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Preface

Matthias Baaz, Executive Vice President, Kurt Goedel Society
Institute of Discrete Mathematics and Geometry, Vienna University of Technology,

Wiedner Hauptstraße 8–10, 1040 Vienna, Austria
baaz@logic.at

Abstract
This volume contains contributions of the thirteen winners of three rounds

of the Kurt Goedel Research Prize Fellowship Programs organized by the Kurt
Goedel Society and supported by the John Templeton Foundation.

1 Background
The Horizons of Truth, an International Symposium celebrating the 100th birth-
day of Kurt Goedel, organized by the Kurt Goedel Society, held in 2006, brought
together some of the world’s most renowned scientists in the fields related to Kurt
Goedel’s research, particularly in logic. Outstanding lectures have provided deep
insights into historical and contemporary scientific developments. A general inter-
pretation of the significance of Kurt Goedel’s achievements was offered by Paul Co-
hen, Georg Kreisel, John Angus MacIntyre, and Avi Wigderson. Advanced research
programs in the spirit of Kurt Goedel were formulated by Harvey Friedman and
Hugh Woodin. Hilary Putnam and Denys Turner discussed the philosophical and
theological implications of Kurt Goedel’s outstanding research. The cosmological
works were represented by Wolfgang Rindler. The public lecture of the conference
provided a unique opportunity for citizens of Vienna to listen to a lecture by Sir
Roger Penrose in the Golden Hall of the Viennese City Hall, and this opportunity
was widely taken: more than 800 citizens took part. The lecture was followed by a
biographical film about Kurt Goedel.

An integral part of the Symposium was the Young Scholars’ Competition, in
which ten finalists presented their scientific research results in Vienna. Finally,
three prize winners were chosen by the Board of Jurors.

The jury consisted of the following members.

• Wolfgang Achtner, Justus Liebig Universitaet and Wolfgang Goethe Univer-
sität Frankfurt
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Baaz

• Lev Beklemishev, Russian Academy of Sciences

• Mirna Dzamonja, University of East Anglia

• Solomon Feferman, Stanford University

• Harvey Friedman, Ohio State University

• Petr Hajek, Academy of Sciences of the Czech Republic

• Michael Heller, Pontifical Academy of Theology

• Juliette Kennedy, University of Helsinki

• Daniele Mundici, University of Florence

• Luke Ong, Oxford University Computing Laboratory

• Michel Parigot, University Paris VII

• Jeff Paris, University of Manchester

• Gordon Plotkin, University of Edinburgh

• Jouko Vaanenen, University of Helsinki

• Hugh Woodin, University of California, Berkeley

• Jakob Yngvason, University of Vienna

The finalists were:

• Lorenzo Carlucci

• Andrey Bovykin

• Lutz Strassburger

• Laurentiu Leustean

• Mark Van Atten

• Hannes Leitgeb

• Itay Neeman

• Justin Moore

3118
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• Eli Ben-Sasson

• Russell O’Connor

The winners were:

• Justin Moore, 1st prize for “The continuum and aleph-2”

• Mark Van Atten, 2nd prize for “Goedel and German Idealism”

• Eli Ben-Sasson, 3rd prize for “Searching for a conditional answer to Goedel’s
question”

The conference was completed by an exhibition on life and work of Kurt Goedel:
Kurt Goedel’s Century, carefully assembled by Karl Sigmund, which helped to in-
crease visibility of the conference. The conference and the exhibition were opened
on by Dr. Heinz Fischer, the President of the Republic of Austria. The lecture
given by Garry Kasparov, chess grandmaster, gave a wider vision to the problems
of analyzing the activities of the human mind.

The Symposium has also shown that, Logic was heading toward an inflection
point, which could lead to the diminishing returns from the scientific point of view,
unless new foundational ideas emerge.

2 Fellowship Competition Rounds
The following criteria of merit for evaluating Fellowship Prize applications were
adopted:

1. Intellectual merit, scientific rigor and originality of the submitted paper and
work plan. The project should combine visionary thinking with academic
excellence.

2. Potential for significant contribution to basic foundational understanding of
logic and the likelihood for opening new, fruitful lines of inquiry.

3. Impact of the grant on the project and likelihood that the prize will make this
new line of research possible.

4. The probability that the pursuit of this line of research is realistic and feasible
for the applicant.

3119
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2.1 Round 1 (2008)
The finalists and winners of this round were chosen by the following Board of Jurors:

• Peter Aczel, University of Manchester (GB)

• Lev Beklemishev, Russian Academy of Sciences (RUS)

• John Burgess, Princeton University (USA)

• Harvey Friedman, Ohio State University (USA) CHAIR

• John Harrison, Intel Corporation (USA)

• Wilfried Hodges, Queen Mary University of London (GB)

• Simon Kochen, Princeton University (USA)

• Jan Krajicek, Academy of Sciences of the Czech Republic(CZ)

• Menachem Magidor, Hebrew University (ISRAEL)

• Dave Marker, University of Illinois at Chicago (USA)

• Michel Parigot, Universite Paris 7 (FRANCE)

• Pavel Pudlak, Academy of Sciences of the Czech Republic (CZ)

• Hilary Putnam, Harvard University (USA)

• Jeff Rremmel, University of California at San Diego (USA)

• John Steel, University of California at Berkley (USA)

• Frank Stephan, National University of Singapore (SINGAPORE)

• Albert Visser, University of Utrecht (NL)

Finalists’ articles were published in a Special Volume 157 of the Annals of Pure
and Applied Logic, Issues 2-3 in 2009.
The finalists of this round were:

• Jeremy Avigad

• Andrey Bovykin

• Vasco Brattka

3120
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• Thierry Coquand

• David Fernandez

• Fernando Ferreira

• Andreas Fischer

• Ekaterina Fokina

• Stefan Geschke

• James Hirschorn

• Pavel Hrubes

• Peter Koellner

• Maryanthe Malliaris

• Yuri Matiyasevich

• Kentaro Sato

• Henry Towsner

• Andreas Weiermann

The winners of this round were:

• Andrey Bovykin, post-doc category, US 160,000 prize for the project “Inde-
pendence results in concrete mathematics”

• Thierry Coquand, senior category, US 120,000 prize for the project “Space of
valuations”

• David Fernandez Duque, pre-doc, US 120,000 prize for the project “Non-
Deterministic Semantics for Dynamic Topological Logic”

• Pavel Hrubes, pre-doc category, US 120,000 prize for the project “On lengths
of proofs in non-classical logics”

• Peter Koellner, post-doc category, US 160,000 prize for the project “On Re-
flection Principles”
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2.2 Round 2 (2010)
Two different juries chose finalists and winners. Both Juries were chaired by Harvey
Friedman, Ohio State University, USA.
Jury for determination of finalists consisted of:

• Lenore Blum, MIT, USA

• John Harrison, Intel Corporation, USA

• Kenneth Kunen, University of Wisconsin

• Angus Macintyre, Queen Mary, University of London and Royal Society, UK

• Hiroakira Ono, JAIST Research Center for Integrated Science, Japan

• Pavel Pudlak, Czech Academy of Sciences, Czech Republic

• Michael Rathjen, University of Leeds, UK

• Frank Stephan, National University of Singapore, Singapore

• William Tait, University of Chicago, USA

• Albert Visser, University of Utrecht, The Netherlands

• Andreas Weiermann, Ghent University, Belgium

• Boris Zilber, University of Oxford

Jury for determination of the winners consisted of:

• Lev Beklemishev, Steklov Mathematical Institute of Russian Academy of Sci-
ences and M.V. Lomonossov Moscow State University, Russian Federation

• Dov M. Gabbay, King’s College London, UK

• Warren D. Goldfarb, Harvard University, USA

• Howard Jerome Keisler, University of Wisconsin, USA

Finalists’ articles were published in a Special Volume of the Annals of Pure and
Applied Logic in 2012, Volume 163, Issue 11.
The finalists of this round were:

• Federico Aschieri
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• Giovanni Curi

• Kentaro Fujimoto

• Misha Gavrilovich

• Danko Ilik

• Ulrich Kohlenbach

• Maryanthe Malliaris

• Andre Nies

• Greg Restall

• Alex Simpson

• Lynn Scow

• Matteo Viale

• Sean Walsh

• Christoph Weiss

The winners of this round were:

• Danko Ilik, pre-doc category, EUR 100,000 prize for the project “Towards a
new Computational Interpretation of Sub-classical Principles”

• Ulrich Kohlenbach, unrestricted category, EUR 100,000 prize for the project
“New Frontiers in Proof Mining”

• Maryanthe Malliaris, post-doc category, EUR 100,000 prize for the project
“Comparing the Complexity of Unstable Theories”

• Matteo Viale, post-doc category, EUR 100,000 prize for the project “Three
Aspects of Goedel’s Program: Supercompactness, Forcing Axioms and Omega
Logic”

• Sean Walsh, pre-doc category, EUR 100,000 prize for the project “The Limits
of Arithmetical Definability”
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2.3 Round 3 (2014)
The third round of the fellowships prize program was held in conjunction with the
Vienna Summer of Logic (VSL-14), the largest conference in the history of logic so
far uniting three different streams, mathematical logic, logic in computer science
and logic in artificial intelligence. In this round, the finalists were consecutively
determined by three different juries.

Logical Foundations of Mathematics: Jan Krajíček, Angus Macintyre, and
Dana Scott (Chair).

Logical Foundations of Computer Science: Franz Baader, Johann Makowsky,
and Wolfgang Thomas (Chair).

Logical Foundations of Artificial Intelligence: Luigia Carlucci Aiello, Georg
Gottlob (Chair), and Bernhard Nebel.

The winners were chosen by all three juries together.
The finalists of this round were:
In Logical Foundations of Mathematics category:

• Yong Cheng

• Arno Pauly

• Marcin Sabok

• Sam Sanders

In Logical Foundations of Computer Science category:

• Sicun Gao

• Cameron Hill

• Ori Lahav

• Matteo Mio

In Logical Foundations of Artificial Intelligence category:

• Alessandro Abate

• Vaishak Belle

• Gianluigi Greco
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• Sebastian Rudolph

The winners of this round were:

• Gianluigi Greco, logical foundations of artificial intelligence, EUR 100,000 for
the project “Collective Behavior in Social Environments: Models and Com-
plexity”

• Matteo Mio, logical foundations of computer science, EUR 100,000 prize for
the project “Quantitative Modal Logics”

• Marcin Sabok, logical foundations of mathematics category, EUR 100,000 prize
for the project “Classification: in search of groups”

2.4 Summary
Mathematical logic is logic with the rigor of mathematical argumentation. Its con-
clusions are far-reaching and clear and it is in this field, where the scientific progress
of logic as a whole takes place. Mathematical logic is based upon the balance be-
tween mathematical knowledge and philosophical incentive. Without philosophical
understanding (informal rigor) Gödel would not have been able to find the arguments
to prove his famous theorems. Without mathematical knowledge, he would not have
been able to communicate them. (Note that a paper on incompleteness had been
published by Finsler even before Goedel, but Finsler’s arguments were completely
insufficient, mathematically).The balance is, however, disturbed nowadays due to
the industrialization of scientific work, and industrialization means Taylorism: tal-
ented young logicians will focus on small areas of the field, where they will obtain
technical superiority after a short time.

The aim of the three fellowships rounds was to restore the balance in two ways:

1. By providing funding and acknowledgement to the individual young scientist
and to give him time to breath. It is a paradox of our scientific culture that
those, who could be most innovative, namely the young scientists, are forced
to be most adaptive, while for the established scientists there exist all degrees
of freedom.

2. By propagating the importance of the balance to all scientists in the field of
logic.

Received 20 April 20173125
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Cubical Type Theory: A Constructive
Interpretation of the Univalence Axiom

Cyril Cohen
Université Côte d’Azur, Inria, Sophia Antipolis, France

cyril.cohen@inria.fr

Thierry Coquand, Simon Huber
Department of Computer Science and Engineering, University of Gothenburg,

Gothenburg, Sweden
{thierry.coquand,simon.huber}@cse.gu.se

Anders Mörtberg∗
School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA

amortberg@math.ias.edu

Abstract

This paper presents a type theory in which it is possible to directly ma-
nipulate n-dimensional cubes (points, lines, squares, cubes, etc.) based on an
interpretation of dependent type theory in a cubical set model. This enables
new ways to reason about identity types, for instance, function extensionality is
directly provable in the system. Further, Voevodsky’s univalence axiom is prov-
able in this system. We also explain an extension with some higher inductive
types like the circle and propositional truncation. Finally we provide semantics
for this cubical type theory in a constructive meta-theory.

This article has appeared as [9] licensed under CC BY (http://creativecommons.org/licenses/
by/3.0/). The present article improves the treatment of higher inductive types.

∗This material is based upon work supported by the National Science Foundation under agree-
ment No. DMS-1128155. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.
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1 Introduction
This work is a continuation of the program started in [6, 14] to provide a construc-
tive justification of Voevodsky’s univalence axiom [28]. This axiom allows many
improvements for the formalization of mathematics in type theory: function exten-
sionality, identification of isomorphic structures, etc. In order to preserve the good
computational properties of type theory it is crucial that postulated constants have
a computational interpretation. Like in [6, 14, 23] our work is based on a nomi-
nal extension of λ-calculus, using names to represent formally elements of the unit
interval [0, 1]. This paper presents two main contributions.

The first one is a refinement of the semantics presented in [6, 14]. We add new
operations on names corresponding to the fact that the interval [0, 1] is canonically
a de Morgan algebra [3]. This allows us to significantly simplify our semantical
justifications. In the previous work, we noticed that it is crucial for the semantics of
higher inductive types [27] to have a “diagonal” operation. By adding this operation
we can provide a semantical justification of some higher inductive types and we give
two examples (the spheres and propositional truncation). Another shortcoming
of the previous work was that using path types as equality types did not provide
a justification of the computation rule of the Martin-Löf identity type [20] as a
judgmental equality. This problem has been solved by Andrew Swan [26], in the
framework of [6, 14, 23], who showed that we can define a new type, equivalent to,
but not judgmentally equal to the path type. This has a simple definition in the
present framework.

The second contribution is the design of a type system1 inspired by this semantics
which extends Martin-Löf type theory [21, 20]. We add two new operations on
contexts: addition of new names representing dimensions and a restriction operation.
Using these we can define a notion of extensibility which generalizes the notion of
being connected by a path, and then a Kan composition operation that expresses
that being extensible is preserved along paths. We also define a new operation on
types which expresses that this notion of extensibility is preserved by equivalences.
The axiom of univalence, and composition for the universe, are then both expressible
using this new operation.

The paper is organized as follows. The first part, Sections 2 to 7, presents the
type system. The second part, Section 8, provides its semantics in cubical sets.
Finally, in Section 9, we present two possible extensions: the addition of an identity
type, and two examples of higher inductive types.

1We have implemented a type-checker for this system in Haskell, which is available at:
https://github.com/mortberg/cubicaltt
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2 Basic type theory
In this section we introduce the version of dependent type theory on which the rest
of the paper is based. This presentation is standard, but included for completeness.
The type theory that we consider has a type of natural numbers, but no universes
(we consider the addition of universes in Section 7). It also has β and η-conversion
for dependent functions and surjective pairing for dependent pairs.

The syntax of contexts, terms and types is specified by:

Γ,∆ ::= () | Γ, x : A Contexts

t, u,A,B ::= x | λx : A. t | t u | (x : A)→ B Π-types
| (t, u) | t.1 | t.2 | (x : A)×B Σ-types
| 0 | s u | natrec t u | N Natural numbers

We write A→ B for the non-dependent function space and A×B for the type of
non-dependent pairs. Terms and types are considered up to α-equivalence of bound
variables. Substitutions, written σ = (x1/u1, . . . , xn/un), are defined to act on ex-
pressions as usual, i.e., simultaneously replacing xi by ui, renaming bound variables
whenever necessary. The inference rules of this system are presented in Figure 1
where in the η-rule for Π- and Σ-types we omitted the premises that t and u should
have the respective type.

We define ∆ ` σ : Γ by induction on Γ. We have ∆ ` () : () (empty substitution)
and ∆ ` (σ, x/u) : Γ, x : A if ∆ ` σ : Γ and ∆ ` u : Aσ.

We write J for an arbitrary judgment and, as usual, we consider also hypothetical
judgments Γ ` J in a context Γ.

The following lemma will be valid for all extensions of type theory we consider
below.

Lemma 1. Substitution is admissible:

Γ ` J ∆ ` σ : Γ
∆ ` Jσ

In particular, weakening is admissible, i.e., a judgment valid in a context stays valid
in any extension of this context.

3 Path types
As in [6, 23] we assume that we are given a discrete infinite set of names (representing
directions) i, j, k, . . . We define I to be the free de Morgan algebra [3] on this set of
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Well-formed contexts, Γ ` (The condition x /∈ dom(Γ) means that x is not declared in Γ)

() `
Γ ` A

Γ, x : A ` (x /∈ dom(Γ))

Well-formed types, Γ ` A

Γ, x : A ` B
Γ ` (x : A)→ B

Γ, x : A ` B
Γ ` (x : A)×B

Γ `
Γ ` N

Well-typed terms, Γ ` t : A

Γ ` t : A Γ ` A = B

Γ ` t : B
Γ, x : A ` t : B

Γ ` λx : A. t : (x : A)→ B

Γ `
Γ ` x : A

(x : A ∈ Γ)

Γ ` t : (x : A)→ B Γ ` u : A
Γ ` t u : B(x/u)

Γ ` t : (x : A)×B
Γ ` t.1 : A

Γ ` t : (x : A)×B
Γ ` t.2 : B(x/t.1)

Γ, x : A ` B Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u) : (x : A)×B

Γ `
Γ ` 0 : N

Γ ` n : N
Γ ` s n : N

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n)
Γ ` natrec a b : (x : N)→ P

Type equality, Γ ` A = B (Congruence and equivalence rules which are omitted)

Term equality, Γ ` a = b : A (Congruence and equivalence rules are omitted)

Γ ` t = u : A Γ ` A = B

Γ ` t = u : B
Γ, x : A ` t : B Γ ` u : A

Γ ` (λx : A. t) u = t(x/u) : B(x/u)
Γ, x : A ` t x = u x : B
Γ ` t = u : (x : A)→ B

Γ, x : A ` B Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u).1 = t : A

Γ, x : A ` B Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u).2 = u : B(x/t)

Γ, x : A ` B Γ ` t.1 = u.1 : A Γ ` t.2 = u.2 : B(x/t.1)
Γ ` t = u : (x : A)×B

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n)
Γ ` natrec a b 0 = a : P (x/0)

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n) Γ ` n : N
Γ ` natrec a b (s n) = b n (natrec a b n) : P (x/s n)

Figure 1: Inference rules of the basic type theory

3130



Cubical Type Theory

names. This means that I is a bounded distributive lattice with top element 1 and
bottom element 0 with an involution 1− r satisfying:

1−0 = 1 1−1 = 0 1−(r∨s) = (1−r)∧(1−s) 1−(r∧s) = (1−r)∨(1−s)

The elements of I can hence be described by the following grammar:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

The set I also has decidable equality, and as a distributive lattice, it can be described
as the free distributive lattice generated by symbols i and 1 − i [3]. As in [6], the
elements in I can be thought as formal representations of elements in [0, 1], with
r ∧ s representing min(r, s) and r ∨ s representing max(r, s). With this in mind it
is clear that (1− r) ∧ r 6= 0 and (1− r) ∨ r 6= 1 in general.
Remark. The use of the reverse operation 1− r is not essential. Instead of requiring
composition operations (see Section 4.3) extending from 0 to 1 we would then also
have to require one from 1 to 0.
Remark. We could instead also use a so-called Kleene algebra [16], i.e., a de Morgan
algebra satisfying in addition r ∧ (1 − r) 6 s ∨ (1 − s). The free Kleene algebra
on the set of names can be described as above but by additionally imposing the
equations i∧(1− i) 6 j∨(1−j) on the generators; this still has a decidable equality.
Note that [0, 1] with the operations described above is a Kleene algebra. With this
added condition, r = s if, and only if, their interpretations in [0, 1] are equal. A
consequence of using a Kleene algebra instead would be that more terms would be
judgmentally equal in the type theory.

3.1 Syntax and inference rules
Contexts can now be extended with name declarations:

Γ,∆ ::= . . . | Γ, i : I

together with the context rule:

Γ `
Γ, i : I ` (i /∈ dom(Γ))

A judgment of the form Γ ` r : I means that Γ ` and r in I depends only on the
names declared in Γ. The judgment Γ ` r = s : I means that r and s are equal as
elements of I, Γ ` r : I, and Γ ` s : I. Note, that judgmental equality for I will be
re-defined once we introduce restricted contexts in Section 4.

3131



Cohen, Coquand, Huber, and Mörtberg

The extension to the syntax of basic dependent type theory is:

t, u,A,B ::= . . .
| Path A t u | 〈i〉 t | t r Path types

Path abstraction, 〈i〉 t, binds the name i in t, and path application, t r, applies
a term t to an element r : I. This is similar to the notion of name-abstraction in
nominal sets [22].

The substitution operation now has to be extended to substitutions of the form
(i/r). There are special substitutions of the form (i/0) and (i/1) corresponding to
taking faces of an n-dimensional cube, we write these simply as (i0) and (i1).

The inference rules for path types are presented in Figure 2 where again in the
η-rule we omitted that t and u should be appropriately typed.

Γ ` A Γ ` t : A Γ ` u : A
Γ ` Path A t u

Γ ` A Γ, i : I ` t : A
Γ ` 〈i〉 t : Path A t(i0) t(i1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` A Γ, i : I ` t : A Γ ` r : I
Γ ` (〈i〉 t) r = t(i/r) : A

Γ, i : I ` t i = u i : A
Γ ` t = u : Path A u0 u1

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A
Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

Figure 2: Inference rules for path types

We define 1a : Path A a a as 1a = 〈i〉 a, which corresponds to a proof of reflexivity.
The intuition is that a type in a context with n names corresponds to an n-

dimensional cube:
() ` A • A
i : I ` A A(i0) A(i1)A

i : I, j : I ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A(i0) A(i1)

A(j0)
...

...
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Note that A(i0)(j0) = A(j0)(i0). The substitution (i/j) corresponds to renam-
ing a dimension, while (i/1 − i) corresponds to the inversion of a path. If we have
i : I ` p with p(i0) = a and p(i1) = b then it can be seen as a line

a b
p

in direction i, then:

b a
p(i/1− i)

The substitutions (i/i∧j) and (i/i∨j) correspond to special kinds of degeneracies
called connections [7]. The connections p(i/i∧ j) and p(i/i∨ j) can be drawn as the
squares:

a b

a a

p(i/i ∧ j)

p

p(i0) p(i/j)

p(i0)

b b

a b

p(i/i ∨ j)

p(i1)

p(i/j) p(i1)

p

j

i

where, for instance, the right-hand side of the left square is computed as

p(i/i ∧ j)(i1) = p(i/1 ∧ j) = p(i/j)

and the bottom and left-hand sides are degenerate.

3.2 Examples
Representing equalities using path types allows novel definitions of many standard
operations on identity types that are usually proved by identity elimination. For
instance, the fact that the images of two equal elements are equal can be defined as:

Γ ` a : A Γ ` b : A Γ ` f : A→ B Γ ` p : Path A a b

Γ ` 〈i〉 f (p i) : Path B (f a) (f b)

This operation satisfies some judgmental equalities that do not hold judgmentally
when the identity type is defined as an inductive family (see Section 7.2 of [6] for
details).
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We can also define new operations, for instance, function extensionality for path
types can be proved as:

Γ ` f : (x : A)→ B
Γ ` g : (x : A)→ B Γ ` p : (x : A)→ Path B (f x) (g x)

Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

To see that this is correct we check that the term has the correct faces, for instance:

(〈i〉 λx : A. p x i) 0 = λx : A. p x 0 = λx : A. f x = f

We can also justify the fact that singletons are contractible, that is, that any
element in (x : A)× (Path A a x) is equal to (a, 1a):

Γ ` p : Path A a b

Γ ` 〈i〉 (p i, 〈j〉 p (i ∧ j)) : Path ((x : A)× (Path A a x)) (a, 1a) (b, p)

As in the previous work [6, 14] we need to add composition operations, defined
by induction on the type, in order to justify the elimination principle for paths.

4 Systems, composition, and transport
In this section we define the operation of context restriction which will allow us to
describe new geometrical shapes corresponding to “sub-polyhedra” of a cube. Using
this we can define the composition operation. From this operation we will also be
able to define the transport operation and the elimination principle for Path types.

4.1 The face lattice
The face lattice, F, is the distributive lattice generated by symbols (i = 0) and
(i = 1) with the relation (i = 0) ∧ (i = 1) = 0F. The elements of the face lattice,
called face formulas, can be described by the grammar

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ ψ | ϕ ∨ ψ

There is a canonical lattice map I → F sending i to (i = 1) and 1 − i to (i = 0).
We write (r = 1) for the image of r : I in F and we write (r = 0) for (1 − r = 1).
We have (r = 1) ∧ (r = 0) = 0F and we define the lattice map F→ F, ψ 7−→ ψ(i/r)
sending (i = 1) to (r = 1) and (i = 0) to (r = 0).

Any element of F is the join of the irreducible elements below it. An irreducible
element of this lattice is a face, i.e., a conjunction of elements of the form (i = 0) and
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(j = 1). This provides a disjunctive normal form for face formulas, and it follows
from this that the equality on F is decidable.

Geometrically, the face formulas describe “sub-polyhedra” of a cube. For in-
stance, the element (i = 0) ∨ (j = 1) can be seen as the union of two faces of the
square in directions j and i. If I is a finite set of names, we define the boundary of
I as the element ∂I of F which is the disjunction of all (i = 0) ∨ (i = 1) for i in I.
It is the greatest element depending at most on elements in I which is < 1F.

We write Γ ` ψ : F to mean that ψ is a face formula using only the names
declared in Γ. We introduce then the new restriction operation on contexts:

Γ,∆ ::= . . . | Γ, ϕ

together with the rule:

Γ ` ϕ : F
Γ, ϕ `

This allows us to describe new geometrical shapes: as we have seen above, a type
in a context Γ = i : I, j : I can be thought of as a square, and a type in the restricted
context Γ, ϕ will then represent a compatible union of faces of this square. This can
be illustrated by:

i : I, (i = 0) ∨ (i = 1) ` A A(i0) • A(i1) •

i : I, j : I, (i = 0) ∨ (j = 1) ` A
A(i0)(j1) A(i1)(j1)

A(i0)(j0)

A(j1)

A(i0)

i : I, j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A
A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(i0) A(i1)

A(j0)

There is a canonical map from the lattice F to the congruence lattice of I, which is
distributive [3], sending (i = 1) to the congruence identifying i with 1 (and 1 − i
with 0) and sending (i = 0) to the congruence identifying i with 0 (and 1 − i with
1). In this way, any element ψ of F defines a congruence r = s (mod. ψ) on I.
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This congruence can be described as a substitution if ψ is irreducible; for in-
stance, if ψ is (i = 0) ∧ (j = 1) then r = s (mod. ψ) is equivalent to r(i0)(j1) =
s(i0)(j1). The congruence associated to ψ = ϕ0 ∨ϕ1 is the meet of the congruences
associated to ϕ0 and ϕ1 respectively, so that we have, e.g., i = 1 − j (mod. ψ) if
ϕ0 = (i = 0) ∧ (j = 1) and ϕ1 = (i = 1) ∧ (j = 0).

To any context Γ we can associate recursively a congruence on I, the congruence
on Γ, ψ being the join of the congruence defined by Γ and the congruence defined
by ψ. The congruence defined by () is equality in I, and an extension x : A or
i : I does not change the congruence. The judgment Γ ` r = s : I then means that
r = s (mod. Γ), Γ ` r : I, and Γ ` s : I.

In the case where Γ does not use the restriction operation, this judgment means
r = s in I. If i is declared in Γ, then Γ, (i = 0) ` r = s : I is equivalent to
Γ ` r(i0) = s(i0) : I. Similarly any context Γ defines a congruence on F with
Γ, ψ ` ϕ0 = ϕ1 : F being equivalent to Γ ` ψ ∧ ϕ0 = ψ ∧ ϕ1 : F.

As explained above, the elements of I can be seen as formal representations of
elements in the interval [0, 1]. The elements of F can then be seen as formulas on
elements of [0, 1]. We have a simple form of quantifier elimination on F: given a
name i, we define ∀i : F → F as the lattice morphism sending (i = 0) and (i = 1)
to 0F, and being the identity on all the other generators. If ψ is independent of
i, we have ψ 6 ϕ if, and only if, ψ 6 ∀i.ϕ. For example, if ϕ is (i = 0) ∨ ((i =
1) ∧ (j = 0)) ∨ (j = 1), then ∀i.ϕ is (j = 1). This operation will play a crucial role
in Section 6.2 for the definition of composition of glueing.

Since F is not a Boolean algebra, we don’t have in general ϕ = (ϕ ∧ (i =
0)) ∨ (ϕ ∧ (i = 1)), but we always have the following decomposition:

Lemma 2. For any element ϕ of F and any name i we have

ϕ = (∀i.ϕ) ∨ (ϕ ∧ (i = 0)) ∨ (ϕ ∧ (i = 1))

We also have ϕ ∧ (i = 0) 6 ϕ(i0) and ϕ ∧ (i = 1) 6 ϕ(i1).

4.2 Syntax and inference rules for systems
Systems allow to introduce “sub-polyhedra” as compatible unions of cubes. The
extension to the syntax of dependent type theory with path types is:

t, u,A,B ::= . . .
| [ ϕ1 t1, . . . , ϕn tn ] Systems

We allow n = 0 and get the empty system [ ]. As explained above, a context
now corresponds in general to the union of sub-faces of a cube. In Figure 3 we
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provide operations for combining compatible systems of types and elements, the side
condition for these rules is that Γ ` ϕ1∨ · · ·∨ϕn = 1F : F. This condition requires Γ
to be sufficiently restricted: for example ∆, (i = 0)∨ (i = 1) ` (i = 0)∨ (i = 1) = 1F.
The first rule introduces systems of types, each defined on one ϕl and requiring the
types to agree whenever they overlap; the second rule is the analogous rule for terms.
The last two rules make sure that systems have the correct faces. The third inference
rule says that that any judgment which is valid locally at each ϕl is valid; note that
in particular n = 0 is allowed (then the side condition becomes Γ ` 0F = 1F : F).

Γ, ϕ1 ` A1 · · · Γ, ϕn ` An Γ, ϕi ∧ ϕj ` Ai = Aj (1 6 i, j 6 n)
Γ ` [ ϕ1 A1, . . . , ϕn An ]

Γ ` A
Γ, ϕ1 ` t1 : A · · · Γ, ϕn ` tn : A Γ, ϕi ∧ ϕj ` ti = tj : A (1 6 i, j 6 n)

Γ ` [ ϕ1 t1, . . . , ϕn tn ] : A

Γ, ϕ1 ` J · · · Γ, ϕn ` J
Γ ` J

Γ ` [ ϕ1 A1, . . . , ϕn An ] Γ ` ϕi = 1F : F
Γ ` [ ϕ1 A1, . . . , ϕn An ] = Ai

Γ ` [ ϕ1 t1, . . . , ϕn tn ] : A Γ ` ϕi = 1F : F
Γ ` [ ϕ1 t1, . . . , ϕn tn ] = ti : A

Figure 3: Inference rules for systems with side condition Γ ` ϕ1 ∨ · · · ∨ ϕn = 1F : F

Note that when n = 0 the second of the above rules should be read as: if
Γ ` 0F = 1F : F and Γ ` A, then Γ ` [ ] : A.

We extend the definition of the substitution judgment by ∆ ` σ : Γ, ϕ if ∆ ` σ :
Γ, Γ ` ϕ : F, and ∆ ` ϕσ = 1F : F.

If Γ, ϕ ` u : A, then Γ ` a : A[ϕ 7→ u] is an abbreviation for Γ ` a : A and
Γ, ϕ ` a = u : A. In this case, we see this element a as a witness that the partial
element u, defined on the “extent” ϕ (using the terminology from [11]), is extensible.
More generally, we write Γ ` a : A[ϕ1 7→ u1, . . . , ϕk 7→ uk] for Γ ` a : A and
Γ, ϕl ` a = ul : A for l = 1, . . . , k.

For instance, if Γ, i : I ` A and Γ, i : I, ϕ ` u : A where ϕ = (i = 0) ∨ (i = 1)
then the element u is determined by two elements Γ ` a0 : A(i0) and Γ ` a1 : A(i1)
and an element Γ, i : I ` a : A[(i = 0) 7→ a0, (i = 1) 7→ a1] gives a path connecting
a0 and a1.
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Lemma 3. The following rules are admissible:2

Γ ` ϕ 6 ψ : F Γ, ψ ` J
Γ, ϕ ` J

Γ, 1F ` J

Γ ` J
========

Γ, ϕ, ψ ` J

Γ, ϕ ∧ ψ ` J
===========

Furthermore, if ϕ is independent of i, the following rules are admissible

Γ, i : I, ϕ ` J

Γ, ϕ, i : I ` J
===========

and it follows that we have in general:

Γ, i : I, ϕ ` J
Γ,∀i.ϕ, i : I ` J

4.3 Composition operation
The syntax of compositions is given by:

t, u,A,B ::= . . .
| compi A [ϕ 7→ u] a0 Compositions

where u is a system on the extent ϕ.
The composition operation expresses that being extensible is preserved along

paths: if a partial path is extensible at 0, then it is extensible at 1.

Γ ` ϕ : F Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)[ϕ 7→ u(i0)]
Γ ` compi A [ϕ 7→ u] a0 : A(i1)[ϕ 7→ u(i1)]

Note that compi binds i in A and u and that we have in particular the following
equality judgments for systems:

Γ ` compi A [1F 7→ u] a0 = u(i1) : A(i1)

If we have a substitution ∆ ` σ : Γ, then

(compi A [ϕ 7→ u] a0)σ = compj A(σ, i/j) [ϕσ 7→ u(σ, i/j)] a0σ

where j is fresh for ∆, which corresponds semantically to the uniformity [6, 14] of
the composition operation.

We use the abbreviation [ϕ1 7→ u1, . . . , ϕn 7→ un] for [∨l ϕl 7→ [ϕ1 u1, . . . , ϕn un]]
and in particular we write [] for [0F 7→ [ ]].

2The inference rules with double line are each a pair of rules, because they can be used in both
directions.
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Example 4. With composition we can justify transitivity of path types:
Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

This composition can be visualized as the dashed arrow in the square:
a c

a b

a q j

p i

j

i

4.4 Kan filling operation
As we have connections we also get Kan filling operations from compositions:

Γ, i : I ` filli A [ϕ 7→ u] a0 = compj A(i/i ∧ j) [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ a0] a0 : A

where j is fresh for Γ. The element Γ, i : I ` v = filli A [ϕ 7→ u] a0 : A satisfies:

Γ ` v(i0) = a0 : A(i0)
Γ ` v(i1) = compi A [ϕ 7→ u] a0 : A(i1)

Γ, ϕ, i : I ` v = u : A

This means that we can not only compute the lid of an open box but also its filling. If
ϕ is the boundary formula on the names declared in Γ, we recover the Kan operation
for cubical sets [17].

4.5 Equality judgments for composition
The equality judgments for compi C [ϕ 7→ u] a0 are defined by cases on the type C
which depends on i, i.e., Γ, i : I ` C. The right hand side of the definitions are all
equal to u(i1) on the extent ϕ by the typing rule for compositions. There are four
cases to consider:

Product types, C = (x : A)→ B

Given Γ, ϕ, i : I ` µ : C and Γ ` λ0 : C(i0)[ϕ 7→ µ(i0)] the composition will be of
type C(i1). For Γ ` u1 : A(i1), we first let:

w = filli A(i/1− i) [] u1 (in context Γ, i : I and of type A(i/1− i))
v = w(i/1− i) (in context Γ, i : I and of type A)
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Using this we define the equality judgment:

Γ ` (compi C [ϕ 7→ µ] λ0) u1 = compi B(x/v) [ϕ 7→ µ v] (λ0 v(i0)) : B(x/v)(i1)

Sum types, C = (x : A)×B

Given Γ, ϕ, i : I ` w : C and Γ ` w0 : C(i0)[ϕ 7→ w(i0)] we let:

a = filli A [ϕ 7→ w.1] w0.1 (in context Γ, i : I and of type A)
c1 = compi A [ϕ 7→ w.1] w0.1 (in context Γ and of type A(i1))
c2 = compi B(x/a) [ϕ 7→ w.2] w0.2 (in context Γ and of type B(x/a)(i1))

From which we define:

Γ ` compi C [ϕ 7→ w] w0 = (c1, c2) : C(i1)

Natural numbers, C = N

In this we define compi C [ϕ 7→ n] n0 by recursion:

Γ ` compi C [ϕ 7→ 0] 0 = 0 : C
Γ ` compi C [ϕ 7→ s n] (s n0) = s (compi C [ϕ 7→ n] n0) : C

Path types, C = Path A u v

Given Γ, ϕ, i : I ` p : C and Γ ` p0 : C(i0)[ϕ 7→ p(i0)] we define:

Γ ` compi C [ϕ 7→ p] p0 =
〈j〉 compi A [ϕ 7→ p j, (j = 0) 7→ u, (j = 1) 7→ v] (p0 j) : C(i1)

4.6 Transport

Composition for ϕ = 0F corresponds to transport:

Γ ` transpi A a = compi A [] a : A(i1)

Together with the fact that singletons are contractible, from Section 3.2, we get
the elimination principle for Path types in the same manner as explained for identity
types in Section 7.2 of [6].
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5 Derived notions and operations
This section defines various notions and operations that will be used for defining
compositions for the glue operation in the next section. This operation will then be
used to define the composition operation for the universe and to prove the univalence
axiom.

5.1 Contractible types
We define isContr A = (x : A) × ((y : A) → Path A x y). A proof of isContr A
witnesses the fact that A is contractible.

Given Γ ` p : isContr A and Γ, ϕ ` u : A we define the operation3

Γ ` contr p [ϕ 7→ u] = compi A [ϕ 7→ p.2 u i] p.1 : A[ϕ 7→ u]

Conversely, we can state the following characterization of contractible types:
Lemma 5. Let Γ ` A and assume that we have one operation

Γ, ϕ ` u : A
Γ ` contr [ϕ 7→ u] : A[ϕ 7→ u]

then we can find an element in isContr A.
Proof. We define x = contr [] : A and prove that any element y : A is path equal to
x. For this, we introduce a fresh name i : I and define ϕ = (i = 0) ∨ (i = 1) and
u = [(i = 0) 7→ x, (i = 1) 7→ y]. Using this we obtain Γ, i : I ` v = contr [ϕ 7→ u] :
A[ϕ 7→ u]. In this way, we get a path 〈i〉 contr [ϕ 7→ u] connecting x and y.

5.2 The equiv operation
We define isEquiv T A f = (y : A) → isContr ((x : T ) × Path A y (f x)) and
Equiv T A = (f : T → A)× isEquiv T A f . If w : Equiv T A and t : T , we may write
w t for w.1 t.
Lemma 6. If Γ ` w : Equiv T A, we have an operation

Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ w t]
Γ ` equiv w [ϕ 7→ t] a : ((x : T )× Path A a (w x))[ϕ 7→ (t, 〈j〉a)]

Proof. We define equiv w [ϕ 7→ t] a = contr (w.2 a) [ϕ 7→ (t, 〈j〉a)] using the contr
operation defined above.

3This expresses that the restriction map Γ, ϕ→ Γ has the left lifting property w.r.t. any “trivial
fibration”, i.e., contractible extensions Γ, x : A→ Γ. The restriction maps Γ, ϕ→ Γ thus represent
“cofibrations” while the maps Γ, x : A→ Γ represent “fibrations”.
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6 Glueing

In this section, we introduce the glueing operation. This operation expresses that
to be “extensible” is invariant by equivalence. From this operation, we can define a
composition operation for universes, and prove the univalence axiom.

6.1 Syntax and inference rules for glueing

We introduce the glueing construction at type and term level by:

t, u,A,B ::= . . .
| Glue [ϕ 7→ (T,w)] A Glue type
| glue [ϕ 7→ t] u Glue term
| unglue [ϕ 7→ w] u Unglue term

We may write simply unglue b for unglue [ϕ 7→ w] b. The inference rules for these
are presented in Figure 4.

Γ ` A Γ, ϕ ` T Γ, ϕ ` w : Equiv T A

Γ ` Glue [ϕ 7→ (T,w)] A
Γ ` b : Glue [ϕ 7→ (T,w)] A
Γ ` unglue b : A[ϕ 7→ w b]

Γ, ϕ ` w : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ w t]
Γ ` glue [ϕ 7→ t] a : Glue [ϕ 7→ (T,w)] A

Γ ` T Γ ` w : Equiv T A

Γ ` Glue [1F 7→ (T,w)] A = T

Γ ` t : T Γ ` w : Equiv T A

Γ ` glue [1F 7→ t] (f t) = t : T

Γ ` b : Glue [ϕ 7→ (T,w)] A
Γ ` b = glue [ϕ 7→ b] (unglue b) : Glue [ϕ 7→ (T,w)] A

Γ, ϕ ` w : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ w t]
Γ ` unglue (glue [ϕ 7→ t] a) = a : A

Figure 4: Inference rules for glueing

It follows from these rules that if Γ ` b : Glue [ϕ 7→ (T,w)] A, then Γ, ϕ ` b : T .
In the case ϕ = (i = 0) ∨ (i = 1) the glueing operation can be illustrated as the
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dashed line in:

T0 T1

A(i0) A(i1)

f(i0) ∼ ∼ f(i1)

A

This illustrates why the operation is called glue: it glues together along a partial
equivalence the partial type T and the total type A to a total type that extends T .
Remark. In general Glue [ϕ 7→ (T,w)] A can be illustrated as:

Γ, ϕ Γ

T

A

∼
f

A

Glue [ϕ 7→ (T,w)] A
unglue

This diagram suggests that a construction similar to Glue also appears in the simpli-
cial set model. Indeed, the proof of Theorem 3.4.1 in [18] contains a similar diagram
where E1 corresponds to Glue [ϕ 7→ (T,w)] A.

Example 7. Using glueing we can construct a path from an equivalence Γ ` w :
Equiv A B by defining

Γ, i : I ` E = Glue [(i = 0) 7→ (A,w), (i = 1) 7→ (B, idB)] B

so that E(i0) = A and E(i1) = B, where idB : Equiv B B is defined as:

idB = (λx : B. x, λx : B. ((x, 1x), λu : (y : B)×Path B x y. 〈i〉 (u.2 i, 〈j〉 u.2 (i∧j))))

In Section 7 we introduce a universe of types U and we will be able to define a
function of type (A B : U)→ Equiv A B → Path U A B by:

λA B : U. λw : Equiv A B. 〈i〉 Glue [(i = 0) 7→ (A,w), (i = 1) 7→ (B, idB)] B
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6.2 Composition for glueing

We assume Γ, i : I ` B = Glue [ϕ 7→ (T,w)] A, and define the composition in B. In
order to do so, assume

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]

and define:

a = unglue b (in context Γ, ψ, i : I and of type A[ϕ 7→ w b])
a0 = unglue b0 (in context Γ and of type A(i0)[ϕ(i0) 7→ w(i0) b0, ψ 7→ a(i0)])

The following provides the algorithm for composition compi B [ψ 7→ b] b0 = b1 of
type B(i1)[ψ 7→ b(i1)].

δ = ∀i.ϕ Γ
t̃ = filli T [ψ 7→ b] b0 Γ, δ, i : I
a′1 = compi A [δ 7→ w t̃, ψ 7→ a] a0 Γ
(t1, α) = equiv w(i1) [δ 7→ t̃(i1), ψ 7→ b(i1))] a′1 Γ, ϕ(i1)
a1 = compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 Γ
b1 = glue [ϕ(i1) 7→ t1] a1 Γ

We can check that whenever Γ, i : I ` ϕ = 1F : F the definition of b1 coincides
with compi T [ψ 7→ b] b0, which is consistent with the fact that B = T in this case.

In the next section we will use the glue operation to define the composition for
the universe and to prove the univalence axiom.

7 Universe and the univalence axiom

As in [21], we now introduce a universe U à la Russell by reflecting all typing rules
and

Γ `
Γ ` U

Γ ` A : U
Γ ` A

In particular, we have Γ ` Glue [ϕ 7→ (T,w)] A : U whenever Γ ` A : U, Γ, ϕ ` T : U,
and Γ, ϕ ` w : Equiv T A.
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7.1 Composition for the universe
In order to describe the composition operation for the universe we first have to
explain how to construct an equivalence from a line in the universe. Given Γ `
A, Γ ` B, and Γ, i : I ` E, such that E(i0) = A and E(i1) = B, we will construct
equivi E : Equiv A B. In order to do this we first define

f = λx : A. transpi E x (in context Γ and of type A→ B)
g = λy : B.(transpi E(i/1− i) y)(i/1− i) (in context Γ and of type B → A)
u = λx : A.filli E [] x (in context Γ, i : I and of type A→ E)
v = λy : B.(filli E(i/1− i) [] y)(i/1− i) (in context Γ, i : I and of type B → E)

such that:

u(i0) = λx : A.x u(i1) = f v(i0) = g v(i1) = λy : B.y

We will now prove that f is an equivalence. Given y : B we see that (x :
A)× Path B y (f x) is inhabited as it contains the element (g y, 〈j〉 θ0(i1)) where

θ0 = filli E [(j = 0) 7→ v y, (j = 1) 7→ u (g y)] (g y).

Next, given an element (x, β) of (x : A) × Path B y (f x) we will construct a path
from (g y, 〈j〉 θ0(i1)) to (x, β). Let

θ1 = (filli E(i/1− i) [(j = 0) 7→ (v y)(i/1−i), (j = 1) 7→ (u x)(i/1−i)] (β j))(i/1−i)
and ω = θ1(i0) so Γ, i : I, j : I ` θ1 : E, ω(j0) = g y, and ω(j1) = x. And further
with δ defined as

compi E[(k = 0) 7→ θ0, (k = 1) 7→ θ1, (j = 0) 7→ v y, (j = 1) 7→ u ω(j/k)] ω(j/j ∧ k)

we obtain

〈k〉 (ω(j/k), 〈j〉 δ) : Path ((x : A)× Path B y (f x)) (g y, 〈j〉 θ0(i1)) (x, β)

as desired. This concludes the proof that f is an equivalence and thus also the
construction of equivi E : Equiv A B.

Using this we can now define the composition for the universe:

Γ ` compi U [ϕ 7→ E] A0 = Glue [ϕ 7→ (E(i1), equivi E(i/1− i))] A0 : U
Remark. Given Γ, i : I ` E we can also get an equivalence in Equiv A B (where
A = E(i0) and B = E(i1)) with a less direct description by

Γ ` transpi (Equiv A E) idA : Equiv A B

where idA is the identity equivalence as given in Example 7.
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7.2 The univalence axiom
Given B = Glue [ϕ 7→ (T,w)] A the map unglue : B → A extends w, in the sense
that Γ, ϕ ` unglue b = w b : A if Γ ` b : B.

Theorem 8. The map unglue : B → A is an equivalence.

Proof. By Lemma 6 it suffices to construct

b̃ : B[ψ 7→ b] α̃ : Path A u (unglue b̃)[ψ 7→ α]

given Γ, ψ ` b : B and Γ ` u : A and Γ, ψ ` α : Path A u (unglue b).
Since Γ, ϕ ` w : T → A is an equivalence and

Γ, ϕ, ψ ` b : T Γ, ϕ, ψ ` α : Path A u (f b)

we get, using Lemma 6

Γ, ϕ ` t : T [ψ 7→ b] Γ, ϕ ` β : Path A u (w t) [ψ 7→ α]

We then define ã = compi A [ϕ 7→ β i, ψ 7→ α i] u, and using this we conclude by
letting b̃ = glue [ϕ 7→ t] ã and α̃ = filli A [ϕ 7→ β i, ψ 7→ α i] u.

Corollary 9. For any type A : U the type C = (X : U)×Equiv X A is contractible.4

Proof. It is enough by Lemma 5 to show that any partial element ϕ ` (T,w) : C
is path equal to the restriction of a total element. The map unglue extends w
and is an equivalence by the previous theorem. Since any two elements of the type
isEquiv X A w.1 are path equal, this shows that any partial element of type C is path
equal to the restriction of a total element. We can then conclude by Theorem 8.

Corollary 10 (Univalence axiom). For any term

t : (A B : U)→ Path U A B → Equiv A B

the map t A B : Path U A B → Equiv A B is an equivalence.

Proof. Both (X : U)×Path U A X and (X : U)×Equiv A X are contractible. Hence
the result follows from Theorem 4.7.7 in [27].

Two alternative proofs of univalence can be found in Appendix A.
4This formulation of the univalence axiom can be found in the message of Martín Escardó in:

https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ
This is also used in the (classical) proofs of the univalence axiom, see Theorem 3.4.1 of [18] and
Proposition 2.18 of [8], where an operation similar to the glueing operation appears implicitly.
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8 Semantics
In this section we will explain the semantics of the type theory under consideration
in cubical sets. We will first review how cubical sets, as a presheaf category, yield
a model of basic type theory, and then explain the additional so-called composition
structure we have to require to interpret the full cubical type theory.

8.1 The category of cubes and cubical sets
Consider the monad dM on the category of sets associating to each set the free
de Morgan algebra on that set. The category of cubes C is the small category whose
objects are finite subsets I, J,K, . . . of a fixed, discrete, and countably infinite set,
called names, and a morphism Hom(J, I) is a map I → dM(J). Identities and
compositions are inherited from the Kleisli category of dM, i.e., the identity on I is
given by the unit I → dM(I), and composition fg ∈ Hom(K, I) of g ∈ Hom(K,J)
and f ∈ Hom(J, I) is given by µK ◦ dM(g) ◦ f where µK : dM(dM(K)) → dM(K)
denotes multiplication of dM. We will use f, g, h for morphisms in C and simply
write f : J → I for f ∈ Hom(J, I). We will often write unions with commas and
omit curly braces around finite sets of names, e.g., writing I, i, j for I ∪ {i, j} and
I − i for I − {i} etc.

If i is in I and b is 0I or 1I, we have maps (ib) in Hom(I − i, I) whose underlying
map sends j 6= i to itself and i to b. A face map is a composition of such maps. A
strict map Hom(J, I) is a map I → dM(J) which never takes the value 0I or 1I. Any
f can be uniquely written as a composition f = gh where g is a face map and h is
strict.

Definition 11. A cubical set is a presheaf on C.

Thus, a cubical set Γ is given by sets Γ(I) for each I ∈ C and maps (called
restrictions) Γ(f) : Γ(I) → Γ(J) for each f : J → I. If we write Γ(f)(ρ) = ρf
for ρ ∈ Γ(I) (leaving the Γ implicit), these maps should satisfy ρ idI = ρ and
(ρf)g = ρ(fg) for f : J → I and g : K → J .

Let us discuss some important examples of cubical sets. Using the canonical
de Morgan algebra structure of the unit interval, [0, 1], we can define a functor

C → Top, I 7→ [0, 1]I . (1)

If u is in [0, 1]I we can think of u as an environment giving values in [0, 1] to each
i ∈ I, so that iu is in [0, 1] if i ∈ I. Since [0, 1] is a de Morgan algebra, this extends
uniquely to ru for r ∈ dM(I). So any f : J → I in C induces f : [0, 1]J → [0, 1]I by
i(fu) = (if)u.
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To any topological space X we can associate its singular cubical set S(X) by
taking S(X)(I) to be the set of continuous functions [0, 1]I → X.

For a finite set of names I we get the formal cube y I where y : C → [Cop,Set]
denotes the Yoneda embedding. Note that since Top is cocomplete the functor
in (1) extends to a cocontinuous functor assigning to each cubical set its geometric
realization as a topological space, in such a way that y I has [0, 1]I as its geometric
realization.

The formal interval I induces a cubical set given by I(I) = dM(I). The face
lattice F induces a cubical set by taking as F(I) to be those ϕ ∈ F which only use
symbols in I. The restrictions along f : J → I are in both cases simply substituting
the symbols i ∈ I by f(i) ∈ dM(J).

As any presheaf category, cubical sets have a subobject classifier Ω where Ω(I) is
the set of sieves on I (i.e., subfunctors of y I). Consider the natural transformation
(· = 1): I→ Ω where for r ∈ I(I), (r = 1) is the sieve on I of all f : J → I such that
rf = 1I. The image of (· = 1) is F→ Ω, assigning to each ϕ the sieve of all f with
ϕf = 1F.

8.2 Presheaf semantics

The category of cubical sets (with morphisms being natural transformations) induce–
as does any presheaf category–a category with families (CwF) [10] where the category
of contexts and substitutions is the category of cubical sets. We will review the basic
constructions but omit verification of the required equations (see, e.g., [13, 14, 6] for
more details).

Basic presheaf semantics

As already mentioned the category of (semantic) contexts and substitutions is given
by cubical sets and their maps. In this section we will use Γ,∆ to denote cubical
sets and (semantic) substitutions by σ : ∆ → Γ, overloading previous use of the
corresponding meta-variables to emphasize their intended role.

Given a cubical set Γ, the types A in context Γ, written A ∈ Ty(Γ), are given
by sets Aρ for each I ∈ C and ρ ∈ Γ(I) together with restriction maps Aρ→ A(ρf),
u 7→ uf for f : J → I satisfying u idI = u and (uf)g = u(fg) ∈ A(ρfg) if g : K → J .
Equivalently, A ∈ Ty(Γ) are the presheaves on the category of elements of Γ. For a
type A ∈ Ty(Γ) its terms a ∈ Ter(Γ;A) are given by families of elements aρ ∈ Aρ
for each I ∈ C and ρ ∈ Γ(I) such that (aρ)f = a(ρf) for f : J → I. Note that our
notation leaves a lot implicit; e.g., we should have written A(I, ρ) for Aρ; A(I, ρ, f)
for the restriction map Aρ→ A(ρf); and a(I, ρ) for aρ.
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For A ∈ Ty(Γ) and σ : ∆→ Γ we define Aσ ∈ Ty(∆) by (Aσ)ρ = A(σρ) and the
induced restrictions. If we also have a ∈ Ter(Γ;A), we define aσ ∈ Ter(∆;Aσ) by
(aσ)ρ = a(σρ). For a type A ∈ Ty(Γ) we define the cubical set Γ.A by (Γ.A)(I) being
the set of all (ρ, u) with ρ ∈ Γ(I) and u ∈ Aρ; restrictions are given by (ρ, u)f =
(ρf, uf). The first projection yields a map p : Γ.A → Γ and the second projection
a term q ∈ Ter(Γ.A;Ap). Given σ : ∆ → Γ, A ∈ Ty(Γ), and a ∈ Ter(∆;Aσ)
we define (σ, a) : ∆ → Γ.A by (σ, a)ρ = (σρ, aρ). For u ∈ Ter(Γ;A) we define
[u] = (idΓ, u) : Γ→ Γ.A.

The basic type formers are interpreted as follows. For A ∈ Ty(Γ) and B ∈
Ty(Γ.A) define ΣΓ(A,B) ∈ Ty(Γ) by letting ΣΓ(A,B)ρ contain all pairs (u, v) where
u ∈ Aρ and v ∈ B(ρ, v); restrictions are defined as (u, v)f = (uf, vf). Given
w ∈ Ter(Γ; Σ(A,B)) we get w.1 ∈ Ter(Γ;A) and w.2 ∈ Ter(Γ;B[w.1]) by (w.1)ρ =
p(wρ) and (w.2)ρ = q(wρ) where p(u, v) = u and q(u, v) = v are the set-theoretic
projections.

Given A ∈ Ty(Γ) and B ∈ Ty(Γ.A) the dependent function space ΠΓ(A,B) ∈
Ty(Γ) is defined by letting ΠΓ(A,B)ρ for ρ ∈ Γ(I) contain all families w = (wf |
J ∈ C, f : J → I) where

wf ∈
∏

u∈A(ρf)
B(ρf, u) such that (wf u)g = wfg(ug) for u ∈ A(ρf), g : K → J.

The restriction by f : J → I of such a w is defined by (wf)g = wfg. Given
v ∈ Ter(Γ.A;B) we have λΓ;Av ∈ Ter(Γ; Π(A,B)) given by ((λv)ρ)f u = v(ρf, u).
Application app(w, u) ∈ Ter(Γ;B[u]) of w ∈ Ter(Γ; Π(A,B)) to u ∈ Ter(Γ;A) is
defined by

app(w, u)ρ = (wρ)idI (uρ) ∈ (B[u])ρ. (2)

Basic data types can be interpreted as discrete presheaves, i.e., N ∈ Ty(Γ) is
given by Nρ = N; the constants are interpreted by the lifts of the corresponding set-
theoretic operations on N. This concludes the outline of the basic CwF structure on
cubical sets.

Remark. Following Aczel [1] we will make use of that our semantic entities are actual
sets in the ambient set theory. This will allow us to interpret syntax in Section 8.3
with fewer type annotations than are usually needed for general categorical semantics
of type theory (see [25]). E.g., the definition of application app(w, u)ρ as defined
in (2) is independent of Γ, A and B, since set-theoretic application is a (class)
operation on all sets. Likewise, we don’t need annotations for first and second
projections. But note that we will need the type A for λ-abstraction for (λΓ;Av)ρ to
be a set by the replacement axiom.
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Semantic path types

Note that we can consider any cubical set X as X ′ ∈ Ty(Γ) by setting X ′ρ = X(I)
for ρ ∈ Γ(I). We will usually simply write X for X ′. In particular, for a cubical set
Γ we can form the cubical set Γ.I.

For A ∈ Ty(Γ) and u, v ∈ Ter(Γ;A) the semantic path type PathΓ
A(u, v) ∈

Ty(Γ) is given by: for ρ ∈ Γ(I), PathA(u, v)ρ consists of equivalence classes 〈i〉 w
where i /∈ I, w ∈ A(ρsi) such that w(i0) = uρ and w(i1) = vρ; two such elements
〈i〉 w and 〈j〉 w′ are equal iff w(i/j) = w′. Here si : I, i → I is induced by the
inclusion I ⊆ I, i and (i/j) setting i to j. We define (〈i〉 w)f = 〈j〉 w(f, i/j) for
f : J → I and j /∈ J . For r ∈ I(I) we set (〈i〉 w) r = w(i/r). Both operations,
name abstraction and application, lift to terms, i.e., if w ∈ Ter(Γ.I;A), then 〈 〉w ∈
Ter(Γ; PathA(w[0], w[1])) given by (〈 〉w)ρ = 〈i〉 w(ρsi) for a fresh i; also if u ∈
Ter(Γ; PathA(a, b)) and r ∈ Ter(Γ; I), then u r ∈ Ter(Γ;A) defined as (u r)ρ =
(uρ) (rρ).

Composition structure

For ϕ ∈ Ter(Γ;F) we define the cubical set Γ, ϕ by taking ρ ∈ (Γ, ϕ)(I) iff ρ ∈ Γ(I)
and ϕρ = 1F ∈ F; the restrictions are those induced by Γ. In particular, we have
Γ, 1 = Γ and Γ, 0 is the empty cubical set. (Here, 0 ∈ Ter(Γ;F) is 0ρ = 0F and
similarly for 1F.) Any σ : ∆ → Γ gives rise to a morphism ∆, ϕσ → Γ, ϕ which we
also will denote by σ.

If A ∈ Ty(Γ) and ϕ ∈ Ter(Γ;F), we define a partial element of A ∈ Ty(Γ) of
extent ϕ to be an element of Ter(Γ, ϕ;Aιϕ) where ιϕ : Γ, ϕ ↪→ Γ is the inclusion. So,
such a partial element u is given by a family of elements uρ ∈ Aρ for each ρ ∈ Γ(I)
such that ϕρ = 1, satisfying (uρ)f = u(ρf) whenever f : J → I. Each u ∈ Ter(Γ;A)
gives rise to the partial element uι ∈ Ter(Γ, ϕ;Aι); a partial element is extensible if
it is induced by such an element of Ter(Γ;A).

For the next definition note that if A ∈ Ty(Γ), then ρ ∈ Γ(I) corresponds
to ρ : y I → Γ and thus Aρ ∈ Ty(y I); also, any ϕ ∈ F(I) corresponds to ϕ ∈
Ter(y I;F).

Definition 12. A composition structure for A ∈ Ty(Γ) is given by the following
operations. For each I, i /∈ I, ρ ∈ Γ(I, i), ϕ ∈ F(I), u a partial element of Aρ of
extent ϕ, and a0 ∈ Aρ(i0) with a0f = u(i0)f for all f : J → I with ϕf = 1F (i.e.,
a0ιϕ = u(i0) if a0 is considered as element of Ter(y I;Aρ(i0))), we require

comp(I, i, ρ, ϕ, u, a0) ∈ Aρ(i1)
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such that for any f : J → I and j /∈ J ,

(comp(I, i, ρ, ϕ, u, a0))f = comp(J, j, ρ(f, i = j), ϕf, u(f, i = j), a0f),

and comp(I, i, ρ, 1F, u, a0) = u(i1).

A type A ∈ Ty(Γ) together with a composition structure comp on A is called a
fibrant type, written (A, comp) ∈ FTy(Γ). We will usually simply write A ∈ FTy(Γ)
and compA for its composition structure. But observe that A ∈ Ty(Γ) can have
different composition structures. Call a cubical set Γ fibrant if it is a fibrant type
when Γ considered as type Γ ∈ Ty(>) is fibrant where > is a terminal cubical set.
A prime example of a fibrant cubical set is the singular cubical set of a topological
space (see Appendix B).

Theorem 13. The CwF on cubical sets supporting dependent products, dependent
sums, and natural numbers described above can be extended to fibrant types.

Proof. For example, if A ∈ FTy(Γ) and σ : ∆→ Γ, we set

compAσ(I, i, ρ, ϕ, u, a0) = compA(I, i, σρ, ϕ, u, a0)

as the composition structure on Aσ in FTy(∆). Type formers are treated analo-
gously to their syntactic counterpart given in Section 4. Note that one also has
to check that all equations between types are also preserved by their associated
composition structures.

Note that we can also, like in the syntax, define a composition structure on
PathA(u, v) given that A has one.

Semantic glueing

Next we will give a semantic counterpart to the Glue construction. To define the
semantic glueing as an element of Ty(Γ) it is not necessary that the given types have
composition structures or that the functions are equivalences; this is only needed
later to give the composition structure. Assume ϕ ∈ Ter(Γ;F), T ∈ Ty(Γ, ϕ),
A ∈ Ty(Γ), and w ∈ Ter(Γ, ϕ;T → Aι) (where A→ B is Π(A,Bp)).

Definition 14. The semantic glueing GlueΓ(ϕ, T,A,w) ∈ Ty(Γ) is defined as fol-
lows. For ρ ∈ Γ(I), we let u ∈ Glue(ϕ, T,A,w)ρ iff either

• u ∈ Tρ and ϕρ = 1F; or

3151



Cohen, Coquand, Huber, and Mörtberg

• u = glue(ϕρ, t, a) and ϕρ 6= 1F, with t ∈ Ter(y I, ϕρ;Tρ) and a ∈ Ter(y I;Aρ)
such that app(wρ, t) = aι ∈ Ter(y I, ϕρ;Aρι).

For f : J → I we define the restriction uf of u ∈ Glue(ϕ, T,A,w) to be given by the
restriction of Tρ in the first case; in the second case, i.e., if ϕρ 6= 1F, we let uf =
glue(ϕρ, t, a)f = tf ∈ Tρf in case ϕρf = 1F, and otherwise uf = glue(ϕρf, tf, af).

Here glue was defined as a constructor; we extend glue to any t ∈ Ter(y I;Tρ),
a ∈ Ter(y I;Aρ) such that app(wρ, t) = a (so if ϕρ = 1F) by glue(1F, t, a) = tidI .
This way any element of Glue(ϕ, T,A,w)ρ is of the form glue(ϕρ, t, a) for suitable
t and a, and restriction is given by (glue(ϕρ, t, a))f = glue(ϕρf, tf, af). Note that
we get

GlueΓ(1F, T, A,w) = T and (GlueΓ(ϕ, T,A,w))σ = Glue∆(ϕσ, Tσ,Aσ,wσ) (3)

for σ : ∆→ Γ. We define unglue(ϕ,w) ∈ Ter(Γ. Glue(ϕ, T,A,w);Ap) by

unglue(ϕ,w)(ρ, t) = app(wρ, t)idI ∈ Aρ whenever ϕρ = 1F, and
unglue(ϕ,w)(ρ, glue(ϕ, t, a)) = a otherwise,

where ρ ∈ Γ(I).
Definition 15. For A,B ∈ Ty(Γ) and w ∈ Ter(Γ;A→ B) an equivalence structure
for w is given by the following operations such that for each
• ρ ∈ Γ(I),

• ϕ ∈ F(I),

• b ∈ Bρ, and
• partial elements a of Aρ and ω of PathB(app(wρ, a), bι)ρ with extent ϕ,

we are given e0(ρ, ϕ, b, a, ω) ∈ Aρ, and a path e1(ρ, ϕ, b, a, ω) between

app(wρ, e0(ρ, ϕ, b, a, ω))

and b such that e0(ρ, ϕ, b, a, ω)ι = a, e1(ρ, ϕ, b, a, ω)ι = ω (where ι : y I, ϕ → y I)
and for any f : J → I and ν = 0, 1:

(eν(ρ, ϕ, b, a, ω))f = eν(ρf, ϕf, bf, af, ωf).

Following the argument in the syntax we can use the equivalence structure to
explain a composition for Glue.
Theorem 16. If A ∈ FTy(Γ), T ∈ FTy(Γ, ϕ), and we have an equivalence struc-
ture for w, then we have a composition structure for Glue(ϕ, T,A,w) such that the
equations (3) also hold for the respective composition structures.
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Semantic universes

Assuming a Grothendieck universe of small sets in our ambient set theory, we can
define A ∈ Ty0(Γ) iff all Aρ are small for ρ ∈ Γ(I); and A ∈ FTy0(Γ) iff A ∈ Ty0(Γ)
when forgetting the composition structure of A.

Definition 17. The semantic universe U is the cubical set defined by U(I) =
FTy0(y I); restriction along f : J → I is simply substitution along y f .

We can consider U as an element of Ty(Γ). As such we can, as in the syntactic
counterpart, define a composition structure on U using semantic glueing, so that
U ∈ FTy(Γ). Note that semantic glueing preserves smallness.

For T ∈ Ter(Γ; U) we can define decoding ElT ∈ FTy0(Γ) by (ElT )ρ = (Tρ) idI
and likewise for the composition structure. For A ∈ FTy0(Γ) we get its code pAq ∈
Ter(Γ; U) by setting pAqρ ∈ FTy0(y I) to be given by the sets (pAqρ)f = A(ρf)
and likewise for restrictions and composition structure. These operations satisfy
ElpAq = A and pElTq = T .

8.3 Interpretation of the syntax

Following [25] we define a partial interpretation function from raw syntax to the
CwF with fibrant types given in the previous section.

To interpret the universe rules à la Russell we assume two Grothendieck universes
in the underlying set theory, say tiny and small sets. So that any tiny set is small,
and the set of tiny sets is small. For a cubical setX we define FTy0(X) and FTy1(X)
as in the previous section, now referring to tiny and small sets, respectively. We get
semantic universes Ui(I) = FTyi(y I) for i = 0, 1; we identify those with their lifts
to types. As noted above, these lifts carry a composition structure, and thus are
fibrant. We also have U0 ⊆ U1 and thus Ter(X; U0) ⊆ Ter(X; U1). Note that coding
and decoding are, as set-theoretic operations, the same for both universes. We get
that pU0q ∈ Ter(X; U1) which will serve as the interpretation of U.

In what follows, we define a partial interpretation function of raw syntax: [[Γ]],
[[Γ; t]], and [[∆;σ]] by recursion on the raw syntax. Since we want to interpret a
universe à la Russell we cannot assume terms and types to have different syntactic
categories. The definition is given below and should be read such that the inter-
pretation is defined whenever all interpretations on the right-hand sides are defined
and make sense; so, e.g., for [[Γ]].El [[Γ;A]] below, we require that [[Γ]] is defined and
a cubical set, [[Γ;A]] is defined, and El [[Γ;A]] ∈ FTy([[Γ]]). The interpretation for raw
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contexts is given by:

[[()]] = > [[Γ, x : A]] = [[Γ]].El [[Γ;A]] if x /∈ dom(Γ)
[[Γ, ϕ]] = [[Γ]], [[Γ;ϕ]] [[Γ, i : I]] = [[Γ]].I if i /∈ dom(Γ)

where> is a terminal cubical set and in the last equation I is considered as an element
of Ty([[Γ]]). When defining [[Γ; t]] we require that [[Γ]] is defined and a cubical set;
then [[Γ; t]] is a (partial) family of sets [[Γ; t]](I, ρ) for I ∈ C and ρ ∈ [[Γ]](I) (leaving
I implicit in the definition). We define:

[[Γ; U]] = pU0q ∈ Ter([[Γ]]; U1)
[[Γ; N]] = pNq ∈ Ter([[Γ]]; U0)

[[Γ; (x : A)→ B]] = pΠ[[Γ]](El [[Γ;A]],El [[Γ, x : A;B]])q
[[Γ; (x : A)×B]] = pΣ[[Γ]](El [[Γ;A]],El [[Γ, x : A;B]])q
[[Γ; Path A a b]] = pPath[[Γ]]

El [[Γ;A]]([[Γ; a]], [[Γ; b]])q
[[Γ; Glue [ϕ 7→ (T,w)] A]] = pGlue[[Γ]]([[Γ;ϕ]],El [[Γ, ϕ;T ]],El [[Γ;A]], [[Γ, ϕ;w]])q

[[Γ;λx : A.t]] = λ[[Γ]];El [[Γ;A]]([[Γ, x : A; t]])
[[Γ; t u]] = app([[Γ; t]], [[Γ;u]])

[[Γ; 〈i〉 t]] = 〈 〉[[Γ]][[Γ, i : I; t]]
[[Γ; t r]] = [[Γ; t]][[Γ; r]]

where for path application, juxtaposition on the right-hand side is semantic path
application. In the case of a bound variable, we assume that x (respectively i)
is a chosen variable fresh for Γ; if this is not possible the expression is undefined.
Moreover, all type formers should be read as those on fibrant types, i.e., also defining
the composition structure. In the case of Glue, it is understood that the function
part, i.e., the fourth argument of Glue in Definition 14 is p◦[[Γ, ϕ;w]] and the required
(by Theorem 16) equivalence structure is to be extracted from q ◦ [[Γ, ϕ;w]] as in
Section 5.2. In virtue of the remark in Section 8.2 we don’t need type annotations
to interpret applications. Note that coding and decoding tacitly refer to [[Γ]] as well.
For the rest of the raw terms we also assume we are given ρ ∈ [[Γ]](I). Variables are
interpreted by:

[[Γ, x : A;x]]ρ = q(ρ) [[Γ, x : A; y]]ρ = [[Γ; y]](p(ρ)) [[Γ, ϕ; y]]ρ = [[Γ; y]]ρ

These should also be read to include the case when x or y are name variables; if x
is a name variable, we require A to be I. The interpretations of [[Γ; r]]ρ where r is
not a name and [[Γ;ϕ]]ρ follow inductively as elements of I and F, respectively.
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Constants for dependent sums are interpreted by:

[[Γ; (t, u)]]ρ = ([[Γ; t]]ρ, [[Γ;u]]ρ) [[Γ; t.1]]ρ = p([[Γ; t]]ρ) [[Γ; t.2]]ρ = q([[Γ; t]]ρ)

Likewise, constants for N will be interpreted by their semantic analogues (omitted).
The interpretations for the constants related to glueing are

[[Γ; glue [ϕ 7→ t]u]]ρ = glue([[Γ;ϕ]]ρ, [[Γ, ϕ; t]]ρ̂, [[Γ;u]]ρ)
[[Γ; unglue [ϕ 7→ w]u]]ρ = unglue([[Γ;ϕ]], p ◦ [[Γ;w]])(ρ, [[Γ;u]]ρ)

where [[Γ, ϕ; t]]ρ̂ is the family assigning [[Γ, ϕ; t]](ρf) to J ∈ C and f : J → I (and ρf
refers to the restriction given by [[Γ]] which is assumed to be a cubical set). Partial
elements are interpreted by

[[Γ; [ ϕ1 u1, . . . , ϕn un ]]]ρ = [[Γ, ϕi;ui]]ρ if [[Γ;ϕi]]ρ = 1F,

where for this to be defined we additionally assume that all [[Γ, ϕi;ui]] are defined
and [[Γ, ϕi;ui]]ρ′ = [[Γ, ϕj ;uj ]]ρ′ for each ρ′ ∈ [[Γ]](I) with [[Γ;ϕi ∧ ϕj ]]ρ′ = 1F.

Finally, the interpretation of composition is given by

[[Γ; compi A [ϕ 7→ u] a0]]ρ = compEl [[Γ,i:I;A]](I, j, ρ′, [[Γ;ϕ]]ρ, [[Γ, ϕ, i : I;u]]ρ′, [[Γ; a0]]ρ)

if i /∈ dom(Γ), and where j is fresh and ρ′ = (ρsj , i = j) with sj : I, j → I induced
from the inclusion I ⊆ I, j.

The interpretation of substitutions [[∆;σ]] is a (partial) family of sets [[∆;σ]](I, ρ)
for I ∈ C and ρ ∈ [[∆]](I). We set

[[∆; ()]]ρ = ∗, [[∆; (σ, x/t)]]ρ = ([[∆;σ]]ρ, [[∆; t]]ρ) if x /∈ dom(σ),

where ∗ is the unique element of >(I). This concludes the definition of the inter-
pretation of syntax.

In the following α stands for either a raw term or raw substitution. In the latter
case, ασ denotes composition of substitutions.

Lemma 18. Let Γ′ be like Γ but with some ϕ’s inserted, and assume both [[Γ]] and
[[Γ′]] are defined; then:

1. [[Γ′]] is a sub-cubical set of [[Γ]];

2. if [[Γ;α]] is defined, then so is [[Γ′;α]] and they agree on [[Γ′]].

Lemma 19 (Weakening). Let [[Γ]] be defined.
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1. If [[Γ, x : A,∆]] is defined, then so is [[Γ, x : A,∆;x]] which is moreover the
projection to the x-part.5

2. If [[Γ,∆]] is defined, then so is [[Γ,∆; idΓ]] which is moreover the projection to
the Γ-part.

3. If [[Γ,∆]], [[Γ;α]] are defined and the variables in ∆ are fresh for α, then
[[Γ,∆;α]] is defined and for ρ ∈ [[Γ,∆]](I):

[[Γ;α]]([[Γ,∆; idΓ]]ρ) = [[Γ,∆;α]]ρ

Lemma 20 (Substitution). For [[Γ]],[[∆]], [[∆;σ]], and [[Γ;α]] defined with dom(Γ) =
dom(σ) (as lists), also [[∆;ασ]] is defined and for ρ ∈ [[∆]](I):

[[Γ;α]]([[∆;σ]]ρ) = [[∆;ασ]]ρ

Lemma 21. If [[Γ]] is defined and a cubical set, and [[Γ;α]] is defined, then

([[Γ;α]]ρ)f = [[Γ;α]](ρf)

To state the next theorem let us set [[Γ; I]] = pIq and [[Γ;F]] = pFq as elements
of Ty0([[Γ]]).

Theorem 22 (Soundness). We have the following implications, and all occurrences
of [[−]] in the conclusions are defined. In (3) and (5) we allow A to be I or F.

1. if Γ ` , then [[Γ]] is a cubical set;

2. if Γ ` A, then [[Γ;A]] ∈ Ter([[Γ]]; U1);

3. if Γ ` t : A, then [[Γ; t]] ∈ Ter([[Γ]]; El [[Γ;A]]);

4. if Γ ` A = B, then [[Γ;A]] = [[Γ;B]];

5. if Γ ` a = b : A, then [[Γ; a]] = [[Γ; b]];

6. if Γ ` σ : ∆, then [[Γ;σ]] restricts to a natural transformation [[Γ]]→ [[∆]].

9 Extensions: identity types and higher inductive types
In this section we consider possible extensions to cubical type theory. The first is
an identity type defined using path types whose elimination principle holds as a
judgmental equality. The second are two examples of higher inductive types.

5E.g., if Γ is y : B, z : C, the projection to the x-part maps (b, (c, (a, δ))) to a, and the projection
to the Γ-part maps (b, (c, δ)) to (b, c).
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9.1 Identity types
We can use the path type to represent equalities. Using the composition oper-
ation, we can indeed build a substitution function P (a) → P (b) from any path
between a and b. However, since we don’t have in general the judgmental equality
transpi A a0 = a0 if A is independent of i (which is an equality that we cannot ex-
pect geometrically in general, as shown in Appendix B), this substitution function
does not need to be the constant function when the path is constant. This means
that, as in the previous model [6, 14], we don’t get an interpretation of Martin-Löf
identity type [20] with the standard judgmental equalities.

However, we can define another type which does give an interpretation of this
identity type following an idea of Andrew Swan.

Identity types

The basic idea of Id A a0 a1 is to define it in terms of Path A a0 a1 but also
mark the paths where they are known to be constant. Formally, the formation and
introduction rules are

Γ ` A Γ ` a0 : A Γ ` a1 : A
Γ ` Id A a0 a1

Γ ` ω : Path A a0 a1[ϕ 7→ 〈i〉 a0]
Γ ` (ω, ϕ) : Id A a0 a1

and we can define r a = (1a, 1F) : Id A a a for a : A. The elimination rule, given
Γ ` a : A, is

Γ, x : A,α : Id A a x ` C
Γ ` d : C(x/a, α/ r a) Γ ` b : A Γ ` β : Id A a b

Γ ` Jx,α.C d b β : C(x/b, α/β)

together with the following judgmental equality in case β is of the form (ω, ϕ)

J d b β = compi C(x/ω i, α/β∗(i)) [ϕ 7→ d] d

where Γ, i : I ` β∗(i) : Id A a (ω i) is given by

β∗(i) = (〈j〉 ω (i ∧ j), ϕ ∨ (i = 0)).

Note that with this definition we get J d a (r a) = d as desired.
The composition operation for Id is explained as follows. Given Γ, i : I `

Id A a0 a1, Γ, ϕ, i : I ` (ω, ψ) : Id A a0 a1, and Γ ` (ω0, ψ0) : (Id A a0 a1)(i0)[ϕ 7→
(ω(i0), ψ(i0))] we have the judgmental equality

compi (Id A a0 a1)[ϕ 7→ (ω, ψ)](ω0, ψ0) = (compi (Path A a0 a1)[ϕ 7→ ω]ω0, ϕ∧ψ(i1))
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It can then be shown that the types Id A a b and Path A a b are (Path)-equivalent.
In particular, a type is (Path)-contractible if, and only if, it is (Id)-contractible. The
univalence axiom, proved in Section 7.2 for the Path-type, hence holds as well for
the Id-type.6

Cofibration-trivial fibration factorization

The same idea can be used to factorize an arbitrary map of (not necessary fibrant)
cubical sets f : A→ B into a cofibration followed by a trivial fibration. We define a
“trivial fibration” to be a first projection from a total space of a contractible family
of types and a “cofibration” to be a map that has the left lifting property against
any trivial fibration. For this we define, for b : B, the type Tf (b) to be the type of
elements [ϕ 7→ a] with ϕ ` a : A and ϕ ` f a = b : B.

Theorem 23. The type Tf (b) is contractible and the map

A→ (b : B)× Tf (b), a 7−→ (f a, [1F 7→ a])

is a cofibration.

The definition of the identity type can be seen as a special case of this, if we take
the B the type of paths in A and for f the constant path function.

9.2 Higher inductive types
In this section we consider the extension of cubical type theory with two different
higher inductive types: spheres and propositional truncation. The presentation in
this section is syntactical, but it can be directly translated into semantic definitions.

Extension to dependent path types

In order to formulate the elimination rules for higher inductive types, we need to
extend the path type to dependent path type, which is described by the following
rules. If i : I ` A and ` a0 : A(i0), a1 : A(i1), then ` Pathi A a0 a1. The
introduction rule is that ` 〈i〉 t : Pathi A t(i0) t(i1) if i : I ` t : A. The elimination
rule is ` p r : A(i/r) if ` p : Pathi A a0 a1 with equalities p 0 = a0 : A(i0) and
p 1 = a1 : A(i1).

6This has been formally verified using the Haskell implementation:
https://github.com/mortberg/cubicaltt/blob/v1.0/examples/idtypes.ctt
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Spheres, syntactical presentation
We define the circle S1 by the rules

Γ `
Γ ` S1

Γ `
Γ ` base : S1

Γ ` r : I
Γ ` loop r : S1

with the equalities loop 0 = loop 1 = base.
Since we want to represent the “free” type with one base point and a loop, we

add composition as a constructor operation hcompi (which binnds i in u)

Γ, ϕ, i : I ` u : S1 Γ ` u0 : S1[ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : S1[ϕ 7→ u(i1)]

Given a dependent type x : S1 ` A and a : A(x/base) and l : Pathi A(x/loop i) a a
we can define a function g : Π(x : S1)A by the equations7

g base = a g (loop r) = l r

This definition is non ambiguous since l 0 = l 1 = a and we get judgmental compu-
tation rules. Finally

g (hcompi [ϕ 7→ u] u0) = compi A(x/v) [ϕ 7→ g u] (g u0)

where v = filli S1 [ϕ 7→ u] u0 = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.

We have a similar definition for Sn taking as constructors base and loop r1 . . . rn.

Spheres, semantical presentation
We suppose to have a fresh name function on the set of names, with fresh(I) being
a name not in I, and we write I+ = I, fresh(I). We can define in a functorial way
f+ : J+ → I+ extending f : J → I by sending fresh(I) to fresh(J). We also have for
natural transformations the projection p : I+ → I and the map e0 : I → I+ (resp.
e1 : I → I+) sending fresh(I) to 0 (resp. 1).

We define first a family of sets X(I) which is an “upper approximation” of the
circle, together with maps X(I)→ X(J), v 7→ vf for f : J → I. An element of X(I)
is of the form base or loop r with r 6= 0, 1 in I(I) or of the form hcomp [ψ 7→ u] u0
with ψ 6= 1 in F(I) and u0 in X(I) and u a family of elements uf in X(J+) for

7For the equation g (loop r) = l r, it may be that l and r are dependent on the same name i,
and this could not work without a diagonal operation on names.
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f : J → I such that ψf = 1. In this way an element of X(I) can be seen as a well-
founded tree. We can define uf in X(J) for f : J → I by induction on u. We take
base f = base and (loop r)f = loop (rf) if rf 6= 0, 1 and (loop r)f = base if rf is 0
or 1. Finally (hcomp [ψ 7→ u] u0)f is ufe1 if ψf = 1 and hcomp [ψf 7→ uf+] (u0f)
if ψf 6= 1 where uf+ is the family (uf+)g = ufg for g : K → J .

We then define the subset S1(I) ⊆ X(I) by taking the elements base and loop r
and hcomp [ψ 7→ u] u0 such that u0 in S1(I) and each uf in S1(J+) and u0f = ufe0
and ufg+ = ufg for f : J → I and g : K → J . This defines a cubical set S1, such
that S1(I) is a subset of X(I) for each I.

Propositional truncation, syntactical presentation
We define the propositional truncation ‖A‖ of a type A by the rules:

Γ ` A
Γ ` ‖A‖

Γ ` a : A
Γ ` inc a : ‖A‖

Γ ` u0 : ‖A‖ Γ ` u1 : ‖A‖ Γ ` r : I
Γ ` squash u0 u1 r : ‖A‖

with the equalities squash u0 u1 0 = u0 and squash u0 u1 1 = u1.
As before, we add composition as a constructor, but only in the form8

Γ ` A Γ, ϕ, i : I ` u : ‖A‖ Γ ` u0 : ‖A‖ [ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : ‖A‖ [ϕ 7→ u(i1)]

This only provides a composition operation compi ‖A‖ [ϕ 7→ u] u0 in the case
where A is independent of i, and we have to explain how to define the general case.

Given x : ‖A‖ ` B and

q : Π(x0 : ‖A‖)(y0 : B(x0))(x1 : ‖A‖)(y1 : B(x1))Pathi B(squash x0 x1 i) y0 y1

and f : Π(x : A)B(inc x) we define g : Π(x : ‖A‖)B by the equations

g (inc a) = f a
g (squash u0 u1 r) = q u0 (g u0) u1 (g u1) r
g (hcompi [ϕ 7→ u] u0) = compi B(v) [ϕ 7→ g u] (g u0)

where v = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.

8The restriction of A being independent of i on the constructor is essential for the justification
of the elimination rule, as explained in the Comments at the end.
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We still have to define the general composition operation. We first define an
operation of flattening an open box

Γ, i : I ` A Γ ` r : I Γ ` u : ‖A(i/r)‖
Γ ` forwardi.A r u : ‖A(i/1)‖ [(r = 1) 7→ u]

by the equations

forward r (inc a) = inc (compi A(i ∨ r) [(r = 1) 7→ a] a)
forward r (squash u0 u1 s) = squash (forward r u0) (forward r u1) s
forward r (hcompj [ϕ 7→ u] u0) = hcompj [ϕ 7→ forward r u] (forward r u0)

Using this operation, we can define a general composition operation9

Γ, i : I ` A Γ, ϕ, i : I ` u : ‖A‖ Γ ` u0 : ‖A(i0)‖ [ϕ 7→ u(i0)]
Γ ` compi ‖A‖ [ϕ 7→ u] u0 : ‖A(i1)‖ [ϕ 7→ u(i1)]

by Γ ` compi ‖A‖ [ϕ 7→ u] u0 = hcompi [ϕ 7→ forward i u] (forward 0 u0) : ‖A(i1)‖.

Propositional truncation, semantical presentation
Given A in FTy(Γ) we define ‖A‖ in FTy(Γ). For this, we define first an “upper
approximation” given by a family of sets Xρ for ρ in Γ(I) and maps Xρ→ Xρf for
f : J → I. An element of Xρ is of the form inc a with a in Aρ or squash u0 u1 r with
r 6= 0, 1 in I(I) and u0 in Xρ and u1 in Xρ or of the form hcomp [ψ 7→ u] u0 with
ψ 6= 1 in F(I) and u0 in Xρ and u a family of elements uf in X(ρfp) for f : J → I
such that ψf = 1. Each element in Xρ can be seen as a well-founded tree.

We can then define uf in Xρf for u in Xρ and f : J → I by induction on u.
Then ‖A‖ ρ is defined to be the subset of Xρ of elements inc a or squash u0 u1 r

with u0 and u1 in ‖A‖ ρ and hcomp [ψ 7→ u] u0 with u0 in ‖A‖ ρ and ufe0 = u0f
and each uf in ‖A‖ (ρfp) and ufg+ = ufg for g : J → K.

It is then possible to define a composition structure for ‖A‖ if we have a com-
position structure for A exactly as it is done syntactically.

Comments
Universes

This operation is stable under substitution: if σ : ∆ → Γ and A is in FTy(Γ) then
‖A‖σ = ‖Aσ‖ . Also each ‖A‖ ρ is small if each Aρ is a small set. This means that

9The open box is given by ϕ 7→ u and u0 and it is flattened in the ‖A(i/1)‖ type by the forward
operation.
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the univalent universe that we have defined previously is stable by propositional
truncation.

We expect that the same method of defining a composition by “flattening an open
box” can be used to define other higher inductive types (suspension, push-out, . . . ).
It avoids coherence issues, and an application is that the addition of higher inductive
types and univalence to type theory does not raise its proof-theoretic power. Indeed,
all we do can be modelled in Aczel’s system CZFu<ω, which is interpretable in type
theory with universes.

Flattening open boxes

One key step is the restriction of the constructor to the form

Γ ` T Γ, ϕ, i : I ` u : ‖T‖ Γ ` u0 : ‖T‖ [ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : ‖T‖ [ϕ 7→ u(i1)]

instead of representing directly composition as a constructor (which is what we tried
first to implement)

Γ, i : I ` T Γ, ϕ, i : I ` u : ‖T‖ Γ ` u0 : ‖T (i/0)‖ [ϕ 7→ u(i0)]
Γ ` compi [ϕ 7→ u] u0 : ‖T (i/1)‖ [ϕ 7→ u(i1)]

Indeed, with this later choice, it does not seem possible to define even a non-
dependent function g : ‖A‖ → B given f : A → B and q : Π(x y : B)B. We
can define g (inc a) = f a and g (squash u0 u1 r) = q (g u0) (g u1) r but it is not
clear how to define g (hcompi [ϕ 7→ u] u0) since we only know at this point that we
have some path i : I ` T such that A = T (i/1) and u0 : T (i/0) and there is no way
to apply an induction for defining g (compi [ϕ 7→ u] u0).

Inductive definition

We have used a generalized inductive definition in the definition of S1(I). Actually,
it is possible to see each element of S1(I) as a finite object, since a partial element
u of extent ψ, which is a family uf in S1(J) for each f : J → I such that ψf = 1,
is actually completely determined by the finite set of elements uf where f is a face
map (J is a subset of I and f(i) can only take the value i or 0 or 1).

10 Related and future work
Cubical ideas have proved useful to reason about equality in homotopy type the-
ory [19]. In cubical type theory these techniques could be simplified as there are
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new judgmental equalities and better notations for manipulating higher dimensional
cubes. Indeed some simple experiments using the Haskell implementation have
shown that we can simplify some constructions in synthetic homotopy theory.10

Other approaches to extending intensional type theory with extensionality prin-
ciples can be found in [2, 24]. These approaches have close connections to techniques
for internalizing parametricity in type theory [5]. Further, nominal extensions to λ-
calculus and semantical ideas related to the ones presented in this paper have recently
also proved useful for justifying type theory with internalized parametricity [4].

The paper [12] provides a general framework for analyzing the uniformity con-
dition, which applies to simplicial and cubical sets.

Large parts of the semantics presented in this paper have been formally verified
in NuPrl by Mark Bickford11, in particular, the definition of Kan filling in terms of
composition as in Section 4.4 and composition for glueing as given in Section 6.2
and composition for the universe as in Section 7.1.

Following the usual reducibility method, we expect it to be possible to adapt our
presheaf semantics to a proof of normalization and decidability of type checking. A
first step in this direction is the proof of canonicity in [15]. We end the paper with
a list of open problems and conjectures:

1. Extend the semantics of identity types to the semantics of inductive families.

2. Give a general syntax and semantics of higher inductive types.

3. Extend the system with resizing rules and show normalization.

4. Is there a model where Path and Id coincide?

Acknowledgements This work originates from discussions between the four
authors around an implementation of a type system corresponding to the model
described in [6]. This implementation indicated a problem with the representation
of higher inductive types, e.g., the elimination rule for the circle, and suggested
the need of extending this cubical model with a diagonal operation. The general
framework (uniformity condition, connections, semantics of spheres and proposi-
tional truncation) is due to the second author. In particular, the glueing operation
with its composition was introduced as a generalization of the operation described
in [6] transforming an equivalence into a path, and with the condition A = Glue [] A.
In a first attempt, we tried to force “regularity”, i.e., the equation transp i A a0 = a0

10For details see: https://github.com/mortberg/cubicaltt/tree/master/examples/
11For details see: http://www.nuprl.org/wip/Mathematics/cubical!type!theory/
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if A is independent of i (which seemed to be necessary in order to get filling from
compositions, and which implies Path = Id). There was a problem however for get-
ting regularity for the universe, that was discovered by Dan Licata (from discussions
with Carlo Angiuli and Bob Harper). Thanks to this discovery, it was realized that
regularity is actually not needed for the model to work. In particular, the second
author adapted the definition of filling from composition as in Section 4.4, the third
author noticed that we can remove the condition A = Glue [] A, and together with
the last author, they derived the univalence axiom from the glueing operation as
presented in the appendix. This was surprising since glueing was introduced a priori
only as a way to transform equivalences into paths, but was later explained by a
remark of Dan Licata (also presented in the appendix: we get univalence as soon as
the transport map associated to this path is path equal to the given equivalence).
The second author introduced then the restriction operation Γ, ϕ on contexts, which,
as noticed by Christian Sattler, can be seen as an explicit syntax for the notion of
cofibration, and designed the other proof of univalence in Section 7.2 from discus-
sions between Nicola Gambino, Peter LeFanu Lumsdaine and the third author. Not
having regularity, the type of paths is not the same as the Id type but, as explained
in Section 9.1, we can recover the usual identity type from the path type, following
an idea of Andrew Swan. This version incorporates also an important simplification
for the composition of propositional truncation, due to the third author.

The authors would like to thank the referees and Martín Escardó, Georges
Gonthier, Dan Grayson, Peter Hancock, Dan Licata, Peter LeFanu Lumsdaine,
Christian Sattler, Andrew Swan, Vladimir Voevodsky for many interesting discus-
sions and remarks.
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A Univalence from glueing
We also give two alternative proofs of the univalence axiom for Path only involving
the glue construction.12 The first is a direct proof of the standard formulation of
the univalence axiom while the second goes through an alternative formulation as
in Corollary 9.13

Lemma 24. For Γ ` A : U, Γ ` B : U, and an equivalence Γ ` w : Equiv A B we
have the following constructions:

1. Γ ` eqToPathw : Path UAB;

2. Γ ` Path (A→ B) (transpi(eqToPathw i)))w.1 is inhabited; and
12The proofs of the univalence axiom have all been formally verified inside the system using the

Haskell implementation. We note that the proof of Theorem 8 can be given such that it extends
w.2 and hence in Corollary 9 we do not need the fact that isEquiv X A w.1 is a proposition. For
details see: https://github.com/mortberg/cubicaltt/blob/v1.0/examples/univalence.ctt

13The second of these proofs is inspired by a proof by Dan Licata from:
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
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3. if w = equivi(P i) for Γ ` P : Path UAB, then the following type is inhabited:

Γ ` Path (Path UAB) (eqToPath (equivi(P i)))P

Proof. For (1) we define

eqToPathw = 〈i〉 Glue [(i = 0) 7→ (A,w), (i = 1) 7→ (B, equivkB)]B. (4)

Note that here equivkB is an equivalence between B and B (see Section 7.1). For (2)
we have to closely look at how the composition was defined for Glue. By unfolding the
definition, we see that the left-hand side of the equality is equal w.1 composed with
multiple transports in a constant type; using filling and functional extensionality,
these transports can be shown to be equal to the identity; for details see the formal
proof.

The term for (3) is given by:

〈j〉 〈i〉 Glue [(i = 0) 7→ (A, equivk(P k)),
(i = 1) 7→ (B, equivkB),
(j = 1) 7→ (P i, equivk(P (i ∨ k)))]
B

Corollary 25 (Univalence axiom). For the canonical map

pathToEq : (AB : U)→ Path UAB → Equiv A B

we have that pathToEqAB is an equivalence for all A : U and B : U.

Proof 1. Let us first show that the canonical map pathToEq is path equal to:

equiv = λAB : U. λP : Path UAB. equivi(P i)

By function extensionality, it suffices to check this pointwise. Using path-induction,
we may assume that P is reflexivity. In this case pathToEqAA 1A is the identity
equivalence by definition. Because being an equivalence is a proposition, it thus
suffices that the first component of equiviA is propositionally equal to the identity.
By definition, this first component is given by transport (now in the constant type
A) which is easily seen to be the identity using filling (see Section 4.4).

Thus it suffices to prove that equivAB is an equivalence. To do so it is enough
to give an inverse (see Theorems 4.2.3 and 4.2.6 of [27]). But eqToPath is a left
inverse by Lemma 24 (3), and a right inverse by Lemma 24 (2) using that being an
equivalence is a proposition.
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Proof 2. Points (1) and (2) of Lemma 24 imply that Equiv A B is a retract of
Path UAB. Hence (X : U) × Equiv A X is a retract of (X : U) × Path UAX. But
(X : U)× Path UAX is contractible, so (X : U)× Equiv A X is also contractible as
a retract of a contractible type. As discussed in Section 7.2 this is an alternative
formulation of the univalence axiom and the rest of this proof follows as there.

Note that the first proof uses all three of the points of Lemma 24 while the
second proof only uses the first two. As the second proof only uses the first two
points it is possible to prove it if point (1) is defined as in Example 7 leading to a
slightly simpler proof of point (2).

B Singular cubical sets
Recall the functor C → Top, I 7→ [0, 1]I given at (1) in Section 8.1. In particular, the
face maps (ib) : I − i→ I (for b = 0I or 1I) induce the maps (ib) : [0, 1]I−i → [0, 1]I
by i(ib)u = b and j(ib)u = ju if j 6= i is in I. If ψ is in F(I) and u in [0, 1]I , then
ψu is a truth value.

We assume given a family of idempotent functions rI : [0, 1]I × [0, 1]→ [0, 1]I ×
[0, 1] such that

1. rI(u, z) = (u, z) iff ∂Iu = 1 or z = 0, and

2. for any strict f in Hom(I, J) we have rJ(f × id)rI = rJ(f × id).

Such a family can for instance be defined as in the following picture (“retraction
from above center”). If the center has coordinate (1/2, 2), then rI(u, z) = rI(u′, z′)
is equivalent to (2− z′)(−1 + 2u) = (2− z)(−1 + 2u′).

Property (1) holds for the retraction defined by this picture. The property (2)
can be reformulated as rI(u, z) = rI(u′, z′) → rJ(fu, z) = rJ(fu′, z′). It also holds
in this case, since rI(u, z) = rI(u′, z′) is then equivalent to (2 − z′)(−1 + 2u) =
(2−z)(−1+2u′), which implies (2−z′)(−1+2fu) = (2−z)(−1+2fu′) if f is strict.
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Using this family, we can define for each ψ in F(I) an idempotent function

rψ : [0, 1]I × [0, 1]→ [0, 1]I × [0, 1]

having for fixed-points the element (u, z) such that ψu = 1 or z = 0. This function
rψ is completely characterized by the following properties:

1. rψ = id if ψ = 1

2. rψ = rψrI if ψ 6= 1

3. rψ(u, z) = (u, z) if z = 0

4. rψ((ib)× id) = ((ib)× id)rψ(ib)

These properties imply for instance r∂I (u, z) = (u, z) if ∂Iu = 1 or z = 0 and so
they imply r∂I = rI . They also imply that rψ(u, z) = (u, z) if ψu = 1.

From these properties, we can prove the uniformity of the family of functions rψ.

Theorem 26. If f is in Hom(I, J) and ψ is in F(J), then rψ(f × id) = (f × id)rψf .

This is proved by induction on the number of element of I (the result being clear
if I is empty).

A particular case is rJ(f × id) = (f × id)r∂Jf . Note that, in general, ∂Jf is not
∂I .

A direct consequence of the previous theorem is the following.

Corollary 27. The singular cubical set associated to a topological space has a com-
position structure.

Received 8 July 20173169
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I have found it extremely inspiring to read Gödel. He always seems to ask the
right questions, the big questions, and yet he is able to bring mathematical results
to bear on them in a fruitful way. This dual yearning—for the heavens and for the
earth—seems to me to combine the philosophical and mathematical spirit in an ideal
way.

What I would like to do in this paper is describe some recent progress along
various fronts. I will in effect be giving a high-level overview of a series of papers
that collectively tell a story, one that touches on several themes from Gödel and
presents us with an emerging foundational picture that I think he would have found
intriguing.1

B

The themes involve, in one way or another, the question of whether there are
“absolutely undecidable” sentences in mathematics. In 1931 Gödel was quick to
point out that although his incompleteness theorems provided us with sentences
that are relatively undecidable they do not provide us with statements that are
“absolutely undecidable”:

[These statements are] not at all absolutely undecidable; rather, one can
always pass to “higher” systems in which the sentence in question is
decidable. (Some sentences, of course, nevertheless remain undecidable.)
In particular, for example, it turns out that analysis is a system higher
in this sense than number theory, and the axiom system of set theory is
higher still than analysis.2

1The main papers I shall be overviewing are: Bagaria, Koellner, and Woodin [1], Koellner [32],
[33], [34], [35], [36], and Koellner and Woodin [37]. The reader is directed to these papers for proofs
of the main results and for additional discussion.

2Gödel [19], p. 35.
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What he had in mind is this: We know that if PA is consistent then it is incomplete
and, in particular, that it misses the Π0

1-truth Con(PA). Let PA2 be the natural
axiomatization of second-order arithmetic. It turns out that Con(PA) is provable
in PA2; so, in ascending from PA to PA2 we capture the Π0

1-truth that was missed
by PA. Of course, the second incompleteness theorem applies to PA2 as well, and
so, assuming that PA2 is consistent, it misses the Π0

1-truth Con(PA2). But now
if we let PA3 be the natural axiomatization of third-order arithmetic we find that
it proves Con(PA2) and so captures the Π0

1-truth that was missed by PA2. This
pattern continues up through the orders of arithmetic, up through the hierarchy of
set-theoretic systems, and ultimately up through the large cardinal hierarchy. At
each stage a missing Π0

1-truth is captured and a new one is revealed and that new
missing Π0

1-truth is captured at the next stage.
Thus, although, for a given system, the incompleteness theorems provide us with

statements that are undecidable relative to that system, they do not on the face of
it provide us with statements that are “absolutely undecidable” (in the sense of not
being decided by any system of axioms that is justified). This is not to deny that
there might be some more subtle argument based on the incompleteness theorems
which does indeed show that there are “absolutely undecidable” sentences. Indeed,
as we shall see below, others have made rather strong claims for the consequences
of the incompleteness theorems. In any case, the first plausible candidates of “abso-
lutely undecidable” statements came not through the incompleteness theorems but
rather through the much more radical forms of independence that arise in set theory.

This came about through the dual results of Gödel and Cohen which showed that
CH is independent of ZFC. In 1938 Gödel proved one direction by inventing the
method of inner models. He constructed the inner model L (the constructible uni-
verse) and showed that it satisfies ZFC, V=L, and CH, thereby demonstrating that
ZFC cannot refute either V=L or CH. In 1963 Cohen established the other direction
by inventing the method of outer models (also known as the method of forcing). He
used this method to construct models which satisfied ZFC, V 6=L, and ¬CH, thereby
demonstrating that ZFC cannot prove either V=L or CH. Together these results
show that assuming ZFC is consistent then V=L and CH are independent of ZFC.

In the wake of his result on CH Gödel entertained the idea that V=L and CH
are in fact “absolutely undecidable” and, for a brief period, he said things that have
led some to think that he even thought that the powerset operation (when applied to
infinite sets) was “indefinite” and hence that the statement CH does not even have a
well-defined meaning.3 He was aware that one could sharpen the powerset operation

3For the former see Koellner [29], §1.3. The main quote that has led some (e.g. Martin Davis) to
think that Gödel also thought that the powerset operation was “indefinite” is the following, which
appeared in 1938 in his note announcing his results: “The proposition [V=L] added as a new axiom
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by asserting V=L. But for philosophical reasons he found the axiom V=L to be
untenable.

Later he was to change his views on the question of whether the primitive notions
of set theory (like the powerset operation) are “indefinite” and whether certain
statements of set theory (like V=L and CH) are “absolutely undecidable.” He
swung in the other direction and maintained that “if the meanings of the primitives
of set theory” (as he explained them) “are accepted as sound” (which he certainly
believed at the time he wrote this passage) then “it follows that the set-theoretical
concepts and theorems describe some well-determined reality, in which Cantor’s
conjecture must be either true or false.”4 He concluded that “its undecidability
from the axioms being assumed today can only mean that these axioms do not
contain a complete description of that reality.”5 What we needed, then, were new
axioms, axioms that are both justified and sufficiently strong to overcome significant
instances of incompleteness.

In 1946 he proposed new axioms that he thought were up to the task. Recall,
from our discussion above, that the instances of independence involved in the in-
completeness theorems can be captured by passing to “higher” systems, that is, by
ascending up through the layers of higher-order arithmetic, the layers of set theory,
and ultimately through the layers of the large cardinal hierarchy. Gödel thought
that large cardinal axioms might also settle the statements like V=L and CH. In
fact he had much higher hopes. He thought that large cardinal axioms might provide
us with a notion of “absolute provability,” one that would settle all statements of set
theory and thereby erase independence. He was aware, of course, that in order for
this to be the case one would have to treat the large cardinal axioms as completely
open ended, the reason being that any recursive delimitation would lead to a system
that succumbed to the incompleteness theorems. He noted that “[i]t is certainly
impossible to give a combinatorial and decidable characterization of what an axiom
of infinity is.”6 But he thought that “there might exist, e.g., a characterization of the
following sort: An axiom of infinity is a proposition which has a certain (decidable)
formal structure and which in addition is true.”7 On the basis of this he entertained
the possibility of a generalized completeness theorem:

It is not impossible that for such a concept of demonstrability some
completeness theorem would hold which would say that every proposition

seems to give a natural completion of the axioms of set theory, in so far as it determines the vague
notion of an arbitrary infinite set in a definite way” (Gödel [20], p. 27).

4Gödel [23], p. 260.
5Gödel [23], p. 260.
6The expressions ‘axiom of infinite’ and ‘large cardinal axiom’ are synonymous.
7Gödel [21], p. 151.
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expressible in set theory is decidable from the present axioms plus some
true assertion about the largeness of the universe of all sets.8

Thus, as a notion of “absolute provability” he proposed “provable from ZFC+LCA,”
where here “LCA” stands for the non-precisely specifiable open-ended scheme of
“true large cardinal axioms.”

Subsequently, there were two major developments in set theory that had im-
portant implications for this proposal. In 1951 Scott showed that large cardinal
axioms—in particular the axiom asserting that there is a measurable cardinal—
imply V 6=L. This bolstered Gödel’s view that although V=L provided us with a
sharpening of the primitives of set theory it could not be accepted as a new axiom.
And, by showing that large cardinal axioms have substantive consequences con-
cerning the universe of sets, it bolstered the hope that large cardinal axioms might
indeed provide us with a notion of “absolute provability.” This hope, however, was
to be shaken in 1967 by result of Levy and Solovay used Cohen’s method of forcing
to show that measurable cardinals cannot settle CH. And the hope was dashed by
the subsequent generalizations of this result which collectively showed that none of
the traditional large cardinal axioms (or anything resembling them in certain basic
ways) can settle CH. Thus, it seemed that Gödel’s proposed notion of “absolute
provability” was a failure.

As we shall see below, very recent results may in fact show that Gödel’s proposal
was on the right track. The trick is to combine both of Gödel’s ideas, that is, to
combine a version of V=L with large cardinal axioms. The trouble with V=L is that
it is incompatible (via Scott’s result) with large cardinal axioms. But in recent work
in inner model theory, Woodin has isolated a new axiom, the axiom V=Ultimate-L,
which is compatible with all of the traditional large cardinal axioms. This leads to a
new proposed notion of “absolute provability,” namely, the notion of “provable from
ZFC + V=Ultimate-L+ LCA.” But I am getting ahead of myself.

B

The above discussion of Gödel’s ideas on “absolute provability” gives a quick
overview of some of the themes from Gödel that will guide our discussion. As we
proceed additional themes will enter.

In §1 I will approach the question of whether “there are absolutely undecidable
statements” from an abstract and general point of view. We saw above that the
incompleteness theorems do not on the face of it provide us with sentences that are
absolutely undecidable, but we left open the question of whether they might tell us

8Gödel [21], p. 151.
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something about absolute undecidability. Gödel, in fact, thought that they did tell
us something. But he thought that it was tied up with another issue. He though
that the incompleteness theorems implied that either “the mind cannot be mecha-
nized” or “there are absolutely undecidable statements.” In fact, he went so far as to
maintain that this disjunction is a “mathematically established fact.”9 Others, who
have gone further, have argued that the incompleteness theorems actually imply the
first disjunct. I will discuss and assess these arguments. This will involve both a
philosophical critique and a mathematical critique. The mathematical critique will
consist in showing that when suitably formalized, although the disjunction is prov-
able, neither disjunct can be proved or refuted. On the basis of this I will conclude
with my own disjunctive conclusion: Either the statement that “there are absolutely
undecidable statements” is indefinite (as the philosophical critique maintains) or it
is definite and the above results (from the mathematical critique) provide evidence
that it itself is about as good an example of an “absolutely undecidable” proposition
that one might find.

In §2 I will turn to the question of whether certain primitive notions of set
theory (like the powerset operation) and statements of set theory (like V=L and
CH) are “indefinite” and, again, I will consider an approach that proceeds at a high
level of abstraction and generality. We saw above that Gödel came to maintain
that the primitives of set theory are definite and that the statements of set theory
have a determinate truth-value. In recent years, the foremost critic of this view has
been Feferman. He presented five central arguments for the claim that the powerset
operation is “inherently unclear” and “indefinite,” and that statements like CH are
“indefinite.” I will examine his arguments and argue that in the end the entire case
rests on the brute claim that the concepts of set theory are “not clear enough to
secure definiteness.” My response to this final point will be that the concept of
“being clear enough to secure definiteness” is about as clear a case of an “inherently
unclear” and “indefinite” concept as one might find, and, as such, it can bear little
weight in an argument to the effect that the powerset operation and CH—items
which, on the face of it at least, would appear to be clearer than the of “being clear
enough to secure definiteness”—are “inherently unclear” and “indefinite.”

Having thus seen little progress in approaching the questions of absolute unde-
cidability and indefiniteness at this high level of abstraction and generality, in the
remainder of the paper I will bring things down to earth, and focus on approaches
that involve more engagement with developments in mathematics. For the remain-
der of the paper I will adopt the default view that the concepts and statements of
set theory are to be taken at face value (in particular, that they are definite) and I

9Gödel [22], p. 310.
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will focus on the question of absolute undecidability.
In §3 I will turn to the case that has been made for axioms that settle CH.

In 1964, Gödel suggested that “an axiom in some sense opposite to [V=L],” one
that asserted “some maximum property of the system of all sets” would be one that
would “harmonize with the concept of set” and may very well enable one to derive
the negation of CH.10 In 1970 he proposed such axioms and argued that they led to
the probable conclusion that the continuum has size ℵ2.11 This idea of “maximality”
has found its most sophisticated development in the modern field of forcing axioms.
These axioms provide us with the strongest current case we have for axioms settling
CH and, as Gödel had hoped, they imply that the continuum has size ℵ2. I will
begin by reviewing the case for forcing axioms, discussing both the approach that
leads to MM and the approach that leads to (∗). I will then argue that the case
ultimately rests on an oversight. This will involve outlining a new perspective on
forcing axioms, the envelope perspective, a perspective developed in joint work with
Hugh Woodin. I will argue that this perspective undermines the current case for
forcing axioms.

Having thus concluded that at present we do not have a strong case for or against
CH, in the remainder of the paper I will stand back and examine the mathemat-
ical landscape from a broader vantage point. But the approach will continue to
remain engaged with developments in mathematics. In fact, the entire discussion
will be guided by a dichotomy theorem, one that points to two radically different
possible futures. We will have thus passed from a philosophical disjunction (in §1)
to a mathematical dichotomy (in §4). Just as the philosophical disjunction guided
our discussion (by raising the question of which disjunct held), so too the mathe-
matical dichotomy will guide our discussion (by raising the question of which side
of the dichotomy holds). The difference will be that in the mathematical case the
terms involved will be perfectly precise. We will be dealing with clear and distinct
propositions and we will be in a position where we know that exactly one side of the
dichotomy must hold.

In §4 I will lay the groundwork for the remainder of the paper by discussing
the dichotomy theorem. The dichotomy involves another theme from Gödel, one
that also originates in the 1946 paper in which discussed the concept of “absolute
provability.” In that paper he also discussed the concept of “absolute definability.”
He proposed “ordinal definability” as a concept of “absolute definability,” and he
thought that this would lead to simpler proof of the relative consistency of AC with
ZFC than the one provided by his inner model L. It was subsequently shown (by

10Gödel [23], pp. 262–3, fn. 23.
11Gödel [24].
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several people) that (as Gödel may have already known) the class HOD of hereditarily
ordinal definable sets is an inner model of ZFC and so provides an alternative proof
of the relative consistency of AC with ZFC. The dichotomy theorem that I shall be
discussing involves HOD and is due to Woodin. It is known as the HOD Dichotomy
Theorem. Roughly speaking, it asserts that (assuming large cardinal axioms) either
HOD is “close” to V or HOD is “far” from V . The question is: Which side of the
HOD Dichotomy holds?

There is a program aimed at establishing the first side of HOD Dichotomy—
namely, the program of inner model theory—and a program aimed at establishing
the second side of the HOD Dichotomy—namely, the program of large cardinals
beyond choice.

In §5 I will discuss the program of inner model theory and the recent advances
that have been made in it. This will culminate in Woodin’s recent investigations
into Ultimate-L, which, as the name indicates, is an ultimate version of Gödel’s con-
structible universe L. The key difference between the axiom V=L and the axiom
V=Ultimate-L is that the latter is conjectured to be compatible with all traditional
large cardinal axioms. There is a certain conjecture concerning this axiom—the
Ultimate-L Conjecture—which, if true implies that (assuming large cardinal ax-
ioms) we are, provably from large cardinal hypotheses, in the first half of the HOD
Dichotomy, where HOD is “close” to V . This is the future in which pattern prevails.

In §6 I will discuss the program of large cardinals beyond choice. These large
cardinal axioms are incredibly strong. And, as the name suggests, they imply that
AC fails. If they are consistent then the Ultimate-L Conjecture must fail and so
we will have lost our best current reason for thinking that the first side of the
HOD Dichotomy holds. And, if certain consequences of these large cardinals hold—
consequences that do not directly conflict with AC—then (assuming large cardinals)
we will be in the second half of the HOD Dichotomy, where HOD is “far” from V .
This is the future in which chaos prevails.

Finally, in §7, the various threads we have considered will merge and we will see
that they are interwoven in an intricate fashion. In particular, we will see that the
prospect of an absolute notion of provability and an absolute notion of definability
turns on which of the two futures transpires, that is, whether pattern or chaos will
prevail.12

12Acknowledgements: I would like to thank an anonymous referee and especially Gabriel
Goldberg for very helpful comments.
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1 Gödel’s Disjunction
Let us start by examining the concept of absolute provability from a very general
point of view.

The incompleteness theorems show that for any formal system meeting certain
minimal conditions there are statements that are not provable relative to the system
in question. But they do not, on the face of it at least, provide us with statements
that are not probable relative to all systems that are justified, that is, they do not
provide us with statements that are “absolutely unprovable.” Nevertheless, Gödel
thought that the incompleteness theorems enabled us to conclude something about
the scope of absolute provability.

He thought it was connected with a very different question, namely, the question
of whether “the mind can be mechanized” (understood here in the rather specific
sense that “the mathematical outputs of the idealized finite human mind coincide
with the mathematical outputs of an idealized finite machine (that is, a Turing
machine)).” He argued that his incompleteness theorems implied that either “the
mind cannot be mechanized” (in the sense just described) or “there are absolutely
undecidable sentences.” This disjunction is known as Gödel’s Disjunction.

Now, it is rarely the case in philosophy that claims are actually established
beyond a shadow of a doubt, and this is especially true when those claims concern
such large matters as the relationship between mechanism, mind, and mathematical
truth. Nevertheless, Gödel—who was generally quite cautious in the claims he
made—went so far as to call the disjunction a “mathematically established fact.”13

If it is indeed a “mathematically established fact” then it is something to be reckoned
with.

He was convinced that the first disjunct was true and the second disjunct was
false; that is, he was convinced that the mind could not be mechanized and that
human reason was sufficiently powerful to capture all mathematical truths. But
although he was convinced of these stronger claims he did not believe that he was
in a position to establish either. He did, however, think that one day we would be
in a position to establish more. What was missing, as he saw it, was an adequate
resolution of the paradoxes involving self-applicable concepts, like the concept of
truth. And he maintained that

[i]f one could clear up the intensional paradoxes somehow, one would get
a clear proof that mind is not machine.14

13Gödel [22], p. 310.
14This statement is reported in Wang [61], p. 187.
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But he did not think that we had yet arrived at an adequate resolution of the
paradoxes. And, lacking such a resolution, he felt that the most that he could claim
to have established was the disjunctive conclusion.

Others, who have discussed these matters since Gödel, have claimed more. Fa-
mously, Lucas and Penrose have argued that the incompleteness theorems actually
imply the first disjunct.15

In a series of papers I examined both the argument for the disjunction and the
various arguments for each disjunct. But the approach that I took is quite dif-
ferent from the approach that is customary in the literature. One difficulty with
the discussion in the literature is that the background assumptions on the underly-
ing concepts—most notably, the concepts of “idealized finite machine” (∼ “relative
provability”), “idealized finite mind” (∼ “absolute provability”), and “truth”—are
seldom fully articulated and, as a consequence, it is difficult to assess the cogency
of the arguments. One of my goals was to sharpen the discussion by making the
background assumptions on the fundamental concepts explicit. Once this is done
we are able to pull the entire discussion into a framework where we can establish
definitive results of the form: “If the principles governing the fundamental concepts
are such-and-such, then there is no hope of proving or refuting the first disjunct.”

What I would like to do here is give a high-level overview of that discussion and
the results obtained.16

1.1 Gödel
The disjunction concerns the concepts of “relative provability,” “absolute provabil-
ity,” and “truth,” and, in a variant formulation, the related concepts of an “idealized
finite machine” and an “idealized human mind.” We shall formulate our discussion
in terms of the first three concepts.17

15There are really two different generations of arguments for the first disjunct. The first gen-
eration began with Nagel and Newman in 1956 ([44], [45]), continued with Lucas in 1961 ([40]),
and culminated in a book length account by Penrose in 1989 ([46]). The second generation of
arguments—one argument really—appeared in another book-length account by Penrose in 1994
([47]). Penrose has continued to defend his argument—for example, in his address at the Gödel
Centenary in 2006 and the subsequent published version of 2011 ([49]).

16For more on the philosophical subtleties, the strength of the claims, and the proofs of the
various theorems the reader should consult Koellner [32], [35], and [36].

17There is no loss of generality in doing this, for it is assumed in the discussion that notions
are understood in a way such that (1) the concept of what is relatively provable with respect to
a formal system is co-extensive with the concept of what can be produced by an idealized finite
machine (a Turing machine) and (2) the concept of what is absolutely provable is co-extensive with
the concept of what can be produced by an idealized human mind.
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Let us use ‘F ’ for the set of sentences that are provable relative to a given formal
system,‘K’ for the set of sentences that are absolutely provable, and ‘T ’ for the set
of sentences that are true. A formal system F is said to be correct if F ⊆ T . And
K is understood in such a way that K ⊆ T .

Gödel argues for three main claims on the basis of the incompleteness theorems:

Claim 1. For any F , F ⊆ T → F ( T .

(“For any correct formal system F there are truths that cannot be proved
by F .”)

Claim 2. For any F , K(F ⊆ T )→ F ( K.

(“For any formal system F , if it is absolutely provable that F is correct,
then K outstrips F .”)

Claim 3. Either ¬∃F (F = K) or ∃ϕ (ϕ ∈ T ∧ ϕ /∈ K ∧ ¬ϕ /∈ K).

(“Either the mind cannot be mechanized or there are absolutely unde-
cidable statements.”)

The last of these claims is the disjunction, and, as we noted above, Gödel thought
that he could actually prove it. He did not, however, think that he was in a position
to prove the first disjunct. In fact, concerning his arguments he explicitly said:

[I]t is not precluded that there should exist a finite rule producing all
of its evident axioms. However, if such a rule exists . . . we could never
know with mathematical certainty that all the propositions it produces
are correct.18

In other words, the arguments do not preclude the existence of a “master system”
F ∗ such that F ∗ = K; they just show, by (2) above, that if there is such a system,
then we can’t have K(F ∗ ⊆ T ).

B

In order to assess the above claims we need to spell out the background assump-
tions on F , K and T , and thereby place the above informal discussion in a precise,
formal setting, where one can establish definitive results.

It is straightforward to sharpen the notions of F and T : The informal notion of
being “provable relative to a given formal system” is rendered mathematically precise
in terms of the notion of being “provable relative to a recursive set of axioms” (this

18Gödel [22], p. 309.
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latter notion being provably co-extensive with the notion of “what can be produced
by a Turing machine”). So, in the case of F we have a substantive analysis of
the notion, along with a precise way of quantifying over formal systems Fe, with
e ranging over the indexes of the systems. The case of T is a little more delicate
since in this case it would be difficult to give a substantive analysis of the notion in
more fundamental terms. Nevertheless, we can hope to give a structural analysis,
in the sense of articulating the fundamental principles that govern the notion. In
our present setting, where we are dealing with the typed notion of truth, we have a
perfectly adequate analysis, namely, that of Tarski.

The case of K is more difficult. The trouble is that, in contrast to the case of
truth, there is little agreement even on what principles are supposed to govern the
notion “absolute provability” (or the notion of what can be produced by an “idealized
human mind”) since there is little agreement on how absolute absolute provability
is supposed to be (or how ideal the idealized human mind is supposed to be). What
I shall do is follow a charitable course and consider a very strong notion of K. The
reason for doing this is as follows: I am engaging with the opponent who wishes to
show that F outstips any K (“the mind cannot be mechanized”) and T does not
outstrip K (“there are no absolutely undecidable sentences”). The point is that the
more I grant my opponent concerning K, the easier his task, and, correspondingly,
the stronger any negative result that I might establish to the effect that even if we
grant such a strong notion of K one cannot show that it outstrips any F or that it
coincides with T . The strength of a criticism is proportional to the degree to which
it is charitable.

The result of sharpening F , K, and T in the above manner results in the system
EAT, due to Reinhardt and Shapiro. I won’t pause to spell out the details. The main
point is that in this systems each of Gödel’s three main claims can be formalized
and proved:

Theorem 1.1. EAT proves Claims 1, 2, and 3.

In this sense, Gödel was correct in maintaining that the disjunction is a “mathemat-
ically established fact.”

Now that we know that disjunction holds (from the vantage point of the sharp-
ening given by EAT) the following question arises with added significance:

Question. Which disjunct holds?

Our main interest (in this paper) is in the second disjunct (that is the statement
that there are absolutely undecidable sentences), but to orient the discussion it will
be helpful to focus on the arguments that have been given for the first disjunct.
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1.2 First Generation
The first generation of arguments for the first disjunct are really just versions of
Gödel’s argument for his second claim, namely that if the correctness of F is abso-
lutely provable then F ( K. In the words of Penrose: “Human mathematicians are
not using a knowably sound algorithm in order to ascertain mathematical truth”
([47], p. 76). As we saw, this conclusion, when suitably formalized, is provable in
EAT.

However, we also saw that in addition to his three postive claims, Gödel also
made a negative claim to the effect that the argument did not preclude the possi-
bility of “master system” F ∗ such that F ∗ = K; they just show, by (2) above, that
if there is such a system, then we can’t have K(F ∗ ⊆ T ). In short, the argument
does not yield the first disjunct; rather it provides us with a conditional statement,
and to arrive at the consequent of the conditional one needs to discharge the an-
tecedent, that is, one needs the additional premise that the soundness of the system
is absolutely provable.

The question, then, is whether for any F one can determine (in the sense of
absolutely prove or refute) whether or not F is correct. This would involve, in the
very least, being able to determine whether or not F is consistent. But this is no
small task. For example, let S be the system PA + R where ‘R’ stands for the
famous open problem known as the Riemann Hypothesis. A result of Kreisel shows
that R can be formulated as a Π0

1-sentence. If PA+R is consistent then R must be
true.19 And if PA + R is inconsistent then R must be false. So to know whether
or not PA + R is consistent is to know whether or not R is true. But R is a major
outstanding problem in mathematics, so outstanding that the Clay Institute has
offered one million dollars for its resolution. No one at present knows the answer to
R and it is no small task to determine the answer. It follows that no one at present
knows whether or not PA +R is consistent.

Now one might question this example by pointing out that although Lucas and
Penrose do not know whether PA + R is consistent, they might plausibly maintain
that the answer is indeed within the reach of what is absolutely provable. But the
choice of R was merely representative and the point is much stronger: To know of
every system F whether or not F is consistent is to have an oracle for Π0

1-truth, and
that is not something we can claim to have at the start of an argument for the first
disjunct since it trivially contains the conclusion of the argument.

These considerations show that this particular argument for the first disjunct

19This is because R is Π0
1 and PA proves all true Σ0

1-statements.
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fails. But perhaps there is another argument . . .

B

. . . In fact, we can say something much stronger. There is no argument for the
first disjunct in EAT.

To describe the limitative results and the subtle issues involved it is useful to
distinguish (following Reinhardt) three grades of the mechanistic thesis. To begin
with let us use the notation ‘Fe’ to range over formal systems (recursively enumerable
sets) as e ranges over the natural numbers. The three mechanistic theses are:

(1) (wmt) ∃e (K = Fe)

(2) (smt) K ∃e (K = Fe)

(3) (ssmt) ∃eK(K = Fe)

The first thesis is the weak mechanistic thesis.20 It asserts that there is a Turing
machine which coincides with the idealized human mind (in the sense that the two
have the same outputs). This is simply the first disjunct of Gödel’s Disjunction. The
second thesis is the strong mechanistic thesis. It asserts that the idealized human
mind knows that there is a Turing machine which coincides with the idealized human
mind. The third thesis is the super strong mechanistic thesis. It asserts that there
is a particular Turing machine such that the idealized human mind knows that that
particular machine coincides with the idealized human mind.

The first result that is of relevance to this discussion is the following:

Theorem 1.2 (Reinhardt [52]). ‘EAT + ssmt’ is inconsistent.

In other words, in the context of EAT, it is true that cannot be a Turing machine
such that the idealized human mind knows that it coincides with that machine.

This fact does not vindicate the proponents of the first disjunct. For they are
claiming that ¬wmt holds, that is, they are claiming that there is no Turing machine
that produces exactly the same outputs as the idealized human mind. But this
stronger conclusion cannot be obtained in EAT, as the following result demonstrates:

Theorem 1.3 (Reinhardt [53]). ‘EAT + wmt’ is consistent.

In other words, from the point of view of EAT it is entirely possible that the idealized
human mind is in fact a Turing machine. It just can’t know which one.21 This shows

20Here I will express matters in terms of the variant formulation.
21This result gives precise mathematical substance to the possibility raised by Gödel (see §1.1

above) and later raised by Benacerraf in [3].
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that there is no argument for the first disjunct in EAT and since EAT would seem to
embody all of the assumptions held by the proponents of the first disjunct it shows
that there is a fundamental obstacle.

In fact, there is an even stronger conclusion. Reinhardt conjectured that even
smt is consistent with EAT and Carlson proved this conjecture, via a sophisticated
construction:
Theorem 1.4 (Carlson [4]). ‘EAT + smt’ is consistent.
In other words, from the point of view of EAT it is entirely possible that the idealized
human mind knows that it is a Turing machine. It just can’t know which one.

These results show that if one is to have a hope of establishing the first disjunct,
one is either going to have to invoke stronger assumptions or shift to an entirely new
framework.

The results show that there is no argument for the first disjunct in EAT. And
since EAT would seem to embody all of the principles that our opponent would be
willing to make22 this shows that not only does their particular argument for the
first disjunct fail, but that there can be no argument for the first disjunct within
the framework that they are working.

I hope that this puts to rest the first generation of arguments for the first disjunct
and that all participants in the dispute can agree on this.

1.3 Second Generation
The above results show that if one is to have a hope of establishing the first disjunct,
one is either going to have to invoke stronger assumptions or shift to an entirely new
framework. Now, there are independent reasons for shifting to a new framework
since in the above framework the notion of truth is typed whereas the notion of
truth that we employ in everyday life appears to be type-free. Moreover, Gödel had
hoped that once we had an adequate resolution of the paradoxes—most notably an
adequate type-free theory of truth—we would be in a position to establish the first
disjunct. We now have many type-free theories of truth. And it turns out that to
formalize Penrose’s new argument one must employ a type-free theory of truth. So
perhaps Penrose has fulfilled Gödel’s hope.

Penrose gave his new argument in [47] and, after much discussion, he distilled
the essence of the argument as follows:

Though I don’t know that I necessarily am F , I conclude that if I were,
then the system F would have to be sound and, more to the point, F ′

22I say that it would seem to cover and not that it does cover since the assumptions on F , T ,
and K are seldom explicitly articulated in the arguments that are given for the first disjunct.
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would have to be sound, where F ′ is F supplemented by the further
assertion “I am F ”. I perceive that it follows from the assumption that
I am F that the Gödel statement G(F ′) would have to be true and,
furthermore, that it would not be a consequence of F ′. But I have just
perceived that “if I happened to be F , then G(F ′) would have to be true”,
and perceptions of this nature would be precisely what F is supposed to
achieve. Since I am therefore capable of perceiving something beyond
the powers of F , I deduce that I cannot be F after all.23

This argument is something of a mind-bender. In order to get a grip on it let us go
though it line by line and articulate the principles employed at each point.

I will use the concise notion that we have already employed, involving Fe, K,
and T . It will be useful at the outset to isolate three principles that are employed
in the course of the argument:

K ⊆ T (K → T )

ϕ→ T (ϕ) (T -In)

ϕ

K(ϕ) (K-Intro)

Here is the argument: Let e be an arbitrary natural number. We wish to show that
K 6= Fe.

(1) K = Fe → Fe ⊆ T
[This follows by the rule ‘K → T ’.]

(2) K = Fe → Fe+ ⊆ T
[Here n+ is the index of the machine obtained by adding the sentence ‘K = Fe’
to Fe. This line follows from (1) by the rule ‘T -In’.]

(3) K = Fe → G(Fe+)
[Here ‘G(Fe+)’ is the Gödel sentence for Fe+ . This line follows from (2) by
reflection and the nature of the Gödel sentence.]

(4) K = Fe → Fe+ 0 G(Fe+)
[This line follows from (2) by the incompleteness theorem.]

23Penrose [48], §3.2.
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(5) K(K = Fe → G(Fe+))
[This line follows from (3) by the rule ‘K-Intro’.]

(6) K = Fe →
(
Fe 0 (K = Fe → G(Fe+))

)

[This line follows from (4).]

(7) K = Fe → K 6= Fe

[This line follows from (5) and (6) since under the assumption that K = Fe
lines (5) and (6) show that K and Fe disagree on “K = Fe → G(Fe+)”.]

(8) K 6= Fe

[This line follows from (7) by logic.]

Notice that in (2) ‘T ’ is applied to ‘K’ and in the rule ‘K-Intro’ ‘K’ is applied to
‘T ’. So ‘T ’ is applied to ‘T ’ and ‘K’ is applied to ‘K’. For this reason the argument
cannot be formalized in EAT. We need a type-free analogue of EAT.

B

The first thing we need to do is select a type-free theory of truth from the large
collection of type-free theories of truth that now exist. A particularly nice type-free
theory of truth is Feferman’s recent system DT. In order to fix ideas I will select
this system.24

The base system of DT is PA. The language is extended by adding a type-free
truth predicate ‘T ’ and the base system is extended by allowing ‘T ’ to figure in
induction and adding axioms of determinateness and truth. Here determinateness is
symbolized as ‘D(x)’, a defined symbol, which is short for ‘T (x) ∨ T (¬. x)’. I won’t
pause to give the details. The important point for our purposes is that this system
has the attractive feature that it enables us to prove the Tarski biconditionals,
provided one conditions on determinateness:

Theorem 1.5 (Feferman [12]). For all ϕ in the language of DT,

DT ` D(pϕq)→ (T (pϕq)↔ ϕ).

It follows from this that in DT certain defective sentences (like the liar λ) can be
seen to be defective and actually proved to be indeterminate.

24In Koellner [36] I give reasons for this choice and I give reasons for thinking that the limitative
results would persist if we proceeded with one of the other existing type-free theories of truth.
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The next step is to combine DT with a theory of absolute provability. It turns
out that if one does this in the naive way (treating K as an operator) then incon-
sistency ensues. However, if one treats K as a predicate then the resulting system
is consistent:

Theorem 1.6. DTK is consistent.

This is perhaps surprising since it enables us to circumvent the limitative results of
Gödel, Montague, and Thomason, which showed that under certain general condi-
tions inconsistency arises if one treats K as a predicate. The guiding philosophical
idea here is that the paradoxes of type-free K are to be solved by tethering the
theory of K to the theory of T and then importing the solution to the paradoxes
given by the theory of truth over to the theory of absolute provability.25

We are now in a position to sharpen our discussion and examine the Penrose
argument in a precise setting. To begin with, it turns out that in this new setting
on can prove Gödel’s three claims.

Theorem 1.7. DTK proves Claims 1, 2, and 3.

In particular, from the vantage point of DTK the disjunction holds. And so once
again the following question arises with added significance:

Question. Which disjunct holds?
B

Let us begin by concentrating on the particular argument that Penrose gives for
the first disjunct.

Recall that the argument uses the principles K → T , T -In, and K-Intro. Now,
in DTK we have K → T , but we do not have T -In and K-Intro. In fact, if one adds
T -In and K-Intro then the resulting system is inconsistent. This is not surprising
since when one enters the type-free setting and encounters indeterminate sentences
these rules are only plausible provided one conditions on determinateness. In DTK
we have these restricted versions. They are labeled ‘DT-In’ and ‘DK-Intro’.

Now, in the Penrose argument, the rules ‘T -In’ and ‘K-Intro’ were applied to the
statements ‘K = Fe → Fe+ ⊆ T ’ and ‘K(K = Fe → G(Fe+))’ (in steps (2) and (5),
respectively). This application is legitimate only if these statements are determinate.
It turns out, however, these statements are in fact provably indeterminate.

25This strategy can be applied in other realms where type-free notions lead to paradox. If we
tie all of the type-free notions to truth then all of our beasts will have one head. This idea was
independently developed by Stern [55], where he applies the idea to the paradoxes of modality.
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Theorem 1.8. (1) DTK ` ¬D(pK = Fe → Fe+ ⊆ Tq)

(2) DTK ` ¬D(pK(K = Fe → G(Fe+))q)

Thus, from the vantage point of DTK, Penrose’s argument is invalid.
The above discussion shows that Penrose’s particular argument for the first dis-

junct fails in the context of DTK. But perhaps there is another argument . . .

B

. . . In fact, we can say something much stronger. There is no argument for the
first disjunct in DTK.

To describe the limitative results we will distinguish various versions of the dis-
junction and its disjuncts, where we specify which fragment of the language the
quantifiers range over. The full versions are the versions where there is no restric-
tion on the language. For convenience let us use ‘gd’ for the disjunction, ‘¬wmt’
for the first disjunct, and ‘au’ for the second disjunct.

The restricted versions—which we will indicate by writing ‘gdL’, ‘wmtL’ and
‘auL’—are obtained by restricting the quantifiers to a sublanguage L. The case of
interest is where L is some determinate sublanguage of the language of DTK. For
specificity we shall focus on the case where L is the language of PA.

We noted that the disjunction, gd, is provable in DTK. And we noted that
Penrose’s argument for the first disjunct fails in DTK since it encounters indetermi-
nate sentences. This last point raises the concern that perhaps the very disjunction
is indeterminate. In fact, in the fully general case, the disjunction and each of its
disjuncts is provably indeterminate:

Theorem 1.9. DTK ` ¬D(gd) ∧ ¬D(¬wmt) ∧ ¬D(au).

It might seem counter-intuitive that gd is provable in DTK while at the same
time being provably indeterminate. But in the type-free context this can happen
with certain indeterminate sentences. For example, it turns out that the liar sentence
λ is also provable in DTK while at the same time being provably indeterminate. The
point is that in the type-free context the provability of a statement is not sufficient
to have confidence in a statement; one must, in addition to having a proof, also have
assurance that the statement in question is determinate.

There is a particular irony here. For to have a hope of proving the first disjunct
in its full generality we have had to switch to a system in which truth is type-free.
But when we make this shift we have to be on the lookout for sentences which, like
the liar sentence, are indeterminate. The irony is that the very statement we set out
to prove—namely, the first disjunct—is provably indeterminate.
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This motivates the turn to the restricted versions of the disjunction and its
disjuncts. In this case it turns out that the statements in question are indeed
determinate.

Theorem 1.10. DTK ` D(gdPA) ∧D(¬wmtPA) ∧D(auPA).

So in this case there is at least a prospect of getting started. Moreover, once again,
we have that the disjunction is provable:

Theorem 1.11. DTK ` gdPA.

And so, given that the disjunction is both provable and provably determinate we
have reason to accept it, and the question arises as to which disjunct holds.

In turns out, however, neither disjunct is provable or refutable:

Theorem 1.12. Assume that DTK is correct for arithmetical statements. Then
DTK can neither prove nor refute either ¬wmtPA or auPA.

In other words, in the restricted case the disjunction and its disjuncts are indeed
determinate, but while the disjunction itself is provable neither disjunct is provable
or refutable in DTK.26

I hope that this puts to rest the second generation of arguments for the first
disjunct. And equally I hope it puts to rest the prospect of proving or refuting
the statement that “there are absolutely undecidable propositions” on an approach
where one proceeds with general principles governing K.

1.4 Conclusion
Throughout the discussion thus far I have been following the charitable course in
presuming that the questions at hand—namely, the questions of whether “the mind
can be mechanized” and whether “there are absolutely undecidable sentences”—are
definite. But in fact, for reasons that I give at the end of [36], I think that there
are problems with the notion of “an idealized human mind” and with treating the
notion of “absolute provability” as if it were a fixed notion. The main problem
with the first notion—that of “an idealized human mind”—is that unless we have an
adequate theory of the mind (which we certainly do not) it is hard to make sense of
the lines along which we are to idealize. For that reason the entire discussion might
as well concern “the angelic mind.” The main problem with the second notion—that

26In Koellner [32] and [36] I go on to show that this independence result persists even if one
adjoins stronger principles governing absolute provability, and I give reasons for thinking that the
situation will not improve if one alters the underlying type-free theory of truth.
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of “absolute provability”—is that evidence and justification in mathematics come in
grades. For that reason there appears to me to be a misstep in dealing with the
notion of absolute provability as if it were a fixed, absolute notion.

But I have not wanted to rest my critical case on these philosophical misgivings;
instead I have wanted to grant my opponent the notions in question and place the
weight on limitative results that the opponent must accept. In any case, I think that
we can draw a disjunctive conclusion: Either the statement that “there are absolutely
undecidable statements” is indefinite (as the philosophical critique maintains) or it
is definite and the above results provide evidence that it itself is about as good an
example of an “absolutely undecidable” proposition that one might find.

For these reasons I don’t think that at this level of abstraction and generality we
can gain much insight into the question of whether “there are absolutely undecidable
statements.”

2 Indeterminateness
I want now to turn to the related question of whether the primitive notions and
statements of set theory are “definite” and, for the time being, I want to continue
to consider approaches that proceed at a high level of abstraction and generality.

Recall that after a brief period of entertaining the idea that the powerset oper-
ation is “indefinite,” and statements like V=L and CH are indefinite, Gödel came
to the view that all of the primitive notions of set theory, along with all of the
statements of set theory, are “definite.” In most recent years, Feferman has been the
most forceful critic of this view.

Feferman maintains that while the statements of first-order number theory are
“completely clear” and “completely definite,” many of the statements of analysis and
set theory are “inherently vague” and “indefinite.” He gives five main arguments:

(1) Feferman maintains that CH has effectively ceased to be regarded as definite
by the mathematical community and that this fact provides “considerable
circumstantial evidence to support the view that CH is not definite.”27

(2) Feferman thinks that the concept of an arbitrary subset (of a given infinite
domain (like the natural numbers)) is inherently vague in the sense that (a) it
is vague and (b) it cannot be sharpened without violating what it is supposed
to be about.

27Feferman [13], p. 1.
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(3) Feferman argues that given the alleged lack of clarity of the concept of an ar-
bitrary subset (of a given infinite domain) the only recourse to establishing the
definiteness of statements of set theory (or even analysis) is an untenable form
of platonism, one which faces certain insurmountable philosophical problems.

(4) Feferman’s reasons for thinking that CH is indefinite are partly based on the
metamathematical results in set theory; in particular the results showing that
“CH is independent of all remotely plausible axioms extending ZFC, including
all large cardinal axioms that have been proposed so far.”28

(5) Feferman takes the formal results on indefiniteness—in particular the result of
Rathjen showing that CH is indefinite relative to the semi-constructive system
SCS+—as providing evidence that CH is indefinite.

In [33] and [34] I examined these arguments and argued that (1) has no force
and that when the dust settles (3), (4), and (5) all reduce to (2) and that in the end
the entire case rests on the brute intuition that the concept of subsets of natural
numbers—along with the richer concepts of set theory—is not “clear enough to
secure definiteness.” My response to this final, remaining argument is that the
concept of being “clear enough to secure definiteness” is about as clear a case of an
unclear and indefinite concept as one might find and, as such, and as such it can
bear little weight in making a case against the definiteness of analysis and set theory.

What I would like to do here is illustrate some of the key steps components of
this critique by criticizing (2) and showing that (5) reduces to (2).29

2.1 Conceptual Clarity
Feferman is an avowed anti-platonist. In place of platonism he espouses what he calls
conceptual structuralism, an “ontologically non-realist philosophy of mathematics”30

according to which “the basic objects of mathematical thought exist only as socially
shared mental conceptions.”31 For present purposes I will only need one component
of this view, namely, the part which maintains that “there are differences in clarity
or definiteness between basic conceptions.”32

This component of the view enables him to take an asymmetrical stance toward
number theory and set theory. With regard to number theory he maintains that the

28Feferman [11], p. 127.
29The reader is referred to Koellner [33] and [34] for the full critique.
30Feferman [14], pp. 74.
31Feferman [15], p. 235.
32Feferman [15], p. 236.
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concept of the structure of natural numbers is “completely clear”; in fact, it is so
clear that (i) (on the epistemic dimension) the standard axioms of PA (with open-
ended induction) are “evident on our conception”33 and (ii) (on the semantical,
or metaphysical dimension) it is “completely definite”34 (in the sense that each
statement of number theory has a definite truth value regardless of whether or not
we can determine that truth value on the basis of evident principles.) In contrast,
he thinks that the distinctive notions and statements of analysis and set theory
are “inherently unclear” and “indefinite.” Indeed he thinks that the concept of
an arbitrary subset (of an infinite domain) is “inherently unclear” (or “inherently
vague”) in the sense that it “cannot be sharpened.”35

In saying that the concept of an arbitrary subset (of an infinite domain) is “in-
herently unclear” (or “inherently vague”) Feferman means that the concept cannot
be sharpened without violating what that notion is supposed to be about:

Moreover, I would argue that it is inherently vague, in the sense that there
is no reasonable way the notion can be sharpened without violating what
the notion is supposed to be about. For example, the assumption that
all subsets of the reals are in L or even L(R) would be such a sharpening,
since that violates the idea of “arbitrariness.” In the other direction, it
is hard to see how there could be any non-circular sharpening of the
form that there [are] as many such sets as possible. It is from such
considerations that I have been led to the view that the statement CH is
inherently vague and that it is meaningless to speak of its truth value.36

This point is repeated in his most recent writings on the topic37 and we are told
there that this is the “main reason that has led [him] to the view that CH is not
definite.”38

B

I agree that “[w]hat we are dealing with here are questions of relative conceptual
clarity and foundational status”39 and I am willing to grant that the concept of the
natural numbers is clearer than the concept of an arbitrary subset (of a given infinite

33Feferman [8], p. 70.
34Feferman [15], p. 240.
35Feferman [9], p. 405.
36Feferman [9], pp. 410–411.
37See, for example, Feferman [11], p. 130 and Feferman [13], p. 2 and p. 21.
38Feferman [13], p. 2, my emphasis.
39Feferman [10], p. 619.
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domain, say, the natural numbers). The question, however, is whether our concep-
tion of the former is “sufficiently clear to secure definiteness” while our conception
of the latter is not.

I do not strictly speaking agree with the claim that there can be no way to
sharpen the concept of an arbitrary subset (of a given infinite domain) without
violating what it is supposed to be about, since this makes it look as though there is
something implicit in the concept that implies that V cannot be any fine-structural
inner model. But I do agree with the related claim that there is no way to sharpen
the concept of an arbitrary subset (of a given infinite domain) that merely unfolds
that concept. That is, I agree that it is not analytic of our concept of arbitrary
subset of say the natural numbers that all such subsets appear in L, or any other
fine-structural inner model. The reason is that there is nothing on the face of
the concept of arbitrary subsets of natural numbers that involves mention of these
models (the definitions of which are quite technical) and it would be far-fetched to
maintain that a “deeper analysis” of the concept would imply, say, that all arbitrary
subsets of natural numbers are in L, or any of the other fine-structural inner models.

But although I agree that the essential nature of the concept of an arbitrary
subset (of a given infinite domain) cannot be clarified in more fundamental terms
(there can be “no non-circular sharpening”) I don’t see this alone as sufficient to
imply indefiniteness. It is rather a sign that we are dealing here with a primitive
concept. For example, consider the concept of natural numbers. The essential
nature of this concept cannot be clarified in more fundamental terms. All attempts
to give a more primitive explication lead back to the same concept in a different
guise. For example, one might try to explain the domain of natural numbers as the
domain obtained by starting with 0 and applying the successor operation a finite
number of times. But here the conception of natural numbers appears, hidden, in a
different guise, in the reference to finite number of times. The hallmark of a primitive
concept—indeed the defining characteristic of being a primitive concept—is that
such a concept cannot be defined or explained in more fundamental terms (there
can be “no non-circular sharpening”). So in this respect alone our conception of an
arbitrary subset (of a given infinite domain, like the domain of natural numbers) is
on a par with our conception of natural numbers.

The key difference, then, between our conception of the natural numbers and our
conception of an arbitrary subset (of a given infinite domain, like the domain of the
natural numbers)) is that the former is clearer than the latter. That is something
with which I am happy to agree. But the key question at hand is whether the
former, but not the latter, is “clear enough to secure definiteness.” This is where
I think the case falters. Feferman is making essential use of the concept of “being
sufficiently clear to secure definiteness.” I would like to say that the concept of “being
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sufficiently clear to secure definiteness” is not sufficiently clear to secure definiteness.
It is about as good an example of an inherently unclear and indefinite concept as
one might find. In this regard it bears more kinship to the concept of a “feasible
number” than to the concept (taken at face value) of an arbitrary subset of a given
infinite domain (like that of the natural numbers), and as such I don’t think it can
bear much weight in a case against the definiteness of the latter concept. To find an
argument to that effect we will have to dig even deeper.

In [33] and [34] I go on to examine Feferman’s arguments (3), (4), and (5) and I
argue that in each case the argument ultimately reduces to (2). What I would like
to do here is illustrate how this comes about in the case of (5).

2.2 Formal Results on Indefiniteness
In the spirit of getting exact about informal claims, Feferman “proposed [a] logical
framework for distinguishing definite from indefinite concepts.”40 The basic idea is
that classical logic is the logic appropriate for definite concepts, while intuitionistic
logic is the logic appropriate for indefinite concepts. Thus, for example, if one wishes
to articulate and investigate the view of someone who, like Feferman, maintains that
the concept of natural numbers is definite, while the concept of subsets of natural
numbers is not definite, then an appropriate system would be a system of semi-
constructive set theory involving two logics: classical logic for the number-theoretic
component and intuitionistic logic for the remainder. A statement ϕ is then defined
to be (formally) definite with regard to such a system S if S ` ϕ ∨ ¬ϕ. So, in the
case under consideration, it will be immediate that statements of number theory are
definite (this having been built in from the start). The question then arises: Which
other statements can be shown to be definite relative to such a system S?

Feferman introduced two semi-constructive systems of set theory, which will here
be labeled ‘SCS’ and ‘SCS+’. The first system is the one described above. The second
system aims to capture the view of a descriptive set theorist who maintains that the
concept of subsets of natural numbers is definite, but makes no explicit claims about
the definiteness of the concept of subsets of the set of subsets of natural numbers, or
concepts involving further iterations of the powerset operation. It involves classical
logic for second-order number theory and intuitionistic logic beyond.

Feferman conjectured that CH is indefinite relative to SCS+ and this subse-
quently proved by Rathjen.41 Feferman takes this result “as further evidence in
support” of the claim that CH is indefinite.42 Our question the result does indeed

40Feferman [13], p. 2.
41Rathjen [50].
42Feferman [16], p. 23.
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provide further evidence in support of the claim that CH is indefinite.

B

Let’s examine definiteness in SCS+ and see how well it articulates the views of
the descriptive set theorists. We have that all statements of second-order number
theory are definite, this having been built in from the start. So far so good—this is
in accord with the views of the descriptive set theorists. Let us now march our way
up the hierarchy of definability. It turns out that statements about Borel sets and
projective sets come out as definite; for example, the statements that all Borel sets
and all projective sets are Lebesgue measurable, have the perfect set property, and
are determined, all come out as definite in SCS+. Thus far we are doing well—all
of this is in accord with the views of the descriptive set theorists.

But things change when we get to L(R). Let ACL(R) be the statement that
“there is a well-ordering of R in L(R)”. It turns out that ACL(R) is indefinite from
the point of view of SCS+, assuming the consistency of large cardinals at the level
of ADL(R).

Theorem 2.1 (K. and Woodin). Assume that “ZFC + There are ω-many Woodin
cardinals ” is consistent. Then SCS+ 0 ACL(R) ∨ ¬ACL(R).

Likewise ADL(R) comes out as indefinite in SCS+. So, in this regard, ADL(R) is
just like CH. But in contrast to CH it does not concern arbitrary subsets of reals.
Rather, it only concerns definable ones, and it is a statement that the descriptive
set theorists, at least modern descriptive set theorists, regard as definite.

So the system SCS+ gives a mixed verdict on statements of descriptive set theory,
when measured with regard to the community of modern descriptive set theorists.
In some cases (like PD) it is in alignment with that community, and in other cases
(like ADL(R)) it is out of alignment with that community. Furthermore, if SCS+

were indeed an articulation of Feferman’s considered view then his focus should be
on ADL(R) and not CH. The difference is that large cardinal axioms do settle ADL(R)

(cf. Feferman’s argument (4)) and, indeed, there has been a sophisticated case in
favour of ADL(R). So if the focus were put on ADL(R) one would have to engage
with that case.

But when it comes to Feferman’s view even SCS+ itself is a bit of a red herring.
For recall that Feferman maintains something much stronger than that CH is indef-
inite. He maintains that the concept of the subsets of natural numbers is indefinite.
In particular, he maintains not only that ADL(R) is indefinite, but also that PD and
much more is indefinite. So, of the two systems that he has introduced, SCS is much
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closer than SCS+ to articulating his own position with regard to matters of defi-
niteness. Let us then investigate this system and see what comes out as indefinite
within it.

It turns out that any statement which is equivalent to ATR0 over RCA0 comes
out as indefinite.43 For example:

Theorem 2.2 (K. and Woodin). SCS 0 ϕ ∨ ¬ϕ where ϕ is any of the following
statements:

(a) Perfect Set Theorem: Every uncountable closed (or analytic) set has a perfect
subset.

(b) The Ulm theory for countable reduced Abelian p-groups.

(c) ∆0 Determinacy.

Despite this result, Feferman has made it clear to me in conversation that he
thinks that open determinacy is in fact definite. Feferman has told me that to
fully capture his view concerning the extent of what is definite one would have to
supplement SCS by adding structure beyond that of the natural numbers, with the
aim of ensuring that open determinacy and its kin come out as definite. I think that
this is the right course for him to take. It is certainly the right course for us to take,
since I don’t think there can be reasonable doubt that open determinacy is definite.

What the above two case studies illustrate is that the present approach is not
a foundational approach that is going to give us insight into what’s definite and
what’s not; rather, the systems are designed to articulate the pre-theoretic views
of a particular community. In the first case, where the community is that of the
descriptive set theorists, PD comes out as definite. Good. But ADL(R) comes out as
indefinite. Bad. So we have to revise the system to bring it into alignment with the
target community. In the second case, where the community is Feferman and those
who agree with him on matters of definiteness, the Riemann Hypothesis comes out
as definite. Good. Open determinacy comes out as indefinite. Bad. So we have to
revise the system to get the right outputs and thereby bring it into alignment with
the target community.

The point I wish to make is that once again we have not been given an inde-
pendent argument for the claim that the concept of subsets of natural numbers is
inherently unclear and indefinite. Rather the entire enterprise is being guided by
brute, pre-theoretic intuitions as to what is completely clear and definite and what
is inherently unclear and indefinite. So, we are back to (2).

43This result also follows from a more general result independently proved by Rathjen.
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2.3 Conclusion
I have argued that when the dust settles the entire case rests on the brute intuition
that the concept of arbitrary subset (of a given infinite domain, like that of the
natural numbers) is not “clear enough to secure definiteness.” My response to this
final point is that the concept of “being clear enough to secure definiteness” is about
as clear a case of an inherently unclear and indefinite concept as one might find. For
these reasons it cannot carry much weight in a foundational enterprise, especially one
aimed at arguing that the concept of an arbitrary subset of a given infinite domain,
like that of the natural numbers—a conception that on the face of it would appear
to be clearer than the concept of “being clear enough to secure definiteness”—is not
a definite concept.

3 The Continuum Hypothesis
In the above discussion the questions of absolute undecidability and indefiniteness
were addressed at a very high level of abstraction and generality. And we saw—in the
approaches we considered—that very little could be concluded about our questions
at this level of abstraction and generality. This is perhaps not so surprising since
the discussion involved such philosophical concepts as “absolute undecidability” and
“indefiniteness” (as well as the concepts of “an idealized human mind” and being
“clear enough to secure indefiniteness”) and these concepts are not sharp enough
for us to draw definite, substantive conclusions by reasoning with them alone. One
can try to sharpen them—as, for example, we have done in terms of DTK in the
first case, and in terms of SCS+ and SCS in the second case—but, as we have seen,
doing so tends to lead to results that are in conflict with the central claims that
the proponents wish to maintain. Of course, one can go back to the drawing board
and provide a new sharpening . . . But I am not optimistic about this approach. I
think that if we are going to make a substantial advance then we must broaden our
horizon and engage more seriously with developments in mathematics. That is what
I would like to do in the remainder of this paper.

The focus will be on the question of absolute undecidability and, for the purposes
of the remaining discussion, I will adopt the default stance according to which the
concepts and statements of set theory are to be taken at face value and regarded as
definite.44

B

44Despite this stance the question of indefiniteness will not be entirely left behind. For to the
extent that the question of indefiniteness turns on the question of absolute undecidability I will be
implicitly address the former as well.
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In early work I argued that we now have new axioms that are justified and which
settle the central statements of second-order arithmetic and the central statements
concerning L(R) and somewhat beyond. It would take us too far afield to review
this case. I will just say that it is a case that has developed in conjunction with
a mathematical development over a 50 year period, and that as the mathematic
development panned out in such a way that the philosophical case grew stronger
at each step. It is on the basis of this case that I would maintain that “absolute
undecidability” does not arise at the level of L(R).45

Unfortunately the case for these axioms falls short of yielding axioms that have
much of an impact on the level where CH appears, namely, the level of Σ2

1-statements.
In particular, it does not yield axioms that settle CH. It is for this reason that I
would like to focus on this level and, more specifically, the case of CH.

The principles that I shall be discussing are in the spirit of a suggestion made
by Gödel in 1964:

[F]rom an axiom in some sense opposite to [V=L], the negation of Can-
tor’s conjecture could perhaps be derived. I am thinking of an axiom
which (similar to Hilbert’s completeness axiom in geometry) would state
some maximum property of the system of all sets, whereas [V=L] states
a minimum property. Note that only a maximum property would seem
to harmonize with the concept of set.46

Later, in 1970, he proposed specific principles of this kind and he argued that they
led to the probably conclusion that c = ℵ2.47

At around the same time, in 1970, the first forcing axiom was born—Martin’s
Axiom (MAℵ1).48 This opened up a new subfield of set theory—the study of forcing
axioms—which eventually generated axioms that led to the current case against
CH. These axioms are “maximality” principles of the kind entertained by Gödel,
and they provide us with the strongest current case for axioms that settle the size
of the continuum. Curiously, they imply that c = ℵ2, something that Gödel would
have found congenial.49 In this section I would like to describe the case for forcing
axioms and then present a new perspective (arrived at jointly with Woodin), called
the envelope perspective. I will argue that this new perspective deflates the case

45See Koellner [29] and [31] for the details of this case.
46Gödel [23], pp. 262–3, fn. 23.
47Gödel [24].
48Martin and Solovay [41].
49See Koellner [30] for a general discussion of CH and for further details concerning the case for

CH that I shall be reviewing below.
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for forcing axioms and that if one adopts it then forcing axioms have an entirely
different significance.50

3.1 Forcing Axioms
There are really two approaches to forcing axioms. First, there is the approach
based on generalizations of the Baire Category Theorem, which leads to a hierarchy
of forcing axioms, ranging from MA (Martin’s axiom), to PFA (proper forcing axiom)
to MM (Martin’s Maximum). Second, there is the approached based on Pmax, which
leads to the axiom (∗).

3.1.1 Generalizations of the Baire Category Theorem

The first approach to forcing axioms is through generalizations of the Baire Category
Theorem, which, for present purposes, we will take to be the statement BCℵ0 which
asserts that for every poset P, every family of countably many dense sets has a generic
filter.51 This theorem is at the heart of many fundamental results concerning H(ω1),
and so, in order to settle some of the independent propositions concerning H(ω2),
it is natural to try to extend BCℵ0 to the level of ℵ1.

The most natural way to do this is to replace ‘ℵ0’ with ‘ℵ1’ and consider the
principle BCℵ1 asserting that for every poset P, every family of no more than ℵ1-
many dense sets has a generic filter. The trouble is that this principle is inconsistent.

So we have to restrict the principle in some way. A natural way to do this is to
consider not all posets but rather various collections Γ of posets.

Definition 3.1. For a cardinal κ and a class Γ of posets, let BCκ(Γ) be the statement
that for every poset P ∈ Γ, and for every family D of no more than κ-many dense
subsets of P, there is a filter meeting every set in D.

The first axiom along these lines was Martin’s Axiom (MAℵ1). This is just the
principle BCℵ1(ccc) where one restricts to posets that have the countable chain
condition. To arrive at stronger principles one allows broader classes of posets. For
example, if one considers the class of proper posets then the principle BCℵ1(proper)
is known at the proper forcing axiom (PFA), a principle much stronger that MAℵ1 .52

50For further details see Koellner and Woodin [37].
51See Fremlin [18] and Todorcevic [59] for further details on this approach, as well as for references

concerning the central notions and main results.
52In what follows I will focus on the case where κ = ℵ1.
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In 1988 Foreman, Magidor, and Shelah isolated what is provably the strongest
forcing axioms in this hierarchy. It is the principle BCℵ1(stat) where one restricts to
posets that are stationary set preserving. It is known asMartin’s Maximum (MM).53

It is quite straightforward to show that BCc(ccc) is false, and so MAℵ1 immedi-
ately implies that CH fails. In fact, the general idea behind all of these principles
is to assert that ℵ1 “resembles” ℵ0 and, in so doing, they quite explicitly render CH
false.

As a reminder of this we will employ the notation of Baire category numbers.
Let m be the least cardinal κ such that BCκ(ccc) fails, and let mm be the least
cardinal κ such that BCκ(stat) fails. In this notation, m > ℵ1 is a restatement of
MAℵ1 , and mm > ℵ1 is a restatement of MM. We have

ℵ1 6 mm 6 m 6 c.

Although it is immediate that mm > ℵ1 implies that c > ℵ1, a remarkable fact
is that mm > ℵ1 actually fixes the size of the continuum.

Theorem 3.2 (Foreman-Magidor-Shelah, [17]). Assume mm > ℵ1. Then c = ℵ2.

3.1.2 Pmax

The second approach to justifying forcing axioms is motivated by the attempt to
find a model of ¬CH which is canonical in the sense that its theory cannot be altered
by set forcing in the presence of large cardinals.54 The background motivation is
this: First, we know that in the presence of large cardinal axioms the theory of L(R)
is invariant under set forcing (a result of Woodin). The importance of this is that it
demonstrates that our main independence techniques cannot be used to establish the
independence of statements about L(R) in the presence of large cardinals. It follows
that if P is a definable, homogeneous partial order in L(R) then the generic extension
L(R)P inherits the generic absoluteness of L(R). Woodin discovered that there is
a partial order, Pmax, that has this feature and which has additional remarkable
properties—in particular, it does not add reals and the model L(R)Pmax satisfies
ZFC + ¬CH. Thus, L(R)Pmax is a model of ¬CH that is canonical in the desired
sense and has the same reals as V .

This model also has another remarkable property—it is “maximal” (or “satu-
rated”) with respect to sentences that are of a certain complexity and which can be
shown to be consistent via set forcing; in other words, if these sentences can hold (in

53Foreman-Magidor-Shelah [17].
54See Woodin [62] for further details on this approach, as well as for references concerning the

central notions and main results.
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the sense that they hold in a set generic extension) then they do hold in the model.
The class of sentences in question involves the structure 〈H(ω2),∈, INS, A

G〉 |= ϕ,
where INS is the non-stationary ideal on ω1 and AG is the interpretation of (the
canonical representation of) a set of reals A in L(R). The details will not be impor-
tant for our purposes and the reader is asked to just think of H(ω2) along with some
“extra structure” and not worry about the details concerning the “extra structure.”

We are now in a position to state the main results:

Theorem 3.3 (Woodin [62]). Assume that there is a proper class of Woodin car-
dinals. There is a partial order Pmax such that the following hold:

(1) Pmax ⊆ H(ω1) and Pmax is definable in H(ω1).

(2) Pmax is ω-closed and homogenous.

(3) L(R)Pmax |= ZFC.

(4) Suppose ϕ is a Π2-sentence in the language for the structure

〈H(ω2),∈, INS, A : A ∈ L(R) ∩ P (R)〉

and
〈H(ω2),∈, INS, A : A ∈ L(R) ∩ P (R)〉 |= ϕ.

Then
L(R)Pmax |= “〈H(ω2),∈, INS, A : A ∈ L(R) ∩ P (R)〉 |= ϕ”.

Theorem 3.4 (Woodin [62]). Assume that there is a proper class of Woodin cardi-
nals and that V [G] is a set-generic extension of V . Then there exists an elementary
embedding

j : L(R)→ L(R)V [G].

Corollary 3.5 (Woodin [62]). Assume that there is a proper class of Woodin car-
dinals. Suppose ϕ is a a Π2-sentence in the language for the structure

〈H(ω2),∈, INS, A : A ∈ P (R) ∩ L(R)〉

and there is a set-generic extension V [G] of V such that

〈H(ω2),∈, INS, A : A ∈ P (R) ∩ L(R)〉V [G] |= ϕ.

Then
L(R)Pmax |= “〈H(ω2),∈, INS, A : A ∈ P (R) ∩ L(R)〉 |= ϕ”.
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To summarize: Assuming that there is a proper class of Woodin cardinals we
have: The partial order Pmax forces AC over a model of AD. The resulting model
L(R)Pmax is a definable, homogeneous extension of L(R) and, as such, it is canonical
in that like L(R) its theory is invariant under set forcing. The resulting model
L(R)Pmax is also maximal in the sense that it satisfies all Π2-sentences (about the
relevant structure) that can possibly hold (in the sense that they can be shown to
be consistent by set forcing over V ).

One would like to get a handle on the theory of this structure by axiomatizing
it. There is, in fact, an axiom that does this:

Definition 3.6 (Woodin [62]). Axiom (∗): ADL(R) holds and L(P (ω1)) is a Pmax-
generic extension of L(R).

In parallel to the case with mm > ℵ1, this axiom settles CH; moreover, is gives
the same size of the continuum:

Theorem 3.7 (Woodin [62]). Assume (∗). Then c = ℵ2.

More generally, by the maximality theorem, this axiom captures the main conse-
quences that mm > ℵ1 has for the structure of H(ω2).

3.2 The Case for mm > ℵ1 and the Case for (∗)
Now that we have described the two approaches to forcing axioms—that based on
the Baire Category Theorem (an approach that leads to mm > ℵ1) and that based
on finding a canonical model for the failure of CH (an approach that leads to (∗))—
let us now examine the cases that have been put forward for accepting mm > ℵ1
and (∗) as new axioms. Notice that since mm > ℵ1 and (∗) each imply the failure
of CH—and, in particular, that c = ℵ2—any case for these axioms is going to have
great relevance for Gödel’s program for new axioms, the main point of which was to
settle CH.

Gödel distinguished between intrinsic and extrinsic justifications for new axioms.
Some set theorists have argued that forcing axioms are intrinsically justified on the
basis of the component of “maximality” that is claimed to be inherent in the concept
of set. In [37] we discuss these justifications and find them lacking. The most
promising justifications are extrinsic, and that will be my focus here.

There are two kinds of extrinsic justifications—those based on global conse-
quences for the universe of sets and those based on local consequences for the universe
of sets (more specifically, consequences for the structure of H(ω2)). In [37] we give
reasons for thinking that the extrinsic justifications based on global consequences
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(like the Singular Cardinal Hypothesis) are rather weak. The most promising extrin-
sic case is based on local consequences (concerning the structure theory of H(ω2)),
and so that is what I would like to concentrate on here.

3.2.1 The Case for mm > ℵ1

The extrinsic case for mm > ℵ1 is largely based on the structural consequences
that it has for H(ω2). The consequences of mm > ℵ1 for the structure H(ω2) are
radically different than the consequences of CH for this structure. The general
argument maintains that mm > ℵ1 gives the “right” consequences, while CH gives
the “wrong” ones. In order to describe the case it will be useful to have some specific
examples of the contrasting structure theories at hand.

In Subsections A, B, and C below I will discuss three central examples. This will
involve introducing several mathematical notions and results that may be new to the
reader. For the reader anxious to see the main take-away points, I suggest skipping
ahead to the discussion that continues after Subsection C, and then referring back
to the details as needed. 55

A. Uncountable Separable Linear Orderings
To motivate our discussion let us first recall some classic results concerning the class
LOℵ0 of countable linear orderings.

The structure theory of LOℵ0 turns out to be quite simple. A central place is
occupied by the countable dense linear orderings without endpoints.
Theorem 3.8 (Cantor). All countable dense linear orderings without endpoints are
isomorphic.

This theorem implies that LOℵ0 has a universal element; that is, there is an
element L′ ∈ LOℵ0 such that for every element L ∈ LOℵ0 , we have L 6 L′ (which is
to say that an isomorphic copy of L sits inside L′). The universal element is in fact
Q. In addition, Ramsey’s Theorem implies that {ω, ω∗} is a basis for LOℵ0 , where
ω∗ is ω with the reverse ordering; that is, it implies that for all L ∈ LOℵ0 we have
ω 6 L or ω∗ 6 L. Thus, LOℵ0 has a very simple structure theory.

Let us now turn to the class of uncountable linear orderings, LO>ℵ0 . To begin
with, let us first consider those uncountable linear orderings that are separable,
SLO>ℵ0 .
Definition 3.9. A linear ordering (L,6L) is separable if it contains a countable
dense subset, that is, if there is a countable set D ⊆ L such that for all x, y ∈ L if
x <L y then there exists z ∈ D such that x 6L z 6 y.

55My account will follow the account in Todorcevic [58].
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It is natural to ask whether one can generalize Cantor’s theorem to the next
level, that is, to the level of ℵ1. To describe what we have in mind here it will be
helpful to introduce two more definitions:

Definition 3.10. For a cardinal κ a linear ordering L is κ-dense if for all non-trivial
intervals of L (including the entire ordering) have cardinality κ.

Definition 3.11. For a cardinal κ, BA(κ) is the statement that all separable κ-
dense linear orderings are isomorphic.

For example, it follows from Cantor’s theorem that BA(ℵ0) is true. The question is
whether BA(κ) can hold for κ > ℵ0.

Theorem 3.12 (Dushnik-Miller [7]). BA(c) fails. In fact, there are 22ℵ0 -many non-
isomorphic suborders of R. In particular, if CH holds then BA(ℵ1) fails and, in
fact, there are 2ℵ1-many pairwise non-isomorphic ℵ1-dense suborders of R.

Theorem 3.13 (Baumgartner [2]). Assume mm > ℵ1. Then BA(ℵ1) holds.

It is not too hard to show that as a consequence we have the following: Assume
mm > ℵ1. Let B be an arbitrary subset of R of cardinality ℵ1. Then {B} is a
one-element basis for SLO>ℵ0 .

B. Uncountable Linear Orderings
Let us now broaden our perspective and look at the class of all uncountable linear
orderings, LO>ℵ0 . The question is whether LO>ℵ0 has a finite basis. Of course, by
the Dushnik-Miller result from above we have:

Theorem 3.14 (Dushnik-Miller [7]). Assume CH. Then LO>ℵ0 does not have a
basis of size less than 2ℵ1 .

On the other hand, Baumgartner’s result raises the hope that under mm > ℵ1
the class LO>ℵ0 admits a finite basis. It remains to deal with the following class of
orderings:

Definition 3.15. A linear ordering L is an Aronszajn line if it is uncountable and if
it contains no uncountable subordering which is well-ordered, reverse well-ordered,
or separable.

The name comes from the connection with Aronszajn trees: The lexicographic order-
ing of an Aronszajn tree is an Aronszajn line and any partition tree of an Aronszajn
line is an Aronszajn tree.56

56See Todorcevic [56].
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By the results of the previous section we know that assuming mm > ℵ1 the
elements of LO>ℵ0 which are not Aronszajn lines have a three element basis, namely,
{ω1, ω1∗, B} where B is an arbitrary subset of R of cardinality ℵ1 and ω1∗ is ω1 with
the reverse ordering. It remains to find a basis for the Aronszajn lines.

Definition 3.16. A Countryman line is an uncountable linear ordering C such that
C × C can be decomposed into countably many chains.

Shelah [54] showed that Countryman lines exist and he conjectured mm > ℵ1 implies
that every Aronszajn line must contain a Countryman line.57

Theorem 3.17 (Moore, [42]). Assume mm > ℵ1. Then every Aronszajn line con-
tains a Countryman line.

Corollary 3.18. Assume mm > ℵ1. Then LO>ℵ0 has a five-element basis, namely,
{ω1, ω1∗, B,C,C∗}, where B is any subset of R of cardinality ℵ1, C is any Country-
man line, and C∗ is C with the reverse ordering.

C. Directed Sets and Cofinal Types

Recall that a partial ordering is a pair (D,6D) where D is a set and 6 is a relation
on D which is reflexive, antisymmetric, and transtive. A partial ordering (D,6D)
is directed if for any x, y ∈ D there exists z ∈ D such that x 6D z and y 6D z. A
subset X ⊆ D of a partial ordering (D,6D) is cofinal in D if for every x ∈ D there
exists y ∈ X such that x 6D y.

Suppose that (D,6D) and (E,6E) are directed partial orderings. Tukey [60]
introduced the following central notion: A function f : E → D is cofinal if for each
X ⊆ E which is cofinal in E, the pointwise image f“X is cofinal in D. If there
exists such a map then we say that (D,6D) is Tukey reducible (or cofinally finer)
than (E,6E) and we write D 6T E.

There is an equivalent formulation of Tukey reducibility that is quite useful. A
subset X ⊆ D of a partially ordered set (D,6D) is unbounded in D if there is no
single element x ∈ D which bounds every member of X; that is, for each x ∈ D
there exists y ∈ X such that y 
D x. A function f : D → E is called a Tukey map
(or an unbounded map) if for each X ⊆ D which is unbounded in D, the pointwise
image f“X is unbounded in E. It is not too hard to show the following: Suppose
that (D,6D) and (E,6E) are directed partial orderings. Then D 6T E iff there is
a Tukey map from D into E. Let us write D ≡T E if D 6T E and E 6T D.

57Shelah actually conjectured that PFA implies this. But for unity of exposition I will continue
to frame the discussion with respect to the stronger axiom mm > ℵ1.
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Tukey [60] showed that for two directed partial orderings (D,6D) and (E,6E)
we have D ≡T E iff there is a partially ordered set (C,6C) into which both D and
E can be embedded as cofinal subsets. For this reason the equivalence classes of
directed partial orderings are often called cofinal types.

For a given cardinal κ, let Dκ denote the set of all cofinal types of directed sets
of size 6 κ. We are interested in determining Dκ for various κ. It is easy to see that
Dℵ0 = {1, ω}. So the first nontrivial problem is to determine Dℵ1 .

A canonical class of examples of directed sets are sets of the form [κ]<λ ordered
under ⊆. Notice that by the above characterization in terms of Tukey maps we have
that [κ]<ω is cofinally finer than any directed set of size 6 κ. In particular, [ω1]<ω
is cofinally finer than any set in Dℵ1 . Tukey [60] showed that 1, ω, ω1, ω × ω1, and
[ω1]<ω (each with their natural ordering) are distinct elements of Dℵ1 . The question
arises: Are there any other elements in Dℵ1?

Theorem 3.19 (Todorcevic [57]). Dc has at least 2ℵ1-many elements. In particular,
if CH holds, then Dℵ1 has 2ℵ1-many elements.

Theorem 3.20 (Todorcevic [57]). Assume mm > ℵ1. Then Dℵ1 has just the five
canonical elements: 1, ω, ω1, ω × ω1, [ω1]<ω.

B

In each of the above three cases the structure theory of the domain in question
is drastically different under the two hypotheses CH and mm > ℵ1. Under the as-
sumption CH, the three classes under consideration have a large number of elements
and do not admit a tidy structure theory: SLO>ℵ0 does not have a basis of size
less than 2ℵ1 , LO>ℵ0 does not have a basis of size less than 2ℵ1 , and Dℵ1 has 2ℵ1

many elements. In contrast, under the assumption mm > ℵ1, the three classes under
consideration have few elements and admit of a tidy structure theory: SLO>ℵ0 has
a one-element basis, LO>ℵ0 has a five-element basis, and Dℵ1 has five-elements. In
slogan form: “Under CH we have chaos, under mm > ℵ1 we have pattern.”

The extrinsic case for mm > ℵ1 is intended to mirror the extrinsic case for
ADL(R), a case that is taken to be a paradigm of extrinsic justification in set theory.
For purposes of comparison, let us briefly review that case.

(1) ADL(R) has “intrinsically plausible” consequences; for example, it implies that
sets of reals in L(R) are Lebesgue measurable, have the property of Baire, and
have the perfect set property; and it implies that Σ2

1-uniformization holds in
L(R).

(2) ADL(R) in turn is implied by its intrinsically plausible consequences.
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(3) ADL(R) is implied by large cardinal axioms.

(4) Large cardinals provide a set-generically invariant theory of L(R) and ADL(R)

is at the heart of this theory.

(5) ADL(R) is equivalent to the existence of inner models at the level of the large
cardinals that imply it.

(6) ADL(R) is implied any sufficiently strong natural principle, including princi-
ples which are incompatible with each other; in this regard it lies within the
“overlapping consensus.”

These six points illustrate the systematic manner in which evidence for ADL(R) has
been accrued.58

In the above case for mm > ℵ1 we don’t have anything like (2)–(6). The case
is rather modeled on (1), where one attempts to justify a principle in terms of its
intrinsically plausible consequences.

But are the consequences of mm > ℵ1 really intrinsically plausible? It is true
that the assumption of mm > ℵ1 provides us with a tidy structure theory for H(ω2)
and, in contrast, the assumption of CH provides us with a great many counter-
examples to that structure theory. But notice that in the case for ADL(R) the
structure theory in question pertains not to all of P (R) but only to a restricted
fragment, namely, P (R) ∩ L(R); and the argument supports not full AD, but only
for a restricted fragment, namely, ADL(R), the fragment that applies to P (R)∩L(R).
It is intrinsically plausible that the sets in the restricted fragment P (R) ∩ L(R)
admit the regularity properties and enjoy a tidy structure theory, but it is not
intrinsically plausible that all of P (R) admit the regularity properties and enjoy a
tidy structure theory. Similarly, in the case of mm > ℵ1 it would seem that what
is intrinsically plausible is that a restricted fragment of H(ω2)—say, a fragment of
the form H(ω2) ∩M for some inner model M—satisfies the tidy structure theory;
and that it is not intrinsically plausible that all of H(ω2) satisfies the tidy structure
theory. If this is right then the case for mm > ℵ1 misses its mark. What one is
really getting is a case for a restricted fragment of mm > ℵ1, one that applies to a
restricted fragment of H(ω2).59

So far this reply is largely schematic. It shows that something is amiss in the
above extrinsic case for mm > ℵ1. To strengthen our reply we must fill in some
details. We must say something about the restricted fragment H(ω2) ∩M that we

58See Koellner [29] and [31] for details.
59Bear in mind that here I am only considering local consequences of mm > ℵ1 and I am only

considering extrinsic justifications modeled on (1) above.
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have in mind and something about the restricted fragment of mm > ℵ1 that we have
in mind. For this we must turn to the case for (∗).

3.2.2 The Case for (∗)
The extrinsic case for (∗) is based on generic absoluteness. To describe this it will
be useful to reformulate generic absoluteness in terms of Ω-logic.

Definition 3.21 (Woodin [62]). Suppose that T is a countable theory in the lan-
guage of set theory and ϕ is a sentence. Then

T |=Ω ϕ

if for all complete Boolean algebras B and for all ordinals α,

if V Bα |= T then V Bα |= ϕ.

We say that a statement ϕ is Ω-satisfiable if there exists an ordinal α and a
complete Boolean algebra B such that V Bα |= ϕ, and we say that ϕ is Ω-valid if
∅ |=Ω ϕ.

Theorem 3.22 (Woodin [62]). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose that T is a countable theory in the language of set
theory and ϕ is a sentence. Then for all complete Boolean algebras B,

T |=Ω ϕ iff V B |= “T |=Ω ϕ.”

Thus, this logic is robust in the sense that the question of what implies what is
generically invariant under large cardinal assumptions.

Corresponding to the semantic relation |=Ω there is a quasi-syntactic proof re-
lation `Ω. The “proofs” are certain “robust” sets of reals (universally Baire sets of
reals) and the test structures are models that are “closed” under these proofs. The
precise notions of “closure” and “proof” are somewhat technical and so we will pass
over them in silence.

Like the semantic relation, this quasi-syntactic proof relation is generically in-
variant under large cardinal assumptions:

Theorem 3.23 (Woodin [62]). Assume ZFC and that there is a proper class of
Woodin cardinals. Suppose T is a countable theory in the language of set theory, ϕ
is a sentence, and B is a complete Boolean algebra. Then

T `Ω ϕ iff V B |= “T `Ω ϕ”.
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Thus, we have a semantic consequence relation and a quasi-syntactic proof rela-
tion, both of which are generically invariant under the assumption of large cardinal
axioms. It is natural to ask whether the soundness and completeness theorems hold
for these relations. The soundness theorem is known to hold:

Theorem 3.24 (Woodin [62]). Assume ZFC. Suppose T is a countable theory in
the language of set theory and ϕ is a sentence. If T `Ω ϕ then T |=Ω ϕ.

It is open whether the corresponding completeness theorem holds. Woodin’s Ω
Conjecture is simply the assertion that it does:

Conjecture 3.25 (Ω Conjecture). Assume ZFC and that there is a proper class
of Woodin cardinals. Then for each sentence ϕ,

∅ |=Ω ϕ iff ∅ `Ω ϕ.

We will need a strong form of this conjecture which we shall call the Strong Ω
Conjecture. It is somewhat technical and so we will pass over it in silence.60

Recall that one key virtue of large cardinal axioms is that they “effectively settle”
the theory of second-order arithmetic (and, in fact, the theory of L(R) and more)
in the sense that in the presence of large cardinals one cannot use the method of
set forcing to establish independence with respect to statements about L(R). This
notion of invariance under set forcing played a key role in the case for ADL(R). We
can now rephrase this notion in terms of Ω-logic.

Definition 3.26. A theory T is Ω-complete for a collection of sentences Γ if for each
ϕ ∈ Γ, T |=Ω ϕ or T |=Ω ¬ϕ.

The invariance of the theory of L(R) under set forcing can now be rephrased as
follows:

Theorem 3.27 (Woodin). Assume ZFC and that there is a proper class of Woodin
cardinals. Then ZFC is Ω-complete for the collection of sentences of the form
“L(R) |= ϕ”.

Unfortunately, it follows from the aforementioned generalizations of the Levy-
Solovay result that traditional large cardinal axioms do not alone constitute an
Ω-complete theory at the level of Σ2

1 since one can always use a “small” (and hence
large cardinal preserving) forcing to alter the truth-value of CH. Nevertheless, if one
supplements large cardinal axioms then Ω-complete theories can be obtained. This
is the centerpiece of Woodin’s case against CH.

60See Koellner [30] for the details.
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Theorem 3.28 (Woodin [62]). Assume that there is a proper class of Woodin
cardinals and that the Strong Ω Conjecture holds.

(1) There is an axiom A such that

(i) ZFC +A is Ω-satisfiable and
(ii) ZFC +A is Ω-complete for the structure H(ω2).

(2) Any such axiom A has the feature that

ZFC +A |=Ω ‘H(ω2) |= ¬CH ’.

Let us rephrase this as follows: For each A satisfying (1), let

TA = {ϕ | ZFC +A |=Ω ‘H(ω2) |= ϕ ’}.

The theorem says that if there is a proper class of Woodin cardinals and the Strong
Ω Conjecture holds, then there are (non-trivial) Ω-complete theories TA of H(ω2)
and all such theories contain ¬CH.

It is natural to ask whether there is greater agreement among the Ω-complete
theories TA. Ideally, there would be just one. Unfortunately, there isn’t.

Theorem 3.29 (K. andWoodin [38]). Assume that there is a proper class of Woodin
cardinals. Suppose that A is an axiom such that

(i) ZFC +A is Ω-satisfiable and

(ii) ZFC +A is Ω-complete for the structure H(ω2).

Then there is an axiom B such that

(i′) ZFC +B is Ω-satisfiable and

(ii′) ZFC +B is Ω-complete for the structure H(ω2)

and TA 6= TB.

How then shall one select from among these theories? Woodin’s work in this
area goes a good deal beyond Theorem 3.28. In addition to isolating an axiom
that satisfies (1) of Theorem 3.28 (assuming Ω-satisfiability), he isolates an axiom—
namely, the axiom (∗) mentioned earlier—which has additional important features.

This axiom can be phrased in terms of (the provability notion of) Ω-logic:
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Theorem 3.30 (Woodin [62]). Assume ZFC and that there is a proper class of
Woodin cardinals. Then the following are equivalent:

(1) (∗).

(2) For each Π2-sentence ϕ in the language for the structure

〈H(ω2),∈, INS, A : A ∈ P (R) ∩ L(R)〉

if
ZFC + “〈H(ω2),∈, INS, A : A ∈ P (R) ∩ L(R)〉 |= ϕ”

is Ω-consistent, then

〈H(ω2),∈, INS, A : A ∈ P (R) ∩ L(R)〉 |= ϕ.

It follows that of the various theories TA involved in Theorem 3.28, assuming
the Strong Ω Conjecture, there is one that stands out: The theory T(∗) given by
(∗). This theory maximizes the Π2-theory of the structure 〈H(ω2),∈, INS, A : A ∈
P (R) ∩ L(R)〉. The continuum hypothesis fails in this theory. Moreover, in the
maximal theory T(∗) given by (∗) the size of the continuum is ℵ2.

To summarize: Assuming the Strong Ω Conjecture, there is a “good” theory of
H(ω2) and all such theories imply that CH fails. Moreover, (again, assuming the
Strong Ω Conjecture) there is a maximal such theory and in that theory 2ℵ0 = ℵ2.

The key open question in this area is whether (∗) is ZFC + Ω-satisfiable. It is
known that the answer is ‘yes’ if the Strong Ω Conjecture holds, but this conjecture
is open. Nevertheless, even without the Strong Ω Conjecture there is a nice parallel
between the case of L(R) (which is equivalent to L(H(ω1))) and L(H(ω2)): Assume
that there is a proper class of Woodin cardinals. Then, in the first case we have that
for every formula ϕ, either

ZFC `Ω “L(R) |= ϕ”
or

ZFC `Ω “L(R) |= ¬ϕ”.
Similarly, in the second case, for every formula ϕ, either

ZFC + (∗) `Ω “L(H(ω2)) |= ϕ”

or
ZFC + (∗) `Ω “L(H(ω2)) |= ¬ϕ”.

This, in this sense, (∗) lifts the “effective completeness” that we have for L(R) up
to the level of L(H(ω2)).
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3.3 The Envelope Perspective
Let us now return to our discussion of the case for mm > ℵ1. Recall that in that
discussion we had reached the following juncture:

The case extrinsic case for mm > ℵ1 that we are considering is supposed to be
modeled on (1) in the case for ADL(R), where a principle is justified in terms of its
intrinsically plausible consequences. In the case of ADL(R), the extrinsic case argues
that (i) ADL(R) implies that the restricted collection P (R) ∩ L(R) satisfies a tidy
structure theory—where all sets of reals are Lebesgue measurable, have the other
regularity properties, and satisfy various structural principles—which is intrinsically
plausible (when it comes to definable sets of reals), and (ii) that this constitutes
evidence for ADL(R). Notice that the same case cannot be made for full AD since
this broader axiom implies that the full collection P (R) has this tidy structure theory
and it is not intrinsically plausible that the full collection satisfies this tidy structure
theory (for example, it is not intrinsically plausible that all sets of reals are Lebesgue
measurable, have the other regularity properties, and satisfy the structural principles
given by determinacy).

Now the parallel extrinsic case for mm > ℵ1 we are considering argues that (i)
mm > ℵ1 implies that the collection H(ω2) satisfies a tidy structure theory which
is intrinsically plausible, and (ii) that this constitutes evidence for mm > ℵ1. It is
not clear, however, that it is intrinsically plausible that the full collection H(ω2)
satisfies the tidy structure theory in question (like that discussed in Subsections A,
B, and C); rather, what is intrinsically plausible is that for some inner model M the
restricted collection H(ω2) ∩M satisfies the tidy structure theory. And so, if one
is to truly parallel the case for ADL(R) then we would get an argument not for full
mm > ℵ1 but rather some restricted fragment mm > ℵ1 (restricted in the way that
ADL(R) is a restricted fragment of AD) that applies only to H(ω2) ∩M , for some
suitable M .

We could leave the matter there and simply pose the following challenge to the
advocate of mm > ℵ1:

Provide an argument for why we should regard the consequences that
mm > ℵ1 has for all of H(ω2) (as opposed to some restricted fragment
of the form H(ω2) ∩M) as intrinsically plausible.

B

But we would like to go further and outline a perspective—the envelope
perspective—which follows the parallel with ADL(R) more closely and provides us
with both a natural restricted fragment H(ω2) ∩M and a natural restricted frag-
ment of mm > ℵ1.
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The model M that we have in mind is simply the Pmax-extension of L(R) and
the restricted fragment of mm > ℵ1 is simply the axiom (∗).

The envelope perspective on forcing axioms is a perspective from the point of
view where CH holds and large cardinals exist. So, for the purposes of this discussion,
assume that the ambient universe satisfies CH and has large cardinals at the level
of a proper class of Woodin cardinals. (In the next section we will introduce a
candidate for an ultimate inner model in which CH holds, namely, Ultimate-L.)

Within our background universe (think of Ultimate-L) we have the canonical
inner model L(R). It satisfies AD but does not satisfy AC. It is a “paradise for
analysts” in that in it all sets of reals are Lebesgue measurable, have the property
of Baire, have the perfect set property and admit a tidy structure theory. It is also
canonical in the sense that its theory is generically invariant. Within this model
there is a definable, homogenous partial order Pmax. Let G ⊆ Pmax be L(R)-generic.
The generic G is equivalent to a set A ⊆ ω1 and we shall think of the Pmax-extensions
of L(R) as having the form L(R)[A] where A ⊆ ω1 is the associated set. The point
is that since Pmax is ω-closed and since we are assuming CH and since we have
large cardinals (in particular, R#) we can actually build the generics. So, inside
our ambient universe we have the inner model L(R) and we also have various inner
models L(R)[A0], L(R)[A1], etc. extending it like spokes emanating out from the hub
of a wheel. These are the Pmax-extensions. For any two such extensions L(R)[A0]
and L(R)[A1] we have (H(ω2) ∩ L(R)[A0]) ∩ (H(ω2) ∩ L(R)[A1]) = H(ω2) ∩ L(R).
They are elementarily equivalent (with arbitrary parameters in L(R)).

Let us focus on one such Pmax-extension L(R)[A]. It actually exists as an inner
model and it is canonical in that its theory is generically invariant. The H(ω2)
of L(R)[A] is not the full H(ω2) of V , but is rather a restricted fragment—it is
an envelope of the full H(ω2) of V . The structural consequences of mm > ℵ1 that
apply to H(ω2) hold in this envelope since the model L(R)[A] has the Π2-maximality
property discussed above.

From this perspective the structural consequences of mm > ℵ1 that pertain to
H(ω2) do not concern the full H(ω2); rather they just concern the H(ω2) of the
Pmax-extension L(R)[A]. The structure theory that emerges is simply the “definable
trace” of the structure theory that holds in L(R) under ADL(R), as it is “imported”
through the definable, homogenous forcing to the extension L(R)[A].

In hindsight, from the present perspective—where we are assuming CH and large
cardinal axioms—this is what one should have expected all along. The structural
consequences of mm > ℵ1 that pertain to H(ω2) are captured by (∗) and so hold in
the Pmax-extensions L(R)[A]. In the present setting these Pmax-extensions actually
exist. Their theories are canonical since they are the “definable trace” of the theory
of L(R) and so inherit the canonicity of L(R). Consequently, one would expect
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these models to have a nice structure theory. In particular, it is entirely plausible
that all ℵ1-dense sets of reals are isomorphic in such a model, just as it is entirely
plausible that all sets of reals are Lebesgue measurable in L(R). The model L(R)
is a paradise for analysts. But in the real world there are non-Lebesgue measurable
sets. Likewise, the models L(R)[A] are paradises for combinatorial set theorists.
But in the real world (on this perspective) there are ℵ1-dense sets of reals that are
non-isomorphic.

I think that this perspective largely deflates the force of the extrinsic case (of
type (1)) that has been made for forcing axioms. It deflates the case against CH
since from the perspective of CH it makes perfect sense to see all of the structural
results as holding in inner models of the form L(R)[A], just as from the perspective
of AC it makes sense to see all of the structural results of AD as holding in L(R).

I want to stress that I am not claiming that CH should be regarded as parallel
to AC in terms of its intrinsic plausibility. In fact, I would say that it has next to
no intrinsic plausibility. I am also not saying that we should accept CH. I am not
making a case for CH at all. But I am saying that the fact that CH implies counter-
examples to a tidy structure theory should not alone be a mark against it, any more
than the fact alone that AC implies counter-examples to a tidy structure theory
should be regarded as a mark against it; and that this is especially so given that we
have been given no independent reasons for thinking that the structure theory in
question applies to anything but a restricted fragment.

The main points I have been making are these:

(1) It should be noted that the above case for mm > ℵ1 is not really parallel to
the case for ADL(R) since it concerns full H(ω2) and not a restricted fragment.

(2) It is unclear that the consequences that mm > ℵ1 has for full H(ω2) are
intrinsically plausible. The advocate of this kind of justification for mm > ℵ1
needs to say more about why it isn’t just plausible that the consequences hold
for some restricted fragment.

(3) If the arguments have force then they should have force to a person who is
open to the idea that CH holds.

(4) But from the point of view of CH, the envelope perspective provides us with
a case that truly parallels the case for ADL(R) (cf. (1) above) and provides us
with a very natural restricted fragment of H(ω2) and a restricted fragment of
mm > ℵ1 (cf. (2) above), namely, H(ω2)∩L(R)[A] (where the latter is a Pmax
extension) and (∗).
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(5) From this perspective everything fits together perfectly: The structure theory
that emerges for the restricted fragment of H(ω2) is simply the “definable
trace” of ADL(R) as it is imported by the definable, homogenous forcing from
L(R) to the Pmax-extension L(R)[A].

There is much more to be said about the envelope perspective. Here I will
confine myself to three additional points. First, the method applies not just to
L(R) but rather applies to much richer models of determinacy. Second, there are
Pmax variations. For example, there is the Qmax variation. This forcing produces
canonical extensions L(R)[B0], L(R)[B1], etc. which also emanate from L(R) like
spokes. Like the Pmax extensions these models are all canonical, they all look alike,
and they have a canonical structure theory. But they look different than the Pmax
models. From the envelope perspective this makes perfect sense. What is happening
is that we are constructing (via CH) inner models that are canonical extensions of
L(R). The structure theory of L(R) gets imported to the structure theory of the
canonical extension. But it gets imported one way via Pmax and another way via
Qmax. All of these models exist alongside one another. We don’t have to choose. We
let a thousand flowers bloom. Finally, in this last respect the envelope perspective
is quite different than the perspective of mm > ℵ1. For mm > ℵ1 implies that any
two models containing the reals also contain P (ω1). So from the point of view of
mm > ℵ1 the variations do not exist. There is only one flower in the garden. The
advocate of mm > ℵ1 would have to say something about why there is only this one
flower—why the structure theories given in the Pmax variations are not intrinsically
plausible and why we must jettison them in favour of one the one true structure
theory that stands above the rest.

4 The HOD Dichotomy
The reader might feel at this point that the results discussed in this paper so far
have been largely negative. In the first two sections I considered approaches that
proceeded at a high level of abstraction and generality and concluded that we could
learn little about the questions of absolute undecidability and indefiniteness at that
level. That negative conclusion motived the turn to deeper engagement with devel-
opments in mathematics. In the previous section we did just that, engaging with the
strongest case that has been made for axioms that settle CH. But again, our con-
clusion was negative, since we concluded that those arguments—even though they
engage with developments in mathematics—turn on an oversight and are ultimately
undermined by other developments in mathematics. As it stands I think it is fair to
say that at the present time we do not have a strong case for or against CH.
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So perhaps it is time to stand back and survey the landscape of possibilities. That
is what I would like to do now. In this section I will present a dichotomy theorem.
Recall, that in the first section we considered a dichotomy theorem—namely, Gödel’s
Disjunction—and this dichotomy oriented our discussion by presenting us with two
alternatives. The trouble was that the dichotomy involved unclear philosophical
notions that were hard to pin down and this impeded our progress. Indeed, in
retrospect it is unclear that the dichotomy was even clear enough to truly orient our
discussion, for it is unclear what was even meant by each alternative. In contrast, the
dichotomy that I will now present is a purely mathematical dichotomy, one involving
only notions that are clear and exact. It is a dichotomy that can truly guide us. It
points to two possible, radically different futures.

B

The dichotomy theorem involves another theme from Gödel, one that also origi-
nates in the 1946 paper in which he introduced the notion of “absolute provability”
and proposed being “provable from “large cardinal axioms” ” as an absolute notion
of provability. In that paper he also introduced the notion of “absolute definability”
and he proposed “being ordinal definable” as an absolute notion of definability.

The motivating idea in each case was Turing’s analysis of computability. Gödel
thought that the importance of Turing’s analysis was “largely due to the fact that
with this concept one has for the first time succeeded in giving an absolute definition
of an interesting epistemological notion,” one that is not relative to a given language
or formal system, one where by “a kind of miracle it is not necessary to distinguish
orders, and the diagonal procedure does not lead outside the defined notion.”61 He
wanted to do the same for provability and definability. In the first case he wanted
to avoid diagonalization through the incompleteness theorems and he did this by
employing the vague and open-ended notion of a “large cardinal axiom.” In the
second case he wanted to avoid diagonalization through Richard’s paradox (which
he explicitly mentions) and Berry’s paradox (which he does not).

A natural way to arrive at such a candidate for an absolute notion of definability
is to notice first that any notion of definability—call it ‘D-definable’—according to
which there are ordinal numbers that are not D-definable is susceptible to tran-
scendence through diagonalization: For consider (as in Berry’s paradox) “the least
ordinal which is not D-definable.” We have, in doing so, just given a higher-level
definition of an ordinal that is not D-definable; and so, by reflecting on the notion,
we have been led to a notion of definability that transcends D-definability. It follows

61Gödel [21], p. 150.
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that any candidate for an absolute notion of definability must have the feature that
according to it all ordinals are definable. So it is natural to take the minimal step
and simply consider the notion of being definable from an ordinal. This is the notion
of ordinal definability that Gödel proposed as an absolute notion of definability.

The question is whether it is indeed an absolute notion. Gödel claimed that “[i]t
can be proved that it has the required closure property” by which he meant that if
you try to transcend the notion by introducing a truth predicate you will find that
you do not get a richer notion.62 This is true, and the way to prove it is via the
reflection principle, something that Gödel seems to have known. He also said that
he thinks that the notion of ordinal definability “will lead to another, and probably
simpler, proof for the consistency of the axiom of choice.”63 He was right about this
as well. It seems likely that he had a proof in mind. In any case, the proof was
subsequently given by others.64 It involves considering HOD, the class of sets which
are hereditarily ordinal definable.

The inner models L and HOD are, in many respects, at opposite ends of the inner
model spectrum. L is the most slender of inner models, while, in some sense, HOD
is the broadest; L is defined locally, while HOD is defined globally; and L cannot
accomodate modest large cardinals, while HOD can accomodate all traditional large
cardinals.

This last point is relevant to our present discussion. For although the axiom V=L
has the virtue that it settles many propositions of set theory—and for that reason
might be considered as the basis of a proposed notion of absolute provability—it has
the drawback that it is incompatible with large cardinals, and so is incompatible with
Gödel’s proposed notion of absolute provability. In contrast, the axiom V= HOD is
not in conflict with traditional large cardinals. This leads to the prospect of a merger
between Gödel’s proposed notion of absolute provability and his proposed notion of
absolute definability. For perhaps there is an ultimate version of L that satisfies
V= HOD. This prospect of such a model will guide our discussion throughout the
rest of the paper. But first, to the dichotomy.

B

The dichotomy theorem that I have in mind concerns HOD. But it is motivated
by the following remarkable dichotomy theorem—the L Dichotomy Theorem:

Theorem 4.1 (Jensen). Exactly one of the following hold.

62Gödel [21], pp. 151-2.
63Gödel [21], pp. 151-2.
64See Myhill and Scott [43].
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(1) For every singular cardinal γ, γ is singular in L and (γ+)L = γ+.

(2) Every uncountable cardinal is an inaccessible cardinal in L

The first alternative is one in which L is “close” to V , in that it correctly computes
much of the cardinal structure of V . The second alternative is on in which L is “far”
from V , in that it radically fails to capture the cardinal structure of V , thinking, for
example, that ω1 is an inaccessible cardinal. 65

Woodin proved a similar dichotomy theorem for HOD—the HOD Dichotomy
Theorem—a weak version of which is the following:

Theorem 4.2 (Woodin). Suppose that κ is an extendible cardinal. Then exactly
one of the following hold.

(1) For every singular cardinal γ > κ, γ is singular in HOD and (γ+)HOD = γ+.

(2) Every regular cardinal γ > κ is a measurable cardinal in HOD.

Again, in the first alternative HOD is “close” to V and in the second alternative
HOD is “far” from V .66

There is an important foundational difference between these the L Dichotomy
Theorem and the HOD Dichotomy Theorem. In the case of the L Dichotomy,
granting modest large cardinals, we know which side of the dichotomy holds; in
particular, if 0# exists then the second side of the dichotomy must hold. But in
the case of the HOD Dichotomy, no traditional large cardinal axiom can force us
into the second side of the dichotomy (since every traditional large cardinal axiom
is compatible with V= HOD). So, perhaps the first side of the HOD Dichotomy is
true. Or, perhaps there are new large cardinals (a higher analogue of 0#) which
force us into the second side of the HOD Dichotomy.

There are thus, at present, two possible futures (assuming an extendible cardi-
nal). The first is the future in which the first side of the HOD Dichotomy holds
and HOD is “close” to V . The second is the future in which the second side of the
HOD Dichotomy holds and HOD is “far” from V . The question is: Which side of
the HOD Dichotomy holds?

There is a program aimed at establishing the first future—the first half of the
HOD Dichotomy. This is the program of inner model theory. Recent work of Woodin
has shown that if inner model theory reaches the level of one supercompact cardinal
then it “goes all the way.” This suggests that there might be an “Ultimate-L.” It is
not presently known how to construct such a model but a lot of machinery has been

65The proof of this theorem can be found in a number of texts; for example, Devlin [6].
66See Woodin [63] and [66] for the proof and for discussion.
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developed and there is an axiom (“V=Ultimate-L”) and an associated conjecture
(the “Ultimate-L Conjecture”) concerning the existence of such an inner model.
The point, for our present purposes, is that if the Ultimate-L conjecture holds then
(assuming that there is an extendible cardinal with a huge cardinal above it) the
first side of the HOD Dichotomy must hold. In this future, HOD is “close” to V
and there are no large cardinals that transcend HOD; in other words, there is no
analogue of 0# and HOD is indeed compatible with all large cardinals (not just the
traditional ones).

There is a very different program, one aimed at a radically different future, one
in which the second half of the HOD Dichotomy holds. This is the program of large
cardinals beyond choice.

In the next two sections I will discuss each of these programs, and in the final
section I will return to the HOD Dichotomy and discuss the two possible futures
that lie before us.

5 Inner Model Theory
In this section I would like to discuss the first program.67 To do this it will be useful
to say more about the HOD Dichotomy.

5.1 The HOD Dichotomy
The official version of the HOD Dichotomy Theorem involves the notion of a cardinal
being ω-strongly measurable in HOD.

Definition 5.1 (Woodin [63]). Let γ be an uncountable regular cardinal. Let Sγω =
{α < γ : cof(α) = ω}. Then γ is ω-strongly measurable in HOD if there exists κ < γ
such that

(1) (2κ)HOD < γ and

(2) There is no partition 〈Sα : α < κ〉 of Sγω into stationary sets such that 〈Sα :
α < κ〉 ∈ HOD.

Lemma 5.2 (Woodin [63]). Assume that γ is ω-strongly measurable in HOD. Then

HOD |= γ is a measurable cardinal.

67For further discussion and for the proofs of the results discussed in this section see Woodin
[63], [65], and [66].
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Theorem 5.3 (Woodin [63]). (The HOD Dichotomy Theorem) Suppose that κ is
an extendible cardinal. Then exactly one of the following hold.

(1) For every singular cardinal γ > κ, γ is singular in HOD and (γ+)HOD = γ+.

(2) Every regular cardinal γ > κ is ω-strongly measurable in HOD.

Definition 5.4 (Woodin [66]). The HOD Hypothesis is the statement that there
exists a proper class of regular cardinals γ which are not ω-strongly measurable in
HOD.

There is a series of conjectures to the effect that the HOD Hypothesis is provable
from ZFC, possibly supplemented with large cardinals.

Definition 5.5 (Woodin [66]). The Weak HOD Conjecture is the conjecture that

ZFC + “There is an extendible cardinal with a huge cardinal above”

proves the HOD Hypothesis. The HOD Conjecture is this conjecture with ‘super-
compact’ in place of ‘extendible cardinal with a huge cardinal above’. The Strong
HOD Conjecture is the conjecture that ZFC alone proves the HOD Hypothesis.

Notice that these conjectures are number-theoretic conjectures; in fact, they are
Σ0

1-statements, asserting that a certain statement is provable in a certain system.
The point is that these conjectures are not going to run up against the rock of
undecidability, as happened in the case of CH. Notice also that these conjectures
become more plausible as one strengthens the large cardinal assumption. In what
follows we shall focus on the Weak HOD Conjecture, the most plausible of the three
conjectures.

If the Weak HOD Conjecture is true then, assuming that there is an extendible
cardinal with a huge cardinal above, we must be in the first half of the HOD Di-
chotomy, where HOD is “close” to V .

It is natural to ask why one might make such a conjecture. It is really quite a
surprising conjecture. For it posits that (in the presence of an extendible cardinal
with a huge cardinal above) there are arbitrarily large regular cardinals γ such that
for every κ < γ such that (2κ)HOD < γ there is a partition 〈Sα : α < κ〉 ∈ HOD of Sγω
into sets which are stationary in V . We know, by Solovay’s theorem on stationary
splitting that there are always such partitions in V , but there is little reason to
expect that such splittings can exist in HOD, that is, that the splitting can be done
“definably.” In fact, when I was a graduate student this conjecture was known by a
different name. It was called “the silly conjecture.”

The evidence for the conjecture comes from inner model theory.
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5.2 Weak Extender Models
Inner model theory began, of course, with Gödel’s L, but it entered the large cardinal
hierarchy with Solovay’s L[U ]. Since then the holy grail of inner model theory has
been an inner model for a supercompact cardinal.

Prior to the actual construction of such a model it is hard to know what it will
look like. But one can isolate a very basic feature that such a model should have.

Definition 5.6 (Woodin [63]). A transtive class N |= ZFC is a weak extender model
for the supercompactness of κ if for every λ > κ there exists a κ-complete normal
fine measure U on Pκ(λ) such that

(1) N ∩ Pκ(λ) ∈ U and

(2) U ∩N ∈ N .

Each of these conditions is motivated by the case of L[U ] and the other inner models.
They are what one would expect in the case of an inner model for the supercom-
pactness of κ.

In general, when one constructs an inner model for a given large cardinal, the
existence of stronger large cardinals implies that the model is “far” from V . Re-
markably, in the case of a supercompact the above conditions ensure that the model
is “close” to V regardless of which other large cardinals live in V .

Theorem 5.7 (Woodin [63]). Suppose that N is a weak extender model for the
supercompactness of κ. Then for every singular cardinal γ > κ, γ is singular in N
and (γ+)N = γ+.

In particular, if HOD is a weak extender model for the supercompactness of κ then
we must be in the first half of the HOD Dichotomy.

This result suggests that a weak extender model for the supercompactness of κ
also captures the large cardinal structure of V . This turns out to be the case. The
key result is the following theorem, the Universality Theorem.

Theorem 5.8 (Woodin [63]). Suppose that N is a weak extender model for the
supercompactness of κ. Suppose E is an N -extender of length η with critical point
κE > κ. Let

jE : N →ME

be the ultrapower embedding given by E. Then the following are equivalent.

(1) For each A ⊆ [η]<ω, jE(A) ∩ [η]<ω ∈ N .

3221



Koellner

(2) E ∈ N .

This theorem lies at the heart of a cluster of results which show that weak extender
models for the supercompactness of κ capture the large cardinal structure of V . For
example:

Theorem 5.9 (Woodin [63]). Suppose that N is a weak extender model for the
supercompactness of κ. Suppose that for each n < ω there is a proper class of
n-huge cardinals. Then, in N , for each n < ω, there is a proper class of n-huge
cardinals.

It is worthwhile pausing to underscore the unexpected nature of these develop-
ments. As mentioned earlier, in general in inner model theory when one targets a
given large cardinal, the resulting model cannot accomodate stronger large cardinals;
in fact, the existence of stronger large cardinals typically implies that the model is
“far” from V (in parallel to the manner in which the existence of 0# implies that L
is “far” from V ). But the case of a weak extender model for the supercompactness
of κ is completely different. Here one is just targeting one supercompact cardinal
and the result is a model that is not only “close” to V with regard to its computa-
tion of cardinal structure (above κ) but is also “close” to V in that it inherits all
of the traditional large cardinals existing in V . This includes large cardinals (like
n-huge cardinals) which are far beyond the level of supercompactness. In short, in
the case of supercompacts there is an “overflow” and the model “goes all the way”.
This suggests that the problem of inner model theory is reduced to the problem of
finding an inner model for a supercompact cardinal. The question is whether there
is such an “L-like” model, a model with a fine-structure, an ultimate version of L,
one that cannot be transcended by large cardinals, one that is “close” to V . But
before turning to that let us return to the connection with the HOD Dichotomy
Theorem.

5.3 The HOD Dichotomy and Weak Extender Models
The relevance of weak extender models to the HOD Dichotomy is contained in the
following theorem:

Theorem 5.10 (Woodin [63]). Suppose that κ is an extendible cardinal. Then the
following are equivalent.

(1) The HOD Hypothesis holds.

(2) There is a regular cardinal γ > κ which is not ω-strongly measurable in HOD.
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(3) No regular cardinal γ ≥ κ is ω-strongly measurable in HOD.

(4) There is a cardinal γ > κ such that (γ+)HOD = γ+.

(5) HOD is a weak extender model for the supercompactness of κ.

(6) There is a weak extender model N for the supercompactness of κ such that
N ⊆ HOD.

It is this last equivalence which leads to the expectation that the HOD Hypothesis
actually holds. For, assuming large cardinals, it is natural to expect that there is a
weak extender model for the supercompactness of κ and, given the course of inner
model theory, it is natural to expect that such a model lives (as a proper class) in
HOD. But what would such a model look like?

5.4 The Ultimate-L Conjecture
Here we will have to invoke some notions that are beyond the scope of this paper,
but in the interest of providing the reader with a broader picture we will give a brief
account.68

In the case of the canonical inner models M that have been built to date the
constructions are quite complex and one is not always in a position to even state the
axiom “V = M”. Moreover, in the cases where one can state the axiom “V = M”
one has to first construct the model. But curiously in the case of the candidate for
the ultimate inner model one can state the axiom prior to the actual construction,
and in this case the axiom is comparatively simple. The definition is motivated
by the discovery that the HODs of determinacy models turn out to be canonical
(strategic) inner models, and the definition involves the reflection of the Σ2-truth of
V into such models.

Definition 5.11 (Woodin [66]). “V=Ultimate-L” is the conjunction of the following
two statements:

(1) There is a proper class of Woodin cardinals.

(2) For each Σ2-sentence ϕ, if ϕ holds in V , then there exists a universally Baire
set A ⊆ R such that

HODL(A,R) |= ϕ.

68For further details see Woodin [66].
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The question, of course, is whether there are models of “V=Ultimate-L” that
have a supercompact cardinal. But the virtue of knowing the final axiom prior
to the actual construction is that one can start to mine its consequences before the
construction is completed. In the case of Ultimate-L the consequences are profound.

Theorem 5.12 (Woodin [66]). Assume V=Ultimate-L. Then

(1) CH holds.

(2) V= HOD.

(3) V is the minimum universe of the Generic Multiverse.69

The Ultimate-L Conjecture is the conjecture that such a model exists.

Definition 5.13 (Woodin [66]). The Ultimate-L Conjecture is the conjecture that

ZFC + “There is an extendible cardinal κ with a huge cardinal above κ”

proves: There exists a weak extender model N for the supercompactness of κ such
that

(1) N is weakly Σ2-definable and N ⊆ HOD.70

(2) N |= “V=Ultimate-L”.71

Notice that like the HOD Conjecture this conjecture is a Σ0
1-statement and as such

it will not run up against the rock of undecidability.

5.5 The First Future
The first future is the future in which the first side of the HOD Dichotomy holds,
where HOD is “close” to V .

The program aimed at realizing this future is the program of inner model theory
described above, in particular, the program to build Ultimate-L. The Ultimate-L
Conjecture implies the Weak HOD Conjecture (by the equivalence of (1) and (6) in
Theorem 5.10) and so (assuming an extendible cardinal with a huge cardinal above)

69See Woodin [64] for a definition of ‘Generic Multiverse’.
70See Woodin [66] for a definition of ‘weakly Σ2-definable’.
71Earlier published versions of the Ultimate-L Conjecture are stated with a weaker large cardinal

assumption, namely, that of an extendible cardinal. But the present strategy for proving the
conjecture appears to need a huge cardinal above the extendible. I have accordingly strengthened
the hypothesis.
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in this future we are on the first side of the HOD Dichotomy, where HOD is “close”
to V .

But the Ultimate-L Conjecture implies much more. It implies that there is a
canonical inner model—Ultimate-L—which is contained in HOD and which is itself
“close” to V . Ultimate-L is quite different from L in that it cannot be transcended
by the traditional large cardinals; that is, it “absorbs” all of the traditional large
cardinals. Even though the model has not yet been constructed we already know—
through the axiom V=Ultimate-L—that it satisfies CH, that it thinks V= HOD,
and that it is the minimum universe its Generic Multiverse. Once the model has
been actually constructed (assuming that it can be constructed) we will know much
more. Ultimate-L, like L, will admit a complete analysis, and, given that the model
is “close” to V this analysis will give us great insight into V itself. Indeed, some
set theorists would maintain that if such a model exists then it is a candidate for
V itself. In any case, whether or not one accepts V=Ultimate-L, given that in the
first future Ultimate-L is “close” to V , in the first future we will have a detailed
fine-structural insight into V . The first future is the future where pattern prevails.

6 Large Cardinals Beyond Choice
Let us now turn to the program of large cardinals beyond choice, a program that
points toward the second side of the HOD Dichotomy, where HOD is “far” from V .
This program was initiated in joint work with Bagaria and Woodin. The results
that I would like to report on here are from our joint paper [1].

Recall that a natural template for formulating large cardinal axioms is to assert
that there is a non-trivial elementary embedding j : V →M , whereM is a transitive
class. The critical point, crit(j), of the embedding is the first ordinal moved by the
embedding and is generally the large cardinal associated with the embedding. It
follows immediately that for any such embedding, if κ is the critical point, then
M resembles V to the extent that (Vκ+1)M = Vκ+1. It is this resemblance which is
responsible for the strong reflection properties that hold at κ. For example, it readily
implies that there are many inaccessible cardinals below κ. To obtain embeddings
with greater strength one demands that M resembles V to a higher degree. For
example, if one demands that (Vκ+2)M = Vκ+2 then it follows that there are many
measurable cardinals below κ. In the limit, it is natural to consider, as Reinhardt
did in his dissertation,72 the “ultimate axiom,” where one demands full resemblance,
by positing a non-trivial elementary embedding j : V → V . Let us call a cardinal κ
a Reinhardt cardinal if there is a non-trivial elementary embedding j : V → V with

72See Reinhardt [51].
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critical point κ. Kunen famously showed that Reinhardt cardinals are inconsistent
in the context of ZFC.73 It has remained a longstanding open question whether
Reinhardt cardinals are inconsistent in the context of ZF alone.

In [1] we investigated the hierarchy of such “choiceless” large cardinal axioms, a
hierarchy that starts with a Reinhardt cardinal and passes upward through strong
forms of Reinhardt cardinals and then onward through Berkeley cardinals and strong
forms of Berkeley cardinals. These large cardinals are, of course, inconsistent with
AC. However, each of the “choiceless” large cardinals in this hierarchy has a “HOD-
analogue” which is consistent with AC (if it is consistent, of course). As we shall see
below, the relevance of this to the HOD Dichotomy is this: If the choiceless large
cardinals are consistent then the Ultimate-L Conjecture must fail and so we will
have lost our main reason for believing that the first future must hold. Moreover,
if the HOD-analogues of the choiceless large cardinals exist then there is indeed a
higher analogue of 0# and the second future must hold.

6.1 Very Large Cardinals
We are interested in the relative strength of the large cardinals beyond choice. Here
it is helpful to distinguish three grades of reflection.

Definition 6.1. Suppose that Φ1 and Φ2 are large cardinal notions. We say that
Φ1 reflects Φ2 if for all κ such that Φ1(κ) there exists κ̄ < κ such that Φ2(κ̄). We
say that Φ1 rank-reflects Φ2 if for all κ such that Φ1(κ) there are κ̄ < γ 6 κ such
that 〈Vγ , Vγ+1〉 |= ZF2 + Φ2(κ̄). Finally, we say that Φ1 strongly rank-reflects Φ2 if
for all κ such that Φ1(κ) there are κ̄ < γ < κ such that 〈Vγ , Vγ+1〉 |= ZF2 + Φ2(κ̄).

The first choiceless large cardinal was introduced by Reinhardt.

Definition 6.2. A cardinal κ is Reinhardt if there exists a non-trivial elementary
embedding j : V → V such that CRT(j) = κ.

There is a natural way to strengthen this notion: one simply follows the template
involved in defining strong cardinals, by demanding that for each ordinal λ there is
an embedding that sends κ above λ.

Definition 6.3. A cardinal κ is super Reinhardt if for all ordinals λ there exists a
non-trivial elementary embedding j : V → V such that CRT(j) = κ and j(κ) > λ.

This notion can be strengthened in turn by following the template employed in
defining Woodin cardinals.

73See Kunen [39] for the original proof. See Kanamori [28] for several alternative proofs as well
as for additional background on the traditional large cardinal hierarchy.
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Definition 6.4. Let A be a proper class. A cardinal κ is A-super Reinhardt if for
all ordinals λ there exists a non-trivial elementary embedding j : V → V such that
CRT(j) = κ, j(κ) > λ, and j(A) = A, where j(A) = ⋃

α∈On j(A ∩ Vα). A cardinal κ
is totally Reinhardt if for each A ∈ Vκ+1,

〈Vκ, Vκ+1〉 |= ZF2 + “There is an A-super Reinhardt cardinal.”

There is another series of large cardinal notions that has a someone different
flavour. These are the Berkeley cardinals.

Definition 6.5. For a transitive set M , let E (M) be the set of all non-trivial
elementary embeddings j : M →M .

Definition 6.6. A cardinal δ is a Berkeley cardinal if for every transitive setM such
that δ ∈M , and for every ordinal η < δ, there exists j ∈ E (M) with η < CRT(j) < δ.

In other words, a Berkeley cardinal is so large that it “shatters” any transitive set
that contains it. Notice that if δ is a Berkeley cardinal then for any λ > δ there is
an non-trivial elementary embedding from Vλ → Vλ with critical point less than δ.
This notion can be further strengthened as follows:

Definition 6.7. A cardinal δ is a club Berkeley cardinal if δ is regular and for all
clubs C ⊆ δ and for all transitive M with δ ∈ M there exists j ∈ E (M) with
CRT(j) ∈ C.

Definition 6.8. A cardinal δ is a limit club Berkeley cardinal if δ is a club Berkeley
cardinal which is a limit of Berkeley cardinals.

Let us now turn to the question of the relative strengths of these large cardinal
notions. These large cardinals are all known to be stronger than the large cardinals
in the traditional large cardinal hierarchy, as summarized in the diagram at the
end of Kanamori’s book [28] (with the exception of the one he has at the very top,
namely, ‘0 = 1’). Moreover, they form a hierarchy of their own. Here is a sample
result.

Theorem 6.9. Suppose that κ is a super Reinhardt cardinal. Then there exists
γ < κ such that

〈Vγ , Vγ+1〉 |= ZF2 + “There is a Reinhardt cardinal.”

Thus, super Reinhardt cardinals strongly rank-reflect Reinhardt cardinals. And
since totally Reinhardt cardinals trivially rank-reflect Reinhardt cardinals we have
a proper hierarchy in terms of strength.
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Instead of stating the other results let us summarize what is known in a diagram,
one that can be inserted at the top of the diagram at the end of Kanamori’s book
[28], above I0 and below 0 = 1.74

Here ‘LCBC’ stands for ‘limit club Berkeley cardinal’, ‘CBC’ stands for ‘club Berke-
ley cardinal’, ‘BC’ stands for ‘Berkeley cardinal’, ‘TR’ stands for ‘totally Reinhardt’,
‘SR’ stands for ‘super Reinhardt’, and ‘R’ stands for ‘Reinhardt’. The arrows are
to be interpreted as follows. And on the arrows ‘SRR’ stands for ‘strongly rank
reflects’, ‘RR’ stands for ‘rank reflects’, and an unlabeled arrow between X and Y
means that ‘X is a Y ’.

6.2 The Axiom of Choice
The above large cardinals imply, of course, that AC fails. It turns out that there
is a connection between the degree to which AC fails and the cofinality of the least
Berkeley cardinal.

74This follows from a result of Goldberg [27], who proved that (assuming DC) if there is a
Reinhardt cardinal κ then there is a forcing extension V [G] such that V [G]κ |= ZFC + I0.

3228



Themes from Gödel

Theorem 6.10. Suppose that δ0 is the least Berkeley cardinal. Let γ = cof(δ0).
Then γ-DC fails.

This raises an interesting question: What is the cofinality of the least Berkeley
cardinal?

It turns out that the answer to this question is independent! In early work we
showed that if there is a club Berkeley cardinal then there are forcing extensions
where (in a rank initial segment) the least Berkeley cardinal has countable cofinality
and there are forcing extensions where (in a rank initial segment) the least Berkeley
cardinal has uncountable cofinality. The forcing construction involved Prikry forcing
in the choiceless setting and the proof was rather involved. Subsequently, Raffaella
Cutolo (a student of mine and Woodin) found much simpler proofs of even sharper
results.

Theorem 6.11 (Cutolo [5]). Assume ZF + DC + BC. Then there is a forcing
extension V [G] such that

V [G] |= “cof(γ0) = ω1”

where γ0 is the least Berkeley cardinal as computed in V [G].

Theorem 6.12 (Cutolo [5]). Assume ZF + BC. Then there is a forcing extension
V [G] such that

V [G] |= “cof(δ0) = ω.”

This independence result is quite surprising. For in general, when it comes to
large cardinal axioms formulated in terms of elementary embeddings, such basic
questions are usually readily settled. Moreover, this result represents something
much more general. In the context of the choiceless large cardinal hierarchy there
are basic questions that are beyond the reach of current technology and which raise
the prospect of questions that are truly absolutely undecidable.75 This is something
we shall return to in the final section.

6.3 The Second Future
The second future is the future in which the second side of the HOD Dichotomy
holds, where HOD is “far” from V .

The reasons for thinking that this future might transpire come from the program
for large cardinals beyond choice described above. But here the situation is a bit
more subtle than in the case of the first future. The subtleties turn on the differ-
ence between (i) assuming that large cardinals beyond choice are consistent and (ii)

75See Bagaria, Koellner, and Woodin [1] for further examples and further discussion.
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assuming that certain consequences of large cardinals beyond choice actually hold
(something we shall explain in more detail below.)

Let’s start with consistency. The key result is the following (which is a theorem
of ZF):

Theorem 6.13 (Bagaria, K., and Woodin [1]). Suppose that the Weak HOD Con-
jecture holds. Then there cannot be an non-trivial elementary embedding j : V → V
and an ω-huge cardinal above κω(j).

(Here κω(j) is defined as follows: Let κ0 = crit(j) and, for n < ω, let κn+1 = j(κn).
Then κω(j) = supn<ω κn.)

Corollary 6.14 (ZF). Suppose that the Weak HOD Conjecture holds. Then there
cannot be a super Reinhardt cardinal and there cannot be a Berkeley cardinal.

In short, if large cardinals beyond choice are consistent then the Weak HOD
Conjecture fails and hence that the Ultimate-L Conjecture fails, and so we will have
lost our only reason for thinking that the first future holds. Moreover, in this case
we also have an anti-inner model theorem.

It is important to note that the result is not just about a single inner model,
namely, Ultimate-L. It is much more general. Inner model theory proceeds in a
general setting, by assuming a large cardinal hypothesis and then showing that one
can build a canonical inner model for that large cardinal. But the failure of the Weak
HOD Conjecture would imply that even if one assumes that there is an extendible
cardinal κ with a huge cardinal above it (or any stronger assumption on κ) then one
cannot show that there is a weak extender model N for the supercompactness of κ
such that N ⊆ HOD. The canonical inner models to date are all definable. The
notion of definability embodied in HOD is the most general notion of definability.
It is hard to see what meaning there could be to inner model theory if it cannot
be executed even at this most general level of definability. For this reason, in this
scenario, where we merely assume that large cardinals beyond choice are consistent
there can be no detailed, fine-structural insight into V . The second future is the
future in which chaos prevails.

The consistency of large cardinals beyond choice does not strictly speaking imply
that we are on the second side of the HOD Dichotomy but it opens the way for a
higher analogue of 0#, which does imply that we are on the second side of the HOD
Dichotomy.

For a given inner model N of ZFC one can consider relativized versions of the
choiceless large cardinals in the context of ZFC. For example, a cardinal κ is N -
Reinhardt if there exists a non-trivial elementary embedding j : N → N with
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crit(j) = κ; a cardinal κ is N -super Reinhardt if for all γ there exists a non-trivial
elementary embedding j : N → N with crit(j) = κ and j(κ) > γ; a cardinal δ is an
N -Berkeley cardinal if for all transitive sets M ∈ N such that δ ∈M , and for every
ordinal η < δ, there exists j ∈ E (M) with η < crit(j) < δ; and so on.

In the case where N is L all of the notions collapse—they are all equivalent to the
existence of 0#; in particular, the existence of an L-Berkeley cardinal is equivalent
to the existence of 0#. Let us focus on the other extreme, the case where N is the
inner model HOD. These are the “HOD-analogues” of the choiceless large cardinals.
Notice that these large cardinal notions are formulated in the context of ZFC. It
is, of course, entirely possible that they are inconsistent. But if they are consistent
then we would have a new hierarchy of large cardinal principles in ZFC.

The relevance of this to our present discussion is that these HOD-analogues
would provide us with a higher analogue of 0#. Recall that the existence of 0#

(equivalently, an L Berkeley cardinal) implies that we are on the second side of
the L Dichotomy. A HOD-Berkeley cardinal provides us with a higher analogue of
0# (equivalently, an L-Berkeley cardinal) in this sense: Assuming that there is an
extendible cardinal, then the existence of a HOD-Berkeley cardinal implies that we
must be on the second side of the HOD Dichotomy, where HOD is “far” from V .76

To summarize: If the large cardinals beyond choice are consistent then inner
model theory (as we know it) fails and there can be no fine-structural understanding
of V . And if the HOD-analogues of large cardinals beyond choice are accepted (in
the context of ZFC and traditional large cardinals) then we must be on the second
side of the HOD Dichotomy, where HOD is “far” from V . In either case, this is the
future in which chaos prevails.

7 Themes from Gödel
We thus have a purely mathematical dichotomy, one that is firmly established and
presents us with two, radically different possible futures. And we have a program
aimed at realizing each possible future. We do not yet know which future will hold,
but either way it is going to be interesting.

There is much more to be said about these two programs and the differences
between the two possible futures that lie before us. What I would like to do in the
remainder of this paper is discuss the different implications each future has for the
questions of absolute undecidability and absolute definability.

76It also wipes out inner model theory in the sense described above.
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7.1 The First Future
Suppose that the Ultimate-L Conjecture holds.77 Then, as we saw above, the Weak
HOD Conjecture holds and so, assuming large cardinals, we are in the first side of
the HOD Dichotomy where HOD is “close” to V . Moreover, in this scenario we
would have a detailed, fine-structural understanding of V .

For the rest of this subsection let us assume that the Ultimate-L Conjecture holds
and let us assume large cardinal axioms as the level of an an extendible cardinal
with a huge cardinal above. This puts us in the first side of the HOD Dichotomy.

7.1.1 Absolute Provability

As a candidate for “absolute provability” Gödel proposed “provable from ZFC +
LCA,” where here “LCA” is non-precisely specifiable open-ended scheme standing
for “true large cardinal axioms.” We saw that this proposal was undermined by
results of Levy-Solovay and others. For while it has the virtue of being able to handle
“vertical independence” (the kind of independence involved, e.g. with consistency
statements), by the aforementioned results it cannot adequately handle “horizontal
independence” (the kind of independence established by forcing). Now, the axiom
V=L has complementary virtues and shortcomings, for while it has the virtue of
being able to handle “horizontal independence” it is incompatible with the large
cardinal axioms needed to handle “vertical independence”. It would be ideal if we
had a version of V=L which had the same virtue but lacked the shortcoming.

The axiom V=Ultimate-L is such an axiom. Like V=L it handles “horizon-
tal independence” but at the same time it is compatible with all traditional large
cardinals. So it provides us with an amended proposal: As a candidate for “abso-
lute provability” we can now consider “provable from ZFC+V=Ultimate-L+LCA.”
The first component—V=Ultimate-L—would erase “horizontal independence” while
the second component—LCA, the non-recursive series of “all true large cardinal
axioms”—would erase “vertical independence.”78 The task of discovering new ax-
ioms that overcome incompleteness would now be reduced to the task of discovering
stronger and stronger large cardinal axioms, as Gödel had hoped. In this future
we would have the kind of generalized completness theorem that Gödel envisaged.
Incompleteness would no longer be the serious problem that it is today.

77Recall that the Ultimate-L Conjecture is a Σ0
1-statement.

78One might raise the concern that perhaps the consistency hierarchy goes much further than
the traditional large cardinal hierarchy, on upward through the large cardinals beyond choice. But
notice that on the present scenario the large cardinals beyond choice are provably inconsistent.
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7.1.2 Absolute Definability

As a candidate for “absolute definability” Gödel proposed “ordinal definability.” He
showed that the notion is absolute in some sense (namely that it is immune to a kind
of diagonalization). But there are other senses in which a notion can be considered
absolute. For example, another sense in which ordinal definability could be absolute
is if there can be no non-trivial elementary embedding from HOD into itself.

It is not known that such an embedding is ruled out under or present back-
ground assumptions. But it is a reasonable conjecture that they do rule it out. And
something very closely related is known. Let T be the Σ2-theory of V with ordinal
parameters and consider the structure (HOD, T ).79 A result of Woodin shows that
(under our present assumptions) there can be no non-trivial elementary embedding
from (HOD, T ) into itself.80 In this sense then, we will have garnered further ev-
idence that ordinal definability does indeed provide us with an absolute notion of
definability.

7.2 The Second Future
Suppose that large cardinals beyond choice—say, at the level of a Berkeley cardinal—
are consistent. Then the Weak HOD Conjecture fails, the Ultimate-L Conjecture
fails, and, as discussed above, the prospect of inner model theory as we know it is
doomed.

7.2.1 Absolute Provability

In the present scenario we will have lost our best current approach to finding
amended version of Gödel’s proposal that provides us with an adequate notion of
“absolute provability.” Moreover, with the failure of inner model theory we will
have lost the hope of a fine-structural insight into V . We will be presented with a
proliferation of candidates for sentences that are truly “absolutely undecidable.” In
particular, many of the questions concerning large cardinals beyond choice are com-
pletely beyond current technology and would themselves be candidates for absolutely
undecidable statements.81

79This is essentially the structure consisting of HOD where we add to HOD a predicate that
allows it to identify itself.

80See Woodin [63], p. 306.
81See the final section of Bagaria, Koellner, and Woodin [1] for examples and for further discus-

sion.
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7.2.2 Absolute Definability

Assume now not only that large cardinals beyond choice are consistent but also
that their HOD analogues hold—that is, assume the axioms asserting the existence
of HOD Reinhardt cardinals, HOD Berkeley cardinals, etc.82 For the reasons just
discussed this would show that in a certain sense the notion of ordinal definability
is not a legitimate candiate for absolute definability.

7.3 Conclusion
In the end all of the themes have become intertwined.

If, on the one hand, there is an ultimate version of Gödel’s L then we will have a
deeper understanding of the large cardinal hierarchy, support for his proposed notion
of absolute definability, and, most importantly, a true candidate for an absolute
notion of provability, one which would put us in a position of effectively erasing
independence.

If, on the other hand, the large cardinals beyond choice are consistent and the
traditional large cardinal hierarchy extends to include HOD Reinhardt cardinals,
HOD Berkeley cardinals and so forth, then this will shake the support for Gödel’s
proposed notion of absolute definability and, more importantly, it will shatter our
current hopes for a fine-structural understanding of V and unleash a whole host of
candidates for absolutely undecidable statements.

I think that Gödel would have found these developments intriguing. He would
want to know whether pattern or chaos prevailed. Fortunately, that is something
that we will likely one day know, perhaps very soon.
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Abstract

A prefixed polynomial equation, or a polynomial expression with a quantifier
prefix, is an equation of the form P (x1, x2, . . . , xn) = 0, where P is a polynomial
with integer coefficients whose variables x1, x2, . . . , xn range over natural num-
bers, that is preceded by some quantifiers over all of its variables x1, x2, . . . , xn.
Here is a typical, seemingly random, example of such an expression, Φ:

∀ m e ∃ N ∀ a b ∃ c d A X ∀ x y ∃ BCF ∃ hijk`npqrst

x·(y+B−x)·(A+m+B−y)·((A+h−d)2+((d+1)·i+A−c)2+(B+n−dx)2+

+((dx+1) ·j+B−c)2 +(C+r−dy)2 +((dy+1) ·k+C−c)2 +(B+s+1−C)2+

+(C+t−N)2+(F+p−b(B+C2))2+(a−`b(B+C2)−F−`)2+(X−F+eq)2) = 0

In this note we initiate the study of the collection of all possible such expressions
(‘the Atlas’), equipped with the equivalence relation of “being EFA-provably
equivalent” on its members. The Atlas is partially ordered by EFA-implication.
Here is the first abstract picture of the Atlas to have in mind:
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Notice that the set of all prefixed polynomial equations is arithmetically com-
plete, that is, every first-order arithmetical formula is EFA-equivalent to some
prefixed polynomial expression. In this sense, the Atlas is just another way of
talking about first-order arithmetical statements. Gödel’s Incompleteness the-
orems guarantee existence of many distinct equivalence classes. Our first task
is to find examples.
We start off with examples of distinct equivalence classes of metamathematical
interest: the 1-consistency of IΣ1 (the expression Φ above), the 1-consistency
of IΣ2, the 1-consistency of full Peano Arithmetic, the highly unprovable Finite
Kruskal’s Theorem.
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Then we give an example of the phase transition phenomenon. We produce a
polynomial expression that has two free variablesm and n such that whenever m

n
is smaller or equal to Weiermann’s constant w ≈ 0.63957768999472013311 . . .,
the expression is EFA-provable, otherwise it is unprovable in the theory ATR0
(so we witness a phase transition between EFA-provability and predicative un-
provability). Then we give a crude example of a polynomial equation with
quantifiers that is equivalent to the famous Graph Minor Theorem and, hence,
is of the unknown high strength beyond that of Π1

1-CA0. A ‘seed’ is a prefixed
polynomial equation that is of minimal length in its EFA-equivalence class. We
discuss seeds and notice that the seed of the 1-consistency of IΣ1 is smaller than
131. We discuss the role of the Atlas and its possible future partial implemen-
tation as a metamathematically-sensitive database of mathematical knowledge.
The purpose of this note is to give definitions, to arrange the set-up, give non-
trivial examples, introduce the right unprovability-sensitive notions, and ask
some first questions about the Atlas. The current note omits all proofs. All
proofs can be found in the grand manuscript [4]. Eventually, a bigger article,
stemming from [4] will appear. Some of the material from this project became
a chapter in the second author’s doctoral thesis [6] at the University of Gent,
Belgium.

The authors genuinely and cordially thank the John Templeton Foundation
for its interest and support for Unprovability research. The first author thanks
the John Templeton Foundation for its financial support.

1 Introduction
Definition 1.
A prefixed polynomial equation, or a polynomial expression with a quantifier-prefix,
or, occasionally, simply a polynomial expression, is an expression of the form

Q1x1 Q2x2 . . . Qnxn P (x1, x2, . . . , xn) = 0,

where P is a polynomial with integer coefficients whose variables x1, x2, . . . , xn range
over natural numbers (including zero), that is preceded by a block of various exis-
tential or universal quantifiers Q1, Q2, . . . , Qn over its variables x1, x2, . . . , xn. It is
important to interpret subtraction correctly: our statement is evaluated over natural
number inputs, and outputs are also natural numbers.

Definition 2. Atlas
The set of all possible polynomial expressions with quantifiers will be called the
Atlas. We shall sometimes speak of the Atlas as a ‘template’ in the sense that it
is the set of all substitution instances of concrete polynomial expressions P and
quantifier-blocks into our formula above.
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Definition 3. Equivalence
We say that two prefixed polynomial equations P and Q are equivalent or EFA-
equivalent, or EFA-provably equivalent if there is a proof of P ←→ Q in the theory
EFA, the Exponential Function Arithmetic, or its variant I∆0 + exp. This is an
equivalence relation on the Atlas.

All familiar statements in number theory can be converted into polynomial ex-
pressions. Some very easily, and some others using encoding techniques. For exam-
ple, here is the infinitude of primes:

∀n ∃p ∃k ∀i ∀j ∃`

(n+ k + 1− p)2
+ ((i+ 2)(j + 2) + `+ 1− p) · (p+ `+ 1− (i+ 2)(j + 2)) = 0.

And here is the Goldbach Conjecture:

∀n ∃p ∃q ∀i ∀j ∃k ∃`

((i+ 2)(j+ 2) + k+ 1− p) ·(p+ k+ 1− (i+ 2)(j+ 2))+((i+ 2)(j+ 2) + `+ 1− q)·
·(q + `+ 1− (i+ 2)(j + 2)) + (2(n+ 2)− (p+ q))2

= 0.
An even shorter open problem is the Diophantine statement from [16]:

∃x ∃y ∃z x3 − y3 − z3 − 33 = 0.

The important measure of any mathematical statement is its ‘true’ quantifier com-
plexity. For example, the Riemann Hypothesis has the ‘true’ complexity Π0

1, i.e., is
provably equivalent to a Π0

1 statement. The Goldbach Conjecture also has quantifier
complexity Π0

1. It is easy to see that in the expression above, only the first quanti-
fier is truly free: all others can be bounded and eliminated in the standard manner
described in, say, [13] or [17]. This transformation would normally explode the size
of the polynomial. This is a recurring theme in this kind of projects: the eternal
and unavoidable trade-off between the size of the polynomial and the quantifier
complexity. Low quantifier complexity is very expensive.

Definition 4. Order (or strength)
For two polynomial expressions P and Q, we set P < Q if EFA proves Q → P
but does not prove P → Q. Then we say that Q is strictly provably stronger than
P . Clearly, we can also introduce the rest of the Boolean algebra structure on the
EFA-equivalence classes of the Atlas.
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Definition 5. Length (or size)
Let us fix the following method of counting the length of a polynomial expression
with quantifiers. We ignore the quantifier-prefix and the final “ = 0” and count only
the length of the polynomial expression, as follows: every occurrence of a variable
or multiplication or addition operations contributes 1 to the total size, a coefficient
n contributes (n − 1) to the total size, +n or −n contribute n, and the power n
contributes (n− 1) to the total size.

This is the first moment in this note that we made a fairly arbitrary decision.
We could of course instead count coefficients and powers as contributing log2(n) or
log10(n) to the size, or in any other monotone way. However, the way we fixed is
already very natural. Note that we are counting the length of an expression, not
of the polynomial function itself. Clearly, every expression can be re-written into
infinitely-many equivalent expressions of various lengths.

Definition 6. Seeds
A prefixed polynomial expression that is shortest in its EFA-equivalence class is
called a seed of its equivalence class. There may occasionally exist several seeds
of the same equivalence class of the same size. The notion of a seed is of course
sensitive to the choice of the language of the Atlas and the method of counting size.

The Atlas, as we defined it, is not really a new object. Some people in the XXth

century, given a theory T in any language, called the set of equivalence classes of
formulas under T -provability, the ‘Lindenbaum-Tarski algebra’ of T . However, as
far as we know, the arithmetical Atlas defined here has never been systematically
studied.

Three possible polynomial templates: over N, Z, Q
There are at least three natural interesting templates involving polynomials with
quantifiers which we could use in this project:

1. to let variables range over natural numbers (non-negative integers);

2. to let variables range over all integers;

3. to let variables range over all rationals.

All three set-ups should be equally interesting mathematically. Of course polynomi-
als with quantifiers mean completely different things when the variables are allowed
to range over these different sets. In building examples and proving various theo-
rems, we can expect advantages and disadvantages of each of these templates and
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trade-offs between them. We chose to concentrate on template (1) for now because
it is more familiar to logicians, although the other two are also good and impor-
tant and should wait for their turn to be explored. By Julia Robinson’s theorem
on the extraction of Z from Q, the template (3) above is also arithmetically com-
plete (although adding a bunch of quantifiers on the way: the original Robinson’s
formula is Π0

4, namely ∀∃∀∃, the recent improvement by Poonen [16] is Π0
2, namely

∀∀∃∃∃∃∃∃∃).
As for non-polynomial templates, the natural next step is to allow exponenti-

ation and other familiar functions into the equations. Losing the purity of pure
polynomials but continuing on the route of enlarging our permitted language, it is
natural to introduce more symbols: concrete functions, relations, sets, cardinality
and a range of familiar combinatorial symbols.

Diophantine equations
Diophantine equations are a particular subclass of instances of our template, that,
in which all quantifiers in front of the polynomial are existential:

∃x1 ∃x2 . . . ∃xn P (x1, x2, . . . , xn) = 0.
Solvability of Diophantine equations (over Z) by a single algorithm was the question
of Hilbert’s Tenth Problem, spectacularly resolved in the second half of the XXth

century, first for exponential-polynomial equations by Martin Davis, Hilary Putnam
and Julia Robinson, and finally, young Yuri Matiyasevich eliminating the need for
the exponent. The story is now well-known and we refer the reader elsewhere for
the mathematical and personal accounts of the events.

What is important for us in this note:
1. there is no algorithm that resolves Diophantine equations or even picks out

the resolvable ones (the ones that have solutions);

2. every Σ0
1 formula is EFA-equivalent to solvability of a certain Diophantine

equation [7];

3. every Π0
1 formula is EFA-equivalent to non-solvability of a certain Diophantine

equation.
In particular, Π0

1 statements, like Con(ZFC), that belong to non-trivial equivalence
classes of the Atlas, are equivalent to non-solvability of their respective Diophantine
equations.

In our proofs, we used some tricks from the study of Hilbert’s Tenth Problem.
However, not being restricted by one block of quantifiers pays off very well and we
end up with very short metamathematically-interesting expressions.

3244



A glimpse at polynomials with quantifiers

On the choice of our background theory EFA

We chose EFA as our base theory in this project. This may seem as the second
arbitrary decision we took (apart from the definition of the size of a polynomial).
Indeed, we could theoretically choose another theory: I∆0, IΣ1, ATR0 or Z2. Each
would factorise the Atlas differently. So why did we choose EFA?

We could choose a weaker theory, like I∆0 or I∆0 + Ω but then the Atlas would
dissolve into a cloud of myriads of unreasonably-small equivalence classes, where
two naturally equivalent formulas (truly easily equivalent) would be made to belong
to different equivalence classes not for a mathematical reason but just because the
base theory lacks the coding power to conduct an innocent equivalence proof.

We could choose a stronger theory, say ZFC+ “there is a huge cardinal”. But
this would make the Atlas blind to all metamathematical distinctions we want to
emphasise. We want “0 = 0”, the Finite Ramsey Theorem, the Paris-Harrington
Principle and Con(ZFC+“there is a measurable cardinal”) belong to distinct equiv-
alence classes, because they represent different phenomena, and we care about these
differences.

The choice of the base theory is the choice of metamathematical sensitivity.
Instead of EFA, we could of course choose IΣ1 (or its variants PRA, RCA0, WKL0),
PA (ACA0) or even a very strong theory KP+ Inf if model-theoretic equivalences
involving L are used in proofs.

More on EFA and its strength can be found in Jeremy Avigad’s article [1].

Arithmetisation of mathematics

Early pioneers of computability theory (Kurt Gödel, Alfred Tarski, Alan Turing,
Alonzo Church with disciples, and all early intuitionists and constructivists) made
an important discovery. On the one hand, they understood that the arithmetical lan-
guage, over the right base theory, allows us to deal with syntax, deductions and com-
putations, hence, yielding Gödel’s Incompleteness theorems and a later avalanche of
theorems on algorithmic undecidability of decision problems. But also they under-
stood more: arithmetical formulas can represent approximations of theorems from
calculus, geometry, mathematical physics etc., and arithmetical axiomatic systems
can prove these formulas. (For example, Alan Turing’s most famous paper [20] on
computable numbers is an early manifesto of constructivism and arithmetisation of
calculus.) One can arithmetise calculus, mathematical physics, geometry, much of
algebra and all that is usually considered “separable mathematics”. Here is an exer-
cise for the reader: write a first-order arithmetical formula that says sinx

x →x→0 1,
and then convert it into a member of the Atlas.
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So, members of the Atlas don’t only represent the literal ‘natural number theory’
in the sense of literal meanings of first-order arithmetical formulas, but all possible
statements from most of mathematics, approximated or encoded and re-cast in the
pure language of prefixed polynomials. Here, in the scope of this note and this
project, we are not particularly interested in theorems from these various subjects
(why substitute meaningful discoveries by unintelligible writing?) or negations of
these theorems, but in members of metamathematically non-trivial EFA-equivalence
classes (unprovable statements).

Arithmetical strength of axiomatic systems

We could of course reason about members of the Atlas (or, more generally, transform
members of the Atlas) using various axiomatic systems, or rules of transformation,
not just EFA. What is needed from a random axiomatic system T , in an arbitrary
language, is that the first-order language of arithmetic is interpreted in T . Literally,
T may be talking about imaginary wombles or sepulki or ‘sets’, but there should be
a good translation from formulas of the language of arithmetic into formulas in the
language of T .

Definition 7. Arithmetical strength
Given a theory T , we define T a, its arithmetical strength, to be the set of all poly-
nomial expressions with quantifiers, whose translations into the language of T are
provable in T . Given two axiomatic systems, T1 and T2, we set T1 � T2 (“T1 is
arithmetically not stronger than T2”) if T a1 ⊆ T a2 , and T1 � T2 (“T2 is strictly arith-
metically stronger than T1”) if T a1 is a proper subset of T a2 . A theory T2 is called
arithmetically conservative over T1 if T a1 = T a2 (we especially care about the case of
T2 ⊇ T1 in this definition).

For example ZFCa = ZFa and ACAa
0 = PAa = polynomial translations of theo-

rems of PA.
The hierarchy of classical ‘foundational’ theories starts as a linear order as we

add more induction principles, set-existence axioms (comprehensions, separations,
replacements, collections, powerset, etc) and transfinite recursion principles. How-
ever, it is absolutely unclear what happens after we exhaust the “obviously true”
reasoning principles. Here is a picture of some classic axiomatic theories, ordered
by arithmetical strength.
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Arithmetical Splitting

The question of discovering genuinely alternative, equally good (without any way to
form preference) axiomatic systems T1 and T2 that contradict each other on first-
order arithmetical formulas is wide open, very controversial and has fascinated the
first author for the last quarter-a-century. Although for third-order arithmetical
statements (like CH or AD) this is nowadays a relatively non-controversial issue,
and splitting is considered, although not by everyone, as an innocent philosophi-
cal possibility (in some universes CH holds, in others it doesn’t), raising the same
possibility for members of the Atlas invites many objections: some horrified by the
sheer revolutionary nature of this unimaginable possibility (“isn’t there the true set
of natural numbers?”) and some accompanied by mathematical arguments pointing
towards an explanation as to why first-order Arithmetical Splitting should be im-
possible. Some people appeal to the second-order definition of “arithmetical truth”,
others appeal to its ordinal iterative approximation, via say, the vague phantom
ωCK1 , others confuse the issue with its one-quantifier particular case and point out
the compelling reasons for Π0

1-realism.
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We shall not discuss Arithmetical Splitting in this note. An up-to-date discus-
sion will appear in [5] and other articles. Let us just mention that once Arithmetical
Splitting is discovered, the members of the Atlas on which the future controversial
theories T1 and T2 disagree, would be of utmost metamathematical interest. We
believe that so far logic is in its infancy and many more axiomatic systems, rep-
resenting as-yet-unimaginable mathematical phenomena, will be discovered in the
future. In particular, Arithmetical Splitting will be discovered and will take central
stage in all future metamathematical thinking, beyond mere Gödel Incompleteness.

How to imagine the Atlas as concentric clusters

Every EFA-equivalence class can be thought of as surrounded by other classes that
EFA fails to identify, but IΣ1 does. Then come the further classes which PA identifies
with our class, then stronger theories, etc. The stronger theory we use, the more
blind it will be to the important metamathematical differences we care about. So,
some classes are closer to each other than others, depending on the strength of a
theory, if any, that makes them equivalent.

But also, keep in mind the disconnectedness of the Atlas: if the pair (ϕ←→ ψ)
and ¬(ϕ ←→ ψ) witnesses Arithmetical Splitting then there will be no eventual
“true” theory to prove that ϕ and ψ belong to the same class. So, we don’t expect
that the concentric clusters eventually fuse together to form two opposite clusters
(the “true” and the “false” statements).

2 First three examples to guide us
Let us start off by briefly glancing at three particular distinct elements of the Atlas.
These three elements belong to three different EFA-equivalence classes. It is impor-
tant to note at this stage: the three expressions below can be re-written into (or
proved to be EFA-equivalent to) billions of other polynomial expressions of compa-
rable lengths, so there is no need to concentrate attention on any features of these
particular expressions, but think of them as mere generic representatives of their
equivalence classes.

Unprovability by primitive recursive means

Theorem 1.
The following statement Φ is equivalent to the Paris-Harrington Principle for pairs,
hence to the 1-consistency of IΣ1 and, hence, is unprovable in IΣ1.
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∀ m e ∃ N ∀ a b ∃ c d A X ∀ x y ∃ BCF ∃ hijk`npqrst

x ·(y+B−x) ·(A+m+B−y) ·((A+h−d)2 +((d+1) · i+A−c)2 +(B+n−dx)2+

+((dx+ 1) · j+B− c)2 + +(C+ r−dy)2 + ((dy+ 1) ·k+C− c)2 + (B+ s+ 1−C)2+

+(C+t−N)2 +(F +p−b(B+C2))2 +(a−`b(B+C2)−F −`)2 +(X−F +eq)2) = 0

Proof.
See the big manuscript [4] for the proof. The proof goes by demonstrating equiv-
alence with PH2, the Paris-Harrington Principle for pairs, so this statement is un-
provable in IΣ1.

This statement, as written, has quantifier complexity Π0
6. However, the last four

blocks of quantifiers can be bounded by some exponential expressions, which can
be struggled with and eliminated using the methods from Chapter 6 of [13], so the
formula is really equivalent to a Π0

2 formula. We didn’t do any of it because it
would blow up the size of the resulting polynomial. However, a lot of this work
has been later done by Aran Nayebi in [15] and we highly recommend his article
as a continuation of our big manuscript [4]. With our method of counting length,
the polynomial above has size 131. The number of variables is 25. Here, there are
probably many possibilities to simplify the polynomial, perhaps to half the current
size, by reusing variables and clever combinatorial equivalences during the proof.
Also the choice of coding tricks and the way to arrange the colouring can transform
the resulting polynomial. No attempts have yet been made to simplify it. And there
are no reasons to think that we are anywhere near the shortest member (the seed)
of its equivalence class. Also, it of course should be possible to have a much shorter
and simpler expression equivalent to the expression above if we allow additional
symbols: exponentiation or both exponentiation and logarithm. It is interesting to
see how much better we can do with these extra means.

Unprovability in two-quantifier-induction arithmetic
Theorem 2.
The following statement Φ2 is equivalent to PH3 and, hence, to the 1-consistency of
IΣ2, and thus is not provable in IΣ2.

∀ m e ∃ N ∀ a b ∃ c d A X ∀ xyz ∃ BCD F ∃ hijk`npqrstuvw

x ·(y+B−x) ·(z+B− y) ·(A+m+B− z) ·((A+h−d)2 + (c−A− (d+ 1) · i)2+
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+(B+n−dx)2+(c−B−(dx+1)·j)2+(C+r−dy)2+(c−C−(dy+1)·k)2+(D+t−dz)2+

+(c−D − (dz + 1) · u)2 + (B + s+ 1− C)2 + (C + v + 1−D)2 + (D + w −N)2+

+(F+p−b ·(B+C2 +D3))2 +(a−F−` ·b ·(B+C2 +D3)−`)2 +(F−X+qe)2) = 0.

Proof.
For the proof, see our big manuscript [4]. Again, we show that the statement Φ2
above is equivalent to PH3, the Paris-Harrington Principle for triples.

Again, the statement Φ2 is Π0
6 but is actually EFA-equivalent to a much longer

Π0
2 formula. The statement has 30 variables. With our method of counting, the

polynomial is of size 175. Also, we know that there are no Σ0
1 or Π0

1 expressions
in this equivalence class because the 1-consistency of IΣ2 or the Paris-Harrington
Principle for triples are strictly Π0

2. The same remark applies to all our examples.
For each equivalence class in the Atlas, there is the smallest quantifier-complexity
of its members and we often know it from metamathematical considerations.

Unprovability in full Peano Arithmetic
Theorem 3.
Consider the following statement Φ(n) with one free variable n. For every n > 1,
the statement Φ(n) is equivalent to the Paris-Harrington Principle in dimension n
and hence to the 1-consistency of IΣn−1. In particular, ∀ n Φ(n) is equivalent to
PH and hence to the to 1-consistency of Peano Arithmetic. Therefore ∀ n Φ(n) is
unprovable in Peano Arithmetic.

∀ m e ∃ N ∀ a b u v ∃ str STR αβγδερτ ∀ i j

∃k`BCσΣpPQU ΩMxyzw∆E FGK HLZ XW

{[s−t−r−1]2+[S−T−R−1]2+[i·(i−p−n−1)·([s−σ−Σ(it+1)]2+[σ+w−it]2+

+[S−C−z(iT +1)]2 +[C+Ω−iT ]2 +[σ+B+1−C]2)] ·([a−α−β((t+s2)b+1)]2+

+[α+γ−(t+s2)b]2+[a−δ−ε((T+S2)b+1)]2+[δ+ρ−(T+S2)b]2+[α+τ+1−δ]2]}·
·{i · (j+B− i) · (r+m+C−j) ·[[s−r−x(t+1)]2 +[r+`− t]2 +[s−B−σ(ti+1)]2+

+[B+w−ti]2 +[s−C−M(tj+1)]2 +[C+y−tj]2 +[B+z+1−C]2 +[C+Ω−N ]2]2+
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[i ·(n+p+1−i) ·k ·(r+m+E−k) ·(u+Σ−v) ·[[u−F −G(iv+1)]2 +[F +K−iv]2+

+[s−H−L(tk+1)]2 +[H+Z−tk]2 +[u−P −Q((i+1)v+1)]2 +[P +U−(i+1)v]2+

+[P +X−F ] · [(H−P )2−W −1]] ·[[a−α−β((v+u2)b+1)]2 +[α+γ− (v+u2)b]2+

+[α− S − τ · e]2]]2} = 0.

Proof.
For the proof, see our full manuscript [4]. We prove that for all n, the expression
above is equivalent to the Paris-Harrington principle in dimension n.

Again, all quantifiers after the first two blocks of quantifiers can be made bounded
by some exponential functions, and the famous battle against the bounded quantifier
(Chapter 6 of [13]) can reduce the statement to its true Π0

2 shape, although at the
cost of losing the current small size. Here, we have one free variables n and 48
bound variables. The polynomial expression Φ(n) is of size 386, with n counted as
a variable. For each concrete n, the size of Φ(n) is 384+ 2n.

Corollary 4.
For every n, there is a prefixed polynomial equation of length ≤ 384 + 2n that is
equivalent to 1-Con(IΣn).

So, the sizes of seeds of 1-Con(IΣn) are bounded by a linear function of n, which
should in the future yield consequences, including pigeonhole kind of consequences.
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3 Beyond predicative mathematics

The readers could have thought for a moment that the three relatively neat examples
above are due to pure luck or to some feature of IΣn and that in reality it is much
harder to reach high impredicative equivalence classes. We were full of doubts on
this issue for a while until proving the following theorems in October 2009.

An expression equivalent to the Finite Kruskal Theorem
Theorem 5. The following polynomial equation with quantifiers is equivalent to
the Finite Kruskal Theorem and hence is unprovable in predicative mathematics,
for example in the theory ATR0:

∀ K ∃M ∀ ab ∃ ijcdefhk ∀ lmnpq A ∃ grst BFGIJLOPQWXY Z αβγδζηθκλµνξπρστ

∀ uvxyz CDHNT ∃ERS ∀ U ∃ V

[(i−c−1)2+(i+d−M)2+(w+1−t)2+(t+X−q)2+(g+1−s)2+(s+Y +1−r)2+(r+Z−q)2+

+((p+ l2− bi− 1−B) · (l+B− p) · ((biA+A− a+ p+ l2)2−B− 1) · ((K + i− q)2−B− 1)·

·(u−pr−1−E) · ((prC+C− l+u)2−E−1) · (v−ps−1−E) · ((psD+D− l+v)2−E−1)·

·(x− pt− 1− E) · ((ptH +H − l + x)2 − E − 1) · (u+ E − v) · v · (q + E + 1− z)·

·(((vN−u)2−E−1)2 +(vR−x)2 +(uS−x)2) · (y−pz−1−E) · ((pzT +T − l+y)2−E−1)·

·((ER− u)2 + (ES − v)2 + ((EU − y)2 − V − 1)2))2] · [mni(m− n) · (K + i+ r + 1−m)·

·(K+ j+ r+ 1−m) · (j+ r− i) · (M + r+ 1− j) · ((f + e2 + r− bi)2 + (bis+ s−a+ f + e2)2+

+(k + h2 + t− bj)2 + (bjW +W − a+ k + h2)2 + (k +X + 1− h)2 + (F + Y − fm)2+

+(fmZ+Z−e+F )2+(F+F 2G2+g−dm)2+(dmB+B−c+F+F 2G2)2+(kOR+R−h+G)2+

+(G+E−kO)2+(S+1−OIPQ(e−f))2+(O+V −K−j)2+(J+α−fn)2+(fnβ+β−e+J)2+

+(dnδ+δ−c+J+J2L2)2 +(J+J2L2 +γ−dn)2 +((L−G)2−ζ−1)2 +(P+P 2Q2 +η−dI)2+

+(dIθ+θ−c+P+P 2Q2)2+(I+κ−K−i)2+(Pλ−F )2+(Pµ−J)2+(P−Fν+Jξ)2+(Qπ−G)2+

+(Qρ− L)2 + (Q−Gτ + Lσ)2)] = 0.

This polynomial is of size 648. It has 66 variables.
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A phase transition polynomial between EFA-provability and pred-
icative unprovability
Consider the following quantified polynomial equation A(m,n), with the two free
variables m and n, which we show in bold font:

∀ K ∃M ∀ ab ∃ ijcdefhk φχ ∀ lmnpq A Γ∆ ∃ grst BFGIJLOPQWXY Z αβγδζηθκλµνξπρστϕψω

∀ uvxyz CDHNT Θ ∃ ERS ΛΥΦΨΩ k∗l∗m∗n∗o∗p∗ ∀ U ∃ V

[(((Γ− i)2−ϕ−1) ·((∆−φ)2−ϕ−1))2 +(((Γ−j)2−ψ−1) ·((∆−χ)2−ψ−1))2] · [(Γ2 +∆2) ·((1+Υ−ω)2+

+(ωΦ + Φ−ψ+ 1)2 + (ϕ+ Ψ−ω∆−ω)2 + (ω∆Ω +ωΩ + Ω−ψ+ϕ)2 + (∆ +k∗ + 1− i)2 · ((Λ +k∗−ωΘ)2+

+(ωΘl∗ + l∗ − ψ + Λ)2 + (2Λ +m∗ − ωΘ− ω)2 + (ωΘn∗ + ωn∗ + n∗ − ψ + 2Λ)2) + (ϕ+ o∗ − Γ)2+

+(Γ+p∗ +1−2ϕ)2))]+[(i−c−1)2 +(i+d−M)2 +(w+1−t)2 +(t+X−q)2 +(g+1−s)2 +(s+Y +1−r)2+

+(r+Z−q)2 +((p+ l2−bi−1−B) ·(l+B−p) ·((biA+A−a+p+ l2)2−B−1) ·((mK+nφ−mq)2−B−1)·

·(u−pr−1−E) · ((prC+C− l+u)2−E−1) · (v−ps−1−E) · ((psD+D− l+v)2−E−1) · (x−pt−1−E)·

·((ptH +H − l + x)2 − E − 1) · (u+ E − v) · (q + E + 1− z) · v · (((vN − u)2 − E − 1)2 + (vR− x)2+

+(uS−x)2) ·(y−pz−1−E) ·((pzT +T − l+y)2−E−1) ·((ER−u)2 +((EU−y)2−V −1)2 +(ES−v)2))2]·

·[mni(m−n)·(mK+nφ+r+1−mm)·(mK+nχ+r+1−mm)·(j+r−i)·(M+r+1−j)·((f+e2 +r−bi)2+

+(bis+s−a+f+e2)2 +(k+h2 +t−bj)2 +(bjW +W −a+k+h2)2 +(k+X+1−h)2 +(fmZ+Z−e+F )2+

+(F+F 2G2 +g−dm)2 +(F+Y −fm)2 +(dmB+B−c+F+F 2G2)2 +(kOR+R−h+G)2 +(G+E−kO)2+

+(S + 1−OIPQ(e− f))2 + (mO + V −mK − nχ)2 + (J + α− fn)2 + (fnβ + β − e+ J)2+

+(dnδ+ δ− c+ J + J2L2)2 + (J + J2L2 + γ − dn)2 + (dIθ+ θ− c+P +P 2Q2)2 + (P +P 2Q2 + η− dI)2+

+((L−G)2 − ζ − 1)2 + (mI + κ−mK − nφ)2 + (Pλ− F )2 + (Pµ− J)2 + (P − Fν + Jξ)2 + (Qπ −G)2 +
(Qρ− L)2 + (Q−Gτ + Lσ)2)] = 0.

Theorem 6. There exists a real number w such that:

1. if n
m ≤ w then I∆0 + exp proves A(m,n);

2. if n
m > w then ATR0 does not prove A(m,n).

The number w is the real number introduced by Andreas Weiermann in [21] and
is defined as follows: w = 1

logα , where α is the Otter’s tree constant (the in-
verse of the radius of convergence of the generating series for unordered trees),
w ≈ 0.63957768999472013311 . . . .. The number w is of course primitive recursively
computable.

This theorem is a new type of result within Andreas Weiermann’s programme
of phase transitions between provability and unprovability. More on Weiermann’s
programme can be found in [22].
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The Graph Minor Theorem
The Graph Minor Theorem is a famous example of a former long-standing mathe-
matical conjecture, resolved in the 1980s, that turned out to possess a lot of meta-
mathematical strength (i.e., is unprovable in a rather strong theory). See [8] for the
discussion and the proofs.

Now, consider the following polynomial expression with a quantifier-prefix:
∀ K ∃ N ∀ ab ∃ ij def ghm no xy ABC u ∀ klpz Y ∃ cqrvw DEF GHI ∀ s ∃ t ∀ L ∃ J MX OPQ

∀ RWZ ζθ ∃ STUV αβγδεηκλµνξπρστφχϕψω Γ∆ΘΛΦΨΞΩΥ x1x2x3 ∀y3y4 ∃ x4x5x6x7x8x9 y1y2

[(i+u+1−N)2 +((k+k2l2 +k3l3p3−bi−b−1−D) ·((biY +bY +Y −a+k+k2l2 +k3l3p3)2−D−1)·
·(K + i+D− p) · ((D+ 2− v)2 + (((w− c)2 −E − 1)2 + ((w− q)2 −F − 1)2 + ((w− r)2 −G− 1)2)·
·((w+E+ 1− p)2 + (s+F − lw− l)2 + (lwG+ lG+G− k+ s)2 + (vH − s)2) + ((c− q)2− I − 1)2+
+((q− r)2 − J − 1)2 + ((r− c)2 −M − 1)2)2] · [(i+ u+ 1− j)2 + (d+ d2e2 + d3e3f3 + β − bi− b)2+

+(j + β + 1−N)2 + (biγ + bγ + γ − a+ d2e2 + d3e3f3)2 + (g + g2h2 + g3h3m3 + ε− bj − b)2+
+(bjδ+bδ+δ−a+g+g2h2+g3h3m3)2+((p−1)·p·((z−k)2 ·(z−l)2+((f+η+1−z)·(q−ez−e−1−η)·
·((ezζ+eζ+ζ−d+q)2−η−1)·((ρθ−q)2−η−1))2)·((η+2−r)2+(v+κ−yk−y)2+(ykλ+yλ+λ−x+w)2+
+(w+µ−yl−y)2 +(ylν+yν+ν−x+w)2 +(((s−v)2−π−1)2 +((s−w)2−ρ−1)2)·((s+π+1−f)2+
+(rρ− t)2 + (t+σ− os− s)2 + (osτ + oτ + τ −n+ t)2))2 + ((C+ ξ−k) · ((BLφ+Bφ+φ−A+J)2+
+(J + ξ−BL−B)2 + (((L− k)2 −ϕ− 1) · (D+D2E2 +D3E3F 3 − J))2 + (((L− k− 1)2 −χ− 1)·
·(G+G2H2 +G3H3I3−J))2 + (((L−1)2−ψ−1) · (g+ g2h2 + g3h3m3−J))2 + (((L−G)2−ω−1)·
·(n+ n2o2 + n3o3f3 − J))2 + (Γ + 1−M)2 + (P + ∆− EM)2 + (EMΘ + Θ−D + P )2+

+(U+Λ−HR)2 +(HRΨ+Ψ−G+U)2 +(S+Φ−ER)2 +(ERΞ+Ξ−D+S)2 +(T+Ω−ER−E)2+
+(ERΥ + Υ−D+T )2 + (R · (I+x1 + 1−R) · ((x1 + 2−O)2 + (M +x2 + 1−X)2 + (X+x3−F )2+
+(Q+x4−EX)2 +(EXx5 +x5−D+Q)2 +(((I−F +1)2 +(Ox6−P )2 +(Ox7−Q)2 +(((R−M)2+
+(U − PQ)2) · ((X + x8 −R)2 + (U − T )2) · ((R+ x8 −X)2 + (U − S)2 + ((R−M)2 − x9 − 1)2))·
·((I −F )2 + (Ox6 −P )2 + (Ox7 −Q)2 + (O−Px8 +Qx9)2 + ((R−M)2 + (U − V )2 + (OV −Q)2)·
·((R−X)2 + (U − V )2 + (OV −Q)2) · (((R−X)2 − y1 − 1)2 + ((R−M)2 − y2 − 1)2 + (U − S)2)))·

·((M + x1 − F )2 + (I − F + 1)2 + (α+ x2 − EW )2 + (EWx3 + x3 −D + α)2+
+(((Zy3 − P )2 − x4 − 1) · ((Zy4 − α)2 − x4 − 1) · (M −W ) · (I − x4 + 1−W ) ·W · (Z − 1))2+

+((R+ x5 + 1−M)2 + (U − S)2) · ((M + x5 −R)2 + (U − T )2)) · ((I − F )2 + (U − S)2)2)2] = 0.

Theorem 7.
The statement above is equivalent to the finite Graph Minor Theorem, and, hence,
is unprovable in at least Π1

1-CA0, and, actually, in a stronger theory.

This polynomial expression is of size 1067.
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Phase transition for the planar graph minor theorem
Very much in the spirit of the previous polynomial expression, we could also write a
phase transition expression for the graph minor theorem restricted to planar graphs,
based on the article [3]. There is no exact phase transition result for the full Graph
Minor Theorem (the number of graphs grows faster than exponentiation) but there
is a neat threshold result for the much smaller (exponential) class of planar graphs,
with the constant 1

log2 γ
separating provable and unprovable instances of the planar

Graph Minor Theorem. Here, γ is a classical constant, “the planar graph constant”
from the graph enumeration theory, 29.06 < γ < 32. Omitting the minors K3,3 and
K5 is easy to express, and the rest of the polynomial is similar to the Graph Minor
polynomial expression above.

Other minor-omitting classes of graphs should also be metamathematically in-
teresting.

4 Final remarks
Generation of the Atlas
Passing from first-order arithmetical formulas to pure polynomials adds concreteness
and certain clarity to all our logicians’ talk about ‘arithmetical truth’, etc. Since each
size-level of the Atlas is finite, we can start implementing the Atlas by hands, perhaps
distributing the first few thousand expressions among a team of calculators. Here are
the first few members: 0 = 0, 1 = 0, ∀x (x = 0), ∃x (x = 0), 2 = 0, ∀x (x− 1 = 0),
∃x (x−1 = 0), ∀x ∃y (x−y = 0), ∃x ∀y (x−y = 0), . . . ,∃xyz (x2 +y2−z2 = 0), . . .,
etc. Clearly, the first few size-levels of the Atlas will only consist of EFA-provable
and EFA-refutable expressions. An interesting question would be: at which level (of
what size) will the first open problem occur?

Since there is no algorithm to check whether two members of the Atlas are EFA-
equivalent, the structure of the Atlas cannot be automatically ‘decided’ by some
algorithm. Instead, the equivalence classes of the Atlas have to be generated sepa-
rately, starting from already known members and stored in a provisional database.
As the generation of members continues, once a proof of equivalence of two ex-
pressions is stumbled upon, their provisional classes get permanently identified as
one.

Choosing the right language
The language of polynomials may seem pure, primal and most concrete you can ever
get, but it definitely isn’t the language to store mathematical knowledge and not
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the language in which our reasoning and practical generation of equivalence classes
of the Atlas should proceed.

Dealing with pure polynomials, we are forced to clutter our expressions with
encodings and approximations, which takes resources and eventually clouds and
encrypts the meanings of the mathematical phenomena we are trying to express. If
we are to build a useful chunk of the Atlas practically, we should be able to talk
about mathematical objects directly, without spending resources on encryption and
losing meaningfullness on the way. Perhaps we should maximise our arithmetical
language, by including more concrete functions, operations on finite sets, sequences,
trees, relations, cardinalities, other explicit combinatorial notational symbols and
even analytical tools.

Distances within a class and between classes

The Atlas is not a list of hard to understand cloud of amorphous and mostly use-
less “mathematical facts” – far from it. The whole point is that it goes so much
beyond metamathematically-unaware projects of automatic theorem proving and
proof-verification. What is important for us here is the metamathematical structure
of the Atlas, especially the classes that contain unprovable statements (and hence
consist of unprovable statements).

Notions of distance can be introduced on members of the same class. Some
members of the same class are transformed into each other quickly (and, hence, are
near each other), some others would necessarily require a long sequence of trans-
formations to establish their equivalence. Such notions would be of course very
sensitive to the choice of the language of the Atlas and to the allowed manipulations
that transform one member into another. Short-cuts, notations and extra rules of
automatic reasoning would influence such notions of distance within a class. How-
ever, unprovable things will stay unprovable, and the Atlas stays rigid in terms of
mapping non-identifiable, genuinely different equivalence classes.

Notions of distance between classes should be developed too. Two classes are
closer to each other than another two if a weaker extension of EFA can prove equiv-
alence of their members. So, equivalence classes come in ever-larger clusters as we
increase the deductive strength that may identify classes.

Feasibility and the need for a normal form

Another important issue is feasibility: we may not have enough space and compu-
tational resources to fully generate and store a considerable useful chunk of the At-
las, including the information about equivalence-class structure, distances between
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classes and distances within a class. We can’t store all members and we can’t store
all proofs. This is a tricky practical task. Perhaps some ‘normal form’ of expressions
can be developed in such a way that it is sufficient to only store the normal forms,
while billions of neighbouring elements of that normal form can be reconstructed on
demand when needed. (For a trivial example, when a universal formula is proved,
there is no need to store any of its instances.)

It was popular some 30-40 years ago to routinely mention non-feasibility of
projects like the Atlas. Also, not expecting anything unprovable other than con-
sistency statements, it was common to claim that even single examples of explicitly
written unprovable statements are beyond reach. In that era, even the most qualified
specialists could fall into the trap of routinely claiming, by inertia, that something
must be unfeasible. For example, in [12], the authors are predicting on their first
page that our future expression Φ from the Abstract and from Theorem 1 would
not be feasible to achieve. They start off with saying that ConPA is very compli-
cated and the Paris-Harrington Principle is perhaps a simpler example but “still
very complicated if written arithmetically”. Clearly, our current note refutes this
claim.

The last 40 years of development of metamathematics, including reverse mathe-
matics and the enormous amount of Harvey Friedman’s discoveries, showed that the
non-feasibility philosophy and the mindless lip-service to it that we hear from differ-
ent corners, is, perhaps, out-of-date. On top of that, the computational and storage
capacities of modern computers increased so much that practical implementation of
a project like the Atlas seems well within reach.

Harvey Friedman’s strong statements

In the big manuscript [4], we went further, and produced a crude polynomial ex-
pression with quantifiers that is equivalent to Proposition E of Harvey Friedman’s
Boolean Relation Theory [9]. The expression we got is of size 4620. The point of
this exercise was to show that any strength is within reach, once we have a combi-
natorial statement of that strength. Since 2009, Harvey Friedman produced much
simpler unprovable statements, equivalent to consistency of ZFC + {“there is an n-
SRP cardinal”}n∈ω, so the size 4620 can be considerably reduced, using these new
statements, perhaps to below 300 symbols in the language of pure polynomials, and
much shorter if extra symbols are allowed. Notice that the new statements are equiv-
alent to Π0

1 formulas, so their equivalence class (if the equivalence can be conducted
in EFA which is not always the case for model-theoretic reasons that make equiva-
lence indirect) will contain a statement of non-solvability of a certain Diophantine
equation, which we may never see, since practically lowering quantifier-complexity
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often explodes the polynomial so much.

Other ways to find non-trivial classes
We are hunting for members of the Atlas that belong to non-trivial (unprovable)
equivalence classes. Here is what else we can do.

1. Translate more unprovable statements, with the hope of getting elements far
from the ones we already obtained: the statement of totality of the Ackermann
function (unprovable in IΣ1), totality of superexponentiation (unprovable in
EFA), Finite Ramsey Theorem (unprovable in EFA), termination of Goodstein
sequences, termination of hydra battles, miniaturisations of the Open Ram-
sey Theorem (unprovable in ATR0) and many other old known unprovable
statements.
To learn unprovability proofs, and for extensive bibliography, see [2]. For a
larger introduction containing an extensive catalogue of examples of increas-
ing strength, we highly recommend the first chapter of Harvey Friedman’s
monumental monograph [9].

2. A new generation of unprovability results is coming from modern Ramsey the-
ory, especially infinite-dimensional Ramsey theory in the spirit of [18] and [19].
This seems to be a source of many new ideas and many new unprovabilities.

3. The Jones polynomial expression is a famous example of universality. You can
find it and the whole discussion of universality and an extensive bibliography
of related results of the era in the original papers by James Jones [10], [11]
and in, say, [12].
The papers contain many tricks and methods which we did not study and did
not use, but any future implementors of the Atlas should learn and be ready
to use, as well as the new tricks that appeared since then. It would take long
to list those of them which we know and indicate which ones are more useful
for our purposes.
Also, some knowledge of modern number theory would be necessary. We pre-
dict that some new ideas can be extracted from Craig Smoryński’s monograph
[17].

4. The article [14] by Boris Moroz and Merlin Carl should be of interest.

5. Some extremely general open problems in mathematics (for example on dis-
tributions of prime values of polynomials) already have pieces of unprovability
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proofs built in their formulations, so are asking for an unprovability proof. One
of the most glaring examples is Schinzel’s Hypothesis H in number theory. (Its
possible unprovability, along the lines of the usual indicator theory proofs, was
first suggested by Alan Woods.)

Seed sizes

Whatever language for the Atlas is chosen (like pure polynomials in this note), every
equivalence class will have a seed (the shortest member), or, possibly, several seeds
of the same size. We can view seeds as the “most compressed” representatives of
their equivalence classes, carrying and encoding the phenomenon the class represents
in the most efficient way.

We know the two trivial seeds: 0 = 0 (“the seed of truth”), the seed belonging
to the equivalence class of all EFA-provable stuff and 1 = 0 (“the seed of lies”), the
seed of all EFA-refutable stuff. Finding other seeds, of non-trivial classes, would be
a very interesting task. Our raw coarse polynomials in this note have the following
sizes, giving rough upper bounds on the sizes of their seeds :

statement equivalent to unprovable in theory current size
Theorem 1 PH2 or 1-Con(IΣ1) IΣ1 131
Theorem 2 PH3 or 1-Con(IΣ2) IΣ2 175
Theorem 3 PH or 1-Con(PA) PA 386
Theorem 5 Kruskal Theorem > ATR0 648
Theorem 7 Graph Minor Theorem > Π1

1-CA0 1067
Theorem ∗ 1-Con(MAH) MAH 4620

It seems, although we don’t have enough evidence to be sure yet, that seeds of
equivalence classes of true quantifier-complexities Π0

2 and Π0
3 will appear earlier than

seeds of classes possessing a Π0
1-member. The explanation could be that essentially

raising quantifier-complexity gives us enormous coding power that allows us to re-
duce the size of the polynomial. The examples of members of various equivalence
classes that we have at the moment were obtained from combinatorial statements.
These are the polynomials burdened and cluttered with parts that are responsible for
the Gödel coding, and other non-polynomial, in a sense non-arithmetical sections
that do the encryption work. In this way we hit members of various equivalence
classes that are not likely to be anywhere near the seeds of their classes (at least we
don’t know any reasons why they should be).

We shouldn’t exclude the possibility that some open problems in mathematics
may turn out to be equivalent to non-trivial seeds or be close to seeds.

3259



Bovykin and De Smet

Seed size as a measure of complexity different from strength

Notice that classes like that of Con(ZFC+{n-subtle cardinals}n∈ω) or 1-Con(ZFC+
{n-Mahlo cardinals}n∈ω) may appear in the Atlas earlier than, say, Con(ZFC). In
this sense, the size of the seed, although somewhat correlated with logical strength,
really measures ‘complexity of the simplest description’ of the class, and the math-
ematical phenomenon it represents, not its logical strength. There may be weak
theories representing phenomena of complex description and strong theories repre-
senting a phenomenon that can be easily “wrapped” in a short expression.

References
[1] Jeremy Avigad (2003). Number theory and elementary arithmetic. Philosophia Mathe-

matica, (3), 11, pp. 257–284.
[2] Andrey Bovykin (2009). Brief introduction to unprovability. Logic Colloquium 2006.

Lecture Notes in Logic, pp. 38–64.
[3] Andrey Bovykin (2010). Unprovability threshold for the planar graph minor theorem.

Annals of Pure and Applied Logic, 162 (3), pp. 175–181.
[4] Andrey Bovykin and Michiel De Smet (2011). A study of the Atlas of all polynomial

equations with quantifier-prefixes and the structure of the provable-equivalence classes.
Manuscript. 81 pages. Available online.

[5] Andrey Bovykin and Davide Crippa (2017). Five Kinds of Impossibility. Draft book
manuscript, 100 pages.

[6] Michiel De Smet (2011). Unprovability and phase transitions in Ramsey theory. PhD
thesis. University of Gent, Belgium.

[7] Costas Dimitracopoulos and Haim Gaifman (1980). Fragments of Peano’s arithmetic
and the MRDP theorem. Logic and algorithms, Enseign. Math. 30, pp. 187–206.

[8] Harvey Friedman, Neil Robertson, Paul Seymour (1987). The metamathematics of the
graph minor theorem. Contemporary Mathematics Series of the AMS, 65, pp. 229–261.

[9] Harvey Friedman (2010). Boolean Relation Theory. Association for Symbolic Logic
Series. Cambridge University Press.

[10] James P. Jones (1978). Three universal representations of recursively enumerable sets.
Journal of Symbolic Logic, 43 (2), pp. 335–351.

[11] James P. Jones (1982). Universal Diophantine equation. Journal of Symbolic Logic,
47 (3), pp. 549–571.

[12] James P. Jones, John C. Shepherdson, Verena H. Dyson (1982). Some Diophantine
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Abstract

Let e1, . . . , ek be complex n × n matrices such that eiej = −ejei whenever
i ̸= j. We conjecture that rk(e21) + rk(e22) + · · ·+ rk(e2k) ≤ O(n logn). We show
that:
(i). rk(en1 ) + rk(en2 ) + · · ·+ rk(enk ) ≤ O(n logn),
(ii). if e21, . . . , e2k ̸= 0 then k ≤ O(n),
(iii). if e1, . . . , ek have full rank, or at least n−O(n/ logn), then k ≤ O(logn).
(i) implies that the conjecture holds if e21, . . . , e2k are diagonalizable (or if e1, . . . ,
ek are). (ii) and (iii) show it holds when their rank is sufficiently large or
sufficiently small.

1 Introduction
Consider a family e1, . . . , ek of complex n×n matrices which pairwise anticommute;
i.e., eiej = −ejei whenever i ̸= j. A standard example is a representation of
a Clifford algebra, which gives an anticommuting family of 2 log2 n + 1 invertible
matrices, if n is a power of two (see Example 1 in Section 3). This is known to be
tight: if all the matrices e1, . . . , ek are invertible then k is at most 2 log2 n+ 1. (see
[10] and Theorem 1 below). However, the situation is much less understood when
the matrices are singular. As an example, consider the following problem:

Question 1. Assume that every ei has rank at least 2n/3. Is k at most O(logn)?

The research leading to these results has received funding from the European Research Council under
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339691.
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We expect the answer to be positive. However, we can solve such a problem only
under some extra assumptions. In [6], it was shown that an anticommuting family
of diagonalisable matrices can be “decomposed” into representations of Clifford al-
gebras. This indeed affirmatively answers Question 1 if the ei’s are diagonalisable.
In this paper, we formulate a conjecture which relates the size of an anticommuting
family with the rank of matrices in the family. We prove some partial results in
this direction. In Theorem 3, we show that the situation is clear when the matri-
ces are diagonalisable, or their squares are diagonalisable, or even rk(e2i ) = rk(e3i ).
However, we can say very little about the case when the matrices are nilpotent. In
Theorem 2, we show that, in Question 1, we have k ≤ O(n). Theorem 6 implies
that k ≤ O(logn) whenever the rank of every ei is almost full.

One motivation for this study is to understand sum-of-squares composition for-
mulas. A sum-of-squares formula is an identity

(x2
1 + x2

2 + · · ·+ x2
k) · (y2

1 + y2
2 + · · ·+ y2

k) = f2
1 + f2

2 + · · ·+ f2
n , (1)

where f1, . . . , fn are bilinear complex1 polynomials. We want to know how large must
n be in terms of k so that such an identity exists. This problem has a very interesting
history, and we refer the reader to the the monograph [10] for details. A classical
result of Hurwitz [3] states that n = k can be achieved only for k ∈ {1, 2, 4, 8}.
Hence, n is strictly larger than k for most values of k, but it is not known how
much larger. In particular, we do not known whether2 n = Ω(k1+ϵ) for some ϵ > 0.
In [1], it was shown that such a lower bound would resolve an open problem in
arithmetic complexity theory (while the authors obtained an Ω(n7/6) lower bound
on integer composition formulas in [2]). We point out that our conjecture about
anticommuting families implies n = Ω(k2/ log k), which would be asymptotically
tight. This connection is hardly surprising: already Hurwitz’s theorem, as well as
the more general Hurwitz-Radon theorem [4, 9], can be proved by reduction to an
anticommuting system.

2 Preliminaries
A family e1, . . . , ek of n×n complex matrices will be called anticommuting if eiej =
−ejei holds for every distinct i, j ∈ {1, . . . , k}. We conjecture that the following
holds (rk(A) is the rank of the matrix A):

1The problem is often phrased over R when the bilinearity condition is automatic.
2Recall that f(k) = Ω(g(k)) if there exists c > 0 such that f(k) ≥ cg(k) holds for every

sufficiently large k.

3264



On Families of Anticommuting Matrices

Conjecture 1. Let e1, . . . , ek be an anticommuting family of n× n matrices. Then

k∑

i=1
rk(e2i ) ≤ O(n logn) .

The main motivation is the following theorem:

Theorem 1 ([10]). Let e1, . . . , ek be an anticommuting family of n × n invertible
matrices. Then k ≤ 2 log2 n+ 1. The bound is achieved if n is a power of two.

Under the assumption that e2i are scalar diagonal matrices, this appears in [7]
(though it may have been known already to Hurwitz). As stated, it can be found in
[10] (Proposition 1.11 and Exercise 12, Chapter 1). There, an exact bound is given
(see also Proposition 9 below):

k ≤ 2q + 1 , if n = m2q with m odd . (2)

Theorem 1 shows, first, that the Conjecture holds for invertible matrices and, second,
that the purported upper bound cannot be improved: taking 2 log2 n + 1 full rank
matrices gives ∑ rk(e2i ) = (2 log2 n+ 1)n.

A key aspect of Conjecture 1 is that ∑ rk(e2i ) is bounded in terms of a function
of n only. This would fail, had we counted ∑ rk(ei) instead. For consider 2 × 2
matrices

ei =
(

0 ai
0 0

)
, ai ̸= 0 . (3)

They trivially anticommute (as eiej = ejei = 0), but ∑k
i=1 rk(ei) = k, which can

be arbitrarily large. However, we also have e2i = 0 and this example is vacuous
when counting ∑ rk(e2i ). The minimum requirement of the Conjecture is that every
anticommuting family with non-zero squares is finite. Indeed, we prove that this is
the case:

Theorem 2. Let e1, . . . , ek be an anticommuting family of n × n matrices with
e21, . . . , e

2
k ̸= 0. Then k ≤ O(n).

In Theorem 10, we will show that k ≤ 2n− 3 if n is sufficiently large, which is tight.
Theorem 2 implies

k∑

i=1
rk(e2i ) ≤ O(n2) .

We will also show:
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Theorem 3. Let e1, . . . , ek be an anticommuting family of n× n matrices. Then

k∑

i=1
rk(eni ) ≤ (2 log2 n+ 1)n .

This implies that Conjecture 1 holds whenever rk(e2i ) = rk(e3i ) for every ei (this is
guaranteed if e2i is diagonalisable). Note that if already e1, . . . , ek are diagonalisable,
we obtain ∑k

i=1 rk(ei) ≤ (2 log2 n+ 1)n.
We will also generalise Theorem 1. In Theorem 6, we show that the assumption

that ei have full rank can be replaced by the assumption that they have almost full
rank. This, together with Theorem 2 shows that Conjecture 1 holds if the e2i have
either rank close to n or close to logn. Moreover, note that the Conjecture implies
positive answer to Question 1: if rk(ei) ≥ 2n/3 then rk(e2i ) ≥ n/3 and so we must
have k ≤ O(logn).

Irreducible families In order to prove Theorem 3, we will discuss general struc-
ture of anticommuting families. One way to obtain such a family is via a direct sum
of simpler families, which we now describe. If A1 ∈ Cr1×r1 and A2 ∈ Cr2×r2 , let
A1 ⊕A2 be the (r1 + r2)× (r1 + r2) matrix

A1 ⊕A2 =
(

A1 0
0 A2

)
.

A family e1, . . . , ek ∈ Cn×n will be called reducible, if there exists an invertible V
such that

V eiV
−1 = ei(1)⊕ ei(2) , i ∈ [k] , (4)

where e1(1), . . . , ek(1) ∈ Cr1×r1 , e1(2), . . . , ek(2) ∈ Cr2×r2 , with 0 < r1 < n and
r1 + r2 = n. If no such decomposition exists, the family will be called irreducible.
(Note that the similarity transformation V e1V −1, . . . , V ekV

−1 preserves anticom-
mutativity and rank, and that e1, . . . , ek anticommutes iff both e1(1), . . . , ek(1) and
e1(2), . . . , ek(2) do.)

Hence, irreducible families form basic building blocks of anticommuting families,
and it is enough to understand the structure of the irreducibles. We obtain the
following result:

Theorem 4. Let e1, . . . , ek be an irreducible anticommuting family. Then every ei
is either invertible or nilpotent.
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In other words, an irreducible family consists of two parts: the invertible ma-
trices and the nilpotent ones. As in Theorem 1, invertible matrices are quite well-
understood. In contrast, we know almost nothing about nilpotent anticommuting
matrices. One exception is a nice theorem of Jacobson [5], see also [8]: a family of
anticommuting nilpotent matrices is simultaneously upper triangularisable. A more
refined description of irreducible families will be give in Proposition 8.

Notation and organization [k] := {1, . . . , k}. Cn×m will denote the set of n×m
complex matrices. For a matrix A, rk(A) is its the rank. Spectrum of a square
matrix A, Λ(A), is the set of its eigenvalues. A is nilpotent if Ar = 0 for some r (or
equivalently, An = 0, or Λ(A) = {0}).

In Section 3, we give examples of anticommuting families. In Section 4, we
prove Theorem 2, and give a generalization of Theorem 1. In Section 5, we prove
Theorems 3 and 4. The latter is a corollary of Proposition 8 which describes structure
of irreducible families in a greater detail. In Section 6, we reprove (2) and determine
the bound from Theorem 2 exactly. In Section 7, we outline the connection between
Conjecture 1 and the sums-of-squares problem.

We note that our main results hold in any field of characteristic different from
two (Theorem 4 also assumes the field to be algebraically closed).

3 Examples of anticommuting families
One example of an anticommuting family is the one given in (3), consisting of ma-
trices that square to zero. We give two other examples of anticommuting families.
Each achieves optimal parameters within its class. Example 1 gives the largest anti-
commuting family of invertible matrices (Theorem 1), Example 2 the largest family
of anticommuting matrices with non-zero squares if n > 4 (Theorem 10). It can be
checked that both examples are irreducible.

Example 1 – Invertible Matrices Suppose that e1, . . . , ek ∈ Cn×n are anticom-
muting matrices. Then the following is a family of k+ 2 anticommuting matrices of
dimension 2n× 2n:

(
In 0
0 −In

)
,

(
0 In
−In 0

)
,

(
0 e1
e1 0

)
, . . . ,

(
0 ek
ek 0

)
. (5)

Starting with a single non-zero 1× 1 matrix, this construction can be applied itera-
tively to construct a family of 2 log2 n+ 1 anticommuting invertible n× n matrices
whenever n is a power of two. Moreover, each matrix is diagonalizable. If n is not a
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power of two but rather of the form m2q with m odd, we instead obtain 2q+ 1 such
matrices.

Example 2 – Nilpotent Matrices If n ≥ 2, consider n×n matrices of the form

ei =




0 ui 0
vti
0


 ,

where ui, vi ∈ Cn−2 are row-vectors. (As usual, the unspecified entries are zero).
Then

eiej =




0 0 uiv
t
j

0
0


 ,

and so eiej = −ejei iff uiv
t
j = −ujvti and e2i ̸= 0 iff uiv

t
i ̸= 0. Setting r := n − 2,

it is easy to construct row vectors u1, . . . , u2r, v1, . . . , v2r ∈ Cr such that for every
i, j ∈ [2r]

uiv
t
i ̸= 0 , uivtj = −ujvti if i ̸= j .

This gives an anticommutung family

e1, . . . , e2n−4 ∈ Cn×n ,

where every ei is nilpotent but satisfies e2i ̸= 0. One can add one more matrix to
the family: the diagonal matrix

e0 :=




−1
In−2

−1


 .

This gives 2n− 3 anticommuting matrices with non-zero squares.

4 Arguments from linear independence
In this section, we prove Theorem 2 and Theorem 6, the latter being a generalization
of Theorem 1. We first observe the following:

Remark. If e1, . . . , ek anticommute and e21, . . . , e
2
k ̸= 0 then they are linearly inde-

pendent.
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To see this, assume that e1 = ∑k
j>1 ajej . Since e1 anticommutes with every ej , j > 1,

we have e21 = e1(
∑
ajej) = −(∑ ajej)e1 = −e21 and hence e21 = 0.

This means that k ≤ n2 if e1, . . . , ek ∈ Cn×n. We now show that k is actually
O(n). In Theorem 10, we will see that the correct bound is 2n − 3 if n > 4, which
is tight.

Theorem 2 (restated). Let e1, . . . , ek ∈ Cn×n be an anticommuting family with
e21, . . . , e

2
k ̸= 0. Then k ≤ O(n).

Proof. First, there exist row-vectors u, v ∈ Cn such that ue2i vt ̸= 0 ∈ C for every
i ∈ [k]. This is because we can view ue2i v

t as a polynomial in the 2n-coordinates
of u and v. If e2i ̸= 0, the polynomial is non-trivial, and so a generic u, v satisfies
ue2i v

t ̸= 0 for every i ∈ [k].
Let us define the k × k matrix M by

Mij := {ueiejvt}i,j∈[k] .

Then rk(M) ≤ n. This is because M can be factored as M = L · R, where L is
k × n matrix with i-th row equal to uei and R is n × k with j-th column equal to
ejv

t. On the other hand, we have rk(M) ≥ k/2. This is because Mii ̸= 0 and, since
eiej = −ejei, Mij = −Mji whenever j ̸= i. Hence M + M t is a diagonal matrix
with non-zero entries on the diagonal, rk(M + M t) = k and so rk(M) ≥ k/2. This
gives k/2 ≤ rk(M) ≤ n and so k ≤ 2n.

The Remark can be generalised. For A = {i1, . . . , ir} ⊆ [k] with i1 < · · · < ir,
let eA be the matrix ei1ei2 · · · eir . |A| denotes the cardinality of A.

Lemma 5. Let e1, . . . , ek be anticommuting matrices. For p ≤ k, assume that for
every A ⊆ {1, . . . , k} with |A| ≤ p we have ∏i∈A e

2
i ̸= 0. Then the matrices eA, with

|A| ≤ p and |A| even, are linearly independent (similarly with odd |A|).
Proof. Suppose that we have a non-trivial linear combination ∑A even aAeA = 0.
Let A0 be a largest A with aA ̸= 0. We will show that ∏i∈A0 e

2
i = 0 holds. This

implies the statement of the lemma for even A’s; the odd case is analogous. The
proof is based on the following observations. First, ei and e2j always commute.
Second, if i ̸∈ A then eieA = (−1)|A|eAei, i.e., eA and ei commute or anticommute
depending on the parity of |A|.

Without loss of generality, assume that A0 = {1, . . . , q}. For r ≤ q and z ∈ N
let Sr(z) := {A ⊆ {r + 1, . . . , k} : |A| = z mod2}. We will show that for every
0 ≤ r ≤ q,

e21 · · · e2r


 ∑

A∈Sr(r)
a[r]∪AeA


 = 0 . (6)
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If r = 0, (6) is just the equality ∑A even aAeA = 0. Assume (6) holds for some
r < q, and we want to show it holds for r + 1. Collecting terms that contain er+1
and those that do not, (6) can be rewritten as

e21 · · · e2rer+1


 ∑

A∈Sr+1(r+1)
a[r+1]∪AeA


 = −e21 · · · e2r


 ∑

B∈Sr+1(r)
a[r]∪BeB


 .

Let f and g be the left and right hand side of the last equality. Since A range over
sets of parity (r + 1) mod2 and B over sets with parity r mod2, we have er+1f =
(−1)r+1fer+1 and er+1g = (−1)rger+1. As f = g, this gives er+1f = −fer+1 = 0
and so er+1f = 0. Hence,

e21 · · · e2re2r+1
∑

A∈Sr+1(r+1)
a[r+1]∪AeA = 0 ,

as required in (6). Finally, if we set r := q in (6), we obtain e21 · · · e2q · aA0 = 0 (recall
that A0 is maximal) and so e21 · · · e2q = 0, as required.

Part (ii) of the following theorem is a generalisation of Theorem 1. Note that
part (i) gives k ≤ O(logn) whenever r ≥ n−O(n/ logn).

Theorem 6. Let e1, . . . , ek be anticommuting matrices in Cn×n and
r := mini∈[k] rk(ei).

(i). If r > n(1− 1/2c) with c ∈ N then k ≤ cn2/c.

(ii). If r > n
(
1− 1

4(log2 n+1)

)
then k ≤ 2 log2 n+ 1.

Proof. (i). By Sylvester’s inequality, we have rk(∏i∈A e
2
i ) > n − |A|n/c for every

A ⊆ [k]. Hence, ∏i∈A e
2
i ̸= 0 whenever |A| ≤ c. By Lemma 5, the matrices eA,

A ⊆ [k], |A| = c, are linearly independent. This implies
(k
c

) ≤ n2 and the statement
follows from the estimate

(k
c

) ≥ (k/c)c.
In (ii), assume that k > 2 log2 n+1 and, without loss of generality, k ≤ 2 log2 n+2.

As in (i), we conclude e21 · · · e2k ̸= 0. The lemma shows that the products eA, with
|A| even, are linearly independent. This gives 2k−1 ≤ n2 and so k ≤ 2 log2 n + 1, a
contradiction.

5 Structure of irreducible families
We will now prove Theorems 3 and 4. We start with the following lemma.
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Lemma 7. Let A and B be square matrices of the form

A =
(

A1 0
0 A2

)
, B =

(
B1 B3
B4 B2

)
,

where A1, B1 ∈ Cn×n, A2, B2 ∈ Cm×m. If AB = −BA, the following hold:

(i). if there is no λ such that λ ∈ Λ(A1) and −λ ∈ Λ(A2) then B3 = 0 and B4 = 0,

(ii). if Λ(A1) = {λ1} and Λ(A2) = {λ2} for some λ1, λ2 ̸= 0 then B1, B2 = 0.

Proof. We first note the following:

Claim. Let X ∈ Cp×p, Y ∈ Cq×q and Z ∈ Cp×q be such that XZ = ZY . If
Λ(X) ∩ Λ(Y ) = ∅ then Z = 0.

Proof of the Claim. Without loss of generality, we can assume that Y is upper trian-
gular with its eigenvalues λ1, . . . , λq on the diagonal. Let v1, . . . , vq be the columns
of Z, and assume that some vi is non-zero. Taking the first such vi gives Xvi = λivi
– contradiction with λi ̸∈ Λ(X).

Anticommutativity of A and B gives A1B3 = −B3A2 and A2B4 = −B4A1. If
A1, A2 satisfy the assumption of (i), we have Λ(A1)∩Λ(−A2) = ∅ and so B3, B4 = 0
by the Claim. We also have A1B1 = −A1B1. If A1 is as in (ii), we have Λ(A1) ∩
Λ(−A1) = ∅ and so B1 = 0; similarly for B2.

Assume that A is a block-diagonal matrix such that each block has exactly one
eigenvalue and the eigenvalues are distinct for different blocks. This can be achieved
by converting A to Jordan normal form and regrouping the Jordan blocks according
to their eigenvalues. Then Lemma 5 determines block-structure of B, if A and B
anticommute. For example, assume that A is block-diagonal

A =




A1
A−1

A2
A0


 ,

where Λ(Az) = {z} for z ∈ {1,−1, 2, 0}. If A and B anticommute, B must have
block-structure

B =




0 B1
B2 0

0
B3


 .

Similar considerations give:
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Proposition 8. Let e1, . . . , ek ∈ Cn×n be an irreducible anticommuting family.
Then:

(i). For every ei, Λ(ei) ⊆ {λi,−λi} for some λi ∈ C. Equality holds whenever at
least two matrices in the family are non-zero.

(ii). If at least two of the matrices are invertible then n is even and the multiplicity

of λi is exactly n/2 in an invertible ei. Moreover, ei is similar to
(

e′i 0
0 −e′i

)

for some e′i ∈ Cn/2×n/2 with Λ(e′i) = {λi}.

(iii). Assume that e1 =
(

e′1 0
0 e′′1

)
is invertible with Λ(e′1) = {λ1}, Λ(e′′1) = {−λ1}.

Then the family is of the form

e1 =
(

e′1 0
0 e′′1

)
, ej =

(
0 e′j
e′′j 0

)
, j ∈ {2, . . . , k} , (7)

where e′1, e′′1, e′j , e′′j are matrices in Cr×r, C(n−r)×(n−r), Cr×(n−r) and C(n−r)×r,
respectively, and r is the multiplicity of λ1 in e1. Moreover, the family e2e3,
e2e4, . . . , e2ek is anticommuting and reducible if 0 < r < n.

Proof. (i). Assume that there is some ei with eigenvalues λ, λ′ such that λ ̸= −λ′.
After a suitable similarity transformation, we can assume that

ei =
(

e′i 0
0 e′′i

)
,

where e′i ∈ Cr×r e′′i ∈ C(n−r)×(n−r) are such that Λ(e′i) ⊆ {λ,−λ′} and Λ(e′′i ) ∩
{λ,−λ′} = ∅, for some 0 < r < n. Lemma 7 part (i) gives that every ej is of the
form

ej =
(

e′j 0
0 e′′j

)

and hence the family is reducible. If Λ(ei) = {λ} with λ ̸= 0, the lemma gives ej = 0
for every j ̸= i.

(7) in (iii) follows from from Lemma 7 part (ii). Moreover, since e2, . . . , ek
anticommute then so do e2e3, . . . , e2ek. The latter family is of the form

e2ej =
(

e′2e
′′
j 0

0 e′′2e
′
j

)
, j ∈ {3, . . . , k} , (8)
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and hence it is reducible.
For (ii), assume that e1 and e2 are non-singular. By (i), we have Λ(e1) ⊆

{λ1,−λ1}. We can assume that e1 is as in (iii) with r equal to the multiplicity of λ1,
and hence e2 is as in (7). Since e′2, e′′2 are of dimension r× (n− r) resp. (n− r)× r,
the rank of e2 is at most the minimum of 2r and 2(n− r). We must therefore have
r = n/2. Moreover, anticommutativity of e1 and e2 gives e′1e′2 = −e′2e′′1. Since e′2
must be invertible, we have e′′1 = −e′−1

2 e′1e
′
2. Hence, e′1 and −e′′1 are similar and e1

is similar to
(

e′1 0
0 −e′1

)
.

Part (i) of the proposition immediately implies Theorem 4. This in turn gives:

Theorem 3 (restated). Let e1, . . . , ek ∈ Cn×n be an anticommutative family. Then∑k
i=1 rk(eni ) ≤ (2 log2 n+ 1)n.

Proof. Argue by induction on n. If n = 1, the statement is clear. If n > 1, assume
first that the family is irreducible. By Theorem 4, every ei is either invertible or
nilpotent. If ei is nilpotent then eni = 0 and it contributes nothing to the rank. On
the other hand, Theorem 1 asserts that there can be at most 2 log2 n + 1 anticom-
muting invertible matrices and so indeed ∑k

i=1 rk(eni ) ≤ (2 log2 n+ 1)n .
If the family is reducible, consider the decomposition in (4). By the inductive

assumption, ∑ rk(ei(z)n) ≤
∑ rk(ei(z)rz) ≤ (2 log2 rz + 1)rz for both z ∈ {1, 2}.

Since rk(eni ) = rk(ei(1)n) + rk(ei(2)n), we obtain

k∑

i=1
rk(eni ) ≤

k∑

i=1
rk(ei(1)r1) +

k∑

i=1
rk(ei(2)r2) ≤

≤(2 log2 r1 + 1)r1 + (2 log2 r2 + 1)r2 ≤ (2 log2 n+ 1)(r1 + r2) =
=(2 log2 n+ 1)n .

6 Some exact bounds
For completeness, we now sketch a proof of (2) from Section 2. We then prove the
exact bound in Theorem 2.

Proposition 9. Let e1, . . . , ek be an anticommutative family of invertible n × n
matrices, where n = m2q and m is odd. Then k ≤ 2q + 1.

The bound is achieved by Example 1.
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Proof of Proposition 9. Argue by induction on n. If n > 1, it is enough to consider
the case when the family is irreducible. If k > 1, Proposition 8 part (ii) shows
that λ1 has multiplicity n/2 in e1. By part (iii), we can assume that the family is
of the form (7), where every e′i, e

′′
i ∈ Cn/2×n/2, i ∈ [k], is invertible. If e2, . . . , ek

anticommute then so do the k − 2 matrices e2e3, e2e4, . . . , e2ek. Writing e2ej as
in (8), we obtain that e′2e′′3, . . . , e′2e′′k is a family of k − 2 invertible anticommuting
matrices in Cn/2×n/2. The inductive assumption gives k − 2 ≤ 2(q − 1) + 1 and so
k ≤ 2q + 1 as required.

For a natural number n, let α(n) denote the largest k so that there exists an
anticommuting family e1, . . . , ek ∈ Cn×n with e21, . . . , e

2
k ̸= 0.

Theorem 10.

α(n) =





2n− 1 , if n ∈ {1, 2}
2n− 2 , if n ∈ {3, 4}
2n− 3 , if n > 4

The rest of this section is devoted to proving the theorem.

Lemma 11. If n > 1, α(n) equals the maximum of the following quantities: a)
2n− 3, b) max0<r<n(α(r) +α(n− r)), c) 2 +α(n/2) (where we set α(n/2) := −1 if
n is odd).

Proof. That α(n) is at least the maximum is seen as follows. α(n) ≥ a) is Example
2. α(n) ≥ 2 + α(n/2) is seen from (5) in Example 1. For b), suppose we have two
anticommuting families e1(z), . . . , ekz(z) ∈ Crz×rz , z ∈ {1, 2}. Then the following is
an anticommuting family of (r1 + r2)× (r1 + r2) matrices: e1(1)⊕ 0, . . . , ek1 ⊕ 0, 0⊕
e1(2), . . . , 0⊕ ek2(2) (with 0 ∈ Cr1×r1 ,Cr2×r2 respectively).

We now prove the opposite inequality. Let e1, . . . , ek ∈ Cn×n be an anticommut-
ing family with e21, . . . , e

2
k ̸= 0. We first give two claims.

Claim 1. If all the ei’s are nilpotent then k ≤ 2(n− 2).

Proof of Claim 1. By the theorem of Jacobson [5], a family of anticommuting nilpo-
tent matrices is simultaneously upper triangularisable. So let us assume that
e1, . . . , ek are upper-triangular with zero diagonal, and proceed as in the proof of
Theorem 2. For M as defined in the proof, it is enough to show that rk(M) ≤ n−2,
which gives k ≤ 2(n − 2). If the ei’s are upper triangular with zero diagonal, we
can see that the first column of L and the last row of R are zero. This shows that
rk(M) = rk(LR) ≤ n− 2.

Claim 2. If e1, e2 are invertible then k ≤ 2 + α(n/2).
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Proof of Claim 2. As in the proof of Theorem 9, we can assume that the family is
of the form (7) where e′2, e

′′
2 are invertible and r = n/2. Considering the family

e2e3, . . . , e2ek, written as in (8), we obtain that e′2e′′3, . . . , e′2e′′k is an anticommuting
family of k − 2 matrices in Cn/2×n/2. If we show that (e′2e′′j )2 ̸= 0 for every j ∈
{3, . . . , k}, we obtain k − 2 ≤ α(n/2) as required.

Let j ∈ {3, . . . , k}. Anticommutativity of e2 and ej gives e′2e
′′
j = −e′je′′2 and

e′′2e
′
j = −e′′j e′2. Hence

(e′2e′′j )2 = e′2e
′′
j e

′
2e

′′
j = e′2(e′′j e′2)e′′j = −e′2e′′2e′je′′j ,

= e′2e
′′
j (e′2e′′j ) = −e′2e′′j e′je′′2 .

If (e′2e′′j )2 = 0, the first equality gives e′je′′j = 0 and the second e′′j e
′
j = 0 (recall that

e′2, e
′′
2 are invertible). But since e2j = e′je

′′
j ⊕ e′′j e

′
j , this gives e2j = 0 – contrary to the

assumption e2j ̸= 0.

To prove the Lemma, assume first that e1, . . . , ek is irreducible. Then the ei’s
are either invertible or nilpotent. If there is at most one invertible ei, Claim 1
gives k − 1 ≤ 2(n − 2), as in a). If at least two ei’s are invertible, Claim 2 gives
k ≤ 2 +α(n/2), as in b). If the family is reducible, write it as in (4). For z ∈ {1, 2},
let Az := {i ∈ [k] : ei(z)2 ̸= 0}. Then A1 ∪ A2 = [k] and so k ≤ α(r1) + α(r2), as in
c).

Proof of Theorem 10. Using the Lemma, it is easy to verify that the theorem holds
for n ≤ 4. If n > 4, the lemma gives α(n) ≥ 2n − 3 and it suffices to prove the
opposite inequality. Assume that n is the smallest n > 4 such that α(n) > 2n − 3.
This means that for every n′ < n, α(n′) = 2n′ − ϵ(n′) where ϵ(n′) = 1 if n′ ∈ {1, 2}
and ϵ(n′) > 1 otherwise. Then either α(r) + α(n− r) > 2n− 3 for some 0 < r < n,
or 2 + α(n/2) > 2n − 3. The first case is impossible: we have α(r) + α(n − r) =
2n − ϵ(r) − ϵ(n − r). But ϵ(r) + ϵ(n − r) < 3 implies r, (n − r) ∈ {1, 2} and so
n ≤ 4. If 2 + α(n/2) > 2n − 3, we have 2 + 2(n/2) − 2ϵ(n/2) > 2n − 3 and so
n < 5− 2ϵ(n/2) ≤ 3.

7 Sum-of-squares formulas
We now briefly discuss the sum-of-squares problem. Let σ(k) be the smallest n so
that there exists a sum-of-squares formula as in (1) from the Introduction. The
following can be found in Chapter 0 of [10]:
Lemma 12. σ(k) is the smallest n such that there exists k × n matrices A1, . . . Ak

which satisfy
AiA

t
i = Ik , AiA

t
j = −AjA

t
i , if i ̸= j ,
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for every i, j ∈ [k].

The matrices from the lemma can be converted to anticommuting matrices,
which provides a connection between the sum-of-squares problem and Conjecture 1,
as follows.

Proposition 13. If σ(k) = n, there exists an anticommuting family e1, . . . , ek ∈
C(n+2k)×(n+2k) such that rk(e21) = · · · = rk(e2k) = k.

Proof. Take the (2k + n)× (2k + n) matrices (with 0 ∈ Ck×k)

ei :=




0 Ai 0
At
i

0


 , i ∈ [k] .

The matrices have the required properties as seen from

eiej =




0 0 AiA
t
j

0
0


 .

Proposition 13 shows that Conjecture 1 implies

σ(k) = Ω(k2/ log k) ,

which would be tight. We can see that the constructed matrices are nilpotent which
is exactly the case of Conjecture 1 we do not know how to handle. Furthermore,
they satisfy some additional properties: e21 = e22 = · · · = e2k and e31, . . . , e

3
k = 0.

Hence, in order to understand the sum-of-squares composition formulas, we may as
well focus on Conjecture 1 with these additional assumptions. Finally, let us note
that Proposition 13 is too generous if σ(k) = k. In this case, we can actually obtain
k − 1 invertible anticommuting matrices in Ck×k. Again following [10], let

e1 := A1A
t
k , e2 := A2A

t
k , . . . , ek−1 := Ak−1A

t
k .

The matrices anticommute, as seen from AiA
t
kAjA

t
k = −AiA

t
kAkA

t
j = −AiA

t
j (note

that AkA
t
k = I implies At

kAk = I for square matrices). This is one way how to obtain
Hurwitz’s {1, 2, 4, 8}-theorem: if σ(k) = k, we have k − 1 invertible anticommuting
matrices in Ck×k. By Theorem 1, this gives k − 1 ≤ 2 log2 k + 1 and hence k ≤ 8.
Furthermore, the precise bound in (2) rules out the k’s which are not a power of
two.
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To the memory of Professor Grigori Mints.

Abstract
We give a general overview of ordinal notation systems arising from reflec-

tion calculi, and extend them to represent impredicative ordinals defined using
Buchholz-style collapsing functions.

1 Introduction
I had the honor of receiving the Gödel Centenary Research Prize in 2008 based on
work directed by my doctoral advisor, Grigori ‘Grisha’ Mints. The topic of my dis-
sertation was dynamic topological logic, and while this remains a research interest of
mine, in recent years I have focused on studying polymodal provability logics. These
logics have proof-theoretic applications and give rise to ordinal notation systems, al-
though previously only for ordinals below the Feferman-Shütte ordinal, Γ0. I last
saw Professor Mints in the First International Wormshop in 2012, where he asked if
we could represent the Bachmann-Howard ordinal, ψ(εΩ+1), using provability logics.
It seems fitting for this volume to once again write about a problem posed to me by
Professor Mints.

Notation systems for ψ(εΩ+1) and other ‘impredicative’ ordinals are a natural
step in advancing Beklemishev’s Π0

1 ordinal analysis1 to relatively strong theories

This work was partially funded by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-
0002-02.

1The Π0
1 ordinal of a theory T is a way to measure its ‘consistency strength’. A different measure,

more widely studied, is its Π1
1 ordinal; we will not define either in this work, but the interested reader

may find details in [4] and [33], respectively.
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of second-order arithmetic, as well as systems based on Kripke-Platek set theory.
Indeed, Professor Mints was not the only participant of the Wormshop interested
in representing impredicative ordinals within provability algebras. Fedor Pakhomov
brought up the same question, and we had many discussions on the topic. At the
time, we each came up with a different strategy for addressing it. These discus-
sions inspired me to continue reflecting about the problem the next couple of years,
eventually leading to the ideas presented in the latter part of this manuscript.

1.1 Background
The Gödel-Löb logic GL is a modal logic in which 2ϕ is interpreted as ‘ϕ is derivable
in T ’, where T is some fixed formal theory such as Peano arithmetic. This may
be extended to a polymodal logic GLPω with one modality [n] for each natural
number n, as proposed by Japaridze [27]. The modalities [n] may be given a natural
proof-theoretic interpretation by extending T with new axioms or infinitary rules.
However, GLPω is not an easy modal logic to work with, and to this end Dashkov [14]
and Beklemishev [7, 6] have identified a particularly well-behaved fragment called
the reflection calculus (RC), which contains the dual modalities 〈n〉, but does not
allow one to define [n].

Because of this, when working within RC, we may simply write n instead of 〈n〉.
With this notational convention in mind, of particular interest are worms, which are
expressions of the form

m1 . . .mn>,
which can be read as

It is m1-consistent with T that it is m2 consistent with T that . . . that T
is mn-consistent.

In [26], Ignatiev proved that the set of worms of GLPω is well-ordered by consistency
strength and computed their order-type. Beklemishev has since shown that trasfinite
induction along this well-order may be used to give an otherwise finitary proof of
the consistency of Peano arithmetic [4].

Indeed, the order-type of the set of worms in RCω is ε0, an ordinal which already
appeared in Gentzen’s earlier proof of the consistency of PA [21]. Moreover, as
Beklemishev has observed [5], worms remain well-ordered if we instead work in RCΛ
(or GLPΛ), where Λ is an arbitrary ordinal. The worms of RCΛ give a notation system
up to the Feferman-Schütte ordinal Γ0, considered the upper bound of predicative
mathematics.

This suggests that techniques based on reflection calculi may be used to give a
proof-theoretic analysis of theories of strength Γ0, the focus of an ongoing research
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project. However, if worms only provide notations for ordinals below Γ0, then these
techniques cannot be applied to ‘impredicative’ theories, such as Kripke-Platek set
theory with infinity, whose proof-theoretic ordinal is much larger and is obtained by
‘collapsing’ an uncountable ordinal.

1.2 Goals of the article

The goal of this article is to give a step-by-step and mostly self-contained account
of the ordinal notation systems that arise from reflection calculi. Sections 2-5 are
devoted to giving an overview of known, ‘predicative’ notation systems, first for
ε0 and then for Γ0. However, our presentation is quite a bit different from those
available in the current literature. In particular, it is meant to be ‘minimalist’,
in the sense that we only prove results that are central to our goal of comparing
the reflection-based ordinal notations to standard proof-theoretic ordinals. Among
other things, we sometimes do not show that the notation systems considered are
computable.

The second half presents new material, providing impredicative notation systems
based on provability logics. We first introduce impredicative worms, which give a
representation system for ψ(eΩ+11), an ordinal a bit larger than the Bachmann-
Howard ordinal. Then we introduce spiders, which are used to represent ordinals
up to ψ0Ωω1 in Buchholz-style notation [11]. Here, Ωω1 is the first fixed point of
the aleph function; unlike the predicative systems discussed above, these notation
systems also include notations for several uncountable ordinals. The latter are then
‘collapsed’ in order to represent countable ordinals much larger than Γ0.

Although our focus is on notations arising from the reflection calculi and not on
proof-theoretic interpretations of the provability operators, we precede each notation
system with an informal discussion on such interpretations. These discussions are
only given as motivation; further details may be found in the references provided.
We also go into detail discussing the ‘traditional’ notation systems for each of the
proof-theoretical ordinals involved before discussing the reflection-based version, and
thus this text may also serve as an introduction of sorts to ordinal notation systems.

1.3 Layout of the article

§2: Review of the basic definitions and properties of the reflection calculus RC and
the transfinite provability logic GLP.

§3: Introduction to worms and their order-theoretic properties.
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§4: Computation of the order-type of worms with finite entries, and a brief over-
view of their interpretation in the language of Peano arithmetic.

§5: Computation of the order-type of worms with ordinal entries, and an overview
of their interpretation in the language of second-order arithmetic.

§6: Introduction and analysis of impredicative worms, obtained by introducing an
uncountable modality and its collapsing function.

§7: Introduction to spiders, variants of worms interpreted using the aleph function
and its collapses.

§8: Concluding remarks.

2 The reflection calculus
Provability logics are modal logics for reasoning about Gödel’s provability operator
and its variants [10]. One uses 2ϕ to express ‘ϕ is provable in T ’; here, T may be
Peano arithmetic, or more generally, any sound extension of elementary arithmetic
(see Section 4.1 below). The dual of 2 is 3 = ¬2¬, and we may read 3ϕ as ‘ϕ is
consistent with T ’. This unimodal logic is called Gödel-Löb logic, which Japaridze
extended to a polymodal variant with one modality [n] for each natural number in
[28], further extended by Beklemishev to allow one modality for each ordinal in [5].

The resulting polymodal logics have some nice properties; for exmample, they are
decidable, provided the modalities range over some computable linear order. How-
ever, there are also some technical difficulties when working with these logics; most
notoriously, they are incomplete for their relational semantics, and their topological
semantics are quite complex [9, 18, 15, 25].

Fortunately, Dashkov [14] and Beklemishev [6, 7] have shown that for proof-
theoretic applications, it is sufficient to restrict to a more manageable fragment of
Japaridze’s logic called the Reflection Calculus (RC). Due to its simplicity relative
to Japaridze’s logic, we will perform all of our modal reasoning directly within RC.

2.1 Ordinal numbers and well-orders
(Ordinal) reflection calculi are polymodal systems whose modalities range over a
set or class of ordinal numbers, which are canonical representatives of well-orders.
Recall that if A is a set (or class), a preorder on A is a trasitive, reflexive relation
4 ⊆ A×A. The preorder 4 is total if, given a, b ∈ A, we always have that a 4 b or
b 4 a, and antisymmetric if whenever a 4 b and b 4 a, it follows that a = b. A total,
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antisymmetric preorder is a linear order. We say that 〈A,4〉 is a pre-well-order if 4
is a total preorder and every non-empty B ⊆ A has a minimal element (i.e., there is
m ∈ B such that m 4 b for all b ∈ B). A well-order is a pre-well-order that is also
linear. Note that pre-well-orders are not the same as well-quasiorders (the latter
need not be total). Pre-well-orders will be convenient to us because, as we will see,
worms are pre-well-ordered but not linearly ordered.

Define a ≺ b by a 4 b but b 64 a, and a ≈ b by a 4 b and b 4 a. The next
proposition may readily be checked by the reader:

Proposition 2.1. Let 〈A,4〉 be a total preorder. Then, the following are equivalent:

1. 4 is a pre-well-order;

2. if a0, a1, . . . ⊆ A is any infinite sequence, then there are i < j such that ai 4 aj;

3. there is no infinite descending sequence

a0 � a1 � a2 � . . . ⊆ A;

4. if B ⊆ A is such that for every a ∈ A,
(∀b ≺ a (b ∈ B)

)→ a ∈ B,

then B = A.

We use the standard interval notation for preorders: (a, b) = {x : a ≺ x ≺ b},
(a,∞) = {x : a ≺ x}, etc. With this, we are ready to introduce ordinal numbers as
a special case of a well-ordered set. Their formal definition is as follows:

Definition 2.2. Say that a set A is transitive if whenever B ∈ A, it follows that
B ⊆ A. Then, a set ξ is an ordinal if ξ is transitive and 〈ξ,∈〉 is a strict well-order.

When ξ, ζ are ordinals, we write ξ < ζ instead of ξ ∈ ζ and ξ ≤ ζ if ξ < ζ or
ξ = ζ. The class of ordinal numbers will be denoted Ord. We will rarely appeal to
Definition 2.2 directly; instead, we will use some basic structural properties of the
class of ordinal numbers as a whole. First, observe that Ord is itself a (class-sized)
well-order:

Lemma 2.3. The class Ord is well-ordered by ≤, and if Θ ⊆ Ord is a set, then Θ
is an ordinal if and only if Θ is transitive.
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Thus if ξ is any ordinal, then ξ = {ζ ∈ Ord : ζ < ξ}, and 0 = ∅ is the least
ordinal. For ξ ∈ Ord, define ξ + 1 = ξ ∪ {ξ}; this is the least ordinal greater than
ξ. It follows from these observations that any natural number is an ordinal, but
there are infinite ordinals as well; the set of natural numbers is itself an ordinal and
denoted ω. More generally, new ordinals can be formed by taking successors and
unions:

Lemma 2.4.

1. If ξ is any ordinal, then ξ + 1 is also an ordinal. Moreover, if ζ < ξ + 1, it
follows that ζ ≤ ξ.

2. If Θ is a set of ordinals, then λ = ⋃Θ is an ordinal. Moreover, if ξ < λ, it
follows that ξ < θ for some θ ∈ Θ.

These basic properties will suffice to introduce the reflection calculus, but later
in the text we will study ordinals in greater depth. A more detailed introduction to
the ordinal numbers may be found in a text such as [29].

2.2 The reflection calculus

The modalities of reflection calculi are indexed by elements of some set of ordinals
Λ. Alternately, one can take Λ to be the class of all ordinals, obtaining a class-sized
logic. Formulas of RCΛ are built from the grammar

> | φ ∧ ψ | 〈λ〉φ,

where λ < Λ and φ, ψ are formulas of RCΛ; we may write λφ instead of 〈λ〉φ,
particularly since RCΛ does not contain expressions of the form [λ]φ. The set of
formulas of RCΛ will be denoted LΛ, and we will simply write LRC and RC instead
of LOrd, RCOrd. Propositional variables may also be included, but we will omit them
since they are not needed for our purposes. Note that this strays from convention,
since the variable-free fragment is typically denoted RC0. Reflection calculi derive
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sequents of the form φ⇒ ψ, using the following rules and axioms:

φ⇒ φ φ⇒ > φ⇒ ψ ψ ⇒ θ

φ⇒ θ

φ ∧ ψ ⇒ φ φ ∧ ψ ⇒ ψ
φ⇒ ψ φ⇒ θ

φ⇒ ψ ∧ θ

λλφ⇒ λφ
φ⇒ ψ

λφ⇒ λψ

λφ⇒ µφ for µ ≤ λ;

λφ ∧ µψ ⇒ λ(φ ∧ µψ) for µ < λ.

Let us write φ ≡ ψ if RCΛ ` φ ⇒ ψ and RCΛ ` ψ ⇒ φ. Then, the following
equivalence will be useful to us:

Lemma 2.5. Given formulas φ and ψ and ordinals µ < λ,

(λφ ∧ µψ) ≡ λ(φ ∧ µψ).

Proof. The left-to-right direction is an axiom of RC. For the other direction we
observe that λµψ ⇒ µψ is derivable using the axioms λµψ ⇒ µµψ and µµψ ⇒ µψ,
from which the desired derivation can easily be obtained.

Reflection calculi enjoy relatively simple relational semantics, where formulas
have truth values on some set of points X, and each expression λϕ is evaluated
using an accessibility relation �λ on X.

Definition 2.6. An RCΛ-frame is a structure F = 〈X, 〈�λ〉λ<Λ〉 such that for all
x, y, z ∈ X and all µ < λ < Λ,

(i) if x �µ y �µ z then x �µ z,

(ii) if z �µ x and z �λ y then y �µ x, and

(iii) if x �λ y then x �µ y.
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The valuation on F is the unique function J·KF : LΛ → 2X such that

J⊥KF = ∅

J¬φKF = X \ JφKF

Jφ ∧ ψKF = JφKF ∩ JψKF

JλφKF =
{
x ∈ X : ∃y≺λx (y ∈ JφKF)

}
.

We may write (F, x) |= ψ instead of x ∈ JψKF. As usual, φ is satisfied on F if
JφKF 6= ∅, and true on F if JφKF = X.

Theorem 2.7. For any class or set of ordinals Λ, RCΛ is sound for the class of
RCΛ-frames.

Proof. The proof proceeds by a standard induction on the length of a derivation and
we omit it.

In fact, Dashkov proved that RCω is also complete for the class of RCω-frames
[14];2 it is very likely that his result can be generalized to full RC over the ordinals,
either by adapting his proof or by applying reduction techniques as in [8]. However,
we remark that only soundness will be needed for our purposes.

2.3 Transfinite provability logic
The reflection calculus was introduced as a restriction of Japaridze’s logic GLPω [27],
which itself was extended by Beklemishev to full GLP [5], containing one modality for
each ordinal number. Although we will work mostly within the reflection calculus,
for historical reasons it is convenient to review the logic GLP.

The (variable-free) language of GLP is defined by the following grammar:

> | ⊥ | φ ∧ ψ | φ→ ψ | 〈λ〉φ.

Note that in this language we can define negation (as well as other Boolean connec-
tives), along with [λ]φ = ¬〈λ〉¬φ.

The logic GLPΛ is then given by the following rules and axioms:

(i) all propositional tautologies,

(ii) [λ](φ→ ψ)→ ([λ]φ→ [λ]ψ) for all λ < Λ,
2Beware that RCω in our notation is not the same as RCω in [7].
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(iii) [λ]([λ]φ→ φ)→ [λ]φ for all λ < Λ,

(iv) [µ]φ→ [λ]φ for µ < λ < Λ,

(v) 〈µ〉φ→ [λ]〈µ〉φ for µ < λ < Λ,

(vi) modus ponens and

(vii) necessitation for each [ξ].

The reader may recognize axiom (iii) as Löb’s axiom [32], ostensibly absent from
RC; it is simply not expressible there. However, it was proven by Dashkov that GLP
is conservative over RC, in the following sense:

Theorem 2.8. If φ, ψ ∈ LRC, then RC ` φ⇒ ψ, if and only if GLP ` φ→ ψ.

Proof. That RC ` φ ⇒ ψ implies GLP ` φ → ψ is readily proven by induction on
the length of a derivation; one need only verify that, for µ < λ,

GLP ` 〈λ〉φ ∧ 〈µ〉ψ → 〈λ〉(φ ∧ 〈µ〉ψ),

using the GLP axiom (v).
The other direction was proven for RCω by Dashkov in [14]. To extend to modal-

ities over the ordinals, assume that GLP ` φ → ψ. Then, there are finitely many
modalities appearing in the derivation of ` φ → ψ, hence GLPΘ ` φ → ψ for some
finite set Θ. But GLPΘ readily embeds into GLPω (see [8]), and thus we can use the
conservativity of GLPω over RCω to conclude that RC ` φ⇒ ψ.

As we have mentioned, full GLP (with propositional variables), or even GLP2,
is incomplete for its relational semantics. Without propositional variables, Ignatiev
has built a relational model in which every consistent formula of variable-free GLPω is
satisfied [26], and Joosten and I extended this to variable-free GLP over the ordinals.
However, these models are infinite, and even 1> cannot be satisfied on any finite
relational model validating variable-free GLP. On the other hand, every worm has
a relatively small RC-model, as we will see below.

3 Worms and consistency orderings
Worms are expressions of RC (or GLP) representing iterated consistency assertions.
Ignatiev first observed that the worms in GLPω are well-founded [26]. The order-
types of worms in GLP2 were then studied by Boolos [10], and in full GLP by Bek-
lemishev [5] and further by Joosten and I in [20], this time working in RC. Moreover,
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this particular well-order has surprising proof-theoretical applications: Beklemishev
has used transfinite induction along the RCω worms to prove the consistency of
Peano arithmetic and compute its Π0

1 ordinal [4].
In this section we will review the ordering between worms and show that it is

well-founded. Let us begin with some preliminaries.

3.1 Basic definitions
Definition 3.1. A worm is any RC formula of the form

w = λ1 . . . λn>,

with each λi an ordinal and n < ω (including the ‘empty worm’, >). The class of
worms is denoted W.

If Λ is a set or class of ordinals and each λi ∈ Λ, we write w @ Λ. The set of
worms v such that v @ Λ is denoted WΛ.

‘Measuring’ worms is the central theme of this work. Let us begin by giving no-
tation for some simple measurements, such as the length and the maximum element
of a worm.

Definition 3.2. If w = λ1 . . . λn>, then we set #w = n (i.e., #w is the length of
w). Define minw = mini∈[1,n] λi, and similarly maxw = maxi∈[1,n] λi. The class
of worms w such that w = > or µ ≤ minw will be denoted W≥µ. We define W>µ

analogously.

These give us some idea of ‘how big’ a worm is, but what we are truly interested
in is in ordering worms by their consistency strength:

Definition 3.3. Given an ordinal λ, we define a relation �λ on W by v �λ w if
and only if RC ` w⇒ λv. We also define v �µ w if v �µ w or v ≡ w.

Instead of �0,�0 we may simply write �,�. As we will see, these orderings
have some rather interesting properties. Let us begin by proving some basic facts
about them:

Lemma 3.4. Let µ ≤ λ be ordinals and u, v,w be worms. Then:

1. if w 6= > and µ < minw, then > �µ w,

2. if v �λ w, then v �µ w, and

3. if u �µ v and v �µ w, then u �µ w.
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Proof. For the first item, write w = λv, so that λ ≥ µ. Then, v⇒ > is an axiom of
RC, from which we can derive λv⇒ λ> and from there use the axiom λ> ⇒ µ>.

For the second item, if v �λ w, then by definition, w ⇒ λv is derivable. Using
the axiom λv⇒ µv, we see that w⇒ µv is derivable as well, that is, v �µ w.

Transitivity simply follows from the fact that RC ` µµu⇒ µu, so that if u �µ v
and v �µ w, we have that RC ` w⇒ µv⇒ µµu⇒ µu, so u �µ w.

3.2 Computing the consistency orders

The definition of v �λ w does not suggest an obvious algorithm for deciding whether
it holds or not. Fortunately, it can be reduced to computing the ordering between
smaller worms; in this section, we will show how this is done. Let us begin by
proving that �µ is always irreflexive. To do this, we will use the following frames.

Definition 3.5. Let w = λn . . . λ0> be any worm (note that we are using a different
enumeration from that in Definition 3.1). Define a frame F(w) =

〈
X, 〈�λ〉λ<Λ

〉
as

follows.
First, set X = [0, n + 1] ⊆ N. To simplify notation below, let λn+1 = 0. Then,

define x �η y if and only if:

1. x > y and for all i ∈ [y, x), λi ≥ η, or

2. x ≤ y and for all i ∈ [x, y], λi > η.

Although this might not be obvious from the definition, these frames are indeed
RC-frames.

Lemma 3.6. Given any worm w, F(w) is an RC-frame.

Proof. We must check that F(w) satisfies each item of Definition 2.6.

(i) Suppose that x �η y �η z. If x > y, consider three sub-cases.

a. If y > z, from x �η y �η z we see that for all i ∈ [z, y)∪ [y, x) = [z, x), λi ≥ η,
so that x �η z.

b. If z ∈ [y, x), from [z, x) ⊆ [y, x) and x �η y we obtain λi ≥ η for all i ∈ [z, x),
so x �η z.

c. If z ≥ x, from [x, z] ⊆ [y, z] and y �η z we obtain λi > η for all i ∈ [x, z],
hence x �η z.
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The cases where x ≤ y are analogous.

(ii). As in the previous item, we must consider several cases. Suppose that µ < η,
z �µ x and z �η y. If z > x, we consider three subcases.

a. If y ≤ x, then from z �η y and [y, x] ⊆ [y, z) we obtain λi ≥ η > µ for all
i ∈ [y, x], hence y �µ x.

b. If y ∈ (x, z], then from [x, y) ⊆ [x, z) and z �µ x we obtain λi ≥ µ for all
i ∈ [x, y), hence y �µ x.

c. If y > z, then from z �µ x we we have that λi ≥ µ for all i ∈ [x, z), while from
z �η y it follows that for all i ∈ [z, y), λi > η > µ, giving us y �µ x.

Cases where z ≤ x are similar.

(iii). That �µ is monotone on µ is obvious from its definition.

Thus to prove that �µ is irreflexive, it suffices to show that there is x ∈ [0, n+ 1]
such that

(
F(w), x

) |= λn−1 . . . λ0> but
(
F(w), x

) 6|= λn . . . λ0>, as then by setting
µ = λn and v = λn−1 . . . λ0> we see that v 6�µ v. The following lemma will help us
find such an x.

Lemma 3.7. Let w = λn . . . λ0> be a worm, and for any i ∈ [0, n+ 1], define w[i]
recursively by w[0] = > and w[i+ 1] = λiw[i]. Then:

1.
(
F(w), i

) |= w[i], and

2. if x ∈ [0, i), then
(
F(w), x

) 6|= w[i].

Proof. The first claim is easy to check from the definition of F(w), so we focus on
proving the second by induction on i. The base case is vacuously true as [0, 0) = ∅.
Otherwise, assume the claim for i, and consider x ∈ [0, i + 1); we must show that(
F(w), x

) 6|= w[i + 1] = λiw[i], which means that for all y ≺λi x,
(
F(w), y

) 6|= w[i].
Note that we cannot have that y ∈ [i, n+ 1], as in this case y ≥ i ≥ x; but obviously
λi 6> λi, so that y 6≺λi x. It follows that y ∈ [0, i), and we can apply the induction
hypothesis to w[i].

Lemma 3.8. Given any ordinal µ and any worm v, we have that v 6�µ v.

Proof. Let µ be any ordinal, v be any worm, and consider the RC-frame F(µv).
If n = #v, observe that (µv)[n] = v, hence by Lemma 3.7,

(
F(µv), n

) |= v but(
F(µv), n

) 6|= µv; it follows from Theorem 2.7 that v 6�µ v.
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Thus the worm orderings are irreflexive. Next we turn our attention to a useful
operation between worms. Specifically, worms can be regarded as strings of symbols,
and as such we can think of concatenating them.

Definition 3.9. Let v = ξ1 . . . ξn> and w = ζ1 . . . ζm> be worms. Then, define

vw = ξ1 . . . ξnζ1 . . . ζm>

Often we will want to put an extra ordinal between the worms, and we write
v λ w for v(λw).

Lemma 3.10. If w, v are worms and µ < minw, then w µ v ≡ w ∧ µv.

Proof. By induction on #w. If w = >, the claim becomes µv ≡ > ∧ µv, which
is obviously true. Otherwise, we write w = λu with λ > µ, and observe that by
Lemma 2.5,

λu ∧ µv ≡ λ(u ∧ µv) IH≡ λ(u µ v) = w µ v.

Thus we may “pull out” the initial segment of a worm, provided the following
element is a lower bound for this initial segment. In general, for any ordinal λ, we
can pull out the maximal initial segment of w which is bounded below by λ; this
segment is the λ-head of w, and what is left over (if anything) is its λ-body.

Definition 3.11. Let λ be an ordinal and w ∈ W≥λ. We define hλ(w) to be the
maximal initial segment of w such that λ < min hλ(w), and define bλ(w) as follows:
if λ appears in w, then we set bλ(w) to be the unique worm such that w = hλ(w) λ
bλ(v). Otherwise, set bλ(w) = >.

We may write h, b instead of h0, b0. We remark that our notation is a variant
from that used in [20], where our hλ would be denoted hλ+1.

Lemma 3.12. Given a worm w 6= > and an ordinal µ ≤ minw,

1. hµ(w) ∈W>µ,

2. #hµ(w) ≤ #w, with equality holding only if µ < minw, in which case hµ(w) =
w;

3. #bµ(w) < #w, and

4. w ≡ hµ(w) ∧ µbµ(w).
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Proof. The first two claims are immediate from the definition of hµ. For the third,
this is again obvious in the case that µ occurs inw, otherwise we have that bµ(w) = >
and by the assumption that w 6= > we obtain #bµ(w) < #w.

The fourth claim is an instance of Lemma 3.10 if µ appears in w, otherwise
w = hµ(w) and we use Lemma 3.4 to see that w⇒ µ> = µbµ(>) is derivable.

With this we can reduce relations between worms to those between their heads
and bodies.

Lemma 3.13. If w, v 6= > are worms and µ ≤ minwv, then

1. w �µ v whenever

(a) w �µ bµ(v), or
(b) bµ(w) �µ v and hµ(w) �µ+1 hµ(v), and

2. RC ` v⇒ w whenever bµ(w) �µ v and RC ` hµ(v)⇒ hµ(w).

Proof. For the first claim, if w �µ bµ(v), then by Lemma 3.12.4 we have that
v ⇒ µbµ(v), that is, bµ(v) �µ v. By transitivity we obtain w �µ v. If bµ(w) �µ v
and hµ(w) �µ+1 hµ(v), reasoning in RC we have that

v⇒ hµ(v) ∧ v⇒ 〈µ+ 1〉hµ(w) ∧ µbµ(w) ≡ 〈µ+ 1〉hµ(w)µbµ(w)⇒ µw,

and w �µ v, as needed.
For the second, if bµ(w) �µ v and RC ` hµ(v)⇒ hµ(w), we have that

v⇒ hµ(v) ∧ v⇒ hµ(w) ∧ µbµ(w) ≡ w.

As we will see, Lemma 3.13 gives us a recursive way to compute �µ. This recur-
sion will allow us to establish many of the fundamental properties of �µ, beginning
with the fact that it defines a total preorder.

Lemma 3.14. Given worms v,w and µ ≤ min(wv), exactly one of w �µ v or
v �µ w occurs.

Proof. That they cannot simultaneously occur follows immediately from Lemma 3.8,
since �µ is irreflexive.

To show that at least one occurs, proceed by induction on #w + #v. To be
precise, assume inductively that whenever #w′+#v′ < #w+#v and µ ≤ min(w′v′)
is arbitrary, then either w′ �µ v′ or v′ �µ w′. If either v = > or w = >, then the
claim is immediate from Lemma 3.4.
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Otherwise, let λ = min(wv), so that λ ≥ µ. If w �λ bλ(v), then by Lemma 3.13,
w �λ v, and similarly if v �λ bλ(w), then v �λ w. On the other hand, if neither
occurs then by the induction hypothesis we have that bλ(v) �λ w and bλ(w) �λ v.

Since λ appears in either w or v, by Lemma 3.12.2 we have that

#hλ(w) + #hλ(v) < #w + #v,

so that by the induction hypothesis, either hλ(w) �µ hλ(v), hλ(w) ≡ hλ(v), or
hλ(v) �λ hλ(w). If hλ(w) �λ hλ(v), we may use Lemma 3.13.1 to see that w �λ v,
so that by Lemma 3.4, w �µ v. Similarly, if hλ(v) �λ hλ(w), we obtain v �µ w. If
hλ(w) ≡ hλ(v), then Lemma 3.13.2 yields both w⇒ v and w⇒ v, i.e., w ≡ v.

Corollary 3.15. If RC ` w⇒ v, then v � w.

Proof. Towards a contradiction, suppose that RC ` w ⇒ v but v 6� w. By Lemma
3.14, w � v. Hence v⇒ w⇒ 0v, and v � v, contradicting the irreflexivity of �.

Moreover, the orderings �λ, �µ coincide on W≥max{λ,µ}:

Lemma 3.16. Let w, v be worms and µ, λ ≤ min(wv). Then, w �µ v if and only if
w �λ v.

Proof. Assume without loss of generality that µ ≤ λ. One direction is already in
Lemma 3.4. For the other, assume towards a contradiction that w �µ v but w 6�λ v.
Then, by Lemma 3.14, v �λ w and thus v �µ w, so that v �µ w �µ v, contradicting
the irreflexivity of �µ (Lemma 3.8).

With this we can give an improved version of Lemma 3.13, that will be more
useful to us later.

Theorem 3.17. The relation �λ is a total preorder on W≥λ, and for all µ ≤ λ and
w, v ∈W≥λ with w, v 6= >,

1. w �µ v if and only if

(a) w �µ bλ(v), or
(b) bλ(w) �µ v and hλ(w) �µ hλ(v), and

2. w �µ v if and only if

(a) w �µ bλ(v), or
(b) bλ(w) �µ v and hλ(w) �µ hλ(v).
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Proof. Totality is Lemma 3.14. Let us prove item 2; the proof of item 1 is similar. If
(2a) holds, then by Lemma 3.16, w �λ bλ(v), so that by Lemma 3.13.1, w �λ v, and
once again by Lemma 3.16, w �µ v. If (2b) holds, then by Lemma 3.16 we obtain
bλ(w) �λ v and hλ(w) �λ+1 hλ(v). If hλ(w) �λ+1 hλ(v), we may use Lemma 3.13.1
to obtain w �λ v. Otherwise, by Lemma 3.13.2, we see that RC ` v⇒ w, which by
Corollary 3.15 gives us w �λ v. In either case, w �µ v.

For the other direction, assume that (2a) and (2b) both fail. Then by Lemma
3.14 together with Lemma 3.16, we have that bλ(v) �λ w and either v �λ bλ(w) or
hλ(v) �λ+1 hλ(w). In either case v �λ w, and thus w 6�µ v.

Before continuing, it will be useful to derive a few straightforward consequences
of Theorem 3.17.

Corollary 3.18. Every φ ∈ LRC is equivalent to some w ∈ W. Moreover, we can
take w so that every ordinal appearing in w already appears in φ.

Proof. By induction on the complexity of φ. We have that > is a worm and for
φ = λψ, by induction hypothesis we have that ψ ≡ v for some worm v with all
modalities appearing in ψ and hence φ ≡ λv.

It remains to consider an expression of the form ψ ∧ φ. Using the induction
hypothesis, there are wormsw, v equivalent to φ, ψ, respectively, so that ψ∧φ ≡ w∧v.
We proceed by a secondary induction on #w + #v. Note that the claim is trivial if
either w = > or v = >, so we assume otherwise.

Let µ be the least ordinal appearing either in w or in v, so that

ψ ∧ φ ≡ (hµ(w) ∧ hµ(v)) ∧ (µbµ(w) ∧ µbµ(v)).

By induction hypothesis, hµ(w)∧hµ(v) ≡ u1 for some u1 ∈Wµ+1 with all modalities
occurring in φ ∧ ψ. Meanwhile, either bµ(w) �µ bµ(v), bµ(w) ≡ bµ(v) or bµ(v) �µ

bµ(w). In the first case,

µbµ(v)⇒ µµbµ(w)⇒ µbµ(w),

and in the second µbµ(v) ⇒ µbµ(w); in either case, µbµ(w) ∧ µbµ(v) ≡ µbµ(v).
Similarly, if bµ(v) �µ bµ(w), then µbµ(w) ∧ µbµ(v) ≡ µbµ(w). In either case,

µbµ(w) ∧ µbµ(v) ≡ µbµ(u0)

for some worm u0 ∈ {w, v}, and thus

φ ∧ ψ ≡ (hµ(w) ∧ hµ(v)) ∧ (µbµ(w) ∧ µbµ(v)) ≡ u1 ∧ µu0 ≡ u1 µ u0.
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Below, we remark that w @ µ is equivalent to maxw < µ.

Corollary 3.19. Let µ be an ordinal and > 6= w ∈W. Then,

1. if w 6= > and µ < maxw then µ> � w,

2. if w 6= > and µ ≤ maxw then µ> � w, and

3. if w @ µ then w � µ>.

Proof. For the first claim, proceed by induction on #w. Write w = λv and consider
two cases. If λ ≤ µ, by induction on length, µ> � v, so µ> � v � w. Otherwise,
λ > µ, so from v⇒ >, λ> ⇒ µ>, and Lemma 3.10 we obtain

w⇒ λ> ∧ µ> ⇒ λµ> ⇒ 0µ>.

The second claim is similar. Again, write w = λv. If µ > λ, we have inductively
that µ> � v � w. Otherwise, µ ≤ λ, in which case

w⇒ λ> ⇒ µ>,

and we may use Corollary 3.15.
For the third, we proceed once again by induction on #w. The case for w = >

is obvious. Otherwise, let η = minw. Then, by the induction hypothesis, hη(w) �

µ> = hη(µ>), while also by the induction hypothesis bη(w) � µ>, hence w � µ>
by Theorem 3.17.

3.3 Well-orderedness of worms
We have seen that �µ is a total preorder, but in fact we have more; it is a pre-well-
order. We will prove this using a Kruskal-style argument [31]. It is very similar to
Beklemishev’s proof in [5], although he uses normal forms for worms. Here we will
use our ‘head-body’ decomposition instead.

Theorem 3.20. For any ordinal λ and any η ≤ λ, �η is a pre-well-order on W≥λ.

Proof. We have already seen that Wλ is total in Theorem 3.17, so it remains to show
that there are no infinite �η-descending chains. We will prove this by contradiction,
assuming that there is such a chain.

Let w0 be any worm such that w0 is the first element of some infinite descending
chain w0 �η v1 �η v2 �η . . . and #w0 is minimal among all worms that can be the
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first element of such a chain. Then, for i > 0, choose wi recursively by letting it be
a worm such that there is an infinite descending chain

w0 �η w1 �η . . . �η wi �η vi+1 �η . . . ,

and such that #wi is minimal among all worms with this property (where wj is
already fixed for j < i). Let ~w be the resulting chain.

Now, let µ ≥ η be the least ordinal appearing in ~w, and define h(~w) to be the
sequence

hµ(w0), hµ(w1), . . . , hµ(wi), . . .

Let j be the first natural number such that µ appears in wj . By Lemma 3.12.2,
hµ(wi) = wi for all i < j, while #hµ(wj) < #wj , so by the minimality of #wj ,
h(~w) is not an infinite decreasing chain. Hence for some k, hµ(wk) �η hµ(wk+1).

Next, define b(~w) to be the sequence

w0, . . . ,wk−1, bµ(wk),wk+2,wk+3, . . .

In other words, we replace wk by bµ(wk) and skip wk+1. By the minimality of #wk,
this cannot be a decreasing sequence, and hence bµ(wk) �η wk+2 �η wk+1.

It follows from Theorem 3.17 that wk �η wk+1, a contradiction. We conclude
that there can be no decreasing sequence, and �η is well-founded, as claimed.

One consequence of worms being pre-well-ordered is that we can assign them an
ordinal number measuring their order-type. In the next section we will make this
precise.

3.4 Order-types on a pre-well-order
As we have mentioned, any well-order may be canonically represented using an
ordinal number. To do this, if A = 〈A,4〉 is any pre-well-order, for a ∈ A define

o(a) =
⋃

b≺a
(o(b) + 1).

Observe that o is strictly increasing, in the following sense:

Definition 3.21. Let 〈A,4A〉, 〈B,4B〉 be preorders, and f : A → B. We say that
f is stricty increasing if

1. for all x, y ∈ A, x 4A y implies f(x) 4B f(y), and

2. for all x, y ∈ A, x ≺A y implies f(x) ≺B f(y).
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We note that if ≺A is total, then there are other equivalent ways of defining
strictly increasing maps:

Lemma 3.22. If 〈A,4A〉, 〈B,4B〉 are total preorders and f : A → B, then the
following are equivalent:

1. f is strictly increasing;

2. for all x, y ∈ A, x 4A y if and only if f(x) 4B f(y);

3. for all x, y ∈ A, x ≺A y if and only if f(x) ≺B f(y).

Proof. Straightforward, using the fact that a ≺A b if and only if b 64A a, and similarly
for ≺B.

Then, the map o can be characterized as the only strictly increasing, initial map
f : A → Ord, where f : A → B is initial if whenever b ≺B f(a), it follows that
b = f(a′) for some a′ ≺A a:
Lemma 3.23. Let 〈A,4〉 be a pre-well-order. Then,

1. for all x, y ∈ A, x ≺ y if and only if o(x) < o(y), and

2. o : A→ Ord is an initial map.

The proof proceeds by transfinite induction along ≺ and we omit it, as is the
case of the proof of the following:

Lemma 3.24. Let 〈A,4〉 be a pre-well-order. Suppose that f : A→ Ord satisfies

1. x ≺ y implies that f(x) < f(y),

2. x 4 y implies that f(x) ≤ f(y), and

3. if ξ ∈ f [A] then ξ ⊆ f [A].

Then, f = o.

Observe that o(a) = o(b) implies that a 4 b and b 4 a, i.e. a ≈ b. Let us state
this explicitly for the case of worms.

Lemma 3.25. If w, v are worms such that o(w) = o(v), then w ≡ v.

Proof. Reasoning by contrapositive, assume that w 6≡ v. Then by Lemma 3.14,
either w � v, which implies that o(w) < o(v), or v � w, and hence o(v) < o(w). In
either case, o(w) 6= o(v).
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Computing o(w) will take some work, but it is not too difficult to establish some
basic relationships between o(w) and the ordinals appearing in w.

Lemma 3.26. Let w 6= > be a worm and µ an ordinal. Then,

1. if µ ≤ maxw, then µ ≤ o(µ>) ≤ o(w), and

2. if maxw < µ, then o(w) < o(µ>).

Proof. First we proceed by induction on µ to show that µ ≤ o(µ>). Suppose that
η < µ. Then by Corollary 3.19, η> � µ>, while by the induction hypothesis
η ≤ o(η>), and hence η ≤ o(η>) < o(µ>). Since η < µ was arbitrary, µ ≤ o(µ>).
That o(µ>) ≤ o(w) if µ ≤ maxw follows from Corollary 3.19, since µ> � w.

The second claim is immediate from Corollary 3.19.3.

Let us conclude this section by stating a useful consequence of the fact that
o : W→ Ord is initial.

Corollary 3.27. For every ordinal ξ there is a worm w � ξ> such that ξ = o(w).

Proof. By Lemma 3.26, ξ ≤ o(ξ>), so this is a special case of Lemma 3.23.2.

4 Finite worms
In the previous section we explored some basic properties of o, but they are not
sufficient to compute o(w) for a worm w. In this section we will provide an explicit
calculus for o � Wω (where � denotes domain restriction). Wω is a particularly
interesting case-study in that it has been used by Beklemishev for a Π0

1 ordinal
analysis of Peano arithmetic. Before we continue, it will be illustrative to sketch the
relationship between Wω and PA.

4.1 First-order arithmetic
Expressions of RCω have a natural proof-theoretical interpretation in first-order
arithmetic. We will use the language Πω of first-order arithmetic containing the
signature

{0, 1,+, ·, 2·,=}
so that we have symbols for addition, multiplication, and exponentiation, as well as
Boolean connectives and quantifiers ranging over the natural numbers. Elements of
Πω are formulas. The set of all formulas where all quantifiers are bounded, that is,
of the form ∀x<t φ or ∃x<t φ (where t is any term), is denoted ∆0. A formula
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of the form ∃xn∀xn−1 . . . δ(x1, . . . , xn), with δ ∈ ∆0, is Σn, and a formula of the
form ∀xn∃xn−1 . . . δ(x1, . . . , xn) is Πn. These classes are extended modulo provable
equivalence, so that every formula falls into one of them. Note that the negation of
a Σn formula is Πn and vice-versa.

To simplify notation we may assume that some additional function symbols are
available, although these are always definable from the basic arithmetical operations.
In particular, we assume that we have for each n a function 〈x1, . . . , xn〉 coding a
sequence as a single natural number.

In order to formalize provability within arithmetic, we fix some Gödel numbering
mapping a formula ψ ∈ Πω to its corresponding Gödel number pψq, and similarly
for terms and sequences of formulas, which can be used to represent derivations. We
also define the numeral of n ∈ N to be the term

n̄ = 0 + 1 + . . .+ 1︸ ︷︷ ︸
n times

.

In order to simplify notation, we will often identify ψ with pψq.
We will assume that every theory T contains classical predicate logic, is closed

under modus ponens, and that there is a ∆0 formula ProofT (x, y) which holds if
and only if x codes a derivation in T of a formula coded by y. Using Craig’s trick,
any theory with a computably enumerable set of axioms is deductively equivalent
to one in this form, so we do not lose generality by these assumptions.

If φ is a natural number (supposedly coding a formula), we use 2Tφ as short-
hand for ∃y ProofT (y, φ̄). We also write 2Tφ(ẋ0, . . . , ẋn) as short for ∃ψ (ψ =
φ(x̄0, . . . , x̄n) ∧ 2Tψ). To get started on proving theorems about arithmetic, we
need a minimal ‘background theory’. This will use Robinson’s arithmetic Q enriched
with axioms for the exponential; call the resulting theory Q+. To be precise, Q+ is
axiomatized by classical first-order logic with equality, together with the following:

• ∀x (x+ 0 = x)

• ∀x (x 6= 0↔ ∃y x = y + 1)

• ∀x∀y (x+ 1 = y + 1→ x = y)

• ∀x∀y (x+ (y + 1) = (x+ y) + 1
)

• ∀x (x× 0 = 0)

• ∀x∀y (x× (y + 1) = (x× y) + y
)

• 20 = 1

• ∀x (2x+1 = 2x + 2x
)

Aside from these basic axioms, the following schemes will be useful in axioma-
tizing many theories of interest to us. Let Γ to denote a set of formulas. Then, the
induction schema for Γ is defined by

IΓ: φ(0) ∧ ∀x(φ(x)→ φ(x+ 1)
)→ ∀xφ(x), where φ ∈ Γ.
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Elementary arithmetic is the first-order theory

EA = Q+ + I∆0,

and Peano arithmetic is the first-order theory

PA = Q+ + IΠω.

As usual, 3Tφ is defined as ¬2T¬ϕ, and this will be used to interpret the RC-
modality 0. Other modalities can be interpreted as stronger notions of consistency.
For this purpose it is very useful to consider the provability predicates [n]T , where
[n]T is a natural first-order formalization of “provable from the axioms of T to-
gether with some true Πn sentence”. More precisely, let TrueΠn be the standard
partial truth-predicate for Πn formulas, which is itself of complexity Πn (see [24] for
information about partial truth definitions within EA). Then, we define

[n]Tϕ↔ ∃π
(
TrueΠn(π) ∧2T (π → ϕ)

)
.

Definition 4.1. Given a theory T , we then define ·T : LRC → Πω given recursively
by

(i) >T = >,

(ii) (φ ∧ ψ)T = φT ∧ ψT , and

(iii) (nφ)T = 〈n〉TφT .

The next theorem follows from the arithmetical completeness of GLPω proven by
Ignatiev [26] together with the conservativity of GLPω over RCω (Theorem 2.8).

Theorem 4.2. Let T be any sound, representable extension of PA. Given a formula
φ of RCω, RCω ` φ if and only if T ` φT .

We remark that Japaridze first proved a variant of this result, where [n]T is
defined using iterated ω-rules [27]. A similar interpretation will be discussed in
Section 5.2 in the context of second-order arithmetic. However, the interpretation
we have sketched using proof predicates has been used by Beklemishev to provide a
consitency proof of Peano arithmetic as well as a Π0

1 ordinal analysis. Here we will
briefly sketch the consistency proof; for details, see [4].

The first step is to represent Peano arithmetic in terms of n-consistency:

Theorem 4.3. It is provable in EA that

PA ≡ EA + {〈n〉EA> : n < ω}.
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This is a reformulation of a result of Kreisel and Lévy [30], although they used
primitive recursive arithmetic in place of EA. The variant with EA is due to Bek-
lemishev.

The consistency proof will be realized mostly within a ‘finitary base theory’,
EA+, which is only a bit stronger than EA. To describe it, first define the su-
perexponential, denoted 2nm, to be the function given recursively by (i) 2n0 = 2n and
(ii) 2nm+1 = 22nm . Thus, 21

m denotes an exponential tower of m 2’s. Then, we let EA+

be the extension of EA with an axiom stating that the superexponential function is
total. With this, we may enunciate Beklemishev’s reduction rule:

Theorem 4.4. If w @ ω is any worm, then EA+ proves that
(∀v � w (3EAvEA )

)→ 3EAwEA.

This extends a previous result by Schmerl [35]. Meanwhile, the reader may
recognize this as the premise of the transfinite induction scheme for worms. To
be precise, if φ(x), x ≺ y are arithmetical formulas, then the transfinite induction
scheme for φ along ≺ is given by:

TI≺(φ) =
(
∀x ((∀y ≺ xφ(y))→ φ(x)

))→ ∀xφ(x).

If Γ is a set of formulas, then TI≺(Γ) is the scheme {TI≺(φ) : φ ∈ Γ}.
Observe that 3EAφ ∈ Π1 independently of φ; with this in mind, we obtain the

following as an immediate consequence of Theorem 4.4:

Theorem 4.5. EA+ + TI��Wω(Π1) ` 3PA>.
In words, we can prove the consistency of Peano arithmetic using EA+ and

transfinite induction along 〈Wω,�〉. In fact, we use only one instance of transfinite
induction for a predicate φ(x) expressing “x @ ω and 3EAxEA”.

Compare this to Gentzen’s work [21], where he proves the consistency of Peano
arithmetic with transfinite induction up to the ordinal ε0. In the remainder of this
section, we will see how finite worms and ε0 are closely related.

4.2 The ordinal ε0

The ordinal ε0 is naturally defined by extending the arithmetical operations of ad-
dition, multiplication and exponentiation to the transfinite. In view of Lemma 2.4,
we may have to consider not only successor ordinals, but also unions of ordinals.
Fortunately, these operations are exhaustive.

Lemma 4.6. Let ξ be an ordinal. Then, exactly one of the following occurs:
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(i) ξ = 0;

(ii) there exists ζ such that ξ = ζ + 1, in which case we say that ξ is a successor;
or

(iii) ξ = ⋃
ζ<ξ ζ, in which case we say that ξ is a limit.

Thus we may recursively define operations on the ordinals if we consider these
three cases. For example, ordinal addition is defined as follows:

Definition 4.7. Given ordinals ξ, ζ, we define ξ + ζ by recursion on ζ as follows:
1. ξ + 0 = ξ

2. ξ + (ζ + 1) = (ξ + ζ) + 1

3. ξ + ζ =
⋃

ϑ<ζ

(ξ + ϑ), for ζ a limit ordinal.

Ordinal addition retains some, but not all, of the properties of addition on the
natural numbers; it is associative, but not commutative. For example, 1 + ω = ω <
ω + 1, and more generally 1 + ξ = ξ < ξ + 1 whenever ξ is infinite. We also have a
form of subtraction, but only on the left:

Lemma 4.8. If ζ<ξ are ordinals, there exists a unique η such that ζ + η = ξ.

The proof follows by a standard transfinite induction on ξ. We will denote this
unique η by −ζ + ξ. It will be convenient to spell out some of the basic properties
of left-subtraction:

Lemma 4.9. Let α, β, γ be ordinals. Then:

(i) −0 + α = α and −α+ α = 0;

(ii) if α ≤ β and −α+ β ≤ γ then −α+ (β + γ) = (−α+ β) + γ;

(iii) if α+ β ≤ γ then −β + (−α+ γ) = −(α+ β) + γ;

(iv) if α ≤ β ≤ α+ γ then −β + (α+ γ) = −(−α+ β) + γ.

Proof. These properties are proven using the associativity of addition and the fact
that −µ+ λ is unique. We prove only (iii) as an example. Observe that

(α+ β) + (−β + (−α+ γ)) = α+ (β + (−β + (−α+ γ)))
= α+ (−α+ γ) = γ;

but −(α + β) + γ is the unique η such that (α + β) + η = γ, so we conclude that
(iii) holds. The other properties are proven similarly.
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The definition of addition we have given can be used as a template to generalize
other arithmetical operations. Henceforth, if 〈µξ〉ξ<λ is an increasing sequence of
ordinals, we will write limξ<λ µξ instead of ⋃ξ<λ µξ.

Definition 4.10. Given ordinals ξ, ζ, we define ξ · ζ by recursion on ζ as follows:

1. ξ · 0 = 0,

2. ξ · (ζ + 1) = ξ · ζ + ξ, and

3. ξ · ζ = lim
ϑ<ζ

ξ · ϑ, for ζ a limit ordinal.

Similarly, we define ξζ by:

1. ξ0 = 1,

2. ξζ+1 = ξζ · ξ, and

3. ξζ = lim
ϑ<ζ

ξϑ, for ζ a limit ordinal.

Addition, multiplication and exponentiation give us our first examples of normal
functions. These are functions that are increasing and continuous, in the following
sense:

Definition 4.11. A function f : Ord→ Ord is normal if:

1. whenever ξ < ζ, it follows that f(ξ) < f(ζ), and

2. whenever λ is a limit ordinal, f(λ) = lim
ξ<λ

f(ξ).

Normal functions are particularly nice to work with. Among other things, they
have the following property, proven by an easy transfinite induction:

Lemma 4.12. If f : Ord→ Ord is normal, then for every ordinal ξ, ξ ≤ f(ξ).

Of course this does not rule out the possibility that ξ = f(ξ), and in fact the
identity function is an example of a normal function. As we have mentioned, the
elementary arithmetical functions give us further examples:

Lemma 4.13. Let α be any ordinal. Then, the functions f, g, h : Ord → Ord given
by

1. f(ξ) = α+ ξ,

2. g(ξ) = (1 + α) · ξ,
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3. h(ξ) = (2 + α)ξ

are all normal.

Note, however, that the function ξ 7→ ξ+α is not normal in general, and neither
are ξ 7→ 0 · ξ, ξ 7→ 1ξ. But ξ 7→ ωξ is normal, and this function is of particular
interest, since it is the basis of the Cantor normal form representation of ordinals
(similar to a base-n representation of natural numbers), where we write

ξ = ωαn + . . .+ ωα0

with the αi’s non-decreasing. Moreover, the ordinals of the form ωβ are exactly the
additively indecomposable ordinals; that is, non-zero ordinals that cannot be written
as the sum of two smaller ordinals. Let us summarize some important properties of
this function:

Lemma 4.14. Let ξ 6= 0 be any ordinal. Then:

1. There are ordinals α, β such that ξ = α+ ωβ. The value of β is unique.

2. We can take α = 0 if and only if, for all γ, δ < ξ, we have that γ + δ < ξ.

We call this the Cantor decomposition of ξ. Cantor decompositions can often be
used to determine whether ξ < ζ:

Lemma 4.15. Given ordinals ξ = α+ ωβ and ζ = γ + ωδ,

1. ξ < ζ if and only if

(a) ξ ≤ γ, or
(b) α < ζ and β < δ, and

2. ξ ≤ ζ if and only if

(a) ξ ≤ γ, or
(b) α < ζ and β ≤ δ.

Note, however, that this decomposition is only useful when β < ξ or γ < ζ, which
as we will see is not always the case. In particular, the ordinal ε0 is the first ordinal
such that ε0 = ωε0 . Roughly, it is defined by beginning with 0 and closing under
the operation 〈α, β〉 7→ α + ωβ. Since many proof-theoretical ordinals are defined
by taking the closure under a family of functions, it will be convenient to formalize
such a closure with some generality.

The general scheme is to consider a family of ordinal functions f1, . . . , fn, then
considering the least ordinal ξ such that fi(α1, . . . , αm) < ξ whenever each αi < ξ.
To simplify our presentation, let us make a few preliminary observations:
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1. The functions fi may be partial or total. Since a total function is a special
case of a partial function, we may in general consider fi : Ordm 99K Ord (where
f : A 99K B indicates that f is a partial function).

2. We may have functions with fixed or variable arity. Given a class A, let A<ω
denote the class of finite sequences 〈a1, . . . , am〉 with m < ω and each ai ∈ A.
An ordinal function with fixed arity m may be regarded as a partial function
on Ord<ω, whose domain is Ordm ⊆ Ord<ω. Thus without loss of generality,
we may assume that all partial functions have variable arity.

3. We may represent the family f1, . . . , fn as a single function by setting

f(i, α1, . . . , αm) = fi(α1, . . . , αm).

Note that this idea can also be used to represent infinite families of functions
as a single function.

Thus we may restrict our discussion to ordinals closed under a single partial function
of variable arity, and will do so in the next definition.

Definition 4.16. Let f : Ord<ω 99K Ord be a partial function. Given a set of ordi-
nals Θ, define f [Θ] to be the set of all ordinals λ such that there exist µ1, . . . , µn ∈ Θ
(possibly with n = 0) such that λ = f(µ1, . . . , µn).

For n < ω, define inductively Θf
0 = Θ and Θf

n+1 = Θf
n ∪ f [(Θf

n)]. Then, define

Θf =
⋃

n<ω

Θf
n.

The set Θf is the closure of Θ under f , and indeed behaves like a standard
closure operation:

Lemma 4.17. Let f : Ord<ω 99K Ord and let Θ be any set of ordinals. Then,

1. Θ ∪ f [(Θf )] ⊆ Θf ,

2. if Θ ∪ Ξf ⊆ Ξ then Θf ⊆ Ξ, and

3. for any ordinal λ, λ ∈ (Θf ) \Θ if and only if there are µ1, . . . , µn ∈ Θf \ {λ}
with λ = f(µ1, . . . , µn).

Proof. For the first item, note that if λ1, . . . , λn ∈ Θf then λ1, . . . , λn ∈ Θf
m for m

large enough and hence f(λ1, . . . , λn) ∈ Θf
m+1 ⊆ Θf . The second follows by showing
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indutively that Θf
n ⊆ Ξ for all n, hence Θf ⊆ Ξ. For the third, assume otherwise,

and consider Ξ = Θf \ {λ}. One can readily verify that Θ∪ f [Ξ] ⊆ Ξ, contradicting
the previous item.

With this, we are ready to define the ordinal ε0. Below, recall that we are
following the standard set-theoretic convention that 1 = {0}.

Definition 4.18. Define Cantor : Ord2 → Ord by Cantor(α, β) = α+ωβ. Then, we
define

ε0 = 1Cantor
.

As promised, ε0 is the first fixed-point of the function ξ 7→ ωξ:

Theorem 4.19. The set ε0 is an ordinal and satisfies the identity ε0 = ωε0. More-
over, if 0 < ξ < ε0, there are α, β < ξ such that ξ = α+ ωβ.

Proof. First we will show that if 0 < ξ ∈ ε0, then there are α, β < ξ such that
ξ = α + ωβ. By Lemma 4.17.3, there are α, β ∈ ε0 with α, β 6= ξ and such that
ξ = α+ωβ. Since ωβ > 0 it follows that α < ξ, and since β ≤ ωβ ≤ ξ it follows that
β ≤ ξ; but β 6= ξ, so β < ξ.

Now, since every element of ε0 is an ordinal, in view of Lemma 2.3, in order to
show that ε0 is also an ordinal it suffices to show that if ξ < ζ ∈ ε0, then ξ ∈ ε0. We
proceed by induction on ζ with a secondary induction on ξ. Write ζ = α + ωβ and
ξ = γ+ωδ with α, β ∈ ε0∩ζ. Since ξ < ζ, by Lemma 4.15, we have that either ξ ≤ α
or γ < ζ and δ < β. In the first case, our induction hypothesis applied to α < ζ gives
us ξ ∈ ε0, in the second the secondary induction hypothesis on γ < ξ gives us γ ∈ ε0
and the induction hypothesis on β < ζ gives us δ ∈ ε0, hence ξ = α+ ωβ ∈ ε0.

4.3 Order-types of finite worms
Our work on elementary ordinal operations and the ordinal ε0 will suffice to compute
the order-types of ‘finite’ worms, i.e., worms where every entry is finite. In order
to give a calculus for these order-types, we will need to consider, in addition to
concatenation, ‘promotion’ (↑) and ‘demotion’ (↓) operations on worms. Below, let
us write L≥λ for the sublanguage of LRC which only contains modalities ξ ≥ λ.

Definition 4.20. Let φ ∈ LRC and λ be an ordinal. We define λ ↑ φ to be the
result of replacing every ordinal ξ appearing in φ by λ + ξ. Formally, λ ↑ > = >,
λ ↑ (φ ∧ ψ) = (λ ↑ ψ) ∧ (λ ↑ ψ), and λ ↑ µφ = 〈λ+ µ〉(λ ↑ φ).

If φ ∈ L≥λ, we similarly define λ ↓ φ by replacing every occurrence of ξ by
−λ+ ξ.
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The relationship between ↑ and ↓ is analogous to that between ordinal addition
and subtraction. The following are all straightforward consequences of Lemma 4.9
and we omit the proofs.

Lemma 4.21. Let α, β be ordinals and φ ∈ LRC. Then,

(i) 0 ↑ φ = φ;

(ii) α ↑ (β ↑ φ) = (α+ β) ↑ φ;

(iii) if φ ∈ L≥β+α then α ↓ (β ↓ φ) = (β + α) ↓ φ;

(iv) if α ≤ β then α ↓ (β ↑ φ) = (−α+ β) ↑ φ, and

(v) if α ≤ β and φ ∈ L≥−α+β then α ↑ φ ∈ L≥β and

β ↓ (α ↑ φ) = (−α+ β) ↓ φ.

The operation φ 7→ λ ↑ φ is particularly interesting in that it provides a sort of
self-embedding of RC:
Lemma 4.22. Let α, β be ordinals and φ, ψ ∈ LRC. If φ ⇒ ψ is derivable in RC,
then so is (λ ↑ φ)⇒ (λ ↑ ψ).

Proof. By induction on the length of a derivation of φ⇒ ψ; intuitively, one replaces
every formula θ appearing in the derivation by λ ↑ θ. The details are straightforward
and left to the reader.

The promotion operator gives us an order-preserving transformation on the class
of worms:

Lemma 4.23. Given a worm w ∈ W≥µ and an ordinal λ, the following are equiv-
alent:

(i) w �µ v;

(ii) λ ↑ w �µ λ ↑ v, and

(iii) λ ↑ w �λ λ ↑ v.

Proof. The equivalence between (ii) and (iii) is immediate from Lemma 3.16, so we
focus on the equivalence between (i) and (iii).

If w �µ v, then w � v, so RC derives v⇒ 0w. By Lemma 4.22, RC also derives
(λ ↑ v)⇒ λ(λ ↑ w), that is, (λ ↑ w) �λ (λ ↑ v).
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Conversely, if λ ↑ w �λ λ ↑ v, assume towards a contradiction that w 6�µ v,
so that by Lemma 3.14, v �µ w. Again by Lemma 4.22, (λ ↑ v) �λ (λ ↑ w), so
(λ ↑ v) �λ (λ ↑ w) �λ (λ ↑ v), contradicting irreflexivity.

Lemma 4.23 is useful for comparing worms; if we wish to settle whether λ ↑
w � λ ↑ v, then it suffices to check whether w � v. More generally, we obtain the
following variant of Theorem 3.17. Below, recall that we write h, b instead of h0, b0.

Lemma 4.24. Given worms w, v 6= >,

1. w � v if and only if

(a) w � b(v), or
(b) b(w) � v and 1 ↓ h(w) � 1 ↓ h(v);

2. w � v if and only if

(a) w � b(v), or
(b) b(w) � v and 1 ↓ h(w) � 1 ↓ h(v).

If all entries of v 6= > are natural numbers, 1 ↓ h(w) will be ‘smaller’ than w.
To be precise, it will have a smaller 1-norm, defined as follows:

Definition 4.25. We define ‖·‖1 : Wω → ω recursively by

1. ‖>‖1 = 0;

2. if w 6= > and minw = 0,

‖w‖1 = ‖h(w)‖1 + ‖b(w)‖1 + 1;

3. if w 6= > and minw > 0,

‖w‖1 = ‖1 ↓ w‖1 + 1.

Recall that we use h and b as shorthands for h0, b0.

Lemma 4.26. For every worm w @ ω with w 6= >,

1. ‖b(w)‖1 < ‖w‖1, and

2. ‖1 ↓ h(w)‖1 < ‖w‖1.
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Proof. For the first claim, note that if 0 appears in w then ‖b(w)‖1 + 1 ≤ ‖w‖1. If
0 does not appear, ‖b(w)‖1 = 0 < ‖w‖1.

For the second, if h(w) = > then once again ‖1 ↓ h(w)‖1 = 0 < ‖w‖1, and if
h(w) 6= > then

‖1 ↓ h(w)‖1 + 1 = ‖h(w)‖1 ≤ ‖w‖1 ,
so ‖1 ↓ h(w)‖1 < ‖h(w)‖1 ≤ ‖w‖1.

We remark that there are other possible ways to define ‖·‖1 that would also
satisfy Lemma 4.26; for example, we can define ‖w‖′1 = #w + maxw, or

‖m1 . . .mn>‖′′1 =
n∑

i=1
(mi + 1).

However, these definitions do not generalize well to worms with transfinite entries,
which will be the focus of Section 5. On the other hand, our norm ‖·‖1 can be
applied to transfinite worms with only a minor modification.

Our goal now is to give an explicit calculus for computing o(w) if w @ ω. In
view of Lemma 3.24, it is sufficient to propose a candidate function for o and show
that it has the required properties. Now, if we compare Lemma 4.24 with Lemma
4.15, we observe that the clauses for checking whether w � v in terms of

b(w), 1 ↓ h(w), b(v), 1 ↓ h(v)

are analogous to the clauses for checking whether α + ωβ < γ + ωδ in terms of
α, β, γ, δ, respectively. This suggests that

o(w) = ob(w) + ωo(1↓h(w)), (1)

and we will use this idea to define our ‘candidate function’.

Definition 4.27. Let v,w be worms and α an ordinal.
Then, define a map ó : Wω → Ord by

1. ó(>) = 0, and

2. if w 6= > then ó(w) = ó(b(w)) + ωó(1↓h(w)).

First, let us check that ó is indeed a function:

Lemma 4.28. The map ó is well-defined.

Proof. This follows from an easy induction on ‖w‖1 using Lemma 4.26.
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It remains to check that ó is strictly increasing and initial. Let us begin with
the former:

Lemma 4.29. The map ó : Wω → Ord is strictly increasing.

Proof. We will prove by induction on ‖w‖1 + ‖v‖1 that w � v if and only if ó(w) <
ó(v). Note that w � > is never true, nor is ξ < ó(>) = 0, so we may assume that
v 6= >. Then, if w = > it follows that ó(>) = 0, so both sides are true. Hence we
may also assume that w 6= >.

By Lemma 4.24, w � v if and only if either w � b(v) or b(w) � v and 1 ↓ h(w) �
1 ↓ h(v). Observe that, by the induction hypothesis,

1. w � b(v) if and only if ó(w) ≤ ób(v), since

‖w‖1 + ‖b(v)‖1 < ‖w‖1 + ‖v‖1 ;

2. b(w) � v if and only if ób(w) < ó(v), since

‖b(w)‖1 + ‖v‖1 < ‖w‖1 + ‖v‖1 ,

and

3. 1 ↓ h(w) � 1 ↓ h(v) if and only if ó(1 ↓ h(w)) < ó(1 ↓ h(v)), since

‖1 ↓ h(w)‖1 + ‖1 ↓ h(v)‖1 < ‖w‖1 + ‖v‖1 .

This implies that w � v if and only if either ó(w) ≤ ób(v), or ób(w) < ó(v) and
ó(1 ↓ h(w)) < ó(1 ↓ h(v)). But by Lemma 4.15.1, the latter is equivalent to

ób(w) + ωó(1↓h(w)) < ób(v) + ωó(1↓h(v)),

i.e., ó(w) < ó(v).

It remains to check that the range of ó is ε0. We will use the following lemma:

Lemma 4.30. For all m < ω, ó(m>) < ε0.

Proof. By induction on n; if n = 0 then ó(0>) = 0 + ω0 = 1 < ε0. Otherwise, by
induction hypothesis ó(n>) < ε0, so

ó(〈n+ 1〉>) = ωó(n>) < ε0,

as claimed.
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Lemma 4.31. An ordinal ξ lies in the range of ó if and only if ξ < ε0.

Proof. First, assume that ξ < ε0; we must find w @ ω such that ξ = ó(w). Proceed
by induction on ξ. If ξ = 0, then ξ = ó(>). Otherwise, by Theorem 4.19, ξ = α+ωβ

for some α, β < ξ. By the induction hypothesis, there are worms u, v such that
α = ó(u) and β = ó(v), thus

ó((1 ↑ v) 0 u) = ó(u) + ωó(v) = α+ ωβ = ξ.

Next we check that if w @ ω, then ó(w) < ε0. Fix M > maxw; then, by
Corollary 3.19.3, w � M>, so that ó(w) � ó(M>). But by Lemma 4.30, ó(M>) <
ε0, as claimed.

We now have all the necessary ingredients to show that ó = o.

Lemma 4.32. For all w @ ω, o(w) = ó(w).

Proof. By Lemma 4.28, ó is well-defined on Wω, and by Lemmas 4.29 and 4.31, it
is strictly increasing and initial. By Lemma 3.24, o = ó on Wω.

Let us conclude this section by summarizing our main results:

Theorem 4.33. The map o : Wω → ε0 is surjective and satisfies

1. o(>) = 0, and

2. o((1 ↑ v) 0 w) = o(w) + ωo(v).

Proof. Immediate from Lemma 4.32 and the definition of ó.

5 Transfinite worms

We have now seen that finite worms give a notation for ε0, the proof-theoretic ordinal
of Peano arithmetic. However, stronger theories, including many important theories
of reverse mathematics, have much larger proof-theoretic strength, suggesting that
RCω is not suitable for their Π0

1 ordinal analysis. Fortunately, Theorem 3.20 is valid
even when worms have arbitrary ordinal entries. In this section, we will extend
Theorem 4.33 to all of W.
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5.1 Subsystems of second-order arithmetic
Let us begin by discussing proof-theoretic interpretations of RCΛ with Λ > ω. It will
be convenient to pass to the language Π1

ω of second-order arithmetic. This language
extends that of first-order arithmetic with new variables X,Y, Z, . . . denoting sets of
natural numbers, along with new atomic formulas t ∈ X and second-order quantifiers
∀X,∃X. As is standard, we may define X ⊆ Y by ∀x(x ∈ X → x ∈ Y ), and X = Y
by X ⊆ Y ∧ Y ⊆ X.

When working in a second-order context, we write Π0
n instead of Πn (note that

these formulas could contain second-order parameters, but no quantifiers over sets).
The classes Σ1

n,Π1
n are defined analogously to their first-order counterparts, but

using alternating second-order quantifiers and setting Σ1
0 = Π1

0 = ∆1
0 = Π0

ω. It is
well-known that every second-order formula is equivalent to another in one of the
above forms.

When axiomatizing second-order arithmetic, the focus passes from induction to
comprehension; that is, axioms stating the existence of sets whole elements satisfy
a prescribed property. Some important axioms and schemes are:

Γ-CA: ∃X∀x (x ∈ X ↔ φ(x)
)
, where φ ∈ Γ and X is not free in φ;

∆0
1-CA: ∀x(π(w)↔ σ(x)

)→ ∃X∀x (x ∈ X ↔ σ(x)
)
, where σ ∈ Σ0

1, π ∈ Π0
1, and X

is not free in σ or π;

Ind: 0 ∈ X ∧ ∀x (x ∈ X → x+ 1 ∈ X) → ∀x (x ∈ X).

We mention one further axiom that requires a more elaborate setup. We may
represent well-orders in second-order arithmetic as pairs of sets Λ = 〈|Λ|,≤Λ〉, and
define

WO(Λ) = linear(Λ) ∧ ∀X ⊆ |Λ| (∃x ∈ X → ∃y ∈ X∀z ∈ Xy ≤Λ z),

where linear(Λ) is a formula expressing that Λ is a linear order.
Given a set X whose elements we will regard as ordered pairs 〈λ, n〉, let X<Λλ

be the set of all 〈µ, n〉 with µ <Λ λ. With this, we define the transfinite recursion
scheme by

TRφ(X,Λ) = ∀λ ∈ |Λ| ∀n (n ∈ X ↔ φ(n,X<Λλ)
)
.

Intuitively, TRφ(X,Λ) states that X is made up of “layers” indexed by elements of Λ,
and the elements of the λth layer are those natural numbers n satisfying φ(n,X<Λλ),
where X<Λλ is the union of all previous layers. If Γ is a set of formulas, we denote
the Γ-transfinite recursion scheme by

Γ-TR =
{
∀Λ(WO(Λ)→ ∃X TRφ(X,Λ)

)
: φ ∈ Γ

}
.
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Now we are ready to define some important theories:

ECA0 : Q+ + Ind+∆0
0-CA;

RCA∗0 : Q+ + Ind+∆0
1-CA;

RCA0 : Q+ + IΣ0
1+∆0

1-CA;
ACA0 : Q+ + Ind+Σ0

1-CA;
ATR0 : Q+ + Ind + Π0

ω-TR;
Π1

1-CA0 : Q+ + Ind+Π1
1-CA.

These are listed from weakest to strongest. The theories RCA0, ACA0 ATR0 and
Π1

1-CA0, together with the theory of weak König’s lemma, WKL0, are the ‘Big Five’
theories of reverse mathematics, where RCA0 functions as a ‘constructive base the-
ory’, and the stronger four theories are all equivalent to many well-known theorems
in mathematical analysis. For a detailed treatment of these and other subsystems
of second-order arithmetic, see [36].

ECA0 (the theory of elementary comprehension) is the second-order analogue of
elementary arithmetic, and is a bit weaker than the more standard RCA∗0. Mean-
while, arithmetical comprehension (ACA0) is essentially the second-order version of
PA, and has the same proof-theoretic ordinal, ε0. Thus the next milestone in the Π0

1
ordinal analysis program is naturally ATR0, the theory of arithmetical transfinite
recursion. Appropriately, the constructions we will use to interpret the modalities
〈λ〉 for countable λ > ω may be carried out within ATR0.

5.2 Iterated ω-rules
If we wish to interpret [λ]T φ for transfinite λ, we need to consider a notion of
provability that naturally extends beyond ω. One such notion, which is well-studied
in proof theory (see, e.g., [33]), considers infinitary derivations with the ω-rule.
Intuitively, this rule has the form

φ(0̄) φ(1̄) φ(2̄) φ(3̄) φ(4̄) . . .

∀xφ(x)

The parameter λ in [λ]T φ denotes the nesting depth of ω-rules that may be used
for proving φ. The notion of λ-provability is defined as follows:

Definition 5.1. Let T be a theory of second-order arithmetic and φ ∈ Π1
ω. For an

ordinal λ, we define [λ]Tφ recursively if either

(i) 2Tφ, or

(ii) there are an ordinal µ < λ and a formula ψ(x) such that

3313



D. Fernández-Duque

(a) for all n < ω, [µ]Tψ(n̄), and
(b) 2T (∀xψ(x)→ φ).

This notion can be formalized by representing ω-proofs as infinite trees, as pre-
sented by Arai [2] and Girard [22]. Here we will instead use the formalization of
Joosten and I [19]. We use a set P as an iterated provability class, whose elements
are codes of pairs 〈λ, ϕ〉, with λ a code for an ordinal and ϕ a code for a formula.
The idea is that we want P to be a set of pairs 〈λ, ϕ〉 satisfying Definition 5.1 if we
set [λ]T ϕ↔ 〈λ, ϕ〉 ∈ P . Thus we may write [λ]Pϕ instead of 〈λ, ϕ〉 ∈ P .
Definition 5.2. Fix a well-order Λ on N. Say that a set P of natural numbers is
an iterated provability class for Λ if it satisfies the expression

[λ]P ϕ ↔
(
2Tϕ ∨ ∃ψ ∃ ξ<Λλ

(∀n [ξ]P ψ(ṅ) ∧ 2T (∀xψ(x)→ ϕ)
))
.

Let IPCΛ
T (P ) be a Π0

ω formula stating that P is an iterated provabiltiy class for Λ.
Then, define

[λ]ΛT φ := ∀P (IPCΛ
T (P )→ [λ]Pφ

)
.

Note that [λ]ΛT is a Π1
1 formula. Alternately, one could define [λ]ΛT as a Σ1

1 formula,
but the two definitions are equivalent due to the following.

Lemma 5.3.

1. It is provable in ACA0 that if Λ is a countable well-order and P,Q are both
iterated provability classes for Λ, then P = Q.

2. It is provable in ATR0 that if Λ is a countable well-order, then there exists an
iterated provability class for Λ.

The first claim is proven by considering two IPC’s P,Q and showing by transfinite
induction on λ that [λ]P φ ↔ [λ]Q φ; this induction is readily available in ACA0
since the expression [λ]Pφ is arithmetical. For the second, we simply observe that
the construction of an IPC is a special case of arithmetical transfinite recursion. See
[19] for more details.

If we fix a computable well-order Λ and a theory T in the language of second-
order arithmetic, we can readily define ·ΛT : LΛ → Π1

ω as in Definition 4.1, but setting
(λφ)Λ

T = 〈λ̄〉ΛTφT We then obtain the following:

Theorem 5.4. Let Λ be a computable well-order and T be a theory extending ACA0
such that it is provable in T that Λ is well-ordered, and that there is a set P satisfying
IPCΛ

T (P ).
Then, for any sequent φ⇒ ψ of LΛ, RC ` φ⇒ ψ if and only if T ` φΛ

T → ψΛ
T .
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Proof. This is proven in [19] with GLPΛ in place of RCΛ, and this version is obtained
by observing that GLPΛ is conservative over RCΛ by Theorem 2.8.

The computability condition in Λ is included due to the fact that in the proof of
Theorem 5.4, we need to be able to prove properties about Λ within T ; for example,
we need for

∀x ∀y (x ≤Λ y → 2T (ẋ ≤Λ ẏ)
)

to hold. However, we can drop this condition if we allow an oracle for Λ; or, more
generally, for any set of natural numbers. To do this, we add a set-constant O to
the language of second-order arithmetic in order to ‘feed’ information about any set
of numbers into T .

To be precise, given a theory T and A ⊆ N, define T |A to be the theory whose
rules and axioms are those of T together with all instances of n̄ ∈ O for n ∈ X, and
all instances of n̄ 6∈ O for n 6∈ X. Then, for any formula φ, we define

[λ|X]ΛTφ = [λ]ΛT |Xφ.

Its dual, 〈λ|X〉ΛTφ, is defined in the usual way. With this, we obtain an analogue of
Theorem 4.3 for ATR0, proven by Cordón-Franco, Joosten, Lara-Martín and myself
in [13]:

Theorem 5.5. ATR0 ≡ ECA0 + ∀Λ ∀X 〈λ|X〉ΛT>.
This result may well be the first step in a consistency proof of ATR0 in the style

of Theorem 4.5. Moreover, the proof-theoretic strength of ATR0 is measured by the
Feferman-Schütte ordinal, Γ0. In the rest of this section, we will see how the worm
ordering relates to this ordinal.

5.3 Ordering transfinite worms
Let us extend our calculus for computing o to worms that may contain transfinite
entries. In Section 4, we used the operations b, h and 1 ↓ to simplify worms and
compute their order-types. However, this will not suffice for transfintie worms. For
example, if w = ω0ω>, we have that h(w) = ω> while b(w) = ω>, both of which
are shorter than ω. However,

1 ↓ (ω>) = 〈−1 + ω〉> = ω>;

thus, demoting by 1 will not get us anywhere. Instead, we could demote by ω,
and obtain ω ↓ (ω>) = 0>, which is indeed ‘simpler’. As we will see, this is the
appropriate way to decompose infinite worms:
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Lemma 5.6. Given a worm w 6= >, there exist unique µ < Λ and worms w1,w0
such that either w1 = > or 0 < minw1 and

w = µ ↑ (w1 0 w0).

Proof. Take µ = minw, w1 = h(µ ↓ w) and w0 = b(µ ↓ w); evidently these are the
only possible values that satisfy the desired equation.

With this we may define the norm of a worm w, which roughly corresponds to
the number of operations of 0-concatenation and µ-promotion needed to construct
w.

Definition 5.7. For w @ Ord we define ‖w‖ inductively by

1. ‖>‖ = 0;

2. if w 6= > and minw = 0, set

‖w‖ = ‖h(w)‖+ ‖b(w)‖+ 1;

3. otherwise, let µ = minw > 0, and set

‖w‖ = ‖µ ↓ w‖+ 1.

The following is obvious from Definition 5.7 and Lemma 5.6:

Lemma 5.8. For every worm w, ‖w‖ ∈ N is well-defined. Moreover, if w = α ↑
(w1 0 w0) with 0 < minw1, then ‖w1‖, ‖w0‖ < ‖w‖.

Thus we may try to compute o(w) by recursion on ‖w‖. Assuming that the
identity o(w) = ob(w) + ωo(1↓h(w)) remains valid for transfinite worms, we only
have to find a way to compute o(µ ↑ w) in terms of o(w). Fortunately, the map
o(w) 7→ o(µ ↑ w) is well-defined; let us denote it by σµ.

Lemma 5.9. There exists a unique family of functions ~σ = 〈σξ〉ξ∈Ord such that
σξ : Ord→ Ord and, for every ordinal ξ and every worm w, σξo(w) = o(ξ ↑ w).

Proof. Given ordinals ξ, ζ, we need to see that there exists a unique ordinal ϑ such
that ϑ = o(ξ ↑ w) whenever ζ = o(w).

First observe that, by Corollary 3.27, there is some worm w∗ such that ζ = o(w∗).
Since by Theorem 3.20, the class of worms is well-ordered, o(ξ ↑ w∗) is well-defined.
It remains to check that if w is an arbitrary worm such that o(w) = ξ, then also
o(ξ ↑ w) = o(ξ ↑ w∗). But if o(w) = o(w∗), by Lemma 3.25 we have that w ≡ w∗,
and thus by Lemma 4.22, ξ ↑ w ≡ ξ ↑ w∗. The latter implies that o(ξ ↑ w) = o(ξ ↑
w∗), as needed.
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Lemma 5.10. The family of functions ~σ has the following properties:

1. σα is strictly increasing for all α;

2. σ0ξ = ξ, and

3. σα+β = σασβ.

Proof. For item 1, suppose that ξ < ζ. If ξ = o(w) and ζ = o(v), then by Lemma
3.23, w � v, so that by Lemma 4.23, α ↑ w � α ↑ v and thus o(α ↑ w) < o(α ↑ v);
a similar argument shows that if o(w) � o(v), then o(α ↑ w) � o(α ↑ v). Item
2 follows from the fact that 0 ↑ w = w for all w, so if ζ = o(w) we have that
σ0ζ = o(0 ↑ w) = ζ.

Item 3 is immediate from Lemma 4.21.(ii), since if o(w) = ζ then o(β ↑ w) =
σβ(ζ), which means that

o(α ↑ (β ↑ w)) = σασβ(ζ).

But, on the other hand, α ↑ (β ↑ w) = (α+ β) ↑ w, and

o((α+ β) ↑ w) = σα+βζ,

and we conclude that σα+βζ = σασβζ.

Observe also that if ζ < ε0, then by Theorem 4.33, there is w @ ω such that
ζ = o(w), and hence by Theorem 4.33, σ1ζ = o(1 ↑ w) = −1 + ωo(w) (where we
subtract 1 to account for the case w = >). Thus for ζ < ε0, σ1ζ = −1 + ωζ . It
is thus natural to conjecture that σ1ζ = −1 + ωζ for all ζ. In the next section
we will discuss how a family of ordinal functions satisfying these properties can be
constructed, and show that they are closely related to the Feferman-Schütte ordinal
Γ0.

5.4 Hyperations and the Feferman-Schütte ordinal
Beklemishev has shown how provability algebras give rise to a notation system for Γ0.
Such ordinals are usually presented using Veblen progressions [37], but alternatively
they may be defined through hyperations, which are more convenient in our present
context.

Definition 5.11. Let f be a normal function. Then, we define the hyperation of f
to be the unique family of normal functions 〈f ζ〉ζ∈On such that

(i) f1 = f
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(ii) fα+β = fαfβ for all ordinals α, β

(iii) 〈f ζ〉ζ∈On is pointwise minimal amongst all families of normal functions satis-
fying the above clauses3.

It is not obvious that such a family of functions exists, but a detailed construction
is given by Joosten and myself in [17]. It is also shown there that they may be
computed by the following recursion:

Lemma 5.12. Let f be a normal function such that f(0) = 0. Then, given ordinals
λ, µ,

(i) f0µ = µ;

(ii) fλ+1µ = fλfµ;

(iii) if µ is a limit, fλµ = lim
ξ<µ

fλξ;

(iv) if λ is a limit, fλ(µ+ 1) = lim
ξ<λ

f ξ(fλ(µ) + 1).

Although each function f ξ is normal, the function ξ 7→ f ξµ typically is not, even
when µ = 0, since if f(0) = 0 then it follows that f ξ0 = 0 for all ξ. However, when
f(0) > 0 then ξ 7→ f ξ0 is normal, and more generally, we have the following:

Lemma 5.13. Assume that f : Ord→ Ord is normal and suppose that µ is the least
ordinal such that f(µ) > µ (if it exists).

Then, the function ξ 7→ f ξµ is normal, and for all ξ, f ξ � µ is the identity (where
� denotes domain restriction).

We omit the proof which proceeds by transfinite induction using Lemma 5.12.
We are particularly interested in hyperating e(ξ) = −1 +ωξ; the family of functions
〈eξ〉ξ∈Ord are the hyperexponentials. Observe that, in view of Lemma 5.13, eξ0 = 0
for all ξ and the function ξ 7→ eξ1 is normal. Aside from the clauses mentioned
above, we remark that to entirely determine the value of eλµ we need the additional
clause

e1(µ+ 1) = lim
n<ω

(
(1 + e1µ) · n);

this follows directly from the definitions of ordinal exponentiation and the function
e.

Aguilera and I proved the following in [1]:
3That is, if 〈gζ〉ζ∈On is a family of functions satisfying conditions (i) and (ii), then for all ordinals

ξ, ζ, fζξ ≤ gζξ.
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Proposition 5.14. For every ordinal ξ > 0, there exist unique ordinals α, β such
that β is 1 or additively decomposable and ξ = eαβ.

We call α above the degree of indecomposability of ξ; in particular, if ξ is already
additively decomposable, then α = 0. More generally, eαβ is always additively
indecomposable if α, β > 0, since

eαβ = ee−1+αβ = −1 + ωe
−1+αβ = ωe

−1+αβ.

Note that by writing β as a sum of indecomposables we may iterate this lemma and
thus write any ordinal in terms of e,+, 0 and 1. This form is unique if we do not
allow sums of the form ξ + η where ξ + η = η.

We will not review Veblen progressions here; however, as these are more stan-
dard than hyperexponentials, we remark that notations using hyperexponentials or
Veblen functions can be easily translated from one to the other using the following
proposition. Below, ϕα denotes the Veblen functions as defined in [33].

Proposition 5.15. Given ordinals α, β,

1. eα(0) = 0,

2. e1(1 + β) = ϕ0(1 + β),

3. eω1+α(1 + β) = ϕ1+α(β).

The proof can be found in [17]. We have seen that every ordinal ξ < ε0 can be
written as a sum of the form α+ ωβ with α, β < ξ. In general, it is desirable in any
ordinal notation system that, if we have a notation for an additively indecomposable
ξ, then we also have notations for ordinals α, β < ξ such that α+ β = ξ. If instead
ξ is additively indecomposable, it is also convenient to have notations for α, β such
that ξ = eαβ (although we cannot always guarantee that α < ξ). The following
definition captures these properties.

Definition 5.16. Let Θ be a set of ordinals.

1. We say that Θ is additively reductive if whenever ξ is additively decomposable,
we have that ξ ∈ Θ if and only if there are α, β ∈ ξ ∩Θ such that ξ = α+ β.

2. We say that Θ is hyperexponentailly reductive if whenever ξ > 1 is additively
indecomposable, we have that ξ ∈ Θ if and only if there are α, β ∈ Θ such that
β < ξ and ξ = eαβ.

3. We say that Θ is reductive if it is additively and hyperexponentially reductive.
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Additively reductive sets of ordinals always contain Cantor decompositions of
their elements and are closed under left subtraction by arbitrary ordinals:

Lemma 5.17. Let Θ be an additively reductive set of ordinals such that 0 ∈ Θ.
Then:

1. If 0 6= ξ ∈ Θ is arbitrary, there are ordinals α, β such that α, ωβ ∈ Θ and
ξ = α+ ωβ.

2. If β ∈ Θ and α < β (not necessarily a member of Θ), then −α+ β ∈ Θ.

Proof. For the first claim, if ξ is additively indecomposable there is nothing to do,
since we already have that ξ = ωβ for some β. Otherwise, using the assumption
that Θ is additively reductive, write ξ = γ + δ with γ, δ ∈ ξ ∩Θ.

By the induction hypothesis applied to δ, there are η, β such that η, ωβ ∈ Θ and
δ = η + ωβ. Again using the assumption that Θ is additively reductive, we may set
α = γ + η ∈ Θ, and see that ξ = α+ ωβ.

Now we prove the second item by induction on ξ. We may assume that β is
additively indecomposable, since otherwise −α + β ∈ {0, β} ⊆ Θ. Thus we may
write β = γ+δ with γ, δ ∈ β∩Θ. If α ≤ γ, by the induction hypothesis −α+γ ∈ Θ,
and thus −α+ β = (−α+ γ) + δ ∈ Θ. Otherwise, also by the induction hypothesis
applied to δ < ξ,

−α+ β = −(−γ + α) + δ ∈ Θ.

Meanwhile, hyperexponentially reductive sets of ordinals always contain hyper-
exponential normal forms for their elements:

Lemma 5.18. If Θ contains 0 and is hyperexponentially reductive, then for every
ξ ∈ Θ, there are α, β ∈ Θ such that β = 1 or is additively decomposable, and
ξ = eαβ.

Proof. By induction on ξ; if ξ is additively decomposable or 1 then ξ = e0ξ, otherwise
there are α′, β′ ∈ Θ with β < ξ such that ξ = eα

′
β′. By induction hypothesis there

are γ, β ∈ Θ such that β = 1 or is additively decomposable and β′ = eγβ. Setting
α = α′ + γ, we see that ξ = eαβ, as desired.

The ordinal Γ0 can be constructed by closing {0, 1} under addition and hyper-
exponentiation, or more succinctly by the function α, β, γ 7→ eα(β + γ). In fact, Γ0
is the least hyperexponentially perfect set, in the sense of the following definition:
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Definition 5.19. Define a function HE: Ord3 → Ord by

HE(α, β, γ) = eα(β + γ).

Given a set of ordinals Θ, say that Θ is hyperexponentially closed if 2∪HE[Θ] ⊆ Θ.
We say that Θ is hyperexponentially perfect if it is reductive and hyperexponentially
closed.

It is easy to see that Θ is hyperexponentially perfect if and only if it is reductive
and 0, 1 ∈ Θ. Note also that hyperexponentially closed sets are closed under both
addition and hyperexponentiation:

Lemma 5.20. If 0 ∈ Θ and α, β ∈ Θ, then α+ β, eαβ ∈ HE[Θ].

Proof. If Θ is hyperexponentially closed then by definition we have that 0 ∈ Θ,
hence if α, β ∈ Θ, α+ β = e0(α+ β) ∈ HE[Θ] and eαβ = eα(β + 0) ∈ HE[Θ].

With this, we are ready to define the ordinal Γ0:

Theorem 5.21. Let Γ0 = 2HE. Then, Γ0 is an ordinal and for every ξ < Γ0 with
ξ > 1, there are ordinals α, β, γ < ξ such that ξ = eα(β + γ).

Proof. The proof closely mimics that of Theorem 4.19. First we will show that if
1 < ξ ∈ Γ0, then there are α, β, γ < ξ such that ξ = eα(β + γ). By Lemma 4.17.3,
there are α, β, γ ∈ Γ0 with α, β, γ 6= ξ and such that ξ = eα(β + γ). Since ξ 6= 0 it
follows that β + γ ≥ 1, and since the function eα is normal, β + γ ≤ ξ, from which
we obtain β, γ < ξ. Similarly, α ≤ ξ since eα(β+γ) ≥ eα1 and the function α 7→ eα1
is normal. Thus we also have α < ξ.

Next we show that Γ0 is transitive. We proceed by induction on ζ with a sec-
ondary induction on ξ to show that ξ < ζ ∈ Γ0 implies that ξ ∈ Γ0. We may without
loss of generality assume that ξ, ζ > 1. Write ζ = eα(β + γ) with α, β, γ ∈ Γ0 ∩ ζ.
Then, using Proposition 5.14, write ξ = eλµ with µ = 1 or additively decomposable.

Now consider two cases. If λ = 0, we have that µ = ξ > 1, hence ξ is additively
decomposable and we can write ξ = ν+η, with ν, η < ξ. By the secondary induction
hypothesis, ν, η ∈ Γ0, hence ξ = e0(ν + η) ∈ Γ0.

Otherwise, λ > 0, and we consider two subcases. If α ≥ λ, by the induction
hypothesis applied to α < ζ, λ ∈ Γ0. But ξ > 1 and is additively indecomposable,
while µ ≤ ξ is 1 or additively decomposable, so µ < ξ. By the secondary induction
hypothesis, µ ∈ Γ0, hence ξ = eλµ ∈ Γ0. If instead α < λ, we observe that
eλµ = eαe−α+λµ, and by normality of eα, e−α+λµ < β+γ. Since e−α+λµ is additively
indecomposable, it follows that e−α+λµ ≤ max{β, γ}, so that by the induction
hypothesis applied to max{β, γ} < ζ, we have that e−α+λµ ∈ Γ0. Since α ∈ Γ0,
ξ = eαe−α+λµ ∈ Γ0.
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Thus Γ0 can be characterized as the least hyperexponentially closed ordinal, or
alternatively the least hyperexponentially perfect ordinal. Later we will see that it
can also be obtained using worms, by closing under o.

5.5 Order-types of transfinite worms
As in Section 4.3, our strategy for giving a calculus for computing o will be to guess a
candidate function and prove that it has the required properties. Let us assume that
Theorem 4.33 remains true for transfinite worms. Moreover, note that the functions
eξ satisfy all desired properties of our functions σξ. Thus we will conjecture that
eξ = σξ for every ordnal ξ, and propose the following candidate:

Definition 5.22. Let Λ be an ordinal, v,w ∈WΛ be worms and α < Λ an ordinal.
Then, define

1. ô(>) = 0,

2. ô(w) = ôb(w) + ωô(1↓h(w)) if w 6= > and minw = 0,

3. ô(w) = eµô(µ ↓ w) if w 6= > and µ = minw > 0.

The next few lemmas establish that ô behaves as it should.

Lemma 5.23. If w 6= > is any worm, then ô(w) 6= 0.

Proof. If minw = 0, this is obvious since ωξ > 0 independently of ξ. Otherwise,
ô(w) = eµô(µ ↓ w) with µ = minw > 0. But minµ ↓ w = 0, so by the previous case
ô(µ ↓ w) 6= 0 and hence ô(w) = eµô(µ ↓ w) 6= 0.

Lemma 5.24. For any worm w 6= >, ô(w) = ôb(w) + ωô(1↓h(w)).

Proof. If minw = 0, there is nothing to prove. Otherwise, minw > 0, so we can write
minw = 1 + η for some η. Moreover, h(w) = w and b(w) = >, so ôh(w) = ô(w) 6= 0
and ôb(w) = 0. Meanwhile, (1 + η) ↓ w 6= >, so ô

(
(1 + η) ↓ w

) 6= 0 and thus
eηô((1 + η) ↓ w) > 0, from which it follows that

−1 + ωe
η(ô((1+η)↓w)) = ωe

η(ô((1+η)↓w)). (2)

Finally, observe that

ô(1 ↓ h(w)) = eηô(η ↓ (1 ↓ h(w))) = eηô((1 + η) ↓ h(w))). (3)

3322



Worms and Spiders

Putting all of this together,

ô(w) = e1+ηô((1 + η) ↓ w) by definition
= 0 + eeη(ô((1 + η) ↓ w)) since e1+η = eeη

= ô(b(w)) + eeη(ô((1 + η) ↓ w)) since ô(b(w)) = 0
= ô(b(w)) + (−1 + ωe

η(ô((1+η)↓w))) by definition of e
= ô(b(w)) + ωe

η(ô((1+η)↓w)) by (2)
= ô(b(w)) + ωô(1↓h(w)) by (3),

as claimed.

Lemma 5.25. For any worm w and ordinal λ, ô(λ ↑ w) = eλô(w).

Proof. If w = >, then

ô(λ ↑ >) = ô(>) = 0 = eλ0 = eλô(>).

Otherwise, w 6= >. If λ = 0 the lemma follows from the fact that 0 ↑ w = w and e0

is the identity, and if minw = 0 then min(λ ↑ w) = λ and

ô(λ ↑ µ) = eλô(λ ↓ (λ ↑ w)) = eλô(w).

If not, let µ = minw > 0, so that ô(w) = eµ(µ ↓ w). Observe that min(λ ↑ w) =
λ+ µ. Hence,

ô(λ ↑ w) = eλ+µ((λ+ µ) ↓ (λ ↑ w))
= eλ+µ(µ ↓ (λ ↓ (λ ↑ w)))
= eλeµ(µ ↓ w)
= eλô(w),

as claimed.

With this we can prove that ô is strictly increasing and initial.

Lemma 5.26. The map ô : W→ Ord is strictly increasing.

Proof. We proceed by induction on ‖w‖ + ‖v‖ to show that w � v if and only if
ô(w) < ô(v). If w = > the claim is immediate from Lemma 5.23, so we assume
otherwise. Note that in this case w � > and ô(w) > ô(>), so we may also assume
that v 6= >.
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Thus we consider w, v 6= >, and define µ = min(wv). If µ = 0, we observe that
either ‖h(w)‖ < ‖w‖ or ‖h(v)‖ < ‖v‖, and we can proceed exactly as in the proof
of Lemma 4.29. Thus we consider only the case for µ > 0.

Note that in this case we have that

‖µ ↓ w‖+ ‖µ ↓ v‖ < ‖w‖+ ‖v‖,

so we may apply the induction hypothesis to µ ↓ w and µ ↓ v. Hence we obtain:

w � v⇔ (µ ↓ w) � (µ ↓ v) by Lemma 4.23
⇔ ô(µ ↓ w) < ô(µ ↓ v) by induction hypothesis
⇔ eµô(µ ↓ w) < eµô(µ ↓ v) by normality of eµ

⇔ ôw < ôv by Lemma 5.25,

as needed.

Lemma 5.27. The map ô : W→ Ord is surjective.

Proof. Proceed by induction on ξ ∈ Ord to show that there is w with ô(w) = ξ.
For the base case, ξ = 0 = ô(>). Otherwise, by Proposition 5.14, ξ can be written
in the form eαβ with β additively decomposable or 1. Write β = γ + ωδ, so that
γ, δ < β ≤ ξ. By the induction hypothesis, there are worms u, v such that ô(u) = γ
and ô(v) = δ. Then, ξ = ô(α ↑ ((1 ↑ v) 0 u)), as needed.

Lemma 5.28. For every worm w, ô(w) = o(w).

Proof. Immediate from Lemmas 5.26 and 5.27 using Lemma 3.24.

Before giving the definitive version of our calculus, let us show that the clasue
for w 0 v can be simplified somewhat.

Lemma 5.29. Given arbitrary worms w, v, o(w 0 v) = o(v) + 1 + o(w).

Proof. Observe that by Lemma 5.25 together with Lemma 5.28, we have that for
any worm u, o(1 ↑ u) = eo(u) = −1 + ωo(u), so that

ωo(u) = 1 + o(1 ↑ u). (4)

With this in mind, proceed by induction on #v + #w to prove the lemma. First
consider the case where 0 < min v. In this case, h(v 0 w) = v, so that

o(v 0 w) = o(w) + ωo(1↓v) = o(w) + 1 + o(v),
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where the first equality is by Defintion 5.22 and the second follows from (4).
If v does contain a zero, we have that v = h(v) 0 b(v), so that

v 0 w = h(v) 0 b(v) 0 w.

This means that h(v 0 w) = h(v) and b(v 0 w) = b(v) 0 w. Applying the induction
hypothesis to b(v) 0 w, we obtain

ob(v 0 w) = o(w) + 1 + ob(v),

and thus

o(v 0 w) = ob(w 0 v) + ωo(1↓h(v))

ih= o(w) + 1 + ob(v) + ωo(1↓h(v)) = o(w) + 1 + o(v),

as needed.

Let us put our results together to give our definitive calculus for o.

Theorem 5.30. Let v,w be worms and α be an ordinal. Then,

1. o(>) = 0,

2. o(v 0 w) = o(w) + 1 + o(v), and

3. o(α ↑ w) = eαo(w).

Proof. The first item is immediate from Definition 5.22, the second from Lemma
5.29, and the third from Lemma 5.25, respectively, using the fact that o = ô by
Lemma 5.28.

Note that Theorem 5.30 can be applied to any worm w, and hence it gives a
complete calculus for computing o. Next, let us see how this gives rise to a notation
system for Γ0.

5.6 Beklemishev’s predicative worms
Now we review results from [5] showing that Γ0 is the least set definable by iteratively
taking order-types of worms. Let us begin by discussing the properties of sets of
worms obtained from additively reductive sets of ordinals. Recall that w @ Θ means
that every ordinal appearing in w belongs to Θ.

Lemma 5.31. Let Θ be an additively reductive set of ordinals such that 0 ∈ Θ, and
let w @ Θ. Then,
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1. If µ ∈ Θ, µ ↑ w @ Θ, and

2. if µ ≤ w is arbitrary, then µ ↓ w @ Θ.

Proof. Suppose that w = λ1 . . . λn> @ Θ. If µ ∈ Θ, using the fact that Θ is closed
under addition, for each i ∈ [1, n] we have that µ+ λi ∈ Θ. Thus µ ↑ w @ Θ.

Similarly, by Lemma 5.17.2, if µ is arbitrary then −µ+λi ∈ Θ for each i ∈ [1, n],
so µ ↓ w @ Θ.

Now, let us make the notion of “closing under o” precise.

Definition 5.32. Observe that o may be regarded as a function o : Ord<ω → Ord by
setting

o(µ1, . . . , µn) = o(µ1 . . . µn>).

Then, given a set of ordinals Θ, if o[Θ] ⊆ Θ we say that Θ is worm-closed, and if
Θ = o[Θ] we say that Θ is worm-perfect.

Even when Θ is not worm-perfect, sets of the form o[Θ] are rather well-behaved:

Lemma 5.33. If Θ is any set of ordinals, then 0 ∈ o[Θ]. If moreover 0 ∈ Θ, then
also 1 ∈ o[Θ], and o[Θ] is additively reductive.

Proof. Observe that 0 = o(>), and > @ Θ since > contains no ordinals, so 0 ∈ o[Θ].
Similarly, 1 = o(0>), and 0> @ Θ if 0 ∈ Θ.

Let us see that o[Θ] is additively reductive when 0 ∈ Θ. First assume that
α, β ∈ o[Θ]. Then, there are worms u, v @ Θ such that α = o(u) and β = o(v). If
β ≥ ω, then

o(v 0 u) = o(u) + 1 + o(v) = α+ 1 + β = α+ β,

otherwise
o(〈0〉βu) = o(u) + β = α+ β,

where we define 〈λ〉n = 〈λ〉 . . . 〈λ〉︸ ︷︷ ︸
n times

. Both v 0 u, 〈0〉βu @ Θ, so α+ β ∈ o[Θ].

Conversely, if ξ ∈ o[Θ] is additively decomposable, write ξ = o(w). Then,
ξ = ob(w) + 1 + oh(w), and since 1 + oh(w) is additively indecomposable, we have
that ξ 6= 1 + oh(w) and hence ob(w), 1 + oh(w) < ξ. Clearly ob(w) ∈ o[Θ], while
1 + oh(w) is either 1 or oh(w), both of which belong to o[Θ].

Lemma 5.34. Let Θ be any set of ordinals. Then, Θ is worm-perfect if and only if
it is hyperexponentially perfect.
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Proof. Assume first that Θ is worm-perfect. By Lemma 5.33, 0 ∈ Θ, thus also 1 ∈ Θ
and Θ is additively reductive. It remains to prove that HE[Θ] ⊆ Θ and that Θ is
hyperexponentially reductive.

To show that HE[Θ] ⊆ Θ, it suffices to check that eαβ ∈ Θ whenever α, β ∈ Θ,
given that we already know that Θ is closed under addition. If α, β ∈ Θ, since Θ is
worm-perfect, there is w @ Θ such that o(w) = β. By Lemma 5.31, α ↑ w @ Θ, and
by Theorem 5.30, eαβ = o(α ↑ w) ∈ Θ.

Next we show that if 1 < ξ ∈ Θ, there are α, β ∈ Θ such that ξ = eαβ and β < ξ.
Since Θ is worm-perfect, ξ = o(w) for some w @ Θ. We proceed by induction
on ‖w‖ to find suitable α, β ∈ Θ. We may assume that w 6= > since ξ > 0, and
we set µ = minw. If µ = 0, then h(w), b(w) @ Θ, and since Θ is worm-perfect,
ob(w), oh(w) ∈ Θ. Now, if oh(w) = ξ, by induction on ‖h(w)‖ we see that there
exist suitable α, β ∈ Θ. If instead oh(w) < ξ, this means that ξ = ob(w) + 1 +oh(w)
is additively decomposable, contrary to our assumption.

Now consider µ > 0. By Lemma 5.31, µ ↓ w @ Θ. Hence by induction on
‖µ ↓ w‖ < ‖w‖, we have that o(µ ↓ w) = eηβ for some η, β ∈ Θ with β < o(µ ↓ w).
It follows that

o(w) = eµo(µ ↓ w) = eµeηβ = eµ+ηβ,

and since Θ is closed under addition, we may set α = µ+ η ∈ Θ.
For the other direction, assume that Θ is hyperexponentially perfect. To show

that o[Θ] ⊆ Θ, we will prove by induction on ‖w‖ that if w @ Θ, then o(w) ∈ Θ.
For the base case, if w = >, then o(w) = 0 ∈ Θ. Otherwise, let µ = minw.

If µ = 0, then by induction hypothesis oh(w), ob(w) ∈ Θ. Since also 1 ∈ Θ,
then o(w) = ob(w) + 1 + oh(w) ∈ Θ. Otherwise, ‖µ ↓ w‖ < ‖w‖, and as before,
µ ↓ w @ Θ. It follows by the induction hypothesis that o(µ ↓ w) ∈ Θ. Moreover,
since µ appears in w we must have that µ ∈ Θ, thus o(w) = eµo(µ ↓ w) ∈ Θ, using
the fact that Θ is hyperexponentially closed.

Finally, we show that Θ ⊆ o[Θ]. We prove by induction on ξ that if ξ ∈ Θ, then
ξ = o(w) for some w @ Θ. If ξ = 0 we may take w = >. If not, using the fact that Θ
is hyperexponentially perfect, write ξ = eαβ with α, β ∈ Θ and β = 1 or additively
decomposable. If β = 1, then ξ = eα1 = o(α>). Otherwise, since Θ is additively
reductive, we may write β = γ + δ′ with γ, δ′ ∈ β ∩ Θ. Using Lemma 5.17 we see
that δ = −1 + δ′ ∈ Θ. By the induction hypothesis, there are worms u, v @ Θ such
that γ = o(u), δ = o(v), and thus

β = γ + δ′ = γ + 1 + δ = o(u) + 1 + o(v) = o(v 0 u).

But v 0 u @ Θ, and thus by Lemma 5.31, α ↑ (v 0 u) @ Θ, and o(α ↑ (v 0 u)) = eαβ,
as needed.
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With this, we obtain our worm-based characterization of Γ0:

Theorem 5.35. Γ0 is the least worm-perfect set of ordinals.

Proof. Γ0 is the least hyperexponentially perfect set, and since it is transitive and
closed under addition, it is additively reductive. Hence Γ0 is also worm-perfect, and
since any worm-perfect set is hyperexponentially perfect, there can be no smaller
worm-perfect set.

5.7 Autonomous worms and predicative ordinal notations
The map o : W→ Ord suggests that worms could themselves be used as modalities.
This gives rise to Beklemishev’s autonomous worms [5]:

Definition 5.36. We define the set of autonomous worms W to be the least set such
that > ∈W and, if w, v ∈W, then (w)v ∈W.

The idea is to interpret autonomous worms as regular worms using o:

Definition 5.37. We define a map ·o : W→W given recursively by

1. >o = > 2.
(
(w)v

)o = 〈o(wo)〉vo.

We then define o : W→ Ord by setting o(w) = o(wo).

As Beklemishev has noted, autonomous worms give notations for any ordinal
below Γ0.

Theorem 5.38. If γ is any ordinal, then γ < Γ0 if and only if there is w ∈W such
that γ = o(w).

Proof. To see that Γ0 ⊆ o[W], it suffices in view of Theorem 5.35 to observe that
o[W] is worm-perfect by construction.

To see that o[W] ⊆ Γ0, one proves by induction on the number of parentheses in w
that if Θ contains 0 and is worm-closed, then o(w) ∈ Θ. In particular, o(w) ∈ Γ0.

6 Impredicative worms
Now we turn to a possible solution to Mints’ and Pakhomov’s problem of representing
the Bachmann-Howard ordinal using worms. This ordinal is related to inductive
definitions, that is, least fixed points of monotone operators F : 2N → 2N. Let us
begin by reviewing these operators and their fixed points.
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ε1 ((()))((())) εω + ε0 ((()))()(()(())) ee
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11111 ((((()))))

Figure 1: Some ordinals represented as autonomous worms. We use the identity
εξ = eω(1 + ξ), which is a special case of Proposition 5.15.

6.1 Inductive definitions
Let F : 2N → 2N. We say that F is monotone if F (X) ⊆ F (Y ) whenever X ⊆ Y . For
example, if f : N<ω → N, we obtain a monotone operator by setting F (X) = f [X]; as
we have seen in Lemma 4.17, we can reach a fixed point for such an F by iterating
it ω-many times and taking the union of these iterations. More generally, any
monotone operator has a least fixed point:

Definition 6.1. Let F : 2N → 2N be monotone. We define µF to be the unique set
such that:

1. µF = F (µF ), and

2. If X ⊆ N is such that F (X) ⊆ X, then µF ⊆ X.

The Knaster-Tarski theorem states that the set µF is always well-defined [23]; it
can always be reached “from below” by iterating F , beginning from the empty set.
However, in general, we may need to iterate F far beyond ω.

Definition 6.2. Let F : 2N → 2N. For an ordinal ξ, we define an operator F ξ : 2N →
2N inductively by

1. F 0(X) = X,

2. F ξ+1(X) = F (F ξ(X)),

3. F λ(X) = ⋃
ξ<λ F

ξ(X) for λ a limit ordinal.

These iterations eventually become constant, but the ordinal at which they sta-
bilize can be rather large; in principle, our only guarantee is that it is countable,
since at each stage before reaching a fixed point we must add at least one natural
number. Below, recall that ω1 denotes the first uncountable cardinal.

Lemma 6.3. If F : 2N → 2N is monotone, then there is λ < ω1 such that F λ(∅) =
µF .
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We omit the proof, which follows from cardinality considerations. Alternately,
it is possible to construct least fixed points ‘from above’, by taking the intersection
of all F -closed sets.

Lemma 6.4. If F : 2N → 2N is monotone, then

µF =
⋂
{Y ⊆ N : F (Y ) ⊆ Y }.

Monotone operators and their fixed points can be formalized in second-order
arithmetic, provided they are definable. Any formula φ(n,X) ∈ Π1

ω (with no other
free variables) can be regarded as an operator on 2N given byX 7→ {n ∈ N : φ(n,X)}.
Say that a formula φ is in negation normal form if it contains no instances of→, and
¬ occurs only on atomic formulas. It is well-known that every formula is equivalent
to one in negation normal form, obtained by applying De Morgan’s rules iteratively.

Definition 6.5. Let φ be a formula in negation normal form and X a set-variable.
We say φ is positive on X if φ contains no occurrences of t 6∈ X.

Positive formulas give rise to monotone operators, due to the following:

Lemma 6.6. Given a formula φ(n,X) that is positive on X, it is provable in ECA0
that

∀X ∀Y
(
X ⊆ Y → ∀n (φ(n,X)→ φ(n, Y )

))
.

Thus if we define Fφ : 2N → 2N by Fφ(X) = {n ∈ N : φ(n,X)}, Fφ will be
monotone on X whenever φ is positive on X. Moreover, if φ is arithmetical, Lemma
6.4 may readily be formalized in Π1

1-CA0, by defining

M =
{
n ∈ N : ∀X

(
∀m(φ(m,X)→ m ∈ X)→ n ∈ X

)}
.

Thus we arrive at the following:

Lemma 6.7. Let φ(n,X) be arithmetical and positive on X. Then, it is provable
in Π1

1-CA0 that there is a least set M such that, for all n,

n ∈M ↔ φ(n,M).

We will denote this set M by µX.φ.

With these tools in mind, we are now ready to formalize ω-logic in second-order
arithmetic.
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6.2 Formalizing full ω-logic
We have discussed before how the ω-rule can be iterated along a well-order. However,
we may also consider full ω-logic based on a theory T ; that is, the set of formulas
that can be derived using the ω-rule and reasoning in T , regardless of the nesting
depth of these ω-rules. Let us write [∞]Tφ if φ is derivable in this fashion. To be
precise, we want [∞]Tφ to hold whenever:

(i) 2Tφ,

(ii) φ = ∀xψ(x) and for all n, [∞]Tψ(n̄), or

(iii) there is ψ such that [∞]Tψ and [∞]T (ψ → φ).

In words, [∞]T is closed under T and the ω-rule. This notion may be formalized
using ω-trees to represent infinite derivations, as in [2, 22]. We follow a different
approach, using a fixed-point construction as in [16].

Definition 6.8. Fix a theory T , possibly with oracles. Let SPCT (Q) be a Π1
1 formula

naturally expressing that Q is the least set such that φ ∈ Q whenever (i) 2Tφ holds,
(ii) φ = ∀v ψ(v) and for all n, ψ(n̄) ∈ Q, or (iii) there exists ψ ∈ Q such that
ψ → φ ∈ Q.

Then, define
[∞]Tφ ≡ ∀Q

(
SPCT (Q)→ φ ∈ Q).

In view of Lemma 6.3, this fixed point is reached after some countable ordinal,
which gives us the following:

Proposition 6.9. Given a theory T and φ ∈ Π1
ω, [∞]Tφ holds if and only if [ξ]Tφ

holds for some ξ < ω1.

As before, we may also consider saturated provabiltiy operators with oracles, and
we write [∞|A]Tφ instead of [∞]T |Aφ. Since these provability operators are defined
via a least fixed point, in view of Lemma 6.7, their existence can be readily proven
in Π1

1-CA0.

Lemma 6.10. Let T be any theory, possibly with oracles. Then, it is provable in
Π1

1-CA0 that there exists a set Q such that SPCT (Q) holds.

This notion of provability allows us to represent Π1
1-CA0 in terms of a strong

consistency assertion, in the spirit of Theorems 4.3 and 5.5. The following is proven
in [16]:

Theorem 6.11. Π1
1-CA0 ≡ ECA0 + ∀X 〈∞|X〉T>.
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This suggests that studying worms which contain the modality 〈∞〉 may be
instrumental in studying theories capable of reasoning about least fixed points. In
view of Proposition 6.9, we may identify 〈∞〉 with 〈Ω〉 for some ordinal Ω large
enough so that [∞]Tφ is equivalent to [Ω]Tφ; we can take Ω = ω1, for example, but
a large enough countable ordinal will do. In the next section, we will see how adding
uncountable ordinals to our notation system allows us to provide notations for much
larger countable ordinals as well.

6.3 Beyond the Bachmann-Howard ordinal
It is not hard to see that ε0 and Γ0 are countable; for example, it is an easy con-
sequence of Theorem 5.38. With a bit of extra work, one can see that they are
computable as well, for example representing elements of Γ0 as in Theorem 5.38.
However, this does not mean that uncountable ordinals cannot appear as a “de-
tour” in defining proof-theoretic ordinals. Indeed, the Bachmann-Howard ordinal
precisely arises by adding a symbol for an uncountable ordinal. Before continuing,
let us recall a few basic properties of cardinals and cardinalities.

Definition 6.12. Given a set A, we define |A| to be the least ordinal κ such that
there is a bijection f : A→ κ. If κ = |κ|, we say that κ is a cardinal.

The following properties are well-known and discussed in detail, for example, in
[29].

Lemma 6.13. Let A,B be sets. Then,

1. |A ∪B| ≤ max{ω, |A| , |B|};

2. if at least one of A,B is infinite, then |A ∪B| = max{|A| , |B|};

3. |A×B| ≤ max{ω, |A| , |B|},

4. if one of A,B is infinite and both are non-empty, |A×B| = max{|A| , |B|},
and

5. if {Ai : i ∈ I} is a family of sets, then
∣∣∣∣∣
⋃

i∈I
Ai

∣∣∣∣∣ ≤ max
{
ω, sup

i∈I
|Ai| , |I|

}
.

These results readily allow us to compute the cardinalities of ordinals obtained
using addition and multiplication.
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Lemma 6.14. Let α, β be ordinals. Then,

1. |α+ β| ≤ max{ω, |α| , |β|};

2. |α+ β| = max{|α| , |β|} if one of the two is infinite;

3. |αβ| ≤ max{ω, |α| , |β|}, and

4. |αβ| = max{|α| , |β|} if one of the two is infinite and both are non-zero.

Proof. These claims are immediate from Lemma 6.13 if we observe that α+β is the
disjoint union of α with [α, α + β), and |[α, α+ β)| = |β|, while αβ is in bijection
with α× β (via the map αξ + ζ 7→ (ζ, ξ) ∈ α× β).

Similar claims hold for the hyperexponential function:

Lemma 6.15. Let α, β be arbitrary ordinals. Then, |eαβ| ≤ max{ω, |α| , |β|}. If
moreover β > 0 and max{α, β} ≥ ω, then |eαβ| = max{|α| , |β|}.

Proof. To bound |eαβ|, we proceed by induction on α with a secondary induction
on β to show that |eαβ| ≤ max{ω, |α| , |β|}. We consider several cases, using Lemma
5.12. If α = 0, then e0β = β, so the claim is obviously true. If β = 0, we see that
eα0 = 0, so the claim holds as well. For α = 1 and β = γ + 1,

e(γ + 1) = lim
n<ω

(1 + eγ) · n
ih
≤ max{ω, |α| , |β|}.

If α is a limit and β = 1,

eα1 = lim
γ<α

eγ1
ih
≤ max{ω, |α| , |β|}.

For α = γ + 1 with γ > 0 we obtain

eγ+1β = eγeβ
ih
≤ max{|α| , |eβ|}}

ih
≤ max{ω, |α| ,max{ω, |α| , |β|}} = max{ω, |α| , |β|}.

If β is a limit, then we obtain

eαβ = lim
γ<β

eαγ
ih
≤ max{ω, |α| , |β|}.

Finally, for limit α and β = δ + 1 we obtain

eα(δ + 1) = lim
γ<α

eγ(eα(δ) + 1)
ih
≤ max{ω, |α| , |β|}.
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Since this covers all cases, the result follows.
For the second claim, if β > 0, then eαβ ≥ max{α, β}, so |eαβ| ≥ max{|α| , |β|}

and we obtain the desired equality if one of the two is infinite.

Corollary 6.16. If κ is an uncountable cardinal, then κ is additively indecomposable
and eκ1 = κ.

Proof. We know that eκ1 ≥ κ. However, from Lemma 6.15, |eξ1| < κ whenever
ξ < κ, so that eξ1 < κ. But eκ1 = limξ<κ e

ξ1, so eκ1 = κ, from which it also follows
that κ = ωκ and thus is additively indecomposable.

We have a simiar situation with worms; it is very easy to infer the cardinality of
o(w) by looking at the entries in w.

Lemma 6.17. If w ∈W then |o(w)| ≤ |maxωw|. If moreover w 6= > and maxw ≥
ω, then |o(w)| = |maxw|.

Proof. We prove by induction on ‖w‖ that |o(w)| ≤ |maxωw|. For w = > this is
obvious. Otherwise, let µ = minw. If µ = 0, then o(w) = ob(w) + 1 + oh(w), so
that by Lemma 6.15,

|o(w)| = |ob(w) + 1 + oh(w)| ≤ max{ω, |ob(w)| , 1, |oh(w)|}.

By the induction hypothesis |oh(w)| ≤ |maxωh(w)| ≤ |maxωw| and similarly for
|ob(w)|, so we obtain |o(w)| ≤ |maxωw|.

If µ > 0, then o(w) = eµ(µ ↓ w). Since µ,max(µ ↓ w) ≤ maxw and ‖µ ↓ w‖ <
‖w‖, we use the induction hypothesis and Lemma 6.15 once again to see that

|o(w)| = |eµo(µ ↓ w)| ≤ max{ω, |µ| , |max(µ ↓ w)|} ≤ |maxωw| .

The claim follows.
For the second claim, if w 6= > and maxw ≥ ω, then by Lemma 3.26.1, o(w) ≥

maxw, so
|o(w)| ≥ |maxw| = |maxωw| ,

and thus we obtain equality.

Similarly, closure under a function f does not produce many more ordinals than
we had to begin with:

Lemma 6.18. If f : Ord<ω 99K Ord and Θ is a set of ordinals, then

|Θ| ≤
∣∣∣Θf

∣∣∣ ≤ max{ω, |Θ|}.
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Proof. We inductively check that

|Θ| ≤
∣∣∣Θf

n

∣∣∣ ≤ max{ω, |Θ|}, (5)

from which the lemma follows using the fact that Θf = ⋃
n<ω Θf

n.
We have that Θf

0 = Θ, so (5) holds. Now, assume inductively that (5) holds for
n. Then, Θf

n+1 = Θf
n ∪ f [Θf

n]; by the induction hypothesis,

|Θ| ≤
∣∣∣Θf

n

∣∣∣ ≤
∣∣∣Θf

n+1

∣∣∣ .

Now, elements of f [Θ] are of the form f(ξ1, . . . , ξm) with ξ1, . . . , ξm ∈ Θf
n; but there

are at most max{ω,
∣∣∣Θf

n

∣∣∣} of these, so

∣∣∣f [Θf
n]
∣∣∣ ≤ max

{
ω,
∣∣∣Θf

n

∣∣∣
} ih
≤ max{ω, |Θ|},

from which it follows that
∣∣∣Θf

n+1

∣∣∣ =
∣∣∣Θf

n ∪ f [Θf
n]
∣∣∣ ≤ max

{
ω,
∣∣∣Θf

n

∣∣∣ ,
∣∣∣f [Θf

n]
∣∣∣
} ih
≤ max{ω, |Θ|}.

This tells us that none of the ordinal operations we have discussed so far will
give rise to any uncountable ordinals. So, we may add one directly; we can then use
it to produce more countable ordinals using collapsing functions. We shall present
them using hyperexponentials rather than Veblen functions, although this change
is merely cosmetic as the two define the same ordinals. It is standard to use Ω to
denote a ‘big’ ordinal, which for convenience may be assumed to be ω1. However,
we mention that, with some additional technical work, one can take Ω = ωCK1 , the
first non-computable ordinal [34].

Definition 6.19. Let Ω, ξ be ordinals. We simultaneously define the sets C(ξ) and
the ordinals ψ(ξ) by induction on ξ as follows:

1. C(ξ) is the least set such that

(a) Ω ∈ C(ξ),
(b) C(ξ) is hyperexponentially closed, and
(c) if α ∈ C(ξ) and α < ξ then ψ(α) ∈ C(ξ).

2. ψ(ξ) is the least λ such that λ 6∈ C(ξ).
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In the notation of Definition 4.16, let BHξ be the pair of functions {HE,ψ � ξ}.
Then,

C(ξ) = {0, 1,Ω}BHξ
.

Thus our previous work on closures under ordinal functions readily applies to the
sets C(ξ). The function ψ appears in the ordinal analysis of systems such as ID1
and Kripke-Platek set-theory with infinity [33].

Lemma 6.20. If ξ is any ordinal, then ψ(ξ) is additively indecomposable and ψ(ξ) =
eψ(ξ)1.

Proof. To see that ψ(ξ) is additively indecomposable, we will assume otherwise
and reach a contradiction. Hence, suppose that ψ(ξ) = α + β with α, β < ψ(ξ).
By definition of ψ(ξ) we have that α, β ∈ C(ξ), hence ψ(ξ) = α + β ∈ C(ξ),
contradicting its definition.

Next we show that ψ(ξ) = eψ(ξ)1. By Proposition 5.14, there are α, β with β
either 1 or additively decomposable such that ψ(ξ) = eαβ. Since ψ(ξ) is additively
indecomposable we have that β 6= ψ(ξ), and since eα is normal, we have that
β < ψ(ξ). Now, towards a contradiction, assume that α < ψ(ξ); then α, β ∈ C(ξ)
so ψ(ξ) ∈ C(ξ), contrary to its definition. We conclude that α = ψ(ξ), and again
since eψ(ξ) is normal and eψ(ξ)1 ≥ ψ(ξ), that β = 1.

We remark that the above lemma already tells us that the countable ordinals
we can construct using ψ are much bigger than Γ0; indeed, we already have that
Γ0 = ψ(0), and this is only scratching the surface of our notation system: ordinals
such as ψ(Ω) or ψ(eω(Ω + 1)) are much larger. The latter is the Howard-Bachmann
ordinal ψ(εΩ+1), as one can readily check that eωξ = εξ for all ξ using Proposition
5.15.

Lemma 6.21. Assume that Ω is such that Ω = eΩ1. If ξ is any ordinal, then C(ξ)
is hyperexponentially perfect.

Proof. We already know that C(ξ) is hyperexponentially closed, so it remains to
show that it is reductive. Let ζ ∈ C(ξ). By Lemma 4.17.3, either ζ ∈ {0, 1,Ω},
there are α, β, γ 6= ζ with ζ = eα(β + γ), or ζ = ψ(α) for some α ∈ C(ξ) ∩ ξ. If
ζ < 2, there is nothing to prove, so we assume otherwise.

First assume that ζ = eα(β + γ). If ζ is additively decomposable, by Lemma
6.20, we cannot have that α > 0, so we conclude that ζ = e0(β + γ) = β + γ, as
needed. If it is additively indecomposable, since β+ γ ∈ C(ξ), then we already have
that ζ = eα(β + γ) with α, β + γ ∈ C(ξ). In all other cases, ζ must be additively
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indecomposable. If ζ = Ω, then ζ = eΩ1 and Ω, 1 ∈ C(ξ), and if ζ = ψ(α), by
Lemma 6.20, ζ = eζ1, with ζ, 1 ∈ C(ξ).

The intention of the function ψ is to produce new countable ordinals from pos-
sibly uncountable ones. Let us see that this is the case:

Lemma 6.22. Let ξ be any ordinal and Ω = ω1. Then, C(ξ) is countable and
ψ(ξ) < Ω.

Proof. The first claim is an instance of Lemma 6.18, while the second is immediate
from the first.

Observe that supC(ξ) = ΓΩ+1, the first hyperexponentially closed ordinal which
is greater than Ω, and thus the smallest ordinal not contained in any C(ξ) is ψ(ΓΩ+1).
However, our worm notation will give slightly smaller ordinals. Thus it will be
convenient to consider a “cut-off” version of the sets C(ξ). Let us see that these
cut-off versions maintain a restricted version of the minimality property of C(ξ).

Lemma 6.23. If µ ≤ λ are ordinals such that Ω < λ, then C(µ)∩ λ is the least set
D such that:
(i) 0, 1,Ω ∈ D;

(ii) if α, β, γ ∈ D and eα(β + γ) < λ then eα(β + γ) ∈ D, and

(iii) if α ∈ D ∩ µ then ψ(α) ∈ D.
Proof. First we observe that C(µ) ∩ λ indeed satisfies (i)-(iii), where for the first
item we use the assumption that Ω < λ and for the third we use Lemma 6.22 to see
that ψ(α) < Ω < λ. Now, let D be the least set satisfying (i)-(iii), and consider

D′ = D ∪ (C(µ) \ λ).
One readily verifies that 0, 1,Ω ∈ D′, and that if α, β, γ ∈ D′ then eα(β + γ) ∈ D′
(using the fact that D ⊆ C(µ) ∩ λ ⊆ C(µ) by minimality of D). Finally, if α < µ
and α ∈ D′, then since µ ≤ λ we have that α ∈ D, and since D satisfies (iii) we have
that ψ(α) ∈ D ⊆ D′. But by definition C(µ) is the least set with these properties,
so we obtain C(µ) ⊆ D′, and hence

C(µ) ∩ λ ⊆ D′ ∩ λ = D,

as was to be shown.

We remark that the ordinalψ(ΓΩ+1) is computable, meaning that it is isomorphic
to an ordering 〈A,4〉, where A ⊆ N and both A and 4 are ∆0

1-definable; however,
we will not go into details here, and instead refer the reader to a text such as [33].
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6.4 Collapsing uncountable worms
Now let us turn our attention to uncountable worms. The general idea is as follows.
We have seen in Theorem 5.38 that worms give us a notation system for Γ0 if we
interpret 〈w〉 as 〈o(w)〉. Meanwhile, now we have a new modality 〈∞〉, which we
can regard as 〈ω1〉. Note that, by Corollary 6.16,

o(〈ω1〉>) = eω1o(〈0〉>) = ω1.

Thus if we add the new symbol Ω representing 〈ω1〉 to Beklemishev’s autonomous
worms, we see inductively that

〈ω1〉> = Ωo = (Ω)o = ((Ω))o . . .

Moreover, if such operations are to be interpreted proof-theoretically using iterated
ω-rules, then in view of Proposition 6.9 we have that 〈ω1〉> ≡ 〈ω1 + ξ〉> for any
ordinal ξ. Thus we also would have, for example,

〈ω1〉> = (Ω)o = (()Ω)o = (ΩΩ)o . . .

This would lead to quite a wasteful notation system! Thus we will adopt the following
rule: when writing an autonomous worm (w)>, if o(w) is countable, then we will take
it at face-value and interpret (w)> as 〈o(w)〉>. However, if o(w) is uncountable, we
will first “project” it to a countable ordinal, in order to represent large countable
worms.

Of course, projections will be very similar to collapsing functions; however, given
that countable ordinals are taken at face value, these projections will have the prop-
erty that π = π ◦ π (thus their name). Other than that, their construction is very
similar to that of ψ:

Definition 6.24. Given a worm w ∈ W and an ordinal Ω, we define U(w) ⊆ Ord
and a map π : W→ Ord by induction on w along � as follows.

1. Let U(w) be the least set of ordinals such that

(a) Ω ∈ U(w),
(b) if u @ U(w) and u � w then π(u) ∈ U(w).

2. Then, set

(a) π(w) = o(w) if w @ Ω,
(b) otherwise, set π(w) to be the least ordinal µ such that µ 6∈ U(w).
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We will write π(w) or πw indistinctly. Once again, we can write Definition 6.24
in the terminology of Definition 4.16 by setting

U(w) = {Ω}π�{v:v�w}
.

Thus Lemma 6.18 gives us the following:

Lemma 6.25. For every worm w, U(w) and πw are countable.

Throughout this section we will assume that Ω = ω1, so that from Lemma 6.25
we obtain πw < Ω for all worms w. As was the case for defining ψ, with some extra
technical work we can take Ω = ωCK1 instead.

Note that U(w) itself is not worm-closed, as it does not contain, for example,
the ordinal Ω + 1 = o(0Ω>). However, its countable part is indeed worm-perfect.
The next lemmas will establish this fact. First, we show that it is worm-closed.

Lemma 6.26. For any worm v with o(v) ≥ Ω, U(v) ∩ Ω is worm-closed.

Proof. By Corollary 3.19.3, if w @ U(v) ∩ Ω, then w � Ω> � v, so that o(w) =
π(w) ∈ U(v). But by Lemma 6.17, o(w) < Ω, so o(w) ∈ U(v) ∩ Ω as needed.

Recall that Lemma 6.20 states that ψ(ξ) = eψ(ξ)1. Next, we show that π enjoys
a similar property.

Lemma 6.27. If o(w) ≥ Ω, then o(〈πw〉>) = πw.

Proof. Suppose not. Then, by Lemma 3.26.1, πw < o(〈πw〉>), so that by Corollary
3.27, there is a worm v such that o(v) = πw. Since o(v) < o(〈πw〉>), by Lemma
3.26.1 once again, we must have that v @ πw ⊆ U(w). But by Lemma 6.26,
πw = o(v) ∈ U(w), contradicting the definition of πw.

Lemma 6.28. For any worm w, U(w) ∩ Ω is worm-perfect and

U(w) ∩ Ω = U(w) \ {Ω}.

Proof. For the first claim, in view of Lemma 6.26, it remains to show that if ξ ∈
U(w) ∩ Ω, then ξ = o(v) for some v @ U(w) ∩ Ω. By definition of U(w), if ξ ∈
U(w) ∩Ω, then ξ = πu for some u @ U(w). If u @ Ω, then ξ = πu = ou. Otherwise,
by Lemma 6.27, ξ = πu = o(〈πu〉>).

The second claim is immediate from Lemma 6.25 and the assumption that Ω =
ω1, since πw < Ω for every worm w.
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However, as we have mentioned, U(w) itself is not worm-closed, and neither is
o[U(w)]. Nevertheless, the latter does satisfy a bounded form of hyperexponential
closure:

Lemma 6.29. Given any worm w and ordinals α, β, if α, β ∈ o[U(w)] and eαβ <
eΩ+11 then eαβ ∈ o[U(w)].

Proof. If α, β ∈ o[U(w)] and eαβ < eΩ+11, we may assume without loss of generality
that β > 0 (since otherwise eαβ = 0), so by the assumption that o(w) < eΩ+11 =
eΩω, we see by monotonicity that either α < Ω, or α = Ω and β < ω.

First assume that α < Ω, and let

v = λ1 . . . λn> @ U(w)

be such that β = o(v). In view of Lemma 6.28, for each λ ∈ [1, n], either λi = Ω,
in which case α+ λi = λi, or λi ∈ U(w) ∩Ω, which since U(w) ∩Ω is worm-perfect
(Lemma 6.28) gives us α+λi ∈ U(w)∩Ω ⊆ U(w) (Lemma 5.33). Thus α+λi ∈ U(w)
for each i, hence α ↑ v @ U(w), and

o(α ↑ v) = eαo(v) = eαβ.

Otherwise, α = Ω, so β < ω and we see that o(〈Ω〉β>) = eαβ. In either case, it
follows that eαβ ∈ o[(U(w))].

Lemma 6.30. Suppose that Ω = ω1. Then, given any worm w,

eΩ+11 = sup
{
o(v) : ∃w (

v @ U(w)
)}
.

Proof. Let
Λ = sup

{
o(v) : ∃w (

v @ U(w)
)}
.

We have that
eΩ+11 = eΩω = lim

n<ω
eΩn.

But, eΩn = o(〈Ω〉n>), so eΩ+11 ≤ Λ.
To see that Λ ≤ eΩ+11, proceed by induction on ‖v‖ to show that if v @ U(w)

for some w, then o(v) < eΩ+11.
If v = > there is nothing to prove, and if min v = 0 then by the induction

hypothesis, oh(v), ob(v) < eΩ+11. Since the latter is additively indecomposable,

o(v) = ob(v) + 1 + oh(v) < eΩ+11.
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Finally, if µ = min v > 0, then o(v) = eµo(µ ↓ v). Consider two cases. If µ < Ω,
then since by the induction hypothesis o(µ ↓ v) < eΩ+11, we obtain

eµo(µ ↓ v) < eµeΩ+11 = eµ+Ω+11 = eΩ+11.

Otherwise, µ = Ω, but this means that µ ↓ v = 0n> for some n, hence o(v) = eΩn <
eΩ+11.

The above results tell us that π behaves a lot like a version of ψ that is restricted
to eΩ+11. Let us see that this is, in fact, the case.

Lemma 6.31. For every worm w with o(w) ∈ [Ω, eΩ+11],

1. C
(− Ω + o(w)

) ∩ eΩ+11 = o[U(w)], and

2. π(w) = ψ
(− Ω + o(w)

)
.

Proof. We prove both claims by induction on o(w). Set C = C(−Ω + o(w)). First
let us show that

C ∩ eΩ+11 ⊆ o[U(w)].

Note that by Lemma 6.23, C ∩ eΩ+11 is the least set containing 0, 1,Ω, closed under
α, β, γ 7→ eα(β+γ) below eΩ+11, and closed under ψ � (−Ω+o(w)). But by Lemma
5.33, o[U(w)] is closed under addition and by Lemma 6.29, by hyperexponentiation
below eΩ+11, so we only need to check that it is closed under ψ �

(− Ω + o(w)
)
.

If α ∈ o[U(w)] and α < o(−Ω + o(w)), then by Lemma 5.33 we have that
Ω + α = o(u) for some u @ U(w). Then, by the induction hypothesis,

ψ(α) = ψ(−Ω + o(u)) = π(u) ∈ U(w),

so that π(u)> @ U(w) and by Lemma 6.27, π(u) = o(π(u)>), as needed. Thus by
the minimality of C ∩ eΩ+11, we conclude that C ∩ eΩ+11 ⊂ o[U(w)].

Next we check that
o[U(w)] ⊆ C ∩ eΩ+11.

By Lemma 6.30, o[U(w)] ⊆ eΩ+11, so we only need to prove that o[U(w)] ⊆ C. But,
in view of Lemmas 6.21 and Lemma 5.34, C is worm-perfect. Thus to show that
o[U(w)] ⊆ C, it suffices to prove that U(w) ⊆ C. As before, we show that C satisfies
the inductive definition of U(w).

Let v @ C be such that v � w. Once again by Lemma 6.21, we have that
o(v) ∈ C. Now, if o(v) < Ω, then this gives us πv = o(v) ∈ C. Otherwise,
−Ω + o(v) < −Ω + o(w), and thus ψ

( − Ω + o(v)
) ∈ C. But, by the induction
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hypothesis, ψ
(−Ω+o(v)

)
= πv, so that πv ∈ C, as needed. By minimality of U(w),

we conclude that U(w) ⊆ C and thus o[U(w)] ⊆ C.
Since we have shown both inclusions, we conclude that

o[U(w)] = C ∩ eΩ+11.

Moreover, ψ
(−Ω + o(w)

)
is defined as the least ordinal not in C = C

(−Ω + o(w)
)
,

and since C is countable it is also the least ordinal not in C ∩ Ω. Similarly, πw is
the least ordinal not in U(w) ∩ Ω = o[U(w)] ∩ Ω. Since these two sets are equal, it
follows also that ψ

(− Ω + o(w)
)

= πw.

Corollary 6.32. π(〈Ω + 1〉>) = ψ(eΩ+11).

Proof. Immediate from Lemma 6.31 using the fact that

eΩ+11 = eΩ+1o(〈0〉>) = o(〈eΩ+1〉>).

6.5 Impredicative worm notations
Now let us extend Beklemishev’s autonomous worms with the new modality Ω and
projections of uncountable worms. Aside from the addition of Ω, the presentation
is very similar to that of Section 5.7.

Definition 6.33. Define the set of impredicative autonomous worms to be the least
set WΩ such that

(i) > ∈WΩ, and

(ii) if w, v ∈WΩ, then

(a) (w)v ∈WΩ, and (b) Ωv ∈WΩ.

As before, the intention is for impredicative autonomous worms to be interpreted
as standard worms. We do this via the following translation:

Definition 6.34. We define a map ·π : WΩ →W given by

1. >π = >,

2.
(
(w)v

)π = 〈π(wπ)〉vπ, and

3. (Ωv)π = 〈Ω〉vπ.
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Every ordinal in U(〈Ω + 1〉>) ∩ Ω can be represented as an autonomous worm.
Below, define pw = π(wπ).

Lemma 6.35. If Ω = ω1, then for every ordinal ξ ∈ U(〈Ω + 1〉>) ∩ Ω there is
w ∈WΩ such that ξ = pw.

Proof. Using the notation of Definition 4.16, we prove by induction on n that if
ξ ∈ {Ω}πn ∩ Ω, then there is w ∈ WΩ such that ξ = pw. If n = 0 there is nothing to
prove, so we may assume that n = k + 1. Write ξ = π(v) with v @ {Ω}πk . If v = >,
then ξ = 0 = p>. Otherwise, we can write v = λu for some worm u. By a secondary
induction on the length of v, we have that u = uπ for some u ∈ WΩ; meanwhile,
either λ = Ω, and v = Ωu ∈WΩ satisfies

pv = π(vπ) = π(〈Ω〉uπ) = π(〈Ω〉u) = π(v) = ξ,

or λ < Ω, which means that λ ∈ {Ω}πk , so by the induction hypothesis, λ = pw for
some w ∈WΩ. It follows that ξ = p(w)v, as desired.

Just as autonomous worms gave us a notation system for Γ0, impredicative
autonomous worms give us a notation system for ψ

(
eΩ+11

)
.

Theorem 6.36. If Ω = ω1, then for every ξ < ψ
(
eΩ+11

)
there is w ∈WΩ such that

ξ = pw.

Proof. By Corollary 6.32,

ψ
(
eΩ+11

)
= π(〈Ω + 1〉>),

and the latter is, by definition, the least ordinal not belonging to U(〈Ω + 1〉>).
Moreover, ψ

(
eΩ+11

)
is countable by Lemma 6.22, so we have that ξ < Ω. It follows

that
ψ
(
eΩ+11

) ⊆ U(〈Ω + 1〉>) ∩ Ω;

thus we obtain the claim by Lemma 6.35.

Impredicative autonomous worms may be suitable for a consistency proof in
the spirit of Theorem 4.5 for theories with proof-theoretic strength the Bachmann-
Howard ordinal (or even slightly more powerful theories). Examples of such theories
are the theory ID1 of non-iterated inductive definitions, Kripke-Platek with infin-
ity, and parameter-free Π1

1-CA0, where the Π1
1 comprehension axiom is restricted to

formulas without free set variables. However, the proof-theoretical ordinal of unre-
stricted Π1

1-CA0 is quite a bit larger, and obtained by collapsing all of the ordinals
{ℵn : n < ω}.
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We remark that our notation system does not take the oracle in [∞|X]T into
account, and it is possible that autonomous worms with oracles would indeed give
us a notation system for the proof-theoretical ordinal of Π1

1-CA0. However, we will
not follow this route; instead, we will pass from worms to spiders, which will allow
us to obtain notations for this, and much larger, ordinals.

7 Spiders
The problem with using iterated ω-rules to interpret [λ]Tφ is that GLP no longer
applies when λ ≥ ω1; since we have that [ω1+1]Tφ is equivalent to [ω1]Tφ, we cannot
expect the GLP axiom 〈ω1〉φ → [ω1 + 1]〈ω1〉φ to hold. So the question naturally
arises: what kind of (sound) provability operator could derive all true instances of
〈ω1〉φ?

Well, we know that 〈ω1〉φ is equivalent to ∀ξ<ω1 〈ξ〉φ, which gives us a strategy
for proving that 〈∞〉Tφ holds: prove that

〈0〉Tφ, 〈1〉Tφ, 〈2〉Tφ, . . . , 〈ω〉Tφ, . . . , 〈Γ0〉Tφ, . . . 〈ψ(εΩ+1)〉Tφ, . . .

all hold, and more generally, that 〈ξ〉Tφ holds for all ξ < ω1. Let us sketch some
ideas for formalizing this in the language of set-theory. We remark that this material
is exploratory, and will be studied in detail in upcoming work.

7.1 ℵξ-rules
We use L∈ to denote the language of first-order set theory whose only relation sym-
bols are ∈ and =. As we did in second-order arithmetic, we use x ⊆ y as a shorthand
for ∀z(z ∈ x → z ∈ y). We also use ∃!xφ(x) as the standard shorthand for “there
is a unique”. Then, recall that Zermenlo-Fraenkel set theory with choice, denoted
ZFC, is the extension of first-order logic axiomatized by the universal closures of the
following:

Extensionality: (x ⊆ y ∧ y ⊆ x)→ y = x;

Foundation: ∃xφ(x) → ∃x (φ(x) ∧ ∀y ∈ x¬φ(y)
)
, where φ(x) is an arbitrary

formula in which y does not occur free;

Pair: ∃z (x ∈ z ∧ y ∈ z);

Union: ∃y ∀z∈x (z ⊆ y);

Powerset: ∃y ∀z (z ⊆ x→ z ∈ y);
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Separation: ∃y ∀z (z ∈ y ↔ z ∈ x ∧ φ(z)
)
, where y does not occur free in φ(z),

Collection: ∀x∈w ∃y φ(x, y) → ∃z ∀x∈w ∃y∈z φ(x, y), where z does not occur free
in φ(x),

Infinity: ∃w
(
∃x (x ∈ w ∧ ∀y (y 6∈ x)

) ∧ ∀x∈w ∃y∈w ∀z(z ∈ y ↔ z ∈ x ∨ z = x)
)
,

and

Choice: ∀x∈w
(
∃y (y ∈ x) ∧ ∀y∈w (∃z(z ∈ x ∧ z ∈ y)→ x = y

))

→ ∃z ∀x∈w ∃!y (y ∈ x ∧ y ∈ z).

As we have stated the union and powerset axioms we may obtain sets that are
too big, but we can then obtain the desired sets using separation. Observe also that
the Foundation scheme states that ∈ is well-founded; this allows us to simply define
an ordinal as a transitive set all of whose elements are transitive as well, obtaining
well-foundedness for free.

This set-theoretic context will allow us to define an analogue of the ω-rule which
quantifies over all elements of ω1; more generally, for any cardinal κ we can define
the κ-rule by

〈φ(ξ)〉ξ<κ
∀x < κφ(x) .

Of course, in order to do this we need to have names for all elements of κ, as well
as κ itself. To this effect, let Lκ∈ be a (possibly uncountable) extension of L∈ which
contains one constant cξ for each ξ < κ; to simplify notation, we may assume that
cξ = ξ and simply write the latter. Then, the κ-rule is readily applicable in any
language extending Lκ+1

∈ . Similarly, for a theory T over L∈, let T κ be the extension
of T over Lκ∈ with the axioms ξ ∈ ζ whenever ξ < ζ ≤ κ, and ξ 6∈ ζ whenever
ζ ≤ ξ ≤ κ.

If T is an extension of ZFCκ, we may enrich T by operators of the form
[λ
κ

]
T
φ,

meaning that φ is provable using κ-rules of depth at most α. Recall that if ξ is an
ordinal, then ℵξ denotes the ξth infinite ordinal. Then, any infinite cardinal κ may
be represented in the form ℵβ for some β, and we write

[ξ
β

]
T
φ to state that φ may

be proven by iterating ℵβ-rules along ξ.
If we want the ℵ function to be well-defined, we must work within a cardinal

that is closed under ξ 7→ ℵξ. Fortunately, ξ 7→ ℵξ is a normal function, so we may
hyperate it, and readily observe that ℵω(0) is the first ordinal ξ such that ℵξ = ξ.
Thus we may assume that T is an extension of ZFCℵω(0).
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Definition 7.1. Let T be a theory over Lℵ
ω(0)
∈ , α, β be ordinals, and φ ∈ Lℵ

ω(0)
∈ .

Then, by recursion on β with a secondary recursion on α, we define
[α
β

]
T
φ to hold

if either

1. 2Tφ, or

2. there are a formula ψ(x) and ordinals γ, η such that η ≤ β and either η < β
or γ < α, and such that

(a) for each δ < ℵη,
[γ
η

]
T
ψ(δ), and

(b) 2T
(
(∀x < ℵη ψ(x))→ φ

)
.

As was the case with ω-rules, we have that for any β, the ℵβ-rule saturates by
ℵβ+1:

Theorem 7.2. If
[λ
η

]
T
φ for arbitrary λ, then there is λ′ < ℵη+1 such that

[λ′
η

]
T
φ.

Proof. By induction on η with a secondary induction on λ. If 2Tφ holds then clearly[0
η

]
T
φ. Otherwise, there are a formula ψ(x) and ordinals γ and δ ≤ η such that either

δ < η or γ < λ, and for each ξ < ℵδ,
[γ
δ

]
T
ψ(ξ) and 2T

(
(∀x < ℵδ ψ(x))→ φ

)
.

By the induction hypothesis, for each ξ < ℵδ there is

λξ < ℵδ+1 ≤ ℵη+1

such that
[λξ
δ

]
T
ψ(ξ). By Lemma 6.13, we have that

λ = sup
ξ<ℵδ

λξ < ℵη+1,

and therefore also λ+ 1 < ℵη+1. But then observe that
[λ+1
η

]
T
φ, as desired.

Thus we have a similar situation as we had when considering 〈ω1 + ξ〉Tφ; any
expressions of the form

〈ℵβ+1+α
β

〉
T
φ is equivalent to

〈ℵβ+1
β

〉
T
φ. Moreover, observe

that
〈ℵβ+1

β

〉
T
φ is in turn equivalent to

〈 0
β+1

〉
T
φ; thus we should only be interested

in expressions of the form
〈α
β

〉
T
φ in cases when α < ℵβ+1. Otherwise, as we did for

impredicative worms, we may collapse α to an ordinal ψβ(α) < ℵβ+1.
In Section 7.3 we will review a version of Buchholz’s ordinal notation system

which achieves exactly that, and in Section 7.4 we will see how these ideas may be
applied to spiders, which are similar to worms but based on modalities

〈α
β

〉
. However,

before we continue, we remark that working with uncountable languages has some
obvious drawbacks. Fortunately, this can be avoided by working with admissible
ordinals rather than cardinals.
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7.2 Iterated admissibles
If we work with an uncountable language then the usual proof of the validity of

〈0
0
〉
T
φ→ [1

0
]
T

〈0
0
〉
T
φ

will not go through, given that we cannot code all possible derivations as natural
numbers. There is more than one way to get around this problem; one can allow only
ordinals appearing in φ to be used in a derivation of φ, for example. Alternately,
we can work with admissible ordinals, (many of) which are countable, instead of
cardinals.

In the set-theoretical context, a ∆0 formula is any formula φ of L∈ such that all
quantifiers appearing in φ are either of the form ∀x ∈ y or ∃x ∈ y. Then, Kripke-
Platek set theory is the subtheory KP of ZFC in which the axioms of choice, powerset
and infinity are removed, and separation and collection are restricted to φ ∈ ∆0.

With this in mind, we say that an ordinal α is admissible if Lα (in Gödel’s
constructible hierarchy) is a model of KP. Admissible sets are studied in great
detail in [3]. Moreover, an analogue of Theorem 7.2 also holds if we define:

(i) ωCK0 = ω,

(ii) ωCKξ+1 to be the least admissible α such that ωCKξ < α, and

(iii) ωCKλ = lim
ξ<λ

ωCKξ for λ a limit ordinal.

This allows us to interpret
[α
β

]
T
using a countable language by replacing the ℵβ-rule

by the ωCKβ -rule,
〈φ(ξ)〉ξ<ωCK

β

∀x < ωCKβ φ(x)
.

Working with admissibles rather than cardinals makes the properties of collapsing
functions more difficult to prove, but this has been done by Rathjen in [34]. For
simplicity, in this text we will continue to work with the ℵ-function.

7.3 Collapsing the Aleph function
In this section we will review a variant of Buchholz’s notation system of ordinal
notations based on collapsing the aleph function [11]. The ordinals obtained appear,
for example, in the proof-theoretical analysis of the theories IDν of iterated inductive
definitions [12]. Below, define Ω(ξ) = −ω+ℵξ; we will continue with this convention
throughout the rest of the text.
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Definition 7.3. Given ordinals η, ξ, we simultaneously define the sets Cη(ξ) and
the ordinals ψη(ξ) by induction on ξ as follows:

1. Cη(ξ) is the least set such that

(a) 2 +Ω(η) ⊆ Cη(ξ);
(b) if α, β, γ ∈ Cη(ξ) then eα(β + γ) ∈ C(ξ), and
(c) if α, β ∈ Cη(ξ) and β < ξ, then ψα(β) ∈ Cη(ξ);

2. ψη(ξ) = min{ξ : ξ 6∈ Cη(ξ)}.

Observe that (1a) could be simplified somewhat if we had defined Ω(0) = 2,
but our presentation will in turn simplify some expressions later. As before, it is
possible to define Cη(ξ) using the notation of Definition 4.16 and thus we can apply
our previous work to these sets. Aside from the first item, which is easy to check,
the following lemma summarizes the analogues of Lemmas 6.20, 6.21, and 6.22. The
proofs are essentially the same and we omit them.

Lemma 7.4. Given ordinals η, µ,

1. ψ1+η(0) = Ω(1 + η);

2. ψη(µ) is additively indecomposable and satisfies eψη(µ)1 = ψη(µ);

3. Cη(µ) is hyperexponentially perfect,

4. |Cη(µ)| = Ω(η), and

5. ψη(µ) ∈ [Ω(η),Ω(η + 1)).

The first ordinal that we cannot write using indexed collapsing functions is
ψ0(Ωω1):

Lemma 7.5. Given ordinals η < Ωω1 and an arbitrary ordinal µ,

supCη(µ) = Ωω1.

Proof. To see that supCη(µ) ≤ Ωω1, we observe that Ωω1 is closed under all of the
operations defining Cη(µ):

Since η < Ωω1, we have that Ω(η) ⊆ Ωω1. By Lemmas 6.14 and 6.15, we see
that if α, β, γ < Ωω1, then

κ := |eα(β + γ)| ≤ max{ω, |α| , |β| , |γ|}.
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We then have that κ < Ωω1, so writing κ = Ω(ξ) for some ξ < Ωω1, we observe
that

eα(β + γ) < Ω(ξ + 1) < Ωω1.

Finally we note that if ν, ξ < Ωω1, then by Lemma 7.4.5, ψν(ξ) < Ω(ν + 1) < Ωω1.
Now, to see that

supCη(µ) ≥ Ωω1,

simply consider the sequence (πn)n<ω given by π0 = 0 and πn+1 = ψπn(0) ∈ Cη(µ).
By Lemma 7.4.1 we have that πn+1 = Ω(πn) which by Lemma 5.12 converges to
Ωω1.

The ordinal ψ0(Ωω1) is also computable, but we will not prove this here; see
e.g. [11] for details. In the next section, we will present a variant of the functions
ψν using worm-like notations obtained from iterated ℵξ-rules.

7.4 Iterated Alephs and spiders
We have seen in Theorem 5.38 that Beklemishev’s autonomous worms give a notation
system for all ordinals below the Feferman-Schütte ordinal Γ0, and in Theorem 6.36
that impredicative worms extend this to all ordinals below ψ(eΩ+11) (which becomes
ψ0(eψ0(0)+11) in our version of Buccholz’s notation). Now let us introduce spiders,
which may be used to give notations for much larger ordinals than we could with
worms.

Definition 7.6. Let Λ be either an ordinal or the class of all ordinals, and f : Λ→ Λ
be a normal function. We define

〈Λ
f

〉
to be the class of all pairs of ordinals

〈λ
µ

〉
such

that f(µ) + λ < f(µ+ 1), and write SΛ
f for the set of all expressions of the form

λ1 . . .λn>,

with each λi ∈
〈Λ
f

〉
. We simply write S instead of SOrd

Ω . Elements of S are called
spiders.

We will restrict our attention to the case where f(ξ) = Ω(ξ) = −ω+ℵξ, although
we state Definition 7.6 with some generality to stress that there are other possible
choices for f . In a way, spiders are simply a different way to represent worms; to
pass from one representation to the other, we introduce two auxiliary functions.

Definition 7.7. Let α be any ordinal. Then, define

(i) bαc to be the greatest ordinal such that Ω(bαc) ≤ α, and
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(ii) α̇ = −Ω(bαc) + α.

This definition is sound because for any normal function f with f(0) = 0 and any
ordinal µ, there is always a greatest ordinal ξ such that f(ξ) ≤ µ. The ‘translation’
between worms and spiders is the following:

Definition 7.8. Define:

1. [ :
〈Ord
Ω

〉→ Ord by [
〈λ
µ

〉
= Ω(µ)+λ, and set

〈λ
µ

〉 ≤ 〈ην
〉
if and only if [

〈λ
µ

〉 ≤ [〈ην
〉
.

If X = λ1 . . .λn> ∈ S, set [X = [λ1 . . . [λn>.

2. ] : Ord→ 〈Λ
Ω

〉
by ]λ =

〈 λ̇
bλc
〉
. If w = µ1 . . . µn> ∈W, set ]w = ]µ1 . . . ]µn>.

The following is then immediately verified:

Lemma 7.9. The class functions [ and ] are bijective and inverses of each other.

With this, we can extend our worm notation to spiders.

Definition 7.10. If X ∈ S, define

1. O(X) = o([X),

2. H(X) = h([X) and B(X) = b([X),

3. X � Y if and only if [X � [Y, and

4. if µ is any ordinal, µ ↑ X = ](µ ↑ [X).

Alternately, we can define the head and body of a spider without first turning
them into worms:

Lemma 7.11. Given a spider X, H(X) is the maximum initial segment

H(X) =
〈
λ1
η1

〉
. . .

〈
λm
ηm

〉
> ∈ S

of X such that for all i ∈ [1,m], either λi 6= 0 or ηi 6= 0.
If H(X) = X then B(X) = >, otherwise B(X) is the unique spider such that

X = H(X)
〈0

0
〉
B(X).

As was the case with worms, the cardinality of O(X) is easy to extract from X:
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Lemma 7.12. If

X =
〈
λ1
η1

〉
. . .

〈
λn
ηn

〉
> ∈ S,

then

1. for every i ∈ [1, n], λi, ηi ≤ O(X), and

2. if |O(X)| > ω, then |O(X)| = Ω(maxi∈[1,n] ηi).

Proof. Immediate by applying Lemma 6.17 to [X and observing that if µ > 0,
|Ω(µ) + λ| = Ω(µ) given that λ < Ω(µ+ 1).

We can also give an analogue of @ for spiders:

Definition 7.13. If

W =
〈
λ1
η1

〉
. . .

〈
λn
ηn

〉
> ∈ S

and Θ is a set of ordinals, we define W @Ω Θ if each λi, ηi ∈ Θ.

With this, we are ready to ‘project’ spiders.

Definition 7.14. Given X,Y ∈ S, we define UY(X) ⊆ Ord and an ordinal πYX by
induction on X along � as follows.

1. Let UY(X) be the least set of ordinals such that if

U,V @Ω Ω(O(Y)) ∪ UY(X)

and V � X, then πUV ∈ UY(X).

2. For any Y ∈ S,

(a) If X �
〈 0
O(Y)+1

〉>, set πY(X) = O(X);
(b) otherwise,

πY(X) = min{ξ : ξ 6∈ UY(X)}.

In the remainder of this section, we will see that the functions πX behave very
similarly to the functions ψν . We begin with a simple lemma.

Lemma 7.15. If X,Y are spiders with O(X) > 1, then 0, 1 ∈ UY(X).

Proof. Immediate from observing that 0 = O(>) = π>> and 1 = O(
〈0

0
〉>) =

π>
(〈0

0
〉>
)
.
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With the next few lemmas, we show that the elements of UY(X) ∩O(X) can be
characterized as the order-types of suitable spiders. In the process, we obtain some
useful properties of πYX.

Lemma 7.16. If X @Ω UV(W) and X � W, then O(X) ∈ UV(W).

Proof. Let X @Ω UV(W) be such that X � W. Since Ω is normal, for every ξ we
have that ξ ≤ Ω(ξ). In particular,

O(X) < O(X) + 1 ≤ Ω(O(X) + 1).

It follows that O(X) = πXX ∈ UV(W).

With this, we can show that πYX has cardinality Ω(O(Y)), provided O(X) is
large enough.

Lemma 7.17. If X,Y are spiders with O(X) ≥ Ω(O(Y) + 1), then

πYX ∈
[
Ω(O(Y)),Ω(O(Y) + 1)

)
.

Proof. If ξ < Ω(O(Y)), then by Corollary 3.27 we obtain w @ Ω(O(Y)) such that
o(w) = ξ and observe that ]w � X, so that by Lemma 7.16, ξ = O(]w) ∈ UY(X). It
follows that πYX ≥ Ω(O(Y)). Meanwhile, by Lemma 6.18, |UY(X)| ≤ ω+Ω(O(Y)),
so πYX < Ω(O(Y) + 1).

Moreover, πYX satisfies an analogue of Lemma 6.27:

Lemma 7.18. If O(X) ≥ Ω(O(Y) + 1), then O
(〈 πYX
O(Y)

〉>
)

= πYX.

Proof. Analogous to the proof of Lemma 6.27, except that to reach a contradiction
we use Lemma 7.12.1 to obtain a spider V such that O(V) = πYX and all of whose
entries are strictly bounded by πYX.

With this we can show that the elements of UY(X) ∩ O(X) are the order-types
of suitable spiders, as claimed.

Lemma 7.19. Let X,Y be spiders and ξ an ordinal. Then, ξ ∈ UY(X) ∩ O(X) if
and only if there is W @Ω UY(X) ∩O(X) such that ξ = O(W).

Proof. One direction is Lemma 7.16. For the other, if ξ ∈ UY(X)∩O(X), then there
are U,V @Ω UY(X) such that U � X and ξ = πVU. If U �

〈 0
O(V)+1

〉>, then we
already have ξ = O(U). If not, by Lemma 7.17,

O(V) ≤ Ω(O(V)) ≤ ξ < O(X),
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so that by Lemma 7.16, O(V) ∈ UY(X), and hence
〈 ξ
O(V)

〉> @Ω UY(X) ∩O(X).
Meanwhile, by Lemma 7.18,

O

(〈
πVU

O(V)

〉
>
)

= πVU = ξ,

as needed.

Lemma 7.19 is useful in showing that UY(X) is well-behaved. For example, it
satisfies a bounded version of additive reducibility.

Lemma 7.20. Given spiders X,Y and an additively decomposable ordinal ξ < O(X),
we have that ξ ∈ UY(X) if and only if there are α, β ∈ UY(X)∩ξ such that ξ = α+β.

Proof. Analogous to the proof of Lemma 5.33. To illustrate, let us check that if
ξ ∈ UY(X) ∩O(X) is additively decomposable, then there are α, β ∈ UY(X) ∩O(X)
such that ξ = α+β. Using Lemma 7.19, write ξ = O(W) with W @Ω UY(X). Then,
by Theorem 5.30,

ξ = O(W) = o([W) = ob([W) + 1 + oh([W).

Set α = ob([W) and β = 1 + oh([W). Observe that α < ξ, while β is additively
indecomposable so β 6= ξ. Hence, α, β < ξ.

Finally, observe that H(W), B(W) @Ω UY(X),

β = 1 + oh([W) = o(([H(W))0) = O
(
H(W)

〈0
0
〉)
,

and H(W) @Ω UY(X); similarly, α = OB(W), so α, β ∈ UY(X).

Note that UY(X) is not necessarily additively reductive; howerer, this truncated
form of additive reducibility is sufficient to obtain the conclusion of Lemma 5.17:

Lemma 7.21. Let Θ be a set of ordinals such that 0 ∈ Θ, and λ be an ordinal such
that, whenever ξ < λ is additively reducible, then ξ ∈ Θ if and only if there are
α, β < ξ such that α+ β = ξ. Then, for any ordinal ξ:

1. if 0 6= ξ ∈ Θ ∩ λ, there are ordinals α, β such that α, ωβ ∈ Θ and ξ = α+ ωβ;

2. if β ∈ Θ ∩ λ and α < β (not necessarily a member of Θ), then −α+ β ∈ Θ.

The proof is identical to that of Lemma 5.17 and we omit it. Next we see that
the sets UY(X) are also closed under some operations related to cardinality.
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Lemma 7.22. If X,Y are worms and ξ ∈ UY(X) ∩Ω(X), then:

1. bξc ∈ UY(X);

2. if moreover Ω(ξ) < O(X), then Ω(ξ) ∈ UY(X).

Proof. For the first claim, if ξ is at most countable, bξc = 0 ∈ UY(X). If not, by
Lemma 7.19, ξ = O(W) for some W @Ω UY(X), and by 7.12.2, η = bξc occurs in
W, hence η ∈ UY(X).

For the second, we observe that
〈 0
O(W)

〉> �
〈 0
O(W)+1

〉>, so that

Ω(ξ) = O

(〈
0

O(W)

〉
>
)

= πW

(〈
0

O(W)

〉
>
)
.

If we moreover have Ω(ξ) < O(X), this gives us Ω(ξ) ∈ UY(X).

The following lemmas show that our work on worms can be used to study the
sets UY(X).

Lemma 7.23. Given spiders W,X,Y,

W @Ω UY(X) ∩O(X)

if and only if
[W @ UY(X) ∩O(X).

Proof. Let

W =
〈
λ1
η1

〉
. . .

〈
λn
ηn

〉
> ∈ S.

If W @Ω UY(X)∩O(X), then each λi, ηi ∈ UY(X). By Lemma 7.22, Ω(ηi) ∈ UY(X),
and by Lemma 7.20, Ω(ηi) + λi ∈ UY(X). Since

Ω(ηi),Ω(ηi) + λi ≤ O(W) < O(X),

it follows that [W @ UY(X) ∩O(X).
Conversely, if [W @ UY(X) ∩ O(X), write [W = µ1 . . . µn>. By Lemma 7.22,

bµic ∈ UY(X), and by Lemma 7.20 together with Lemma 7.21.2, µ̇i ∈ UY(X). It
follows from Lemma 7.9 that

W = ][W @Ω UY(X) ∩O(X)

by observing that bµic , µ̇i ≤ µi < O(X).
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With this we see that the sets UY(X) ∩O(X) are almost worm-perfect.

Theorem 7.24. Given spiders X,Y and an ordinal ξ < O(X), ξ ∈ UY(X) ∩ O(X)
if and only if there is z @ UY(X) ∩O(X) with ξ = o(z).

Proof. Given an ordinal ξ, by Lemma 7.19, ξ ∈ UY(X)∩O(X) if and only if there is
Z @Ω UY(X) ∩ O(X) with ξ = O(Z). But by Lemma 7.23, by setting z = [Z we see
that this is equivalent to there existing z @ UY(X) ∩O(X) with ξ = o(z).

As a consequence, we obtain that UY(Z) is closed under bounded hyperexponen-
tiation.

Lemma 7.25. If X,Y are worms and α, β ∈ UY(X) are such that eαβ < O(X),
then eαβ ∈ UY(X).

Proof. We may assume that 0 < α, β < eαβ, so that if eαβ < O(X), then α, β <
O(X). By Theorem 7.24, β = o(v) for some v = λ1 . . . λn> @ UY(X) ∩ O(X). Since
eαβ is additively indecomposable, for each i ∈ [1, n], α + λi ≤ α + β < eαβ, hence
by Lemma 7.20, α+ λi ∈ UY(X). Thus w = α ↑ v @ UY(X), and o(w) = eαβ, which
by Theorem 7.24 implies that eαβ ∈ UY(X).

This tells us that, below O(X), the sets UY(X) behave very similar to the sets
Cη(λ). Conversely, we can prove that the sets Cη(λ) are ‘spider-perfect’.

Lemma 7.26. If η, λ are ordinals and W @Ω Cη(λ), then O(W) ∈ Cη(λ).

Proof. Suppose that W @Ω Cη(λ) and W � X. The set Cη(λ) is closed under Ω(·)
and addition, so from W @Ω C we obtain [W @ C. But Cη(λ) is hyperexponentially
perfect, thus by Lemma 5.34 it is worm-perfect. We conclude that O(W) = o([W) ∈
C.

Thus the functions πY should closely mimic the functions ψη. However, a full
translation between the two systems would go beyond the scope of the current work.
Instead, we conclude with a conjecture.

Conjecture 7.27. ψ0Ωω1 = π>
(〈 0
Ωω1

〉>
)
.
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Figure 2: An autonomous spider.

7.5 Autonomous spiders and ordinal notations

We can use autonomous spiders to produce an ordinal notation system, similar to
Beklemishev’s autonomous worms. We define them as follows:

Definition 7.28. We define the set of autonomous spiders, S, to be the least set
such that:

1. > ∈ S;

2. if X, Y, Z ∈ S, then

X

Y


Z ∈ S.

As with autonomous worms, each autonomous spider can be interpreted as a
‘real’ spider.

Definition 7.29. We define a function ·πO : S→ S by

1. >πO = >,

2.
(
X

Y


Z
)π
O

=
〈πYπ

O
XπO

O(YπO)

〉
ZπO.

For X, Y ∈ S we set O(X) = O(XπO) and pYX = πYπOXπO.

We will often omit writing>, so that for example



 denotes


>
>

>. The proofs

of the following two results are analogous to those of Lemma 6.35 and Theorem 6.36,
respectively, and we omit them.

Theorem 7.30. For any ξ ∈ U>
(〈 0
Ωω(0)

〉>
)
, there exists X ∈ S such that ξ = O(X).

Thus assuming Conjecture 7.27, the autonomous spiders indeed provide a nota-
tion system for all ordinals below ψ0Ωω1, along with some uncountable ordinals.
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8 Concluding remarks

We have developed notation systems for impredicative ordinals based on reflection
calculi, thus providing a positive answer to Mints’ and Pakhomov’s question. These
notation systems are obtained by considering strong provability operators extending
a theory T . In the process, we have also given a general overview of existing notation
systems based on worms.

This work is still exploratory and further developments are required to fully flesh
out our proposal. First, no decision procedure is given to determine whether O(w) <
O(v) when w, v are impredicative autonomous worms or spiders. While such a
decision procedure might be extractable from Theorem 3.17 together with procedures
for more standard systems based on ψ, it would be preferable to provide deductive
calculi in the style of RC. Second, the set-theoretic interpretations sketched in
Section 7 are only tentative and require a rigorous treatment. I’ll leave both of
these points for future work.

The ultimate goal of the efforts presented here are for the computation of Π0
1

ordinals of strong theories of second-order arithmetic. There are many more hurdles
to overcome before attaining such a goal, but hopefully the ideas presented here will
help to lead the way forward.
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Figure 3: Some familiar ordinals represented as autonomous spiders.
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Abstract

During the last two decades the program of ‘proof mining’ emerged which
uses tools from mathematical logic (so-called proof interpretations) to systemat-
ically extract explicit quantitative information (e.g. rates of convergence) from
prima facie nonconstructive proofs (e.g. convergence proofs). This has been
applied particularly successful in the context of nonlinear analysis: fixed point
theory, ergodic theory, topological dynamics, convex optimization and abstract
Cauchy problems. In this paper we give a survey on some of the results, both
on the logical foundation of proof mining as well as its applications in nonlinear
analysis, obtained since the monograph [65] appeared.

1 Introduction
Back in the 50’s, Georg Kreisel’s program of ‘unwinding of proofs’ asked for a re-
orientation of proof theory by shifting the historical emphasis on foundational issues
of Hilbert’s program (consistency proofs) towards applications of proof-theoretic
methods for well-defined mathematical goals. Whereas some of these goals, which
were still close to foundational concerns, were much developed in the past 50 years
(e.g. the classification of provably recursive function(al)s of various formal systems),
applications to concrete problems from core mathematics remained rather scattered,
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to the awareness of the proof mining paradigm in core mathematics.
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two notably exceptions being C. Delzell’s work on Hilbert’s 17th problem (see e.g.
[34]) and H. Luckhardt’s extraction of a polynomial bound on the number of solu-
tions in Roth’s theorem from a proof of that theorem due to Esnault and Vieweg
(see [103]).
Starting in [58], we engaged in giving Kreisel’s ideas for a new form of an applied
proof theory a fresh start. This time the focus was on applications in analysis since
in this area proof theory can already contribute to the highly nontrivial issue of
determining the correct representation of continuous objects in which then quanti-
tative data such as effective bounds could be computed. Back in the 90’s, the main
emphasis was on the analysis of proofs that used Heine-Borel compactness in the
form of the noneffective binary (‘weak’) König’s lemmaWKL and the proof-theoretic
approach towards the elimination of WKL from classes of proofs. One such class
that turned out to be particularly fruitful was that of uniqueness proofs which led
to new quantitative results concerning the issue of ‘strong uniqueness’ in best ap-
proximation theory (both w.r.t. the uniform norm, i.e. Chebycheff approximation,
as well as w.r.t. the L1-norm (see [65] for a book treatment of these developments
and references to the literature).
In 2000-2003, we started to investigate strong convergence results for iterative pro-
cedures of nonexpansive and other classes of mappings in general normed spaces
and (with L. Leuştean) hyperbolic spaces and succeeded in the extraction of highly
uniform explicit bounds. Here ‘highly uniform’ refers to the fact that these bounds
are essentially independent from the data of the abstract space such as the starting
point of the iteration and the mapping used in the iteration, despite of the absence
of any compactness assumption, but only depend on some general norm bounds and
data from the concrete Polish spaces involved such as C[0, 1].
This led in 2003-05 to the discovery of the first so-called ‘logical metatheorems’ which
explain these findings as instances of general proof-theoretic phenomena ([63, 44]).
These logical results are called metatheorems since they take as assumption the ex-
istence of a proof of a theorem in some formal framework Aω[X, . . .] and then assert
the extractability of an effective uniform bound from such a given proof together
with the verification that this bound is correct in any structure X that satisfies
the axioms specified in Aω[X, . . .]. These logical metatheorems are based on certain
proof-theoretic transformations (‘proof interpretations’) which are far reaching ex-
tensions and modifications of Gödel’s famous functional (‘Dialectica’) interpretation
([65]). The main tool used is the so-called monotone functional interpretation due
to [60]. All these proof interpretations prima facie only work for proofs that are
based on a constructive (‘intuitionistic’ in the sense of Brouwer) logic. In order to
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apply them to proofs using ordinary (‘classical’) logic one uses - as a pre-processing
step - an appropriate so-called negative translation (Gödel) which provides an em-
bedding of the classical reasoning into an intuitionistic system. The crucial feature
of the resulting combined interpretation is that important classes of theorems, e.g.
theorems of the logical form ∀x∃y A∃(x, y), where A∃ is purely existential, survive
this passage (since functional interpretations eliminate the Markov principle even
in higher types) and get equipped with an explicit bound Φ(x∗) on ∃y which only
depends on some bounding (‘majorizing’) data x∗ on x. Instead of giving the general
type-inductive definition of the majorization relation x∗ & x we just list the cases we
need here: if x ∈ N, then also x∗ ∈ N and x∗ ≥ x, if x ∈ NN, then also x∗ ∈ NN and
x∗ is a nondecreasing upper bound on x. If x ∈ X, where X is an abstract metric
space, then x∗ ∈ N and we define x∗ & x := x∗ ≥ d(a, x), where a ∈ X is some
fixed (for the definition of the majorizability relation) reference point. In the case
where X is a normed space we always use a := 0X . Finally, if x ∈ XN or x ∈ XX

resp., then x∗ ∈ NN is nondecreasing with x∗(n) ≥ d(a, x(m)), whenever n ≥ m,
or x∗(n) ≥ d(a, x(y)), whenever n ≥ d(a, y), resp. While each x in N,NN, X,XN is
majorizable, this not always is the case for selfmaps x ∈ XX . However, important
classes of such mappings, e.g. the class of all nonexpansive mappings, have actually
very simple majorants.
We now state a special case of our logical metatheorem for the context of abstract
normed spaces:

Theorem 1.1 ([63, 44]). Let P,K be Polish resp. compact metric spaces (explicitly
representable in Aω), A∃ be a purely existential formula, z := z1, . . . , zk be variables
ranging over X, N→ X or X → X.

From a proof Aω[X, ‖ · ‖] ` ∀x ∈ P ∀y ∈ K ∀z ∃vNA∃(x, y, z, v)
one can extract a computable Φ : NN × N(N) → N s.t.
∀y ∈ K ∃v ≤ Φ(rx, z∗)A∃(x, y, z, v) holds in every normed space X,

where rx ∈ NN is a representative of x ∈ P, and all z and z∗ = z∗1 , . . . , z
∗
k ∈ N(N) s.t.

z∗i & zi for 1 ≤ i ≤ k.

The important point here is that Φ does not operate on the X-data z (in which case
we not even could make sense of the term ‘computable’ unless X comes equipped
with some notion of effectivity) but only on majorants z∗ of z.Moreover, Φ is not just
‘computable’ but of some restricted complexity which depends on the strength of the
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mathematical principles that are included in the deductive framework Aω[X, . . .]. In
the application to a concrete proof, Φ reflects the computational content of that
proof.
The development of the proof mining paradigm has been a back-and-forth movement
from experimental case studies to the formulation of general theorems as the one
above which explain the structure of the findings in these case studies as instances
of a logical pattern which can then be used to systematically find new promising ar-
eas for case studies which in turn prompt new proof-theoretic results and so on. As
discussed in the next section, theorems of the form above have been tailored towards
numerous classes of metric and normed structures X and of mappings T : X → X,
where the input data often are enriched by appropriate moduli functions ω : N→ N
such as (suitable forms) of moduli of uniform convexity or uniform smoothness for
X or of uniform continuity of T etc.
In this paper we give a survey on these developments, both w.r.t. the logical foun-
dations as well as to applications in the context of nonlinear analysis, since around
2010.
Notation: Throughout this paper, for f ∈ N → N we use f (n)(m) to denote the
n-th iteration of f starting from m, i.e.

f (0)(m) := m, f (n+1)(m) := f(f (n)(m)).

For selfmappings T : C → C of some subset C of a metric or normed space, we
simply use Tnx (for x ∈ C) to denote the n-th iteration as here there is no danger
to confuse this with the n-th power.

2 New Developments in the Logical Foundation of
Proof Mining

In this section we survey the current stage on the logical methodology used in the
proof-mining program as it is applied in nonlinear analysis.

2.1 Classes of abstract spaces admissible in proof mining
Whereas the main applications of proof mining to analysis before 2000 where in the
context of specific Polish spaces, such as C[0, 1] only, since 2001 almost all applica-
tions concern situations where the theorem in question refers to some abstract class
of spaces X in addition to such concrete ones. E.g. the mean ergodic theorem is
a result formulated in the context of arbitrary (not necessarily separable) Hilbert
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spaces X. As discussed in detail in [65], the extractability of highly uniform bounds
depending only on general metric bounds as input data rather than requiring com-
pactness assumptions rests crucially on the fact that the proof being analyzed does
not use the separability of X, as the uniform quantitative form of separability is
total boundedness (and so in the presence of completeness implies boundedly com-
pactness). In order to deal with such abstract (not assumed to be separable) classes
of structures, the approach started in [63] has been to add X as a kind of atom to
the formal systems at hand by including X as a new base type. To obtain a logical
metatheorem on the extractability of uniform bounds for a class of metric structures
X one needs the following requirements:

(a) the axioms used to axiomatize X have (possibly after being enriched with suit-
able quantitative moduli ω in N or NN) a monotone functional interpretation
by simple majorizing functionals,

(b) all the constants used to axiomatize X have effective majorants of low com-
plexity.

These conditions usually follow from the fact that the axioms used to characterize
X (when interpreted in the full set-theoretic model Sω,X) can be written in purely
universal form (once the various moduli are given; see [63, 44, 65]) or - more generally
- in the form of axioms

∆ :≡ ∀aδ∃b �σ ra∀cγA0(a, b, c),

where A0 is quantifier-free and does not contain any further free variables, r is a
closed term (of suitable types) of A[X, . . .], the types δ, σ, γ satisfy some modest
conditions (see [49]; for the finite types over N only such axioms were already con-
sidered in [59]). Here � is pointwise defined where in the normed case one takes
xX �X yX :≡ ‖x‖ ≤ ‖y‖.1
As shown in [49], such axioms cover all normed structures axiomatizable in positive
bounded logic, both w.r.t. the normal strict interpretation as well as w.r.t. the
weaker approximate satisfaction relation used in that context. Structures axiom-
atized in this weaker approximate sense are not only closed under ultraproducts
but also ultraroots (see [51]). By adding a nonstandard axiom FX− of the form ∆,
which is not true in the full set-theoretic model but which holds in the model of
all strongly majorizable functionals Mω,X (in the sense of Bezem [17] extended to

1This can be adapted to the metric case by taking xX �X yN =≡ d(x, a) ≤ y for some reference
point a ∈ X.
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the types over N and X), one can prove (using quantifier-free choice QF-AC which
does notMω,X) a uniform boundedness principle Σ0

1-UBX− which implies that each
sentence in positive bounded logic is equivalent to its approximations (written as
a single sentence) so that the usual validity in a model and approximate validity
coincide. This corresponds to the fact that the ultraproduct of X satisfies an axiom
in positive bounded logic in the strong sense already when it satisfies it in the ap-
proximate sense. Since QF-AC gets eliminated by the functional interpretation and
FX− can be eliminated from the verification of extractable bounds for ∀∃-sentences
by interpreting things in the modelMω,X , one may freely use the strong reading of
∆ when proving a theorem while the extracted bound will also be valid in the - in
general - larger class of spaces X which are only required to satisfy the approximate
version of ∆ (see [49] for all this). In total, the following classes of spaces have been
shown so far to satisfy appropriate logical metatheorems on the extractability of
effective uniform bounds:

1. metric spaces (see [63] for the bounded case and [44] for the unbounded case),

2. W -hyperbolic and CAT(0)-spaces (see [63] for the bounded case and [44] for
the unbounded case),

3. CAT(κ)-spaces for κ > 0 ([83]),

4. uniformly convex W -hyperbolic spaces with monotone modulus of uniform
convexity, so called UCW-spaces (see [97, 100]), where then the bounds depend
on a given modulus of uniform convexity,

5. δ-hyperbolic spaces and R-trees (see [97]),

6. normed spaces, uniformly convex normed spaces and inner product spaces (see
[63]),

7. uniformly smooth normed spaces (with single-valued and norm-to-norm uni-
formly continuous normalized duality mapping) (see [80]), where then the
bounds depend on an appropriate concept of modulus of uniform smoothness,

8. totally bounded metric spaces (see [65] and [81]), where then the bounds de-
pend on an appropriate notion of modulus of total boundedness,

9. metric completions of the spaces listed so far (see [65]),

10. Banach lattices (see [49]),
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11. abstract Lp- and C(K)-spaces (see [49]),

12. bands in the Lp(Lq)-Banach lattice (see [49]).

If these conditions are satisfied, the contribution of the X-axioms to the extractable
bounds mainly consists in the moduli ω referred to above. A further convenient,
but not mandatory, requirement is that the axioms should imply the uniform con-
tinuity of the constants occurring in the axioms so that their extensionality (w.r.t.
x =X y :≡ dX(x, y) =R 0) can be inferred which must not be included as an
=-equality axiom as the uniform quantitative interpretation of extensionality by
monotone functional interpretation upgrades extensionality to uniform continuity
(on bounded domains). However, whereas in the model-theoretic approaches to met-
ric structures as in Chang and Keisler’s continuous ([29]) or in Henson and Iovino’s
positive bounded logic ([51]), uniform continuity is a necessary part of the framework
(used e.g. to define the ultrapower of X, see - however - the recent preprint [31]
which aims at weakening this requirement), this is not case in the proof-theoretic
treatment where one can avoid to use uniform continuity

(i) if the proof in question can be formalized with a weaker quantifier-free exten-
sionality rule QF-ER instead of the extensionality axiom or

(ii) if a condition weaker than uniform continuity turns out to be sufficient to pro-
vide a uniform quantitative form of the special instances of the extensionality
axiom used in the proof.

E.g. consider the definition of W -hyperbolic spaces X from [63] which is axioma-
tized (in addition to being a metric space) by four axioms (W1)-(W4) on a formal
convexity operatorW : X×X× [0, 1]→ X, where (W4), in particular, expresses the
uniform continuity (and hence the extensionality) ofW as a function in x, y (for fixed
λ ∈ [0, 1]), whereas (W2) implies the uniform continuity (and hence extensionality)
in λ. It turns out that many proofs do not use (W4) and the extraction of effective
uniform bounds goes through without problems so that the extracted bounds are
valid in the larger class of spaces axiomatized by (W1)-(W3) which coincides with
the spaces of hyperbolic type from [46] (see e.g. Remark 3.25 in [76]).
If, however, one is in a situation where all the functions involved satisfy appropri-
ate uniform continuity assumptions and the model theory for metric and normed
spaces it applicable, then proof-theoretic bound extraction theorems may be viewed
as constructive quantitative versions of qualitative uniformity results obtainable us-
ing ultraproducts (see [3]). Whereas for the latter, only the truth of the theorem
in question in the respective class of structures is needed and only the existence
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of a uniform bound follows (though by results in effective model theory recently
announced by J. Rute one may even conclude the existence of computable bounds
obtained by blind unbounded search through some infinitary term language), the
proof-theoretic approach uses the formalizability of a proof of the theorem in some
suitable system and then extracts an explicit subrecursive bound reflecting the com-
putational content of the given proof.

2.2 Classes of majorizable functions that are admissible in proof
mining

The above comments on extensionality not only apply to the constants used in
axiomatizing X but also to the classes F of functions T : X → X in the theorem

∀T ∈ F ∃n ∈ NA∃(T, n)

for which we want to extract effective uniform bounds. E.g. if uniform continuity
of T follows from T ∈ F , then full extensionality is for free. Otherwise, the items
(i),(ii) may apply: as an instance of the first item, one may refer to the nonlinear
ergodic theorem due to [129] for selfmappings T : K → K of a subset K of a Hilbert
space satisfying the Wittmann-condition

(W ) ∀x, y ∈ K (‖Tx+ Ty‖ ≤ ‖x+ y‖),

whose proof only uses QF-ER. The condition (W ) trivially implies that T is ma-
jorized by T ∗ := IdN, while T in general will be discontinuous (see example 3.1 in
[129]). In section 3.2 we will discuss the quantitative analysis of Wittmann’s theo-
rem given in [116].
Recently, the 2nd item above has been used substantially in the context of metric
fixed point theory. There extensionality often is used only in the form

p ∈ Fix(T ) ∧ x =X p→ x ∈ Fix(T ),

where Fix(T ) denotes the fixed point set of some selfmapping T : X → X of a
metric space (X, d). This is a genuine use of the extensionality axiom that cannot be
replaced by QF-ER. However, its uniform quantitative interpretation (as obtained
via monotone functional interpretation) is satisfied by moduli δT , ωT : N → N such
that

(∗)



∀x, p ∈ X ∀k ∈ N

(
d(p, Tp) < 1

δT (k)+1 ∧ d(x, p) < 1
ωT (k)+1

→ d(x, Tx) ≤ 1
k+1

)
.
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This condition (which is introduced in [81] under the name of ‘(moduli of) uniform
closedness’) can always be satisfied when T is uniformly continuous with a modulus
of uniform continuity ΩT by defining

ωT (k) := max{4k + 3,ΩT (4k + 3)} and δT (k) := 2k + 1

(see Lemma 7.1 in [81]), but is also satisfied for important classes of in general
discontinuous functions: e.g. T satisfies the so-called condition (E) (introduced in
[39] as a generalization of a condition (C) in [124]) if there exists a µ ≥ 1 such that

∀x, y ∈ C (d(x, Ty) ≤ µd(x, Tx) + d(x, y)) .

It is easy to see that in this case we may take (w.l.o.g. µ ∈ N)

ωT (k) := 4k + 3 and δT (k) := 2µ(k + 1)− 1

(see [81])2 while T may fail to be continuous. E.g., as shown in [39], T : [−2, 1] →
[−2, 1] defined by

T (x) := |x|/2, for x ∈ [−2, 1), and := −1/2, for x = 1,

satisfies the condition (E) with µ := 3.
The condition (E) also implies that T is majorizable (w.r.t. a reference point a ∈ X)
by

T ∗(n) := Ca,µ + n,

where N 3 Ca,µ ≥ µ · d(a, Ta).
In addition to the issue that maybe only partial extensionality is available, the
membership relation T ∈ F also has to satisfy the requirements (a), (b) on the X-
axioms in order to be able to design a bound-extraction theorem for the class F . In
the examples just discussed this is trivial by the existence of simple T -majorants and
since both the condition (W ) as well as (E) (for given µ) are purely universal and
hence admissible in logical bound-extraction theorems for these classes of mappings
while in the case of (E) the extracted bound will additionally depend on the upper
bound Ca,µ for some a ∈ X.
So far the following classes of mappings have been shown to have appropriate bound
extraction theorems and have been used in actual unwindings of proofs:

2Correction to [81]: in the definition of the moduli χ, δ for mappings satisfying the condition
(E) one has to use d·e to make the bounds χ, δT natural numbers.
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1. nonexpansive, Lipschitz, Hölder-Lipschitz and uniformly continuous mappings
([44]),

2. weakly quasi-nonexpansive mappings (first implicitly introduced - without a
name - in [75] and - independently as ‘J-type mappings’ [38] and as ‘weakly
quasi nonexpansive mappings’ in [44]; used in proof mining in [75]),

3. asymptotically nonexpansive mappings (introduced in [45] and used in proof
mining and discussed from a logical point of view in [75, 78]),

4. uniformly contractive mappings (introduced in [111] and used in proof mining
and discussed from a logical point of view in [84, 43]),

5. uniformly generalized p-contractive mappings (introduced - as a uniform
strengthening of a notion from [56] - and applied in proof mining in [20];
logically studied in [21]),

6. asymptotic contractions in the sense of Kirk (introduced in [57] and used in
proof mining in [42, 19]; logically studied in [21]),

7. firmly (quasi-)nonexpansive mappings in geodesic and normed spaces (intro-
duced for Hilbert spaces in [23], for general Banach spaces in [25], for the
Hilbert ball in [47] and for W -hyperbolic spaces in [1] and used in proof min-
ing in [108, 1, 2, 71, 82, 72]),

8. strongly (quasi-)nonexpansive mappings in geodesic and normed spaces (in-
troduced in [28] in the normed setting and in the ‘quasi’-form and for the
Hilbert ball in [112, 15] and in metric spaces in [27]; used in proof mining and
discussed from a logical point of view in [71, 72]),

9. pseudocontractive mappings in normed spaces (introduced by Browder [22]
and used in proof mining in [89, 90, 88]),

10. strict pseudocontractions in Hilbert space (introduced in [24] and used in proof
mining in [53, 81, 119]),

11. mappings satisfying Wittmann’s condition (W ) in Hilbert space (introduced
in [129] and used in proof mining in [116, 67, 71]),

12. mappings satisfying condition (E) in geodesic spaces (introduced in [39] and
used in proof mining in [81]; see above for a discussion from the point of logic),
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13. majorizable mappings in metric spaces ([44])

as well as combinations thereof (e.g. Lipschitzian pseudocontractions).
Uniformly continuous selfmappings of geodesic spaces and Lipschitz continuous map-
pings on general metric spaces are always majorizable where an a-majorant can
be computed in terms of a modulus of uniform continuity and an upper bound
b ≥ d(a, Ta) for a ∈ X (see the proof of Corollary 4.20 in [44]). Hence majoriz-
ability (and extensionality) follows for such mappings including mappings which are
asymptotically nonexpansive, uniformly contractive, firmly or strongly nonexpan-
sive or strict pseudocontractions.
Due to the lack of continuity one does not have extensionality for free in the other
cases but majorizability holds for weakly quasi-nonexpansive mappings (see the proof
of Corollary 4.20(5) in [44]) and so also for firmly quasi-nonexpansive and strongly
quasi-nonexpansive mappings if the mappings possess a fixed point. Majorants can
then be given in just an upper bound b ≥ d(a, p) for some reference point a and a
respective fixed point p. For mappings satisfying the condition (E), majorizability
has been shown above. As mentioned already, mappings satisfying condition (W )
are trivially majorized by the identity map.
Let us discuss the issue of majorizability for asymptotic contractions in the sense of
Kirk (the logical discussion in [21] is only in the context of bounded metric spaces
where the majorizability is trivial but the results in [19] are proven for general metric
spaces):
a function T : X → X is an asymptotic contraction in the sense of Kirk if there are
continuous mappings φ, φn : [0,∞) → [0,∞) with φ(s) < s for s > 0 such that for
all n ∈ N, x, y ∈ X

d(Tnx, Tny) ≤ φn(d(x, y))
and φn → φ uniformly on the range of d. While the continuity of the functions φn is
not part of Kirk’s original definition it is added as an assumption in his main result
on these mappings in [57] and [19] officially included this condition in his definition
of ‘asymptotic contractions in the sense of Kirk’. If φ1 (additionally) is assumed to
be continuous, then the majorizability is shown as follows: let a ∈ X be a reference
point and x ∈ X,n ∈ N with d(x, a) ≤ n. Define T ∗(n) := b + sup

y∈[0,n]
φ1(y), where

N 3 b ≥ d(a, Ta). Then

d(a, Tx) ≤ d(a, Ta) + d(Ta, Tx) ≤ b+ φ1(d(a, x)) ≤ T ∗(n).

Hence T ∗ is a majorant for T w.r.t. a.
General pseudocontractions T, even in Hilbert spaces other than R, do not seem to
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be majorizable in general. However, in the applications in proof mining they have
either been used under the additional assumption of being Lipschitzian ([89]) or as
selfmaps T : C → C of bounded convex subsets C ⊆ X, where majorizability is triv-
ial ([90, 88]). An exception is Theorem 2.3 in [90] where, however, the assumption of
the existence of a fixed point of T implies the boundedness of the path considered.
For all the function classes above, except for the ‘quasi’-classes, the conditions be-
come purely universal once the appropriate data and moduli are added to the defi-
nition. If one generalizes the classes of ‘(firmly, strongly) quasi-nonexpansive’ map-
pings to their ‘weakly’ versions, where the condition in question is not claimed to
hold for all of their fixed points but only for some fixed point, then these conditions
have the form ∆ and so are also amenable in logical metatheorems. It has been for
this reason why we considered the class of weakly quasi-nonexpansive functions in
[75] and also the use of firmly quasi-nonexpansive and strongly quasi-nonexpansive
mappings in [71] is of this form.

2.3 New proof principles treated by proof interpretations
In the applications of proof mining in nonlinear analysis (mainly fixed point theory)
up to 2008, functional analytic tools for the space X in question were only needed
to a rather limited extent. This changed in connection with applications to non-
linear ergodic theory ([68, 70, 79] and convex optimization (see chapter 8 in [86]),
where one had to rely on new finitary quantitative versions of appropriate projection
and weak compactness arguments as well as the elimination of Banach limits (see
[66, 69, 79]).
With respect to metric projections PC of X onto a nonempty convex closed subset
C (in the case of uniformly convex spaces X) one has to distinguish between the
cases where C is an abstract convex closed subset just axiomatized to be so (for the
convexity of C this is an obvious universal axiom while the closedness can axiom-
atized in a purely universal way using the completion operator from [65], see [48]).
Then a projection PC can be added equally axiomatic by the then universal axiom

∀x ∈ X ∀y ∈ C (‖x− PCx‖ ≤ ‖x− y‖).

Given a modulus η of uniform convexity for X one can compute a modulus of
uniqueness for being a metric projection (see [65], Proposition 17.4) which in turn
gives a modulus of uniform continuity for PC and hence full extensionality can
be derived. A majorant of PC is given by the function P ∗C(n) := 2n + m, where
N 3 m ≥ ‖c‖ for some c ∈ C since

‖PCx‖ ≤ ‖x− PCx‖+ ‖x‖ ≤ ‖x− c‖+ ‖x‖ ≤ 2‖x‖+ ‖c‖
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(see also [48]).
The situation is different if C is given by some formula ϕ(x) in the language of
Aω[X, . . .] (which - if it expresses an =X -extensional property of points in C - will
never be quantifier-free)

∀x ∈ X (x ∈ C ↔ ϕ(x)).
Then the existence of the unique best approximation of x ∈ X by an element in C

∀x ∈ X ∃!y ∈ C ∀z ∈ C (‖x− y‖ ≤ ‖x− z‖)

can be proven e.g. in Aω[X, ‖ · ‖, η, C] (which adds an abstract η-uniformly convex
Banach space X to Aω) using countable choice AC0,X for points in X (see [66],
Proposition 3.2 and Remark 4). As a consequence of this, the monotone functional
interpretation (of the negative translation) of this principle has a solution by a bar
recursive functional in Spector’s calculus T + BR (obtained by majorizing the bar
recursive solution of AC0,X , see [44]).
The existence of ε-best approximations

(+) ∀k ∈ N ∀x ∈ X ∃y ∈ C ∀z ∈ C (‖x− y‖ ≤ ‖x− z‖+ 2−k)

can be shown even without the uniform convexity of X and the convexity of C
and without AC0,X using only induction (see [66] Proposition 3.1) which then has
a monotone functional interpretation by terms in Gödel’s T alone.
A typical application of this in fixed point theory is the following: let C ⊂ H
be a nonempty bounded convex closed subset of a Hilbert space H and T : C →
C be a nonexpansive selfmap. By a classical result due to Browder, Göhde and
Kirk (independently), T has a fixed point. Hence the fixed point set Fix(T ) is
nonempty and easily shown to be again closed and convex (all this holds also in
general uniformly convex Banach spaces). Hence for each v0 ∈ H there exists
a unique fixed point u ∈ Fix(T ) whose distance is closest to v0 among all fixed
points. When this is used in a proof of some concrete statement, e.g. expressing
that a certain iteration procedure converges to u, proof mining usually reveals that
a quantitative ε-version of this projection statement is all that is needed for the
quantitative analysis of the convergence proof. Functional interpretation leads to
the following result used in [68]3 for the quantitative analysis of a nonlinear ergodic
theorem due to Wittmann [130] and recently used again in [86] in the analysis of
an algorithm due to Yamada [132] in convex optimization (for technical reasons it
is convenient in Hilbert space to use the square of the norms in (+)):

3Correction to [68]: in lemma 3.1 ‘4dn(8dn+ 2)’ instead of ‘4dn(4dn+ 2)’.
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Proposition 2.1 ([68]). : Let H,C, v0, T as above and N 3 d ≥ diam(C). Let
ε ∈ (0, 1],∆ : C × (C → (0, 1]) → (0, 1] and V : C × (C → (0, 1]) → C. Then one
can construct u ∈ C and ϕ : C → (0, 1] such that

(1) ‖u− T (u)‖ < ∆(u, ϕ)

and

(2)
{
‖T (V (u, ϕ))− V (u, ϕ)‖ < ϕ(V (u, ϕ))→
‖v0 − u‖2 ≤ ‖v0 − V (u, ϕ)‖2 + ε.

In fact, u, ϕ can be defined explicitly as functionals in ε,∆, V (as well as in v0, T
and some fixed point p ∈ C of U which we, however, do not mention as arguments as
these are fixed parameters) as follows: for i < nε :=

⌈
d2

ε

⌉
we define ϕi : C → (0, 1]

and ui ∈ C inductively by

ϕ0(v) := 1, ϕi+1(v) := ∆(v, ϕi),
u0 := p ∈ Fix(U), ui+1 := V (ui, ϕnε−i−1).

Then for some i < nε (that we may find by bounded search, see Remark 2.5 in [68])
we have that u := ui, ϕ := ϕnε−i−1 satisfy the claim.

Let us briefly discuss the monotone version of the above statement which translates
majorants for V,∆, p, v0 into majorants for u, ϕ. Since C is assumed to be bounded,
majorants for V, u, p, v0 are trivial, namely given simply by a bound on the norm
of the elements in C, in fact, since the whole argument only involves C and not H,
only a bound d on diam(C) is needed. So it suffices to majorize ϕ given a majorant
∆∗ & ∆ for ∆, i.e. a ∆∗ : N→ N s.t.

∀n ∈ N v ∈ C (∀w ∈ C(1/n ≤ ϕ(w))→ 1/∆∗(n) ≤ ∆(v, ϕ)).

It is now easy to see that for all w ∈ C

1/(∆∗)(i)(1) ≤ ϕi(w)

and so the solution ϕ in the above proposition is majorized by

max{ (∆∗)(i)(1) : i < nε }.

In addition to the use of the metric projection onto the fixed point set of T ,
Wittmann’s proof in [130] also makes use of a weak sequential compactness ar-
gument. However, at the very end of the complete logical analysis of Wittmann’s
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proof as given in [68] what remains from this use is a trivial lemma (namely Lemma
2.13 in [68], see the discussion after Lemma 5.1 in the same paper). In particular,
as the use of weak compactness is totally eliminated, there is no contribution of the
enormous complexity of the functionals needed to interpret the monotone functional
interpretation of sequential compactness. The latter functionals are computed in [69]
and make use of two nested applications of bar recursion B0,1 of lowest type (cor-
responding to the usual strong sequential compactness of an appropriate compact
Polish space and the proof of the Riesz representation theorem resp. both of which
are used in the proof of weak compactness). As follows from [95], this complexity
is optimal. The solution to the weak convergence of bounded sequences in Hilbert
spaces was then used in the logical analysis of a proof of the famous nonlinear er-
godic theorem of Baillon ([70], see also section 3.2 below) where it is applied again
twice in a row. Since this bounds on the weak Cauchy property for the nonlinear
ergodic theorem is of type 2 and the uses of B0,1 are in a context which otherwise
is in T0, i.e. the fragment of Gödel’s T with primitive recursion of type N only, it
follows from the detailed analysis of the type-2 functionals definable in T0 + B0,1
(using results due to W.A. Howard and H. Schwichtenberg as well as a normaliza-
tion argument due to the present author [62]) that this bound can be restated as a
functional in T. This time it has not been possible to eliminate the use of weak com-
pactness. But note that Baillon’s theorem itself is only a weak convergence result
(and strong convergence is known to fail in general). In the famous special case of
odd nonexpansive operators, where the convergence is again strong, one can indeed
avoid the use of weak compactness (see [129]) and the proof-theoretic analysis of the
corresponding proof then gives a primitive recursive (in the ordinary sense, i.e. in
T0,) rate of metastability ([116], see also section 3.2 below).
This leads to the question of whether one can isolate certain conditions that guar-
antee that a use of weak compactness can be eliminated from a proof of strong
convergence from proofs that satisfy these conditions. Related to this is the in-
teresting topic to give quantitative versions of so-called ‘weak-to-strong’ principles
used in convex optimization to ensure strong convergence by suitable changes in
only weakly convergent iterative algorithms (see e.g. [13]).
Proof-theoretic elimination techniques for the use of a non-principal ultrafilter U
in favor of arithmetical comprehension have been developed in [94, 128]. Kreuzer
[94] uses functional interpretation combined with a normalization argument to first
reduce the use of U (in proofs of theorems of a suitable logical form) to the uniform
arithmetical comprehension functional

(E2) : ∃E : NN → N ∀f : N→ N (E(f) = 0↔ ∃x ∈ N(f(x) = 0)).
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By a method due to Feferman [36] (based again on functional interpretation and
normalization), (E) is then further reduced to arithmetic comprehension. The lat-
ter has a functional interpretation by bar recursion of lowest type ([122], see [65]).
Towsner [128] reduces U directly to arithmetic comprehension by a syntactic forcing
translation.
As mentioned already above, the results in [49] suggest that many uses of ultrafilters
made in connection with the definition of ultrapowers of metric and normed struc-
tures might be replaced by proof-theoretic techniques involving a suitable nonstan-
dard uniform boundedness principle which in contrast to (non-principal) ultrafilters
can never contribute to the complexity of extractable bounds.
Another use of ultrafilters is the construction of Banach limits as the limit along
U of the Cesàro mean x1 + . . . xn/n of bounded sequences (xn) in R (see [91], al-
ternatively one can apply Hahn-Banach’s theorem to l∞). In [79, 80], we extracted
rates of metastability (see section 2.6) for Halpern iterations in CAT(0) ([79]) and
uniformly smooth Banach spaces ([80]) from given convergence proofs that made
use of Banach limits. Here, however, special Banach limits are used that are shown
to exist by the Hahn-Banach theorem applied to l∞, namely - given a fixed se-
quence (an) ∈ l∞ - one uses a Banach limit µ : l∞ → R that satisfies µ ≤ q with
µ((ak)) = q((ak)), where

q : l∞ → R, q((ak)) := lim sup
p→∞

sup
n≥1

1
p

n+p−1∑

i=n
ai

is a sublinear functional that can be defined by the comprehension functional (E2).
The proof is then modified so that instead of µ only q is used which then in turn
is eliminated in terms of an elementary lemma on the finite averages Cn,p((ak)) =
1
p

∑n+p−1
i=n ai with an at most simple polynomial contribution to the final extracted

bound. In the addendum to [79], we observed that the analysis given in [79, 80] could
be trivially seen to avoid this polynomial contribution altogether so that no trace of
the use of Banach limits remains. Subsequently, [102] extended the results from [79]
to the technically very involved case of CAT(κ)-spaces for κ > 0 (since a CAT(0)
space is CAT(κ) for every κ > 0, this is an - in fact far reaching - generalization).

Very recently, we applied proof mining to Bauschke’s solution ([12]) of the so-called
‘minimal displacement conjecture’ which is a very concrete asymptotic regularity
statement for compositions of arbitrary metric projections onto closed and convex
subsets in Hilbert space. The proof, however, uses a large arsenal of prima-facie
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very noneffective abstract operator theory: Minty’s theorem (Zorn’s lemma), Brézis-
Haraux theorem, Rockafellar’s maximal monotonicity and sum theorems, Bruck-
Reich theory of strongly nonexpansive mappings, conjugate functions, normal cone
operator etc. Nevertheless, the computational contribution of the use of these princi-
ples turned out to be of very low complexity resulting in a rate of convergence which
is a simple polynomial in the data (see [72]). We, therefore, believe that the abstract
theory of maximally monotone operators should be studied more systematically from
the perspective of proof mining.

2.4 Hybrid interpretations of partially constructive proofs
The logical metatheorems developed in [63, 44, 65] apply to theories Aω[X, . . .] that
are based on classical logic. As a consequence of this, the formula A∃ in bound
extractions from proofs of theorems

∀T ∈ F ∃n ∈ NA∃(T, n)

must be purely existential. If, however, one uses intuitionistic logic instead then

1. A may be a formula of arbitrary logical complexity,

2. one may add the axiom of full extensionality to this intuitionistic system and

3. one may add highly noneffective principle such as the schema of comprehen-
sion in all types for arbitrary negated formulas (resulting in a theory that is
proof-theoretically of the same strength as classical simple type theory but in
contrast to the latter has he same provably recursive functions as intuitionistic
arithmetic HA)

CA¬ : ∃Φ ≤ρ→N λx
ρ.1∀yρ (Φ(y) =N 0↔ ¬A(y)) .

Note that CA¬ implies the law-of-excluded-middle schema for negated formu-
las.

The extraction technique is then based on a monotone modified realizability inter-
pretation.

Remark 2.2. Alternatively, one may use Markov’s principle in all types and König’s
lemma KL (instead of CAneg) but then - again - one has to replace full extensionality
by the quantifier-free extensionality rule. Here one uses plain monotone functional
interpretation, i.e. without any preceding negative translation.
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These and many related results are proved in [43] (for theories without abstract
spaces X already in [61]) and have been adapted to UCW-spaces in [100]. In [100],
Leuştean gives a very interesting proof analysis in the context of fixed point theory
in UCW-spaces (namely the extraction of a so-called rate of asymptotic regular-
ity for the Ishikawa iteration of nonexpansive mappings in such spaces) in which
certain parts of the proof, that are basically constructive, are analyzed by the semi-
constructive approach from [43] while other parts of the proof that use more heavily
classical logic are interpreted by the methods for classical systems from [44]. In
fact, it is shown that the analysis given in [99] can be logically understood as such
a hybrid approach combining two different proof-theoretic methods.
Another application of such a hybrid approach in nonlinear analysis has recently
been given in [120].
Together with general logical theorems on related hybrid proof interpretations due
to [52, 109], this suggests that this approach has a large potential for further appli-
cations.

2.5 Alternative proof interpretation with potential in proof mining

There are several new forms of proof interpretations related to the Gödel functional
interpretation which have been proposed in recent years for the use of analyzing
proofs in analysis. Similarly to the monotone (see [60, 65]) and bounded (see [41]
and, for the extension to abstract normed spaces, [35]) functional interpretations
which only aim after bounds rather than exact realizers, these methods typically also
extract only some weaker partial information that is relevant in the case at hand.
E.g. in [6], a version of functional interpretation related to [5] is used to bound the
ordinal level sufficient in the transfinite hierarchy of so-called distal factors used in
their analysis of an ergodic-theoretic proof due to Furstenberg and Katznelson of a
multidimensional Szemerédi theorem.
In [16], a functional interpretation of certain nonstandard extensions of systems of
arithmetic and analysis in the language of functionals of all finite types is developed.
The approach is inspired by Nelson’s internal set-theory as the system is based on
a unary predicate symbol for ‘being standard’. Formulas that do not contain this
symbol are called ‘internal’ and the interpretation acts trivially on those while it
extracts finite lists of witnessing candidates for external quantifiers.
In [40], a bounded functional interpretation (in the sense of [41]) is developed for
another nonstandard extension of finite type arithmetic in which the ‘finite lists of
witnessing candidates’ extracted by [16] are replaced by extracting majorants for
the external quantifiers.

3378



Recent Progress in Proof Mining

Recent papers by Sanders (see e.g. [117]) suggest that the techniques from [16,
40] can be used to extract computational information from proofs in nonstandard
analysis and that, in particular, [40] can be applied also to purely standard proofs by
translating them appropriately into the nonstandard framework. It remains to be
seen whether this approach may lead to new results when carried out in sufficiently
nontrivial case studies.

2.6 Logical aspects of convergence statements
Let (xn) be a Cauchy sequence in a complete metric space (X, d), i.e.

∀k ∈ N ∃n ∈ N ∀i, j ≥ n (d(xi, xj) ≤
1

k + 1) ∈ ∀∃∀.

Often a computable rate of convergence does not exist even for computable se-
quences (xn). In fact, as shown in [121], there is a primitive recursive decreasing
sequence (xn) ⊂ [0, 1] ∩ Q with no computable Cauchy rate. The noneffectivity
of the Cauchy property of monotone bounded sequences of reals corresponds pre-
cisely to the law-of-excluded-middle-principle for Σ0

1-formulas Σ0
1-LEM (see [127]).

In fact, if only weaker forms of LEM such as either LEM for arbitrary negated
formulas or, alternatively, the Markov Principle plus the so-called LLPO-principle
(‘lesser-limited-principle-of-omniscience’) are used (relative to a suitable intuitionis-
tic framework) in a proof of a Cauchy statement, then effective rates of convergence
can be extracted. For finite type systems over N this follows from Corollary 7.7 resp.
Theorem 9.3 in [65]: note that the ‘∃’-quantifier in the Cauchy property is mono-
tone, i.e. any any upper bound is already a witness so that these bound extraction
theorems are applicable (as already mentioned, LEM for negated formulas follows
immediately from CA¬ and LLPO follows from WKL which can be written as an
axiom ∆). For some extensions to theories with abstract spaces X see [43]. So at
least Σ0

1-LEM is needed to create a noneffective Cauchy statement (for a computable
sequence). Conversely, it has been shown in [85] that over rather general intuition-
istic frameworks Ai[X, . . .], proofs of Cauchy statements can be transformed so that
only Σ0

1-LEM is needed: this follows by showing that Ai[X, . . .] + Σ0
1-LEM is closed

under the Σ0
2-DNE rule, where

Σ0
2-DNE : ¬¬∃x ∈ N ∀y ∈ NAqf (x, y, a)→ ∃x ∈ N ∀y ∈ NAqf (x, y, a),

(Aqf quantifier-free), suffices to prove that the negative translation of the Cauchy
statement implies the original Cauchy statement.
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So the intuitionistic reverse mathematics for Cauchy statements that do not admit
a computable rate of convergence essentially is trivial as they will in all practical
cases be equivalent to Σ0

1-LEM. This also applies to the corresponding convergence
statements which will follow from the Π0

3-Cauchy property by applying countable
choice for numbers (to create a fast converging sequence and hence a limit) which
usually is included in intuitionistic frameworks. Classically, this need to apply Π0

1-
choice for numbers to create a limit will (in connection with the fact that the Π0

3-
property implies Σ0

1-LEM) result in arithmetical comprehension being implied by the
convergence theorem (and conversely, arithmetical comprehension suffices to prove
the convergence from the Cauchy property). So to say something specific about
the computational content of a concrete (noneffective) convergence statement one
has to investigate the numerical content of the Cauchy statement once the latter
is (classically equivalent) reformulated in such a way that it has a computational
solution: the Cauchy property noneffectively is equivalent to

(∗) ∀k ∈ N ∀g ∈ NN ∃n ∈ N ∀i, j ∈ [n;n+ g(n)] (d(xi, xj) <
1

k + 1) ∈ ∀∃

which is the Herbrand normal form of the original Cauchy formulation and which
has been - in the specific situation at hand - called metastability by Tao [125, 126].
We call a bound Φ(k, g) on ‘∃n’ in the latter formula a rate of metastability (this is
essentially the Kreisel no-counterexample interpretation of the Cauchy statement in
the sense of [92, 93]).
Since (∗) is (equivalent to a formula) of the form ∀∃, the logical metatheorems
discussed in section 2 above can be used to extract highly uniform such rates of
metastability whose subrecursive complexity reflects the specific computational con-
tent of the proof.
Usually, convergence theorems not only state the plain convergence of some sequence
(xn) in X but also that the limit x := lim xn satisfies some property which often
can be written in the form F (x) =R 0, where F : X → R is continuous. Then a rate
of metastability should satisfy

(∗∗) ∀k ∈ N ∀g ∈ NN ∃n ≤ Φ(k, g)∀i, j ∈ [n;n+ g(n)]
(
d(xi, xj), |F (xi)| ≤

1
k + 1

)
.

This formulation is significant for the following reasons:

• (∗∗) is purely universal and so is a real statement in the sense of Hilbert
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(the universal quantifier behind the bounded ones hidden in ≤ can be avoided
by switching to appropriate rational approximations of d(xi, xj), |F (xi)|).

• By negative translation, (∗∗) always has a constructive proof.

• By classical logic (and QF-ACN,N, i.e. closure under recursion), (∗∗) mathe-
matically trivially implies (by a fixed piece of proof) that (xn) is Cauchy.

• By arithmetical comprehension, (∗∗) mathematically trivially implies (by a
fixed piece of proof) that (xn) is convergent and F (lim xn) = 0.

• Under certain conditions (e.g. uniqueness or monotonicity properties), rates
of metastability even yield rates of convergence.

• The structure of Φ yields information on the learnability of a convergence rate
and sometimes oscillation bounds ([85]).

Let us discuss the last item in some more detail (the other items following already
by the preceding discussion or being self-explanatory):

Definition 2.3 ([85], Definition 2.4). Consider a Σ0
2 formula ϕ ≡ ∃n ∈ N ∀x ∈

N ϕqf (x, n, a) (with quantifier-free ϕqf and all its free variables contained in a)
which is monotone in n, i.e.

∀n ∈ N ∀n′ ≥ n ∀x ∈ N
(
ϕqf (x, n, a)→ ϕqf (x, n′, a)

)
.

We call such a formula ϕ (B,L)-learnable, if there are function(al)s B and L such
that the following holds:

∃i ≤ B(a) ∀x ∈ Nϕqf (x, ci, a),

where

c0 := 0,

ci+1 :=
{
L(x, a), for the x with ¬ϕqf (x, ci, a) ∧ ∀y < x ϕqf (y, ci, a) if it exists
ci, otherwise.

In [85](Theorem 2.11) it is shown that if the number of (parallel) instances of Σ0
1-

LEM used in a proof of a Cauchy statement is (implicitly) bounded then one can
extract concrete terms (B,L) from the proof. Moreover, Proposition 2.16 (together
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with Proposition 2.5) in [85] shows that the (B,L) learnability of a Cauchy rate
with majorizable B,L implies that the Cauchy statement has a rate of metastability
given by (essentially)

Φ(k, g, a∗) =
(
(λxN.L∗(x, k, a∗) ◦ g̃

)(B∗(n,a∗))
(0),

where B∗, L∗ are majorants of B,L, and a∗ are majorants for the parameters a used
to define the sequence in question and g̃(n) := max{n,maxm≤n{g(m)}}. By Remark
2.17 in [85] also a kind of converse of this holds, i.e. given a rate of metastability
of the above form, then (essentially) a Cauchy rate is (B∗, L∗) learnable. With the
notable exceptions of the rates in [70, 116], all rates of metastability extracted so far
have this simple structure and so give rise to explicit learnability information on the
rate of convergence of the respective sequence. While this in general is not sufficient
to infer an effective bound on the number of ε-fluctuations of the Cauchy statement
(see Propositions 4.7 and 4.11 in [85] for a counterexample), the latter does follow
if an additional gap condition is satisfied by L (Proposition 5.1 and Remark 5.2
in [85]). This e.g. is the case for the rate of metastability extracted for the von
Neumann mean ergodic theorem in uniformly convex spaces in [77] and explains
why this could be strengthened to a bound on the number of ε-fluctuations in [4].

3 Recent Applications to Nonlinear Analysis

3.1 Metric Fixed Point Theory

Metric fixed point theory has been the area to which the proof mining methodology
has been applied most extensively since 2000. Even the results since 2010 are too
many to mention all of them here. Instead we only focus on a few developments.

3.1.1 Rates of asymptotic regularity for families of mappings and
strongly and firmly nonexpansive mappings

In [96], the following iteration schema is considered: Let C be a nonempty convex
subset of a Banach space X and {Ti : 1 ≤ i ≤ k} be a finite family of nonexpansive
self-mappings Ti : C → C. Let U0 = Id be the identity mapping and 0 < λ < 1,
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then using the mappings

U1 = (1− λ)Id+ λT1U0

U2 = (1− λ)Id+ λT2U1

...
Uk = (1− λ)Id+ λTkUk−1,

one defines
x0 ∈ C, xn+1 := (1− λ)xn + λTkUk−1xn, n ≥ 0. (1.1)

The following result is implicit in [96]:

Theorem 3.1. Let X be strictly convex, C ⊆ X nonempty compact and closed,
T1, . . . , Tk : C → C nonexpansive and F := ⋂k

i=1 Fix(Ti) 6= ∅. Then for the sequence
defined above one has the following asymptotic regularity result:

lim
n→∞ ‖xn − Tixn‖ = 0 for all 1 ≤ i ≤ k.

In [54], a quantitative version of this theorem is obtained: in order to apply the
logical metatheorems discussed in the introduction, strict convexity needs to be
upgraded to uniform convexity. As shown in [54], the compactness assumption can
then be dropped and one obtains a full rate of convergence in the above asymptotic
regularity result even in the case of uniformly convex W -hyperbolic spaces (more
precisely the UCW-spaces mentioned in section 2.1).

Theorem 3.2 ([54]). Let C be a nonempty convex subset of a UCW-space with a
monotone modulus of convexity η and let {Ti}ki=1 be a finite family of nonexpansive
self-mappings Ti : C → C with F = ⋂k

i=1 F (Ti) 6= ∅. Let p ∈ F, x0 ∈ C and D > 0 be
such that d (x0, p) ≤ D. Then for the sequence (xn) generated by Kuhfittig’s schema
above we have

∀ε ∈ (0, 2]∀n ≥ Φi (D, ε, λ, η) (d (xn, Tixn) ≤ ε) for 1 ≤ i ≤ k,

where
Φi := θ

(
η̂(k−i+min(1,k−1))

(
ε

2

))

with
θ (ε) :=

⌈
D

η̂ (ε)

⌉
, where η̂ (ε) := λ(1− λ)η

(
D,

ε

D + 1

)
ε.
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If η (r, ε) can be written as η (r, ε) := εη̃ (r, ε) , where η̃ increases with ε ( i.e. ∀ε2 ≥
ε1 > 0 (η̃ (r, ε2) ≥ η̃ (r, ε1)), then we can replace η by η̃ in the bound: Φi (D, ε, λ, η̃) .
Using N ∈ N with 1/N ≤ λ(1−λ) one can replace in the above bound the dependency
of the bound on λ by that on N.
In the special case of CAT(0)-spaces one may take η̃(ε) := ε/8.

Let us briefly discuss the logical reason why one obtains in this case a full rate
of convergence. The key result in [96] is that any fixed point of the nonexpansive
mapping S := TkUk−1 is a common fixed point of T1, . . . , Tk which prenexes as
follows

∀q ∈ C ∀ε > 0 ∃δ > 0
(
d(Sq, q) ≤ δ →

k∧

i=1
(d(Tiq, q) < ε

︸ ︷︷ ︸
∈Σ0

1

)
.

By an appropriate logical metatheorem, one then extracts a uniform (positive lower)
bound (and hence witness) Ψ(D, ε,N, η) for δ which only depends on ε, some bound
D ≥ d(x0, p) for some p ∈ F, a modulus η of uniform convexity for X and λ (actually
only an N ∈ N such that 1/N ≤ λ(1 − λ) is needed). Since Kuhfittig’s iteration
schema (xn) is nothing else but a Krasnoselski-Mann iteration of S (with constant
λ) one can use a previously extracted rate Θ(D, ε,N, η) of asymptotic regularity for
the latter from [98] and simply put

Φ(D, ε,N, η) := Θ(D,Ψ(D, ε,N, η), N, η).

The extraction of a full rate Θ is possible since the sequence (d(xn, Sxn))n∈N is non-
increasing so that d(xn, Sxn)→ 0 is in Π0

2.

For a different type of iteration, an explicit rate of asymptotic regularity for compo-
sitions for nonexpansive mappings in general classes of geodesic spaces is obtained
using proof mining in [101].
For so-called strongly (quasi-)nonxpansive mappings (see [28] for the definition of
‘strongly nonexpansive’ and [27] for ‘strongly quasi-nonexpansive’) T1, . . . , Tk : S →
S with ⋂ki=1 Fix(Ti) 6= ∅, where S ⊆ X is an arbitrary subset of a metric space X
it is known ([27]) that Fix(T ) = ⋂k

i=1 Fix(Ti), where T := Tk ◦ . . . ◦ T1.

In [71], we extracted from the proof of this fact a uniform bound Ψ such that

∀ε > 0
(
d(Tx, x) ≤ Ψ(ε)→

k∧

i=1
d(Tix, x) < ε

)
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which, in addition to ε, only depends on k, a common modulus of strong quasi-
nonexpansiveness, a bound d ≥ d(x, p) for some p ∈ ⋂ki=1 Fix(Ti) and a common
modulus of uniform continuity αd for T1, . . . , Tk on Sd := {y ∈ S : d(y, p) ≤ d}
([71], Proposition 4.15). Moreover, we extracted a rate of asymptotic regularity Φ
for (xn := Tnx) in the case where the T1, . . . , Tk are nonexpansive, in addition to
being strongly quasi-nonexpansive, where Φ, in addition to ε, only depends on k, a
common modulus of strong quasi nonexpansiveness and a bound d ≥ d(x, p) ([71],
Theorems 4.6,4.7). Put together, this yields:

∀ε > 0 ∀n ≥ Φ(Ψ(ε))
(

k∧

i=1
d(Tixn, xn) < ε

)
.

In UCW-spaces, so-called firmly nonexpansive mappings due to [25] are strongly
quasi-nonexpansive and nonexpansive (in uniformly convex Banach spaces even
strongly nonexpansive) and so these results apply to the firmly nonexpansive map-
pings. The latter contain in the context of CAT(0)-spaces (and so in particular in
Hilbert spaces) all metric projections onto closed convex subsets as well as resol-
vents of convex lower semicontinuous mappings (in Hilbert spaces even of general
maximally monotone operators). Thus the most important mappings used in convex
optimization are firmly nonexpansive. In [1], explicit rates of asymptotic regularity
for the Picard iteration Tnx of firmly nonexpansive mappings in UCW-space are
extracted which become quadratic in the CAT(0)-case. In [71] we reproved these
rates as instances of the more general results for strongly quasi-nonexpansive map-
pings discussed above. The latter class of mappings covers even metric projections
in CAT(κ)-spaces for κ > 0 which no longer are firmly nonexpansive and, in fact,
not even nonexpansive. One then, however, can still obtain metastable versions of
the above results which suffices to obtain rates of metastability for (Tnx) in the
compact case, where T is the composition of metric projections onto closed convex
sets that have a nonempty intersection, in the context of CAT(κ)-spaces for κ > 0
(see section 3.1.2 below). This situation is studied in convex optimization under the
label of convex feasibility problems and we will comment further on this in section
3.3.1.
Whereas strong nonexpansivity in uniformly Banach spaces is implied by being
firmly nonexpansive, this is false in general Banach spaces where these two concepts
are independent. Asymptotic regularity of firmly nonexpansive mappings in general
Banach spaces was first established in [113]. In [108], this is generalized to general
W -hyperbolic spaces and an exponential rate of asymptotic regularity is extracted:
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Theorem 3.3 ([108]). Let X be a W -hyperbolic space and C ⊆ X be a nonempty
bounded subset and let b be an upper bound on the diameter of C. Let T : C → C be
λ-firmly nonexpansive, i.e. (with (1− λ)a⊕ λb := W (a, b, λ))

d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy), for all x, y ∈ C,

for some λ > 0 and N ∈ N with N ≥ 1/λ. Then

∀x ∈ C ∀ε > 0 ∀n ≥ Φ(ε,N, b)
(
d(Tnx, Tn+1x) ≤ ε

)
,

where

Φ(ε,N, b) := M

⌈
2b(1 + eNM )

ε

⌉
with M :=

⌈4b
ε

⌉
.

3.1.2 Rates of metastability for strong convergence theorems based on
Fejér monotonicity

In this section we give a brief account of some of the results in [81]. In the following,
(X, d) is a metric space.

Definition 3.4 ([81]). 1. Let Fk ⊆ X and define F := ⋂
k∈N Fk.

Points of AFk := ⋂
i≤k Fi are called approximate F -points.

2. A sequence (xn) in X has approximate F -points if

∀k ∈ N ∃n ∈ N (xn ∈ AFk).

3. F is explicitly closed (w.r.t. (Fk)) if (B(p, ε) is the closed ε-ball with center p)

∀p ∈ X (∀N,M ∈ N(AFM ∩B(p, 1/(N + 1)) 6= ∅)→ p ∈ F ).

The canonical examples one has in mind here are the following:

• Fixed point sets: Let C ⊆ X and T : C → C and define

Fk :=
{
x ∈ C : d(x, Tx) ≤ 1

k + 1

}
.

Then the F - (resp. AFk)-points are the T -fixed points (resp. 1/(k + 1)-
approximate fixed points of T ). Note that if T is continuous, then F is always
explicitly closed.
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• Zero sets of maximally monotone operators: Let X be a real Hilbert
space and (for γ > 0) JγA := (Id + γA)−1 be the resolvent of γA for a
maximally monotone operator A : X → 2X . Let (γn) be a sequence in (0,∞)
and define

Fk :=
⋂

i≤k

{
x ∈ H : ‖x− JγiAx‖ ≤

1
k + 1

}
.

Then F = zer(A) := {x ∈ X : 0 ∈ Ax} (see also section 3.3.3 below for the
significance of this example).

Definition 3.5. (xn) ⊂ X is called Fejér monotone w.r.t. F (6= ∅) if

∀n ∈ N ∀p ∈ F (d(xn+1, p) ≤ d(xn, p)) .

Remark 3.6. [81] actually considers a much more general form of Fejér monotonic-
ity. In this definition one can also incorporate error terms δn ≥ 0 with ∑ δn <∞ :
quasi-Fejér monotonicity.
Proposition 3.7 ([81]). Let X be a compact metric space and F be explicitly
closed. If (xn) ⊂ X has approximate F -points and is Fejér monotone, then it con-
verges to a point x ∈ F.
The proof uses that sequences in X have convergent subsequences. Using results
due to [107] it follows that for most of the usual iterations (xn), the convergence
(Cauchyness) above already in the case X = [0, 1] implies the convergence (Cauchy-
ness) of monotone sequences in (xn) and hence ACA (Σ0

1-LEM). So effective rates
of convergence are largely ruled out.
The main result of [81] is a quantitative metastable version of the above theorem. In
order to state this we first have to introduce the appropriate uniform quantitative
versions of the concepts involved in the above proposition:

compactness → modulus γ of total boundedness
explicit closedness → moduli ω, δ of uniform closedness

approximate F -points → approximate F -point bound Φ
Fejér monotonicity → modulus χ of uniform Fejér monotonicity.

We now give the definition of these concepts:
Definition 3.8 ([81]). 1. γ : N → N is a modulus of total boundedness for X if

for all k ∈ N and any sequence (xn) in X

∃i < j ≤ γ(k)
(
d(xi, xj) ≤

1
k + 1

)
.
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2. F (more precisely (Fk)) is uniformly closed with moduli δF , ωF : N→ N if

∀k ∈ N ∀p, q ∈ X
(
q ∈ AFδF (k) ∧ d(p, q) ≤ 1

ωF (k) + 1 → p ∈ AFk
)

(compare (∗) in section 2.2).

3. Let (xn) be a sequence with approximate F -points. Φ : N → N is an approxi-
mate F -bound bound for (xn) if it is nondecreasing and

∀k ∈ N ∃N ≤ Φ(k) (xN ∈ AFk).

(xn) has the lim inf-property with bound Φ : N2 → N if Φ(k, n) is monotone in
both k, n and

∀k, n ∈ N ∃N ≤ Φ(k, n) (N ≥ n ∧ xN ∈ AFk).

4. (xn) is uniformly Fejér monotone w.r.t. F (more precisely: w.r.t. (Fk)) with
modulus χ : N3 → N if for all m,n, r ∈ N

∀p ∈ X
(
p ∈ AFχ(n,m,r) → ∀i ≤ m

(
d(xn+i, p) < d(xn, p) + 1

r + 1

))
.

Theorem 3.9 ([81]). Let X be totally bounded with modulus γ, (xn) be uniformly
Fejér monotone w.r.t. F with modulus χ and let (xn) have approximate F -points
with bound Φ. Then (xn) is Cauchy and for all k ∈ N and all g : N→ N :

∃N ≤ Ψ ∀i, j ∈ [N,N + g(N)]
(
d(xi, xj) ≤

1
k + 1

)
,

where Ψ(k, g,Φ, χ, γ) := Ψ0(P ) with

Ψ0(0) := 0,
Ψ0(n+ 1) := Φ

(
χMg (Ψ0(n), 4k + 3)

)
,

χMg (n, k) := max
i≤n
{χ(i, g(i), k), P := γ(4k + 3).

Additional results:
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• If F is additionally uniformly closed with moduli δF , ωF then

∃N ≤ Ψ̃∀i, j ∈ [N,N + g(N)]
(
d(xi, xj) ≤

1
k + 1 and xi ∈ AFk

)
,

where Ψ̃ results from Ψ by replacing k and χ by

k′ := max{k, d((ωF (k)− 1)/2e} and χ′(n,m, r) := max{δF (k), χ(n,m, r)}.

• Theorem 3.9 can be adapted to uniformly quasi-Fejér monotone sequences if
Φ is a lim inf-bound.

Using these quantitative results, rates of metastability have been obtained in the
following situations (the first item was already obtained earlier and served as moti-
vation for the general approach):

• Krasnoselski-Mann iterations of asymptotically nonexpansive mappings in uni-
formly convex spaces ([64]).

• Picard iterations of firmly nonexpansive mappings in uniformly convex W -
hyperbolic (‘UCW’-)spaces ([81, 1]).

• Ishikawa iterations of nonexpansive mappings in UCW-spaces ([81, 99]).

• Mann iterations of strict pseudo-contractions in Hilbert spaces ([81, 53], see
also section 3.1.3 below).

• The proximal point algorithm for the zeroes of maximally monotone operators
in Hilbert space ([81]; see also section 3.3.3 below).

• Mann iterations of mappings satisfying condition (E) ([81]).

• Convex feasibility problems in CAT(κ) spaces ([71]).

• Minimization problems for two maps ([82], see also section 3.3.2 below).

3.1.3 Rates of asymptotic regularity and metastability for pseudocon-
tractive mappings

An important generalization of the class of nonexpansive mappings are the so-called
pseudocontractive mappings that were introduced by Browder:
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Definition 3.10 ([22]). Let X be a normed linear space and C ⊆ X be a nonempty
convex subset of X. A mapping T : C → C is called pseudocontractive if it satisfies

∀u, v ∈ C ∀λ > 1 ((λ− 1)‖u− v‖ ≤ ‖(λId− T )(u)− (λId− T )(v)‖),

where Id denotes the identity mapping.

In a real Hilbert space X this is equivalent to

∀u, v ∈ C (〈Tu− Tv, u− v〉 ≤ ‖u− v‖2)

which in turn is equivalent to

∀u, v ∈ C (‖Tu− Tv‖2 ≤ ‖u− v‖2 + ‖u− Tu− (v − Tv)‖2).

In [89], a rate of asymptotic regularity is extracted from a convergence proof due to
[30] for an iteration schema due to [26] for Lipschitzian pseudocontractive mappings
in general Banach spaces. In the case where C is bounded, the rate is polynomial.
In the situation where X is a real Hilbert space, a rate of metastability for the strong
convergence of that iteration is obtained in [90]. Finally, analyzing a proof in [26],
Körnlein [88] recently extracted a rate of metastability for pseudocontractions that
are only assumed to be demicontinuous.
Whereas pseudocontractive mappings (already on R) in general are not continuous,
the smaller class of strict pseudocontractions (introduced by Browder and Petryshyn
in [24]) is even Lipschitzian:

Definition 3.11. Let X be a real Hilbert space and C ⊆ X be nonempty and convex.
Let T : C → C and 0 ≤ κ < 1. Then T is called a κ-strict pseudocontraction if

∀u, v ∈ C (‖Tu− Tv‖2 ≤ ‖u− v‖2 + κ‖u− Tu− (v − Tv)‖2).

In [53], the following rate of asymptotic regularity is extracted for Krasnoselski-Mann
iterations

x0 := x, xn+1 := (1− λn)xn + λnTxn

of κ-strict pseudocontractions in real Hilbert spaces (see also [119] for related re-
sults):

Theorem 3.12 ([53]). Let C be additionally bounded and b ≥ diam(C). If (λn) is
a sequence in (κ, 1) satisfying ∑∞n=0(λn − κ)(1 − λn) = ∞ with rate of divergence
θ : N→ N, then

Φ(k, b, θ) = θ
(
db2e(k + 1)2

)
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is a rate of asymptotic regularity for (xn), i.e.

∀k ∈ N ∀n ≥ Φ(k, b, θ)
(
‖xn − Txn‖ ≤

1
k + 1

)
.

3.2 Nonlinear Ergodic Theory
The classical von Neumann mean ergodic theorem, in the formulation due to Riesz,
states that the sequence (xn)n≥0 of Cesàro means

xn := 1
n+ 1

n∑

i=0
T ix

of a linear nonexpansive selfmapping T : X → X of a Hilbert space X starting
from x ∈ X strongly converges. In [77], a rate of metastability is extracted for a
generalization of this result to uniformly convex Banach spaces from a proof due to
G. Birkhoff which - as mentioned already at the end of section 2.6 - was subsequently
improved to a bound on the number of ε-fluctuations in [4].
If the linearity of T is dropped then one has (in the case of Hilbert spaces) weak
convergence by the famous Baillon nonlinear ergodic theorem ([8], also for T : C →
C, where C ⊆ X is a closed convex subset) but strong convergence is known to fail.
In [70] we extracted from an alternative proof of Baillon’s theorem in [18] an explicit
rate ϕ of metastability for the weak Cauchy property of (xn) (here N 3 b ≥ ‖x‖)

∀ε > 0 ∀g : N→ N ∀w ∈ B1(0) ∃n ≤ ϕ(ε, b, g) ∀i, j ∈ [n;n+ g(n)]
(|〈xi− xj , w〉| < ε

)

which, however, is too complicated to state here in detail but whose complexity was
already discussed in section 2.3.
In order to get strongly convergent nonlinear ergodic theorems one either has

(i) to add some weak form of linearity of T , e.g. being odd, or

(ii) to change the form of the sequence (xn), where in the presence of full linearity
of T this new sequence, nevertheless, coincides with the Cesàro means.

That (for symmetric C) the assumption of T being odd (in addition to being nonex-
pansive) implies the strong convergence of the sequence of Cesàro means was again
shown by Baillon ([9]) and much later generalized by Wittmann in [129] to the situ-
ation, where K is an arbitrary subset of X and T : K → K any (not even necessarily
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continuous) mapping satisfying the already mentioned condition

(W ) : ∀x, y ∈ K (‖Tx+ Ty‖ ≤ ‖x+ y‖)

which is implied (for symmetric K) if T is nonexpansive and odd.
In [116], a rate of metastability is extracted from Wittmann’s proof:

Theorem 3.13 ([116]). Let K ⊆ X be any subset of a Hilbert space and T : K → K

any mapping satisfying the condition (W ). Then the sequence (xn) of Cesàro means
of T starting from x ∈ K with ‖x‖ ≤ b strongly converges with rate of metastability

∀k ∈ N ∀g : N→ N ∃m ≤ Φ(k, b, gM ) ∀i, j ∈ [m,m+ g(m)] (‖xi − xj‖ ≤ 2−k),

where

Φ(k, b, g) := (N(2k + 7, g) + P (2k + 7, g)) · b · 22k+8 + 1,
P (k, g) := P0(k, F (k, g,N(k, g))),
F (k, g, n)(p) := p+ n+ g̃((n+ p) · b · 2k+1),
L(k, g)(n) := n+ P0(k, F (k, g, n)) + g̃((n+ P0(k, F (k, g, n))) · b · 2k+1),
N(k, g) := (L(k, g))(b22k+2)(0),
P0(k, f) := f̃ (b22k)(0), f̃(n) := n+ f(n), fM (n) := max

i≤n+1
f(i).

For other metastability results for iterations of odd operators see [67, 71].

Instead of adding a weak form of linearity one may also change the sequence (xn)
in the nonlinear case to achieve strong convergence: let us consider the so-called
Halpern iteration of T : C → C

x0 := x, xn+1 := λn+1u+ (1− λn+1)Txn

with starting point x ∈ C and the anchor u ∈ C, where (λn)n≥1 is a sequence in
[0, 1] (Halpern [50] only considered the case u := 0). In a celebrated paper [130],
Wittmann for first time proved the strong convergence of (xn) (X Hilbert space,
C ⊆ X closed and convex, T : C → C nonexpansive with Fix(T ) 6= ∅ and u = x)
under conditions on (λn) that permit the case λn := 1/(n+ 1). With this choice of
(λn), the sequence of Halpern iterates coincides with the sequence of Cesàro means
if T is assumed to be linear. In [68], we extracted a rate of metastability for this
strong convergence from Wittmann’s original proof making use of the quantitative
form of the projection to the fixed point set of T discussed already in section 2.3.
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[79] extracted such a rate from a rather different proof due to [115] for a general-
ization of Wittmann’s result to CAT(0) spaces X (and general u, x ∈ C). For the
aforementioned choice λn := 1/(n+ 1) and bounded C the result is:

Theorem 3.14 ([79]). Let (X, ρ) be a CAT(0) space, C ⊆ X be convex, diam(C) ≤
M , (xn) as above and ε ∈ (0, 1). Then (xn) is strongly convergent with rate of
metastability:

∀g : N→ N ∃k ≤ Σ(ε, g,M)∀i, j ∈ [k, k + g(k)]
(
ρ(xi, xj) ≤ ε

)
,

where4

Σ(ε, g,M) :=
⌈

12(M2χ∗
L(ε2/12)+1)
ε2

⌉
− 1, with L := h̃∗

(dM2/ε2
0e)(0) +

⌈
1
ε0

⌉
,

χ∗k(ε) :=
⌈

12M2(k+1)
ε + 288M4(k+1)2

ε2

⌉
− 1, ε0 := ε2/24(d+ 1)2,

Θk(ε) :=
⌈

3M2(χ∗
k(ε/3)+1)
ε

⌉
− 1, ∆∗k(ε, g) := ε

3gε,k(Θk(ε)−χ∗
k
(ε/3)) ,

gε,k(n) := n+ g
(
n+ χ∗k

(
ε
3
))
, h(k) := max

{⌈
M2

∆∗
k
(ε2/4,g)

⌉
, k
}
− k,

h∗(k) := h
(
k +

⌈
1
ε0

⌉)
+
⌈

1
ε0

⌉
, h̃∗(k) := k + h∗(k).

Further consequences of the analysis:

1. A quadratic rate of convergence for the asymptotic regularity ρ(xn, T (xn))→
0:

∀ε > 0 ∀n ≥ Ψ(ε,M) := 4M
ε

+ 32M2

ε2 (ρ(xn, T (xn)) ≤ ε).

This rate can be easily combined with the rate of metastability Σ from the
previous theorem: define for g : N → N and N ∈ N a new function gN (n) :=
g(n+N) +N and put

Σ′(ε, g,M) := Σ(ε, gΨ(ε,M),M) + Ψ(ε,M),

then

∀g ∈ NN ∃k ≤ Σ′(ε, g,M)∀i, j ∈ [k, k+g(k)]∀l ≥ k (ρ(xi, xj), ρ(xl, T (xl)) ≤ ε
)
.

4Correction to [79]: on p.2534, line 6, ‘ε’ in the condition on Dk must be ‘ε/2’ and hence the
factor ‘2304’ on line 19 (resp. ‘144’ on line 1 of p.651 in the addendum to [79]) must be ‘4608’ (resp.
‘288’). Also on p.2534, line 19 the factor ‘48M ’ must be ‘48M2’ and on p.2543, line 2 ‘16M2’ must
be ‘32M2’.
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2. Let zuk be the unique fixed point of the contraction

Tk(x) := 1
k
u⊕ (1− 1

k
)T (x).

Then the analysis yields primitive recursively in a given rate α of convergence
of the resolvent (zuk ) a rate of convergence of (xn).

Similar results for so-called modified Halpern iterations are obtained in [118].
A highly nontrivial extension of the analysis to the much more general case of
CAT(κ) spaces (with κ > 0) is given in [102].
In [80], a rate of metastability of (xn) for the case of uniformly smooth Banach
spaces is given relative to rate of metastability for the resolvent sequence (zuk ) which
is assumed to exist. Whereas, such a rate for the latter has been computed in [68]
for Hilbert spaces and in [79] for CAT(0)-spaces, it is subject of ongoing research to
achieve this even for Lp-spaces (1 < p < ∞) other than L2. The uniformly smooth
case is also treated in [87] under a somewhat different set of conditions on (λn) due
to [131] which also include the case λn := 1/(n+ 1).

3.3 Convex Optimization
In this section we discuss some recent applications of proof mining in the area of
convex optimization.

3.3.1 Convex feasibility problems

Let X be a real Hilbert space and Pi : X → Ci be the metric projections onto the
closed and convex subsets C1, . . . , Cr ⊆ X with C := ⋂r

i=1Ci 6= ∅.
The so-called convex feasibility problem (also called ‘image recovery problem’) is to
find a point p ∈ C in the ‘image set’ C.
For 1 ≤ i ≤ r, define Ti := Id + λi(Pi − Id) for 0 < λi ≤ 2, λ1 < 2 and put

T :=
r∑
i=1

αiTi, where α1, . . . , αr ∈ (0, 1) with
r∑
i=1

αi = 1.

By a result of Crombez [32, 33] one has Fix(T ) = C if C is nonempty. Moreover, T
is asymptotically regular, i.e. ‖Tn+1x− Tnx‖ → 0.
Define towards an ε-approximate version of the convex feasibility problem

Ci,ε :=
⋃
x∈Ci

Bε(x), Cε :=
⋂r

i=1
Ci,ε.
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By analyzing the proof of the (nontrivial) inclusion Fix(T ) ⊆ C one can extract a
bound (compare with the discussion after Theorem 3.2) δ(D, ε) > 0 such that (for
x ∈ X, p ∈ C and D ∈ N with D ≥ ||x− p‖)

∀ε ∈ (0, 1) (‖Tx− x‖ ≤ δ(D, ε)→ x ∈ Cε)

(see Theorem 3.1(i) in [55]).
This bound is then combined with a rate of asymptotic regularity (Theorem 2.3 in
[55]) to finally obtain the following quantitative solution of the approximate convex
feasibility problem:5

Theorem 3.15 ([55]). Let x0 ∈ X and D > ‖x0−p‖ for some p ∈ C and N1, N2 ∈ N
s.t.

1
N1
≤ min{αiλi : 1 ≤ i ≤ r}, 1

N2
≤ min{α1, 2− λ1}.

Then for xn := Tnx0 one has:

∀ε ∈ (0, 1) ∀n ≥ Ψ(D,N1, N2, ε) (xn ∈ Cε),

where

Ψ(D,N1, N2, ε) :=
⌈

1936 ·N6
1 · (D + 1)4(4N1 + 1)2 · (2N2 + 1)2

π · ε4

⌉
.

A similar result also holds for uniformly convex Banach spaces X, where then, how-
ever, one has to restrict λi to the interval (0, 1).
For quantitative versions of convex feasibility problems obtained in the context of
CAT(κ) spaces (κ > 0) via general proof mining results for iterations of composi-
tions of strongly quasi-nonexpansive mappings (as discussed in section 3.1.1), see
[71].

3.3.2 Quantitative results for the composition of two mappings

Whereas in the convex feasibility problems discussed in the previous section one
assumes that the intersection of the convex sets is nonempty and so that a common
fixed point of the respective projections exists, the significance of the next theorem
is that it only assumes the existence of a fixed point of the composition of two
mappings:

5Correction to [55]: in Corollary 4.3(i),(ii) replace ‘F (T ) 6= ∅’ by ‘C0 6= ∅’ and drop the dummy
argument ‘d’ in Ψ.

3395



Kohlenbach

Theorem 3.16 ([2]). Let X be a CAT(0)-space and T1, T2 : X → X satisfying the
condition (which for Hilbert spaces X is equivalent to being firmly nonexpansive)

(P ) : 2d(Tix, Tiy)2 ≤ d(x, Tiy)2 + d(y, Tix)2 − d(x, Tix)2 − d(y, Tiy)2.

Let Fix(T2 ◦ T1) 6= ∅ and consider sequences (xn), (yn) in X with

d(yn, T1xn) ≤ εn and d(xn+1, T2yn) ≤ δn, for all n ∈ N,

where ∑∞n=0 εn <∞ and ∑∞n=0 δn <∞. Then

lim d(yn+1, yn) = lim d(xn+1, xn) = 0.

The proof makes repeated use of the convergence of bounded monotone sequences
in R and hence of arithmetical comprehension.
Motivation behind the theorem:
Consider two proper, convex and lower semi-continuous f, g : X → (−∞,+∞] and
define (see [14] for the study of this problem in the context of Hilbert spaces and
[11] for the generalization to CAT(0)-spaces)

Φ(x, y) := f(x) + g(y) + 1
2λd(x, y)2.

Then the resolvents T1 = Jgλ , T2 = Jfλ of f, g satisfy (P ), where

Jgλ(x) := argmin
z∈X

[
g(z) + 1

2λd(x, z)2
]

(see [7] for the study of the resolvents in the context of CAT(0)-spaces).
Computing sequences (xn), (yn) as above (which only requires to know the resolvents
up to some error) provides ε-solutions for the minimization problem

argmin
(x,y)∈X×X

Φ(x, y).

For this particular case, a quadratic rate of asymptotic regularity is extracted in [2]
in the absence of error terms (i.e. δn = εn = 0) and extended to the situation with
error terms in [82] (see Remark 3.4 in that paper).
In the general situation of Theorem 3.16 one has an exponential bound:

3396



Recent Progress in Proof Mining

Theorem 3.17 ([82]). Let α be a Cauchy-rate for ∑∞n=0 γn, where γn := εn+δn and
let B ∈ N, b > 0 be such that ∑ γn ≤ B and d(x0, u) ≤ b for some u ∈ Fix(T2 ◦ T1).
Then

∀n ≥ Φ(ε, b, B, α) (d(xn, xn+1) ≤ ε),
where

Φ(ε, b, B, α) := α(ε/3) + k

⌈
12(1 + 2k)(b+B)

ε

⌉
+ 1, k :=

⌈12(b+B)
ε

⌉
.

Similarly for (yn) with Φ′(ε, b, B, α) := Φ(ε/2, b, B, α).

The sequences (xn), (yn) are easily be seen to be uniformly quasi-Fejér monotone.
Hence using Theorem 3.9 (adapted to quasi-monotonicity) one obtains rates of
metastability in the case where X is totally bounded:

Theorem 3.18 ([82]). Let X additionally be totally bounded with a modulus γ. Then

∀k ∈ N ∀g : N→ N ∃n ≤ Ψ(k, g)∀i, j ∈ [n, n+ g(n)]
(
d(xi, xj) ≤

1
k + 1

)
,

where

Ψ(k, g) := Ψ0(P ), P := γ(8k + 7) + 1, ξ(k) := α(1/(k + 1)),
χMg (n, k) := (max

i≤n
g(i)) · (k + 1),

and using (Φ̂(k,N) := max{N,Φ(1/2(i+ 1)) : i ≤ k} with Φ from Theorem 3.17)

Ψ0(0) := 0, Ψ0(n+ 1) := Φ̂
(
χMg (Ψ0(n), 8k + 7) , ξ(8k + 7)

)
.

A similar bound holds for (yn).

Note that asymptotic regularity in the above situation is just the special case of
metastability when g(n) := 1 for all n ∈ N. The fact that the proof of asymptotic
regularity does not use the total boundedness of X is reflected by the above rate of
metastability: if g(n) does not depend on n, then also χMg (n, k) does not depend on
n and so the recursive definition of Ψ(n) becomes constant from n = 1 on. Hence
the bound does not depend on the modulus of total boundedness γ (as this only
enters into P ) and the bound (essentially) collapses to the rate of metastability Φ
from Theorem 3.17.
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3.3.3 Proximal point algorithm

Let X be real Hilbert space and A : X → 2X be a maximally monotone, JγA =
(Id+ γA)−1 be the resolvent of γA for γ > 0 and (γn) ⊂ (0,∞).
The famous proximal point algorithm (due in this setting to [114] but formulated in
the important case of resolvents of convex lower semi-continuous functions already
in [104]) is given by (see the 2nd example after Definition 3.4 above)

x0 ∈ X, xn+1 := JγnAxn.

Proposition 3.19 ([81]). 1. (xn) is uniformly Fejér monotone (w.r.t.
F = ⋂

k∈N Fk, where Fk := ⋂
i≤k

{
x ∈ H : ‖x− JγiAx‖ ≤ 1

k+1

}
) with modulus

χ(n,m, r) := max{n+m− 1,m(r + 1)}.

2. If ∑ γ2
n =∞ with rate of divergence θ, then

Φb,θ(k) := θ(db2(Mk + 1)2e)db2(Mk + 1)2e − 1,

where Mk := d(k + 1)(2 + max0≤i≤k γi)e − 1 and ‖x0 − p‖ ≤ b for some p ∈
zer(A), is an approximate F -point bound for (xn).

Hence, Theorem 3.9 can be applied to obtain a rate of metastability in the finite
dimensional case.

3.3.4 The hybrid steepest descent method

Let X be real Hilbert space and consider a mapping Θ : X → R. The goal is to
solve min Θ over a closed convex subset S ⊆ X.
Let the gradient F := Θ′ of Θ be κ-Lipschitzian and η-strongly monotone and
S = Fix(T ) for some nonexpansive T : X → X. Then the above goal is equivalent
to solving the following variational inequality problem:

VIP: Find u∗ ∈ S s.t. 〈v − u∗,F(u∗)〉 ≥ 0 for all v ∈ S.

In [132], Yamada showed that under suitable conditions on (λn) the scheme (with
µ := η/κ2)

un+1 := T (un)− λn+1µFT (un)

converges strongly to a solution of VIP.
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Very recently, Körnlein [86] extracted an explicit and highly uniform effective rate
of metastability for (un). In fact, [86] does this also for a generalization to finite
families of mappings T1, . . . , TN : C → C (that is also considered by [132]) and for
general τ -contractions G : C → C (with τ ∈ (0, 1) and C closed and convex, instead
of G := Id− µF only)

(∗) un+1 := (1− λn+1)T[n+1](un) + λn+1GT[n+1](un),

where [n] is the ‘modulo N ’ function (note that, for N = 1, this schema has also
been known as Moudafi’s viscosity method, see [106]). The conditions on (λn) are
those considered in [130] which allow for the choice of λn+1 := 1/(n + 1) (see the
discussion before Theorem 3.14). [106] (and also Yamada [132] in his first proof for
the case N = 1) used stronger conditions which do not permit this choice. However,
in his proof for general N, which even for N = 1 is different from his first proof,
Yamada needs only the Wittmann conditions (and also the viscosity method has
later been studied under these conditions by various authors).

3.4 Nonlinear Semigroups and Abstract Cauchy Problems
3.4.1 Proof Mining in nonlinear semigroup theory

Let X be a Banach space, C ⊆ X a nonempty convex subset and λ ∈ (0, 1).

Definition 3.20. A family {T (t) : t ≥ 0} of nonexpansive mappings T (t) : C → C
is a nonexpansive semigroup if

(i) T (s+ t) = T (s) ◦ T (t) (s, t ≥ 0),
(ii) for each x ∈ C, the mapping t 7→ T (t)x is continuous.

Theorem 3.21 ([123]). Let 0 < α < β be such that α/β is irrational. Then any
fixed point p ∈ C of

S := λT (α) + (1− λ)T (β)

is a common fixed point of T (t) for all t ≥ 0, i.e. (note that trivially ‘⊇’)

Fix(S) =
⋂

t≥0
Fix(T (t)).

Suzuki’s proof uses weak König’s lemma WKL in the form that a continuous func-
tion [0,M ]→ R on a compact interval [0,M ] attains its maximum. General logical
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metatheorems for the extraction of uniform bounds become applicable once we as-
sume additionally that t 7→ T (t)x is equicontinuous on norm-bounded subsets of C
with a modulus ω : N3 → N. This condition (which is usually satisfied in practice)
is only needed to make the bound Φ (discussed below) independent of the point
p ∈ C. Let fγ : N → N be a modulus of irrationality (called effective irrationality
measure in number theory) for γ := α/β, Λ, N,D ∈ N be s.t. 1/Λ ≤ λ, 1 − λ and
1/N ≤ β ≤ D. Then one can extract a bound Φ(ε,M, d) := Φ(ε,M, d,N,Λ, D, fγ , ω)
s.t. for all M,d ∈ N :

∀p ∈ C ∀ε > 0
(‖p‖ ≤ d∧ ‖S(p)− p‖ < Φ(ε,M, d)→ ∀t ∈ [0,M ] (‖T (t)p− p‖ < ε)

)
.

Let xn+1 := 1
2xn + 1

2Sxn be a d-bounded Krasnoselski iteration of S with rate of
asymptotic regularity Ψ(ε, d), then

∀n ≥ Ψ(Φ(ε,M, d), d) ∀t ∈ [0,M ] (‖T (t)xn − xn‖ < ε).

In the case at hand, the optimal rate Ψ is known. Combining this with the explicitly
extracted Φ the following final rate is obtained:

Theorem 3.22 ([74]). Under the previous assumptions:

∀M ∈ N ∀m ∈ N ∀n ≥ Ω(m,M, d) ∀t ∈ [0,M ] (‖T (t)xn − xn‖ < 2−m)

with

Ω(m,M, d) = 22m+8d2((∑φ(k,fγ)−1
i=1 Λi + 1)(1 +MN))2

π
,

where d ≥ ‖x0 − Sxn‖, ‖xn‖ for all n, k := D2ωD,b(3+[log2(1+MN)]+m)+1 and

φ(k, f) := max{2f(i) + 6 : 0 < i ≤ k}.

Example: α =
√

2, β = 2, λ = 1/2. Then we may take Λ = 2, N = 1, D = 2, fγ(p) =
4p2.

Remark 3.23. A bound d on either of the sequences (‖x0 − Sxn‖), (‖xn‖) can be
transformed into one of the other: let b ≥ ‖xn‖ for all n ∈ N. Then for B ≥
‖x0 − Sx0‖ and using that (‖xn − Sxn‖) is nonincreasing one gets that

‖x0 − Sxn‖ ≤ ‖x0 − xn‖+ ‖xn − Sxn‖ ≤ 2b+B.

Conversely, b ≥ ‖x0 − Sxn‖ for all n ∈ N implies for B′ ≥ ‖x0‖

‖xn‖ ≤ ‖x0‖+‖x0−Sxn‖+‖Sxn−xn‖ ≤ ‖x0‖+‖x0−Sxn‖+‖Sx0−x0‖ ≤ b+B+B′.
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3.4.2 Cauchy problems and set-valued accretive operators

Let X be a real Banach space and let D(A) denote the domain of a set-valued
operator A. A : D(A)→ 2X is accretive if

∀(x, u), (y, v) ∈ A (〈u− v, x− y〉+ ≥ 0
)
,

where 〈y, x〉+ := max{〈y, j〉 : j ∈ J(x)} for the normalized duality map J of the
Banach space X.
A with 0 ∈ Az is uniformly accretive at zero with modulus Θ : N2 → N if, moreover,

∀k,K ∈ N ∀(x, u) ∈ A (‖x− z‖ ∈ [2−k,K]→ 〈u, x− z〉+ ≥ 2−ΘK(k))

([73]). E.g. this holds for m-ψ-strongly accretive operators or even for φ-accretive
operators in the sense of García-Falset [38] if φ has some normal form (which is the
case in many applications).
Consider the following homogeneous Cauchy problem for an accretive A (satisfying
the so-called range condition):

(1)
{
u′(t) +A(u(t)) 3 0, t ∈ [0,∞)
u(0) = x0,

which has a unique integral solution for x0 ∈ D(A) given by the Crandall-Liggett
formula

u(t) := S(t)(x0) := lim
n→∞(Id+ t

n
A)−n(x0).

A continuous v : [0,∞) → D(A) is an almost-orbit of the nonexpansive semigroup
S if

lim
s→∞( sup

t∈[0,∞)
‖v(t+ s)− S(t)v(s)‖) = 0.

Theorem 3.24 ([37]). Let A be a φ-accretive at zero operator with the range condi-
tion s.t. (1) has a strong solution for each x0 ∈ D(A). Then every almost-orbit (for
the semigroup S generated by −A) strongly converges to the zero z of A.

Theorem 3.25 ([73]). Same as above but A uniformly accretive at zero with modulus
Θ. Then

∀k ∈ N ∀g : N→ N ∃n ≤ Ψ∀x ∈ [n, n+ g(n)]
(‖v(x)− z‖ < 2−k

)
,
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where

Ψ(k, g,B,Φ,Θ) := Φ(k + 1, g) + h(Φ(k + 1, g)), with
h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1, g(n) := g(n+ h(n)) + h(n),
K(n) :=

⌈√
2(B(n) + 1)

⌉
, B(n) ≥ 1

2‖v(n)− z‖2 (B(n) nondecreasing),

and Φ is rate of metastability for v, i.e.

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g) ∀t ∈ [0, g(n)] (‖v(t+ n)− S(t)v(n)‖ ≤ 2−k).

Consider now the nonhomogeneous Cauchy problem (A as before):

(2)
{
u′(t) +A(u(t)) 3 f(t), t ∈ [0,∞)
u(0) = x,

where f ∈ L1(0,∞, X).
Then for each x ∈ D(A) the integral solution u(·) of (2) is an almost-orbit ([105]).

Proposition 3.26 ([73]).

ΦM (k, g) := g̃(M ·2k+1)(0)

with
g̃(n) := n+ g(n), M ≥

∫ ∞

0
‖f(ξ)‖dξ

is a rate of metastability of u (and so can be used as Φ in the previous theorem).
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Abstract
We motivate several open questions about sequences of hypergraphs associ-

ated to first-order formulas, part of a developing constellation of ideas at the
meeting point of model theory, graph theory, and the theory of ultrafilters.

1 Introduction
Ultraproducts are a kind of limit construction built to reflect the average behavior
of a sequence of mathematical structures, such as graphs, groups, or fields. Ultra-
products average and, at the same time, amplify. Since the average is taken in the
sense of an ultrafilter, as will be explained below, the average behavior visible in
this limit structure is often not uniformly approximated in the index (factor) models.
Sometimes it is approximated very obscurely. In fact, one of the most interesting
things about the ultraproduct construction is precisely this distance between what
appears ‘on average’, in the limit structure, and what appears in the factors.

Investigating this issue can be useful in two senses. On one hand, it may tell us
something interesting about the structure of the ultrafilter – the object responsible
for the averaging. On the other hand, it may tell us something about the objects
being averaged: what in the nature of their basic combinatorial structure is amenable
to the kind of amplification which the ultraproduct reflects, or is able to resonate
with a particular known amplifier in the ultrafilter. This is especially useful in the
case of an ultrapower, when all the factor structures are isomorphic. In this case the
ultraproduct may essentially function as scaffolding allowing us to identify inherent
properties of the object itself which explain its amenability to amplification or, so
to speak, its resonance.
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The purpose of this note is to motivate and explain two open questions arising
from the author’s early papers. The problems have been discussed informally for
several years following those papers, but prior to the present note the relevant defi-
nitions, theorems, elementary observations and intuitions were spread across several
articles and in some cases not written down. The first is the (ultrapower) clique cov-
ering problem, which has a natural relation to the fundamental problem of Keisler’s
order. The second has to do with stability of the so-called characteristic sequence
of a formula. Along the way, we define most terms and discuss interesting variants.

Thanks to R. Shore for some helpful comments.
It is a pleasure to thank here M. Baaz and V. Sabljakovic-Fritz.
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2 Basic Definitions
In this section we define the basic objects: models, ultraproducts, and regular ul-
trafilters.

For a model theorist a structure (a graph, a group, a field...) is given in the
following formal way. First we fix a language L, which is a possibly infinite set of
relation, function, and constant symbols (relation and function symbols are given
with the data of their arity). We assume without further mention that all languages
contain a binary relation = which will be interpreted to mean equality. For example,
we might take the language {R} containing a binary relation symbol, or the language
{+,×, 0, 1} containing two binary functions and two constants. Now a model (i.e.
a mathematical structure) in a given language L is given by the data of some set
M – called the domain of the model – along with instructions for how to interpret
each symbol of L. That is, each constant of L is assigned to an element of the
domain, each k-ary relation symbol is assigned to some (possibly empty) subset of
Mk, and each k-ary function symbol is assigned to some subset of Mk+1 which is
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the graph of a function with domain Mk. In slight abuse of notation, we will use
M to refer both to the model and its domain. To see the use of this formalism,
note that two models are defined to be isomorphic if there is a bijection between
their domains which preserves relations, functions, and constants; in particular, this
formalism is a way of pointing out exactly what structure we want to pay attention
to while eliding what we do not. For a model theorist, if L = {R} is a single
binary relation, then the model M with domain Q and RN = {(p, q) ∈ Q×Q : p <
q in the usual ordering on the rationals} has many automorphisms which preserve
the ordering, but not the arithmetic structure.1

Some notation: given a k-ary relation symbol R of L, an L-model M , and
elements a1, . . . , ak ∈ M , we say that R holds of a1, . . . , ak in N , in symbols N |=
R(a1, . . . , ak), when (a1, . . . , ak) ∈ RN . Likewise, write N |= f(a1, . . . , ak) = ak+1
when (a1, . . . , ak+1) ∈ fM .

Given this setup, it is natural to fix a language L and consider averaging se-
quences of L-models (for instance, a sequence of infinite graphs) to create a larger
L-structure where the interpretations of the symbols of L directly reflect the behav-
ior of the factors. The definition of model has two steps – giving the domain and
interpreting the symbols – so we will build an ultraproduct in two steps to reflect
this. First we need to know which subsets of I are large. An ultrafilter is a coherent
way of making this decision.2

Definition 2.1 (Ultrafilter). An ultrafilter D on a set I is a collection D ⊆ P(I)
which does not contain the empty set, is upward closed (A ∈ D and A ⊆ B ⊆ I
implies B ∈ D), is closed under finite intersection (A,B ∈ D implies A ∩ B ∈ D)
and contains precisely one of A and I \A for all A ⊆ I.

The simplest example of an ultrafilter is given by fixing some element i∗ ∈ I and
declaring that a set is ‘large’ iff it contains i∗. This is indeed an ultrafilter, called
the principal ultrafilter generated by {i∗}.

It follows from Zorn’s lemma or by transfinite induction that so-called non-
principal ultrafilters exist (necessarily, in these cases I is infinite and the ultrafilters
in question contain all co-finite sets). In what follows, unless otherwise stated, all
ultrafilters are non-principal.

1Note that the given choice of relation, function, or constant symbol makes no formal demands
on how we interpret it, though in practice, when it is unlikely to cause confusion, we often use
symbols such as +, ×, < and assume they have the natural interpretation in the given context.

2Ultrafilters have a rich history in set theory and general topology, dating to early in the
twentieth century. For a nice story of how they answer Bourbaki’s question of whether the notion
of limit can be liberated from the countable, see [20]. On ultrafilters and limits, see e.g. [8].
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Suppose now that 〈Xi : i ∈ I〉 is a sequence of infinite sets and D is an ultrafilter.
Consider the equivalence relation ∼ on the Cartesian product ∏i∈I Xi defined by:

〈ai : i ∈ I〉 ∼ 〈bi : i ∈ I〉 iff {i ∈ I : ai = bi} ∈ D.

That ∼ is an equivalence relation follows from the fact that any ultrafilter is closed
under finite intersection.

Definition 2.2 (Ultraproduct). Fix a set I, and a language L and let 〈Mi : i ∈ I〉
be a sequence of L-models, called the index models. Let D be an ultrafilter on I. The
ultraproduct N = M I/D is defined to be the following L-model.

• The domain of N is the set of equivalence classes of M I under the relation
∼. In what follows, we fix a representative for each equivalence class, so that
given a ∈ N and i ∈ I it is well defined to write “a[i]” for the i-th coordinate.3

• For each k-ary relation symbol R of L, and every a1, . . . , ak ∈ N , we define

(a1, . . . , ak) ∈ RN ⇐⇒ {i ∈ I : (a1[i], . . . , ak[i]) ∈ RM} ∈ D.

• Likewise, for each k-ary function symbol f of L, and every a1, . . . , ak, b ∈ N ,
we define

fN (a1, . . . , ak) = b ⇐⇒ {i ∈ I : fM (a1[i], . . . , ak[i]) = b[i]} ∈ D.

• Likewise, for each constant symbol c of L, and every a ∈ N , we define

cN = a ⇐⇒ {i ∈ I : cM = a[i]} ∈ D.

In other words, a relation, function, or constant holds of a tuple in N if and only if
it holds of the projections to the index models D-almost everywhere. We say that N
is an ultrapower when the sequence 〈Mi : i ∈ I〉 is constant, and in this case often
write simply M I/D.

For example, if L = {R} as above, 〈Mi : i ∈ I〉 is an infinite sequence of
undirected graphs, and N = ∏

i∈IMi/D, then N is also an infinite undirected graph
and elements a, b ∈ N are connected by an edge in N precisely when on a D-large set
of i, ai, bi have an edge inMi. The last item in the definition of ultrafilter guarantees
that this is well defined.

3It is easy to see that the definition does not depend on the choice of representative.
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In some sense, the ultraproduct amplifies and smooths.4 For example, we will
justify the following example presently.

Example 2.3. If L = {+,×, 0, 1}, I is the set of primes, for each p ∈ I Mp = F̄p
is the algebraic closure of the finite field Fp, and D is a nonprincipal ultrafilter on
I, then N = ∏

p∈IMp/D will be isomorphic to the field C.

Even when 〈Mi : i ∈ I〉 is a constant sequence there is a built in amplification.
For example, if M is a countably infinite graph and D is a nonprincipal ultrafilter
on a countable set then M I/D will have cardinality continuum. We will return to
the question of size in a moment.

By considering the definition of ultraproduct, it is easy to see that some kinds of
structure immediately transfer from the factors Mi to N . For example, if L = {R}
and the Mi are all undirected graphs with no loops and no multiple edges, the
same is true of N (if some of the Mi are directed graphs, then whether or not N is
directed depends on whether the set of i for whichMi is a directed graph is D-large).
Likewise, if L = {+,×, 0, 1} and the Mi are all fields, then N is likewise a field. The
right general statement is that we have a transfer principle for any mathematical
statement expressible in first-order logic.

Theorem 2.4 (Łos’ Theorem). Fix a language L. Suppose we are given an ultra-
product N = ∏

i∈IMi/D of L-structures, a formula ϕ(x1, . . . , xk) of first-order logic
in the language L, and elements a1, . . . , ak ∈ N . Then

N |= ϕ(a1, . . . , ak) ⇐⇒ {i ∈ I : M |= ϕ(a1[i], . . . , ak[i])} ∈ D.

In particular, for any sentence (=formula with no free variables) θ of L,

N |= θ ⇐⇒ {i ∈ I : M |= θ} ∈ D.

Łos’ theorem is often called the “fundamental theorem of ultraproducts.” An
easy but surprising consequence, the second fundamental theorem of ultraproducts,
answers (among other things) the following question. Suppose we consider a model
M consising of two disjoint parts: a copy of (N, <) and a copy of (Q, <). In the
ultrapower N = M I/D we will also have two parts: a large discrete linear order and
a large dense linear order. Will these two parts have the same size?

4Although there were earlier precedents, the general ultraproduct construction was defined by
Łos’ in the 1950s, and subsequently developed by Tarski, by Frayne, Morel and Scott, by Keisler, by
Kochen and others starting in the early 1960s. For more on the history, from one of the founders,
see the recent survey of Keisler [7].
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Theorem 2.5 (Ultrapowers commute with reducts). Fix languages L ⊆ L′ and an
L′-model M . Let D be an ultrafilter on I. Write � L for the reduct to L, that is, the
model with the same domain obtained by forgetting the interpretations of symbols in
L′ \ L. Then

( M � L )I /D =
(
M I/D

)
� L.

In other words, if we forget the interpretation of some symbols before or after
taking the ultrapower, it doesn’t make a difference. This shows the answer to the
question is yes. Why? Suppose we had considered M in a larger language L′ in
which there was a function symbol f interpreted as a set bijection between the two
countable sets N and Q. In the ultrapower, by Łos’ theorem, f would remain a
bijection so the two corresponding amplifications would have to have the same size.
But the theorem says that we may forget f before or after taking the ultrapower
without changing the result.5

The astute reader may now notice the following. By Łos’ theorem, for any first-
order formula ϕ(x̄), and any first-order sentence ψ, ψ holds on the solution set of
ϕ in N if and only if it holds on the solution set of ϕ in Mi for D-almost all i ∈ I.
In other words, a given first-order property is true of a given definable set in the
ultraproduct if and only if it is true of its projections D-a.e. So Theorem 2.5 entails
that the statement just made remains true if we replace “definable set” by the more
general “internal set”:

Definition 2.6 (Internal set). Let N = ∏
i∈IMi/D and X ⊆ Nk. We say that

X is internal if for some 〈Xi : i ∈ I〉 with Xi ⊆ (Mi)k, if we were to expand the
language by a new k-ary predicate P , interpret PMi = Xi for each i, and let PN be
the interpretation induced on N by the definition of ultraproduct, then PN = X.

Internal functions are defined analogously. Internal sets and functions – those
definable in any possible expansion of the index models to a larger language – faith-
fully reflect structure between the index models and the ultraproduct. As we will see,
one way of studying the dissonance between what appears in the ultraproduct and
what appears in the factor models has to do with how far ultraproduct phenomena
are from being internal.

5The reader may modify this argument to show that if L = {E}, a binary relation symbol,
and M is a countable model in which E is an equivalence relation with infinitely many classes
all of which are infinite, then in any ultrapower N = MI/D all equivalence classes of EN have
the same size, and moreover this size is the same as the number of equivalence classes of EN . In
model-theoretic language, although this is not an uncountably categorical theory, its ultrapowers
are effectively determined by their size. What if E has classes of arbitrarily large finite size? Here
things get interesting; see Keisler’s order, e.g. in the introduction to [18].
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We need one more definition. For clarity in what follows we will focus on ul-
trafilters which have a finiteness property called regularity. When D is regular, any
“small” set in any D-ultraproduct may be thought of as being pseudofinite in the
following sense. In the context of an ultraproduct ∏i∈IMi/D, we will use “small”
to mean “of size ≤ |I|.” Given an ultraproduct N = ∏

i∈IMi/D and small X ⊆ N ,
we say that X is covered by an ultraproduct of finite sets if there exists a sequence
〈Xi : i ∈ I〉 with each Xi a finite subset of Mi, and such that X ⊆ ∏i∈I Xi/D.

Definition 2.7 (Regular ultrafilters). Let I be an infinite set and let D be an ultra-
filter on I. We say that D is regular if in every ultraproduct N = ∏

i∈IMi/D, every
small X ⊆ N is covered by an ultraproduct of finite sets.

The reader may prefer one of the following equivalent definitions, expressing that
there is a collection of large sets which are very spread out: (a) Equivalently, we
say D is regular if there is a family of sets {Yt : t < |I|} ⊆ D, called a regularizing
family, such that the intersection of any infinitely many elements of this family is
empty. Note that the intersection of any finitely many is necessarily still in D by
closure under intersection. (b) Equivalently, we say D is regular if there is a family
of sets {Yt : t < |I|} ⊆ D such that each i ∈ I belongs to no more than finitely many
elements of this family.

Any nonprincipal ultrafilter on a countable set will be regular: fix some enumer-
ation of I as {in : n < ω} and consider the family {Yn := {im : m ≥ n} : n < ω}. In
general, regular ultrafilters on any infinite set always exist, see e.g. [3, Proposition
4.3.5]. (Donder proved that in the core model, all ultrafilters are regular [4].)

Convention 2.8. For the rest of the paper, we assume all ultrafilters are regular,
thus nonprincipal, unless otherwise stated.

It is in general complicated to compute the size of an ultrapower, but when the
ultrafilter is regular there is a nice answer, due to Frayne, Morel and Scott and to
Keisler: it’s the same size as the Cartesian power.

Theorem 2.9 (see [3] 4.3.7). If D is a regular ultrafilter on I then for any infinite
model M ,

|M I/D| = |M ||I|.
Moreover, if 〈Mi : i ∈ I〉 is a sequence of models all of the same infinite size κ, then
|∏i∈IMi/D| = κ|I|.

Stating this theorem with separate cases for ultrapowers and ultraproducts is a
red herring; size can be computed in the language with only equality, and on top of
this one can build whatever index models one likes by quoting Theorem 2.5.
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As an exercise, let us apply the facts just explained to justify Example 2.3. Let
N be the ultraproduct in that example. Any nonprincipal ultrafilter on a countable
set will be regular, so N has cardinality continuum. In the given language we may
write down the infinitely many axioms for an algebraically closed field, and observe
for each such axiom that it is true in all of the index models, so by Łos’ theorem it is
true in N . On the other hand, for each prime p, let ψp say that 1 + · · ·+ 1 (p times)
= 0. Then each ψp is false D-almost everywhere so by Łos’ theorem false in N . So
N is an algebraically closed field of characteristic zero and cardinality continuum,
so it must be isomorphic to C.

For more on ultraproducts, see [3] Chapters 4 and 6.

We may now give some precise versions of the questions raised in the intro-
duction. To begin, we will focus on ultrapowers of graphs. In keeping with our
model-theoretic notation, a graph G = (V,E) is given by the data of a set of ver-
tices V along with a symmetric irreflexive binary relation E on V × V . We often
identify G with its underlying vertex set, e.g. the size of G is the size of V , and “a
subset X of G” means X ⊆ V given along with the restriction of E to X, i.e. the
subgraph induced on the set of vertices X. The expression X ⊆ Y ⊆ V will always
imply that X is an induced subgraph of Y , and that both X and Y are induced
subgraphs of V . We call X ⊆ G a clique, or complete graph, if every two distinct
vertices of X are connected by an edge, and an independent set, or empty graph, if
no two vertices of X are connected by an edge.

3 The Clique Covering Problem
Returning to the question of how average structure is reflected between the factor
models and the ultraproduct or ultrapower, in this section, we fix L = {R} and all
our models will be graphs. Here the clique covering problem is defined; its source
and history are described in the next section.

Consider an ultrapower N = M I/D. If M is a clique, then necessarily so is N :
we can either check the definition one pair at a time, or notice that (∀x)(∀y)(R(x, y))
is first order and quote Łos’ theorem. Recall from the previous section that in the
context of an ultrapower, small means ≤ |I|. Suppose now thatM is some arbitrary
graph and A ⊆ N = M I/D is a small infinite clique. There is a priori no reason
that for a given i ∈ I, the projection {a[i] : a ∈ A} will be a clique in the i-th
copy of M . All that “A is a clique in N” means is that for each pair a, b ∈ A,
there is some set Sa,b ∈ D such that i ∈ Sa,b implies that R(a[i], b[i]) in Mi. The
sets Sa,b may vary quite a bit as a, b vary, and any given i ∈ I many not belong
to many of them. Moreover, even if we refine the projections in a reasonable way
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(by considering some function d : A → D and considering projections of the form
{a[i] : a ∈ A ∧ t ∈ d(a)}) it’s not obvious we will get cliques everywhere or almost
everywhere. This motivates the following definition.

Definition 3.1. Let D be regular and suppose X ⊆ GI/D is a clique. We say X
is covered by an ultraproduct of cliques if there exists a sequence 〈Xi : i ∈ I〉 with
each Xi a finite clique of G such that X ⊆ ∏i∈I Xi/D.

We say the cliques of G are covered by D if in the ultrapower GI/D, every small
clique is covered by an ultraproduct of cliques.

Put otherwise, 3.1 asks if a clique is “on average” a clique. Notice this is a two
place relation, involving both the graph G and the ultrafilter D. It has to do with
the existence of a function d : A→ D as described above. Note that for small X, the
condition that each Xi is finite comes for free from the definition of “D is regular”.
The question is whether we may find a possibly smaller pseudofinite set containing
X which is internally a clique – whether the internal and external pictures are in
some kind of alignment.

Definition 3.2. Let G,G′ be infinite graphs. Suppose that for every infinite cardinal
λ, every set I of size λ, and every regular ultrafilter D on I, if the cliques of G′ are
covered by D then already the cliques of G are covered by D. In this case we write

G Eg G′.

Notice that built into Definition 3.1 is a restriction on the size of the cliques we
consider (they must all be small, i.e. of size ≤ |I|). This definition gives a a pre-order
on infinite graphs, which we will think of as a partial order on the E-equivalence
classes. The problem dates to [9], in a different language.

Problem 3.3 (The (Ultrapower) Clique Covering Problem).

1. Determine the structure of the relation Eg on infinite graphs.

2. Give a graph-theoretic characterization of the relation Eg which makes no men-
tion of ultrafilters.

This problem is wide open. However, some things can be said. For example,
by considerations which appear orthogonal to our discussion (explained in the next
section), the following is true; the proof is deferred to the end of the next section.

Theorem 3.4. There are at least three classes in Eg.
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Discussion of the problem. A brief discussion of this problem is in order. There
are some minor questions about the definition which may need to be resolved in
order to take full advantage of the model theoretic connections described in the
next section. It seems best to simply describe them here without making a final
decision, as further work on the problem may make the choice clear.

The issue is how to handle the trivial cases, such as empty graphs and other
graphs in which there are no non-trivial cliques to be covered. In the original context,
described in the next section, the aim was not to classify all graphs but rather
graphs arising as the incidence relations of first-order formulas, specifically those
formulas which control saturation of ultrapowers. In these graphs there are generally
many nontrivial cliques. What is possibly lost by allowing all graphs with only
trivial cliques to go into the minimal class is that the complexity in the sense of
classification theory of the Eg-classes may no longer be so clean. For example,
many properties of model theoretic interest (the order property, the independence
property) are representable as bipartite graphs. If those graphs are truly bipartite in
the graph theory sense of having no edges except between sides, then we won’t have
nontrivial cliques. This means, for instance, that as currently stated there are graphs
in the minimal Eg-class which are unstable in the sense of having the order property.
It follows from earlier results that any graph containing the complement of a bipartite
half-graph (that is, any graph containing distinct vertices {ai : i < ω} ∪ {bi : i < ω}
with the a’s forming a clique, the b’s forming a clique, and R(ai, bj) iff i < j) is
Eg-maximal.

One way of handling this is to redefine the Eg-ordering so that the complexity
of a graph is a function of the Eg-complexity of the graph and the Eg-complexity of
its complement (same vertices, opposite edges). But this may introduce other kinds
of noise.

A second way of handling this is to leave the definition as is, complete the
classification, and then look for classification-theoretic interpretations only on the
sub-class of graphs arising in the given special way as so-called characteristic se-
quences (defined below). It may well be that the the search for model-theoretic
outside definitions of these classes should be left to a later stage.

There are many specific questions to ask about this order. For example, is it
infinite? See the end of the next section for a comment on this.
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4 Interlude: Saturation of Ultrapowers
The clique covering problem dovetails with, and arose from, a major open question
and a corresponding research program around model-theoretic complexity, as we now
briefly explain. In this section, for clarity, we assume all languages are countable.

As discussed above, given any infinite set X, a filter on X is a family of subsets
of X which is nonempty, upward closed, and closed under finite intersection. The
filter notion of limit has two major uses in model theory. One was already discussed:
forming limits of sequences of models via the ultraproduct construction. The second
is that the idea of a filter allows us to naturally define the “completeness” of any
model. Let M be a model and let S be the boolean algebra of definable subsets
of M (really, the boolean algebra of subsets identified up to logical equivalence).
Filters or ultrafilters whose elements are definable sets (“filters of definable sets”)
describe the model-theoretic limit points of the structure, called types. Definable
always means definable with parameters.6

Example 4.1. Let M = (Q;<). The types of M include all Dedekind cuts as well
as +∞, −∞, and infinitessimals.

In the next definition, recall that we are assuming the language is countable.7

Definition 4.2. A model is κ-saturated if it contains the limit points for all filters
generated by fewer than κ definable sets.

In model-theoretic language, a model is κ-saturated if it realizes all types over
all sets A ⊆M with |A| < κ.

Part of the motivation for studying regular ultrafilters was Keisler’s discovery
that their saturation does not depend on the index model M chosen, only on its
theory. Given a model M and an ultrafilter D on I, let us say that D saturates M
if M I/D is |I|+-saturated (so it realizes all types over sets of size ≤ |I|).
Theorem 4.3 (Keisler 1967). If D is regular, then for any model M in a countable
language and any N ≡M , D saturates M if and only if D saturates N .

So when D is regular, for any complete countable theory T , we may simply say
“D saturates T” if D saturates some, equivalently every, model of T . Keisler [6]
proposed the following pre-order on theories, usually considered as a partial order
on the equivalence classes.

6Strictly speaking, a type is maximal consistent, so the analogue of an ultrafilter. The analogue
of a filter is called a partial type.

7If it is uncountable, we should distinguish between ‘κ-saturated,’ which means we realize all
types over parameter sets of size < κ, and ‘κ-compact,’ which means we realize all partial types
consisting of < κ formulas.
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Definition 4.4 (Keisler’s order). Let T1, T2 be complete countable theories. Say
T1 / T2 if for every regular ultrafilter D, if D saturates T2 then D saturates T1.

Determining the structure of Keisler’s order is a major open problem in model
theory. Over the last fifty years, progress has been made, most recently in work of
Malliaris starting around 2008 and in a very productive collaboration of Malliaris
and Shelah starting from 2011 (see e.g. the introductions to [18] or [19], or the
research announcement [16] for some of the history and connections of this problem
to other areas of mathematics). We will not repeat that history here since it is well
documented, but instead will explain how progress on the Clique Covering Problem
would help to illuminate Keisler’s order.8

The opening move is to notice that Keisler’s order reduces to the study of ϕ-types
(types in positive and negative instances of a single formula).

Theorem 4.5 (Malliaris [10]). If T is countable, D is a regular ultrafilter on I, and
M |= T , then M I/D is |I|+-saturated if and only if it is |I|+-saturated for ϕ-types,
for all formulas ϕ.

This result suggests an approach to Keisler’s order by investigating the patterns
of consistency and inconsistency of instances of a given formula. Following a line of
work in the author’s [11], [12], [13], let us define a sequence of incidence hypergraphs
on the parameter space of a given formula. In what follows, writing ϕ(x; y) does not
imply that either `(x), `(y) are necessarily 1.

Definition 4.6 ([11]). Given a theory T , ϕ(x; y), and n < ω, let

Pn(y1, . . . yn) = ∃x
∧

i≤n
ϕ(x; yi).

The characteristic sequence of ϕ (for the theory T ) is 〈Pn : n < ω〉.

Notice first that the characteristic sequence focuses on positive instances of the
given formula, but this is not a real loss: we could always replace the formula ψ
under consideration by one of the form

ϕ(x; y, z, w) = (ψ(x; y) ∧ z = w) ∨ (¬(ψ(x; y) ∧ z 6= w)

assuming there exist at least two elements in the model. Second, these Pn are
definable in the original theory. It will be interesting to see what may be recovered
from these hypergraphs alone by naming them and forgetting the ambient theory.

8As will be explained, the clique covering problem arose from the author’s work on this order,
but seems to be of independent interest.

3422



The clique covering problem and other questions

Still, their definability means they have the usual compactness properties, and also
that their classification-theoretic strength is no greater than that of the ambient
theory T . Third, when do the Pn give new information for arbitrarily large n? It
turns out this precisely characterizes the formula ϕ having the finite cover property,
[11, 2.7]. If ϕ does not have f.c.p., there is some minimal k such that the k-hyperedges
determine those of all higher arity, and we say ϕ has support k.

After fixing T and ϕ, in what follows we may (in slight abuse of notation)
identify these predicates with their interpretation in some large, saturated model of
the theory T . In this setup, call A a positive base set if A ⊆ P1 such that An ⊆ Pn
for all n < ω. So A is a positive base set if and only if {ϕ(x, a) : a ∈ A} is a
consistent partial type. We may also call a positive base set a P∞-complete graph.
The translation is:

Fact 4.7 ([13] Lemma 4.9). Let D be a regular ultrafilter. The following are equiv-
alent for a positive base set A ⊆ N := Mλ/D with |A| ≤ λ.

1. The type p = {ϕ(x; a) : a ∈ A} corresponding to A is realized in N .

2. There exists a map d : A→ D whose image is a regularizing family, and such
that D-almost everywhere, A[t] := {a[t] : t ∈ d(a)} is a Pm[t]-complete graph,
where m[t] := |A[t]| is the cardinality of projection of the finite piece of A
assigned by d to the index t.

These conditions are not necessarily equivalent to finding an internal set containing
A which is a P∞-graph in N , but are equivalent to finding an internal set containing
A which is a.e. a P∞-complete graph.

In the case where ϕ is a formula with support 2, this amounts to clique covering:

Corollary 4.8. Let D be a regular ultrafilter, M |= T , and let ϕ be a formula
of T with support 2, so that the the characteristic sequence 〈Pn : n < ω〉 of ϕ is
determined by the graph edge relation P2. Then the following are equivalent for the
ultrapower N := Mλ/D:

1. N is λ+-saturated for ϕ-types.

2. The cliques of the graph (M,P2) are covered by D.

This connection gives an independent motivation for studying the Clique Cover-
ing Problem (and explains its origin): among other things, it would settle Keisler’s
order for all theories whose saturation reduces to a formula with support 2. The
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last clause of Fact 4.7 addresses the natural question of whether it would be suf-
ficient for Keisler’s order to define the analogue of the clique covering problem for
k-hypergraphs and solve this for each k. That is, when the ultrafilter is not so-called
flexible and the formula has infinite support, these infinitely many approximations
may not fit together. See, for example, [13, Conclusion 8.11].

Although clique covering asks about all graphs, not only those arising in the form
of some P2, already the information we have about the behavior of certain formulas
of support 2 in Keisler’s order is enough to justify Theorem 3.4 above, albeit in a
rather indirect way:

Proof of Theorem 3.4. To prove there are at least three distinct classes in Eg it will
suffice to show that there are pairs (T0, ϕ0), (T1, ϕ1), (T2, ϕ2) such that: (a) for
i = 0, 1, 2, Ti is a complete countable theory with the property that its ultrapowers
are saturated if and only if they are saturated for ϕi-types, (b) each ϕi has support
2, and (c) T0 / T1 / T2 in Keisler’s order. Let T0 be the theory of an infinite set and
let ϕ0 = ϕ0(x, y) = x 6= y; this is in the minimum class in Keisler’s order. Let T1
be the theory of the random graph and let ϕ1 = ϕ1(x; y, z) = R(x, y) ∧ ¬R(x, z).
This theory is not in the minimum Keisler class by Shelah’s characterization of the
first two Keisler classes as precisely the stable theories in [21, VI.4]. It is not in the
maximal Keisler class by the main theorem of [17]. (In fact, this theory is minimum
among the unstable theories in Keisler’s order, see [13].) Let T2 be the theory of
(Q, <) and let ϕ2 = ϕ2(x; y, z) = y > x > z. This belongs to the maximum class in
Keisler’s order by [21, Theorem 2.6].

As of writing, the currently known divisions in Keisler’s order can be found in
[19]. Several years older, but with much more detail on the material then known
and on ultrafilter/theory correspondences, is the overview in [15, §4].

Embedded in the proof of Theorem 3.4 just given is the important fact that the
maximal Keisler class contains a theory whose saturation depends on a formula of
support 2. This has been recently used by Casey [2] to analyze the structure of
certain regular ultrafilters, using the language of clique covering.

Although we do not even know if the order Eg is infinite, it is now known [19]
that Keisler’s order has infinitely many classes, and moreover is not a well order. The
proof there, which overturned a long standing picture, used theories of hypergraphs
of increasing arity. Can the arguments of that paper, or the ultrafilters built there, be
used to reflect an infinite hierarchy into Eg? It is not obvious which way this would
go, especially because, in light of the discussion below, such an infinite hierarchy
might reflect onto the so-called stable graphs.

3424



The clique covering problem and other questions

5 The Stable Sequences Problem
In this section we explain the second problem, the Stable Sequences Problem. With
the background aim of understanding saturation of ultrapowers, in [11]-[12]-[13] the
investigations into the complexity of characteristic sequences were carried further
with the aim of connecting graph-theoretic properties of these sequences to model-
theoretic properties of the formulas. However, these questions soon took on a life of
their own as it became apparent that graph theory could contribute to the picture of
model theoretic complexity via the characteristic sequence (c.f. [12]). In this section
we work in a large saturated model of the theory, not necessarily an ultrapower, and
consider certain definable rather than internal sets.

It would be useful for the reader of this section to know a bit about the model
theoretic classification of theories and in particular the definitions of stable, simple,
NIP, SOP2 and SOP3.9

It is also useful to recall the local definition of stability: fixing a theory T , a
formula ϕ(x, y) is unstable if there are sequences 〈ai : i < ω〉, 〈bj : j < ω〉 such
that ϕ(ai, bj) holds iff i < j, i.e. if ϕ has the order property. Otherwise, there is
a finite bound n = n(ϕ) on the length of such a configuration in any model of T ,
and the formula is called stable. In graph theoretic language, the graph consisting
of vertices {ai : i < k} ∪ {bi : i < k} with R(ai, bj) iff i < j is called a k-half graph.
We will use half-graph to mean only this pattern of edges between a’s and b’s, with
no assumptions about whether or not there are edges between the a’s themselves,
or between the b’s themselves. We will use “stable graph” to mean a graph where
there is a finite bound on the size of a half-graph, i.e., the edge relation is stable
(or where the hypergraph relation is stable with respect to any partition of the
variables). Note that this is a priori weaker than saying that the theory of the graph
or hypergraph is stable, which would require stability for all formulas, not just the
(hyper)edge relation.

Returning to the big picture, since the characteristic sequence is definable in
the original theory, its graphs and hypergraphs are no more complex (in the sense
of classification theory) than the original theory. In fact, they are often a lot less
complex. For example, consider the formula ϕ(x; y1, y2) in the random graph saying
“R(x, y1)∧¬R(x, y2).” It support 2 and no empty graphs of size greater than 4. So
although it describes the pattern of incidence underlying saturation of the random
graph, it is itself very far from random. It is possible to code the independence

9As a first approximation, one can look at the picture in the introduction to [19], which partially
maps out the comparative complexity of theories by representing the known picture of Keisler’s
order. Some aspects of that picture may be misleading out of context: for example, it’s not known
whether all simple theories are /-below all non-simple theories, see [18, Conclusion 8.4].
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property in this graph, but only in an artificial way [11, Example 5.26]. Morally, it
is a stable graph.

This observation leads to a theorem, described in item (3) below, and which
requires a natural definition. Let A be a positive base set. An allowed definable set
(for A) is a definable set of the form Pm(x, c1, . . . , cm−1) which contains A, where
c1, . . . , cm−1 are elements of the (monster) model. A localization of A is a finite
intersection of allowed definable sets.

The right setting for the theorem is of the form: around any positive base set
in the monster model, there is always a localization on which the characteristic
sequence is suitably well behaved.10 Model-theoretically, in some sense, we can
zoom in around any consistent partial type to find a region where things behave well.
Three theorems of this kind proved in [11], stated in simplified form for readability,
were the following.

(1) A formula ϕ is NIP only if for any positive base set A and every n < ω there
is a localization Y such that A ⊂ Y and Y is a Pn-complete graph [11, Corollary
5.16], see [11, Theorem 5.17] for iff. Informally, missing n-edges do not persist under
localization around any type. This relates to the fact that missing edges represent
inconsistent instances of ϕ, and so from persistence of missing edges one can extract
a series of independent instances of inconsistency and so witness the independence
property in the original formula.

(2) A formula is simple only if for any positive base set A and every n < ω,
there is a localization Y such that A ⊆ Y and on Y there is a uniform finite bound
on the size of a Pn-empty graph [11, Theorem 5.22] (see there for the wording of
iff). Informally, Pn-empty graphs do not persist under localization around any type.
This relates to the fact that a formula in a simple theory only divides finitely many
times with respect to any given k.

The third theorem will motivate our question.
(3) If the formula is simple then we can always localize so that the characteristic

sequence is stable (i.e. for each k, we can localize so that the predicates P2, . . . , Pk
do not have the order property on elements from the localization with respect to
any partition of the variables). More precisely,

Theorem A (([11] Theorem 5.10, see also [12] Conclusion 2.9)). Suppose T is
simple, and fix ϕ and 〈Pn〉. Then for any positive base set A and for each n < ω,
there is a localization Y such that A ⊆ Y and P2, . . . , Pn are stable on Y .

10The monster model allows for compactness arguments of the form: there must eventually
be some suitable parameters allowing for the given localizations, else we would be able to form
some forbidden configurations. The related question of how localizations work in specific, not too
saturated models using only parameters from that model seems worth investigating: see below.

3426



The clique covering problem and other questions

Definition 5.1. Given a theory T , if a formula ϕ of T satisfies the conclusion of
the previous theorem (i.e., if in the monster model of T , for any positive base set A
and for each n < ω, there is a localization Y such that A ⊆ Y and P2, . . . , Pn do not
have the order property on Y with respect to any partition of the variables) then say
that ϕ has eventually stable sequences.

Problem 5.2 (The Stable Sequences Problem). Give a useful model-theoretic char-
acterization of those formulas whose characteristic sequence is eventually stable.

One might want to call this the (Eventually) Stable Sequences Problem for For-
mulas and frame the (Eventually) Stable Sequences Problem for Theories, saying
that a theory has eventually stable sequences if all its formulas do.

Parametrized versions of the problem may be especially interesting: character-
izing when, for any µ-saturated model of T , any positive base set A of size ≤ κ
and for each n < ω, there is a localization Y such that A ⊆ Y and P2, . . . , Pn do
not have the order property on Y with respect to any partition of the variables, i.e.
when the characteristic sequence is eventually stable for (µ, κ). For applications to
regular ultrapowers, µ = ℵ1 is a natural first case.

Note that a distinct version of this problem would be to replace the word “even-
tually” by “essentially,” taken to mean that saturation (in the sense of saturation of
ultrapowers) of a given theory can be reduced to saturation of ϕ-types for formulas
ϕ with stable sequences. This second sense would likely require a careful analysis
of how much ambient saturation is needed to find the given localization, as in the
parametrized versions just given. Compare the result (1) just quoted to [12, Conclu-
sion 6.15], which shows that any theory with SOP3 has a strong version of the order
property in some characteristic sequence; this may be the more accurate indicator
of complexity. On stable sequences for the theory Tfeq, the model completion of a
parametrized family of crosscutting equivalence relations, see [11] Example 5.28 and
Claim 5.29. Phenomena like this would need to be carefully sorted out.

The way instability appears may also be important. The section “Two kinds of
order property,” [12, §6], directs attention to the different forms the order property
may take. Suppose for clarity that we restrict to formulas with support 2. Then
by compactness instability in the characteristic sequence may show up in one of
three ways: as an infinite half-graph where the a’s form a clique and where the b’s
form a clique, where one side is a clique and one side an independent set, or where
both are an independent set. The first, the so-called compatible order property,
already implies that the theory is in the maximal Eg-class, [12, 6.16]. Recalling
that cliques in this context represent consistent partial types and independent sets
indicate that (by compactness) the formula divides, it is natural that these three
manifestations would have different effects: we’re asking in the first case for a family
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of types fanned out along a linear order, and in the other cases for a series of possible
tradeoffs between a type in a dividing sequence or two dividing sequences. Formally,

Definition 5.3 ([12] §6). Let 〈Pn〉 be the characteristic sequence of ϕ.

1. ϕ has the n-compatible order property if there exists 〈ai, bi : i < ω〉, a sequence
of pairs of distinct elements of P1, such that P2(ai, bj) holds iff i < j, and in
addition, for all m < ω, P2m(ai1 , bj1 , . . . aim , bjm) holds iff max{i1, . . . im} <
min{j1, . . . jm}.

2. ϕ has the n-empty order property if there exists 〈ai, bi : i < ω〉, a sequence
of pairs of distinct elements of P1, such that P2(ai, bj) holds iff i < j, and in
addition, ¬Pn(ai1 , . . . ain) and ¬Pn(bi1 , . . . bin) hold for all i1, . . . in < ω.

3. ϕ has the half-compatible order property if there exists 〈ai, bi : i < ω〉, a
sequence of pairs of distinct elements of P1, such that P2(ai, bj) holds iff i < j,
the a-s form a P∞-complete graph, and the b-s form a P2-empty graph.

What makes 5.2 an interesting question?
First, we know relatively little about the region of non-simple NSOP3 theories,

and Problem 5.2 along with its variants just described suggest an approach. By [11]
Claim 5.29, the class captured by Problem 5.2 will be strictly greater than simplicity.

Second, there is the possible relation to the problem of whether so-called SOP2
implies SOP3. From the definition of SOP2, one can see that any formula with this
property will have instances of the so-called half compatible order property (essen-
tially, the half graph holding between a P∞-complete graph and a P2-independent
set). On the other hand, the compatible order property implies SOP3.

Third, there is the possibility of carrying further the project arising from [12].
There it was shown that combinatorial theorems about graphs and hypergraphs,
such as Szemerédi regularity, may be applied to the characteristic sequence to give
model theoretic information. In [14] we proved that both Szemerédi regularity and
Ramsey’s theorem work much better under the hypothesis of stability of the graph
edge relation. Characterizing the formulas with essentially stable sequences could
advance the program of applying these theorems on stable graphs and hypergraphs
to extract model-theoretic information.

Recent work has improved our understanding and may well make the simplifying
hypothesis of support 2 less necessary. For example, the improvement of Ramsey’s
theorem from [14] also works for hypergraphs. The hypergraph stable regularity
lemma was recently announced by Ackerman, Freer, and Patel [1].

3428



The clique covering problem and other questions

References
[1] N. Ackerman, C. Freer, and R. Patel. “Stable hypergraph regularity.” In preparation.

Announced in a talk of R. Patel at the ASL Annual Meeting, Storrs, May 2016.
[2] D. Casey, draft, 2016.
[3] C. C. Chang and H. J. Keisler, Model Theory. Third edition. North-Holland Publishing

Co., Amsterdam, 1990. xvi+650 pp.
[4] H. D. Donder, “Regularity of ultrafilters and the core model.” Israel Journal of Mathe-

matics. Oct 1988. Volume 63, Issue 3, pp 289–322.
[5] H. J. Keisler, “Good ideals in fields of sets.” Annals of Math. (2) 79 (1964), 338–359.
[6] H. J. Keisler, “Ultraproducts which are not saturated.” J. Symb Logic 32 (1967) 23–46.
[7] H. J. Keisler. “The ultraproduct construction.” In “Ultrafilters Across Mathematics”,

ed. by V. Bergelson et. al., Contemporary Mathematics 530 (2010), pp. 163-179.
[8] P. Komjáth and V. Totik. “Ultrafilters.” A.M.M., 115, January 2008, 33–44.
[9] M. Malliaris, Ph. D. thesis, University of California, Berkeley (2009).
[10] M. Malliaris, “Realization of ϕ-types and Keisler’s order.” Ann. Pure Appl. Logic 157

(2009), no. 2-3, 220–224.
[11] M. Malliaris, “The characteristic sequence of a first-order formula.” Journal of Symbolic

Logic, 75, 4 (2010) 1415–1440.
[12] M. Malliaris, “Edge distribution and density in the characteristic sequence.” Ann Pure

Appl Logic 162, 1 (2010) 1–19.
[13] M. Malliaris, “Hypergraph sequences as a tool for saturation of ultrapowers.” J Symbolic

Logic, 77, 1 (2012) 195–223.
[14] M. Malliaris and S. Shelah, “Regularity lemmas for stable graphs.” Trans. Amer. Math

Soc, 366 (2014), 1551–1585.
[15] M. Malliaris and S. Shelah, “Constructing regular ultrafilters from a model-theoretic

point of view.” Trans. Amer. Math. Soc. 367 (2015), 8139–8173.
[16] M. Malliaris and S. Shelah, “General topology meets model theory, on p and t.” Proc

Natl Acad Sci USA (2013) 110:33, 13300–13305.
[17] M. Malliaris and S. Shelah, “A dividing line within simple unstable theories.” Advances

in Math 249 (2013) 250–288.
[18] M. Malliaris and S. Shelah, “Existence of optimal ultrafilters and the fundamental

complexity of simple theories.” Advances in Math. 290 (2016) 614–618.
[19] M. Malliaris and S. Shelah, “Keisler’s order has infinitely many classes.” To appear,

Israel J. Math.
[20] M. Mashaal, Bourbaki: a secret society of mathematicians. Amer. Math. Soc., 2006.
[21] S. Shelah, Classification Theory and the number of non-isomorphic models. North-

Holland Publishing Co., first edition, 1978, rev. ed, 1990.
[22] E. Szemerédi, “On sets of integers containing no k elements in arithmetic progression,”

Acta Arith. 27 (1975), 199–245.

Received 10 May 20173429



3430



Useful axioms

Matteo Viale
Department of Mathematics, University of Torino, Italy

matteo.viale@unito.it

Abstract
We give a brief survey on the interplay between forcing axioms and var-

ious other non-constructive principles widely used in many fields of abstract
mathematics, such as the axiom of choice and Baire’s category theorem.

First of all we outline how, using basic partial order theory, it is possible
to reformulate the axiom of choice, Baire’s category theorem, and many large
cardinal axioms as specific instances of forcing axioms. We then address forcing
axioms with a model-theoretic perspective and outline a deep analogy existing
between the standard Łoś Theorem for ultraproducts of first order structures
and Shoenfield’s absoluteness for Σ1

2-properties. Finally we address the question
of whether and to what extent forcing axioms can provide “complete” semantics
for set theory. We argue that to a large extent this is possible for certain
initial fragments of the universe of sets: The pioneering work of Woodin on
generic absoluteness show that this is the case for the Chang model L(Ordω)
(where all of mathematics formalizable in second order number theory can be
developed) in the presence of large cardinals, and recent works by the author
with Asperó and with Audrito show that this can also be the case for the Chang
model L(Ordω1) (where one can develop most of mathematics formalizable in
third order number theory) in the presence of large cardinals and maximal
strengthenings of Martin’s maximum or of the proper forcing axiom. A major
open question we leave completely open is whether this situation is peculiar to
these Chang models or can be lifted up also to L(Ordκ) for cardinals κ > ω1.

Introduction
Since its introduction by Cohen in 1963 forcing has been the key and the most ef-
fective tool to obtain independence results in set theory. This method has found

This paper owes much of its clarity to the suggestions of Raphael Carroy, and takes advantage of
several several fruitful discussions we shared on the material presented here.
The author acknowledges support from: Kurt Gödel Research Prize Fellowship 2010, PRIN grant
2012: Logica, modelli e insiemi, San Paolo Junior PI grant 2012.
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applications in set theory and in virtually all fields of pure mathematics: in the
last forty years natural problems of group theory, functional analysis, operator al-
gebras, general topology, and many other subjects were shown to be undecidable
by means of forcing. Starting from the early seventies and during the eighties it
became transparent that many of these consistency results could all be derived by
a short list of set theoretic principles, which are known in the literature as forcing
axioms. These axioms gave set theorists and mathematicians a very powerful tool
to obtain independence results: for any given mathematical problem we are most
likely able to compute its (possibly different) solutions in the constructible universe
L and in models of strong forcing axioms. These axioms settle basic problems in
cardinal arithmetic like the size of the continuum and the singular cardinal prob-
lem (see among others the works of Foreman, Magidor, Shelah [10], Veličković [28],
Todorčević [25], Moore [17], Caicedo and Veličković [5], and the author [29]), as well
as combinatorially complicated ones like the basis problem for uncountable linear
orders (see Moore’s result [18] which extends previous work of Baumgartner [4],
Shelah [23], Todorčević [24], and others). Interesting problems originating from
other fields of mathematics and apparently unrelated to set theory have also been
settled appealing to forcing axioms, as it is the case (to cite two of the most promi-
nent examples) for Shelah’s results [22] on Whitehead’s problem in group theory
and Farah’s result [8] on the non-existence of outer automorphisms of the Calkin
algebra in operator algebra. Forcing axioms assert that for a large class of compact
topological spaces X Baire’s category theorem can be strengthened to the statement
that any family of ℵ1-many dense open subsets of X has non empty intersection. In
light of the success these axioms have met in solving problems a convinced platonist
may start to argue that these principles may actually give a “complete” theory of
a suitable fragment of the universe of sets. However it is not clear how one could
formulate such a result. The aim of this paper is to explain in which sense we can
show that forcing axioms can give such a “complete” theory and why they are so
“useful”.

Section 1 starts showing that two basic non-constructive principles which play a
crucial role in the foundations of many mathematical theories, the axiom of choice
and Baire’s category theorem, can both be formulated as specific instances of forc-
ing axioms. In section 2 we also argue that many large cardinal axioms can be
reformulated in the language of partial orders as specific instances of a more general
kind of forcing axioms. Sections 3 and 4 show that Shoenfield’s absoluteness for
Σ1

2-properties and Łoś Theorem for ultraproducts of first order models are two sides
of the same coins: recasted in the language of boolean valued models, Shoenfield’s
absoluteness shows that there is a more general notion of boolean ultrapower (of
which the standard ultrapowers encompassed in Łoś Theorem are just special cases)
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and that in the specific case one takes a boolean ultrapower of a compact, second
countable space X, the natural embedding of X in its boolean ultrapower is at
least Σ2-elementary. Section 5 embarks in a rough analysis of what is a maximal
forcing axiom. We are led by two driving observations, one rooted in topological
considerations and the other in model-theoretic arguments. First of all we outline
how Woodin’s generic absoluteness results for L(Ordω) entail that in the presence
of large cardinals the natural embeddings of a separable compact Hausdorff space
X in its boolean ultrapowers are not only Σ2-elementary but fully elementary. We
then present other recent results by the author, with Asperó [1] and with Audrito
[2] which show that, in the presence of natural strengthenings of Martin’s maximum
or of the proper forcing axiom, an exact analogue of Woodin’s generic absoluteness
result can be established also at the level of the Chang model L(Ordω1) and/or for
the first order theory of Hℵ2 . The main open question left open is whether these
generic absoluteness results are specific to the Chang models L(Ordωi) for i = 0, 1
or can be replicated also for other cardinals. The paper is meant to be accessible to
a wide audience of mathematicians, specifically the first two sections do not require
any special familiarity with logic or set theory other than some basic cardinal arith-
metic. The third section requires a certain familiarity with first order logic and the
basic model theoretic constructions of ultraproducts. The fourth and fifth sections,
on the other hand, presume the reader has some familiarity with the forcing method.

1 The axiom of choice and Baire’s category theorem as
forcing axioms

The axiom of choice AC and Baire’s category theorem BCT are non-constuctive
principles which play a prominent role in the development of many fields of abstract
mathematics. Standard formulations of the axiom of choice and of Baire’s category
theorem are the following:

Definition 1.1. AC ≡ ∏
i∈I Ai is non-empty for all families of non empty sets

{Ai : i ∈ I}, i.e. there is a choice function f : I → ⋃
i∈I Ai such that f(i) ∈ Ai for

all i ∈ I.

Theorem 1.2. BCT0 ≡ For all compact Hausdorff spaces (X, τ) and all countable
families {An : n ∈ N} of dense open subsets of X, ⋂n∈NAn is non-empty.

There are large numbers of equivalent formulations of the axiom of choice and
it may come as a surprise that one of these is a natural generalization of Baire’s
category theorem and naturally leads to the notion of forcing axiom.
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Definition 1.3. (P,≤) is a partial order if ≤ is a reflexive and transitive relation
on P .

Notation 1.4. Given a partial order (P,≤),

↑ A = {p ∈ P : ∃q ∈ A : q ≤ p}

denotes the upward closure of A and similarly ↓ A will denote its downward closure.

• A ⊆ P is open if it is a downward closed subset of P .

• The order topology τP on P is given by the downward closed subsets of P .

• D is dense if for all p ∈ P there is some q ∈ A refining p (q refines p if q ≤ p),

• G ⊆ P is a filter if it is upward closed and all q, p ∈ G have a common
refinement r ∈ G.

• p is incompatible with q (p ⊥ q) if no r ∈ P refines both p and q.

• X is a predense subset of P if ↓ X is open dense in P .

• X is an antichain of P if it is composed of pairwise incompatible elements,
and a maximal one if it is also predense.

• X is a chain of P if ≤ is a total order on X.

The terminology for open and dense subsets of P comes from the observation
that the collection τP of downward closed subsets of P is a topology on the space
of points P (though in general not a Hausdorff one), whose dense sets are exactly
those satisfying the above property. Remark also that the downward closure of a
dense set is open dense in this topology.

A simple proof of the Baire Category Theorem is given by a basic enumeration
argument (which however needs some amount of the axiom of choice to be carried):

Lemma 1.5. BCT1 ≡ Let (P,≤) be a partial order and {Dn : n ∈ N} be a family of
predense subsets of P . Then there is a filter G ⊆ P meeting all the sets Dn.

Proof. Build by induction a decreasing chain {pn : n ∈ N} with pn ∈ ↓Dn and
pn+1 ≤ pn for all n. Let G = ↑ {pn : n ∈ N}. Then G meets all the Dn.

Baire’s category theorem can be proved from the above Lemma (without any
use of the axiom of choice) as follows:
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Proof of BCT0 from BCT1. Given a compact Hausdorff space (X, τ) and a family of
dense open sets {Dn : n ∈ N} of X, consider the partial order (τ \ {∅} ,⊆) and the
family En = {A ∈ τ : Cl (A) ⊆ Dn}. Then it is easily checked that each En is dense
open in the order topology induced by the partial order (τ \{∅} ,⊆). By Lemma 1.5,
we can find a filter G ⊆ τ \ {∅} meeting all the sets En. This gives that for all
A1, . . . An ∈ G

Cl (A1) ∩ . . . ∩ Cl (An) ⊇ A1 ∩ . . . ∩An ⊇ B 6= ∅

for some B ∈ G (where Cl (A) is the closure of A ⊆ X in the topology τ .) By the
compactness of (X, τ), ⋂

{Cl (A) : A ∈ G} 6= ∅.
Any point in this intersection belongs to the intersection of all the open sets Dn.

Remark the interplay between the order topology on the partial order (τ \{∅} ,⊆)
and the compact topology τ on X. Modulo the prime ideal theorem (a weak form
of the axiom of choice), BCT1 can also be proved from BCT0.

It is less well-known that the axiom of choice has also an equivalent formulation
as the existence of filters on posets meeting sufficiently many dense sets. In order
to proceed further, we need to introduce the standard notion of forcing axiom.

Definition 1.6. Let κ be a cardinal and (P,≤) be a partial order.

FAκ(P ) ≡ For all families {Dα : α < κ} of predense subsets of P , there
is a filter G on P meeting all these predense sets.

Given a class Γ of partial orders FAκ(Γ) holds if FAκ(P ) holds for all P ∈ Γ.

Definition 1.7. Let λ be a cardinal. A partial order (P,≤) is < λ-closed if every
decreasing chain {Pα : α < γ} indexed by some γ < λ has a lower bound in P .

Γλ denotes the class of < λ-closed posets. Ωλ denotes the class of posets P for
which FAλ(P ) holds.

It is almost immediate to check that Γℵ0 is the class of all posets, and that BCT1
states that Ωℵ0 = Γℵ0 . The following formulation of the axiom of choice in terms of
forcing axioms has been handed to me by Todorčević, I’m not aware of any published
reference. In what follows, let ZF denote the standard first order axiomatization of
set theory in the first order language {∈,=} (excluding the axiom of choice) and
ZFC denote ZF+ the first order formalization of the axiom of choice.

Theorem 1.8. The axiom of choice AC is equivalent (over the theory ZF) to the
assertion that FAκ(Γκ) holds for all regular cardinals κ.
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We sketch a proof of Theorem 1.8, the interested reader can find a full proof in
[20, Chapter 3, Section 2] (see the following hyperlink: Tesi-Parente). First of all,
it is convenient to prove 1.8 using a different equivalent formulation of the axiom of
choice.

Definition 1.9. Let κ be an infinite cardinal. The principle of dependent choices
DCκ states the following:

For every non-empty set X and every function F : X<κ → P (X) \ {∅}, there exists
g : κ→ X such that g(α) ∈ F (g � α) for all α < κ.

Lemma 1.10. AC is equivalent to ∀κDCκ modulo ZF.
The reader can find a proof in [20, Theorem 3.2.3]. We prove the Theorem

assuming the Lemma:

Proof of Theorem 1.8. We prove by induction on κ that DCκ is equivalent to FAκ(Γκ)
over the theory ZF + ∀λ < κDCλ. We sketch the ideas for the case κ-regular1:

Assume DCκ; we prove (in ZF) that FAκ(Γκ) holds. Let (P,≤) be a <κ-closed
partially ordered set, and {Dα : α < κ} ⊆ P (P ) a family of predense subsets of P .

Given a sequence 〈pβ : β < α〉 call ξ~p the least ξ such that 〈pβ : ξ ≤ β < α〉 is a
decreasing chain if such a ξ exists, and fix ξ~p = α otherwise. Notice that when the
length α of ~p is successor then ξ~p < α.

We now define a function F : P<κ → P (P ) \ {∅} as follows: given α < κ and a
sequence ~p ∈ P<κ,

F (~p) =
{
{p0} if ξ~p = α
{
d ∈ ↓Dα : d ≤ pβ for all ξ~p ≤ β < α

}
otherwise.

The latter set is non-empty since (P,≤) is <κ-closed, α < κ, and Dα is predense. By
DCκ, we find g : κ→ P such that g(α) ∈ F (g � α) for all α < κ. An easy induction
shows that for all α the sequence g � α is decreasing, so g(α) ∈ ↓Dα for all α < κ.
Then

G = {p ∈ P : there exists α < κ such that g(α) ≤ p}
is a filter on P , such that G ∩Dβ 6= ∅ for all β < κ.

Conversely, assume FAκ(Γκ), we prove (in ZF) that DCκ holds.
Let X be a non-empty set and F : X<κ → P (X) \ {∅}. Define the partially

ordered set

P =
{
s ∈ X<κ : for all α ∈ dom(s), s(α) ∈ F (s � α)

}
,

1In this case the assumption ∀λ < κDCλ is not needed, but all the relevant ideas in the proof
of the equivalence are already present.
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with s ≤ t if and only if t ⊆ s. Let λ < κ and let s0 ≥ s1 ≥ · · · ≥ sα ≥ . . . , for
α < λ, be a chain in P . Then ⋃α<λ sα is clearly a lower bound for the chain. Since
κ is regular, we have ⋃α<λ sα ∈ P and so P is <κ-closed. For every α < κ, define

Dα = {s ∈ P : α ∈ dom(s)} ,
and note that Dα is dense in P . Using FAκ(Γκ), there exists a filter G ⊂ P such
that G ∩ Dα 6= ∅ for all α < κ. Then g = ⋃

G is a function g : κ → X such that
g(α) ∈ F (g � α) for all α < κ.

2 Large cardinals as forcing axioms
From now on, we focus on boolean algebras rather than posets.

2.1 A fast briefing on boolean algebras
Definition 2.1. A boolean algebra B is a boolean ring i.e. a ring in which every ele-
ment is idempotent. Equivalently a boolean algebra is a complemented distributive
lattice (B,∧,∨,¬, 0, 1) (see [11]).

Notation 2.2. Given a boolean algebra (B,∧,∨,¬, 0, 1), the poset (B+;≤B) is given
by its non-zero elements, with order relation given by b ≤B q iff b∧q = b iff b∨q = q.

A boolean ring (B,+, ·, 0, 1) has a natural structure of complemented distributive
lattice (B,∧,∨,¬, 0, 1), for which the sum on the boolean ring becomes the operation
∆ of symmetric difference (a∆b = a∨b∧(¬(a∧b))) on the complemented distributive
lattice, and the multiplication of the ring the operation ∧.

We refer to filters, antichains, dense sets, predense sets, open sets on B, meaning
that these notions are declined for the corresponding partial order (B+;≤B).

We also recall the following:

• An ideal I on B is a non-empty downward closed subset of B with respect to
≤B which is also closed under ∨ (equivalently it is an ideal on the boolean ring
(B, δ,∧, 0, 1)). Its dual filter Ĭ is the set {¬a : a ∈ I}. It is a filter on the poset
(B+;≤B) (equivalently I is an ideal in the boolean ring B).

• An ideal I on B is < δ-complete (δ-complete) if all the subsets of I of size less
than δ (of size δ) have an upper bound in I.

• A maximal ideal I is an ideal properly contained in B and maximal with
respect to this property (equivalently it is a prime ideal on the boolean ring
(B, δ,∧, 0, 1)). Its dual filter is an ultrafilter. An ideal I is maximal if and only
if a ∈ I or ¬a ∈ I for all a ∈ B.
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• B is < δ-complete (δ-complete) if all subsets of size less than δ (of size δ) have
a supremum and an infimum.

• Given an ideal I on B, B/I is the quotient boolean algebra given by equivalence
classes [a]I obtained by a =I b iff a∆b ∈ I.
• B/I is < κ-complete if I and B are both < κ-complete.

• B is atomless if there are no minimal elements in the partial order (B+;≤B).

• B is atomic if the set of minimal elements in the partial order (B+;≤B) is open
dense.

Usually we insist in the formulation of forcing axioms on the requirement that for
certain partial orders P any family of predense subsets of P of some fixed size κ can
be met in a single filter. In order to obtain a greater variety of forcing axioms, we
need to consider a much richer variety of properties which characterizes the families
of predense sets of P which can be met in a single filter. Using boolean algebras, by
considering partial orders of the form (B+;≤B) for some boolean algebra B, we can
formulate (using the algebraic structure of B) a wide spectrum of properties each
defining a distinct forcing axiom.

2.2 Measurable cardinals
A cardinal κ is measurable if and only if there is a uniform < κ-complete ultrafilter
on the boolean algebra P (κ). The requirement that G is uniform amounts to say
that G is disjoint from the ideal I on the boolean algebra (P (κ) ,∩,∪, ∅, κ) given
by the bounded subsets of P (κ). This means that we are actually looking for an
ultrafilter G on the boolean algebra P (κ) /I. This is an atomless boolean algebra
which is < κ-complete. The requirement that G is < κ-complete amounts to ask
that G selects an unique member of any partition of κ in < κ-many pieces, moreover
any maximal antichain {[Ai]I : i < γ} in the boolean algebra P (κ) /I of size γ less
than κ is induced by a partition of κ in γ-many pairwise disjoint pieces.

All in all, we have the following characterization of measurability:
Definition 2.3. κ is a measurable cardinal if and only if there is a ultrafilter G on
P (κ) /I (where I is the ideal of bounded subsets of κ) which meets all the maximal
antichain on P (κ) /I of size less than κ.

In particular the measurability of κ holds if and only if (P (κ) /I)+ satisfies a cer-
tain forcing axiom stating that certain collections of predense subsets of (P (κ) /I)+

can be simultaneously met in a filter.
We are led to the following definitions:
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Definition 2.4. Let (P,≤) be a partial order and D be a family of non-empty
subsets of P . A filter G on P is D-generic if G ∩D is non-empty for all D ∈ D.

Let φ(x, y) be a property and (P,≤) a partial order. FAφ(P ) holds if for any
family D of predense subsets of P such that φ(P,D) holds there is some D-generic
filter G on P .

For instance, FAκ(P ) says that FAφ(P ) holds for φ(x, y) being the property:

“x is a partial order and y is a family of predense subsets of x of size κ”

The measurability of κ amounts to say that FAφ(P ) holds for φ(x, y) being the
property

“x is the partial order (P (κ) /I)+ and y is the (unique) family of predense
subsets of x consisting of maximal antichains of (P (κ) /I)+ of size less
than κ”

We do not want to expand further on this topic but many other large cardinal
properties of a cardinal κ can be formulated as axioms of the form FAφ(P ) for some
property φ (for example this is the case for supercompactness, hugeness, almost
hugeness, strongness, superstrongness, etc....).

In these first two sections we have already shown that the language of partial
orders can accomodate three completely distinct and apparently unrelated families
of non-constructive principles which are essential tools in the development of many
mathematical theories (as it is the case for the axiom of choice and of Baire’s category
theorem) and of crucial importance in the current developments of set theory (as it
is the case for large cardinal axioms).

3 Boolean valued models, Łoś theorem, and generic ab-
soluteness

We address here the correlation between forcing axioms and generic absoluteness
results. We show how Shoenfield’s absoluteness for Σ1

2-properties and Łoś Theorem
are two sides of the same coin: more precisely they are distinct specific cases of a
unique general theorem which follows from AC.

After recalling the basic formulation of Łoś Theorem for ultraproducts, we in-
troduce boolean valued models, and we argue that Łoś Theorem for ultraproducts is
the specific instance for complete atomic boolean algebras of a more general theorem
which applies to a much larger class of boolean valued models. Then we introduce
the concept of boolean ultrapower of a first order structure on a Polish space X
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endowed with Borel predicates R1, . . . , Rn, and show that Shoenfield’s absoluteness
for Σ1

2-properties amounts to say that the boolean ultrapower of 〈X,R1, . . . , Rn〉 by
any complete boolean algebra is a Σ2-elementary superstructure of 〈X,R1, . . . , Rn〉.

3.1 Łoś Theorem
Theorem 3.1. Let {Ml : l ∈ L} be models in a given first order signature

L = {Ri : i ∈ I, fj : j ∈ J, ck : k ∈ K} ,

i.e. each Ml = (Ml, R
l
i : i ∈ I, f lj : j ∈ J, clk : k ∈ K). Let G be a ultrafilter on L

(i.e. its dual is a prime ideal on the boolean algebra P (L)). Let

[f ]G =



g ∈

∏

l∈L
Ml : {l ∈ L : g(l) = f(l)} ∈ G





for each f ∈ ∏l∈LMl, and set

∏

l∈L
Ml/G =



[f ]G : f ∈

∏

l∈L
Ml



 .

For each i ∈ I let R̄i([f1]G, . . . , [fn]G) hold on ∏l∈LMl/G if and only if
{
l ∈ L : Ml |= Rli(f1(l), . . . , fn(l))

}
∈ G.

Similarly interpret f̄j : ∏l∈l(Ml/G)n → ∏
l∈LMl/G and c̄k ∈

∏
l∈lM

n
l /G for each

j ∈ J and k ∈ K.
Then:

1. For all formulae φ(x1, . . . , xn) in the signature L

(
∏

l∈L
Ml/G, R̄i : i ∈ I, f̄j : j ∈ J, c̄k : k ∈ K) |= φ([f1]G, . . . , [fn]G)

if and only if
{l ∈ L : Ml |= φ(f1(l), . . . , fn(l))} ∈ G.

2. Moreover if Ml = M for all l ∈ L (i.e. ∏l∈LMj/G is the ultrapower of M
by G), we have that the map m 7→ [cm]G (where cm : L→M is constant with
value m) defines an elementary embedding.
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It is a useful exercise to check that the axiom of choice is essentially used in the
induction step for existential quantifiers in the proof of Łoś Theorem. Moreover Łoś
Theorem is clearly a strenghtnening of the axiom of choice, for the very existence of
an element in ∏l∈LMl/G grants that ∏l∈LMl is non-empty.

One peculiarity of the above formulation of Łoś theorem is that it applies just
to ultrafilters on P (X). We aim to find a “most” general formulation of this Theo-
rem, which makes sense also for other kind of “ultraproducts” and of ultrafilters on
boolean algebras other than P (X). This forces us to introduce the boolean valued
semantics.

3.2 A fast briefing on complete boolean algebras and Stone duality

Recall that for a given topological space (X, τ) the regular open sets are those A ∈ τ
such that A = Reg (A) = Int (Cl (A)) (A coincides with the interior of its closure)
and that RO(X, τ) is the complete boolean algebra whose elements are regular open
sets and whose operations are given by A ∧ B = A ∩ B, ∨i∈I Ai = Reg (⋃i∈I Ai),
¬A = X \ Cl (A).

For any partial order (P,≤) the map i : P → RO(P, τP ) given by p 7→ Reg (↓ {p})
is order and incompatibility preserving and embeds P as a dense subset of the non-
empty regular open sets in RO(P, τP ).

Recall also that the Stone space St(B) of a boolean algebra B is given by its
ultrafilters G and it is endowed with a compact topology τB whose clopen sets are the
setsNb = {G ∈ St(B) : b ∈ G} so that the map b 7→ Nb defines a natural isomorphism
of B with the boolean algebra CLOP(St(B)) of clopen subset of St(B). Moreover a
boolean algebra B is complete if and only if CLOP(St(B)) = RO(St(B), τB). Spaces
X satisfying the property that its regular open sets are closed are extremally (or
extremely) disconnected.

We refer the reader to [11] or [33, Chapter 1] (available at the following hyper-
link: Notes on Forcing) for a detailed account on these matters.

3.3 Boolean valued models

In a first order model, a formula can be interpreted as true or false. Given a complete
boolean algebra B, B-boolean valued models generalize Tarski semantics associating
to each formula a value in B, so that propositions are not only true and false anymore
(that is, only associated to 1B and 0B respectively), but take also other “intermediate
values” of truth. A complete account of the theory of these boolean valued models
can be found in [21]. We now recall some basic facts, an expanded version of the
material of this section can be found in [26] (see also the following hyperlink: Tesi-
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Vaccaro) and in [33, Chapter 3]. In order to avoid unnnecessary technicalities,
we define boolean valued semantics just for relational first order languages (i.e.
signatures with no function symobols).

Definition 3.2. Given a complete boolean algebra B and a first order relational
language

L = {Ri : i ∈ I} ∪ {cj : j ∈ J}
a B-boolean valued model (or B-valued model)M in the language L is a tuple

〈M,=M, RMi : i ∈ I, cMj : j ∈ J〉

where:

1. M is a non-empty set, called domain of the B-boolean valued model, whose
elements are called B-names;

2. =M is the boolean value of the equality:

=M: M2 → B
(τ, σ) 7→ Jτ = σKMB

3. The forcing relation RMi is the boolean interpretation of the n-ary relation
symbol Ri:

RMi : Mn → B
(τ1, . . . , τn) 7→ JRi(τ1, . . . , τn)KMB

4. cMj ∈M is the boolean interpretation of the constant symbol cj .

We require that the following conditions hold:

• for τ, σ, χ ∈M ,

1. Jτ = τKMB = 1B;
2. Jτ = σKMB = Jσ = τKMB ;
3. Jτ = σKMB ∧ Jσ = χKMB ≤ Jτ = χKMB ;

• for R ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn,

1. (∧h∈{1,...,n} Jτh = σhKMB ) ∧ JR(τ1, . . . , τn)KMB ≤ JR(σ1, . . . , σn)KMB ;
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Given a B-model 〈M,=M 〉 for equality, a forcing relation R on M is a map
R : Mn → B satisfying the above condition for boolean predicates.

The boolean valued semantics is defined as follows:

Definition 3.3. Let
〈M,=M, RMi : i ∈ I, cMj : j ∈ J〉

be a B-valued model in a relational language

L = {Ri : i ∈ I} ∪ {cj : j ∈ J} ,

φ a L-formula whose free variables are in {x1, . . . , xn}, and ν a valuation of the
free variables in M whose domain contains {x1, . . . , xn}. Since L is a relational
languages, the terms of a formula are either free variable or constants, let us define
ν(cj) = cMj for cj a constant of L. We denote with JφKM,ν

B the boolean value of φ
with the assignment ν.

Given a formula φ, we define recursively JφKM,ν
B as follows:

• for atomic formulae this is done letting

Jt = sKM,ν
B = Jν(t) = ν(s)KMB ,

and
JR(t1, . . . , tn)KM,ν

B = JR(ν(t1), . . . , ν(tn))KMB

• if φ ≡ ¬ψ, then
JφKM,ν

B = ¬ JψKM,ν
B ;

• if φ ≡ ψ ∧ θ, then
JφKM,ν

B = JψKM,ν
B ∧ JθKM,ν

B ;

• if φ ≡ ∃yψ(y), then
JφKM,ν

B =
∨

τ∈M
Jψ(y/τ)KM,ν

B ;

If no confusion can arise, we omit the superscripts M, ν and the subscript B, and
we simply denote the boolean value of a formula φ with parameters inM by JφK.

With elementary arguments it is possible prove the Soundness Theorem for
boolean valued models.
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Theorem 3.4 (Soundness Theorem). Assume L is a relational language and φ is a
L-formula which is syntactically provable by a L-theory T . Assume each formula in
T has boolean value at least b ∈ B in a B-valued model M with valuation ν. Then
JφKM,ν

B ≥ b as well.

On the other hand the completeness theorem for the boolean valued semantics
with respect to first order calculi is a triviality, given that 2 is complete boolean
algebra.

We get a standard Tarski model from a B-valued model passing to a quotient by
a ultrafilter G ⊆ B.

Definition 3.5. Take B a complete boolean algebra, M a B-valued model in the
language L, and G a ultrafilter over B. Consider the following equivalence relation
on M :

τ ≡G σ ⇔ Jτ = σK ∈ G
The first order modelM/G = 〈M/G,R

M/G
i : i ∈ I, cM/G

j : j ∈ J〉 is defined letting:

• For any n-ary relation symbol R in L

RM/G = {([τ1]G, . . . , [τn]G) ∈ (M/G)n : JR(τ1, . . . , τn)K ∈ G} .

• For any constant symbol c in L

cM/G = [cM]G.

If we require M to satisfy a key additional condition, we get an easy way to
control the truth value of formulas inM/G.

Definition 3.6. A B-valued model M for the language L is full if for every L-
formula φ(x, ȳ) and every τ̄ ∈M |ȳ| there is a σ ∈M such that

J∃xφ(x, τ̄)K = Jφ(σ, τ̄)K

Theorem 3.7 (Boolean Valued Models Łoś’s Theorem). Assume M is a full B-
valued model for the relational language L. Then for every formula φ(x1, . . . , xn) in
L and (τ1, . . . , τn) ∈Mn:

1. For all ultrafilters G over B

M/G |= φ([τ1]G, . . . , [τn]G) if and only if Jφ(τ1, . . . , τn)K ∈ G.

2. For all a ∈ B the following are equivalent:

3444



Useful Axioms

(a) Jφ(f1, . . . , fn)K ≥ a,
(b) M/G |= φ([τ1]G, . . . , [τn]G) for all G ∈ Na,
(c) M/G |= φ([τ1]G, . . . , [τn]G) for densely many G ∈ Na.

A key observation to relate standard ultraproducts to boolean valued models is
the following:

Fact 3.8. Let (Mx : x ∈ X) be a family of Tarski-models in the first order relational
language L. Then N = ∏

x∈XMx is a full P (X)-model letting for each n-ary relation
symbol R ∈ L, JR(f1, . . . , fn)KP(X) = {x ∈ X : Mx |= R(f1(x), . . . , fn(x))}.

Let G be any non-principal ultrafilter on X. Then, using the notation of the
previous fact, N/G is the familiar ultraproduct of the family (Mx : x ∈ X) by G,
and the usual Łoś Theorem for ultraproducts of Tarski models is the specialization
to the case of the full P (X)-valued model N of Theorem 3.7. Notice that in this
special case, if the ultraproduct is an ultrapower of a model M , the embedding
a 7→ [ca]G (where ca(x) = a for all x ∈ X and a ∈M) is elementary.

3.4 Boolean ultrapowers of compact Hausdorff spaces and Shoen-
field’s absoluteness

Take X a set with the discrete topology, and let for any a ∈ X, Ga ∈ St(P (X))
denote the principal ultrafilter given by supersets of {a}. The map a 7→ Ga embedsX
as an open, dense, discrete subspace of St(P (X)). In particular for any topological
space (Y, τ), any function f : X → Y is continuous (since X has the discrete
topology) and in the case Y is compact Hausdorff it induces a unique continuous
f̄ : St(P (X))→ Y mapping G ∈ St(P (X)) to the unique point in Y which is in the
intersection of

{
Cl (A) : A ∈ τ, f−1[A] ∈ G} (we are in the special situation in which

St(P (X)) is also the Stone-Cech compactification of X).
This gives that for any compact Hausdorff space (Y, τ), the space C(X,Y ) =

Y X of (continuous) functions from X to Y is canonically isomorphic to the space
C(St(P (X)), Y ) of continuous functions from St(P (X)) to Y .

What if we replace P (X) with an arbitrary (complete) boolean algebra? In
view of the above remarks, it is a fair inference to state that C(St(B), Y ) is the
B-ultrapower of Y for any compact Hausdorff space Y , since this is exactly what
occurs for the case B = P (X).

Let us examine closely this situation in the case Y = 2ω with product topology.
This will unfold the relation existing between the notion of Boolean ultrapowers of
2ω and Shoenfield’s absoluteness.
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Let us fix B arbitrary (complete) boolean algebra, and set M = C(St(B), 2ω).
Fix also R a Borel relation on (2ω)n. The continuity of an n-tuple f1, . . . , fn ∈ M
grants that the set

{G : R(f1(G) . . . , fn(G))} = (f1 × · · · × fn)−1[R]

has the Baire property in St(B) (i.e. it has symmetric difference with a unique
regular open set — see [13, Lemma 11.15, Def. 32.21]), where f1 × · · · × fn(G) =
(f1(G), . . . , fn(G)). So we can define

RM :Mn → B
(f1, . . . , fn) = Reg ({G : R(f1(G), . . . , fn(G)}) .

Also, since the diagonal is closed in (2ω)2,

=M (f, g) = Reg ({G : f(G) = g(G)})
is well defined.

It is not hard to check that, for any Borel relation R on (2ω)n, the structure
(M,=M , RM ) is a full B-valued extension of (2ω,=, R), where 2ω is copied inside
M as the set of constant functions. It is also not hard to check that whenever G is
an ultrafilter on St(B), the map iG : 2ω → M/G given by x 7→ [cx]G (the constant
function with value x) defines an injective morphism of the 2-valued structure (2ω, R)
into the 2-valued structure (M/G,RM/G). Nonetheless it is not clear whether this
morphism is an elementary map or not. This is the case for B = P (X), since in this
case we are analyzing the standard embedding of the first order structure (2ω, R)
in its ultrapowers induced by ultrafilters on P (X). What are the properties of this
map if B is some other complete boolean algebra?

We can relate the degree of elementarity of the map iG with Shoenfield’s abso-
luteness for Σ1

2-properties. This can be done if one is eager to accept as a black-
box the identification of the B-valued model C(St(B), 2ω) with the B-valued model
given by the family of B-names for elements of 2ω in V B (which is the canonical
B-valued model for set theory), we will expand further on this identification in the
next section. Modulo this identity, Shoenfield’s absoluteness can be recasted as a
statement about boolean valued models. We choose to name Cohen’s absoluteness
the following statement, which gives (as we will see) an equivalent reformulation of
Shoenfield’s absoluteness. Its proof (as we will see in the next section) ultimately
relies on Cohen’s forcing theorem, hence the name.
Theorem 3.9 (Cohen’s absoluteness). Assume B is a complete boolean algebra and
R ⊆ (2ω)n is a Borel relation. Let M = C(St(B), 2ω) and G ∈ St(B). Then

(2ω,=, R) ≺Σ2 (M/G,=M /G,RM/G).
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4 Getting Cohen’s absoluteness from Baire’s category
Theorem

Let us now show how Theorem 3.9 is once again a consequence of forcing axioms.
To do so, we dwelve deeper into set theoretic techniques and assume the reader has
some acquaintance with the forcing method. We give below a brief recall sufficient
for our aims.

4.1 Forcing
Let V denote the standard universe of sets and ZFC the standard first order axiom-
atization of set theory by the Zermelo-Frankel axioms. For any complete boolean
algebra B ∈ V let

V B =
{
f : V B → B

}

be the class of B-names with boolean relations ∈B,⊆B,=B: (V B)2 → B given by:

1.
∈B (τ, σ) = Jτ ∈ σK =

∨

τ0∈dom(σ)
(Jτ = τ0K ∧ σ(τ0)).

2.
⊆B (τ, σ) =

∧

σ0∈dom(τ)
(¬τ(σ0) ∨ Jσ0 ∈ σK).

3.
=B (τ, σ) = Jτ = σK = Jτ ⊆ σK ∧ Jσ ⊆ τK .

Theorem 4.1 (Cohen’s forcing theorem I). (V B,∈B,=B) is a full boolean valued
model which assigns the boolean value 1B to all axioms φ ∈ ZFC.

V is copied inside V B as the family of B-names ǎ =
{
〈b̌, 1B〉 : b ∈ a

}
and has the

property that for all Σ0-formulae (i.e with quantifiers bounded to range over sets)
φ(x0, . . . , xn) and a0, . . . , an ∈ V

Jφ(ǎ0, . . . , ǎn)K = 1B if and only if V |= φ(a0, . . . , an).

This procedure can be formalized in any first order model (M,E,=) of ZFC for
any B ∈M such that (M,E,=) models that B is a complete boolean algebra.

Two ingredients are still missing to prove Cohen’s absoluteness (Theorem 3.9)
from Baire’s category theorem: the notion of M -generic filter and the duality be-
tween C(St(B), 2ω) and the B-names in V B for elements of 2ω. We first deal with
the duality.
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4.2 C(St(B), 2ω) is the family of B-names for elements of 2ω

Definition 4.2. Let B be a complete boolean algebra. Let σ ∈ V B be a B-name
such that

q
σ : ω̌ → 2̌

y
B = 1B. We define fσ : St(B)→ 2ω by

fσ(G)(n) = i ⇐⇒
r
σ(ň) = ǐ

z
∈ G.

Conversely assume g : St(B)→ 2ω is a continuous function, then define

τg = {〈 ˇ(n, i), {G : g(G)(n) = i}〉 : n ∈ ω, i < 2} ∈ V B.

Observe indeed that

{G ∈ St(B) : g(G)(n) = i} = g−1[Nn,i],

where Nn,i = {f ∈ 2ω : f(n) = i}. Since g is continuous, g−1[Nn,i] is clopen and so
it is an element of B.

We can prove the following duality:

Proposition 4.3. Assume that
q
σ : ω̌ → 2̌

y
B = 1B and g : St(B) → 2ω is continu-

ous. Then

1. τg ∈ V B;

2. fσ : St(B)→ 2ω is continuous;

3. Jτfσ = σKB = 1B;

4. fτg = g.

In particular letting

(2ω)B =
{
σ ∈ V B :

q
σ : ω̌ → 2̌

y
B = 1B

}
,

the 2-valued models ((2ω)B/G,=B /G) and (C(St(B), 2ω),=St(B) /G) are isomorphic
for all G ∈ St(B) via the map [g]G 7→ [τg]G.

This is just part of the duality, as the duality can lift the isomorphism also to
all B-Baire relations on 2ω, among which are all Borel relations. Recall that for any
given topological space (X, τ) a subset Y of X is meager for τ if Y is contained
in the countable union of closed nowhere dense (i.e. with complement dense open)
subsets of X. Y has the Baire property if Y∆A is meager for some unique regular
open set A ∈ τ .
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Definition 4.4. R ⊆ (2ω)n is a B-Baire subset of (2ω)n if for all continuous functions
f1, . . . , fn : St(B)→ 2ω we have that

(f1 × · · · × fn)−1[A] = {G : f1 × · · · × fn(G) ∈ A}

has the Baire property in St(B).
R ⊆ (2ω)n is universally Baire if it is B-Baire for all complete boolean algebras

B.

It can be shown in ZFC that Borel (and even analytic) subsets of (2ω)n are
universally Baire (see [13, Def. 32.21]).

An important result of Feng, Magidor, and Woodin [9] can be restated as follows:

Theorem 4.5. R ⊆ (2ω)n is B-Baire if and only if there exist ṘB ∈ V B such that
r
ṘB ⊆ ˇ(2ω)n

z
= 1B,

and for all τ1, . . . , τn ∈ (2ω)B

Reg ({G : R(fτ1(G), . . . , fτn(G))}) =
r

(τ1, . . . , τn) ∈ ṘB
z
.

In particular an easy Corollary is the following:

Theorem 4.6. Let R ⊆ (2ω)n be a B-baire relation. Then the map [f ]G 7→ [τf ]G
implements an isomorphism between

〈C(St(B)/G,RSt(B)/G〉 ∼= 〈(2ω)B/G, ṘB/G〉

for any G ∈ St(B).

These results can be suitably generalized to arbitrary Polish spaces. We refer the
reader to [26] and [27]. [31] gives an application of this result to tackle a problem in
number theory related to Schanuel’s conjecture.

4.3 M-generic filters and Cohen’s absoluteness
Definition 4.7. Let (P,≤) be a partial order and M be a set. A subset G of P is
M -generic if G ∩D is non-empty for all D ∈M predense subset of P .

By BCT1 every countable set M admits M -generic filters for all partial orders
P .
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Theorem 4.8 (Cohen’s forcing theorem II). Assume (N,∈) is a transitive model
of ZFC, B ∈ N is a complete boolean algebra in N , and G ∈ St(B) is an N -generic
filter for B+.

Let

valG :NB → V

σ 7→ σG = {τG : ∃b ∈ G 〈τ, b〉 ∈ σ} ,

and N [G] = valG[NB].
Then N [G] is transitive, the map [σ]G 7→ σG is the Mostowski collapse of the

Tarski models 〈NB/G,∈B /G〉 and induces an isomorphism of this model with the
model 〈N [G],∈〉.

In particular for all formulae φ(x1, . . . , xn) and τ1 . . . , τn ∈ NB

〈N [G],∈〉 |= φ((τ1)G, . . . , (τn)G)

if and only if Jφ(τ1, . . . , τn)K ∈ G.
Recall that:

• For any infinite cardinal λ, Hλ is the set of all sets a ∈ V such that | trcl(a)| < λ
(where trcl(a) is the transitive closure of the set a).

• If κ is a strongly inaccessible cardinal (i.e. regular and strong limit), Hκ is a
transitive model of ZFC.

• A property R ⊆ (2ω)n is Σ1
2, if it is of the form

R = {(a1, . . . , an) ∈ (2ω)n : ∃y ∈ 2ω ∀x ∈ 2ω S(x, y, a1, . . . , an)}

with S ⊆ (2ω)n+2 a Borel relation.

• If φ(x0, . . . , xn) is a Σ0-formula and M ⊆ N are transitive sets or classes, then
for all a0, . . . , an ∈M

M |= φ(a0, . . . , an) if and only if N |= φ(a0, . . . , an).

Observe that for any theory T ⊇ ZFC there is a recursive translation of Σ1
2-

properties (provably Σ1
2 over T ) into Σ1-properties over Hω1 (provably Σ1 over the

same theory T ) [13, Lemma 25.25].

Lemma 4.9. Assume φ(x, r) is a Σ0-formula in the parameter ~r ∈ (2ω)n. Then the
following are equivalent:
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1. Hω1 |= ∃xφ(x, r).

2. For all complete boolean algebra B J∃xφ(x, r)K = 1B.

3. There is a complete boolean algebra B such that J∃xφ(x, r)K > 0B.

Summing up we get: a Σ1
2-statement holds in V iff the corresponding Σ1-

statement over Hω1 holds in some model of the form V B/G.
Combining the above Lemma with Proposition 4.3, we can easily infer the proof

of Theorem 3.9.

Proof. We shall actually prove the following slightly stronger formulation of the
non-trivial direction in the three equivalences above:

Hω1 |= ∃xφ(x, r) if J∃xφ(x, r)K > 0B for some complete boolean algebra
B ∈ V .

To simplify the exposition we prove it with the further assumption that that there ex-
ists an inaccessible cardinal κ > B. With the obvious care in details the large cardinal
assumption can be removed. So assume φ(x, ~y) is a Σ0-formula and

r
∃xφ(x, ~̌r)

z
> 0B

for some complete boolean algebra B ∈ V with parameters ~r ∈ (2ω)n. Pick a model
M ∈ V such thatM ≺ (Hκ)V ,M is countable in V , and B, ~r ∈M . Let πM : M → N
be its transitive collapse (i.e. πM (a) = πM [a ∩M ] for all a ∈ M) and Q = πM (B).
Notice also that πM (~r) = ~r: since ω ∈ M is a definable ordinal contained in M ,
πM (ω) = πM [ω] = ω, consequently πM fixes also all the elements in 2ω ∩M .

Since πM is an isomorphism of M with N ,

N |= ZFC ∧ (b =
r
∃xφ(x, ~̌r)

z
> 0Q).

Now let G ∈ V be N -generic for Q with b ∈ G (G exists since N is countable), then,
by Cohen’s theorem of forcing applied in V to N , we have that N [G] |= ∃xφ(x,~r).
So we can pick a ∈ N [G] such that N [G] |= φ(a,~r). Since N,G ∈ (Hω1)V , we
have that V models that N [G] ∈ HV

ω1 and thus V models that a as well belongs to
HV
ω1 . Since φ(x, ~y) is a Σ0-formula, V models that φ(a,~r) is absolute between the

transitive sets N [G] ⊂ Hω1 to which a,~r belong. In particular a witnesses in V that
HV
ω1 |= ∃xφ(x,~r).

5 Maximal forcing axioms
Guided by all the previous results we want to formulate maximal forcing axioms.
We pursue two directions:
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1. A direction led by topological considerations: we have seen that FAℵ0(P ) holds
for any partial order P , and that AC is equivalent to the satisfaction of FAλ(P )
for all regular λ and all < λ-closed posets P .
We want to isolate the largest possible class of partial orders Γλ for which
FAλ(P ) holds for all P ∈ Γλ. The case λ = ℵ0 is handled by Baire’s category
theorem, that shows that Γℵ0 is the class of all posets. We will outline that the
case λ = ℵ1 is settled by the work of Foreman, Magidor, and Shelah [10] and
leads to Martin’s maximum. On the other hand, the case λ > ℵ1 is wide open
and until recently only partial results have been obtained. New techniques to
handle the case λ = ℵ2 are being developed (notably by Neeman, and also
by Asperò, Cox, Krueger, Mota, Velickovic, see among others [14, 15, 19]),
however the full import of their possible applications is not clear yet.

2. A direction led by model-theoretic considerations: Baire’s category theorem
implies that the natural embedding of 2ω into C(St(B), 2ω)/G is Σ2-elementary,
whenever 2ω is endowed with B-baire predicates (among which all the Borel
predicates). We want to reinforce this theorem in two directions:

(A) We want to be able to infer that (at least for Borel predicates) the natural
embedding of 2ω into C(St(B), 2ω)/G yields a full elementary embedding
of 2ω into C(St(B), 2ω)/G.

(B) We want to be able to define boolean ultrapowers MB also for other first
order structures M other than 2ω and be able to infer that the natural
embedding ofM intoMB/G is elementary for these boolean ultrapowers.

Both directions (the topological and the model-theoretic) converge towards the iso-
lation of certain natural forcing axioms. Moreover for each cardinal λ, the relevant
stuctures for which we can define a natural notion of boolean ultrapower are either
the structure Hλ+ , or the Chang model L(Ordλ).

We believe that we have now a satisfactory understanding of the maximal forcing
axioms one can get following both directions for the cases λ = ℵ0,ℵ1. The main
open question remains how to isolate (if at all possible) the maximal forcing axioms
for λ > ℵ1.

5.1 Woodin’s generic absoluteness for Hω1 and L(Ordω)
We start by the model-theoretic direction, following Woodin’s work in Ω-logic. Ob-
serve that a set theorist works either with first order calculus to justify some proofs
over ZFC, or with forcing to obtain independence results over ZFC. However, in
axiom systems extending ZFC there seems to be a gap between what we can achieve
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by ordinary proofs and the independence results that we can obtain by means of
forcing. To close this gap we miss two desirable features of a “complete” first order
theory T that contains ZFC, specifically with respect to the semantics given by the
class of boolean valued models of T :

• T is complete with respect to its intended semantics, i.e for all statements φ
only one among T + φ and T + ¬φ is forceable.

• Forceability over T should correspond to a notion of derivability with respect
to some proof system, for instance derivability with respect to a standard first
order calculus for T .

Both statements appear to be rather bold and have to be handled with care:
Consider for example the statement ω = ω1 in a theory T extending ZFC with the
statements ω is the first infinite cardinal and ω1 is the first uncountable cardinal.
Then clearly T proves |ω| 6= |ω1|, while if one forces with Coll(ω, ω1) one produce
a model of set theory where this equality holds (however the formula ω1 is the first
uncountable cardinal is now false in this model).

At first glance, this suggests that as we expand the language for T , forcing starts
to act randomly on the formulae of T , switching the truth value of its formulae with
parameters in ways which it does not seem simple to describe. However the above
difficulties are raised essentially by our lack of attention to define the type of formulae
for which we aim to have the completeness of T with respect to forceability. We
can show that when the formulae are prescribed to talk only about a suitable initial
segment of the set theoretic universe (i.e. Hω1 or L(Ordω)), and we consider only
forcings that preserve the intended meaning of the parameters by which we enriched
the language of T (i.e. parameters in Hω1), this random behaviour of forcing does
not show up anymore.

We take a platonist stance towards set theory, thus we have one canonical model
V of ZFC of which we try to uncover the truths. To do this, we may use model
theoretic techniques that produce new models of the part of Th(V ) on which we are
confident. This certainly includes ZFC, and (if we are platonists) all the axioms of
large cardinals.

We may start our quest for uncovering the truth in V by first settling the theory of
HV
ω1 (the hereditarily countable sets), then the theory of HV

ω2 (the sets of hereditarily
cardinality ℵ1) and so on and so forth, thus covering step by step all infinite cardinals.
To proceed we need some definitions:

Definition 5.1. Given a theory T ⊇ ZFC and a family Γ of partial orders definable
in T , we say that φ is Γ-consistent for T if T proves that there exists a complete
boolean algebra B ∈ Γ such that JφKB > 0B.
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Given a model V of ZFC we say that V models that φ is Γ-consistent if φ is
Γ-consistent for Th(V ).

Definition 5.2. Let

T ⊇ ZFC + {λ is an infinite cardinal}

Ωλ is the definable (in T ) class of partial orders P which satisfy FAλ(P ).

In particular Baire’s category theorem amounts to say that Ωℵ0 is the class of
all partial orders (denoted by Woodin as the class Ω). The following is a careful
reformulation of Lemma 4.9 which do not require any commitment on the onthology
of V .

Lemma 5.3 (Cohen’s absoluteness Lemma). Assume T ⊇ ZFC + {p ⊆ ω} and
φ(x, p) is a Σ0-formula. Then the following are equivalent:

• T ` ∃xφ(x, p),

• T ` ∃xφ(x, p) is Ω-consistent.

This shows that for Σ1-formulae with real parameters the desired overlap between
the ordinary notion of provability and the semantic notion of forceability is provable
in ZFC. Now it is natural to ask if we can expand the above in at least two directions:

1. Increase the complexity of the formula,

2. Increase the language allowing parameters also for other infinite cardinals.

The second direction will be pursued in the next subsection. Concerning the first
direction, the extent by which we can increase the complexity of the formula requires
once again some attention to the semantical interpretation of its parameters and its
quantifiers. We have already observed that the formula ω = ω1 is inconsistent but
Ω-consistent in a language with parameters for ω and ω1. One of Woodin’s main
achievements2 in Ω-logic show that if we restrict the semantic interpretation of φ to
range over the structure L([Ord]ℵ0) and we assume large cardinal axioms, we can
get a full correctness and completeness result3 [16, Corollary 3.1.7]:

2We follow Larson’s presentation as in [16].
3The large cardinal assumptions on T of the present formulation can be significantly reduced.

See [16, Corollary 3.1.7].
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Theorem 5.4 (Woodin). Assume T is a theory extending

ZFC + {p ⊂ ω}+ there are class many supercompact cardinals,

φ(x, y) is any formula in free variables x, y, A ⊆ (2ω)n is universally Baire. Then
the following are equivalent (where ȦB is the B-name given by Theorem 4.5 lifting
A to V B):

• T ` [L([Ord]ℵ0 , A) |= φ(p,A)],

• T ` ∃B
q
L([Ord]ℵ0 , ȦB) |= φ(p, ȦB)

y
> 0B,

• T ` ∀B
q
L([Ord]ℵ0 , ȦB) |= φ(p, ȦB)

y
= 1B.

Remark that since Hω1 ⊆ L([Ord]ℵ0), via Theorem 4.5 and natural generaliza-
tions of [13, Lemma 25.25] establishing a correspondence between Σ1

n+1-properties
and Σn-properties over Hω1 , we obtain that for any complete boolean algebra B and
any Σ1

n-predicate R ⊆ (2ω)n the map x 7→ [cx]G of (2ω, R) into (C(St(B, 2ω), RSt(B))
is an elementary embedding. In particular the above theorem provides a first fully
satisfactory answer to the question of whether the natural embeddings of 2ω in its
boolean ultrapowers can be elementary: the answer is yes if we accept the existence
of large cardinal axioms!

The natural question to address now is whether we can step up this result also
for uncountable λ. If so in which form?

5.2 Topological maximality: Martin’s maximum MM
Let us now address the quest for maximal forcing axioms from the topological di-
rection. Specifically: what is the largest class of partial orders Γ for which we can
predicate FAℵ1(Γ)?

Shelah proved that FAℵ1(P ) fails for any P which does not preserve stationary
subsets of ω1. Nonetheless it cannot be decided in ZFC whether this is a necessary
condition for a poset P in order to have the failure of FAℵ1(P ). For example let P
be a forcing which shoots a club of ordertype ω1 through a projectively stationary
and costationary subset of Pω1(ω2) by selecting countable initial segments of this
club: It is provable in ZFC that P preserve stationary subsets of ω1 for all such P .
However in L, FAℵ1(P ) fails for some such P while in a model of Martin’s maximum
MM, FAℵ1(P ) holds for all such P .

The remarkable result of Foreman, Magidor, and Shelah [10] is that the above
necessary condition is consistently also a sufficient condition: it can be forced that
FAℵ1(P ) holds if and only if P is a forcing notion preserving all stationary subsets
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of ω1. This axiom is known in the literature as Martin’s maximum MM. In view of
Theorem 1.8, MM realizes a maximality property for forcing axioms: it can be seen
as a maximal strengthening of the axiom of choice AC �ω2 for ℵ1-sized families of
non-empty sets. Can we strengthen this further? if so in which form? It turns out
that stronger and stronger forms of forcing axioms can be expressed in the language
of categories and provide means to extend Woodin’s generic absoluteness results to
third order arithmetic or more generally to larger and larger fragments of the set
theoretic universe.

5.3 Category forcings and category forcing axioms

Assume Γ is a class of complete boolean algebras and →Θ is a family of complete
homomorphisms between elements of Γ closed under composition and containing
all identity maps. (Γ,→Θ) is the category whose objects are the complete boolean
algebras in Γ and whose arrows are given by complete homomorphisms i : B→ Q in
→Θ. We call embeddings in→Θ, Θ-correct embeddings. Notice that these categories
immediately give rise to natural class partial orders associated with them, partial
orders whose elements are the complete boolean algebras in Γ and whose order
relation is given by the arrows in →Θ (i.e. B ≤Θ C if there exists i : C→ B in →Θ).
We denote these class partial orders by (Γ,≤Θ).

Depending on the choice of Γ and →Θ these partial orders can be trivial (as
forcing notions), for example:

Remark 5.5. Assume Ω = Ωℵ0 is the class of all complete boolean algebras and
→Ω is the class of all complete embeddings, then any two conditions in (Γ,≤Ω) are
compatible, i.e. (Γ,≤Ω) is forcing equivalent to the trivial partial order. This is
the case since for any pair of partial orders P,Q and X of size larger than 2|P |+|Q|
there are complete injective homomorphisms of RO(P ) and RO(Q) into the boolean
completion of Coll(ω,X) (see [16, Thm A.0.7] and its following remark). These
embeddings witness the compatibility of RO(P ) with RO(Q).

On the other hand these class partial orders will in general be non-trivial: let
SSP be the class of stationary set preserving forcings. Then the Namba forcing
shooting a cofinal ω-sequence on ω2 and Coll(ω1, ω2) are incompatible conditions
in (SSP,≤Ω): any forcing notion absorbing both of them makes the cofinality of
ωV2 at the same time of cofinality ωV1 (using the generic filter for Coll(ω1, ω2)) and
countable (using the generic filter for Namba forcing); this means that this forcing
must collapse ωV1 to become a countable ordinal, hence cannot be stationary set
preserving.
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Forcing axioms as density properties of category forcings

The following results are one of the main reasons leading us to analyze in more
details these type of class forcings:

Theorem 5.6 (Woodin, Thm. 2.53 [34]). Assume there are class many supercom-
pact cardinals. Then the following are equivalent for any complete cba B and cardinal
κ:

1. FAκ(B);

2. there is a complete homomorphism of B into a presaturated tower inducing a
generic ultrapower embedding with critical point κ+.

Theorem 5.7 (V. Thm. 2.12 [32]). Assume there are class many supercompact
cardinals. Then the following are equivalent:

1. MM++;

2. the class of presaturated normal towers is dense in (SSP,≤SSP).

It is not in the scope of this paper to dwelve into the definition and properties
of presaturated tower forcings and of the axiom MM++. Let us just remark the
following two facts:

• MM++ is a natural strengthening of Martin’s maximum whose consistency is
proved by exactly the same methods producing a model of Martin’s maximum.

• A presaturated tower T inducing a generic ultrapower embedding with critical
point κ+ is such that whenever G is V -generic for T we have that

HV
κ+ ≺ HV [G]

κ+ . (1)

In particolar the above theorems show that forcing axioms can be also stated as
density properties of class partial orders. We will see that any AX(Γ, κ) yielding a
dense class of forcings in (Γ,≤Γ) whose generic extensions satisfy (1) produce generic
absoluteness results. We refer the reader to [3, 2, 30] for details.

5.4 Iterated resurrection axioms and generic absoluteness for Hκ+

The results and ideas of this subsection expand on the seminal work of Hamkins and
Johnstone [12] on resurrection axioms.
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Definition 5.8. Let Γ be a definable class of complete Boolean algebras closed
under two step iterations. The cardinal preservation degree cpd(Γ) of Γ is the largest
cardinal κ such that every B ∈ Γ forces that every cardinal ν ≤ κ is still a cardinal
in V B. If all cardinals are preserved by Γ, we say that cpd(Γ) =∞.

The distributivity degree dd(Γ) of Γ is the largest cardinal κ such that every
B ∈ Γ is <κ-distributive.

We remark that the supremum of the cardinals preserved by Γ is preserved
by Γ, and the same holds for the property of being <κ distributive. Furthermore,
dd(Γ) ≤ cpd(Γ) and dd(Γ) 6=∞ whenever Γ is non trivial (i.e., it contains a Boolean
algebra that is not forcing equivalent to the trivial Boolean algebra). Moreover
dd(Γ) = cpd(Γ) whenever Γ is closed under two steps iterations and contains the
class of < cpd(Γ)-closed posets.

Definition 5.9. Let Γ be a definable class of complete Boolean algebras. We let
γ = γΓ = cpd(Γ).

For example, γ = ω if Γ is the class of all posets, while for axiom-A, proper, SP,
SSP we have that γ = ω1, and for <κ−closed we have that γ = κ.

We aim to isolate for each cardinal γ classes of forcings ∆γ and axioms AX(∆γ)
such that:

1. γ = cpd(∆γ) and assuming certain large cardinal axioms, the family of B ∈ ∆γ

which force AX(∆γ) is dense in (∆γ ,≤∆γ );

2. AX(∆γ) gives generic absoluteness for the theory with parameters of Hγ+ with
respect to all forcings in ∆γ which preserve AX(∆γ);

3. the axioms AX(∆γ) are mutually compatible for the largest possible family of
cardinals γ simultaneously;

4. the classes ∆γ are the largest possible for which the axioms AX(∆γ) can pos-
sibly be consistent.

Towards this aim remark the following:

• dd(Γ) is the least possible cardinal γ such that AX(Γ) is a non-trivial axiom
asserting generic absoluteness for the theory of Hγ+ with parameters. In fact,
Hdd(Γ) is never changed by forcings in Γ.

• cpd(Γ) is the largest possible cardinal γ for which an axiom AX(Γ) as above
can grant generic absoluteness with respect to Γ for the theory of Hγ+ with
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parameters. To see this, let Γ be such that cpd(Γ) = γ and assume towards a
contradiction that there is an axiom AX(Γ) yielding generic absoluteness with
respect to Γ for the theory with parameters of Hλ with λ > γ+.
Assume that AX(Γ) holds in V . Since cpd(Γ) = γ, there exists a B ∈ Γ which
collapses γ+. Let C ≤Γ B be obtained by property (1) above for Γ = ∆γ , so
that AX(Γ) holds in V C, and remark that γ+ cannot be a cardinal in V C as
well. Then γ+ is a cardinal in Hλ and not in HC

λ , witnessing failure of generic
absoluteness and contradicting property (2) for AX(Γ).

We argue that there are axioms RAω(Γ) satisfying the first two of the above
requirements, and which are consistent for a variety of forcing classes Γ. These
axioms also provide natural examples for the last two requirements. We will come
back later on with philosophical considerations outlining why the last two require-
ments are also natural. We can prove the consistency of RAω(Γ) for forcing classes
which are definable in Gödel-Bernays set theory with classes NBG, closed under two
steps iterations, weakly iterable (a technical definition asserting that most set sized
descending sequences in ≤Γ have lower bounds in Γ, see [2] or [3] for details), and
contain all the < cpd(Γ)-closed forcings.

The axioms RAα(Γ) for α an ordinal can be formulated in the Morse Kelley
axiomatization of set theory MK as follows:

Definition 5.10. Given an ordinal α and a definable4 class of forcings Γ closed
under two-steps iterations, the axiom RAα(Γ) holds if for all β < α the class

{
B ∈ Γ : Hγ+ ≺ HB

γ+ ∧ V B |= RAβ(Γ)
}

is dense in (Γ,≤Γ) (where γ = γΓ).
RAOrd(Γ) holds if RAα(Γ) holds for all α.

Remark 5.11. The above definition can be properly formalized in MK (but most likely
not in ZFC if α is infinite). The problem is the following: the axioms RAα(Γ) can
be formulated only by means of a transfinite recursion over a well-founded relation
which is not set-like. It is a delicate matter to argue that this transfinite recursion
can be carried. [2] shows that this is the case if the base theory is MK.

The axiom RAω(Γ) yields generic absoluteness by the following elementary ar-
gument:

4Γ must be definable by a formula with no class quantifier and no class parameter to be on the
safe side for what concerns the definability issues regarding the iterated resurrection axioms raised
by the remark right after this definition. All usual classes of forcings such as proper, semiproper,
stationary set preserving, < κ-closed, etc.... are definable by formulae satisfying these restrictions.
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Theorem 5.12. Suppose n ∈ ω, Γ is well behaved, RAn(Γ) holds, and B ∈ Γ forces
RAn(Γ). Then Hγ+ ≺n HB

γ+ (where γ = γΓ).

Proof. We proceed by induction on n. Since γ+ ≤ (γ+)V B , Hγ+ ⊆ HB
γ+ and the

thesis holds for n = 0 by the fact that for all transitive structures M , N , if M ⊂ N
then M ≺0 N . Suppose now that n > 0, and fix G V -generic for B. By RAn(Γ),
let C ∈ V [G] be such that whenever H is V [G]-generic for C, V [G ∗H] |= RAn−1(Γ)
and HV

γ+ ≺ HV [G∗H]
γ+ . Hence we have the following diagram:

HV
γ+ H

V [G∗H]
γ+

H
V [G]
γ+

Σω

Σn−1Σn−1

obtained by inductive hypothesis applied both on V , V [G] and on V [G], V [G ∗H]
since in all those classes RAn−1(Γ) holds.

Let φ ≡ ∃xψ(x) be any Σn formula with parameters in HV
γ+ . First suppose that

φ holds in V , and fix x̄ ∈ V such that ψ(x̄) holds. Since HV
γ+ ≺n−1 H

V [G]
γ+ and ψ is

Πn−1, it follows that ψ(x̄) holds in V [G] hence so does φ. Now suppose that φ holds
in V [G] as witnessed by x̄ ∈ V [G]. Since HV [G]

γ+ ≺n−1 H
V [G∗H]
γ+ it follows that ψ(x̄)

holds in V [G ∗H], hence so does φ. Since HV
γ+ ≺ HV [G∗H]

γ+ , the formula φ holds also
in V concluding the proof.

Corollary 5.13. Assume Γ is closed under two-steps iterations and contains the <
cpd(Γ)-closed forcings. If RAω(Γ) holds, and B ∈ Γ forces RAω(Γ), then Hγ+ ≺ HB

γ+

(where γ = γΓ).

Regarding the consistency of the axioms RAω(Γ) we have the following:

Proposition 5.14. Assume there are class-many Woodin cardinals. Then RAOrd(Ω)
holds.

Theorem 5.15. RA1(Γ) implies Hγ+ ≺1 V B for all B ∈ Γ, hence it is a strenght-
ening of the bounded forcing axiom5 BFAγ(Γ) (where γ = γΓ).

Theorem 5.16 ([2]). Assume there is a super huge cardinal.6

5The bounded forcing axiom BFAγ(Γ) asserts that Hγ+ ≺1 V
B for all B ∈ Γ.

6A cardinal κ is super huge iff for every ordinal α there exists an elementary embedding j : V →
M ⊆ V with crit(j) = κ, j(κ) > α and j(κ)M ⊆M .
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Then RAOrd(SSP) + MM++ and RAOrd(proper) + PFA++ are consistent.
For the consistency of RAOrd(proper) a Mahlo cardinal suffices.
Moreover it is also consistent relative to a Mahlo cardinal that RAOrd(Γκ) holds

simultaneously for all cardinals κ (where Γκ is the class of < κ-closed forcings)7.

In this regard the axioms RAα(Γ) for Γ ⊇ Γκ (Γκ being the class of < κ-closed
forcings) appear to be natural companions of the axiom of choice, while the axioms
RAOrd(Ω) and RAOrd(SSP) + MM are natural maximal strengthenings of the axiom
of choice at the levels ω and ω1. Hence it is in our opinion natural to try to isolate
classes of forcings ∆κ as κ ranges among the cardinals such that:

1. κ = cpd(∆κ) for all κ.

2. ∆κ ⊇ Γκ for all κ.

3. FAκ(∆κ) and RAω(∆κ) are simultaneously consistent for all κ.

4. For all cardinals κ, ∆κ is the largest possible Γ with cpd(Γ) = κ for which
FAκ(∆κ) and RAω(∆κ) are simultaneously consistent (and if possible for all κ
simultaneously).

Compare the above requests with requirements (3) and (4) in the discussion mo-
tivating the introduction of the iterated resurrection axioms on page 28. In this
regard it appears that we have now a completely satisfactory answer on what are
∆ω and ∆ω1 : i.e., respectively the class of all forcing notions and the class of all
SSP-forcing notions.

5.5 Boosting Woodin’s absoluteness to L(Ordκ): the axioms CFA(Γ)
We gave detailed arguments bringing us to axioms which can be stated as density
properties of certain category forcings and yielding generic absoluteness results for
the theory of Hκ+ for various cardinals κ. Carving in Woodin’s proof for the generic
absoluteness of the Chang model L(Ordω) one can get an even stronger type of
category forcing axioms yielding generic absoluteness results for the Chang models
L(Ordκ). The best result we can currently produce is the following (we refer the
interested reader to [1, 3, 30] for details):

7It is also consistent the following:

RAOrd(Ωℵ0 ) + RAOrd(SSP) + ∀κ > ω1 RAOrd(Γκ)
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Theorem 5.17. Let Γ be a κ-suitable class of forcings8.
Let MK∗ stands for9

MK + there are stationarily many inaccessible cardinals.

There is an axiom10 CFA(Γ) which implies FAκ(Γ) as well as RAOrd(Γ) and is such
that for any T ∗ extending

MK∗ + CFA(Γ) + κ is a regular cardinal + S ⊂ κ,

and for any formula φ(S), the following are equivalent:

1. T ∗ ` [L(Ordκ) |= φ(S)],

2. T ∗ proves that for some forcing B ∈ Γ

JCFA(Γ)KB = JL(Ordκ) |= φ(S)KB = 1B.

We also have that

Theorem 5.18 ([1, 3]). Assume Γ is κ-suitable. Then CFA(Γ) is consistent relative
to the existence of a 2-superhuge cardinal11.

While the definition of κ-suitable Γ is rather delicate, it can be shown that many
interesting classes are ω1-suitable, among others: proper, semiproper, ωω-bounding
and (semi)proper, preserving a suslin tree and (semi)proper. [1] contains a detailed
list of classes which are ω1-suitable. It is not known whether there can be κ-suitable
classes Γ for some κ > ω1.

8This is a lenghty and technical definition; roughly it requires that:
• Γ is closed under two steps iterations, and contains all the < κ-closed posets (where κ =

cpd(Γ)),
• there is an iteration theorem granting that all set sized iterations of posets in Γ has a limit

in Γ,
• Γ is defined by a syntactically simple formula (i.e. Σ2 in the Levy hierarchy of formulae),
• Γ has a dense set of Γ-rigid elements (i.e. the B ∈ Γ admitting at most one i : B → C

witnessing that C ≤Γ B for all C ∈ Γ form a dense subclass of Γ).

9In MK one can define the club filter on the class Ord, hence the notion of stationarity for
classes of ordinals makes sense.

10CFA(Γ) can be formulated as a density property of the class forcing (Γ,≤Γ).
11A cardinal κ is 2-superhuge if it is supercompact and this can be witnessed by 2-huge embed-

dings.

3462



Useful Axioms

6 Some open questions
Here is a list of questions for which we do not have many clues.....

1. What are the Γ which are κ-suitable for a given cardinal κ > ℵ1 (i.e. such
that CFA(Γ) is consistent)?

2. Do they even exist for κ > ℵ1?

3. In case they do exist for some κ > ℵ1, do we always have a unique maximal Γ
such that cpd(Γ) = κ as it is the case for κ = ℵ0 or κ = ℵ1?

Any interesting iteration theorem for a class Γ ⊇ Γω2 closed under two steps iter-
ations can be used to prove that RAOrd(Γ) is consistent relative to suitable large
cardinal assumptions and freezes the theory of Hω3 with respect to forcings in Γ
preserving RAω(Γ) (see [2]). It is nonetheless still a mystery which classes Γ ⊇ Γω2

can give us a nice iteration theorem, even if the recent works, by Neeman, Asperò,
Krueger, Mota, Velickovic and others are starting to shed some light on this problem
(see among others [14, 15, 19]).

We can dare to be more ambitious and replicate the above type of issue at a
much higher level of the set theoretic hierarchy. There is a growing set of results
regarding the first-order theory of L(Vλ+1) assuming λ is a very large cardinal (i.e.,
for example admitting an elementary j : L(Vλ+1) → L(Vλ+1) with critical point
smaller than λ, see among others [6, 7, 35]). It appears that large fragments of this
theory are generically invariant with respect to a great variety of forcings.

Assume j : L(Vλ+1)→ L(Vλ+1) is elementary with critical point smaller
than λ . Can any of the results presented in this paper be of any use in
the study of which type of generic absoluteness results may hold at the
level of L(Vλ+1)?

The reader is referred to [1, 3, 2, 30, 32] for further examinations of these topics.
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Abstract

Frege’s theorem says that second-order Peano arithmetic is interpretable in
Hume’s Principle and full impredicative comprehension. Hume’s Principle is
one example of an abstraction principle, while another paradigmatic example is
Basic Law V from Frege’s Grundgesetze. In this paper we study the strength of
abstraction principles in the presence of predicative restrictions on the compre-
hension schema, and in particular we study a predicative Fregean theory which
contains all the abstraction principles whose underlying equivalence relations
can be proven to be equivalence relations in a weak background second-order
logic. We show that this predicative Fregean theory interprets second-order
Peano arithmetic (cf. Theorem 3.2).

Keywords: abstraction principles, logicism, Frege, predicativity

1 Introduction
The main result of this paper is a predicative analogue of Frege’s Theorem (cf.
Theorem 3.2). Roughly, Frege’s theorem says that one can recover all of second-
order Peano arithmetic using only the resources of Hume’s Principle and second-
order logic. This result was adumbrated in Frege’s Grundlagen of 1884 ([9], [11])
and the contemporary interest in this result is due to Wright’s 1983 book Frege’s
Conception of Numbers as Objects ([32]). For more on the history of this theorem,
see the careful discussion and references in Heck [18] pp. 4-6 and Beth [1].
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More formally, Frege’s theorem says that second-order Peano arithmetic is in-
terpretable in second-order logic plus the following axiom, wherein the cardinality
operator # is a type-lowering function from second-order entities to first-order en-
tities:

Hume’s Principle : ∀ X,Y (#X = #Y ↔ ∃ bijection f : X → Y ) (1.1)

Of course, one theory is said to be interpretable in another when the primitives of
the interpreted theory can be defined in terms of the resources of the interpreting
theory so that the translations of theorems of the interpreted theory are theorems
of the interpreting theory (cf. [28] §2 or [20] pp. 96-97 or [15] pp. 148-149 or [25]
§2.2). For a proof of Frege’s Theorem, see Chapter 4 of Wright’s book ([32]) or §2.2
pp. 1688 ff of [27].

The second-order logic used in the traditional proof of Frege’s Theorem cru-
cially includes impredicative instances of the comprehension schema. Intuitively,
the comprehension schema says that every formula ϕ(x) in one free first-order vari-
able determines a second-order entity:

∃ F ∀ x (Fx↔ ϕ(x)) (1.2)

The traditional proof of Frege’s Theorem uses instances of this comprehension
schema in which some of the formulas in question contain higher-order quantifiers
(cf. [27] p. 1690 equations (44)-(45)). However, there is a long tradition of predica-
tive mathematics, in which one attempts to ascertain how much one can accomplish
without directly appealing to such instances of the comprehension schema. This was
the perspective of Weyl’s great book Das Kontinuum ([31]) and has been further
developed in the work of Feferman ([6], [7]). Many of us today learn and know of
this tradition due to its close relation to the system ACA0 of Friedman and Simpson’s
project of reverse mathematics ([13], [24]).

However, outside of the inherent interest in predicative mathematics, consider-
ations related to Frege’s philosophy of mathematics likewise suggest adopting the
predicative perspective. For, Wright and Hale ([16], cf. [4]) have emphasized that
Hume’s Principle (1.1) is a special instance of the following:

A[E] : ∀ X,Y (∂E(X) = ∂E(Y )↔ E(X,Y )) (1.3)

wherein E(X,Y ) is a formula of second-order logic and ∂E is a type-lowering operator
taking second-order entities and returning first-order entities. These principles were
called abstraction principles by Wright and Hale, who pointed out that the following
crucial fifth axiom of Frege’s Grundgesetze of 1893 and 1903 ([10], [12]) was also an

3468



The Strength of Abstraction

abstraction principle:

Basic Law V : ∀ X,Y (∂(X) = ∂(Y )↔ X = Y ) (1.4)

The operator ∂ as governed by Basic Law V is called the extension operator and
the first-order entities in its range are called extensions. Regrettably, there is no
standard notation for the extension operator, and so some authors write §X in lieu
of ∂(X). In what follows, the symbol ∂ without any subscripts will be reserved for
the extension operator, whereas the subscripted symbols ∂E will serve as the notation
for the type-lowering operators present in arbitrary abstraction principles (1.3).

While the Russell paradox shows that Basic Law V is inconsistent with the full
comprehension schema (1.2) (cf. [27] p. 1682), nevertheless Basic Law V is consis-
tent with predicative restrictions, as was shown by Parsons ([23]), Heck ([17]), and
Ferreira-Wehmeier ([8]). This thus suggests the project of understanding whether
there is a version of Frege’s theorem centered around the consistent predicative frag-
ments of the Grundgesetze. This project has been pursued in the last decades by
many authors such as Heck ([17]), Ganea ([14]), and Visser ([26]). Their results
concerned the restriction of the comprehension schema (1.2) to the case where no
higher-order quantifiers are permitted. One result from this body of work says that
Basic Law V (1.4) coupled with this restriction on the comprehension schema is
mutually interpretable with Robinson’s Q. Roughly, Robinson’s Q is the fragment
of first-order Peano arithmetic obtained by removing all the induction axioms. (For
a precise definition of Robinson’s Q, see [15] p. 28, [24] p. 4, [27] p. 1680, [28]
p. 106). Additional work by Visser allows for further rounds of comprehension and
results in systems mutually interpretable with Robinson’s Q plus iterations of the
consistency statement for this theory, which are likewise known to be interpretable
in other weak arithmetics ([26] p. 147). In his 2005 book ([3]), Burgess surveys
these kinds of developments, and writes:

[. . . ] I believe that no one working in the area seriously expects to
get very much further in the sequence Qm while working in predicative
Fregean theories of whatever kind ([3] p. 145).

Here Qm is the expansion of Robinson’s Q by finitely many primitive recursive
function symbols and their defining equations along with induction for bounded
formulas ([3] pp. 60-63), so that Burgess records the prediction that predicative
Fregean theories will be interpretable in weak arithmetics.

The main result of this paper suggests that this prediction was wrong, and that
predicative Fregean theories can interpret strong theories of arithmetic (cf. Theo-
rem 3.2). While we turn presently to developing the definitions needed to precisely
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state this result, let us say by way of anticipation that part of the idea is to work
both with (i) an expanded notion of a “Fregean theory,” so that it includes several
abstraction principles, such as Basic Law V, in addition to Hume’s Principle, and
(ii) an expanded notion of “predicativity,” in which one allows some controlled in-
stances of higher-order quantifiers within the comprehension schema (1.2). Hence, of
course, it might be that Burgess and others had merely conjectured that predicative
Fregean theories in a more limited sense were comparatively weak.

This paper is part of a series of three papers, the other two being [29] and
[30]. These papers collectively constitute a sequel to our paper [27], particularly as
it concerns the methods and components related to Basic Law V. In that earlier
paper, we showed that Hume’s Principle (1.1) with predicative comprehension did
not interpret second-order Peano arithmetic with predicative comprehension (cf.
[27] p. 1704). Hence at the outset of that paper, we said that “in this specific sense
there is no predicative version of Frege’s Theorem” ([27] p. 1679). The main result
of this present paper (cf. Theorem 3.2) is that when we enlarge the theory to a
more inclusive class of abstraction principles containing Basic Law V, we do in fact
succeed in recovering arithmetic.

This paper depends on [29] only in that the consistency of the predicative Fregean
theory which we study here was established in that earlier paper (cf. discussion at
close of next section). In the paper [30], we focus on embedding the system of the
Grundgesetze into a system of intensional logic. The alternative perspective of [30]
then suggests viewing the consistent fragments of the Grundgesetze as a species of
intensional logic, as opposed to an instance of an abstraction principle.

This paper is organized as follows. In §2 we set out the definitions of the pred-
icative Fregean theory. In §3 it is shown how this predicative Fregean theory can
recover full second-order Peano arithmetic. In §4 it is noted that some theories
which are conceptually proximate to the predicative Fregean theory are nonetheless
inconsistent.

2 Defining a theory of abstraction with predicative
comprehension

The predicative Fregean theory with which we work in this paper is developed within
the framework of second-order logic. The language L0 of the background second-
order logic is an ω-sorted system with sorts for first-order entities, unary second-order
entities, binary second-order entities etc. Further, following the Fregean tradition,
the first-order entities are called objects, the unary second-order entities are called
concepts, and the n-ary second-order entities for n ≥ 1 are called n-ary concepts.
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Rather than introduce any primitive notation for the different sorts, we rather em-
ploy the convention of using distinctive variables for each sort: objects are written
with lower-case Roman letters x, y, z, a, b, c . . ., concepts are written with upper-case
Roman letters X,Y, Z,A,B,C, F,G,H,U, . . ., n-ary concepts for n > 1 are written
with the upper case Roman letters R,S, T , and n-ary concepts are written with the
Roman letters f, g, h when they are graphs of functions.

Besides the sorts, the other basic primitive of the signature of the background
second-order logic L0 are the predication relations. One writes Xa to indicate that
object a has property or concept X. Likewise, there are predication relations for n-
ary concepts, which we write as R(a1, . . . , an). The final element of the signature
L0 of the background second-order logic are the projection symbols. The basic
idea is that one wants, primitive in the signature L0, a way to move from the
binary concept R and the object a to its projection R[a] = {b : R(a, b)}. We
assume that the signature L0 of the background second-order logic is equipped with
symbols (R, a1, . . . , am) 7→ R[a1, . . . , am] from (m+n)-ary concepts R and an m-
tuple of objects (a1, . . . , am) to an n-ary concept R[a1, . . . , am] = {(b1, . . . , bn) :
R(a1, . . . , am, b1, . . . , bn)}. Further, typically in what follows we avail ourselves of
the tuple notation a = a1, . . . , an and thus write predication and projection more
succinctly as R(a) and R[a], respectively.

All this in place, we can then formally define the signature L0 of the background
second-order logic as follows:

Definition 2.1. The signature L0 of the background second-order logic is a many-
sorted signature which contains (i) a sort for objects and for each n ≥ 1 a sort
for n-ary concepts, (ii) for each n ≥ 1, an (n + 1)-ary predication relation symbol
R(a1, . . . , an) which holds between an n-ary concept R and an n-tuple of objects
a1, . . . , an, and (iii) for each n,m ≥ 1, an (m + 1)-ary projection function symbol
(R, a1, . . . , am) 7→ R[a1, . . . , am] from an (m + n)-ary concept R and an m-tuple of
objects (a1, . . . , am) to an n-ary concept R[a1, . . . , am].

As is usual in many-sorted signatures, we adopt the convention that each sort has its
own identity symbol, so that technically cross-sortal identities are not well-formed.
But we continue to write all identities with the usual symbol “=” for the ease of
readability.

The expansions of second-order logic with which we work are designed to handle
abstraction principles (1.3). Hence, suppose that L is an expansion of L0. Suppose
that E(R,S) is an L-formula with two free n-ary relation variables for some n ≥ 1,
with all free variables of E(R,S) explicitly displayed. Then we may expand L
to a signature L[∂E ] which contains a new function symbol ∂E which takes n-ary
concepts R and returns the object ∂E(R). Then the following axiom, called the
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abstraction principle associated to E, is an L[∂E ]-sentence:

A[E] : ∀ R,S (∂E(R) = ∂E(S)↔ E(R,S)) (2.1)

This generalizes the notion of an abstraction principle (1.3) described in the previ-
ous section in that the domain of the operator ∂E can be n-ary concepts for any
specific n ≥ 1.

This generalization is warranted by several key examples, such as that of ordinals.
Let R be a binary concept and let Field(R) be the unary concept F such that Fx
iff there is a y such that Rxy or Ryx. Then consider the following formula E(R,S)
on binary concepts:

[(Field(R), R) |= wo ∨ (Field(S), S) |= wo]→ (2.2)
∃ isomorphism f : (Field(R), R)→ (Field(S), S)

In this, “wo” denotes the natural sentence in the signature of second-order logic
which says that a binary concept is a well-order, i.e. a linear order such that every
non-empty subconcept of its domain has a least element. It’s not too difficult to see
that E(R,S) is an equivalence relation on binary concepts, and that two well-orders
will be E-equivalent if and only if they are order-isomorphic. Just as the Russell
paradox shows that Basic Law V (1.4) is inconsistent with the full comprehension
schema, so one can use the Burali-Forti paradox to show that A[E] for this E in
equation (2.2) is inconsistent with the full comprehension schema (cf. [19] p. 138
footnote, [2] pp. 214, 311). To handle these abstraction principles we need to adopt
restrictions on the comprehension schema, to which we presently turn.

There are three traditional predicative varieties of the comprehension schema:
the first-order comprehension schema, the ∆1

1-comprehension schema, and the Σ1
1-

choice schema (cf. [24] VII.5-6, [27] Definition 5 p. 1683). However, to make the
comparison with the full comprehension schema (1.2) precise, we should restate it
to include not only concepts but n-ary concepts for all n ≥ 1 and to indicate its
explicit dependence on a signature:

Definition 2.2. Suppose that L is an expansion of L0. Then the Full Comprehen-
sion Schema for L-formulas consists of all axioms of the form ∃ R ∀ a (Ra ↔
ϕ(a)), wherein ϕ(x) is an L-formula, perhaps with parameters, and x abbrevi-
ates (x1, . . . , xn) and R is an n-ary concept variable for n ≥ 1 that does not appear
free in ϕ(x).

The most restrictive predicative version of the comprehension schema is then the
following, where the idea is that no higher-order quantifiers are allowed in the for-
mulas:
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Definition 2.3. Suppose that L is an expansion of L0. The First-Order Comprehen-
sion Schema for L-formulas consists of all axioms of the form ∃ R ∀ a (Ra↔ ϕ(a)),
wherein ϕ(x) is an L-formula with no second-order quantifiers but perhaps with pa-
rameters, and x abbreviates (x1, . . . , xn) and R is an n-ary concept variable for n ≥ 1
that does not appear free in ϕ(x).

A more liberal version of the comprehension schema is the ∆1
1-comprehension

schema. A Σ1
1-formula (resp. Π1

1-formula) is one which begins with a block of exis-
tential quantifiers (resp. universal quantifiers) over n-ary concepts for various n ≥ 1
and which contains no further second-order quantifiers. One then defines:

Definition 2.4. Suppose that L is an expansion of L0. Then the ∆1
1-Comprehension

Schema for L-formulas consists of all axioms of the form

(∀ x ϕ(x)↔ ψ(x))→ ∃ R ∀ a (Ra↔ ϕ(a)) (2.3)

wherein ϕ(x) is a Σ1
1-formula in the signature of L and ψ(x) is a Π1

1-formula in the
signature of L that may contain parameters, and x abbreviates (x1, . . . , xn), and R
is an n-ary concept variable for n ≥ 1 that does not appear free in ϕ(x) or ψ(x).

Finally, traditionally one also includes amongst the predicative systems the following
choice principle:

Definition 2.5. Suppose that L is an expansion of L0. The Σ1
1-Choice Schema for

L-formulas consists of all axioms of the form

[∀ x ∃ R′ ϕ(R′, x)]→ ∃ R [∀ x ϕ(R[x], x)] (2.4)

wherein the L-formula ϕ(R′, x) is Σ1
1, perhaps with parameters, and x abbrevi-

ates (x1, . . . , xm) and R is an (m + n)-ary concept variable for n,m ≥ 1 that does
not appear free in ϕ(R′, x) where R′ is an n-ary concept variable.

The Σ1
1-Choice Schema and the First-Order Comprehension Schema together imply

the ∆1
1-Comprehension Schema (cf. [24] Theorem V.8.3 pp. 205-206, [27] Propo-

sition 6 p. 1683). Hence, even if one’s primary interest is in the latter schema,
typically theories are axiomatized with the two former schemas since they are de-
ductively stronger, and that is how we proceed in this paper.

To the signature L0 of the weak background second-order logic, we want to asso-
ciate a certain weak background L0-theory. Some of the axioms of this background
theory axiomatize the behavior of the predication symbols and the projection sym-
bols. For each m ≥ 1, one has the following extensionality axiom, wherein R,S are
m-ary concept variables and a = a1, . . . , am are object variables:

∀ R,S [R = S ↔ (∀a (R(a)↔ S(a)))] (2.5)
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But it should be noted that some authors don’t explicitly include the identity sym-
bol for concepts or higher-order entities and simply take it as an abbreviation for
coextensionality (cf. [24] pp. 2-3, [3] pp. 14-15). Second, for each n,m ≥ 1, one has
the following projection axioms governing the behavior of the projection symbols,
wherein R is an (m+n)-ary concept variable and a = a1, . . . , am, b = b1, . . . , bn are
object variables:

∀ R ∀ a, b [(R[a])(b)↔ R(a, b)] (2.6)

Finally, with all this in place, we can define the weak background theory of second-
order logic:

Definition 2.6. The weak background theory of second-order logic Σ1
1-OS is L0-

theory consisting of (i) the extensionality axioms (2.5) and the projection axioms (2.6)
and (ii) the Σ1

1-Choice Schema for L0-formulas (Definition 2.5) and (iii) the First-
Order Comprehension Schema for L0-formulas (Definition 2.3).

In the theory Σ1
1-OS and its extensions, we use standard abbreviations for various

operations on concepts, for instance X ∩ Y = {z : Xz & Y z} and {x} = {z : z = x}
and X×Y = {(x, y) : Xx & Y y} and ∅ = {x : x 6= x}. In general, we use {x : Φ(x)}
as an abbreviation for the concept F such that Fx iff Φ(x), assuming that Φ(x)
is a formula which falls under one of the comprehension principles available in the
theory in which we are working.

This weak background theory Σ1
1-OS of second-order logic is used to define the

following Fregean theory at issue in this paper. If E(R,S) is an L0-formula with two
free nE-ary concept variables and no further free variables, then we let Equiv(E)
abbreviate the L0-sentence expressive of E being an equivalence relation on nE-
ary concepts, i.e. the universal closure of the following, wherein R,S, T are nE-ary
concept variables:

[E(R,R) & (E(R,S)→ E(S,R)) & ((E(R,S) & E(S, T ))→ E(R, T ))] (2.7)

Then consider the following collection of L0-formulas which consists of all the L0-
formulas E(R,S) with two free nE-ary concept variables and no further free variables
such that Σ1

1-OS proves Equiv(E):

ProvEquiv(L0) = {E(R,S) is an L0 formula : Σ1
1-OS ` Equiv(E)} (2.8)

Then define the following expansion of L1 of L0:

Definition 2.7. Let L1 consist of the expansion of the signature L0 (2.1) by a new
function symbol ∂E from nE-ary concepts to objects for each E from ProvEquiv(L0) (2.8).
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Then we define the predicative theory as follows:

Definition 2.8. The predicative Fregean theory, abbreviated PFT, is the L1-theory
consisting of (i) the extensionality axioms (2.5) and the projection axioms (2.6) and
(ii) the Σ1

1-Choice Schema for L1-formulas (Definition 2.5) and (iii) the First-Order
Comprehension Schema for L1-formulas (Definition 2.3), and (iv) the abstraction
principle A[E] (2.1) for each E from ProvEquiv(L0) (2.8).

Hence, the theory PFT is a recursively enumerable theory in a recursively enumerable
signature L1. If one desired a recursive signature, one could alternatively define L1 to
consist of function symbols ∂E from nE-ary concepts to objects for each L0-formula
E, regardless of whether it was in ProvEquiv(L0) (2.8). This is because clause (iv)
in Definition 2.8 only includes the abstraction principle A[E] (2.1) when the formula
E is in fact in the set ProvEquiv(L0) (2.8).

While this definition is technically precise, the niceties ought not obscure the in-
tuitiveness of the motivating idea. For, the idea behind this predicative Fregean the-
ory is that it conjoins traditional predicative constraints on comprehension together
with the idea that abstraction principles associated to certain L0-formulae are always
available. More capaciously: if we start from weak background theory of second-
order logic Σ1

1-OS and if we can prove in this theory that an L0-formula E(R,S) in
the signature of this weak background logic is an equivalence relation on nE-ary
concepts for some nE ≥ 1, then the predicative Fregean theory PFT includes the
abstraction principle A[E] (2.1) associated to E. Hence the theory PFT includes the
abstraction principles associated to number, extension, and ordinal, namely Hume’s
Principle (1.1), Basic Law V (1.4) and the abstraction principle associated to ordi-
nals (cf. (2.2) above).

One of the aims of the earlier paper [29] was to establish the following:

Theorem 2.9. The theory PFT is consistent.

Proof. Let E1, . . . , En, . . . enumerate the elements of the collection ProvEquiv(L0)
from equation (2.8). By compactness, it suffices to establish, for each n ≥ 1, the
consistency of the subsystem of PFT which is formed by restricting part (iv) of the
Definition of PFT to the abstraction principles A[E1], . . . , A[En]. But then this theory
is a subtheory of the theory which, in the paper [29], we called Σ1

1−[E1, . . . , En]A +
SO + GC. The consistency of this theory was established in the Joint Consistency
Theorem of that paper.
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3 Interpreting second-order arithmetic in the theory
While the predicative Fregean Theory only explicitly includes predicative instances
of the comprehension schema for L0-formulas, surprisingly it is able to deductively
recover all instances of the Full Comprehension Schema for L0-formulas.

Theorem 3.1. PFT proves each instance of the Full Comprehension Schema for
L0-formulas.

Proof. Let Φ(x,G) be an L0-formula with all free variables displayed, wherein x is
an object variable and G is a unary concept variable. Let us first show that PFT
proves the following instance of the Full Comprehension Schema for L0-formulas
(Definition 2.2):

∀ G ∃ F ∀ x (Fx↔ Φ(x,G)) (3.1)

After we finish the proof of this instance, we’ll comment on how to establish the
general case.

First consider the following L0-formulas µ(R,S), ν(R,S) with all free variables
displayed, where R,S are binary concept variables:

µ(R,S) ≡ [∃ ! x,G with R = {x} ×G] & [∃ ! y,H with S = {y} ×H]
& ∀ x,G, y,H [(R = {x} ×G & S = {y} ×H)→ (Φ(x,G)↔ Φ(y,H))]

ν(R,S) ≡ ¬[∃ ! x,G with R = {x} ×G] & ¬[∃ ! y,H with S = {y} ×H]

In this, the identity R = {x} ×G is an abbreviation for the claim that

∀ a, b (R(a, b)↔ ((a = x) & Gb)) (3.2)

Hence, µ(R,S) expresses that R can be written uniquely as {x} ×G for some x,G,
while S can be written uniquely as {y} × H for some y,H, and that Φ(x,G) ↔
Φ(y,H). The circumstance in which a binary relation R can be written as {x} ×G
but not uniquely so is when G is empty, since in this case {x} × G = {x′} × G for
any objects x, x′. Finally, consider the following L0-formula E(R,S) where again
R,S are binary concept variables and all free variables are displayed:

E(R,S) ≡ (µ(R,S) ∨ ν(R,S)) (3.3)

The weak background theory Σ1
1-OS proves that E(R,S) is an equivalence relation

on binary concepts. For reflexivity, either R can be written uniquely as {x} × G
for some x,G, or not. If so, then one trivially has Φ(x,G) ↔ Φ(x,G). This then
implies µ(R,R) and so E(R,R). If not, then of course ν(R,R) and so E(R,R).
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For symmetry, it simply suffices to note that both µ and ν are symmetric in that
µ(R,S) implies µ(S,R) and likewise for ν. For transitivity, suppose that E(R,S)
and E(S, T ). Because of the disjunctive definition of E in (3.3), there are three
cases to consider. First suppose that µ(R,S) and µ(S, T ). Then we may uniquely
write R = {x} × G,S = {y} × H,T = {z} × I, and from Φ(x,G) ↔ Φ(y,H) and
Φ(y,H) ↔ Φ(z, I) we may conclude that Φ(x,G) ↔ Φ(z, I). Hence we then have
µ(R, T ) and thus E(R, T ). Second suppose that ν(R,S) and ν(S, T ). These two
assumptions imply that we can’t write any of R,S, T uniquely as the product of a
singleton and a unary concept, and hence that ν(R, T ) and E(R, T ). Finally, suppose
that µ(R,S) and ν(S, T ) (or vice-versa). But this case leads to a contradiction,
since µ(R,S) implies that we can write S uniquely as the product of a singleton
and a unary concept, while ν(S, T ) says that we can’t. Hence E(R,S) is indeed an
equivalence relation on binary concepts, and provably so in the weak background
theory Σ1

1-OS.
Then the L0-formula E(R,S) is in the set ProvEquiv(L0) (2.8). Hence the

theory PFT contains the abstraction principle A[E] (2.1). Before we verify (3.1),
let us introduce another abstraction principle. Consider the following L0-formulas
µ′(X,Y ), ν ′(X,Y ) with all free variables displayed, where X,Y are unary concept
variables:

µ′(X,Y ) ≡ ∃ x ∃ y X = {x} & Y = {y} & (Φ(x, ∅)↔ Φ(y, ∅))
ν ′(X,Y ) ≡ ¬(∃ x X = {x}) & ¬(∃ y Y = {y})

Then consider the following L0-formula E′(X,Y ) where again X,Y are unary con-
cept variables and all free variables are displayed:

E′(X,Y ) ≡ (µ′(X,Y ) ∨ ν ′(X,Y )) (3.4)

By the same argument as the previous paragraph, Σ1
1-OS proves that E′(X,Y ) is

an equivalence relation unary concepts. So the theory PFT contains the abstraction
principle A[E′] (2.1)

Now, working in PFT, let us verify (3.1). There are three cases. First suppose
that there is no x0 with Φ(x0, G). Then to establish (3.1) one can take F = ∅.

As a second case, suppose that there is a x0 with Φ(x0, G) and that G is non-
empty. Then observe that the graph of the function f(x) = ∂E({x} × G) has both
a Σ1

1- and a Π1
1-definition:

f(x) = y ↔ ∃ R (∀ a, b R(a, b)↔ (a = x & Gb)) & ∂E(R) = y

↔ ∀ R (∀ a, b R(a, b)↔ (a = x & Gb))→ ∂E(R) = y (3.5)
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These are equivalent because we can use the First-Order Comprehension Schema for
L1-formulas to secure that the binary relation R = {x} × G exists. Hence by the
∆1

1-Comprehension Schema for L1-formulas, the equivalence in (3.5) implies that the
graph of f exists as a binary concept. Then by First-Order Comprehension Schema
for L1-formulas, the following unary concept exists:

F = {x : f(x) = ∂E({x0} ×G)} (3.6)

Now let’s argue that F = {x : Φ(x,G)}. First suppose that Fx. Then f(x) =
∂E({x0}×G) and hence ∂E({x}×G) = ∂E({x0}×G). Then E({x}×G, {x0}×G)
and since G is non-empty we have µ({x}×G, {x0}×G). Then Φ(x,G)↔ Φ(x0, G).
Since we’re assuming that Φ(x0, G), we then conclude that Φ(x,G), which is what
we wanted to show. For the converse, suppose that Φ(x,G). Since we’re assuming
that Φ(x0, G) and that G is non-empty we may conclude that µ({x}×G, {x0}×G)
and thus E({x}×G, {x0}×G) and ∂E({x}×G) = ∂E({x0}×G). By the definition
of f , we then have f(x) = ∂E({x0} × G) which by the definition of F implies that
Fx, which is what we wanted to show.

As a third case, suppose that there is an x0 with Φ(x0, G) but that G itself
is empty. Then we argue as before that the graph of g(x) = ∂E′({x}) exists as a
binary concept, that F = {x : g(x) = ∂E′({x0})} exists as a unary concept, and
that F = {x : Φ(x,G)}.

This finishes the proof of (3.1) in PFT. The proof of the general case of the Full
Comprehension Schema for L0-formulas (Definition 2.2) differs only in that unary
concept variable F from (3.1) might instead be an n-ary concept variable and there
may be more than one concept parameter G, as well as some additional object
parameters. But the proof of this general case is directly analogous to the proof
of (3.1). The only difference is that the number of abstraction principles used in
the proof will increase with the number of concept parameters. In general if there
are m-concept parameters G1, . . . , Gm, then there will be 2m different abstraction
principles used in the proof, since one must consider a case corresponding to the
finite binary sequence (i1, . . . , im), wherein ik = 0 indicates that Gk is empty, and
ik = 1 indicates that Gk is non-empty.

Before turning to the proof that PFT interprets second-order Peano arithmetic,
let’s briefly note that in the consistency proof from [29] invoked in the proof of
Theorem 2.9, we explicitly verified the Full Comprehension Schema for L0-formulas.
(In the language of that paper, these were part of the theory SO, and the interested
reader may consult the proof of the Joint Consistency Theorem in that paper).

While the theory PFT only explicitly includes some instances of the Full Com-
prehension Schema for L0-formulas in its definition (cf. Definition 2.8), the previous
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theorem says that it proves all of them. However, even in this predicative setting,
the Russell paradox can be used to show that there is no concept consisting of the
extensions, i.e. the range of the extension operator ∂ from Basic Law V (1.4). For
a proof, see [27] Proposition 29 p. 1692. Now the formula rng(∂) is definable by a
Σ1

1-formula of the signature L0[∂]. Further L0[∂] is included in the signature L1 of
PFT. Hence, since the L1-theory PFT is consistent by Theorem 2.9, it follows that
PFT does not prove all instances of the Full Comprehension Schema for L1-formulas.

This kind of situation is of course not entirely unfamiliar. For instance, Pres-
burger arithmetic yields a complete axiomatization of the structure (Z, 0, 1+, <) (cf.
Marker [22] pp. 82 ff). So this axiomatization proves each instance of the following
induction schema in the signature L = {0, 1,+, <}:

[ϕ(0) & ∀ x ≥ 0 (ϕ(x)→ ϕ(x+ 1)))]→ [∀ x ≥ 0 ϕ(0)] (3.7)

Consider a non-standard model G = (G, 0, 1,+, <) of Presburger arithmetic, and
extend L to L′ by adding a new unary predicate Z which is interpreted on G as
the integers Z. Then of course the axioms of Presburger arithmetic do not imply
all instances of the schema (3.7) in the expanded signature L′. So of course it’s
consistent for there to be a schema and an L′-theory and a subsignature L of L′
such that the theory proves all instances of the L-schema but not every instance of
the L′-schema.

Now let’s show that PFT interprets second-order Peano arithmetic PA2. These
axioms are the natural set of axioms used to describe the standard model of second-
order arithmetic; see [24] p. 4 or [27] p. 1680 or [28] p. 106 for an explicit list of
these axioms.

Theorem 3.2. The predicative Fregean theory PFT interprets second-order Peano
arithmetic PA2.

Proof. First note that the predicative Fregean theory PFT proves the existence of
the graph of the function s(x) = ∂({x}) (cf. [27] Proposition 27 p. 1691), where
this is the abstraction operator associated to Basic Law V (1.4). For, note that in
PFT, for all objects x, y, one has that the following Σ1

1-condition and Π1
1-conditions

are equivalent:

[∃ X (X = {x} & ∂(X) = y)]↔ [∀ X (X = {x} → ∂X = y)] (3.8)

By the ∆1
1-Comprehension Schema for L1-formulas, there is then a binary relation

which holds of objects x, y iff either the Σ1
1-condition holds or the Π1

1-condition holds.
And this binary relation is obviously the graph of the function s(x) = ∂({x}).
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Let M be {x : x = x}, which exists by Full Comprehension for L0-formulas, and
let 0 = ∂(∅). Then one has that the triple (M, 0, s) satisfies the first two axioms of
Robinson’s Q:

∀ x s(x) 6= 0, ∀ x, y (s(x) = s(y)→ x = y) (3.9)

For, suppose that s(x) = 0. Then ∂({x}) = ∂(∅) and then by Basic Law V (1.4)
one has that {x} = ∅, a contradiction. Similarly, suppose that s(x) = s(y). Then
∂({x}) = ∂({y}) and so by Basic Law V (1.4) one has that {x} = {y} and hence
x = y. Thus (3.9) follows immediately from Basic Law V (1.4).

But then standard arguments allow one to interpret second-order Peano arith-
metic PA2 by taking the natural numbers N to be the sub-concept of M consisting
of all those subconcepts of M which are “inductive,” that is which contain zero and
closed under successor. Here of course for the existence of N and the verification of
the other axioms of arithmetic, one appeals to the Full Comprehension Schema for
L0-formulas, using M, 0, s as parameters (cf. [27] Theorem 16 p. 1688).

4 The fragility of abstraction with predicative compre-
hension

However, in spite of its technical strength, the conceptual basis of the predicative
Fregean theory PFT is rather fragile. For, the L1-theory PFT was formed by adding
the abstraction principle A[E] associated to the L0-formulas E(R,S) when this
formula could be proven to be an equivalence relation in the background second-
order logic Σ1

1-OS. But one cannot successively iterate this idea. For, suppose that
in analogue to ProvEquiv(L0) in equation (2.8), one defines:

ProvEquiv(L1) = {E(R,S) is an L1 formula : PFT ` Equiv(E)} (4.1)

And further suppose that one defines L2 to be the expansion of L1 by the addition of
a function symbol ∂E from nE-ary concepts to objects for each L1-formula E(R,S)
in ProvEquiv(L1). Finally, suppose one defines the following iteration of PFT (cf.
Definition 2.8):

Definition 4.1. The theory PFT2 is the L2-theory consisting of (i) the extensionality
axioms (2.5) and the projection axioms (2.6) and (ii) the Σ1

1-Choice Schema for
L2-formulas (Definition 2.5) and (iii) the First-Order Comprehension Schema for
L2-formulas (Definition 2.3), and (iv) the abstraction principle A[E] (2.1) for each
E which is from ProvEquiv(L0) (2.8) or from ProvEquiv(L1) (4.1).
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Then the same argument as in the proof of Theorem 3.1 establishes that PFT2 proves
each instance of the Full Comprehension Schema for L1-formulas. But then PFT2 is
inconsistent, since on pain of the Russell paradox there is no concept of all extensions
(cf. [27] Proposition 29 p. 1692), where again the extensions are the range of the
abstraction operator ∂ associated to Basic Law V (1.4). Hence, while the predicative
Fregean theory PFT is consistent, when one tries to iterate its underlying idea of
adding abstraction principles when their equivalence relations can be proven to be
equivalence relations, one again runs up against the Russell paradox. This indicates
that the resource of abstraction principles in the predicative setting is unlike that
of typed theories of truth or second-order logic, which we may consistently add to
any consistent theory.

This point is underscored when one observes that the same considerations show
the inconsistency of an axiom-based analogue of the rule-based predicative Fregean
theory PFT. In particular, suppose that we recursively defined a signature L∗ ex-
tending L0 so that if E(R,S) is an L∗-formula in exactly two free nE-ary concept
variables then L∗ also contains a function symbol ∂E which takes nE-ary concepts
to objects and which does not occur in E. One could then define the following
L∗-theory:

Definition 4.2. The theory PFT∗ is the L∗-theory consisting of (i) the extensionality
axioms (2.5) and the projection axioms (2.6) and (ii) the Σ1

1-Choice Schema for L∗-
formulas (Definition 2.5) and (iii) the First-Order Comprehension Schema for L∗-
formulas (Definition 2.3), and (iv) the axiom Equiv(E)→ A[E] for each L∗-formula
E.

In this, Equiv(E) is the sentence which says that E is an equivalence relation (cf.
(2.7)) and A[E] is the abstraction principle (2.1), so that the axiom Equiv(E) →
A[E] says that if E is an equivalence relation, then A[E] holds. The considerations
of the previous paragraphs can be replicated in this theory PFT∗, showing it to be
inconsistent. However, the conceptual distance between the inconsistent L∗-theory
PFT∗ and the consistent L1-theory PFT is rather slim. The difference is merely a
difference between a rule and an axiom: whereas the rule-based PFT only includes
an abstraction principle when the underlying equivalence relation is expressible in
the weak background logic and is provably an equivalence relation there, the axiom-
based PFT∗ includes a commitment to either the truth of the abstraction principle
or the falsity of its underlying formula being an equivalence relation.

In response to this, one might try to restrain the predicative Fregean theory PFT
so that the analogously defined iterated version of it and the analogously defined
axiom-based version of it were consistent. For instance, one might consider restrict-
ing the abstraction principles added to the theory PFT to those whose underlying
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equivalence relation was expressible both as a Σ1
1-formula and a Π1

1-formula in the
background second-order logic. This, it might be suggested, would be a genuinely
predicative theory of abstraction principles. Such a move would block the proof of
Theorem 3.1. For, the equivalence relation E(R,S) (3.3) used in that proof is not
obviously expressible in such a way. However, it is unknown to us how much arith-
metic this more austerely predicative theory could interpret, and it is not obvious
to us whether the analogously defined iterated version of it (or axiom-based version
of it) is consistent.

Another way forward might be to find some principled way to focus atten-
tion on abstraction principles which are somehow more like the paradigmatic Basic
Law V (1.4) and Hume’s Principle (1.1) and the abstraction principle associated
to ordinals (2.2), and somehow less like the seemingly ad-hoc abstraction principles
constructed in the proof of Theorem 3.1. But to do so would be to lose some of
the original motivation for focusing on predicative abstraction principles. For, part
of the attraction was supposed to be that more abstraction principles became con-
sistent and jointly consistent. And indeed, as the predicative Fregean Theory PFT
attests, a good deal of joint consistency is available in this setting. Hence in the
earlier paper [29] we said that we had resolved an analogue of the joint consistency
problem. But as we have seen in this section, when we try to iterate the underlying
idea of abstraction principles in the predicative setting, we again run into incon-
sistency and seem back in the situation of trying to discern ways to weed out the
acceptable from the unacceptable abstraction principles. For an overview of the
various candidates for acceptable abstraction principles in the general impredicative
setting, see [21] or [5].

Perhaps another way forward might be to give up on the idea of abstraction prin-
ciples altogether and find principled reasons for studying systems centered around
either Basic Law V (1.4) itself or Hume’s Principle (1.1) itself or the abstraction prin-
ciple associated to ordinals (2.2) all by itself. With respect to Basic Law V (1.4), this
is the perspective of [30], where the idea is to work within an intensional logic and
see the extension operator as selecting a sense for each concept, just like we might
select a specific Turing machine index for each computable function. But much re-
mains unknown about the individual abstraction principles at the predicative level.
For instance, it is to our knowledge unknown whether Basic Law V (1.4) or the ab-
straction principle associated to ordinals (2.2), equipped with the Σ1

1-choice schema
and the First-Order Comprehension Schema, interprets the analogous predicative
versions of arithmetic (cf. [27] p. 1707). In this paper, the idea for interpreting
arithmetic was to collect together all the predicative abstraction principles so that
they could effect the interpretation together, and it is in general unclear to us what
happens when one focuses on the abstraction principles one by one.
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Abstract

In this chapter, we propose some future directions of work, potentially bene-
ficial to Mathematics and its foundations, based on the recent import of method-
ology from the theory of programming languages into proof theory. This sci-
entific essay, written for the audience of proof theorists as well as the working
mathematician, is not a survey of the field, but rather a personal view of the
author who hopes that it may inspire future and fellow researchers.

1 Introduction
We cannot hope to prove that every definition, every symbol, every
abbreviation that we introduce is free from potential ambiguities, that it
does not bring about the possibility of a contradiction that might not
otherwise have been present.

N. Bourbaki [4]

There is an error, I can confess now. Some 40 years after the paper was
published, the logician Robert M. Solovay from the University of
California sent me a communication pointing out the error. I thought:
“How could it be?” I started to look at it and finally I realized [. . .]

John F. Nash Jr. [56]

∗This chapter was prepared while the author was financed by the ERC Advanced Grant
ProofCert.
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Mathematics arises from all sorts of application or insights but in the
end must always consist of proofs, [but] although a real proof is not
simply a formalized document but a sequence of ideas and insights, [a]
real proof is not something just probably correct.

Saunders Mac Lane [51]

What constitutes a real proof is a question at the origin of mathematical logic.
In effect, a real proof is one that can be reduced to the use of only a few accepted
‘ideal’ principles such as the axioms for a set theory like ZFC. And yet certain ideal
principles are far from self-evident as Euclid’s axiomatic method would require them
to be. Proof theory was conceived by Hilbert with the program to further “recog-
nize the non-contradictory character of all the usual [ideal] mathematical methods
without exceptions”. Around 1960, these concerns were addressed for the theory of
arithmetic and analysis in the so called modified Hilbert program using the early
models of computation—proof theory was also pivotal for the development of com-
puter science (Hilbert’s Entscheidungsproblem).

Applying mathematical rigor to formal proofs as the object of study brought an
answer to the question of what a real proof is: a formal proof can be given semantics
in terms of Gödel’s system T and Spector’s bar recursion, thereby eliminating logic
in favor of pure computation. However, these early models of computation that were
used to provide the answer to the consistency question, although satisfying in terms
of precision, are cumbersome to use in practice.

Firstly, it is far from clear why the old computational interpretations are the
right ones, for it is often hard to distinguish them (bar recursion) from brute force
search procedures. We would like to understand the computational answer to the
main consistency questions in terms of modern and more finely grained computing
abstractions, such as the ones developed over the course of the past four decades in
the theory of programming languages—for research on (natural) models of compu-
tation surely did not end with the invention of the Turing machine and recursive
function theory.

Secondly, the cumbersome machinery, although ingenious, makes it difficult to
address the next level of research questions. Once that we have the answer to what
a real proof is, we need to know what constitutes the essential data of a proof—
curiously, this question of finding criteria of greatest simplicity for proofs was already
listed as 24th in Hilbert’s famous list of open problems, but being premature was
not included among the ones finally published [63].

The title of this chapter refers to proof unwinding, the pioneering research pro-
gram from the 1950’s of Georg Kreisel [50], who started to use the computational
approach, not for foundational purposes, but to extract numerical content from ac-
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tual mathematical arguments. We aim at the working mathematician, a term used
by Bourbaki [4] who meant by it a researcher with a pragmatic attitude toward
foundations. The time is ripe for a leap forward, both in foundations and unwinding
applications. The present chapter has as goal to propose bringing proof unwinding
on a par with the latest computing abstractions from the theory of programming
languages, with the ambition to turn such streamlined proof theoretic methods into
a toolbox readily used by the working mathematician, rather than the rare specialist
in proof theory as it has been the case up to now.

2 New Unwinding Toolbox
Conducted with the goal:

“To determine the constructive (recursive) content or the constructive
equivalent of the non-constructive concepts and theorems used in mathe-
matics” [44],

Kreisel’s research program applied the proof theory of the day, namely Hilbert’s
ε-substitution method, Herbrand’s theorem, and the no-counterexample interpreta-
tion, combined with then brand new theory of recursive functions, to extract new
bounds and algorithms from prima facie ineffective proofs. But, even in the hands of
masters, the early unwinding methodology was apparently difficult to apply, if one
is to judge from the lapses of time in between applications: Littlewood’s theorem by
Kreisel in 1951 [43], Artin’s proof of Hilbert’s 17th problem by Kreisel first in 1957
and again in 1978 [14]), the Thue-Siegel-Roth theorem by Kreisel and Macintyre
in 1982 and Luckhardt in 1989 [46, 49], Van der Waerden’s theorem by Girard in
1987 [20]. The unwinding methods are so complex that there are even doubts cast
on some of the results by authorities in proof theory [16].

However, there is a more recent application of unwinding to functional analysis
in the proof mining program of Kohlenbach [42]. This very successful unwinding
program has at its methodological core the classic unwinding approach using Kol-
mogorov’s double-negation translation (1929) and Gödel’s functional ‘Dialectica’
interpretation (1941).

In parallel, in constructive mathematics, there have been equally significant re-
sults in the program of constructive analysis [2] and constructive algebra [54, 48],
although these are primarily theory reconstruction programs and rely little on direct
application of proof theoretic methods to unwind ineffective proofs.

But, both mining and research in constructive mathematics have not sought to
reap the benefits of notable proof theoretic advances directly inspired by the theory of
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programming languages. This theory, a continuation of the work on the early models
of computation, has arrived at highly abstract notions for structuring programs. We
shall now describe the proof theoretic state-of-the-art for three such proof unwinding
techniques. This new methodology will be referred to as the unwinding toolbox.

2.1 Computational Side-Effects
The first of these methods concerns computational side-effect. Namely, since the
work of Griffin [25], it has been known that the principle of proof by contradiction can
be interpreted by a programming language mechanism (a computational side-effect)
for control operators. Although, in absence of mathematical axioms additional to
the reductio-ad-absurdum principle, control operators provide not much more than
a very elegant way to obtain Herbrand’s theorem (an important very early result on
classical first-order logic from 1930), in presence of additional axioms like induction
or choice, when Herbrand’s theorem no longer holds, one begins to get new results.
For instance, by the use of computational side-effects, in set theory, Krivine has
managed to extend Cohen’s forcing method from the usual sets of conditions to
realizability algebras [47].

However, the promise that control operators can turn every proof by contradic-
tion into an effective one is a mirage: there are classically provable formulas whose
effective proof would allow to decide the Halting problem. Whether an ineffectively
proved formula can be unwound, in general needs to be considered on a case-by-
case basis. Nevertheless, there are whole classes of formulas which we know can be
unwound upfront, like the class of Π0

2-formulas. Delimiting control operators only
to formulas in these classes allows to get a new constructive logic. This logic still
respects the existence property, characteristic of intuitionistic logic that is at the
bases of current constructive mathematics, but the obtained new constructive logic
manages to prove intuitionistically non-provable principles.

For instance, Herbelin [29] showed that Markov’s principle (MP),

¬¬∃xA0(x)→ ∃xA0(x),

where x ∈ N and A0 is quantifier-free, an axiom crucial for constructive proofs of
completeness of first-order logic [31], can be interpreted with the help of a compu-
tational side-effect known as (delimited) exceptions. The author further showed [32]
that the double negation shift principle (DNS),

∀x¬¬A(x)→ ¬¬∀xA(x),

where x ∈ N, a principle crucial for the interpretation of the classical axiom of
choice—and that has only been interpreted before by the generally-recursive schema
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of bar recursion—can be interpreted computationally by a generalization of the
exceptions effect to so called delimited continuations, or delimited control operators.
The key observation from these results is that—when delimited—computational
side-effects like control operators can be used to unwind ineffective proofs and at
the same time not run into non-decidability problems. The newly obtained logics
are intermediate logics, in between classical and intuitionistic logic, and take the
best of both worlds.

These results are controversial from the point of view of the orthodox constructive
mathematician who is used to intuitionistic logic as first codified by Heyting’s analy-
sis of Brouwer’s work in intuitionistic mathematics. Namely, the only previous com-
putational interpretation of MP were either trivial (as given by Gödel’s functional
interpretation) or proceeded by unbounded search. As for DNS, the computational
interpretation was only given by the generally-recursive bar recursion schema, whose
termination must be ensured by Brouwer’s bar induction or continuity principle. As
unbounded/general recursion can lead to an inconsistent formal system, intuition-
ists have been understandably wary of accepting these principle. By replacing the
mentioned computational interpretations by computationally meaningful realizers,
we not only propose to intuitionists to reconsider the constructivity of principles like
MP and DNS, but we are re-establishing the link between modern proof theory and
one of the offspring of Hilbert’s proof theory, the theory of programming languages.

A further principle interpreted in this way, in a joint work of Nakata and the
author [38], was the open induction principle,

∀α(∀β < α(β ∈ U)→ α ∈ U)→ ∀α(α ∈ U),

where α, β range over Cantor space and U is open. This principle is the only known
equivalent form of the axiom of choice that is stable under double-negation transla-
tion (even if we replace Cantor space by Baire space). The principle is also interest-
ing for combinatorics, where it leads to a direct version of Nash-Williams’ proof of
Kruskal’s tree theorem [65], as well as in algebra where it is used to replace Zorn’s
lemma [59].

We finally mention a last result [35], still in review, on the nature of the pro-
gramming-language inspired proof rules. It concerns higher-type primitive recur-
sion—Gödel’s system T—versus general recursion—Spector’s bar recursion. Name-
ly, already in 1979, Schwichtenberg has shown that bar recursion of type 0 and 1
does not allow to define functions beyond system T [60]. Since a previous analysis of
Kreisel [45] shows that these types are sufficient for all practical purposes (realizing
Σ0

2-theorems), it follows that we know for a long time that we should not need bar
recursion for the computational interpretation of ideal proof principles. What we
proposed is how to circumvent bar recursion and generate System T terms directly,
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using delimited control operators as an intermediary step. This also shows that
the extensions of system T with computational side-effects are in fact conservative
extensions. In order to establish this fact, we relied on partial evaluation, the sec-
ond set of techniques of our unwinding toolbox that we explain in the following
subsection.

2.2 Partial Evaluation and Formalization

The second programming languages method that we intend to employ for proof
unwinding concerns formalization of proofs in proof assistant software and, more
specifically, the use of formalized (type-directed) partial evaluators.

The topic of partial evaluators came up in our previous research on constructive
versions of completeness theorems [31]. These logical theorems establish the ade-
quacy of a given formal system to encode actual mathematical proofs. As it turns
out, and thanks to initial work on the link between normalization proofs and com-
pleteness of intuitionistic logic for Kripke models [12], the computational content
of proofs of intuitionistic completeness can be expressed by type-directed partial
evaluation algorithms [13]. Having a rich theory of such algorithms in the theory of
programming languages, allowed to cover cases of constructive completeness proofs
that were beyond the previous state-of-the art in proof theory. More precisely, we
now know how to partially evaluate (i.e. show constructively completeness for) not
only classical logic [32], intuitionistic logic with disjunction [33], but also simulta-
neous presence of delimited control operators and higher-type primitive recursion
[34, 35] (the second citation is still in review).

The development of these logical meta-theorems was conducted formally, in the
Coq and Agda proof assistants. Since the formalized proofs are constructive, they
can be used to compute a proof transformation for every actual formalized argument.
What this allows is to perform unwinding of actual mathematical proofs more di-
rectly, by pushing the complexity of doing a manual double-negation transformation
(like done in the classic unwinding approach and used, for instance, by Kohlenbach
in his program of proof mining in analysis) into the realizability model, that is, into
the reduction mechanism of the proof assistant used.

Proof assistants are most well known for their use in the full formalization of
complex proofs, such as the four-color theorem [21], the Kepler conjecture [27], or
the Feit-Thompson theorem [22]. However, as far as proof unwinding is concerned,
one can in general avoid needing a fully formalized version of an actual mathematical
proof. It suffices to notice that lemmas that have a computationally irrelevant form,
such as Π0

1, can be simply assumed without proof. A more refined analysis of
computational relevance of formulas can be found in [61] where the classes of so
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called definite and goal formulas are isolated. This allows to greatly decrease the
burden of formalizing i.e. we are only dealing with partial formalization which
nonetheless contains as much of algorithmic content as a full formalization.

The important lesson that we learned from partial evaluation is that proofs need
not be interpreted uniformly, by ‘oracles’ such as bar recursion that work uniformly
(for example the realization of DNS by bar recursion is agnostic of the concrete
formula A in the instance of DNS). Rather, it is possible to specialize (i.e. partially
evaluate) proofs, even if they are highly ineffective, and, when one in addition uses
a proof assistant like Coq, the specialization of the (partially) formalized theorem
can become automatic. This is one of the principal advantages of our toolbox over
the old toolbox built on Herbrand’s theorem, ε-substitution, double-negation- and
A-translation, and functional interpretation: while unwinding, the mathematician
can concentrate on the essential parts of a proof rather than get lost in manual proof
transformations.

2.3 Type Isomorphisms

The final third method of our unwinding toolbox concerns type isomorphisms. Math-
ematically, this notion is the same as the one of constructive cardinality of sets [54],
saying not only that sets are of the same size, but moreover that they have in-
distinguishable structure. In programming languages theory, the notion allows to
generalize the notion of type assigned to a program, which allows to test more easily
if a programs conforms to a formal specification [58].

The link that brings us to the study of type isomorphisms is Tarski’s high-school
algebra problem [9]. This basic question, asking whether the system of eleven arith-
metic equation taught in high-school suffices to derive all the true equations between
exponential polynomials, had taken some time to be answered in mathematical logic.
It turned out that the high-school system is not complete, as shown by a counter-
example of Wilkie in 1981 [68], a true statement which is not derivable by only using
the eleven equations. Gurevič further showed that the system cannot be completed
by any additional finite set of axioms [26].

Now, by the Curry-Howard correspondence, formulas of intuitionistic logic can
be seen as types (conjunction correspond to products, disjunction to coproducts,
and implication to exponentials) and proofs of formulas can be seen as computer
programs of the corresponding type. Following the correspondence, one gets a no-
tion of strong equivalence, or formula isomorphism, from isomorphism of types. A
new correspondence is thus obtained: the language of formulas is the same as the
language of exponential polynomials—and, moreover—formula isomorphism gener-
alizes equality of exponential polynomials in the standard model of positive natural
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numbers, that is
A ∼= B implies N+ � A = B.

The link that one establishes in this way allows to use the rich theory on expo-
nential polynomials to obtain proof theoretic results. For instance, Fiore, Di Cosmo,
and Balat, showed that the non-finite-axiomatizability result of Gurevič also hold
for the theory of type isomorphism [17]. Using results of Richardson, Martin, Levitz,
Wilkie, Macintyre, Henson and Gurevič, the author proved that although not finitely
axiomatizable, type i.e. formula isomorphism is recursively axiomatizable and more-
over decidable [36]. The value of this unexpected positive result is still somewhat
limited because the existence of a practical decision algorithm for type isomorphism
is open.

Nevertheless, even if the meta-theory of type isomorphism has remaining open
questions to be resolved, applications to proof theory are well under way. Recently,
the author proposed a pseudo-normal form of types [37], inspired by the decomposi-
tion of the exponential function in exponential fields [28], called the exp-log normal
form, that allows to decompose the axioms of the notoriously non-local theory of
βη-equality for the lambda calculus with coproduct type. This equality can be seen
as the essence of identity of proofs for intuitionistic propositional logic with disjunc-
tion. An extension to the first-order case has also been proposed in a joint work
with Brock-Nannestad [5], where the normal form appears to produce the first arith-
metical hierarchy for formulas of intuitionistic logic that copes with both quantifiers
equally well; the only previously known hierarchy, the one of Burr [8], covers well
only the universal quantifier. This has been a long standing open problem for con-
structive logic, although for classical logic an arithmetical hierarchy exists since the
1930s.

3 Perspectives

Today, a paradigm change in proof unwinding is possible, thanks to the notions
from contemporary programming languages theory comprising our New Unwinding
Toolbox. These long-evolved techniques provide proof-theoretic simplifications of
the order that makes them more accessible even to non-specialists in proof theory.

The overall goal of this undertaking would be to exploit the full potential of
the novel toolbox and apply it, beyond logic itself, to proofs of landmark results
in number theory, combinatorics, and homotopy theory. In parallel, it would be
necessary to address the foundations of unwinding i.e. tackle long-standing open
questions in the foundations of constructive mathematics such as identity of proofs
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and simplified computational interpretations of semi-intuitionistic principles. We
have thus two sets of objectives, work on applications and work on foundations.

Objective I — Applications of Proof Unwinding
The first set of objectives concerns applications to areas that are important for the
‘working mathematician’, that is, analysis, number theory, and combinatorics, as
well as an application to unwinding incompleteness theorems in logic. Objective I
would be achieved by tackling three more specific objectives, called perspectives: Per-
spective 1: Unwinding in Analysis Revisited, Perspective 2: Unwinding in Number
Theory and Combinatorics, and Perspective 3: Unwinding Incompleteness Theo-
rems.

Objective II — Foundations of Proof Unwinding
The second set of objectives concerns work on foundations of constructive mathemat-
ics that are both necessary to guarantee the soundness of applying unwinding and
as an update to the current foundational theories. The two more specific objectives,
or perspectives, to be tackled are: Perspective 4: Identity of Proofs and Homotopy
Type Theory and Perspective 5: A Next Generation of Constructive Foundations.

The immediate effects of the project would be, on the one hand, to show that our
new proof theoretic methods can be used by the working mathematician to extract
numerical bounds and algorithms from prima facie ineffective proofs in analysis,
number theory, combinatorics, homotopy theory, and logic, and, on the other hand,
to update the current foundational theories of constructive mathematics with the
powerful computing abstractions that computational side-effects, partial evaluators
and type isomorphisms represent.

In the longer term, we can hope to see the streamlined proof unwinding method-
ology becoming an important toolbox across mathematics. We can also expect to
see a synergy of the objectives. For instance, not only would unwinding efforts across
mathematics become possible (Objective I), but, as the new constructive foundations
(Objective II) get adopted in the community working on proof assistant systems,
proof analysis and development would eventually be carried out even more efficiently
with the help of a proof assistant.

The approach to fulfilling the two objectives would be through carrying out the
five perspectives described in this section. We shall explain each one of the tasks in
the context of its proper state-of-the-art, objectives, methodology, and feasibility.
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3.1 Perspective 1: Unwinding in Analysis Revisited

Analysis is essentially the only area of mainstream mathematics to have benefited
from direct application of proof unwinding techniques. In approximation theory, by
using proof theory, Kohlenbach and his collaborators have managed to obtain explicit
moduli of uniqueness, significantly better than previous ones, for best Chebyshev
approximation, as well as to obtain a first effective rate of strong unicity in the case
of best approximation for the L1-norm [40]. How this works is that first logical
meta-theorems are established [42], which are on one hand general enough to be
applicable as analytic theorems, and on the other hand specific enough to enter in a
class of statements, such as the Π0

2-class of the arithmetical hierarchy, for which we
know by proof theory that explicit functions or existence witnesses can be extracted.
Moreover, such general logical meta-theorems are not only good for extracting nu-
merical data from concrete proofs, but also for analyzing whether a known analytic
theorem has optimal form. For instance, in the fixed point theory for functions of
contractive type, one does not only get effective quantitative forms of theorems, but
one can often also relax the compactness assumption for the metric space.

Why, then, when Kohlenbach’s proof mining approach is already successful, do
we propose a perspective on proof unwinding of analysis? There are two reasons.
The first one is methodological: our form of unwinding has not been applied outside
of logic, and proof mining provides the perfect test bed to make it grow up in the
‘real world’. Second, even if we cannot pretend to analytic skills of the level of the
ones present in mining, we do believe that the general logical meta-theorems can be
unwound in a simpler way; this could lead to better extracted bounds even if we use
the exact same analytic machinery as in mining.

To explain the difference and simplification mentioned, we briefly explain how the
meta-theorems are established right now. The core is to show that in classical logic,
and in presence of additional axioms for induction and choice, like the weak Kőnig’s
lemma, one can turn the ∀∃ quantifier combination from ∀x∃yA0(x, y), where A0 is a
quantifier-free formula, into an explicit recursive function f such that ∀xA0(x, f(x)).
One can further extend this to formulas beyond the strict class Π0

2 and allow for in-
stance any number of additional hypotheses of form Π0

1. But, to obtain the recursive
functions f , which, as explained before in the section Computational Side-Effects,
needs an a priori generally recursive definition schema, one first has to transform
by the double-negation translation all proofs of the original proof system (Peano
arithmetic + axiom of choice) into proofs of a (semi-)intuitionistic system. This is a
non-local transformation of proofs, and in particular the meaning of formulas can be
changed by the transformation (hence the restriction to the Π0

2-class of formulas).
Once a (semi-)intuitionistic proof is obtained, one can use Gödel’s functional inter-
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pretation to obtain a higher-type primitive recursive function, possibly also needing
Spector’s generally-recursive schema of bar recursion. Actually, more redefined ver-
sions of the Dialectica interpretation (monotone and bounded variants) and of bar
recursion are used in practice.

Now, what our approach offers is first to push the technical complexity of the
double negation translation into the realizability model based on computational side-
effects (ex. control operators). Since these notions have a well-studied operational
semantics, one can perform a more direct reduction of a proof to a program or a
more direct reading off of witnesses (numeric bounds). With the additional help of
a proof assistant like Coq, this can be further automatized.

In addition, thanks to the reasons already explained in section Computational
Side-Effects, our unwinding method makes it likely that in fact a pure system T wit-
nessing terms can be extracted from any concrete proof, circumventing bar-recursion-
like schemata altogether.

A third, orthogonal, improvement to the extraction process will be offered by
use of richer data-types for extracted programs and bounds. Traditionally, one only
uses the ‘negative’ function and product types. Although these can encode ‘positive’
types (for instance, sum types ρ+σ can be encoded by (N→ ρ)×(N→ σ)), encoding
leads to an increase of the degree of the type. Simpler and more natural realizers can
thus be extracted from disjunction and other inductively defined positive predicates.

Feasibility for Perspective 1

We will need to cope with semi-intuitionistic principles that we have not treated
before, notably the weak Kőnig’s lemma and the independence of premise schema.
For these, we plan to use Computational Side-Effects, like we have done previously
for the open induction principle: the fan theorem, a positive version of the weak
Kőnig lemma, is implied by open induction. At the level of realizers, it will be
necessary to use Type Isomorphisms to handle extensionality.

The risk for handling the logical part (meta-theorems) is moderate, hence it is
possible to propose this for a subject of a PhD thesis. As for obtaining better bounds
that the ones already obtained in proof mining, the risk is higher; in fact, it would
be a success even if we manage to obtain the same bounds, since this would mean
that our toolbox is ready to be used in the following, Perspective 2.
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3.2 Perspective 2: Unwinding in Number Theory and Combina-
torics

In this task, we should bring in our New Unwinding Toolbox to bear on highly non-
effective proofs from number theory and combinatorics. The concrete goals will be
to unwind landmark proofs in these areas, but what we see as equally important is to
arrive at a situation where a sufficiently interesting intersection of proof theory and
the application domain area is recognized. This kind of objective is only possible
through a combination of expertise, and for its carrying out, it would be appropriate
to engage two post-doctoral researchers, one in each application domain.

In number theory, we would intend to unwind Thue-Siegel-Roth’s theorem on
Diophantine approximations. Saying that an algebraic irrational number has only
finitely many exceptionally good rational number approximations, this Σ2 statement
has first been tackled upon by Kreisel and Macintyre [46] using technology for ob-
taining Herbrand terms. However the combinatorial explosion arising from use of
Herbrand’s theorem apparently did not allow to obtain useful bounds on the number
of rational approximations, and only Luckhardt [49] managed to limit the growth
of Herbrand terms in order to obtain such a bound. This bound is essentially the
same as the one obtained by Bombieri and van der Poorten [3].

In this case, even more advanced existing technology like Gödel’s functional inter-
pretation has not been applied. We suspect this is the case because, in order to apply
it, one would first need to perform a double-negation translation of an actual proof
of Thue-Siegel-Roth into a semi-intuitionistic theory—something possible to do in
principle, but given the sophistication of the original proof, its translation would be
an order of magnitude more complex. We propose thus to treat it directly using our
approach with computational side-effects, i.e. without a preliminary double-negation
translation followed by a functional interpretation. Technically, our approach can
be seen as a version of the so called modified realizability technique but where the
language of realizers is enriched to contain delimited control operators.

In combinatorics, we would intend to unwind Szemerédi’s theorem saying that
every subset of the natural numbers with positive upper density contains arithmetic
progressions of arbitrary length. Conjectured by Erdős and Turán in 1936, this
statement was only proved by Szemerédi in 1975 by an ingenious and complex com-
binatorial argument. In 1977, Furstenberg provided a proof using ergodic theory.
The interest in giving a better proof of this theorem is still ongoing, and applications
include for instance the recent work of Green and Tao on arbitrary long arithmetic
progressions in the prime numbers [24].

We first intend to address an important special case of the theorem, the van der
Waerden theorem, saying that if we use a finite number of colors to color the natural
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numbers, then there is at least one color containing arbitrarily long arithmetic pro-
gressions. The current upper bound for van der Waerden’s number W (k, r), where
r is the number of colors and k is the requested length of an arithmetic progression,
was obtained via Szemerédi’s theorem and is due to Gowers [23]. What is intrigu-
ing in this subject is that the upper bounds appear to be heavy overestimates: for
instance, the bound for W (3, 3) is of the order of 1014616, while the exact value is
27.

Girard has previously analyzed Furstenberg and Weiss’s proof of van der Waer-
den’s theorem using cut elimination [20]. But, the bound that he arrived at was
essentially the same upper bound obtained by Furstenberg and Weiss [53]. We
could attack the problem by using our modified realizability based on computa-
tional side-effects and attempt to partially evaluate the latest available proofs for
Szemerédi’s and van der Waerden’s theorem—that would avoid the need for having
a fully formalized proof on hand.

Feasibility for Perspective 2

Although the statements of the mentioned theorems in number theory and combina-
torics are arithmetical, their proofs are not arithmetical. The risk for the objectives
of this task is to cope with the highly non-effective nature of proofs, as well as
their considerable complexity (see Szemerédi’s diagram of lemmas from his proof in
[62]). After all, proofs of the corresponding theorems have brought Fields medals to
both Roth and Szemerédi. The main proof theoretic question is which kind of ideal
principles are at the core of arguments and can we provide a direct constructive justi-
fication for them. Sometimes, as in the case of Kruskal’s theorem, another statement
of Ramsey theory, the link to the open induction principle (analyzed previously in
joint work with Nakata [38]) turns out to be direct [65].

We intend to use proof assistant technology and partial formalization to cope
with the complexity of proofs. Concerning mathematical risk, given a choice of
motivated post-doctoral researchers to work on this topics, I would say that it is
medium. Work on ergodic theory done in the previous Perspective 1: Unwinding
in Analysis Revisited would serve as preparatory work and would help to further
mitigate the risk. This task demands more resources than the other ones.

3.3 Perspective 3: Unwinding Incompleteness Theorems

A statement is said to be independent from a theory if it can neither be proved
nor disproved from the axioms of the theory. The incompleteness phenomenon is
the fact that for any theory, under the assumption that it is consistent, there exist
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statements that are independent of the theory. One might wonder what is the nature
of these statements, and whether they are relevant in practice. Indeed, the first such
statement discovered by Gödel in 1931 has an ‘artificial’ flavor since it encodes the
Epimenides’ liar paradox. But, later, natural examples from Ramsey theory have
been found, first by Paris and Harrington [55], and include important results like
Kruskal’s tree theorem. Finding concrete mathematical incompleteness statements
is nowadays a fruitful field of research led by Friedman [18].

However, what we find especially interesting is the limit at which a statement
starts to become independent from a theory. This phenomenon, called phase tran-
sition by analogy to thermodynamics, happens when the provability of a theorem,
taking a rational number as parameter, depends on the value of this rational pa-
rameter. For instance, a parametrized version of Kruskal’s theorem can be provable
in Peano arithmetic (PA) below a certain value of the parameter, and becomes in-
dependent above that value—this is in fact a real number, often found by use of
analytic combinatorics, and provides a measure of the strength of the axiom system.
Phase transitions are a research program led by Weiermann [67].

In this task, we propose to develop a method for unwinding incompleteness
theorems and phase transition phenomena based on programming language theory.
The idea is that an incompleteness theorem, PA 6` ⊥ → PA 6` Con(PA), saying that
no consistent formal system (in this case, Peano arithmetic (PA)) can prove its own
consistency, can be rephrased positively as PA ` Con(PA) → PA ` ⊥. Translated
in programming languages terms, PA ` Con(PA) expresses the possibility of writing
an interpreter for Gödel’s system T inside system T itself—that is, a self-interpreter.
Self-interpreters have not only been studied in programming languages theory, but
they are a standard way to bootstrap a compiler for a programming language.

Nevertheless, self-interpreters are usually written for a Turing-complete lan-
guages like Scheme and ones without a strong typing discipline. If one adds a type
system on top of Scheme one can retrieve system T in its λ-calculus formulation.
There are recent intriguing results on typed self-interpreters. Brown and Palsberg
have recently constructed the first typed self-interpreter [7]; their target was Girard’s
system U, and this is still ‘acceptable’, since system U is known to be inconsistent
as a logical system. But, their latest result concerns Girard’s system Fω [6], which
is a higher-order logic and considered to be consistent.

In this task, we would first investigate whether it is possible to construct a self-
interpreter for system T. For the purpose of the paper [35], we have already developed
a formally verified interpreter for system T+ inside Martin-Löf type theory. Since
this type theory has a realizability model based on system T, one comes close to
having a self-interpreter. We would also have to study the recent results of Brown
and Palsberg, and attempt to retrieve their result for system Fω in system T.
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Feasibility for Perspective 3

The proposed methodology involves a frontal attack on consistency of PA. Although
the risk is high, the fact that the prior works of Brown and Palsberg, and the author,
all involve formally checked proofs, gives us some confidence. If our effort succeeds,
the gain one may have will be equally high as the risk. But, even if it turns out
to be impossible to write a typed self-interpreter for T, we can aim to obtain solid
results on interpreting Weiermann’s phase transition, and hence characterizing the
strength of a formal system, in terms of notions that are equally natural from the
point of view of computation as analytic combinatorics are.

3.4 Perspective 4: Identity of Proofs and Homotopy Type Theory

Formal proofs are combinatorial objects meant to encode a fully correct mathemat-
ical argument, going down to the smallest details, but that makes it difficult to spot
the most essential parts of an arguments. Curiously, finding “criteria of simplicity,
or proof of the greatest simplicity of certain proofs” was already part of Hilbert’s
program, who even planned to include it as the 24th in his famous list of open prob-
lems [63]. In particular, Hilbert asked for a procedure to decide when two given
proof are essentially the same. This problem known as identity of proofs is still
open [15].

In this task, we would start by tackling the identity of proofs for constructive
logic, before proceeding to a vast generalization of it, the computational interpre-
tation of Voevodsky’s univalence axiom in homotopy type theory [11] in the case
when the underlying definitional equality has been strengthened to decide identity
of proofs i.e. to convertibility modulo isomorphism for dependent types.

For intuitionistic propositional logic, the difficulty of deciding identity of proofs
comes from the simultaneous presence of disjunction and implication. Nevertheless,
if we follow the analogy between formulas, types, and exponential polynomials,
explained in section Type Isomorphisms, we can re-express the problem precisely as
that of the effective decidability of the βη-equational theory for the lambda calculus
with coproducts. We have recently proposed a first step in this direction by showing
how to decompose the equational theory for terms, by the use of the exp-log normal
form for types in order to enlarge the βη-congruence classes of terms [37] (in review).

This exp-log normal form of types is extensible to the first-order case, when the
quantifiers ∀ and ∃ are also present. Namely, recent work with Brock-Nannestad
[5] shows that it leads to an intuitionistic arithmetical hierarchy, a classification
of formulas that was elusive for intuitionistic logic, even though it has existed for
classical logic since the 1930’s where it is at the basis of results like the completeness
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theorem.
A further question is whether we can make the technique work for dependent

types, an extension of the first-order case. Martin-Löf Type Theory has dependent
types which allow it to have special treatment of equality. Basic equality between
elements a, a′ of a type A is encoded by the identity type for A, IdA(a, a′). Identity
of proofs in this context means extending the notion of definitional (computational)
equality to cope with η-equality for coproducts (and other inductive types).

Pursuing generalization even further, we can talk about identity between proofs
of identity, IdIdA

(p, p′), that, in turn, endows ever type A with the structure of a
groupoid. Iterating this construction, IdIdId··· IdA

, allows to show that every type A
is in fact endowed with the structure of an ∞-groupoid [30]. Using Grothendieck’s
correspondence between∞-groupoids and homotopy types has led Voevodsky to give
a homotopy theoretic interpretation of type theory in his model based on simplicial
sets [39]. This model satisfies Voevodsky’s univalence axiom, generalizing identity of
proofs, and specializing to: equality at the level of propositions, bijection at the level
of sets, categorical equivalence at the level of groupoids, etc. Adding this axiom on
top of Martin-Löf’s type theory produces homotopy type theory, which is a logical
system formalizing the univalent foundations of mathematics [64].

What we propose to do is to build the convertibility of proof terms modulo
type isomorphism into the definitional equality of Martin-Löf and homotopy type
theory. An identity type then gets to cover equality between terms of a whole class
of isomorphic types instead of only one type. We hope that in this way it will
be possible to strengthen the notion of transport of structures and to show that
important special cases of the univalence axioms satisfy a simple computational
interpretation. The only existing computational interpretation of homotopy type
theory appears in the effective version of the simplicial set model [1] and works for
the standard (restricted) notion of identity type.

Feasibility for Perspective 4

The univalence axiom is known to imply a form of full functional extensionality
in type theory. Given that extensionality of functions in general is undecidable,
the risk for extending the computational interpretation for the univalence axiom
defined over the notion of identity types strengthened to work modulo isomorphism is
high. Nevertheless, by strengthening the underlying definitional equality of the type
theory, we hope to diminish the need for resorting to full functional extensionality
and even address important special cases of univalence more simply than before.

As concerns the identity of proofs for the propositional and first-order case, based
on our preliminary investigations of this area, we would say that the risk is moderate.

3502



Proof Unwinding by Programming Languages Techniques

3.5 Perspective 5: A Next Generation of Constructive Foundations

This task would serve as an umbrella for more specific but important problems that
need to be tackled in the foundations of constructive mathematics, as well as an
umbrella collecting the foundational implications of the previous four tasks of this
chapter.

For instance, we already know that axioms which are independent of intuitionistic
logic like double negation shift can be safely added to intuitionistic systems, but
we have to establish the outer limits of the potential given by Computational Side-
Effects. We need to develop direct computational interpretations of principles arising
from the work in constructive reverse mathematics, such as the equivalent forms of
the open induction principle [66], the extension of our work [38] to Baire space, and
novel versions of Markov’s principle [19].

Another important topic will be to provide a direct constructive proof of Good-
man’s theorem. This theorem says that the axiom of choice presents a conservative
extension of higher type Heyting arithmetic concerning arithmetical formulas; for
the meta-theory of constructive mathematics, it plays the role that Hilbert’s ε-
elimination theorems play for the proof theory of classical logic. There has recently
been renewed interest about this old result of Goodman by other researchers as well
[41, 10].

A third important topic will be to find practical decision algorithms for type
isomorphism. As explain in the section Type Isomorphisms, although a decidability
result holds for type isomorphisms [36], thanks to prior work of Richardson [57] and
Macintyre [52], it is not clear at the moment whether a (practical) decision algorithm
can be constructed. Arriving at such an algorithm would not only be useful for proof
theory, but also for symbolic computation.

Finally, we would like to interact with the researchers working on proof assistant
systems like Coq. The logical cores of proof assistants are lagging behind contempo-
rary proof theory. For instance, program extraction from proofs in a state-of-the-art
proof assistants such as Coq relies on the simplest possible realizability interpreta-
tion, the so called modified realizability interpretation of Kreisel. Integrating the
techniques from the New Unwinding Toolbox would be beneficial for users of proof
assistants because it would allow for easier formalization of many apparently inef-
fective proofs.

3.5.1 Feasibility for Perspective 5

The main challenge for this task is that, when we are interpreting semi-intuitionistic
principles, we are working at the limit of computability: our realizability models for
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the classical axiom of choice refute the internal (formal) version of Church’s thesis,
but the external weak Church’s rule still holds [35] (in review). It is thus hard to
predict upfront how far the outer limits of constructive foundations can be extended.
As concerns Goodman’s theorem, we think the risk involved is not very high, since
after all this result has been establish by non-direct methods. Finally, the risk on
finding a practical algorithm deciding type isomorphism is hard to estimate; but
even if we manage to find ones that only work for special cases, the benefits could
spread also beyond proof theory.

References

[1] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical
sets. In 19th International Conference on Types for Proofs and Programs (TYPES
2013), volume 26, pages 107–128, 2014.

[2] Errett Bishop and Douglas S. Bridges. Constructive Analysis, volume 279 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg,
1985.

[3] E Bombieri and AJ Van der Poorten. Some quantitative results related to roth’s theo-
rem. Journal of the Australian Mathematical Society (Series A), 45(02):233–248, 1988.

[4] N. Bourbaki. Foundations of mathematics for the working mathematician. The Journal
of Symbolic Logic, 14(1):1–8, 1949.

[5] Taus Brock-Nannestad and Danko Ilik. An intuitionistic formula hierarchy based on
high-school identities. arXiv:1601.04876, 2016. Submitted.

[6] Matt Brown and Jens Palsberg. Breaking through the normalization barrier: A self-
interpreter for F-omega. To appear in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

[7] Matt Brown and Jens Palsberg. Self-representation in Girard’s system U. In Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 471–484. ACM, 2015.

[8] Wolfgang Burr. Fragments of Heyting arithmetic. The Journal of Symbolic Logic,
65(3):1223–1240, 2000.

[9] Stanley N. Burris and Karen A. Yeats. The saga of the high school identities. Algebra
Universalis, 52:325–342, 2004.

[10] Thierry Coquand. About Goodman’s theorem. Annals of Pure and Applied Logic,
164(4):437–442, 2013.

[11] Thierry Coquand. Théorie des types dépendants et axiome d’univalence. Séminaire
BOURBAKI, 66(1085), 2014.

[12] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normaliza-
tion proofs. Mathematical Structures in Computer Science, 7(1):75–94, 1997.

3504



Proof Unwinding by Programming Languages Techniques

[13] Olivier Danvy. Type-directed partial evaluation. In Proceedings of the Twenty-Third
Annual ACM SIGPLAN SIGACT Symposium on Principles of Programming Languages
(POPL’96), pages 242–257, 1996.

[14] Charles N. Delzell. Kreisel’s unwinding of Artin’s proof. In Piergiorgio Odifreddi, editor,
Kreiseliana. About and Around Georg Kreisel, pages 113–246. A K Peters, 1996.

[15] Kosta Došen. Identity of proofs based on normalization and generality. Bulletin of
Symbolic Logic, 9(4):477–503, 2003.

[16] Solomon Feferman. Kreisel’s “Unwinding” Program. In Piergiorgio Odifreddi, editor,
Kreiseliana. About and Around Georg Kreisel, pages 247–273. A K Peters, 1996.

[17] Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in
typed lambda calculi with empty and sum types. Annals of Pure and Applied Logic,
141:35–50, 2006.

[18] Harvey Friedman. Boolean Relation Theory and Incompleteness. Lecture Notes in
Logic. ASL Publications, 2015.

[19] Makoto Fujiwara, Hajime Ishihara, and Takako Nemoto. Some principles weaker than
Markov’s principle. Archive for Mathematical Logic, 54(7-8):861–870, 2015.

[20] Jean-Yves Girard. Proof theory and logical complexity, volume 1. Bibliopolis, Naples,
1987.

[21] Georges Gonthier. Formal proof—the four-color theorem. Notices of the AMS,
55(11):1382–1393, December 2008.

[22] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François
Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana
Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A Machine-
Checked Proof of the Odd Order Theorem. In Sandrine Blazy, Christine Paulin, and
David Pichardie, editors, ITP 2013, 4th Conference on Interactive Theorem Proving,
volume 7998 of LNCS, pages 163–179, Rennes, France, July 2013. Springer.

[23] W.T. Gowers. A new proof of Szemerédi’s theorem. Geometric & Functional Analysis
GAFA, 11(3):465–588, 2001.

[24] Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progres-
sions. Annals of Mathematics, pages 481–547, 2008.

[25] Timothy G. Griffin. A formula-as-types notion of control. In Conf. Record 17th Annual
ACM Symp. on Principles of Programming Languages, POPL’90, San Francisco, CA,
USA, 17-19 Jan 1990, pages 47–58, 1990.

[26] R. H. Gurevič. Equational theory of positive numbers with exponentiation is not finitely
axiomatizable. Annals of Pure and Applied Logic, 49:1–30, 1990.

[27] Thomas Hales. Dense sphere packings: A blueprint for formal proofs, volume 400 of
London Mathematical Society Lecture Note Series. Cambridge University Press, 2012.

[28] Godfrey Harold Hardy. Orders of Infinity. The ‘Infinitärcalcül’ of Paul Du Bois-
Reymond. Cambridge Tracts in Mathematic and Mathematical Physics. Cambridge
University Press, 1910.

[29] Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. In Proceedings

3505



Ilik

of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14
July 2010, Edinburgh, United Kingdom, pages 50–56. IEEE Computer Society, 2010.

[30] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory.
In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford
Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[31] Danko Ilik. Constructive Completeness Proofs and Delimited Control. PhD thesis,
École Polytechnique, Palaiseau, France, October 2010.

[32] Danko Ilik. Delimited control operators prove double-negation shift. Annals of Pure
and Applied Logic, 163(11):1549 – 1559, 2012.

[33] Danko Ilik. Continuation-passing style models complete for intuitionistic logic. Annals
of Pure and Applied Logic, 164(6):651 – 662, 2013.

[34] Danko Ilik. Type directed partial evaluation for level-1 shift and reset. In Ugo
de’Liguoro and Alexis Saurin, editors, Proceedings First Workshop on Control Op-
erators and their Semantics, Eindhoven, The Netherlands, June 24-25, 2013 , volume
127 of Electronic Proceedings in Theoretical Computer Science, pages 86–100. Open
Publishing Association, 2013.

[35] Danko Ilik. An interpretation of the Sigma-2 fragment of classical Analysis in System
T. arXiv:1301.5089, 2014. Submitted.

[36] Danko Ilik. Axioms and decidability for type isomorphism in the presence of sums. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 53:1–53:7. ACM, 2014.

[37] Danko Ilik. The exp-log normal form of types: Decomposing extensional equality and
representing terms compactly. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, pages 387–399, New York, NY,
USA, 2017. ACM.

[38] Danko Ilik and Keiko Nakata. A direct version of Veldman’s proof of open induction
on Cantor space via delimited control operators. Leibniz International Proceedings in
Informatics (LIPIcs), 26:188–201, 2014.

[39] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial
model of univalent foundations. arXiv preprint arXiv:1211.2851, 2012.

[40] Ulrich Kohlenbach. New effective moduli of uniqueness and uniform a priori estimates
for constants of strong unicity by logical analysis of known proofs in best approximation
theory. Numerical Functional Analysis and Optimization, 14(5-6):581–606, 1993.

[41] Ulrich Kohlenbach. A note on Goodman’s theorem. Studia Logica, 63(1):1–5, 1999.
[42] Ulrich Kohlenbach. Some logical metatheorems with applications in functional analysis.

Transactions of the American Mathematical Society, 357(1):89–128, 2005.
[43] Georg Kreisel. On the interpretation of non-finitist proofs—Part I. The Journal of

Symbolic Logic, 16(04):241–267, 1951.
[44] Georg Kreisel. Mathematical significance of consistency proofs. The Journal of Symbolic

Logic, 23(02):155–182, 1958.

3506



Proof Unwinding by Programming Languages Techniques

[45] Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite
types. In Arend Heyting, editor, Constructivity in Mathematics, Proceedings of the col-
loqium held at Amsterdam, 1957, Studies in Logic and The Foundations of Mathematics,
pages 101–127. North-Holland Publishing Company Amsterdam, 1959.

[46] Georg Kreisel and Angus MacIntyre. Constructive logic versus algebraization I. In A.S.
Troelstra and D. van Dalen, editors, The L.E.J. Brouwer Centenary Symposium, pages
217–260. North-Holland Publishing Company, 1982.

[47] Jean-Louis Krivine. On the structure of classical realizability models of ZF. To appear.
[48] Henri Lombardi and Claude Quitté. Algèbre commutative – Méthodes constructives.

Calvage & Mounet, Paris, 2011.
[49] Horst Luckhardt. Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale

Anzahlschranken. The Journal of Symbolic Logic, 54(01):234–263, 1989.
[50] Horst Luckhardt. Bounds Extracted by Kreisel From Ineffective Proofs. In Piergiorgio

Odifreddi, editor, Kreiseliana. About and Around Georg Kreisel, pages 289–300. A K
Peters, 1996.

[51] Saunders Mac Lane. Despite physicists, proof is essential in mathematics. Synthese,
111(2):147–154, 1997.

[52] Angus Macintyre. Model Theory and Arithmetic, volume 890 of Lecture Notes in Mathe-
matics, chapter The laws of exponentiation, pages 185–197. Springer Berlin Heidelberg,
1981.

[53] Angus Macintyre. The mathematical significance of proof theory. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 363(1835):2419–2435, 2005.

[54] Ray Mines and Fred Richman. A course in constructive algebra. Springer, 1988.
[55] Jeff Paris and Leo Harrington. A mathematical incompleteness in Peano arithmetic.

Handbook of mathematical logic, 90:1133–1142, 1977.
[56] Martin Raussen and Christian Skau. Interview with Abel laureate John F. Nash Jr.

European Mathematical Society. Newsletter, 97:26–31, September 2015.
[57] Daniel Richardson. Solution of the identity problem for integral exponential functions.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 15:333–340, 1969.
[58] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional

Programming, 1:71–89, 1991.
[59] Peter Schuster. Induction in algebra: A first case study. Logical Methods in Computer

Science, 9(3):1–19, 2013.
[60] Helmut Schwichtenberg. On bar recursion of types 0 and 1. The Journal of Symbolic

Logic, 44(3), 1979.
[61] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Perspectives

in Logic. Cambridge University Press, 2012.
[62] Endre Szemerédi. On sets of integers containing no k elements in arithmetic progression.

Acta Arith, 27(199-245):2, 1975.
[63] Rüdinger Thiele. Hilbert’s twenty-fourth problem. American Mathematical Monthly,

3507



Ilik

2003.
[64] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-

tions of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

[65] Wim Veldman. An intuitionistic proof of Kruskal’s theorem. Archive for Mathematical
Logic, 43:215–264, 2001.

[66] Wim Veldman. The principle of open induction on Cantor space and the approximate-
fan theorem. arXiv preprint 1408.2493, 2014.

[67] Andreas Weiermann. Analytic combinatorics, proof-theoretic ordinals, and phase tran-
sitions for independence results. Annals of Pure and Applied Logic, 136, 2005.

[68] Alex Wilkie. On exponentiation – a solution to Tarski’s high school algebra problem.
Quaderni di Matematica, 6, 2000.

Received 20 May 20163508



Regular Languages of Infinite Trees and
Probability

Matteo Mio
École Normale Supérieure de Lyon (ENS-Lyon), France

miomatteo@gmail.com

1 Introduction
In Computer Science, formal verification is the process of proving or disproving
the correctness of computing systems with respect to a certain property, expressed
in some specification language, using rigorous mathematical methods. Examples
of computing systems include digital circuits, communication protocols, software
expressed as source code, etc.

A well established way of representing mathematically the semantics of many
systems is in terms of (possibly infinite) trees: each node represents a state or
configuration of the computation, with the root being the initial state, and the
parent-children relation of the tree represents the state-to-state transitions allowed
by the program which might by triggered by the reception of external inputs or other
nondeterministic events.

The main gain of having an interpretation of computing systems in terms of some
mathematical objects, like trees, is of course that it becomes possible to formally
express interesting properties of systems and to formally verify if a certain property
is fulfilled by a given system. For example, the property “the program will eventually
halt on every input” might be formalized as the property “the tree does not have any
infinite branch”. The formal specification language adopted to express properties of
trees is called a tree (program) logic.

Well known tree logics include Computation Tree Logic (CTL) [9][2, §6], its many
variants such as CTL* [10][2, §6.8], the modal µ-calculus [17, 6] and the Monadic
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Second Order Logic of the full binary tree (MSO, for short) [23][27]. Among these,
the logic MSO plays a fundamental role because it is the most expressive as it can
formulate the properties expressible in all other logics.

In his fundamental work [23] Michael Rabin proved that the theory of MSO is
decidable: there is an algorithm that recognizes the set of valid MSO formulas, i.e.,
those satisfied by every tree. This theorem is widely regarded among the deepest
decidability results in theoretical computer science. Firstly, it implies the decidabil-
ity of the theory of all other tree logics mentioned above. Secondly, it implies the
decidability of two fundamental problems in formal verification:

• Model Checking: given a program represented by a regular1 tree T and a MSO
formula φ, verify if T satisfies the property φ.

• Synthesis: given a satisfiable MSO formula φ, construct a tree T such that T
satisfies φ.

After the seminal result of Rabin, the theory of the logic MSO has been further
investigated and its development is still an active subject of research: connections
found with automata theory (tree automata), algorithmic game theory (two-player
parity games), descriptive set theory (topological properties of sets of trees definable
by MSO formulas), among other mathematical fields, contribute to a rather rich
theory.

Contribution The present document presents a high level overview of some of the
research carried out by the author during the tenure of the “Gödel Research Prize
Fellowship 2014”, organized by the Kurt Gödel Society with support from the John
Templeton Foundation, in the period July 2014–July 2016.

Three research papers [12, 19, 20] have been selected to illustrate same aspects
of this research. The common goal in three these works has been to further advance
the theory of the MSO logic by studying measure theoretic (probabilistic) properties
of regular languages of trees, i.e., of those sets of infinite trees definable by MSO
formulas. These three topics will be outlined in sections 3, 4 and 5 and Section 2
will provide some required technical background.

We conclude this section with a brief description of each topic.

Topic 1: Measurability of regular sets

1An infinite tree is regular if it is finitely representable by a finite directed graph.
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A formula φ(X1, . . . , Xn) of the MSO logic, having n free variables, defines a
collection of tuples 〈t1, . . . , tn〉 of infinite trees that satisfies φ. This collection,
denoted by JφK, is called the regular language of trees defined by φ. The collection
of all possible n-tuples is an uncountable set and, once equipped with a natural
topology, is homeomorphic to T n0,1 where T0,1 denotes the Cantor space. See Section
2 for more details. A natural question is then the following:

Question: Is JφK⊆T n0,1 a µ-measurable set, for all Borel measures µ on T0,1?

The question was first raised in the author’s PhD thesis ([21], see also [22])
and does not have a straightforward answer because the sets JφK can have high
topologically complexity: for example, they are generally not Borel and they are not
even contained in the σ-algebra generated by the analytics sets.

The main theorem proved in [12] is that, indeed, the sets JφK are always measur-
able. This, informally, means that it makes mathematical sense to talk about the
probability that a randomly generated tree belongs to JφK.

Topic 2: Computing the probability of regular sets

Having proved that regular sets of infinite trees are measurable, the following
question arises naturally:

Question: does there exist an algorithm which for a given regular language of
trees JφK⊆T n0,1 computes the probability µc(JφK)?

where µc denotes the natural coin-flipping measure on T n0,1 (see Section 2). While
a complete answer to this question is still missing at the time of writing this report,
in [19] we proved that, for a subclass of MSO formulas definable by game automata,
the problem admits a positive answer.

In the study of [19] we have also been able to establish some basic facts about
the nature of this problem. For example, there are formulas φ such that µc(JφK) is
irrational. Also, there are formulas φ such that µc(JφK)=0 but the regular language
JφK is large topologically (it is the complement of a meager set). These facts contrast
with, e.g., the theory of regular sets of infinite words where all languages have
rational (coin-flipping) probability and a language has probability 0 if and only if
it is small topologically (it is a meager set). Hence, the probabilistic properties of
regular languages of trees seem to be significantly more refined than in the case of
languages of infinite words.
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Topic 3: MSO extended with the measure quantifier

Beside studying the properties of set of trees definable by the MSO logic (cf.
Topic 1) an interesting topic of research is to look at variants or extensions of
the MSO logic capable of expressing properties of trees not expressible in standard
MSO. In the context of the research exposed in this document, it is of particular
interests to study extensions of MSO capable of expressing probabilistic properties of
trees. Indeed, many of the properties that can be formulated by logics for expressing
properties of probabilistic programs, such as pCTL and its variants (see, e.g., [2] for
an overview) are not expressible in the MSO logic.

In [20] we investigated an extension of the MSO logic, denoted by MSO + ∀=1,
with the so-called measure quantifier ∀=1. The intuitive meaning of the formula
∀=1X.φ is that the formula φ holds true for almost all trees t in the sense that the
set {t | t satisfies φ} ⊆ T0,1 has coin-flipping measure one. The measure quantifier
∀=1 has been studied, in the more general context of first-order logic, by Harvey
Friedman in a series of unpublished manuscripts in 1978-1979.

The logic MSO + ∀=1 is interesting because it strictly increases the expressive
power of standard MSO and is capable of expressing the properties definable in logic
for expressing properties of probabilistic programs, such as the qualitative fragment
of pCTL (see, e.g., [2]). Our main result regarding MSO+∀=1 is, however, negative:
the logic MSO + ∀=1 has an undecidable theory. Nevertheless, the decidability of
fragments sufficiently expressive to formulate most properties of interests in (prob-
abilistic) program verification is an interesting problem for future research.

2 Technical Background

In this section we give the basic definitions of concepts from descriptive set theory,
measure theory and the MSO logic required to read this document. We refer to [15]
and [27] as references to these topics.

The set of natural numbers is either denoted by N or ω, the choice primarily
depending on typographical constraints. Given two sets X and Y we denote with
XY the space of functions X → Y . We can view elements of XY as Y -indexed
sequences {xi}i∈Y of elements of X. We refer to Xω as the collection of ω-words
over X. The collection of finite sequences of elements in X is denoted by X∗.
As usual we denote with ε the empty sequence and with ww′ the concatenation of
w,w′∈X∗.

Given a finite set Σ, the collection Σω of ω-words over Σ, endowed with the
product topology (where Σ is given the discrete topology) is called the Cantor space.
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The Cantor space is zero-dimensional, i.e., it has a basis of clopen (both open and
closed) sets.

The smallest σ-algebra of subsets of Σω containing all open sets is denoted by
B and its elements are called Borel sets. A Borel probability measure on Σω is a
function µ : B→ [0, 1] such that: µ(∅)=0, µ(Σω)=1 and, if {Bn}n∈ω is a sequence of
disjoint Borel sets, µ(⋃nBn)=∑n µ(Bn). A subset A ⊆ Σω is called µ-null if there
exists a Borel set B such that A ⊆ B and µ(B)=0. A subset C ⊆ {0, 1}ω is called
µ-measurable if C = A ∪B for some Borel set B and some µ-null set A.

We will be mostly interested in one specific Borel measure on the Cantor space
which we refer to as coin-flipping measure. If Σ = {a1, . . . , an}, this is the unique
Borel measure satisfying the equality µ(Bm=a1) = µ(Bm=a2) = . . . µ(Bm=an) = 1

n
where, form∈N, we define Bm=ai ={(bi)i∈N | bm = ai}. Intuitively, the coin-flipping
measure on Σω generates an infinite sequence (b0, b1, . . . ) by randomly choosing to
fix bm=ai with the uniform distribution on Σ, for every m∈ω.

2.1 Syntax and Semantics of Monadic Second Order Logic
In this section we define the syntax and the semantics of the MSO logic interpreted
over the full binary tree.

Definition 2.1 (Full Binary Tree). The collection {L,R}∗ of finite words over the
alphabet {L,R} can be seen as the set of vertices of the infinite binary tree. We refer
to {L,R}∗ as the full binary tree. We use the letters v and w to range over elements
of the full binary tree.

Definition 2.2 (Syntax). The set of formulas of the logic MSO on the full binary
tree is generated by the following grammar:

φ ::= Sing(X) | succL(X,Y ) | succR(X,Y ) | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ

where X,Y range over a countable set of variables.

Hence MSO formulas are conventional first-order formulas over the signature S
consisting of one unary symbol Sing and three binary symbols succL, succR,⊆.
We interpret MSO formulas over the collection {L,R}∗ → {0, 1} of subsets of the
full binary. To improve the notation, we denote with T0,1 the space (homeomorphic
to the Cantor space) {L,R}∗ → {0, 1}. Thus MSO formulas are interpreted over
the universe T0,1 with the following interpretations of the symbols in S:

• SingI(X)⇔ X = {v}, for some v∈{L,R}∗, i.e., if X∈T0,1 is a singleton.

• succLI(X,Y )⇔ “X = {v}, Y ={w} and w=vL.
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• succRI(X,Y )⇔ “X = {v}, Y ={w} and w=vR.

• ⊆I (X,Y )⇔ X ⊆ Y , i.e., if X is a subset of Y .

Definition 2.3 (Semantics). Let T= 〈T0,1, SingI , succLI , succRI ,⊆I〉 be the rela-
tional structure as above. The truth of a MSO formula φ is given by the standard
Tarski’s satisfiability relation T |=φ for first order logic. Given parameters ~A∈T0,1,
we write ~A ∈ φ( ~X) to indicate that T |= φ(A1, . . . , An), i.e., that T satisfies the
formula φ with parameters ~A.

Lastly, we can introduce the notion of regular languages of trees.

Definition 2.4 (Regular Languages). Given a MSO formula φ(X1, . . . , Xn), the set
JφK ⊆ T n0,1 defined as:

JφK = {〈A1, . . . , An〉 | T |=φ(A1, . . . , An)}

is called the regular language of trees defined by φ.

3 Measurability of regular sets
In his PhD thesis [21], the author asked the following question (we adhere here to
the notation introduced in Section 2):

Question: Given an arbitrary MSO formula φ(X1, . . . , Xn), is the regular set
JφK⊆T n0,1 a µ-measurable set, for every Borel measure µ on T n0,1?

This question does not admit a straightforward positive answer because regular
sets generally belong to the ∆1

2-class of sets in the projective hierarchy of Polish
spaces. This high topological complexity is a concern due to a celebrated result of
Kurt Gödel (see [13, §25]) which states that it is consistent with Zermelo-Fraenkel
Set Theory with the Axiom of Choice (ZFC) that there exists a ∆1

2 set which is not
measurable. This means that it is not possible to prove (in ZFC) that all ∆1

2-sets
are measurable.

Measure theoretic problems such as the one formulated in the above Question
have been investigated since the first developments of measure theory, in late 19th
century, as the existence of non-measurable sets (e.g. Vitali sets [13]) was already
known. The measure-theoretic foundations of probability theory are based around
the concept of a σ-algebra of measurable events on a space of potential outcomes.
Typically, the σ-algebra is assumed to contain all open sets. Hence the minimal σ-
algebra under consideration consists of all Borel sets whereas the maximal consists,
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by definition, of the collection of all measurable sets. The Borel σ-algebra, while
simple to work with, lacks important classes of measurable sets such as the analytic
(Σ1

1) sets. On the other hand, the full σ-algebra of measurable sets may be difficult to
work with since there is no constructive methodology for establishing its membership
relation, i.e. for proving that a given set belongs to this σ-algebra. This picture led
to a number of attempts to find larger σ-algebras, extending the Borel σ-algebra
and including as many measurable sets as possible and, at the same time, providing
practical techniques for establishing the membership relation.

A classical methodology for constructing such σ-algebras is to identify a family F
of “safe” operations on sets which, when applied to measurable sets are guaranteed
to produce measurable sets. When the operations considered have countable arity
(e.g. countable union), the σ-algebra generated by the open sets closed under the
operations in F admits a transfinite decomposition into ω1 levels, and this allows
the membership relation to be established inductively. The simplest case is given by
the σ-algebra of Borel sets, with F consisting of the operations of complementation
and countable union. Other less familiar examples include C-sets studied by E. Se-
livanovski [24], Borel programmable sets proposed by D. Blackwell [5] and R-sets
proposed by A. Kolmogorov [16].

Most measurable sets arising in ordinary mathematics are R-sets belonging to
the lower levels of the transfinite hierarchy of R-sets. For example, all Borel sets,
analytic sets, co-analytic sets and Selivanovski’s C-sets lie in the first two levels [8].
Furthermore, the inductive proof method for establishing membership in the class
of R-sets has allowed the development of a rich theory of R-sets. Beside the original
work of Kolmogorov [16], fundamental results were obtained by Lyapunov [18] and,
more recently, by Burgess [8]. Further progress can be found in the work of Barua [3,
4]. We refer to [14] for a modern introduction to the subject.

Our main result is the following (cf. Theorem 1 in [12]).

Theorem 3.1. Every regular set JφK ⊆ T n0,1 is a R-set belonging to a finite level of
the hierarchy of R-sets.

By applying the fact, from Kolmogorov, that every R-set is measurable (with
respect to any Borel measure), we get a positive answer to our original question:

Corollary 3.1. Every regular set JφK ⊆ T n0,1 is measurable.

As already mentioned earlier, most sets appearing in ordinary mathematics be-
long to very low levels of the hierarchy of R-sets, generally at the second level. This
is arguably why the theory of R-sets is a rather exotic and very specialistic topic in
descriptive set theory.
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To our surprise, when proving Theorem 3.1 above, we discovered that regular
sets can (strictly) belong to arbitrarily high levels of the hierarchy of R-sets (cf.
Theorem 1 in [12]).

Theorem 3.2. For every n∈N there is a regular language JφK ⊆ T n0,1 such that JφK
belongs to the (n+ 1)-th level of the hierarchy of R-sets but not to the n-th level.

Hence the theory of MSO, and of regular languages of trees, provides concrete
examples of sets belonging to high levels of the hierarchy of R-sets.

4 Computing the probability of regular sets
As discussed in the previous section (cf. Theorem 3.1), regular languages of infinite
trees are µ-measurable for all Borel measures µ on the n-dimensional space T n0,1 of
all infinite trees.

A particularly natural Borel measure on T n0,1 is the coin-flipping measure (see
Section 2) denoted, in what follows, by µc. The following question is then quite
natural:

Question: does there exist an algorithm which for a given regular language of
trees JφK⊆T n0,1 computes the probability µc(JφK)?

As a standard notion in recursion theory, a real number r∈ [0, 1] is computable if
there exists an effective procedure Pr that, for each input number n∈N, produces as
output the first n digits of the decimal representation of r. Examples of computable
numbers include the rational numbers, the algebraic numbers and π. Hence the
question above asks for the existence of an algorithm taking as input a regular
language, represented by a formula φ, and returning (the code of) a procedure Pr
computing the real r = µc(JφK).

At the time of writing this document, a full answer to the question above is still
missing. In what follows we report some preliminary results from [19] on this topic.

The main result from [19] is that, for a special class of MSO formulas φ, the
question above has a positive answer, i.e., it is possible to compute the probability
µc(JφK). This class of formulas is defined indirectly as those formulas φ such that
the language JφK can be defined by a so-called game automaton. The definition
of game automata is rather technical and we omit it here (see Section 2.2 of [19]
for definitions and further references). An important point, proved in [11], is that
given a formula φ it is decidable to determine if JφK can be recognized by a game
automaton or not. So the class of formulas definable by game automata is effective.
The main result from [19] is the following (cf. Theorem 1 in [19]):
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Theorem 4.1. Let φ by a MSO formula definable by a game automaton. Then the
probability µc(JφK) is computable and is an algebraic number.

The procedure for computing the probability of a game-automata definable for-
mula is the following. First, from the formula φ, a game automaton Aφ defining the
language JφK is constructed. This automaton Aφ is then itself transformed into a
two-player stochastic meta-game Gφ, a class of games introduced by the author in
his PhD thesis [21]. These transformations are done in such a way that the value of
Gφ coincide with µc(JφK). Finally, the value v of Gφ is expressed as the unique real
number satisfying a formula F (x), with only one free variable x, in the first order
theory of real closed fields. By Tarski’s celebrated quantifier elimination procedure,
the value v∈ [0, 1] is a computable algebraic number.

This result, while partial, is interesting because it sheds some light on the full
problem. For example, it has been possible to exhibit a formula φ, definable by
game automata such that (cf. Proposition 2 in [19]):

Proposition 4.1. There exists a game automata definable formula φ such that JφK
is irrational.

This contrasts with the well known fact that the (coin-flipping) probability of a
regular set of infinite words has always rational probability.

As another example, we have shown (cf. Proposition 3 in [19]) that there exists
a game automata definable formula φ such that the regular set JφK has probability
0 but is comeager, i.e., it is the complement of a meager set.

Proposition 4.2. There exists a game automata definable formula φ such that JφK
is a comeager set having probability 0.

Once again, this contrasts with the theory of regular languages of infinite words
where, as proved by Staiger [25], a regular set has probability 0 if and only if it is
meager.

Hence, the probabilistic properties of regular languages of trees seem to be sig-
nificantly more refined than in the case of languages of infinite words.

5 MSO extended with the measure quantifier
In this section we give an overview of the work presented in [20] where an extension
of the MSO logic, denoted by MSO+∀=1, with the so-called measure quantifier ∀=1,
is investigated.

This logic is formally introduced by extending the definitions regarding the MSO
logic of Section 2.1 as follows.
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Definition 5.1 (Syntax). The syntax of MSO + ∀=1 is obtained by extending that
of MSO (Definition 2.2) with the quantifier ∀=1X.φ as follows:

φ ::= Sing(X) | X < Y | X ⊆ Y | ¬φ | φ1 ∨ φ2 | ∀X.φ | ∀=1X.φ

Definition 5.2 (Semantics). Each formula φ(X1, . . . , Xn) of MSO + ∀=1 is inter-
preted as a subset of T n0,1 by extending Definition 2.3 with the following clause:

〈A1, . . . , An〉 ∈ J∀=1X.φ(X,Y1, . . . , Yn)K
⇔

µc
({
B | 〈B,A1, . . . , An〉 ∈ Jφ(X,Y1, . . . , Yn)K})=1

where Ai, B range over the space of trees T0,1 and µc is the coin-flipping measure
on T0,1.

~Y

X φ(X, ~Y )

∀=1X.φ(X, ~Y )

Figure 1: The large sections selected by
the quantifier ∀=1 are marked in grey.

The set denoted by ∀=1X.φ(X, ~Y ) can
be illustrated as in Figure 1, as the
collection of tuples ~A having a large
section φ(X, ~A), that is a section hav-
ing coin-flipping measure 1. Infor-
mally, 〈A1, . . . , An〉 satisfies ∀=1X.φ(X, ~Y )
if “for almost all” B ∈ T0,1, the tuple
(B,A1, . . . , An) satisfies φ.

The quantifier ∀=1 has been originally
investigated, in the general context of first
order logic, by Harvey Friedman in unpublished manuscripts in 1978–79. See [26]
for an overview on Friedman’s research.

An interesting fact about MSO+ ∀=1 (cf. Theorem 5 in [20]) is that this logic is
capable of expressing the properties definable in qualitative pCTL (see, e.g., [2]) and
other similar logics for expressing properties of probabilistic programs. Remarkably,
the decidability of the theory of such logics, is a long-standing open problem (see,
e.g., [7] for references on the problem).

Our main result about MSO + ∀=1 is, however, a negative one (cf. Theorem 1
in [20]).

Theorem 5.1. The logic MSO + ∀=1 has an undecidable theory.

The proof of this theorem is by a reduction to a problem, in the theory of
probabilistic automata, recently proved undecidable in [1].

In an attempt to circumvent this negative results, in [20, §6] a fragment of
MSO+ ∀=1 has been identified and named MSO+ ∀=1

π . Interestingly, this fragment
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is still sufficiently expressive to interpret most logics of probabilistic programs, such
as pCTL and its (un)decidability has not yet been determined. In particular, the
proof method adopted to prove undecidability of MSO + ∀=1 does not seem to be
adaptable to the case of MSO + ∀=1

π . The further study of the logic MSO + ∀=1
π

appears to be an interesting subject of future research.
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Abstract

We survey recent results obtained in the area of orbit equivalence relations
and the complexity of classification problems.

1 Introduction
During the last two years there have been dramatic breakthroughs in the theory
of orbit equivalence relations leading to solutions of long standing open problems
and applications in other areas such as the classification program of nuclear simple
separable C*-algebras. The purpose of this article is to give an overview of these
results and the proof techniques that stand behind them.

Many classification problems appearing in mathematics can be understood in
terms of analytic equivalence relations. A working assumption here is a version of
the Church–Turing thesis saying that the classes of (usually separable) objects that
appear in mathematical practice admit natural and unique Borel structures. This is
the case in all examples considered in this article: separable metric spaces, separable
Banach spaces, separable C*-algebras, metrizable compact spaces and metrizable
Choquet simplices. While there may be more than one natural Polish topology on
the classes of objects, all such topologies lead to the same standard Borel structure.
From this point of view, isomorphism relation considered on such classes of objects
is always an analytic equivalence relation as isomorphism of two objects is expressed
using one existential quantifier.

One situation when the isomorphism relation can be perfectly understood is
when we are able to assign simple invariants, such as numbers (natural, or even
reals), to the objects that are being classified and obtain a complete classification:
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two objects are isomorphic if and only if the corresponding numbers are the same.
While this does happen is some cases, such as the classification of closed orientable
surfaces via their genus or the classification of Bernoulli shifts via their entropy, such
results are extremely rare. One should be careful here, however, as the assignment
of numbers should be definable in a suitable sense. Without this assumption, one
can always use the axiom of choice to assign such complete invariants. Therefore,
the map computing the real invariants should be a Borel map from the standard
Borel space of objects to the reals. Such equivalence relations (or the corresponding
classification problems) are called smooth.

The complexity theory for classification classification problems began with the
observation that there exist Borel equivalence relations which are not smooth. The
simplest such example is the so-called Vitali equivalence relation and arises as the
coset equivalence relation of the rationals in the additive group of real numbers. The
first example appearing as a classification problem (in representation theory and
operator algebras) came with the work of Mackey and Glimm on the classification
of unitary irreducible group representations. Glimm proved that this classification
is not smooth if and only if the group is not of type I. This led Glimm to a general
result saying that for a continuous action of a locally compact group, the equivalence
relation arising from the orbits is not smooth if and only if the Vitali equivalence
relation is Borel-reducible to this equivalence relation (for definitions, see Section
3). The latter was later generalized by Effros and finally by Harrington, Kechris
and Louveau to what is called today the Glimm–Effros dichotomy and provides the
first dividing line in the complexity theory of analytic equivalence relations.

The complexity theory of analytic equivalence relations has been developed ex-
tensively over the last forty years and is now a rich and powerful theory having
connections to model theory, ergodic theory and operator algebras. The goal of
this article is to survey some very recent developments which, although originating
within the modern framework of descriptive set theory, still have connections to
classification problems in operator algebras, in the spirit of Mackey and Glimm.

2 Polish group actions
We consider various classes of structures: these include some metric structures, as
defined in [2] but also topological (compact) spaces. A structure X is universal for
a class C if any structure in C can be embedded into X. Particular examples of
universal structures that are interesting from our point of view are:
• the Urysohn space, universal for separable metric spaces,

• the Hilbert cube, universal for compact metrizable spaces,

3522



Orbit Equivalence Relations

• the Cuntz algebra O2, universal for separable nuclear C*-algebras,

• the Gurarij space, universal for separable Banach spaces,

• the Poulsen simplex, universal for metrizable Choquet simplices.

Automorphism groups of structures as above have natural Polish topologies.
Given a separable metric structure X, the group of its automorphisms Aut(X),
i.e. isometries that preserve the additional structure is endowed with the pointwise
convergence topology and is a Polish group. The group of homeomorphisms of the
Hilbert cube and the group of affine homeomorphisms of the Poulsen simplex are
also Polish groups with the compact-open topologies. The existence of well-behaved
metrics on the automorphism group of a metric structure X often depend on the
structureX but there is always a complete (usually not left-invariant, though) metric
on Aut(X).

A Polish groupG is a universal Polish group if every Polish groupH is isomorphic
as a topological group to a (necessarily closed) subgroup of G. Interestingly, there
are many (nonisomorphic) examples of universal Polish groups that almost always
arise as automorphism or homeomorphism groups of structures that are universal
in their respective categories. The following groups are universal Polish groups:

• the isometry group of the Urysohn space (Uspenskij [35]),

• the linear isometry group of the Gurarij space (Ben Yaacov [1]),

• the homeomorphism group of the Hilbert cube (Uspenskij [34]),

• the affine homeomorphism group of the Poulsen simplex.

For the Cuntz algebra, the structure of its automorphism group is less understood
and it is an open problem whether this group is a universal Polish group:

Question 1. ([31]) Is the automorphism group of the Cuntz algebra O2 a universal
Polish group?

We are interested in particular actions of the automorphism groups of univer-
sal structures that induce equivalence relations of isomorphism on these classes of
structures. Given a class Z of closed substructures of a structure X we say that
Z has the extension property if every isomorphism between substructures in Z can
be extended to an automorphism of X. Examples of classes of closed substructures
with the extension property include:

• Z-subsets of the Hilbert cube,
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• separable metric spaces embedded in the Urysohn space via the Katětov con-
struction,

• separable nuclear C*-algebras embedded in the Cuntz algebraO2 via the tensor
product with O2 (by the Kirchberg embedding theorem),

• proper faces of the Poulsen simplex.

In all the above examples, given a universal structure X for a class of objects
C, the family Z of its closed substructures with the extension property is invariant
under homeomorphisms of X and is already universal, i.e. and any structure in C
can be embedded into X in such a way that the image of this embedding lies in Z.
In such case, the automorphism group group of X induces the action on Z, and the
orbits of this action can be identified with the isomorphism classes of objects in C.

3 The hierarchy of Borel reducibility
The theory of analytic equivalence relations was developed partly in the hope of
providing means of attack to the Vaught conjecture but it quickly became clear that
it can be useful in much broader context and describe structure of many classification
problems appearing in mathematics.

Note at this point that if a Polish group Gy Z acts in a Borel way on a standard
Borel space Z, then the induced orbit equivalence relation EG

Z is analytic: for two
points z1, z2 ∈ Z we have z1 EG

Z z2 if and only if ∃g ∈ G g · z1 = z2. Such analytic
equivalence relations are called orbit equivalence relation.

The relative structure of orbit equivalence relations is measured in terms of
the Borel reducibility order. Although there are equivalence relations that are not
orbit equivalence relations (nor even Borel reducible to orbit equivalence relations),
within this article we restrict attention to orbit equivalence relations. Suppose G1
acts on Z1 and G2 acts on Z2 in a Borel way. We say that the relation EG1

Z1
is Borel

reducible to the relation EG2
Z2

if there exists a Borel map f : Z1 → Z2 such that for
every z, z′ ∈ Z1 we have

z EG1
Z1

z′ if and only if f(z) EG2
Z2

f(z′).

Note that even in the case G1 = G2, the Borel reduction need not be equivariant,
i.e. may not preserve the group action in any way. From this point of view, smooth
equivalence relations are those which are Borel reducible to the equality relation on
the reals.
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Within orbit equivalence relations, certain classes have been extensively studied,
for instance those classifiable by countable structures, i.e. Borel reducible to Borel
actions of the group S∞ of all permutations of the natural numbers. The theory
or turbulence developed by Hjorth [22] provides the dividing line for those orbit
equivanence relations which are not classifiable by countable structures.

The following definition is the central notion discussed in this article.

Definition 2. A group action Gy Z induces a complete orbit equivalence relation
if for any Polish group action H y Y the relation EH

Y is Borel reducible to EG
Z .

One can construct a complete orbit equivalence relation purely abstractly using
the Mackey–Hjorth extension theorem for group actions [18, Theorem 3.5.2] and the
result of Becker and Kechris [18, Theorem 3.3.4], that for any Polish group G there
exists a universal G-action XG, i.e. such that any other G-action can be embedded
into XG via a G-equivariant Borel map.

The first natural example of a complete orbit equivalence relation was identified
by Gao and Kechris and, independently, Clemens [19, 4]. It is the action of the isom-
etry group of the Urysohn space on the space of its closed subsets. Subsequently,
Melleray [28] showed that the action of the linear group of the Gurarij space on
its closed linear subspaces induces a complete orbit equivalence relation. In both
cases, the restrictions of the actions to subsets with the extension property (sub-
spaces embedded via the Katětov construction) are also complete orbit equivalence
relations.

In all of the above cases, the group that induces a complete orbit equivalence
relation is a universal Polish group. This is the case for the group of isometries of the
Urysohn space and the linear group of the Gurarij space. Interestingly, however, also
non-universal Polish groups can induce complete orbit equivalence relations because
there exist surjectively universal but not universal Polish groups [6].

An important open problem is whether the unitary group of the infinite-dimensional
separable Hilbert space can induce a complete orbit equivalence relation. This group
is not universal, as there are exotic L0 Polish groups that do not admit any notrivial
unitary representations and thus cannot embed into the unitary group [21].

Among the universal Polish groups we have, however, the homeomorphism group
of the Hilbert cube [24]. The action of the homeomorphism group of the Hilbert
cube on compact subsets of the cube has been long conjectured to be a complete
orbit equivalence relation but this remained open until last year. Suprisingly, the
first proof relied heavily on the classification problem for separable simple nuclear
C*-algebras, as decribed below.
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4 Separable simple nuclear C*-algebras

In the applications of operator algebras, nuclear C*-algebras play a crucial role. A
C*-algebra A is nuclear if for every C*-algebra B, the maximal and minimal norms
on the tensor product A ⊗ B agree. Equivalently, the identity map i : A → A
can be approximately factored through completely positive maps i1 : A → F and
i2 : F → A with F finite algebras.

The isomorphism problem for various classes of separable simple nuclear C*-
algebras has been studied since the work of Glimm in the 1960’s and evolved into the
Elliott program that classifies C*-algebras via their K-theoretic invariants. Glimm’s
result [20], restated in modern language, implies that the isomorphism relation for
UHF algebras is smooth (see [18, Chapter 5.4]). In the 1970’s the classification
has been pushed forward to AF algebras via the K0 group [8]. The Elliott in-
variant, which consists of the groups K0 and K1 together with the tracial simplex
and the pairing map, was conjectured (see [10, 15]) to completely classify all infinite-
dimensional, separable, simple nuclear C*-algebras. The conjecture has been verified
for various classes of C*-algebras, e.g certain classes of real rank zero algebras, AH
algebras of slow dimension growth or separable, simple, purely infinite, nuclear alge-
bras (modulo the Universal coefficient theorem) [9, 12, 13, 26, 14, 29, 27] and there
have been dramatic breakthroughs in the program, including the counterexamples
to the general classification conjecture constructed by Rørdam [30] and Toms [33].

The classification program of separable C*-algebras can be studied from the
point of view of descriptive set-theoretic complexity theory (cf [11]). The framework
here has been set up in 1996 by Kechris [25] and more recently by Farah, Toms and
Törnquist [16, 17].

The standard Borel space of separable simple nuclear C*-algebras can be identi-
fied with a Borel subset of the space of all subalgebras of the Cuntz algebra O2 and
Farah, Toms an Törnquist [17] showed that there is a Borel subset Z of the space of
subalgebras the Cuntz algebra which has the extension property and thus the iso-
morphism problem for separable simple nuclear C*-algebras is an orbit equivalence
relation induced by the group Aut(O2). Farah, Toms and Törnquist showed then
[17] that the classification of separable simple nuclear C*-algebras is not classifiable
by countable structures.

The standard Borel space of all separable C*-algebras is constructed in a slightly
different way than that of nuclear ones, due to the fact that there does not exist
a universal separable C*-algebra [23]. One can, however, parametrize all separable
C*-algebras via their generating sequences in B(H) (see [17]). In [7] the authors
showed that the isomorphism relation for all separable C*-algebras (and, in fact, the
isometry relation for any class of Polish metric structures) is Borel reducible to an
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action of the isometry group of the Urysohn space.
The following result pinned down the complexity for both separable simple nu-

clear and all separable C*-algebras:

Theorem 3 (Sabok, [31]). The isomorphism relation of separable simple nuclear
C*-algebras is a complete orbit equivalence relation.

The proof of the above theorem is based on earlier result of Farah, Tomas and
Törnquist, who, using the results of Thomsen [32], showed that the relation of affine
homeomorphism of Choquet simplices is Borel reducible to the isomorphism relation
of separable, simple nuclear C*-algebras. Theorem 3 thus follows from the following.

Theorem 4 (Sabok, [31]). The relation of affine homeomorphism of Choquet sim-
plices is a complete orbit equivalence relation.

The proof of Theorem 4 goes in several steps, which ultimately construct a Borel
reduction from the isometry of separable metric spaces to the affine homeomorphism
of Choquet simplices. First, it is shown how to realize a given Polish metric space as
a dense subset of the extreme boundary of some compact convex set in the Hilbert
cube. Moreover, if a metric space is a special subset of the Urysohn space, then the
compact convex set is actually a simplex. Embedding the space in the special way
into the Urysohn space involves a Katětov construction. This step is done in an
invariant way, i.e. starting with two isometric spaces we end up with two affinely
homeomorphic simplices.

The second step builds on the first step and ensures that the construction is
actually a reduction, i.e. starting with two non-isometric spaces we will get two
simplices which are not affinely homeomorphic. This is done by encoding the metric
structure of the space into the affine structure of the simplex. The key observation
is that the metric is always encoded in countable amount of data: the distances
between points in a countable dense subset. The encoding of the distances between
points x, y (now in the extreme boundary) is done by distinguishing points of the
form λx′+(1−λ)y′ where λ is the distance that is being encoded. The distinguishing
of these points is done by ensuring that they are the only limit points of isolated
extreme points (so-called cone points) in the interval between x′ and y′. This is
done only for special pairs of points x′ and y′. Without going into the details of the
construction, let us only mention that the coding makes use only of the topological
and affine structure, namely of isolated extreme points and of the affine combinations
that can encode real numbers.
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5 Compact metric spaces and abelian C*-algebaras

The complexity of homeomorphism of compact metric spaces was studied already in
the 1990. It was observed, for example by Clemens, Gao and Kechris [5] that this
relation is Borel bi-reducible with the isometry relation for Banach spaces of the
form C(K), as follows from the classical Banach–Stone duality, as well as with the
isomorphism relation for abelian unital C*-algebras, as follows from the Gelfand–
Najmark theorem. Kechris and Solecki observed that the homeomorphism relation
for compact metric spaces is an orbit equivalence relation induced by the group of
homeomorphisms of the Hilbert cube acting on Z-sets in the Hilbert cube.

The question whether the homeomorphism relation for compact metric spaces is
a complete orbit equivalence relation has been a notorious open problem.

Recently, Zielinski [36] used Theorem 4 to answer this question in the affirmative.

Theorem 5 (Zielinski [36]). The homeomorphism relation for compact metric spaces
is a complete orbit equivalence relation.

Zielinski shows that the affine homeomorphism relation for Choquet simplices
can be reduced to the homeomorphism relation of compact metrizable spaces. The
key observation is that a homeomorphism f : K → L from a simplex K to a simplex
L is affine if and only if f preserves the set of triples (z, y, 1

2(x+y)), i.e. f3(K 1
2
) = L 1

2
,

where
K 1

2
= {(x, y, z) ∈ K3 : z = 1

2(x+ y)},

L 1
2

= {(x, y, z) ∈ L3 : z = 1
2(x+ y)}.

The proof of Theorem 5 proceeds in several steps. First, the author considers the
set of pairs (K,K3) where K3 is a compact subset of K×K×K and K is a compact
metric space, and the equivalence relation ≡3 of homeomorphism that preserves the
second component. By the above observation and Theorem 4, this relation is a
complete orbit equivalence relation.

In the second step, Zielinski shows that one can reduce the above relation to the
homeomorphism relation of compact metric spaces. This is done first by considering
the set of infinite sequences (K,K0,K1, . . .), where Ki ⊆ K are compact sets and
considering the relation ≡1 on the above set which is the homeomorphism on the
first coordinate that permutes the sets in the remaining coordinates. Zielinski then
shows that ≡3 is Borel reducible to ≡1. Finally, in the last step, he shows that
homeomorphism of compact metric spaces can be Borel reduced to the relation ≡1.
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6 Further directions
One of the main further problems that are left open is to determine for which
classes of compact metrizable spaces the homeomorphism relation is a complete
orbit equivalence.

A very recent paper of Chang and Gao [3] shows that the homeomorphism re-
lation for compact connected spaces (continua) is complete. This is an important
improvement to Theorem 5 as the proof of Zielinski makes essential use of isolated
points in the compact spaces.

It is worth noting that the first result on the complexity of homeomorphism
relation of compact spaces goes back to Hjorth [22] who showed that the homeomor-
phism relation for subsets of square [0, 1]2 is not classifiable by countable structures.
This was one of the first applications of the theory of turbulence. On the other hand,
homeomorphism relation for subsets of the interval [0, 1] is classifiable by countable
structures.

This leads to the following question:

Question 6. Is the homeomorphism relation for subsets of [0, 1]2 a complete orbit
equivalence relation?

The question is also open in the following version

Question 7. What are the complexities of the homeomorphism relations of n-
dimensional compact spaces?

The proof of Theorem 5 makes essential use of infinite-dimensional spaces and
the above questions pose a serious challenge.

Finally, as most of the coding in the compact spaces is usually done with the use
of special points, the following question is especially interesting.

Question 8. What is the complexity of homeomorphism of homogeneous compact
spaces?

References
[1] Itaï Ben Yaacov. The linear isometry group of the Gurarij space is universal. Proc.

Amer. Math. Soc., 142(7):2459–2467, 2014.
[2] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov.

Model theory for metric structures. In Model theory with applications to algebra and
analysis. Vol. 2, volume 350 of London Math. Soc. Lecture Note Ser., pages 315–427.
Cambridge Univ. Press, Cambridge, 2008.

3529



Sabok

[3] C. Chang and S. Gao. The complexity of the classification problem of continua. Proc.
Amer. Math. Soc. to appear.

[4] John D. Clemens. Isometry of Polish metric spaces. Ann. Pure Appl. Logic, 163(9):1196–
1209, 2012.

[5] John D. Clemens, Su Gao, and Alexander S. Kechris. Polish metric spaces: their
classification and isometry groups. Bull. Symbolic Logic, 7(3):361–375, 2001.

[6] Longyun Ding. On surjectively universal Polish groups. Adv. Math., 231(5):2557–2572,
2012.

[7] G.A. Elliott, I. Farah, V. Paulsen, C. Rosendal, A. Toms, and A. Törnquist. The
isomorphism relation for separable C*-algebras. Mathematical Research Letters. to
appear.

[8] George A. Elliott. On the classification of inductive limits of sequences of semisimple
finite-dimensional algebras. J. Algebra, 38(1):29–44, 1976.

[9] George A. Elliott. On the classification of C∗-algebras of real rank zero. J. Reine
Angew. Math., 443:179–219, 1993.

[10] George A. Elliott. The classification problem for amenable C∗-algebras. In Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 922–
932, Basel, 1995. Birkhäuser.

[11] George A. Elliott. Towards a theory of classification. Adv. Math., 223(1):30–48, 2010.
[12] George A. Elliott and Guihua Gong. On the classification of C∗-algebras of real rank

zero. II. Ann. of Math. (2), 144(3):497–610, 1996.
[13] George A. Elliott, Guihua Gong, and Liangqing Li. On the classification of simple

inductive limit C∗-algebras. II. The isomorphism theorem. Invent. Math., 168(2):249–
320, 2007.

[14] George A. Elliott and Mikael Rørdam. Classification of certain infinite simple C∗-
algebras. II. Comment. Math. Helv., 70(4):615–638, 1995.

[15] George A. Elliott and Andrew S. Toms. Regularity properties in the classification
program for separable amenable C∗-algebras. Bull. Amer. Math. Soc. (N.S.), 45(2):229–
245, 2008.

[16] Ilijas Farah, Andrew Toms, and Asger Törnquist. The descriptive set theory of C∗-
algebra invariants. Int. Math. Res. Not. IMRN, (22):5196–5226, 2013. Appendix with
Caleb Eckhardt.

[17] Ilijas Farah, Andrew S. Toms, and Asger Törnquist. Turbulence, orbit equivalence, and
the classification of nuclear C∗-algebras. J. Reine Angew. Math., (688):101–146, 2014.

[18] Su Gao. Invariant descriptive set theory, volume 293 of Pure and Applied Mathematics
(Boca Raton). CRC Press, Boca Raton, FL, 2009.

[19] Su Gao and Alexander S. Kechris. On the classification of Polish metric spaces up to
isometry. Mem. Amer. Math. Soc., 161(766), 2003.

[20] James G. Glimm. On a certain class of operator algebras. Trans. Amer. Math. Soc.,
95:318–340, 1960.

[21] Wojchiech Herer and Jens Peter Reus Christensen. On the existence of pathological

3530



Orbit Equivalence Relations

submeasures and the construction of exotic topological groups. Math. Ann., 213:203–
210, 1975.

[22] Greg Hjorth. Classification and orbit equivalence relations, volume 75 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2000.

[23] M. Junge and G. Pisier. Bilinear forms on exact operator spaces and B(H) ⊗ B(H).
Geom. Funct. Anal., 5(2):329–363, 1995.

[24] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1995.

[25] Alexander S. Kechris. The descriptive classification of some classes of C∗-algebras. In
Proceedings of the Sixth Asian Logic Conference (Beijing, 1996), pages 121–149. World
Sci. Publ., River Edge, NJ, 1998.

[26] Eberhard Kirchberg and N. Christopher Phillips. Embedding of exact C∗-algebras in
the Cuntz algebra O2. J. Reine Angew. Math., 525:17–53, 2000.

[27] Eberhard Kirchberg and Mikael Rørdam. Non-simple purely infinite C∗-algebras. Amer.
J. Math., 122(3):637–666, 2000.

[28] Julien Melleray. Computing the complexity of the relation of isometry between sepa-
rable Banach spaces. MLQ Math. Log. Q., 53(2):128–131, 2007.

[29] Mikael Rørdam. Classification of certain infinite simple C∗-algebras. J. Funct. Anal.,
131(2):415–458, 1995.

[30] Mikael Rørdam. A simple C∗-algebra with a finite and an infinite projection. Acta
Math., 191(1):109–142, 2003.

[31] Marcin Sabok. Completeness of the isomorphism problem for separable C*-algebras.
Invent. Math., 204(3):833–868, 2016.

[32] K. Thomsen. Inductive limits of interval algebras: the tracial state space. Amer. J.
Math., 116(3):605–620, 1994.

[33] Andrew S. Toms. On the classification problem for nuclear C∗-algebras. Ann. of Math.
(2), 167(3):1029–1044, 2008.

[34] V. V. Uspenskij. A universal topological group with a countable basis. Functional
Analysis and Its Applications, 20:86–87, 1986.

[35] V. V. Uspenskij. On the group of isometries of the Urysohn universal metric space.
Commentationes Mathematicae Universitatis Carolinae, 31(1):181–182, 1990.

[36] Joseph Zielinski. The complexity of the homeomorphism relation between compact
metric spaces. Adv. Math., 291:635–645, 2016.

Received 30 November 20173531



3532



Reasoning about Coalition Structures in
Social Environments via Weighted

Propositional Logic

Gianuigi Greco
University of Calabria, 87036, Rende, Italy

ggreco@mat.unical.it

Abstract
Decision-making is studied in a setting where agents’ preferences are ex-

pressed via weighted propositional logic and where the goal is to compute social
desirable solutions w.r.t. both the utilitarian social welfare and the egalitarian
social welfare. Differently from the classical perspective studied in the litera-
ture where all agents are required to jointly take a decision (e.g., select a belief
or a course of action among several alternative possibilities), it is assumed that
agents can form coalitions, each of them possibly taking a different decision.
In particular, it is assumed that agents belong to a social environment, so that
their utilities depend not only of their absolute preferences but also on the
number of “neighbors” occurring with them in the coalition that emerged.

The proposed setting is formalized and analyzed from the computational
complexity viewpoint, in particular, by focusing on the problem of assessing
how agents can partition themselves with the aim of guaranteeing some desired
level of social welfare. A number of intractability results have been pointed out,
and efforts have been spent to identify tractable scenarios based on qualitative
restrictions as well as on structural restrictions on the underlying environments.

1 Introduction
Whenever a group of agents is involved in some decision process, their preferences
over the alternatives have to be suitably taken into account in order to end up with a
socially desirable outcome [6]. Prominent examples include allocation of indivisible
goods and voting on combinatorial domains, just to name a few (see, e.g., [3, 29]).

In fact, a drastic division exists between ordinal settings, where agents express
preference relations over alternatives, and cardinal settings, where they express util-
ity functions mapping the alternatives to some suitable numerical scale. The latter
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settings are considered in the paper, and the question of how to aggregate such
cardinal preferences into a collective utility function is investigated.

Now, in group decision-making, the set of possible solutions has often a combi-
natorial structure: possible allocations of items to agents, binary vectors in multiple
referenda, subsets of k candidates in committee elections, etc. The exponential size
of the set of solutions implies a tension between expressivity (allowing the agents
to express any possible utility function) and elicitation and computation complexity
(avoiding the agents to spend hours specifying their preferences, and the computer to
spend hours computing the optimal solution). A common way that sacrifices expres-
sivity but makes elicitation (and often computation) easy consists in assuming that
utility functions are additive, that is, described only by their values on singletons,
the utility of a tuple of values being then the sum of utilities of the individual values.
For instance, when expressing utilities over sets of goods, the utility value given by
an agent to a set of goods is the sum of all values she gives to the individual goods
in the set. However, assuming additivity implies a huge loss of expressivity, because
it does not allow the agents to express preferential dependencies. On the other
hand, allowing agents to express arbitrary utility functions over a combinatorial set
of solutions by listing all solutions together with their utility is clearly unpractical,
because it would amount to ask each agent to provide an exponentially large list of
values. An approach to reconciliate expressivity and complexity is to use a compact
representation language for representing utility functions (see, e.g., [18, 19, 28, 35]).

Weighted propositional logic is a language of this kind that attracted much at-
tention in the literature: Each individual expresses her preferences as a set of propo-
sitional formulas associated with numerical values. Given an interpretation σ as-
signing a truth value to each variable, the utility of the individual is defined as the
sum1 of the values associated with the formulas satisfied by σ. Moreover, in order
to preserve the semantics of the application, interpretations might be restricted to
those satisfying some given constraints. In fact, expressing utilities by weighted
formulas is more succinct than expressing them directly, and is fully expressive, in
the sense that every utility function can be expressed by some set of weighted for-
mulas. Detailed results on the expressivity, succinctness and complexity of various
fragments of this language are in [34]. The succinctness of weighted formulas with
respect to other logical representation languages is also discussed in [10]. Weighted
formulas have also been used to express values of coalitions in cooperative games
and hedonic games, in so-called marginal contribution nets [26, 14, 15], as well as
in fair division [5]. Moreover, related languages have been designed for supporting

1See [35] for an alternative approach where the utility is defined as the maximum over the values
of the satisfied formulas, and [28] for a discussion on (further) possible aggregation functions.
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bidding mechanisms in combinatorial auctions [4, 30, 20].
The language of weighted formulas to express individual preferences is the one

adopted in the paper, and the question of how these preferences can be aggregated
into a collective utility function is considered within the resulting framework.

The analysis is conducted by considering two different perspectives. First, the
utilitarian perspective is considered, where the collective utility is the sum of the
utilities of the individuals, called the utilitarian social welfare. While this is the clas-
sical approach in social choice theory, it is not desirable in a number of application
domains where a “fair” approach would be more appropriate, with the goal being
to maximize the egalitarian social welfare, that is, the satisfaction of the least sat-
isfied agent (see, e.g., [2, 5]). For instance, under egalitarianism, finding an optimal
allocation of indivisible goods to agents is the so-called Santa Claus problem [3, 2].

In addition to the kinds of social welfare considered in the specific scenario, the
paper proposes a further classification of decision-making in two main categories. On
the one hand, it considers the setting where all agents are required to take a decision
involving all of them. This setting has been already analyzed in the literature [24]
and relevant computational results derived for it are here recalled and discussed.

On the other hand, the paper studies a setting where agents might want to form
coalitions in order to obtain higher worth by staying all together. In particular,
the paper assumes that agents are part of a social environment so that their utility
function depends not only of their absolute preferences but also on the number
of neighbors occurring with them in the coalition that emerged. Note that the
study of coalition formation processes for logic-based agents, formalized via weighted
propositional logic, has recently attracted attention in the literature [25], where some
reasoning problems emerging therein have been put under the computational lens.

That setting is reconsidered in this paper, by complementing known results with
novel elaborations and with the analysis of different computational problems arising
when reasoning about how agents can partition themselves with the aim of guaran-
teeing some desired level of social welfare. As the main novel technical contributions
of this paper, a number of intractability results are pointed out and efforts are spent
to identify tractable classes of instances based on qualitative restrictions and on
structural restrictions over the underlying social environments.
Organization. The rest of the paper is organized as follows. Section 2 introduces
basic concepts about weighted propositional logic and computational complexity.
The classical setting where all agents are required to end up with a joint utility
function is studied in Section 3, whereas its extension for social environments is
discussed in Section 4. The computational complexity of the latter setting is studied
in Section 5 and Section 6, with the latter section being in particular devoted to
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identify islands of structural tractability. A few final remarks and directions for
further work are illustrated in Section 7.

2 Preliminaries
Weighted Propositional Logics. Throughout the paper, a universe V of variables
is assumed to be given and the propositional language L is considered, which consists
of all formulas built over V by using the Boolean connectives ∧, ∨, and ¬, plus the
constants > (true) and ⊥ (false). For any propositional formula ϕ ∈ L, dom(ϕ)
denotes the domain of ϕ, i.e., the set of all the variables in it. An interpretation
σ :W → {>,⊥} overW ⊆ V is a function assigning a Boolean value to each variable
in W. The set of all interpretations that are defined over W is denoted by I(W).

An interpretation σ ∈ I(W) associates a Boolean value to any formula ϕ ∈ L
with W ⊇ dom(ϕ), by means of the inductive application of the following rules:
σ(>) = >; σ(⊥) = ⊥; σ(¬φ) = > iff σ(φ) = ⊥; σ(φ1 ∧ φ2) = > iff σ(φ1) = σ(φ2) =
>; and σ(φ1 ∨ φ2) = ⊥ iff σ(φ1) = σ(φ2) = ⊥.

An interpretation σ ∈ I(W) such that W ⊇ dom(ϕ) and σ(ϕ) = > is a model of
ϕ, shortly denoted as σ |= ϕ. A formula ϕ is satisfiable if it has a model.

A weighted formula is a pair 〈ϕ,w〉, where ϕ ∈ L is a propositional formula and
where w ∈ Q is a rational number. A goalbase G is a finite set of weighted formulas,
whose domain is dom(G) = ⋃

〈ϕ,w〉∈G dom(ϕ). For any interpretation σ, the number
G(σ) = ∑

〈ϕ,w〉∈G such that σ|=ϕw is the value of σ w.r.t. G.
A utility function over W is a mapping u : I(W) → Q. Given the function u,

we can always build a goalbase Gu with dom(Gu) =W and such that Gu(σ) = u(σ),
for each σ ∈ I(W) [10, 34].
Computational Complexity. Some basic definitions about complexity theory are
recalled next. The reader is referred to [31] for more on this.

Decision problems are maps from strings (encoding the input instance over a
suitable alphabet) to the set {“yes”, “no”}. A (possibly nondeterministic) Turing
machine M answers a decision problem if on a given input x, (i) a branch of M
halts in an accepting state iff x is a “yes” instance, and (ii) all the branches of M
halt in some rejecting state iff x is a “no”instance.

The paper deals with three complexity classes, which are now discussed. The
class P is the set of decision problems that can be answered by a deterministic Turing
machine in polynomial time. The class of decision problems that can be solved by
a nondeterministic Turing machine in polynomial time is denoted by NP, while
the class of decision problems whose complementary problem is in NP is denoted
by co-NP. The class DP is the class of problems defined as a conjunction of two
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independent problems, one from NP and one from co-NP, respectively.
In conclusion, it is useful to illustrate the notion of reduction for decision prob-

lems. A decision problem A1 is polynomially reducible to a decision problem A2 if
there is a polynomial time computable function h such that for every x, h(x) is de-
fined and A1 output “yes” on input x iff A2 outputs “yes” on input h(x). A decision
problem A is complete for the class C ∈ {NP, co-NP,DP} if A belongs to C and
every problem in C is polynomially reducible to A.

3 Group Decision-Making
In this section, the language of weighted formulas is adopted to express individual
preferences and a setting where such preferences have to be combined is studied,
by focusing on the maximization either of the utilitarian or of the egalitarian social
welfare. The setting will be also put under the lens of a complexity analysis, by
summarizing some recent results that have been pointed out in the literature.

3.1 Utilitarian and Egalitarian Social Welfare
Let A = {A1, ..., An} be a set of agents, with (the reasoning capabilities of) each
agent being modeled as a goalbase, and let dom(A) = ⋃n

i=1 dom(Ai) denote the
domain of the set A. Note that each agent Ai ∈ A is implicitly associated with the
utility function ui mapping any interpretation σ ∈ I(W) to the rational number
ui(σ) = ∑

〈ϕ,w〉∈Ai,σ|=ϕw.
An important task over sets of agents is to define appropriate ways to aggregate

all their utilities into a collective utility function. While doing so, the aggregation
process might be subject to constraints emerging from the application, which can
be naturally modeled (again) as a formula in L that have to be satisfied by the
candidate interpretations. Accordingly, we define a decision-making scenario as a
pair (Γ,A), where Γ is a satisfiable propositional formula and A is the set of agents.

An interpretation σ is feasible (w.r.t. Γ) if σ |= Γ.

Example 1 (cf. [24]). Consider an allocation problem with agents A1 and A2, and
three indivisible goods g1, g2, g3. Below, it is shown how this problem can be modeled
as a decision-making scenario (Γ, {A1, A2}).

The scenario is defined over the set of Boolean variables V = {Xi,j | i ∈ {1, 2}, j ∈
{1, 2, 3}}. An interpretation σ over V is therefore naturally associated with an
allocation, where Xi,j being true in σ means that Ai receives good gj . Moreover, the
focus is on those interpretations satisfying the formula Γ = ∧

j

∧
i 6=i′ ¬

(
Xi,j ∧Xi′,j

)
,

which constrains each good to be allocated at most to one individual. Finally,
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goalbases associated with A1 and A2 are meant to encode their preferences over the
allocations. For instance, assume that A1 chooses to express her utility function by
the set of weighted formulas {〈X1,1∨ (X1,2∧X1,3), 3

5〉, 〈X1,1∧X1,2,
2
5〉}, while A2 has

additive preferences, expressed by the set {〈X2,1,
2
5〉, 〈X2,2,

1
5〉}, 〈X2,3,

2
5〉}. Let π be

the allocation giving {g1, g2} to A1 and {g3} to A2. The interpretation corresponding
to π is σπ where the variables evaluating to true are those in {X1,1, X1,2, X2,3}. The
utility of A1 (resp., A2) in π is given by u1(σπ) = 3

5 + 2
5 = 1 (resp., u2(σπ) = 2

5 .). �

Assume that a decision-making scenario (Γ,A) is given. According to the clas-
sical approach in social choice theory, while combining the utilities of the agents,
one has to focus on maximizing their overall satisfaction, i.e., the utilitarian social
welfare. Formally, the utilitarian social welfare of an interpretation σ ∈ I(dom(Γ) ∪
dom(A)) is the value ut(σ) = ∑

Ai∈AAi(σ). The interpretation σ is ut-optimal if
it has the maximum utilitarian social welfare over all feasible interpretations (taken
from I(dom(Γ) ∪ dom(A))). The set of all ut-optimal interpretations is denoted by
ut-Opt(Γ,A), and their utilitarian social welfare is denoted by ut-Opt(Γ,A).

In addition to the utilitarian social welfare, the paper considers also the egali-
tarian social welfare. The intuition in this case is to look for interpretations that are
not “too far” from the optimum values that can be achieved when optimizing the
preferences of the agents independently on the others. To express more clearly the
requirement, it is convenient to assume hereinafter that maxσ∈I(dom(Ai)) ui(σ) = 1
and minσ∈I(dom(Ai)) ui(σ) = 0, for each agent Ai ∈ A. An agent enjoying this prop-
erty will be said normalized. W.l.o.g, any agent can be normalized by rescaling the
associated weighted formulas (cf. [24]). Dealing with normalized agents is a typical
assumption in the literature (see, e.g., [18]).

Let (Γ,A) be a decision-making scenario where A is a set of normalized agents,
and let σ be an interpretation. The egalitarian social welfare of σ is the value
eg(σ) = minAi∈AAi(σ), which evaluates the satisfaction of the least satisfied agent.
The interpretation σ is eg-optimal if it has the maximum egalitarian social welfare
over all feasible interpretations. The set of all eg-optimal interpretations is denoted
by eg-Opt(Γ,A), and their egalitarian social welfare is denoted by eg-Opt(Γ,A).

Example 2. In the setting of Example 1, each agent can get all objects if she were
alone. Hence, maxσ∈I(dom(Ai)) ui(σ) = 1, for each i ∈ {1, 2}. In particular, agents are
already normalized, and one can directly apply the above definitions. For instance,
consider the interpretation σπ′ , where the variables evaluating to true are precisely
those in the set {X1,1, X2,2, X2,3}. Note that eg(σπ′)=min{3

5 ,
3
5}=3

5 . In fact, it can
be checked that σπ′ is eg-optimal, hence eg-Opt(Γ, {A1, A2})=3

5 . �
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3.2 Complexity Results
The careful reader might have already noticed that most of the interesting reason-
ings problems about decision-making scenarios will likely be intractable, since even
the very basic problem of deciding whether a given propositional formula admits a
model is NP-hard. This motivates a finer grained complexity analysis to identify
the tractability boarder between polynomial andNP-hard settings, along several pa-
rameters such as the syntax of formulas, the allowed weights, as well as the number
of agents, propositional symbols, and formulas per agent.

In order to embark on this analysis, consider the language L{∧,∨,¬} consisting of
all propositional formulas ϕ built according to the following grammar:

ϕ ::= X | ¬X | (ϕ ∧ · · · ∧ ϕ) | (ϕ ∨ · · · ∨ ϕ),

where X is any variable in V. If B ⊆ {∧,∨,¬} is a set of Boolean connectives, then
LC denotes the set of all the formulas in L{∧,∨,¬} that do not contain symbols in
C \ {∧,∨,¬}. Note that all formulas are assumed to be given in Negation Normal
Form, that is, negation applies only over variables (if it could apply over general
subformulas, then ∧ would be expressible from ∨ and vice versa).

Let h1, h2, h3 ∈ {1, c,∞}, let S ⊆ {+,−} with |S|≥1, and let SB,S [h1, h2, h3] be
the set of all decision-making scenarios (Γ,A) where:

• Γ as well as all formulas in A are taken from LB;

• if S = {+} (resp., S = {−}), then every weighted formula is associated with a
positive (resp., negative) weight; if S = {+,−} then no restriction is imposed
on the weights associated with the formulas;

• if h1 = 1 (resp., h1 = c), then |A| = 1 (resp., |A| is bounded by a fixed
constant); if h1 =∞, then no bound is required over |A|;

• if h2 = 1 (resp., h2 = c), then |Ai| = 1 (resp., |Ai| is bounded by a fixed
constant), for each Ai ∈ A; if h2 = ∞, then no bound is required over any
|Ai|; and

• if h3 = 1 (resp., h3 = c), then |dom(ϕi)| = |dom(Γ)| are equal to 1 (resp., are
bounded by a fixed constant) for each Ai ∈ A and for 〈ϕi, wi〉 ∈ Ai; if h3 =∞,
then no bound is required over |dom(ϕi)| and |dom(Γ)|.

Let x ∈ {ut,eg} denote the specific social welfare under analysis, and consider
the problem of computing an x-optimal interpretation restricted on SC,S [h1, h2, h3],
which is hereinafter denoted as x-FindC,S [h1, h2, h3].
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Figure 1: Summary of complexity results in Section 3.2. Individual decision-making
(top) and egalitarian social welfare (bottom). Entries marked as “P” correspond
to tractable settings without any restriction while, for the NP-hard scenarios, the
tractability frontier is reported.

To analyze its complexity, it is useful to introduce a concept of frontier of
tractability, which allows us to express more succinctly complexity results, by avoid-
ing to get lost in a large number of different combinations. Formally, the frontier of
tractability of x ∈ {ut,eg} w.r.t. h1, h2, h3 ∈ {1, c,∞}, denoted by x-FrT[h1, h2, h3],
is the minimal set of pairs (B,S) with B ⊆ {∨,∧,¬} and ∅ ⊂ S ⊆ {+,−} such that:
• ∀(B,S)∈x-FrT[h1, h2, h3], x-FindB,S [h1, h2, h3] is in P;

• ∀(B′, S′) with B′ ⊆ {∧,∨,¬} and S′ ⊆ {+,−} such that there is no pair
(B,S) ∈ x-FrT[h1, h2, h3] with B ∪ S ⊇ C ′ ∪ S′, we have that the problem
x-FindB,S [h1, h2, h3] is NP-hard.

Note that the notion precisely captures the intuition that the given pairs mark
the boundary between tractable and intractable settings.

With these notions at hand, the reader can now have a look at Figure 1, where
all complexity results for the given fragments are summarized—these results have
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been recently established by [24]. Note that the case where h1 = 1 is the classical
setting of individual decision-making (see, e.g., [34, 10]). Moving from h1 = 1 to
h1 ∈ {c,∞}, one can instead observe that the optimization of a set G of goalbases,
from the viewpoint of the utilitarian social welfare, is equivalent to the optimization
of G = {〈ϕ,w〉 | ∃Gi ∈ G such that 〈ϕ,w〉 ∈ Gi}. Thus, for each h3 ∈ {1, c,∞}, the
following picture easily emerge:

• ut-FrT[c, 1, h3] = ut-FrT[c, c, h3] = ut-FrT[1, c, h3];

• ut-FrT[c,∞, h3] = ut-FrT[1,∞, h3]; and

• ut-FrT[∞, h2, h3] = ut-FrT[1,∞, h3], h2 ∈ {1, c,∞}.

Finally, concerning the egalitarian social welfare, results are reported in the
bottom of Figure 1. In this case, in order to make the analysis meaningful, scenarios
are assumed to be normalized and non-trivial, i.e., where h1 > 1 holds.

4 Decision-Making in Social Environments
In the previous section, decision-making has been considered in a setting where all
agents have to simultaneously take part to the reasoning task. However, this hardly
happens in practice. Indeed, in a number of scenarios, there are agents whose utility
functions strongly contrast with those of the others, so that they will likely leave the
group and possibly form a coalition with the agents on which some agreement can
be find more easily. Actually, in these contexts, for reasons that might range from
physical limitations and constraints to legal banishments, certain agents might not
be allowed to form coalitions with certain others.

Sensor networks, communication networks, or transportation networks, within
which units are connected through bilateral links, provide natural settings for such
classes of games. In many multiagent coordination settings, agents might be re-
stricted to communicate or interact with only a subset of other agents in the envi-
ronment, due to limited resources or existing physical barriers. Another example is
provided by hierarchies of employees within an enterprise, where employees at the
same level work together under the supervision of a boss, i.e., of an employee at
the immediately higher level in the hierarchy. In all these settings, the environment
can be seen to possess some structure that forbids the formation of certain coali-
tions (see, e.g., [8], and the references therein). In particular, in a decision-making
scenario, this structure can be viewed as being naturally induced by the goalbases
associated with the various agents, by taking into account the constraint formula Γ.
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Formally, every scenario (Γ,A) can be associated with an interaction graph
IG(Γ,A) = (A, E) where the agents in A are transparently viewed as the nodes,
and where an edge {Ai, Aj} (resp., {Ai,Γ}) is in E if, and only if, at least one of
the following two conditions hold:

• dom(Ai) ∩ dom(Aj) 6= ∅, that is, the two agents directly share some variable in
their domains;

• dom(Ai) ∩ dom(Γ) 6= ∅ and dom(Aj) ∩ dom(Γ) 6= ∅, that is, they both reason
about variables that also occur in the constraint Γ (in this case, the interaction
is indirect via Γ).

A coalition C ⊆ A of agents is legal if the subgraph of IG(Γ,A) induced over the
nodes in C is connected. It is assumed, w.l.o.g., that A is legal.

Example 3. Consider again the two agents in Example 1. Note that dom(A1) ∩
dom(A2) = ∅. However, dom(A1)∩dom(Γ) 6= ∅ and dom(A2)∩dom(Γ) 6= ∅. Therefore,
the interaction graph IG(Γ, {A1, A2}) is the graph built over the two agents with an
edge connecting them. �

Now, while taking part to the coalition formation process, agents can be in-
fluenced by their “social” relationships, in that their own utility functions can be
affected by the number of neighbors belonging to the coalitions they belong to. To
define this influence, we first define the concept of neighborhood w.r.t. the under-
lying interaction graph. So, for each legal coalition C ⊆ A and agent Ai ∈ C, we
define the neighbors of Ai that occur in C as the set neigh(Ai, C) of all agents
Aj ∈ C such that there is an edge connecting Ai and Aj in IG(Γ,A). With this
definition in place, note that two agents Ai and Aj can be neighbors of each other
even if dom(Ai) ∩ dom(Aj) = ∅. This happens when dom(Ai) ∩ dom(Γ) 6= ∅ and
dom(Aj) ∩ dom(Γ) 6= ∅. For instance, in Example 1, it can be easily checked that
neigh(A1, {A1, A2}) = {A2} and neigh(A2, {A1, A2}) = {A1}.

As a final ingredient of the formalization, by belonging to a social environment,
it makes sense to assume that the utilities of the agents depend not only of their
absolute preferences but also on the number of neighbors occurring with them in the
coalition that emerged. In order to balance between their own utility functions and
the social influence, we introduce a social factor α, which is a rational number with
0 ≤ α ≤ 1. Then, for each interpretation σ over a superset of dom(C), we define the
following “adjusted” utility (indeed depending on C):

uαi (σ,C) = α× |neigh(Ai, C)|
|neigh(Ai,A)| + (1− α)× ui(σ).
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Note that for α = 0 the settings comes back to the classical setting discussed in
the above section where the utility of the agents does not depend on the coalitions
they belong to. Instead, for α = 1 all agents would like to stay together, with each of
them getting rid of the original utility function. Moreover, note that since uαi (σ,C)
is defined as an affine combination of two independent factors, it is convenient to
assume, as we already did in the context of the definition of the egalitarian social
welfare that agents are normalized.

Example 4. Assume in the setting of Example 1 that α = 1
2 , so each agent perfectly

balances her social attitude with the goal of optimizing her own utility function.
Consider the interpretation σπ where the variables evaluating true are those

in {X1,1, X1,2, X1,3}. Recall from Example 1 that u2(σπ) = 2
5 , and consider the

adjusted utility (w.r.t. α) in the two cases when (i) A2 is alone and when (ii) A2
and A1 belong to the same coalition, respectively:

(i) uα2 (σπ, {A2}) = (1− α)× u2(σπ) = 1
2 × 2

5 = 1
5 ;

(ii) uα2 (σπ, {A1, A2}) = α+ (1− α)× u2(σπ) = 1
2 + 1

5 = 7
10 ;

Therefore, in the former case, i.e., when A2 is alone, she gets less than the
baseline value 2

5 associated with the case where she does not care of the other agents
(i.e., for α = 0). However, in the latter, she obtains an additional utility just by the
fact of being together with A1 in the same coalition. Concerning agent A1, recall
instead that u1(σπ) = 1, so that uα1 (σπ, {A1}) = 1

2 and uα1 (σπ, {A1, A2}) = 1. Again,
the best choice is to form a coalition together with A2. �

With the above concepts in place, the utilitarian and the egalitarian social welfare
can be now re-defined, this time parametrically w.r.t. the social factor α. Formally,
for any interpretation σ and coalition C, one can consider:

• the utilitarian social welfare, denoted by utα, where the utilities of the various
agents are summed; hence, utα(σ,C) = ∑

Ai∈C u
α
i (σ,C);

• the egalitarian social welfare, denoted by egα, where we take care of the least
satisfied agent; hence, egα(σ,C) = minAi∈C uαi (σ,C).

Example 5. By considering the interpretation σπ, the value α = 1
2 , and the coali-

tion formed by all agents, it can be derived that utα(σπ,A) = uα1 (σπ, {A1, A2}) +
uα2 (σπ, {A1, A2}) = 1 + 7

10 , whereas egα(σπ,A) = 7
10 . �

Eventually, the concepts of optimal interpretations can be now adapted in order
to fit the presence of a social environment. In particular, a feasible interpreta-
tion σ is said to be utα-optimal for C if it has the maximum utilitarian social
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welfare utα(σ,C) over all interpretations. The set of all utα-optimal interpreta-
tions is denoted by utα-Opt(Γ, C), and their utilitarian social welfare is denoted
by utα-Val(Γ, C). Similarly, σ is egα-optimal for C if it has the maximum egali-
tarian social welfare egα(σ,C) over all interpretations. The set of all egα-optimal
interpretations is denoted by egα-Opt(Γ, C), and their utilitarian social welfare is
denoted by egα-Val(Γ, C).

Before leaving the section, it is worthwhile observing that the setting formalized
above is an extension of a similar one recently proposed in the literature [25]. In fact,
that setting [25] is rather limited from the knowledge representation viewpoint, as
it does support the definition of constraints (i.e., Γ) on the possible interpretations
and as it has been analyzed by considering logic formulas built without disjunctions
(and where negation is atomic).

5 Reasoning about Coalitions
In the previous section, the formal framework for decision-making in social envi-
ronments has been introduced. Now, some complexity issues arising therein are
analyzed by focusing on a number of relevant decision problems. In the exposition
below, let x ∈ {ut,eg} denote the specific social welfare one is going to consider in
the problem formulation.

5.1 Problems and Overview of the Results
Problems that have been classically considered in the literature about decision-
making involve checking whether the utilitarian/egalitarial social welfare of the
whole set of agents exceeds some given desired threshold. In the following, such
problems are naturally reconsidered by focusing on arbitrary coalitions, rather than
on the whole set A only. In addition, specific problems are formalized that exploit
the peculiarity of the proposed setting. These problems are defined moving from
the observation that low values for xα(σ,A) are determined by the utility functions
of some agents which contrast with those of others. Accordingly, it might be helpful
to identify the (subset-)maximal coalitions over which good “agreements” can be
found. Formally, let γ be a rational number, and let C ⊆ A be a legal coalition.
Then, we say that C is xα-maximal for γ (w.r.t. Γ) if xα-Val(Γ, C) ≥ γ and there
is no legal coalition C ′ ⊃ C such that xα-Val(Γ, C ′) ≥ γ.

By summing up these observations, for each given social factor α, one can con-
sider the following problems, all of them receiving as input a set A of normalized
agents, a formula Γ in L, and a rational number γ:
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arbitrary positive
ut eg ut eg

utα/egα-Check NP-c NP-c NP-c NP-c
utα/egα-Existence NP-c NP-c NP-c NP-c

utα/egα-Maximal DP-c DP-c NP-c DP-c

Figure 2: Summary of complexity results in Section 5. All the entries in the table
are shown to hold for each social factor α such that 0 ≤ α < 1, and even for
environments consisting of a fixed number of agents. In fact, the three problems are
tractable when α = 1.

xα-Check: Given a legal coalition C ⊆ A, does xα-Val(Γ, C) ≥ γ holds?

xα-Existence: Is there any legal coalition C ⊆ A such that xα-Val(Γ, C) ≥ γ
holds?

xα-Maximal: Given a legal coalition C ⊆ A, is C xα-maximal for γ?

A summary of the complexity results is in Figure 2. Note that, in addition to
the case where arbitrary agents are considered, positive ones are considered too, i.e.,
such that every weighted formula occurring in them is associated with a positive
weight (as in Section 3.2). Note that the dual setting where all weights are negative
is not possible, since agents are assumed to be normalized. In the following, proofs
are reported by distinguishing the case where α = 1 from the case where 0 ≤ α < 1.

Note that the decision problems under analysis have been also considered in the
literature [25], where computational results have been derived for social environ-
ments without any bound on the number of agents and by considering reductions
exhibited for some specific social factor. The main technical contribution of this
section is to complement known hardness results (i) by focusing on settings where
the number of agents is a given fixed constant and (ii) by exhibiting reductions that
apply to each social factor α such that 0 ≤ α < 1.

5.2 Analysis for α = 1
The case where α = 1 corresponds to scenarios where agents just care about the pres-
ence of their neighbors, without considering their weighted formulas at all. Indeed,
for any given coalition C ⊆ A and formula Γ, we have that

• ut1-Val(Γ, C) = ∑
Ai∈C

|neigh(Ai,C)|
|neigh(Ai,A)| ; and
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• eg1-Val(Γ, C) = minAi∈C
|neigh(Ai,C)|
|neigh(Ai,A)| .

Therefore, for each pair of coalitions C and C ′ with C ⊆ C ′, we have that
ut1-Val(Γ, C) ≤ ut1-Val(Γ, C ′) and eg1-Val(Γ, C) ≤ eg1-Val(Γ, C ′). Then,
because of this monotonic behavior, the following is immediate.

Theorem 6. x1-Check, x1-Existence, and x1-Maximal are feasible in polyno-
mial time, ∀x ∈ {ut,eg}.

Proof. For α = 1, the expressions egα-Val(Γ, C) and egα-Val(Γ, C) depend only
on the neighbors of the agents in C, and they can be trivially evaluated in polynomial
time. Now, observe that due to the monotonicity of ut1-Val and eg1-Val, there is
a coalition C such that x1-Val(Γ, C) ≥ γ if, and only if, x1-Val(Γ,A) ≥ γ holds.
Therefore, x1-Existence reduces to x1-Check on input A and it is, hence, feasible
in polynomial time. Similarly, x1-Maximal reduces to checking whether C = A
and whether there is a positive answer of x-Check on input A. Thus, it is feasible
in polynomial time, too.

5.3 Proofs of Results for 0 ≤ α < 1
Consider now the case where 0 ≤ α < 1, for which results are hereinafter provided
for each given social factor. In particular, all reductions are designed in a way that
their salient properties hold independently on the specific value being considered.
Elaborations start with the results for the problems Check and Existence.

Theorem 7. Let α be any fixed social factor with 0 ≤ α < 1. Then, xα-Check
is NP-complete, for each x ∈ {ut,eg}. Hardness results hold even over scenarios
consisting of a fixed number of positive agents.

Proof. (Membership) The problem utα-Check (resp., egα-Check) can be solved
in polynomial time by a nondeterministic Turing machine that guesses an interpre-
tation σ and then checks that utα(σ,C) ≥ γ (resp., egα(σ,C) ≥ γ).

(Hardness) Recall that deciding whether a Boolean formula is satisfiable is a
well-known NP-hard problem. Given a Boolean formula ϕ, consider a variable X
not in dom(ϕ) and define the agents Aϕ = {〈X ∧ ϕ, 1〉, 〈¬X, 1〉} and Āϕ = {〈X, 1〉}.
Note that utα(σ, {Aϕ, Āϕ}) = 2 × α + (1 − α) × (Aϕ(σ) + Āϕ(σ)). Therefore,
utα-Val(>, {Aϕ, Āϕ}) ≥ 2 holds if, and only if, ϕ is satisfiable. So, utα-Check is
NP-hard. Similarly, one has egα(σ, {Aϕ, Āϕ}) = α+ (1−α)×min{Aϕ(σ), Āϕ(σ)}.
Again, egα-Val(>, {Aϕ, Āϕ}) ≥ 1 holds if, and only if, ϕ is satisfiable. So, egα-
Check is NP-hard, too.
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Theorem 8. Let α be any fixed social factor with 0 ≤ α < 1. Then, xα-Existence
is NP-complete, for each x ∈ {ut,eg}. Hardness results hold even over scenarios
consisting of two positive agents.

Proof. utα-Existence (resp., egα-Existence) can be solved by first guessing an
interpretation σ and a legal coalition C, and by subsequently checking that σ |=
Γ and utα(σ,C) ≥ γ (resp., egα(σ,C) ≥ γ). So, the problems belong to NP.
For the hardness, given a Boolean formula ϕ, consider again the reduction in the
proof of Theorem 7. By inspecting that proof, note that if utα-Val(>, C) ≥ 2,
then it is necessarily the case that C = {Aϕ, Āϕ}. Therefore, utα-Existence is
equivalent to utα-Check on input {Aϕ, Āϕ}. Hence, it is NP-hard, too. Similarly,
if egα-Val(>, {Aϕ, Āϕ}) ≥ 1, then it is necessarily the case that C = {Aϕ, Āϕ}. So,
egα-Existence is equivalent to egα-Check on input {Aϕ, Āϕ}, and NP-hard.

Let us now analyze the complexity of Maximal, from the utilitarian perspective,
by considering first the case where all agents are positive.

Theorem 9. Let α be any fixed social factor with 0 ≤ α < 1. Then, utα-Maximal
is NP-complete when restricted over positive agents.

Proof. When agents in A are positive, it is immediate to check that a coalition
C ⊆ A is utα-maximal for γ (w.r.t. Γ) only if C = A. Therefore, utα-Maximal
reduces to utα-Check on input A. Then, NP-completeness follows by inspection
in the proof of Theorem 7.

When agents are not necessarily positive, a complexity increase occurs.

Theorem 10. Let α be any fixed social factor with 0 ≤ α < 1. Then, utα-Maximal
is DP-complete (without any restriction on the agents). Hardness result holds even
over scenarios consisting of three agents.

Proof. (Membership) Let C ⊆ A be the legal coalition provided as input, and recall
that C is is utα-maximal for γ (w.r.t. Γ) if the following conditions hold:

(C1) utα-Val(Γ, C) ≥ γ, and

(C2) there is no legal coalition C ′ ⊃ C such that utα-Val(Γ, C ′) ≥ γ.

Observe that (C1) can be checked in NP, as we shown in Theorem 7. Consider,
then, the condition complementary to (C2), that is, that there is some legal coalition
C ′ ⊃ C such that utα-Val(Γ, C ′) ≥ γ. To verify whether the condition holds, one
can just guess a legal coalition C ′ ⊃ C and an interpretation σ, by subsequently
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checking that σ |= Γ and utα(σ,C ′) ≥ γ hold. This is feasible in NP, and hence
(C2) can be checked in co-NP. Overall, the problem is in DP.

(Hardness) Recall that the problem receiving as input a pair (ϕ1, ϕ2) such that
dom(ϕ1)∩dom(ϕ2) = ∅ and asking of deciding whether ϕ1 is satisfiable and ϕ2 is not
satisfiable is DP-hard. Let β = 1−3×α

1−α and note that β ≤ 1 holds.
Let X and Y be two variables not in dom(ϕ1) ∪ dom(ϕ2), and define the agents

A1,2 = {〈X ∧ ϕ1, 1〉, 〈¬X ∧ Y, 1〉}, Ā1,2 = {〈X ∧ ϕ2, β〉, 〈¬X ∧ ¬Y, 1〉, 〈X ∧ Y,−1〉},
and A0 = {〈X∧Y, 1〉}. Note that these agents are normalized. Moreover, dom(A0)∩
dom(A1,2) ∩ dom(Ā1,2) 6= ∅. Therefore, for each interpretation σ, the following ex-
pressions can be derived

utα(σ, {A0, A1,2}) = α+ (1− α)× (A0(σ) +A1,2(σ)); and (1)

utα(σ, {A0, A1,2, Ā1,2}) = 3× α+ (1− α)× (A0(σ) +A1,2(σ) + Ā1,2(σ)). (2)

Now, it can be claimed that: {A0, A1,2} is utα-maximal for 2− α (w.r.t. >) if,
and only if, ϕ1 is satisfiable and ϕ2 is not satisfiable.

(only-if) Assume that {A0, A1,2} is utα-maximal for 2 − α. First, this implies
that there is an interpretation σ such that utα(σ, {A0, A1,2}) ≥ 2 − α. By
Equation 1, we get that A0(σ) + A1,2(σ) = 2. As agents are normalized, this
entails that A0(σ) = 1 and A1,2(σ) = 1. Therefore, σ |= X ∧ Y and σ |= ϕ1.
That is, ϕ1 is satisfiable.
Second, from the fact that {A0, A1,2} is utα-maximal for 2−α, one also derives
that utα-Val(>, {A0, A1,2, Ā1,2}) < 2 − α. For the sake of contradiction
assume that ϕ2 is satisfiable, too. Then, there is an interpretation σ∗ such
that σ∗ |= X ∧Y ∧ϕ1∧ϕ2. For this interpretation, we get A0(σ∗)+A1,2(σ∗)+
Ā1,2(σ∗) = 1 + β. By Equation 2, one gets utα(σ∗, {A0, A1,2, Ā1,2}) = 3 ×
α+ (1− α)× (1 + β) < 2− α. By algebraic manipulations, it can be derived
β < 1−3×α

1−α , which is impossible.

(if) Assume that ϕ1 is satisfiable and ϕ2 is not satisfiable. Since ϕ1 is satisfiable,
by Equation 1, we immediately have that utα-Val(>, {A0, A1,2}) = 2 − α.
Assume now, for the sake of contradiction, that there is an interpretation
σ∗ such that utα(σ∗, {A0, A1,2, Ā1,2}) ≥ 2 − α. By Equation 2, one derives
A0(σ∗) + A1,2(σ∗) + Ā1,2(σ∗) ≥ 1 + 1−3×α

1−α = 1 + β. This entails that σ∗ |=
X ∧ Y ∧ ϕ1 ∧ ϕ2. Indeed, just check that for each interpretation σ such that
σ 6|= X ∧ Y ∧ ϕ1 ∧ ϕ2, one has A0(σ) + A1,2(σ) + Ā1,2(σ) < 1 + β. Then, the
proof concludes by noticing that ϕ2 is satisfied by σ∗, which is impossible.
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The claim above implies that egα-Check is DP-hard.

The counterpart under the egalitarian social welfare is next proven. In this case,
DP-hardness can be established even on positive agents.

Theorem 11. Let α be any fixed social factor with 0 ≤ α < 1. Then, egα-Maximal
is DP-complete. Hardness holds even over scenarios consisting of positive agents.

Proof. Membership inDP can be established with the same argument as in the proof
of Theorem 10, by replacing the notions related to the utilitarian social welfare with
the corresponding ones for the egalitarian social welfare.

For the hardness, it can be considered again the problem receiving as input
a pair (ϕ1, ϕ2) such that dom(ϕ1) ∩ dom(ϕ2) = ∅ and asking of deciding whether
ϕ1 is satisfiable and ϕ2 is not satisfiable. Let X and Y be two variables not in
dom(ϕ1) ∪ dom(ϕ2), and define the agents A1,2 = {〈X ∧ ϕ1, 1〉, 〈¬X, 1〉}, Ā1,2 =
{〈X ∧ϕ2, 1〉, 〈¬X, 1〉}, and A0 = {〈X, 1〉}. Moreover, let n = max{4, d α

1−αe+1} and
define the set of agents B = {B1, ..., Bn−2}, each one being identical to A0. Note
that agents are normalized (and that n is a constant).

Let β be any rational number such that 1 ≥ α × n−1
n + (1 − α) > β > α. Note

that β is well defined, since α < 1 and given the choice of n.
It can be claimed that: {A0, A1,2} ∪ B is egα-maximal for β (w.r.t. >) if, and

only if, ϕ1 is satisfiable and ϕ2 is not satisfiable.

(only-if) Assume that {A0, A1,2} ∪ B is egα-maximal for β. Then, there is an
interpretation σ such that egα(σ, {A0, A1,2}) ≥ β. This means that α× n−1

n +
(1−α)×A0(σ) ≥ β and α× n−1

n +(1−α)×A1,2(σ) ≥ β. Since β > α > α× n−1
n ,

one derives A0(σ) > 0 and A1,2(σ) > 0. Given the form of the two agents,
it can be concluded that σ |= X ∧ ϕ1. Hence, ϕ1 is satisfiable. Moreover, it
must hold that for each interpretation σ, egα(σ, {A0, A1,2, Ā1,2}) < β. Thus,
α+ (1−α)× Ā1,2(σ) < β. Given that β ≤ 1, it is impossible that Ā1,2(σ) = 1.
That is, ϕ2 is not satisfiable.

(if) Assume that ϕ1 is satisfiable and ϕ2 is not satisfiable. Since ϕ1 is satisfiable,
one immediately has that there is an interpretation σ such that σ |= X ∧
ϕ1, and egα(σ, {A0, A1,2}) = α × n−1

n + (1 − α). Thus, it can be concluded
that egα(σ, {A0, A1,2}) > β. Assume now, for the sake of contradiction, that
{A0, A1,2} is not egα-maximal for β. Hence, there is an interpretation σ such
that egα(σ, {A0, A1,2, Ā1,2}) ≥ β. Thus, α+(1−α)×Ā1,2(σ) ≥ β. Since β > α,
it is impossible that Ā1,2(σ) = 0. So, ϕ2 is satisfiable, which is impossible.

The claim above implies that egα-Maximal is DP-hard.
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6 Reasoning about Coalition Structures
In this section, rather than focusing on the coalition formation processes by consid-
ering one coalition at time, a more ambitious goal is considered by studying how
agents can form a coalition structure, i.e., how they can partition themselves with
the aim of guaranteeing some desired level of social welfare. This study and the
related complexity results have no counterpart in the literature about logic-based
agents formalized via weighted propositional logic.

A crucial notion in the subsequent analysis is that of a coalition structure Π for
a set A of agents, which is defined as any set of disjoint legal coalitions such that⋃
C∈ΠC = A. Assessing which coalition structure might emerge in a given scenario

is a fundamental problem in the study of multi-agent systems, which attracted much
research in earlier literature (see, e.g., [33, 16]). In fact, while the utilitarian social
welfare viewpoint is classically adopted in this context, given the perspective of the
paper, it make sense to consider the egalitarian viewpoint, too. Accordingly, given
a social factor α, one can focus on studying the following two problems, receiving
as input a set A of normalized agents, a formula Γ, and a threshold γ:

utα-CSG-Existence: Decide whether there is a coalition structure Π for A such
that ∑C∈Π utα-Val(Γ, C) ≥ γ;

egα-CSG-Existence: Decide whether there is a coalition structure Π for A such
that minC∈Π egα-Val(Γ, C) ≥ γ.

In the following, the complexity of these problems is analyzed by stressing their
intractability and by identifying restrictions that lead to polynomial time scenarios.

6.1 Basic Results
The first observation is that when one focuses on the extreme values for α, xα-CSG-
Existence is tractable for each x ∈ {ut,eg}.
Theorem 12. For each x ∈ {ut,eg} and α ∈ {0, 1}, xα-CSG-Existence is
feasible in polynomial time.

Proof. Tractability of x1-CSG-Existence immediately follows by the arguments in
the proof of Theorem 6. Let us therefore focus on problems ut0-CSG-Existence
and eg0-CSG-Existence. Observe that, for each Ai ∈ A, ut0-Val(Γ, {Ai}) =
eg0-Val(Γ, {Ai}) = 1 since normalized agents are considered. Therefore, if Π∗ =
{{Ai} | Ai ∈ A} is the partition where all agents form singleton coalitions, then

• ∑{Ai}∈Π∗ utα-Val(Γ, {Ai}) = |A|, and
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• min{Ai}∈Π∗ utα-Val(Γ, {Ai}) = 1.

In both cases, the values are clearly the best possible ones that can be achieved
over all possible coalition structures.

For intermediate values of α, the problem becomes intractable.

Theorem 13. Let α be any fixed social factor with 0 < α < 1. Then, xα-CSG-
Existence is NP-complete, for each x ∈ {ut,eg}. Hardness holds even over
scenarios with two positive agents.

Proof. Membership in NP is immediate. For the hardness, given a Boolean formula
ϕ, consider again the reduction in the proof of Theorem 7. In particular, recall that
we have the two agents Aϕ = {〈X ∧ ϕ, 1〉, 〈¬X, 1〉} and Āϕ = {〈X, 1〉}. Let Π be
any coalition structure. Note that ∑C∈Π utα-Val(Γ, C) = 2 holds if, and only if,
ϕ is satisfiable. Similarly, minC∈Π utα-Val(Γ, {Ai}) = 1 holds if, and only if, ϕ is
satisfiable. Thus, xα-CSG-Existence is NP-hard.

By inspecting the simple proof of the above result, it clearly emerges that the
source of the intractability straightforwardly follows from the fact that one agent
has to reason on the satisfiability of an entire Boolean formula. Therefore, for a finer
grained analysis, it make sense to focus on cases where the reasoning capabilities
of each agent are “bounded”. To this end, let h > 0 be a fixed natural number,
and assume that |dom(Γ)| ≤ h and that for each legal coalition C and each Ai ∈ C,
|dom(Ai)| ≤ h holds. A scenario enjoying these properties will be said h-bounded.

Now, the crucial observation is that over h-bounded scenarios the set of all feasi-
ble interpretations for each agent is polynomially bounded, so that we can efficiently
reason about them. However, the subtle interplay that can emerge among the agents
still suffices to keep xα-GSC-Existence NP-hard.

Theorem 14. Let α be any fixed social factor with 0 ≤ α < 1. Then, xα-Existence
and xα-CSG-Existence areNP-complete, for each x ∈ {ut,eg}. Hardness results
hold even when over positive agents and 3-bounded scenarios.

Proof. Consider a Boolean formula ϕ = c1 ∧ ... ∧ cn in conjunctive normal form
such that |dom(ci)| ≤ 3, for each i ∈ {1, ..., n}. Deciding the satisfiability of these
formulas is a well-known NP-complete problem. W.l.o.g., assume that each variable
occurs in at least two clauses. Based on ϕ, consider the agents Ai = {〈ci, 1〉}, for
each i ∈ {1, ..., n}. Then, observe that there is a coalition structure Π such that∑
C∈Π utα-Val(>, C) = n (resp., minC∈Π egα-Val(>, C) = 1) if, and only if, ϕ is

satisfiable. That is, xα-CSG-Existence is NP-hard.
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Motivated by the above bad news, the question of whether h-bounded scenarios
become tractable when further restrictions are considered is explored in the follow-
ing, by looking at the structure of the possible interactions among the agents.

6.2 Structural Tractability
Many NP-hard problems in different areas such as AI, Database Systems, Game
theory, and Network Design, are known to be efficiently solvable when restricted to
instances whose underlying structures can be modeled via acyclic graphs. Indeed, for
such restricted classes of instances, solutions can usually be computed via dynamic
programming. However, as a matter of fact, (graphical) structures arising from real
applications are in most relevant cases not properly acyclic. Yet, they are often not
very intricate and exhibit some rather limited degree of cyclicity, which suffices to
retain most of the nice properties of acyclic instances. Therefore, many efforts have
been spent to investigate graph properties that are best suited to identify nearly-
acyclic graph, leading to the definition of a number of structural decomposition
methods (see, e.g., [22]).

In this section, the question of whether these methods can be used to identify
islands of tractability for the reasoning problems addressed in the paper is analyzed,
by considering the underlying interaction graph as the reference graphical structure.
Moreover, the concept of treewidth [32], based on tree decompositions of graphs, is
considered to identify such structural restrictions. Indeed, there are different possible
notions to measure how far a graph is from a tree, that is, to measure its degree
of cyclicity or, dually, its tree-likeness (see, e.g., [23]). Among them, treewidth is a
powerful one, in that it is able to extend the nice computational properties of trees
to the largest possible classes of graphs, in many applications from different fields.

Definition 15 ([32]). A tree decomposition of a graph G = (N,E) is a pair 〈T, χ〉,
where T = (V, F ) is a tree, and χ is a labeling function assigning to each vertex
p ∈ V a set of vertices χ(p) ⊆ N , such that the following three conditions are
satisfied: (1) for each node b of G, there exists p ∈ V such that b ∈ χ(p); (2) for
each edge (b, d) ∈ E, there exists p ∈ V such that {b, d} ⊆ χ(p); and (3) for each
node b of G, the set {p ∈ V | b ∈ χ(p)} induces a connected subtree of T .

The width of 〈T, χ〉 is the number maxp∈V (|χ(p)| − 1). The treewidth of G,
denoted by tw(G), is the minimum width over all its tree decompositions. 2

Note that treewidth is a true generalization of graph acyclicity. Indeed, a graph
G is acyclic if and only if tw(G) = 1. For example, the graph reported in Figure 3
is cyclic and its treewidth is 2, as it is witnessed by the width-2 tree decomposition
depicted in the same figure.
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Figure 3: A graph and a tree decomposition for it.

In order to study the complexity of CSG-Existence problems over scenar-
ios with associated tree-like interaction graphs, known results about structurally
tractable constraint satisfaction problems (CSPs) are used as a technical tool.

Thus, in the remainder, the main notions arising in the context of CSPs are
first discussed, by then focusing on showing how the reasoning problems of interest
can be encoded in that formalism. Eventually, tractability results are derived from
known tractability results for CSPs.

Preliminaries CSPs. Let us recall some preliminaries on constraint satisfaction.
The reader interested in expanding on this formalism is referred to [11].

A constraint satisfaction problem instance is a triple J = 〈Var , U,C〉, where
Var is a finite set of variables, U is a domain of values, and C = {C1, C2, . . . , Cq}
is a finite set of constraints. Each constraint Cv, for 1 ≤ v ≤ q, is a pair (Sv, rv),
where Sv ⊆ Var is a set of variables called the constraint scope, and rv is a set of
substitutions from variables in Sv to values in U indicating the allowed combinations
of simultaneous values for the variables in Sv. A substitution from a set of variables
V ⊆ Var to U is extensively denoted as the set of pairs of the formX/u, where u ∈ U
is the value to which X ∈ V is mapped. A substitution θ satisfies a constraint
Cv if its restriction to Sv, i.e., the set of all pairs X/u ∈ θ such that X ∈ Sv,
occurs as a tuple in rv. A solution to J is a substitution θ : Var 7→ U for which
q tuples t1 ∈ r1, ..., tq ∈ rq exist such that θ = t1 ∪ ... ∪ tq. Thus, a solution
satisfies all the constraints in J . A weighted CSP (short: WCSP) instance consists
of a tuple 〈J , wr1 , ..., wrq〉, where J = 〈Var , U,C〉 with C = {C1, C2, . . . , Cq} is a
CSP instance, and where, for each tuple tv ∈ rv, wrv(tv) ∈ < denotes the weight
associated with tv. For a solution θ = t1∪...∪tq to J , its associated weight is defined
as w(θ) = ∑q

v=1wrv(tv). An optimal solution to 〈J , wr1 , ..., wrq〉 is a solution2 θ to
2Note that one can dually interpret weights as costs and look at minimization problems, rather

than maximization ones.
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J such that w(θ) ≥ w(θ′), for each solution θ′ to J .
From Social Environment to CSPs. Let us now define an encoding mechanism
that associates any given h-bounded decision-making scenario (Γ,A) with a CSP
instance CSP(Γ,A), in a way that “preserves” its underlying semantics. Formally,
CSP(Γ,A) = 〈Var , U,C〉 is defined as follows:

• For each agent Ai ∈ A and for each variable X ∈ dom(Ai), Var contains the
variable Xi. Moreover, for each agent Ai ∈ A, Var contains the variable πi.
Finally, for each variable X ∈ dom(Γ), Var contains the variable XΓ.

• The domain U consists of the Boolean values > and ⊥, plus the natural num-
bers in the set {1, ..., n}. No further constant is in U .

• The set C consists of the following two kinds of constraints.

(C1) For each agent Ai, C contains the constraint Ci = (Si, ri) such that Si =
{Xi | X ∈ dom(Ai) ∪ dom(Γ)} ∪ {πi}. Moreover, ri contains all possible
substitutions θ that can be defined over Si such that: θ(πi) ∈ {1, .., n};
θ(Xi) ∈ {>,⊥}, for each X ∈ dom(Ai) ∪ dom(Γ); and θ′ |= Γ, where
θ′(X) = θ(Xi), for each X ∈ dom(Γ).

(C2) For each pair of agents Ai and Aj such that Ai ∈ neigh(Aj ,A), i.e.,
such that they are neighbors in the scenario, C contains the constraint
Ci,j = (Si,j , ri,j) where Si,j = {Xi, Xj | Xi ∈ Si ∧ Xj ∈ Sj} ∪ {πi, πj}.
In particular, ri,j is the set of all substitutions θ such that: θ(πi) ∈
{1, ..., n}; θ(πj) ∈ {1, ..., n}; θ(X`) ∈ {>,⊥}, for each X` ∈ Si,j , with
` ∈ {i, j}; and, for each {Xi, Xj} ⊆ Si,j , we have that θ(πi) = θ(πj)
implies θ(Xi) = θ(Xj).

Note that since the scenario is h-bounded, then the construction is clearly feasible
in polynomial time, for any fixed natural number h > 0. In particular, note that
the size of the largest constraint scope is h + 2 at most and that the number of
substitutions in each relation is (trivially) bounded by |U |h+2, hence polynomially
bounded when h is fixed.

Concerning the correctness of the encoding, hereinafter, for any substitution θ
and for each agent Ai, let Cθ,i denote the maximal legal coalition including Ai as
well as all agents Aj such that θ(πi) = θ(πj). Moreover, let Πθ denote the set
{Cθ,i | Ai ∈ A}. The crucial result is a one-to-one correspondence between solutions
to the CSP instance and coalition structures.

Lemma 16. The following properties hold:
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(1) For each solution θ to CSP(Γ,A), Πθ is a coalition structure.

(2) For each coalition structure Π, there is a solution θ to CSP(Γ,A) such that
Π = Πθ.

Proof. (1) Let θ be a solution. Note that, for each agent Ai, the coalition Cθ,i is
in Πθ by definition. Therefore, to prove the result, it must be shown that for each
pair of distinct coalitions Cθ,i and Cθ,j in Πθ, it holds that Cθ,i ∩ Cθ,j = ∅. By
contradiction, assume that Ak is an agent in Cθ,i ∩ Cθ,j . This means that θ(πk) =
θ(πi) = θ(πj). Moreover, the subgraph of IG(Γ,A) induced over Cθ,i (resp., Cθ,j)
is connected. Therefore, the subgraph induced over Cθ,i ∪ Cθ,j is connected, too.
W.l.o.g., assume that Cθ,j is not a subset of Cθ,i. So, Cθ,i ∪ Cθ,j is a legal coalition
with Cθ,i ∪ Cθ,j ⊃ Cθ,i. Moreover, all agents Aw in the coalition are such that
θ(πw) = θ(πi). This contradicts the maximality of Cθ,i.

(2) Assume that Π = {C1, .., C`} is a coalition structure. Consider the substitu-
tion θ such that for each agent Aj ∈ A, if Ci is the coalition where Aj occurs, then
θ(πj) = i. Moreover, recall that Γ is satisfiable and let σ be an interpretation in
I(dom(A) ∪ dom(Γ)) such that σ |= Γ. Then, θ(Xi) = > (resp., θ(Xi) = ⊥) if, and
only if, X ∈ dom(Ai) ∪ dom(Γ) and σ(X) = > (resp., σ(X) = ⊥). It is immediate to
check that θ satisfies all constraints and that Π = Πθ.

In order to continue with the analysis, one has to further specialize the above
lemma. Consider a coalition structure Πθ associated with some solution θ, and let
Cθ,i be the coalition associated with Ai. Consider two variables Xj and Xk such
that X ∈ (dom(Aj) ∪ dom(Γ)) ∩ (dom(Ak) ∪ dom(Γ)) for two agents Aj , Ak ∈ Cθ,i.
Because of the constraints of kind (C2), it holds that θ(Xj) = θ(Xk), since θ(πj) =
θ(πk) = θ(πi) holds. In the light of this observation, it is meaningful to associate
with θ and Ai an interpretation σθ,i in I(dom(Cθ,i) ∪ dom(Γ)) such that σ(X) = >
if, and only if, there is an agent Aj ∈ Cθ,i such that θ(Xj) = >.

Lemma 17. The following properties hold:

(1) For each solution θ to CSP(Γ,A) and for each agent Ai ∈ A, σθ,i |= Γ;

(2) Let Π be a coalition structure and, for each coalition C ∈ Π, let σC be an
interpretation in I(dom(C) ∪ dom(Γ)) such that σC |= Γ. Then, there is a
solution θ to CSP(Γ,A) such that {σC | C ∈ Π} = {σθ,i | Ai ∈ A}.

Proof. Concerning (1), consider a solution θ and agent Ai ∈ A. We know that σθ,i
is an interpretation in I(dom(Cθ,i) ∪ dom(Γ)). Moreover, by the properties observed
above for σθ,i and given the constraints of kind (C1), it is immediate to check that
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σθ,i |= Γ. Concerning (2), assume that Π = {C1, .., C`} is a coalition structure.
Consider the interpretation θ built as follows. For each agent Aj ∈ A, if Ci is the
coalition where Aj occurs, then θ(πj) = i. Consider a variableX in dom(Aj)∪dom(Γ),
for some agent Aj . Let C` be the coalition in Π where Aj occurs and note that,
even though θ is not yet completely specified, one is nonetheless guaranteed about
the existence of an agent, say Ai ∈ A, such that C` = Cθ,i. Then, we complete the
definition of θ so that θ(Xj) = σC`(X). The result follows since it is immediate to
check that σθ,i = σC` .

In order to complete the analysis, let WCSP(Γ,A) be the weighted CSP instance
whose underlying CSP instance is CSP(Γ,A) and where each constraint relation ri
is equipped with the function wri defined as follows. For each substitution θ ∈ ri,
wri(θ) = (1 − α) × Ai(σθ,i). Moreover, wri,j (θ) = α × 1

|neigh(Ai,A)| if θ(πi) = θ(πj).
In all the other cases, w is the constant function mapping all interpretations to 0.
By definition, it is immediate that the following holds.

Lemma 18. Let θ be a solution to CSP(Γ,A). Then, w(θ) = ∑
i utα(σθ,i, Cθ,i)).

Putting it All Together. All ingredients are now at hand to derive the main
result of the section. First, by combing all the above lemmas, one immediately gets
the following—note that WCSP(Γ,A) always admits a solution.

Corollary 19. Let θ be an optimal solution to WCSP(Γ,A). Then, Πθ is a coalition
structure and w(θ) = ∑

C∈Πθ utα-Opt(Γ, C).

This means that utα-CSG-Existence has been reduced to solve a WCSP in-
stance, which can be built in polynomial time. In fact, finding a solution isNP-hard
in general, but is known to be feasible in polynomial time over instances having
bounded treewidth. In particular, the structure of an instance J is defined as the
graph G(J ) whose nodes are the variables and where an edge occurs between two
variables if they occur together in the scope of some constraint (see, e.g., [21]).

It is easy to see that the treewidth G(CSP(Γ,A)) is strongly related to the
treewidth of IG(Γ,A).

Lemma 20. Assume that (Γ,A) is h-bounded and such that tw(IG(Γ,A)) ≤ k.
Then, tw(G(CSP(Γ,A))) ≤ (2h+ 2)× k.

Proof. Let 〈T, χ〉 be a tree decomposition of (IG(Γ,A)), and consider the labeling
function χ′ defined as follows. For each vertex p of T , if Ai ∈ χ(p), then χ′(p)
includes all variables in Si (hence, h+ 1 variables at most); if {Ai, Aj} ∈ χ(p), then
χ′(p) includes all variables in Si,j (hence, 2h+ 2 variables at most).
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It can be checked that 〈T, χ′〉 is a tree decomposition of G(CSP(Γ,A)). Its width
is bounded by (2h+ 2)× k, where k is the width of 〈T, χ〉.

Therefore, the following is obtained by the tractability results of weighted CSPs
over structures having bounded treewidth [21]. Note that the tractability of the
corresponding problem for the egalitarian social welfare is not established here, and
constitutes an interesting avenue for further research.
Corollary 21. Let h and k be two fixed natural numbers. Then, problem utα-
CSG-Existence can be solved in polynomial time on h-bounded scenarios (Γ,A)
such that tw(IG(Γ,A)) ≤ k.

7 Conclusion and Discussion
The paper has described and studied a general framework for decision-making, where
utility functions are encoded via weighted propositional formulas. In particular, the
paper has considered the application of the framework to social environments, where
the utilities of the agents are affected by their social relationships, by thoroughly
analyzing the complexity of issues related to the formation of coalition structures.

Similar frameworks have been already considered in the literature to analyze clas-
sical decision-making scenarios, i.e., without dealing with social environments [24],
or to focus on problems related to the formation of a single coalition, i.e., without
dealing with coalition structures [25]. Moreover, orthogonally to the perspective
of these works, game-theoretic issues arising with logic-based agents formalized via
weighted propositional logic have been studied in earlier literature, too [17].

The most natural avenue of further research is to implement the proposed frame-
work, in order to apply it for reasoning on real social environments. Actually, when
the goal is to optimize the utilitarian social welfare, it is not hard to envisage that
the problem can be recast into a standard (weighted) MaxSAT problem [7]. It is,
therefore, natural to consider algorithms for MaxSAT, and try to extend them to
the general case of multiple weight functions under the egalitarian social welfare.

A promising approach is to use pseudo-Boolean constraints to enforce improve-
ments in the minimum level of satisfaction [13, 9, 1, 27]. Based on them, linear,
binary, and progression search algorithms can be formalized, by taking advantage of
incremental SAT solvers [12].
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