalent to ra,b∧Ci∧Cj . Therefore,
F2 is equivalent to F6:
F6 = (ra,b ∧ Ci ∧ Cj) ∨ (∨(ra,b ∧ C ′

i) ∨ E′
i) ∨ (∨(ra,b ∧ C ′′

i) ∨ E′′
i)

The formula F6 is of the form of F7:
F7 = ∨(ra,b ∧ C) ∨D

Since each term (δi∨γj) of the conjunction is equivalent to a formula of the form
of F7 we have:
φ↔ QX(∧(∨((ra,b ∧ C) ∨D))
QED.

It is worth noting that the proof of Theorem 1 is constructive in the sense that
it shows what are the ra,bs in a formula from the ra,bs in the subformulas. Then, it
can be used a basis to exhibit the ra,bs which hold in a formula.

For instance, if we call T (φ) the transformations which exhibits the ra,bs, and
φ = ¬φ1, from the fact that we have:
T (φ1) = QX(∧(∨((ra,b ∧ C) ∨D))

we can infer that:

432

About Relationships Between two Individuals

T (φ) = Q′X(∧(∨((r′
a,b ∧ ¬D) ∨ (¬C ∧ ¬D))

where we have ∀xi (respectively ∃xi) in Q′X if we have ∃xi (respectively ∀xi) in
QX and the r′

a,bs are defined from ¬ra,b as it is shown in Lemma 5.
Examples. Let’s see the examples presented after Definition 2.
For G1 = ¬∃x(p(a, x) ∧ ¬q(x, b)), G1 is logically equivalent to:

∀x(¬p(a, x) ∨ q(x, b))
which is equivalent to:

∀x((¬p(a, x) ∧ q(x, b)) ∨ (p(a, x) ∧ q(x, b)) ∨ (¬p(a, x) ∧ ¬q(x, b))
If we use the notations:

r1
a,b

def= ¬p(a, x) ∧ q(x, b)
r2
a,b

def= p(a, x) ∧ q(x, b)
r3
a,b

def= ¬p(a, x) ∧ ¬q(x, b)
G1 is equivalent to: ∀x(r1

a,b ∨ r2
a,b ∨ r3

a,b).
If we use the transformation T (φ), to compute T (φ) for the formula: φ = ¬φ1,

where φ1 = ∃x(p(a, x) ∧ ¬q(x, b)) we have:
T (φ1) = ∃x(ra,b),

where ra,b = p(a, x) ∧ ¬q(x, b)
If we unify T (φ1) with the general definition:

T (φ1) = QX(∧(∨((ra,b ∧ C) ∨D))
we have only one term in the conjunctions and one term in the disjunctions, that

is:
QX = ∃x, C = True, D = False and ∨(ra,b ∧ C) = ra,b

The generic form of T (φ) is T (φ) = Q′X(∧(∨((r′
a,b ∧ ¬D) ∨ (¬C ∧ ¬D)).

Then, for this example we have: Q′X = ∀x and T (φ) = ∀x(∨(r′
a,b)).

where ∨(r′
a,b) = ¬ra,b = r1

a,b ∨ r2
a,b ∨ r3

a,b

Therefore, as it has been shown before, we have:
T (φ) = ∀x(r1

a,b ∨ r2
a,b ∨ r3

a,b)
For G2 = ¬((p(a, c) ∨ p(a, d)) ∧ (p(c, b) ∨ r(d, b))), G2 is equivalent to:

¬((p(a, c) ∨ p(a, d)) ∨ ¬(p(c, b) ∨ r(d, b))
which is equivalent to:

(¬(p(a, c) ∧ ¬p(a, d)) ∨ (¬p(c, b) ∧ ¬r(d, b)))
which is equivalent to:

((¬p(a, c)∧¬p(c, b))∨(¬p(a, c)∧¬r(d, b))∨(¬p(a, d)∧¬p(c, b))∨(¬p(a, d)∧¬r(d, b))
If we use the notations:

r1
a,b

def= ¬p(a, c) ∧ ¬p(c, b)
r2
a,b

def= ¬p(a, d) ∧ ¬r(d, b)
G2 is equivalent to: r1

a,b ∨ r2
a,b ∨ (¬p(a, c) ∧ ¬r(d, b)) ∨ (¬p(a, d) ∧ ¬p(c, b)).

433

Demolombe

For G3 = (p(a, b) ∨ p(a, d)) ∧ r(d, b), G3 is equivalent to:
(p(a, b) ∧ r(d, b)) ∨ (p(a, d) ∧ r(d, b))

If we use the notations:
r1
a,b

def= p(a, b)
r2
a,b

def= p(a, d) ∧ r(d, b)
G3 is equivalent to: (r1

a,b ∧ r(d, b)) ∨ r2
a,b.

4 Related works
In [4] are defined the relationships between sentences and topics and it is pointed
out that, even if some sentences do not express information about the state of the
world, because they represent tautologies, they are not necessarily about the same
topic. For instance the tautology: Romeo loves Juliet or Romeo does not love Juliet,
is about the topic “love”, while the tautology: Verona is in Italia or Verona is not
in Italia, is about the topic “geography".

For the same reason we have accepted that a sentence may express a given
relationship between two individuals even if it is a tautology.

In [5] is defined, in the semantics, the sentences which express information about
a given individual named, for instance, by a. Roughly speaking, this definition is
based on the notion of variants of a given model with regard to the individual a.
These variants are all the models where at least one tuple in a relation which contain
an interpretation of a has a different truth value than the truth value it has in the
original model. Then, a sentence which informs about a is a sentence whose truth
value changes in at least one of these variants.

The main difference with the work presented in this paper is that a sentence,
like: Romeo is a man and Juliet is a woman informs about the individual Romeo
and also informs about the individual Juliet while it does not express information
about a relationship between Romeo and Juliet. Another significant difference is
that according to this definition, a tautology does not express information about an
individual since its truth value does not change in the variants of a given model.

5 Conclusion
After an informal introduction of the notion of relationship between individuals we
have given a formal definition which is based on the notions of path in a conjunction
of literals, the notion of link, which is a property of a complex formula, and the
notion of relationship which is based on the notion of link. The Theorem 1 shows
how the relationships involved in a complex formula can be expressed in terms of

434

About Relationships Between two Individuals

basic relationships. Since the proof of the Theorem 1 is constructive, it could be
used to define an algorithm to compute these basic relationships.

We have shown in section 3 that the definition of relationship is based on the
syntax of a formula and may not be preserved by logical equivalence. A further
work might be to give a definition based on the semantics. The idea would be to
consider variants of a given model (see section 4) in terms of a path as defined in the
Definition 3, that is, models such that the tuples involved in the path are assigned
different truth values than in the initial model.

There are several possible extensions of this work. The first one is to introduce
equality in order to show that in a sentence like: Venus is Juliet and Romeo loves
Juliet (in semiformal terms: (Venus = Juliet) ∧ (Romeo loves Juliet)), there is a rela-
tionship between Romeo and Venus. The second one might be to introduce function
symbols to represent sentences like: Romeo hates Juliet’s father (formally: Romeo
hates (father(Juliet))). A less intuitive extension could be to introduce modal op-
erators for the representation of sentences of the kind: Juliet believes that Romeo
knows that Marutio is an enemy (formally: BelievesJuliet (KnowsRomeo (enemy
Marutio))), where Juliet and Romeo are not arguments of predicates but indexes
of modal operators. More complex cases are formulas like: Venus is Juliet and
Juliet believes that Romeo loves Venus (formally: (Venus = Juliet) ∧ BelievesJuliet
(Romeo loves Venus)) which shows that equality is interpreted de re, versus the
formula: Romeo believes that Juliet is Venus and Romeo loves Venus (formally:
BelievesRomeo ((Juliet = Venus) ∧ (Romeo loves Venus))) where equality is inter-
preted de dicto.

Acknowledgements. Reviewer’s comments have been very helpful to improve
the quality of the paper.

References

[1] D. Chamberlin, A. Gilbert, and R. Yost. A history of system R and SQL/Data system.
In Very Large Data Bases, 7th International Conference, 1981.

[2] C-L. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, 1973.

[3] R. Demolombe and A.J.I. Jones. Reasoning about Topics: towards a formal theory. In
American Association for Artificial Intelligence Fall Symposium, 1995.

[4] R. Demolombe and A.J.I. Jones. On sentences of the kind “sentence “p” is about topic
“t”: some steps toward a formal-logical analysis. In H-J. Ohlbach and U. Reyle, editor,
Logic, Language and Reasoning. Essays in Honor of Dov Gabbay. Kluwer Academic
Press, 1999.

435

Demolombe

[5] R. Demolombe and L. Fariñas del Cerro. Information about a given entity: from
semantics towards automated deduction. Journal of Logic and Computation, 20(6),
2010.

[6] R. Demolombe, M. Lemaitre, and J-M. Nicolas. The language of syntex2, an experi-
mental relational like dbms. In Proceedings of Jerusalem Conference on Information
Technology. Jerusalem, 1978.

[7] N. Goodman. About. Mind, LXX(277), 1961.
[8] J. L. Kuhns. Interrogating a relational data file. Technical Report R-511-PR, Rand

Corporation, 1970.
[9] H. Putnam. Formalization of the concept “About”. Philosophy of Science, XXV:125–

130, 1958.
[10] J. Ullman. Implementation of Logical Query Languages for Databases. ACM Transac-

tions On Database Systems, 10(3), 1985.
[11] J. D. Ullman. Principles of Database Systems. Computer Science Press, 1980.
[12] M. Zloof. Query-by-example. In Proc. of AFIPS Vol4, 1975.

Received 6 January 2017436

On the Lattice of the Subvarieties of
Monadic MV (C)-algebras

Antonio Di Nola
University of Salerno and IIASS, Vietri, Italy.

adinola@unisa.it

Revaz Grigolia
Tbilisi Sate University, Georgia.

revaz.grigolia@tsu.ge, revaz.grigolia359@gmail.com

Giacomo Lenzi (corresponding)
University of Salerno, Italy.

gilenzi@unisa.it

Abstract

The description of the lattice L of subvarieties of the variety MMV(C)
generated by monadic MV -algebras, the MV -reduct of which are the algebras
from the variety of MV -algebras generated by perfect MV -algebras, is given.

1 Introduction
The finitely valued propositional calculi, which have been described by Łuka-
siewicz and Tarski in [15], are extended to the corresponding predicate calculi. The
predicate Łukasiewicz (infinitely valued) logic QL is defined in the following stan-
dard way [14, 17]: the existential (universal) quantifier is interpreted as supremum
(infimum) in a complete MV -algebra. Then the valid formulas of predicate calculus
are defined as all formulas having value 1 for any assignment. The functional de-
scription of the predicate calculus is given by Rutledge in [17]. Scarpellini in [18] has
proved that the set of valid formulas is not recursively enumerable. We also refer
the reader to the papers [19, 20, 10] concerning the Łukasiewicz predicate calculus.

Monadic MV -algebras were introduced and studied by Rutledge in [17] as an
algebraic model for the predicate calculus QL of Łukasiewicz infinite-valued logic,

Vol. 5 No. 1 2018
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Di Nola, Grigolia and Lenzi

in which only a single individual variable occurs. Rutledge followed P.R. Halmos’
study of monadic Boolean algebras. In view of the incompleteness of the predicate
calculus the result of Rutledge in [17], showing the completeness of the monadic
predicate calculus, has been of great interest.

Let L denote a first-order language based on ·,+,→,¬, ∃ and let Lm denote a
propositional language based on ·,+,→,¬,∃. Let Form(L) and Form(Lm) be the
set of all formulas of L and Lm, respectively. We fix a variable x in L, associate
with each propositional letter p in Lm a unique monadic predicate p∗(x) in L and
define by induction a translation Ψ : Form(Lm)→ Form(L) by putting:

• Ψ(p) = p∗(x) if p is propositional variable,

• Ψ(α ◦ β) = Ψ(α) ◦Ψ(β), where ◦ = ·,+,→,

• Ψ(∃α) = ∃xΨ(α).

Through this translation Ψ, we can identify the formulas of Lm with monadic
formulas of L containing the variable x. Moreover, it is routine to check that
Ψ(MLPC) ⊆ QL, where MLPC is the monadic Lukasiewicz propositional calculus
[8].

For a detailed consideration of Łukasiewicz predicate calculus we refer to [2, 14,
15].

Recall that the variety MMV(C) is a subvariety of the variety MMV of all
monadic MV -algebras defined by the identity 2(x2) = (2x)2 [8, 11], where C is
Chang’s algebra introduced in [7]. The paper is devoted to the description of a
lattice of subvarieties of the variety MMV(C). It is highlighted the subvarieties
generated by the subdirectly irreducibleMMV (C)-algebras theMV -reduct of which
is isomorphic to Cm and its subalgebras.

2 Preliminaries on Monadic MV -algebras
The characterization of monadic MV -algebras as pair of MV -algebras, where one
of them is a special kind of subalgebra (m-relatively complete subalgebra), is given
in [8, 4]. MV -algebras were introduced by Chang in [7] as an algebraic model for
infinitely valued Łukasiewicz logic.

An MV -algebra is an algebra A = (A,⊕,�,∗ , 0, 1) where (A,⊕, 0) is an abelian
monoid, and the following identities hold for all x, y ∈ A : x ⊕ 1 = 1, x∗∗ = x,
0∗ = 1, x⊕ x∗ = 1, (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, x� y = (x∗ ⊕ y∗)∗.

Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff x∗ ⊕ y = 1.

438

The Lattice of Subvarieties

Thus (A,≤, 0, 1) is a bounded distributive lattice. Moreover, the following prop-
erty holds in any MV -algebra:

x� y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.
We introduce some abbreviations: (i) 0x = 0, (m + 1)x = mx ⊕ x, (ii) x0 =

1, xm+1 = xm � x.
The operation x ⇒ y = x∗ ⊕ y = sup{z : x � z ≤ y} is named implication.

In other words the operation ⇒ is adjoint to the operation �, i. e. x � z ≤ y iff
z ≤ x⇒ y.

The unit interval of real numbers [0, 1] endowed with the following operations:
x⊕y = min(1, x+y), x�y = max(0, x+y−1), x∗ = 1−x, becomes anMV -algebra.
It is well known that the MV -algebra S = ([0, 1],⊕,�,∗ , 0, 1) generates the variety
MV of all MV -algebras, i. e. V(S) = MV.

Let Q denote the set of rational numbers; then [0, 1]∩Q is another MV -algebra.
There are MV -algebras which are not semisimple, i.e. the intersection of their

maximal ideals (the radical of A, notation Rad(A)) is different from {0}. Non-zero
elements from the radical of A are called infinitesimals. It is worth to stress that to
the existence of infinitesimals in someMV -algebras is due the remarkable difference
of behaviour between Boolean algebras and MV -algebras.

Perfect MV -algebras are those MV -algebras generated by their infinitesimal
elements or, equivalently, generated by their radical [3]. They generate the smallest
non locally finite subvariety of the variety MV of all MV -algebras.

The class of perfect MV -algebras does not form a variety and contains non-
simple subdirectly irreducible MV -algebras. It is worth stressing that the variety
generated by all perfect MV -algebras, denoted by MV(C), is also generated by a
single MV -chain, actually the MV -algebra C, which have been defined by Chang
in [7]. We name MV (C)-algebras all the algebras from the variety generated by
C. Let LP be the logic corresponding to the variety generated by perfect algebras
which coincides with the set of all Łukasiewicz formulas that are valid in all perfect
MV -chains, or equivalently that are valid in the MV -algebra C. Actually, LP is
the logic obtained by adding to the axioms of Łukasiewicz sentential calculus the
following axiom: (x Y x)&(x Y x) ↔ (x&x) Y (x&x) (where Y is strong disjunction,
& strong conjunction in Łukasiewicz sentential calculus), see [3]. Notice that the
Lindenbaum algebra of LP is anMV (C)-algebra. The perfect algebra C has relevant
properties. Indeed C generates the smallest variety ofMV -algebras containing non-
Boolean non-semisimple algebras. It is also subalgebra of any non-boolean perfect
MV -algebra.

The importance of the class of MV (C)-algebras and the logic LP can be per-
ceived by looking further at the role that infinitesimals play in MV -algebras and

439

Di Nola, Grigolia and Lenzi

Łukasiewicz logic. Indeed the pure first order Łukasiewicz predicate logic is not
complete with respect to the canonical set of truth values [0, 1], see [18], [2]. The
Lindenbaum algebra of the first order Łukasiewicz logic is not semisimple and the
valid but unprovable formulas are precisely the formulas whose negations determine
the radical of the Lindenbaum algebra, that is the co-infinitesimals of such algebra.
Hence, the valid but unprovable formulas generate the perfect skeleton of the Lin-
denbaum algebra. So, perfectMV -algebras, the variety generated by them and their
logic are intimately related with a crucial phenomenon of the first order Łukasiewicz
logic.

An algebra A = (A,⊕,�,∗ ,∃, 0, 1) is said to be a monadic MV-algebra (MMV -
algebra for short) if A = (A,⊕,�,∗ , 0, 1) is anMV -algebra and in addition ∃ satisfies
the following identities:

E1. x ≤ ∃x,

E2. ∃(x ∨ y) = ∃x ∨ ∃y,

E3. ∃(∃x)∗ = (∃x)∗,

E4. ∃(∃x⊕ ∃y) = ∃x⊕ ∃y,

E5. ∃(x� x) = ∃x� ∃x,

E6. ∃(x⊕ x) = ∃x⊕ ∃x.

Sometimes we shall denote a monadic MV -algebra A = (A,⊕,�,∗ , ∃, 0, 1) by
(A,∃), for brevity. We can define a unary operation ∀x = (∃x∗)∗ corresponding to
the universal quantifier.

Theorem 1. In any MMV -algebra holds the identity
E7. ∃(x� ∃y) = ∃x� ∃y.

Proof. It is clear that ∃(x � ∃y) ≤ ∃x � ∃y. On the other hand we have x � ∃y ≤
∃(x� ∃y) V x ≤ ∃y ⇒ ∃(x� ∃y) V ∃x ≤ ∃y ⇒ ∃(x� ∃y) V ∃x� ∃y ≤ ∃(x� ∃y).
So, ∃(x� ∃y) = ∃x� ∃y.

Let A1 and A2 be any MMV -algebras. A mapping h : A1 → A2 is an MMV -
homomorphism if h is an MV -homomorphism and for every x ∈ A1 h(∃x) = ∃h(x).
Denote by MMV the variety and the category of MMV -algebras and MMV -
homomorphisms.

As it is well known, MV -algebras form a category that is equivalent to the
category of abelian lattice ordered groups (`-groups, for short) with strong unit [16].

440

The Lattice of Subvarieties

Let us denote by Γ the functor implementing this equivalence. If G is an `-group,
then for any element u ∈ G, u > 0 we let [0, u] = {x ∈ G : 0 ≤ x ≤ u} and for each
x, y ∈ [0, u] x⊕ y = u ∧ (x+ y) and x∗ = u− x.

Notations. (i) C0 = Γ(Z, 1).
(ii) C1 = C ∼= Γ(Z ×lex Z, (1, 0)) with generator (0, 1) = c1(= c), where C

is the MV -algebra introduced by Chang in [7] which is important in this paper,
because C generates the variety generated by perfect MV -algebras, and ×lex is the
lexicographic product.

(iii) Cm = Γ(Z ×lex · · · ×lex Z, (1, 0, ..., 0)) with generators c1(= (0, 0, ..., 1)), ...,
cm(= (0, 1, ..., 0)), where the number of factors Z is equal to m+ 1.

(iv) R∗(A) = Rad(A) ∪ ¬Rad(A), where ¬Rad(A) = {x∗ : x ∈ Rad(A)}, where
Rad(A) is the intersection of all maximal ideals of the MV -algebra A.

Let (A,⊕,�,∗ , ∃, 0, 1) be a monadic MV -algebra. Let ∃A = {x ∈ A : x = ∃x}.
By [8], (∃A,⊕,�,∗ , 0, 1) is an MV -subalgebra of the MV -algebra (A,⊕,�,∗ , 0, 1).

A subalgebra A0 of an MV -algebra A is said to be relatively complete if for
every a ∈ A the set {b ∈ A0 : a ≤ b} has a least element.

Let (A,⊕,�,∗ ,∃, 0, 1) be a monadic MV -algebra. By [17], the MV -algebra ∃A
is a relatively complete subalgebra of the MV -algebra (A,⊕,�,∗ , 0, 1), and ∃a =
inf{b ∈ ∃A : a ≤ b}.

A subalgebra A0 of an MV -algebra A is said to be m-relatively complete [8], if
A0 is relatively complete and two additional conditions hold:

(#) (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a� a⇒ v ≥ a & v � v ≤ x),

(##) (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a⊕ a⇒ v ≥ a & v ⊕ v ≤ x).

Notice that two-element Boolean subalgebra of the standard MV -algebra S =
([0, 1],⊕,�,∗ , 0, 1) is relatively complete, but not m-relatively complete.

Proposition 2. [8] Let A be monadic MV -algebra. Then ∃A is an m-relatively
complete subalgebra of the monadic MV -algebra (A,∃).

Proposition 3. (1) [8] If A0 is m-relatively complete totally orderedMV -subalgebra
of the MV -algebra A, then A0 is a maximal totally ordered subalgebra of A.

(2) [8, 17] If (A,∃) is a totally ordered monadic MV -algebra, then A = ∃A.
(3) [8, 17] (A,∃) is a subdirectly irreducible monadic MV -algebra if and only if

∃A is totally ordered.
(4) [8, 17] Any monadic MV -algebra (A,∃) is isomorphic to a subdirect product

of monadic MV -algebras (Ai,∃) such that ∃Ai is totally ordered.

441

Di Nola, Grigolia and Lenzi

3 Properties of subvarieties of monadic MV (C)-algebras
From the variety of monadicMV -algebras MMV [8] select the subvariety MMV(C)
which is defined by the following equation [11]:

(Perf) 2(x2) = (2x)2,

that is MMV(C) = MMV+(Perf). The main object of our interest is the variety
MMV(C).

According to axiom E5 of monadic MV -algebras m-relatively complete subal-
gebra of C coincides with C but not its two-element Boolean subalgebra. Indeed,
if ∃C = {0, 1}, then for any x ∈ RadC ∃(x � x) = 0, but ∃x � ∃x = 1. In other
words, (C,∃) is monadicMMV (C)-algebra if ∃x = x. Let we have Cn for some non-
negative integer n. Then (Cn,∃) will be MMV (C)-algebra, where ∃(a1, ..., an) =
(am, am, ..., am) with am = max{a1, ..., an} and ∀(a1, ..., an) = (am, am, ..., am) with
am = min{a1, ..., an}. Notice, that (Cn,∃) is subdirectly irreducible [8].

We name a monadic MV -algebra (A,∃) perfect if MV -algebra reduct of the
algebra is a perfect MV -algebra. Let us denote by MMV(C)0 the subvariety of
MMV(C) containing theMMV (C)-algebras with trivial monadic operator ∃ = ∃id,
where ∃id(x) = x.

Let AltCm = ∀(2x2
1) ∨ ∀(2x2

1 → 2x2
2) ∨ · · · ∨ ∀(2x2

1 ∧ 2x2
2 ∧ · · · ∧ 2x2

m → 2x2
m+1) for

0 < m ∈ ω. Let MMV(C)m be the subvariety of MMV(C) defined by the identity
AltCm = 1.

Theorem 4. The identity AltCm = 1, for 0 < m ∈ ω, is true in finitely generated
subdirectly irreducible algebra A ∈MMV(C) if and only if A contains as a maximal
homomorphic image the monadic Boolean algebra (2k, ∃) for k ≤ m ∈ ω.

Proof. The identity AltCm is the instance of the Segerberg’s formula Altm = ∀x1 ∨
∀(x1 → x2) ∨ · · · ∨ ∀(x1 ∧ x2 ∧ · · · ∧ xm → xm+1) for modal logic S5 [21], the
algebraic models of which are monadic Boolean algebras (2m, ∃) for 0 < m ∈ ω.
The identity Altm = 1 is true in subdirectly irreducible monadic Boolean algebras
(2k, ∃), where 1 ≤ k ≤ m, and the algebras of this type generate the variety of
monadic Boolean algebras. Moreover, the variety of monadic Boolean algebras is a
subvariety of monadic MV -algebras, and the variety MMV(C) as well. Let (A,∃)
be a subdirectly irreducible MMV (C)-algebra. Then B(A) = {2x2 : x ∈ A} is a
monadic Boolean skeleton of the monadic MV -algebra (A,∃) ∈ MMV(C) which
at the same time is a subalgebra of (A,∃) and, moreover, is a homomorphic image
by the maximal monadic filter [11]. Notice that for any subdirectly irreducible
algebra (A,∃) ∈ MMV(C) and the maximal monadic filter F ⊂ A the factor

442

The Lattice of Subvarieties

algebra (A,∃)/F is a monadic Boolean algebra, where monadic filter F is a MV -
filter of A additionally satisfying the condition: if x ∈ F , then ∀x ∈ F [8]. So,
the identity AltCm = 1 is true in the subdirectly irreducible MMV (C)-algebras that
contains as a maximal homomorphic image the monadic Boolean algebra (2k, ∃),
where 1 ≤ k ≤ m.

From this theorem we immediately obtain

Corollary 5. There is no a variety V between the varieties MMV(C)m and
MMV(C)m+1 which is distinct from MMV(C)m for 0 < m ∈ ω.
Proof. The proof immediately follows from the fact that there is no variety between
the variety of monadic Boolean algebras generated by (2m, ∃) and the variety of
monadic Boolean algebras generated by (2m+1, ∃).

Corollary 6. Let A be non-Boolean subdirectly irreducible algebra from
MMV(C)m+1 −MMV(C)m. Then A generates MMV(C)m+1.

Proof. Let A be non-Boolean subdirectly irreducible algebra from
MMV(C)m+1−MMV(C)m. Therefore the identity AltCm+1 = 1 is true in A. Then,
according to Corollary 5, V(A) = MMV(C)m+1, because A /∈MMV(C)m.

Theorem 7. V(⋃k∈ω MMV(C)k) = MMV(C).

Proof. Let FMMV(C)(ω) be ω-generated free MMV (C)-algebra with free gener-
ators g1, g2, g3, Then g1, ..., gk ∈ FMMV(C)(ω) generates the subalgebra of
FMMV(C)(ω) which is k-generated free algebra FMMV(C)(k) in the variety
MMV(C).

Since the variety of monadic Boolean algebras MB is a subvariety, we have that
there exists a homomorphism h : FMMV(C)(ω) → FMB(ω) such that h(g1), h(g2),
h(g3), ... are free generators of FMB(ω). Therefore h(g1), ...,
h(gk) are the free generators of k-generated free monadic Boolean algebra FMB(k).
So, AltCk = 1 is true in FMB(k) and, hence, AltCk = 1 is true in MMV(C)m for
m ≤ k.

At the same time there exists a homomorphism hm : FMMV(C)(k) →
FMMV(C)m(k), where FMMV(C)m(k) is k-generated free algebra in the variety
MMV(C)m.

Notice that in FMMV(C)(k) is true AltCk = 1, because k-generated MMV (C)-
algebra contains as a maximal homomorphic image the monadic Boolean algebra
(2k, ∃). So, FMMV(C)(k) ∼= F kMMV(C)(k) for 1 ≤ k ∈ ω. Thus we have a direct
system (FMMV(C)(k))k∈Z+ with natural embedding sending the generator to the
generator. Therefore, V(⋃k∈ω MMV(C)k) = MMV(C).

443

Di Nola, Grigolia and Lenzi

Theorem 8. Let us suppose that a subdirectly irreducible algebra A ∈ MMV(C),
which is not monadic Boolean algebra, does not satisfy AltmC = 1 for any positive
integer m. Then A generates MMV(C).

Proof. Let A ∈MMV(C) be a subdirectly irreducible algebra, which is not monadic
Boolean algebra, and does not satisfy AltmC = 1 for any positive integer m. It
means that A is not finitely generated (Theorem 4, because maximal homomorphic
image of A is not isomorphic to monadic Boolean algebra (2m,∃) for any m ∈
Z+). Let A′ be ω-generated subalgebra of the algebra A which is not monadic
Boolean algebra. Let a1, a2, ... be generators of A′. Let A′i be the subalgebra of
A′ generated by a1, a2, ..., ai ∈ A′. Then we have a directed family (A′i)i∈Z+ by
subalgebra embedding, where Z+ is the set of positive integers. It is clear that A′
is generated by ⋃

i∈Z+ A′i. Then there exists cofinal subset J of Z+ such that A′j is
not monadic Boolean algebra (we exclude from the directed set of the subalgebras
that are monadic Boolean algebras) and A′j ∈ MMV(C)j , i. e. AltCj = 1 is true
in A′j because A′j is finitely generated. Therefore, according to Corollary 6 , A′j
generates the variety MMV(C)j . From here we conclude that A′ generates the
variety MMV(C), since V(⋃j∈J MMV(C)j) = MMV(C) (Theorem 7).

So we have the following diagram:

MMV(C)1 ⊂MMV(C)2 ⊂ · · · ⊂MMV(C)m ⊂ · · · MMV(C)
Fig. 1

Let us consider the identity (∃x)2 ∧ (∃x∗)2 = 0. It holds

Lemma 9. The identity (∃x)2 ∧ (∃x∗)2 = 0 is satisfied in the subdirectly irreducible
MMV (C)-algebra (A,∃) if and only if the MV -algebra reduct of that is a perfect
MV -algebra.

Proof. Let the MV -reduct of the algebra (A,∃) be perfect MV -algebra. Then any
element x ∈ A belongs to either radical of A or co-radical of A. If x belongs to
radical of A, then ∃x also belongs to the radical, the co-radical of A, and, hence,
(∃x)2 = 0. If x belongs to co-radical of A, then x∗ and ∃x∗ belong to radical of A,
and, hence, (∃x∗)2 = 0.

Now suppose that the MV -algebra reduct of the algebra (A,∃) is not a perfect
MV -algebra. It means that (A,∃) contains as a subalgebra the Boolean algebra
2k for some 1 < k ∈ ω. Let b ∈ 2k such that b is different from the greatest and
the least element of A. So, representing the element b as a sequence of 1 and 0,
one of the components should be 1. Therefore, ∃b = ∃b∗ = 1. So, the identity
(∃x)2 ∧ (∃x∗)2 = 0 does not hold in (A,∃).

444

The Lattice of Subvarieties

From the variety MMV(C) we can pick out the subvariety MMV(C)perf by
the identity (∃x)2 ∧ (∃¬x)2 = 0 which is generated by MMV (C)-algebras the MV -
algebra reduct of which are perfect MV -algebras. Notice that this variety coincides
with the variety MMV(C)1.

Let t(x) = (x∨x∗)⊕(∀(x∨x∗))∗. Let us give an analysis for the polynomial t(x).
It is clear that for any subdirectly irreducible MMV (C)-algebra (A,∃) t(x) belongs
to the co-radical of A for every x ∈ A. Moreover, let us consider the algebra (Cm,∃)
and non-Boolean element (a1, ..., am) ∈ Rad∗A and suppose a1 ≤ ... ≤ am. Then
(∀(a1, ..., am))∗ = (a∗1, ..., a∗1), and, hence, t(a1, ..., am) = (1, a2 ⊕ a∗1, ..., am ⊕ a∗1). As
we see we have got the element the one component of which is equal to 1. Observe
that t(t(a1, ..., am)) = t2(a1, ..., am) = (1, 1, (a3 ⊕ a∗1) ⊕ (a2 ⊕ a∗1)∗, ..., (am ⊕ a∗1) ⊕
(a2 ⊕ a∗1)∗) and tm(a1, ..., am) = (1, 1, ..., 1). Notice that if (a1, ..., am) ∈ Rad∗A is a
Boolean element, then t(a1, ..., am) = 1.

Lemma 10. The identity tm = 1 is true in (Ck,∃) for 1 < k ≤ m and tm = 1 does
not hold in (Ck, ∃) for k > m.

Corollary 11. The identity tm = 1 is true in (R∗(Ck1)×...×R∗(Ckn),∃) for 1 < k ≤
m, where k = k1 + ...+ kn, and tm = 1 does not hold in (R∗(Ck1)× ...×R∗(Ckn),∃)
for k > m. Moreover, AltCn = 1 is true in (R∗(Ck1) × ... × R∗(Ckn),∃) for n ≤ m
and is not true for n > m.

Proof. Notice that (R∗(Ck1) × ... × R∗(Ckn),∃) is a subalgebra of (Cm, ∃), where
k1 + ... + kn = m. Therefore we conclude that the identity tm = 1 is true in
(R∗(Ck1)× ...×R∗(Ckn),∃).

Since (R∗(Ck1)× ...×R∗(Ckn),∃) has (2n,∃) as a maximal homomorphic image,
we have that AltCn = 1 is true in (R∗(Ck1)× ...×R∗(Ckn),∃) for n ≤ m and is not
true for n > m.

4 Generating algebras for MMV(C)
Recall that given any class K of similar algebras, Jónsson’s lemma states that if
the variety HSP (K) generated by K is congruence-distributive, its subdirectly irre-
ducibles are in HSPU (K), that is, they are quotients of subalgebras of ultraproducts
of members of K. (If K is a finite set of finite algebras, the ultraproduct operation
is redundant.)

Notice that if A is any MV -algebra, then A is subdirectly irreducible iff A is a
chain. Similarly, a monadic MV-algebra A is subdirectly irreducible iff ∃A is a chain
and A has a minimal nonzero monadic ideal. Moreover, the lattice of congruences

445

Di Nola, Grigolia and Lenzi

of MMV -algebra A is isomorphic to the lattice of congruences of the algebra ∃A
(which is really an MV -algebra with trivial operator ∃, i.e. ∃x = x).

In [11] it is shown that the variety generated by C1 contains any perfect algebra.
So, C1 and Cn generate the same variety. Here we give similar results for MMV(C).

Let (Ck, ∃) = (Ck1 ,=,⊕,�,¬,∃, 0, 1) be the model for MMV (C)-theory and
Th((Ck,∃)) the set of all true sentences in (Ck,∃).

Let At(x) = (∀y)(y ≤ x ⇒ (y = 0 ∨ y = x)) that means that x is an atom and
A(x1, ..., xk) = ∧i6=j(xi 6= xj) ∧ (∧k

i=1At(xi)) ∧ (∃(∨k
i=1 xi) = ∨k

i=1 xi = ∧k
i=1 ∃xi) ∧

(∃xk+1)(At(xk+1) ⇒ (∨k
i=1(xi = xk+1)) ∧ (∀y)((y = ∃y) ∧ (y ≤ ∨k

i=1 xi)) ⇒ (y =
0 ∨ y = ∨k

i=1 xi)) ∧ (∧k
i=1(∀xi = 0))).

Notice that in (Ck,∃) are true the following sentences:
(i) (∃x1∃x2)A(x1, ..., xk), which means that there exist only k atoms in (Ck, ∃),

that we denote by a1, ..., ak such that ∃a1 = ∃a2 = ... = ∃ak = ∨k
i=1 ai and ∀a1 =

... = ∀ak = 0;
(ii) (∀x∀y)(((x = ∃x) ∧ (y = ∃y) ∧ (x ≤ y) ∨ (y ≤ x)), that means that ∃(Ck,∃)

is a chain;
(iii) (∃y1∃y2....∃yk)Φ(y1, ..., yk) = (∃y1∃y2....∃yk)(

∧k
i=1(yi = 2y2

i)∧
∧
i6=j(yi 6=

yj) ∧
∧
i6=j(∃yi = ∃yj)), that means that maximal homomorphic image is isomor-

phic to (2k, ∃) and not to (2k+1,∃), (2k−1,∃);
(iv) (∀x)(tk(x) = 1).
Observe that the both formulas (∃y1∃y2....∃yk)Φ(y1, ..., yk) and

(∀x)(tk = 1) are true in (Ck, ∃) and not true in (Ck+1, ∃), (Ck−1, ∃).
We add to the signature the new constants a1, ..., ak such that At(a1), ... ,At(ak)

are true in (Ck,∃), c1 and c2, and let Λ∃n = A(a1, ..., ak) ∧ (c1 = ∨k
i=1 ai) ∧ (c2 =

∃c2) ∧ (c2
2 = 0) ∧ (c2 6= nc1) (n ∈ Z+) and let us consider a theory

T = Th((Ck,∃)) ∪ {Λ∃1 ,Λ∃2 ,Λ∃3 , ...}.
So, in this theory we have terms nc1, n = 1, 2, 3,

Proposition 12. Every finite subtheory T0 ⊆ T is satisfiable.

Proof. T0 contains a finite number of axioms of the kind Λ∃n1 ,Λ
∃
n2 , ...,Λ

∃
nk
. Let c2 be

interpreted in the model (Ck,∃) as any mc1 such that m > max{n1, ..., nk}.

According to the theorem of compactness there exists a model (M, ∃) |= T , that
contains atoms, that we denote by aM1 , ..., aMk , the elements of the kind ∃x form a
chain that contains an atom (let cM1 be the atom of the chain). The model (M,∃)
has the following properties:

446

The Lattice of Subvarieties

1) (Ck,∃) is embedded into (M, ∃): ε(c1) = cM1 , ε(a1) = aM1 , ... , ε(ak) = aMk ;
2) (M,∃) |= Th((Ck, ∃));
3) (M, ∃) � (Ck, ∃), in particular cM2 ∈M such that cM2 ≥ ncM1 for every natural

number n;
4) (M,∃) ∼= ((∃M)k, ∃) because the formulas (∃y1∃y2....∃yk)Φ(y1, ..., yk) and

(∀x)(tk = 1) are true in the model.
Now we take the elements aM1 , ..., aMk , c

M
1 , cM2 ∈ M and generate by these ele-

ments the subalgebra (D,∃), which is isomorphic to (Ck2 .∃).
As a consequence we have

Theorem 13. The variety generated by (Ck1 ,∃) coincides with the variety generated
by (Ckn,∃) for any n ∈ Z+.

5 Subvarieties of monadic MV (C)-algebras
Let m be a positive integer. Then a partition of m is a nonincreasing sequence
of positive integers (m1,m2, ...,mn) whose sum is m. Each mi is called a part of
the partition. We let the function p(m) denote the number of partitions of the
integer m. For example, for the number 4: 1 + 1 + 1 + 1 = 2 + 1 + 1 = 2 + 2 =
3 + 1 = 4. Let p̂(m) be the set of all partitions of the number m. So, p̂(4) =
{(1, 1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1)}. We define the function p(m,n) to be the number
of partitions of m whose largest part is n (or equivalently, the number of partitions
of m with n parts). Let p̂(m,n) be the set of all partitions of the number m with n
parts. For example p̂(4, 2) = {(2, 2), (3, 1)}, p̂(5, 2) = {(4, 1), (3, 2)}, p̂(5, 1) = {(5)}.

Let MMV(C)n(m1,...,mn) be the subvariety of MMV(C) generated by the algebra
(R∗(Cm1)× ...×R∗(Cmn),∃), where m1 + ...+mn = m, i. e. (m1, ...,mn) ∈ p̂(m,n).

Lemma 14. If n1 6= n2, then MMV(C)n1
(m1,...,mn1) 6= MMV(C)n2

(m1,...,mn2).

Proof. Let us suppose that n1 < n2. Then AltCn1 = 1 is true in MMV(C)n1
(m1,...,mn1)

and is not true in MMV(C)n2
(m1,...,mn2).

Lemma 15. If m 6= k, then MMV(C)n(m1,...,mn) 6= MMV(C)n(k1,...,kn), where m1 +
...+mn = m and k1 + ...+ kn = k.

Proof. Let us suppose that m < k. Then tm(x) = 1 is true in MMV(C)n(m1,...,mn)
and is not true in MMV(C)n(k1,...,kn).

Lemma 16. Let λ1, λ2 ∈ p̂(m,n) such that λ1 6= λ2. Then MMV(C)nλ1
6=

MMV(C)nλ2
.

447

Di Nola, Grigolia and Lenzi

Proof. Let us suppose that λ1 = (m1, ...,mn), λ2 = (m′1, ...,m′n) and λ1 6= λ2. Notice
that MMV(C)nλ1

is generated by the subdirectly irreducible algebra (R∗(Cm1) ×
...×R∗(Cmn),∃) and MMV(C)nλ2

is generated by the subdirectly irreducible algebra
(R∗(Cm′1)×...×R∗(Cm′n),∃). Notice that both algebras have maximal homomorphic
images which are isomorphic to (2n, ∃). Observe that an algebra R∗(Ck) is a subal-
gebra of R∗(Cm) for any k ≤ m. So, (R∗(Cm1) × ... × R∗(Ck) × ... × R∗(Cmn),∃)
is a subalgebra of (R∗(Cm1) × ... × R∗(Cmi) × ... × R∗(Cmn),∃) for any k ≤ mi

(i ≤ n). Taking into account that m1 + ... + mn = m′1 + ... + m′n = m we have
that (R∗(Cm1) × ... × R∗(Cmn),∃) and (R∗(Cm′1) × ... × R∗(Cm′n),∃) are not sub-
algebras of each other. Notice also that AltCn = 1 and tm(x) = 1 are true in
(R∗(Cm1)× ...×R∗(Cmn),∃) and (R∗(Cm′1)× ...×R∗(Cm′n),∃).

Now we will give a first order universal formula that is true in (R∗(Cm1)× ...×
R∗(Cmn),∃) and false in (R∗(Cm′1)× ...×R∗(Cm′n),∃).

φm(m1,...,mn) = (∀x1, ...,∀xm∀y1, ...,∀yn,∀x)((∧m
i=1At(xi) ⇒ (∃∨m

i=1 xi =∨m
i=1 xi = ∧m

i=1 ∃xi)) ∧ ((∧n
i=1(yi ⊕ yi = yi) ∧ (∨n

i=1 yi = 1) ∧ (∧i6=j(yi ∧ yj =
0)) ∧ (∧n

i=1(2x2 ≤ yi ⇒ (2x2 = 0 ∨ 2x2 = yi)))) ⇒ (∨ϕ∈Φ((∨m1
i=1 xi → yϕ(1) =

1) ∧ (∨m2
i=m1+1 xi → yϕ(2) = 1) ∧ ...∧ (∨mn

i=mn−1+1 xi → yϕ(n) = 1))),

where n ≤ m, At(x) means that x is an atom and Φ is the set of all bijections from
{1, 2, ..., n} to {1, 2, ..., n}.

Observe that (R∗(Cm1) × ... × R∗(Cmn),∃) (and (R∗(Cm′1) × ... × R∗(Cm′n),∃)
as well) contains m atoms. Moreover, in the subformula

((∧n
i=1(yi ⊕ yi = yi) ∧ (∨n

i=1 yi = 1) ∧ (∧i6=j(yi ∧ yj = 0)) ∧ (∧n
i=1(2x2 ≤ yi ⇒

(2x2 = 0 ∨ 2x2 = yi))))

the elements y1, ..., yn are interpreted as atoms of Boolean algebra which is isomor-
phic to 2n; and the subformula

∨ϕ∈Φ((∨m1
i=1 xi → yϕ(1) = 1) ∧ (∨m2

i=m1+1 xi → yϕ(2) = 1) ∧ ... ∧ (∨mn
i=mn−1+1 xi →

yϕ(n) = 1))

is true in (R∗(Cm1)×...×R∗(Cmn),∃), where only one member of the disjunction, say
(∨m1

i=1 xi → yϕ(1) = 1)∧(∨m2
i=m1+1 xi → yϕ(2) = 1)∧ ...∧(∨mn

i=mn−1+1 xi → yϕ(n) = 1))
for some ϕ ∈ Φ, is true in (R∗(Cm1)× ...×R∗(Cmn),∃), and, at the same time, any
member of the disjunction is not true in (R∗(Cm′1)× ...×R∗(Cm′n),∃).

So, the formula φm(m1,...,mn) is true in (R∗(Cm1)× ...×R∗(Cmn),∃) and not true in
(R∗(Cm′1)× ...×R∗(Cm′n),∃). From here we conclude that any homomorphic image
of any subalgebra of any ultrapower of (R∗(Cm1)×...×R∗(Cmn),∃) is not isomorphic
to (R∗(Cm′1)× ...×R∗(Cm′n),∃). Consequently, MMV(C)nλ1

6= MMV(C)nλ2
.

448

The Lattice of Subvarieties

Let us consider the algebras (R∗(C3) × R∗(C2),∃) ∈ MMV(C)2
(3,2) and

(R∗(C4)× C),∃) ∈MMV(C)2
(4,1). Notice that in this case λ1 = (3, 2), λ2 = (4, 1).

In this case we have

φ2
(3,2) = (∀x1,∀x2, ...,∀x5∀y1,∀y2)((∧5

i=1At(xi) ⇒ (∃∨5
i=1 xi = ∨5

i=1 xi =
∧5
i=1 ∃xi)) ∧ ((∧2

i=1(yi ⊕ yi = yi) ∧ (∨2
i=1 yi = 1) ∧ (∧i6=j(yi ∧ yj = 0)) ∧ (2x2 ≤

y1 ⇒ 2x2 = 0∨2x2 = y1)∧ (2x2 ≤ y1 ⇒ 2x2 = 0∨2x2 = y1))⇒ ((((x1 ∨x2 ∨x3)→
y1 = 1))∧((x4 ∨x5 → y2 = 1))∨(((x1 ∨x2 ∨x3)→ y2 = 1))∧((x1 ∨x2)→ y1 = 1)).

Observe that Boolean skeletons of (R∗(C3) × R∗(C2),∃) and (R∗(C4) × C),∃)
are isomorphic to 22. More precisely, the elements of the Boolean skeleton of the
algebra (R∗(C3)×R∗(C2),∃) are (1, 1, 1, 1, 1), (1, 1, 1, 0, 0), (0, 0, 0, 1, 1),
(0, 0, 0, 0, 0); and the elements of the Boolean skeleton of the algebra (R∗(C4) ×
C),∃) are (1, 1, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1), (0, 0, 0, 0, 0). So, if we interpret
y1 as (1, 1, 1, 0, 0), y2 as (0, 0, 0, 1, 1), x1 as (c, 0, 0, 0, 0), x2 as (0, c, 0, 0, 0), x3 as
(0, 0, c, 0, 0), x4 as (0, 0, 0, c, 0) and x5 as (0, 0, 0, 0, c), then the only disjunction
(((x1 ∨x2 ∨x3)→ y1 = 1)) ∧ ((x4 ∨x5)→ y2 = 1)) is true in (R∗(C3)×R∗(C2),∃).

Observe that for every MV -algebra A, and for every MV (C)-algebra as well,
there exists the Belluce lattice β(A) which is distributive lattice, the spectral space
of which coincides with the spectral space of the MV -algebra A [1].

Q-distributive lattices was introduced by Cignoli in [6]. AQ-distributive lattice is
an algebra (A,∨,∧,∃, 0, 1) such that (A,∨,∧, 0, 1) is a bounded distributive lattice
and ∃ is a quantifier on A that satisfies the following identities: (Q0) ∃0 = 0;
(Q1) a ∧ ∃a = a; (Q2) ∃(a ∧ ∃b) = ∃a ∧ ∃b; (Q3) ∃(a ∨ b) = ∃a ∨ ∃b.

If we have monadic MV (C)-algebra (A,∃), then we can obtain Q-distributive
lattice (β(A),∨,∧,∃, 0, 1). For Q-distributive lattice (β(A),∨,∧,∃, 0, 1) it is con-
structed its dual object (P(β(A)), R,E) [6], where (P(β(A)) is the set of all prime
filters ordered by inclusion and E ⊂ P(β(A))2 is an equivalence relation on P(β(A))
corresponding to the monadic operator ∃.

The dual objects (a) (P(β((R∗(C3)×R∗(C2))), R,E) and (b) (P(β(((R∗(C4)×
C),∃)), R,E) are depicted in Fig. 2. Notice that the spectral spaces represented
in Fig. 2 correspond to the spectral spaces corresponding to the monadic Gödel
algebras [5], where the equivalent elements are inside of ovals.

449

Di Nola, Grigolia and Lenzi

r r
E
E
E
E
EE

�
�
�
�
�
�

�
�
�
�
��

E
E
E
E
EEr r r r r

�� �
�
�

�
�

r r

r r r r r
�
�
�
�
�
�

E
E
E
E
E
E

B
B
B
B
B
B

�
�

�
�

�� �

(a) (b)

Fig. 2 Dual objects of (a) (R∗(C3)×R∗(C2),∃)), (b) (R∗(C4)× C,∃)

Notice that MMV(C)1
(m) coincides with MMV(C)1

m. Notice also that any
variety MMV(C)n(m1,...,mn) is a subvariety of MMV(C)mm, m = m1...+mn.

We have subvarieties MMV(C)nm = MMV(C)n + tm = 1 where n ≤ m.
Notice that MMV(C)1

1 coincides with the variety of monadic MV -algebras with
trivial monadic operator ∃x = x.

It is easy to prove the following

Theorem 17. 1) MMV(C)n(m1,...,mn) is a subvariety of MMV(C)nm1+...+mn
;

2) MMV(C)n(m1,...,mn) is a subvariety of MMV(C)n(m′1,...,m′n) iff mi ≤ m′i, i =
1, ..., n;

3) MMV(C)nm is a subvariety of MMV(C)nm+1;
4) MMV(C)nm is a subvariety of MMV(C)n+1

m if n < m.

Let B be the variety of monadic Boolean algebras and Bm the subvariety of B
generated by (2m, ∃) where 1 ≤ m < ω.

In the following diagram is represented a lattice the elements of which are
MMV(C)n, MMV(C)nm, MBm, n ≤ m,n,m ∈ Z+.

This diagram represents a lattice of subvarieties of MMV(C).

450

The Lattice of Subvarieties

According to the results above we can define generating set of algebras for the
subvarieties.

MMV(C)1 = V({(R∗(Cm),∃) : 1 < m ∈ ω}), ... ,
MMV(C)n = V({((R∗(Cm))n,∃)), 1 < m ∈ ω}),
MMV(C)nm = V(((R∗(Cm1))× ...×R∗(Cmn),∃)),
MBm = V((2m,∃)), m ∈ ω,
MB = V({(2m,∃)), m ∈ ω}),

where R∗(A) = RadA ∪ (¬RadA).

MMV(C)1 ⊂MMV(C)2 ⊂MMV(C)3 ⊂ · · · ⊂MMV(C)m ⊂ · · ·MMV(C)
...

...
...

...
∪ ∪ ∪ ∪

MMV(C)1
m ⊂MMV(C)2

m ⊂MMV(C)3
m · · · ⊂MMV(C)mm

∪ ∪ ∪
...

...
...

∪ ∪ ∪
MMV(C)1

3 ⊂MMV(C)2
3 ⊂MMV(C)3

3
∪ ∪

MMV(C)1
2 ⊂MMV(C)2

2
∪

MMV(C)1
1

∪ ∪ ∪ ∪ ∪
MB1 ⊂ MB2 ⊂ MB3 ⊂ · · · ⊂ MBm ⊂ · · · MB

Fig. 3

We do not know whether Fig. 3 represents all subvarieties of the variety MMV(C)
are represented. Let SkR∗(Cmk) be the set of all subalgebras of R∗(Cmk) having a
totally ordered subalgebra isomorphic to Ck.

Conjecture 1. Let SIf be the set of all subdirectly irreducible MMV (C)-
algebras having finite spectral space. SIf coincides with the set of MMV (C)-algebras
of the type (A1 × ...×An,∃), where Ai ∈ SkR∗(Cmk) for i = 1, ..., n, k ∈ Z+.

Conjecture 2. Any proper subvariety of the variety MMV(C) is generated by
the finite number of algebras (A1× ...×An, ∃), where Ai ∈ SkR∗(Cmk) for i = 1, ..., n,
k ∈ Z+.

451

Di Nola, Grigolia and Lenzi

6 Problems
Now we formulate some problems.

1. To give axiomatization of all subvarieties of the variety MMV(C).
The solution the next two problems will help to represent the lattice of all sub-

varieties of the variety MMV(C) and fill the gaps between subvarieties.
2. To show that the varieties generated by (R∗(C3)×R∗(C2),∃) and (R∗(C3

n)×
R∗(C2

n),∃) (n > 1), the dual object of which is depicted in Fig. 4, coincide.

q q
E
E
E
E

�
�
�
�

�
�
��

E
E
EEq q q q q
�� ��
�� �
q q q q q�� �p p p p pp p p p pp p p p p
q q q q q�� �
Fig. 4

3. A dual object of some subalgebra A ∈ S2(R∗(C8
2)) of the algebra (C8

2 ,∃) is
depicted in Fig. 5. To show that the varieties generated by (R∗(C3) × R∗(C2),∃)
and A does not coincide. q q

E
E
E

�
�
��

�
�
�

E
E
Eq q q q q
�� ���
 �	�

�
�

�
�
�

�
�
�

�
�
�

E
E
E

�� �q q q q q q q q
Fig. 5

452

The Lattice of Subvarieties

Acknowledgements

We express our gratitude to the referees for her/his suggestions to improve the
readability of this paper.

References
[1] L. P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory,

Canad. J. Math. 38 (1986) 1356âĂŞ1379.
[2] L. P. Belluce, C.C. Chang, A weak completeness theorem for infinite valued 2rst-order

logic, J. Symbolic Logic 28 (1963) 43–50.
[3] L. P. Belluce, A. Di Nola, B. Gerla, Perfect MV -algebras and their Logic, Applied

Categorical Structures Volume 15, Numbers 1-2 (2007), 135-151.
[4] L.P. Belluce, R. Grigolia and A. Lettieri, Representations of monadic MV- algebras,

Studia Logica, vol. 81, Issue October 15th, 2005, pp. 125-144.
[5] G. Bezhanishvili, R. Grigolia, "Locally tabular extensions of MIPC", Proceedings of

Uppsala Symposium ", Advances in Modal Logic’98" , vol. 2, Csli Publications, Stanford,
California, 101-120 (2001)

[6] R. Cignoli, Quantifiers on distributive lattices, Discrete Mathematics, 96(1991), 183-
197.

[7] C. C. Chang, Algebraic Analysis of Many-Valued Logics, Trans. Amer. Math. Soc.,
88(1958), 467-490.

[8] A. Di Nola, R. Grigolia, On Monadic MV-algebras, APAL, Vol. 128, Issues 1-3 (August
2004), pp. 125-139.

[9] A. Di Nola , R. Grigolia, Profinite MV-spaces, Discrete Mathematics , Vol. 283, Issues
1-3 (6 June 2004), pp. 61-69.

[10] G. Georgescu, A. Iurgulescu, I. Leustean, Monadic and Closure MV-Algebras, Multi.
Val. Logic 3 (1998) 235–257.

[11] A. Di Nola, A. Lettieri, Perfect MV-algebras are Categorically Equivalent to Abelian
`-Groups, Studia Logica, 53(1994), 417-432.

[12] P.R. Halmos, Algebraic Logic I. Monadic Boolean algebras, Compositio Math. 12
(1955), 217-249.

[13] P.R. Halmos, Algebraic Logic (Chelsea, New York, 1962).
[14] L.S. Hay, An axiomatization of the infinitely many-valued calculus, M.S. Thesis, Cornell

University, 1958.
[15] J. Łukasiewicz, A. Tarski, Unntersuchungen Ouber den Aussagenkalkul, Comptes Ren-

dus des seances de la Societe des Sciences et des Lettres de Varsovie 23 (cl iii) (1930)
30–50.

[16] D. Mundici, Interpretation of AF C∗-Algebras in Lukasiewicz Sentential Calculus, J.
Funct. Analysis 65, (1986), 15-63.

453

Di Nola, Grigolia and Lenzi

[17] J.D. Rutledge, A preliminary investigation of the infinitely many-valued predicate cal-
culus, Ph.D. Thesis, Cornell University, 1959.

[18] B. Scarpellini, Die Nichtaxiomatisierbarkeit des unendlichwertigen PrOadikaten-
kalkulus von Łukasiewicz, J. Symbolic Logic 27 (1962) 159–170.

[19] D. Schwartz, Theorie der polyadischen MV-Algebren endlicher Ordnung, Math. Nachr.
78 (1977) 131–138.

[20] D. Schwartz, Polyadic MV-algebras, Zeit. f. math. Logik und Grundlagen d. Math. 26
(1980) 561–564.

[21] K. Segerberg, An essay in classical modal logic, Uppsala, 1971.

Received 31 March 2017454

