
The IfCoLog
Journal of Logics
and their Applications
Volume 4 Issue 5 June 2017

V
o
lu

m
e
 4

 Is

s
u
e
 5

 J

u
n
e
 2

0
1
7

The IfColog Journal of Logics and their Applications

ISSN PRINT 2055-3706
ISSN ONLINE 2055-3714

Contents
Articles

Algorithms in Philosophy, Informatics and Logic.
A Position Manifesto 2017
Dov M. Gabbay and Jörg Siekmann 1495

Automation of Mathematical Induction as part
of the History of Logic
J Strother Moore and Claus-Peter Wirth 1505

IFCoLog Journal of Logics and their
Applications

Volume 4, Number 5

June 2017

Disclaimer
Statements of fact and opinion in the articles in IfCoLog Journal of Logics and their Applications
are those of the respective authors and contributors and not of the IfCoLog Journal of Logics and
their Applications or of College Publications. Neither College Publications nor the IfCoLog Journal
of Logics and their Applications make any representation, express or implied, in respect of the
accuracy of the material in this journal and cannot accept any legal responsibility or liability for
any errors or omissions that may be made. The reader should make his/her own evaluation as to
the appropriateness or otherwise of any experimental technique described.

c© Individual authors and College Publications 2017
All rights reserved.

ISBN 978-1-84890-245-9
ISSN (E) 2055-3714
ISSN (P) 2055-3706

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk

Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
Amy Felty
David Fernandez Duque
Jan van Eijck

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
Jeff Paris
David Pearce
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge
Anna Zamansky

iii

iv

Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

v

jane.spurr@kcl.ac.uk

vi

Contents

ARTICLES

Algorithms in Philosophy, Informatics and Logic.
A Position Manifesto 2017 . 1495
Dov M. Gabbay and Jörg Siekmann

Automation of Mathematical Induction as part of the History of Logic . . . 1505
J Strother Moore and Claus-Peter Wirth

vii

viii

Algorithms in philosophy, informatics and
logic. A position manifesto 2017

Dov M. Gabbay and Jörg Siekmann

The traditional view of an algorithm A is that it is a recipe, a sequence of exact
steps designed to facilitate the execution of some goal involving, say, an entity E.

This view goes back to the Greeks with such well known examples as Euclid’s
algorithm and can be found even earlier in the Babylonian times. It is the view that
has been taken up ever since by mathematicians and more recently in computer
science: myriads of such algorithms are known and recorded. General investigations
tried to make these notions precise and the last century in particular turned out to
be very fruitful indeed with the foundational work in mathematics and computer
science.

So, for example if E is a list and we wish to order it according to some measure,
we may have a rich choice of algorithms for achieving this goal. They may differ
in style and efficiency. Taking this view of an algorithm A, two properties come
immediately to mind.

1. It is important how time and resource efficient the algorithm is.

2. The algorithm is not part of the declarative intrinsic nature of the entity it
serves. Put differently — whatever the nature of the list is — the algorithm
for ordering it is external to that nature.

This point of view of the relationship between algorithms and the entities they
serve is commonplace. The research communities concentrated their efforts on find-
ing algorithms for various tasks, classifying and optimising them as well as devel-
oping general theories (of algorithms) for comparing them. But, taking a platonic
view, algorithms are not full entities in the ideal platonic heaven and certainly, to
whatever extent that they do reside there, they are not intrinsically related to the
entities they handle.

We put forward to you the reader a different view. We claim that algorithms
have existence and nature beyond the local goals of what they do and that in general
algorithms governing and serving an entity form an integral part of the nature of
that entity.

Vol. 4 No. 5 2017
IFCoLog Journal of Logics and Their Applications

Gabbay and Siekmann

An example taken from some century old craftsmanship is say the delineation
of an elaborated cupboard in the 17th century made by a technical draughtsman
to be given to the master joiner: the expert will see the drawing probably just as
any layman may, but immediately perceives and mentally visualises the algorithms
(or workflow to use more modern terminology) required to build this cupboard.
The declarative representation is the same, but these algorithms distinguish the
master from the apprentice or the journeyman — as the second author of this mani-
festo learned from the century old German “Handwerkskammer and Tischlerinnung”,
when he started off from home as a joiners apprentice.

In particular the efficiency and “Gründlichkeit” (thoroughness) by which these
algorithms are executed will show in the final products and a well trained expert
will be able to spot the difference in a split second.

Starting from the general debate in the mid nineteen-seventies in artificial in-
telligence on procedural versus declarative representation, which found its way into
many technical fields such as logic programming or object oriented programming,
we take the view that an entity is given by two parts: its declarative representation,
i.e. its description, and the algorithms associated with it.

Put in a form of a slogan, we say

1
Object=Properties+Algorithms.

This slogan is similar to

Matter=Elementary Particles+Binding Energy.

Furthermore, we put forward that two algorithms can have distinct declarative
flavours and are not just combinatorial “local hacks” and such flavours have sig-
nificance across different application areas in which they are used. In fact the intu-
itive human mind can recognise such flavours and see affinity between algorithms in
different areas which may differ in details but are similar in flavour and approach.

An animal can be described by its properties such as colour, weight and height
and its parts, but just as importantly by its pattern of behaviour that make it
distinct. A manufactured object has certain properties, but more likely than not,
it also computes some algorithm that makes it useful: our wristwatch computes the
time mechanically and an iPod uses MP3 and other electronic computations. The
first radio or the most recent integrated television and web technology all derive
their most interesting features from the way they function, i.e. how they compute
some algorithms implemented in software or represented directly in their hardware.

1496

Editorial

To go back to our more mundane and technical example of ordered lists, a list
E is characterised not only by the nature of its ordering (by size, precedence, by
importance, etc.) but also by the algorithm A serving it: how to restore the order
should a new element be landed in the middle of the list or should its order be
disrupted and needing to be restored. So our list E is not just “E” but 〈E, A〉. And
we should perceive the same E with different ordering algorithms as “different lists”.

The first author of this manifesto hit upon this idea some twenty years ago
in connection with logic. He was looking at goal directed formulations of various
classical and non-classical logics and noticed that different logics are obtained by
slight variations in the algorithm. Thus one can associate declarative properties
(logic axioms) to what seems to be purely algorithmic moves (e.g. how you do your
garbage collection may determine what logic you are in). Indeed we humans have
an independent perception of a proof theoretical method (e.g. tableaux, resolution,
truth values, etc.) as compared with our perception of the logic itself as a declarative
entity. The above prompted the first author to declare that the nature of a logic itself
cannot be separated from its algorithmic presentation, thus classical logic presented
as a Gentzen system is not the same logic, from the point of view of applications,
as classical logic presented as a resolution system (see: D. Gabbay and N. Olivetti:
Goal Directed Proof Theory, Kluwer, 2000).

Furthermore there may be a trade-off between algorithmic optimisation con-
straints on a proof procedure for a logic L, and the declarative strength of L. In
some cases we get a different, weaker but known logic as a result of applying these
constraints, and in many cases their effects are not known. For example the con-
nection graph method, in the theory of resolution for classical predicate logic, is a
striking example of a combination of purely declarative (resolution) rules and al-
gorithmic control (of resolution through the connections). We know that classical
logic is complete for the resolution rules. However we do not know whether there is
completeness for the system where resolution is controlled by a connection graph.
For more than a quarter of a century this problem has been open now and it turned
out to be one of the major open problems in our field (see: J. Siekmann, G. Wright-
son, Strong Completeness of Kowalski’s Connection Graph Proof Procedure, Springer
Lecture Notes on AI, vol. 2408, p. 231, 2002).

The appropriate way to look at such a system is as a mixture of a declarative
component presented by the complete proof procedure and the algorithmic restric-
tions on it. The combination of the two is a mixed presentation of a new system
posing this kind of challenge.

1497

Gabbay and Siekmann

2
This mixed presentation is present everywhere: in applied logic, AI, linguistics,
computer science and even philosophy. We give more examples:

• Consider a representation of an agent (irrespective of the exact theory used).
Any agent will have beliefs, belief revision, reasoning mechanisms (such as
abduction) and more. Some of these features are declarative, others are al-
gorithmic. The agent’s nature is determined by both, i.e. these algorithms as
well as the declarative content build the “personality” of the agent.

• Another example is from robotics. Fiora Pirri (Dipartimento di Informatica
e Sistemistica Antonio Ruberti, Universita Roma) visited us some time ago
telling us she won the robot rescue competition because her robot was the
only one able to recognise injured persons in a room (together with many
other uninjured bodies). We were impressed by this because her method was
not declarative but algorithmic: the robot views a person as a compilation of
body parts according to a certain algorithm. If the candidate injured person
does not ‘compile’ correctly from its body parts, then it is an anomaly and the
robot concludes that the person is indeed injured, i.e. an object is characterised
not only by its declarative properties but also by the algorithms relating to its
parts and the algorithms relating to how it is to be used or interact with other
objects.

• This view, i.e. the inseparability of the two aspects, the algorithmic and declar-
ative nature is of course the essence of logic programming and the above robot
example is more generally present in standard object oriented programming.

• Another example can be found in theories of ambiguity and parsing in natural
language. The same string of words constructed in two different ways can mean
two different things. The analysis of entities such as pronouns and quantifiers
require an algorithmic approach over the syntax (as evidenced by theories like
Discourse Representation Theory and Dynamic Syntax). In many cases the
reference of a pronoun is not determined by the grammatical algorithms alone.
To identify the appropriate linguistic interpretation we use common sense and
non-monotonic reasoning on the context taking into account factors such as
relevance and computational effort.

• Further well known examples are SAT-procedures and model checking: essen-
tially they are logical, i.e. declarative in nature, but these two fields derive

1498

Editorial

their importance from the outmost engineering capabilities in algorithmic de-
sign and implementation.

• The following paper by J Strother Moore and Claus Peter Wirth covers the
case of automated reasoning by induction in theorem proving. This is another
fine case in point: the essence is the procedure (the algorithm) by which the
inductive argument is carried out — in his case by a machine, i.e. a computer.

There is also a common sense human perception of the algorithmic nature of
entities. Consider for example a very strict fundamentalist religious leader C1 and a
strong opposing equally fundamentalist leader A1. They are certainly opposing enti-
ties in their nature and opinions. Compare them with more tolerant understanding
and behaviourally different colleagues C2 and A2. The common sense reasoner may
perceive that (C1, A1) and (C2, A2) have more in common than (C1, C2), (A1, A2).
This means that we are more perceptive of the algorithmic behavioural aspect of
the entities than their declarative aspect.

The hardcore algorithmic man may remain unconvinced by the above argument.
He may challenge us asking “what is the role of complexity and efficiency” in this
“declarative” view of an algorithm? Given an entity E with algorithm A associated
with it, suppose we manage to make A more efficient by slightly improving upon it.
So we now have (E, A′) instead of (E, A). We would not want to say that these are
different entities but on the other hand we may not be able to say that the change
from A to A′ is not significant. It may be an extremely significant improvement. So
what do we have to say about this?

3
Our answer lies in the aspect of potential use and potential interaction. So the two
entities (E, A) and (E, A′) are not the same because they have different potential
uses and roles to play within a larger system.

Take for example an attractive supermodel and her algorithm being her mode
of behaviour in public glamorous life. Let us make a small change in her behaviour,
declaring that she converted to faith and religiousness and will never look at an-
other man, except her husband. Such a small algorithmic change may make a huge
difference to her social interactive life to the extent that she becomes perceptively a
different person.

Potential behaviour is central to everyday life. We make our decisions today
based on potential behaviour of our human and natural environment tomorrow and
so a small change in the same algorithm governing some aspect of our environment

1499

Gabbay and Siekmann

may change the potentialities involved and therefore affect our decision. So (E, A)
and (E, A′) may be seriously different entities if they have different potentialities on
account of A′ being more efficient.

So what we are eluding to here is the idea that algorithms are part of the treasure
trove of human knowledge collected over millennia, just like the heritage in art,
social ideas (such as democracy) and any other cultural and scientific heritage we
maintain. This view includes technical algorithms such as Euclid’s well known case
just as much as say “First-Come- First-Served” which forms part of the British way
of life and socio-cultural identity to be witnessed in any London bus queue.

One of the first general repositories of this nature was set up and developed over a
time span of more than two decades (see: K. Mehlhorn, S. Näher, LEDA, A Platform
for Combinatorial and Geometric Computing, Cambridge University Press, 1999).
It is now maintained by the German Max Planck Institute and a small company.
Another example is the CGAL repository (Computational Geometry Algorithms
Library).

An essential aspect of any algorithm is its logical nature and this is seen as its
essence by many researchers, who recognise logic as being the foundational science.

Algorithm=Logic+Control

This is a slight variation of the well known slogan of R. Kowalski and the logic
programming community. However this may be, i.e. runtime behaviour may be
more than just “control”, the essential foundational studies of the last century in
logic and recursion theory provided the clarification of the nature of algorithms we
enjoy today.

The first author has an image about logic and algorithms which he repeatedly
tells his students: when God created the world he sprinkled around a little bit of
logics (and procedures) to act as spice and bonding for his creation. Logics and
algorithms are everywhere. It is the job of the research community to figure out
what was given to us.

There is experimental support for the claim that objects are perceived together
with the algorithms governing them. We refer to the work of professor Giacomo
Rizzolatti and his colleagues. See, for example, [3].

4
The experiment, schematically described in our own words, is more or less as follows:
We show a subject, (man or a trained monkey) two cups. One with a handle suitable
for drinking from, and one with a different handle, not suitable for drinking. The

1500

Editorial

subject responds to the drinking cup by increased activity in two regions of the brain,
one dedicated to motoric actions and one known to be dedicated to the recognition
of intentions and goals. The response to the non drinking cup activates only the
motoric region.

This experiment and others like it clearly show that part of the perception of
the drinking cup is the algorithm associated with it which includes the drinking
intention. The algorithm associated with the non-drinking cup which has a different
handle, does not include the drinking intention.

To summarise, we put forward to the community to recognise that algorithms
are part of the nature of entities and recommend that the communities become
organised socially to adjust and support this view.

5 Example of the Sorites Paradox and its Talmudic
Logic Solution

A common form of the sorites paradox presented for discussion in the literature is
the following form. Let F represent the soritical predicate (e.g. is bald, or does not
make a heap) and let the expression an (where n is a natural number) represent a
subject expression in the series with regard to which F is soritical (e.g. a man with
n hair(s) on his head or n grain(s) of wheat). Then the sorites proceeds by way of
a series of conditionals and can be schematically represented as follows:
Conditional Sorites
Fa1
If Fa1 then Fa2
If Fa2 then Fa3
. . .
If Fai−1 then Fai

Fai (where i can be arbitrarily large).
Whether the argument is taken to proceed by addition or subtraction will depend

on how one views the series. There are many solutions to the paradox, one of them,
says that indeed if one grain of sand does not make a heap (Fa1) and adding grains
of sand one by one retain this property, then any huge number of grains of sand is
not a heap, Fan. Say for example that a collection X of 100100 grains is also not a
heap.

The weakness of this approach is that if we start with a very huge collection Y
of grains of sand with, say N > 100100 grains which we do consider to be a heap,
then if we take out of the collection one grain we still have a heap, but if we keep

1501

Gabbay and Siekmann

taking out more and more grains, we reach a collection X of 100100 grains, but now
it will be considered still a heap. We thus have:

(*) The question of whether X is a heap depends on how it was formed.
It is at this junction that our Editorial connects with the paradox. We say the
algorithm used to construct an object is part of the object and so (*) does not talk
about the same heap.

We find a similar problem in the Talmud. Imagine two bottles of wine. One
bottle we keep for ourselves for religious ceremony. The second bottle is given to a
priest from another religion to use in his place of worship. The priest friend decants
the wine, and after use, brings it back to keep in the fridge on a shelf above our
own wine, which is also in a bowl. So the top bowl of wine is not kosher (no religion
x would use the wine of religion y if x is not equal to y), but the bottom bowl is
kosher. Unfortunately, over several days the top non-kosher wine drips, drop by
drop, slowly into the bottom bowl.

The practical question is whether the wine in the bottom bowl is kosher or not?
There are many opinions of Talmudic scholars about this question. One of these

opinions of Rav Dimi’s on behalf of Rabbi Yochanan says as follows:
1. The initial wine in the bowl was kosher.

2. If non-kosher wine drips into a larger quantity of kosher wine then the com-
bined quantity is kosher. (So the actual drop converts and becomes kosher.)

3. Therefore any quantity of wine obtained in this way is kosher.
So we can end up with a huge quantity of wine, 99% of which was non-kosher, but
since this 99% was dripping slowly into the initial 1% which was kosher, the entire
lot is now kosher.

OK. We can now ask what happens if this 99% of non-kosher wine did not drip
slowly drop by drop into the 1% of kosher wine but the entire quantity of non-kosher
wine just flooded into the kosher wine in one go?

Note. The answer is that the whole lot will now be not kosher. We thus get that
given a bowl of mixed quantities of wine, the question of whether the wine in the
bowl is kosher or not, depends on how the wine in the bowl was assembled/created
as a collection. This is similar to the problem (*) above. What is the difference
between the philosophical position and the Talmudic position?

1. The philosophical position sees a candidate for a heap X and has a problem
in accepting that it is both a heap and not a heap, all depending on how our
philosophical positions looks at it.

1502

Editorial

2. The Talmudic position of Rav Dimi’s on behalf of Rabbi Yochanan would
simply ask how was X created. You answer that question, and you will be
told whether it is a heap or not.

The Talmud is practical, so what if you do not know how the mixture was formed?
The default position is that it is not kosher. Note that the Talmudic debate is 1500
years old.

References
[1] D. Gabbay and J. Siekmann. Algorithms in cognition, informatics and logic. A position

manifesto. Expanded and corrected 22.1.2008 and again 23.1.2008. Published as editorial
Logic J. IGPL 18(6), 763-768, 2010. doi: 10.1093/jigpal/jzq004.

[2] Shlomo and Esther David, Dov Gabbay and U Schild. Talmudic logic approach to the
paradox of the heap, to appear in volume on Logic and Religion, Edited by J.-Y. Beziau.

[3] M. Lacoboni, I. Molnar-Szakacs, V. Gallese, G. Buccini, J. C. Mazziotta and G. Rizzo-
latti. Grasping the intentions of others with one’s own mirror neuron system. Plos Biol,
3(3):79, 2005.

Received June 20171503

1504

Automation of Mathematical Induction
as part of the History of Logic

J Strother Moore
Dept. Computer Sci., Gates Dell C., 2317 Speedway,
The University of Texas at Austin, Austin, TX 78701

moore@cs.utexas.edu

Claus-Peter Wirth
Dept. of Math., ETH Zurich, Rämistr. 101, 8092 Zürich, Switzerland

wirth@logic.at

1 A Decisive Moment in Automated Theorem Proving
The automation of mathematical theorem proving for deductive first-order logic
started in the 1950s, and it took about half a century to develop software systems
that are sufficiently strong and general to be successfully applied outside the com-
munity of automated theorem proving.1 Even for more restricted logic languages,
such as propositional logic and the purely equational fragment, such strong systems
were not achieved much earlier.2 Moreover, automation of theorem proving for
higher-order logic has started becoming generally useful only during the last fifteen
years.3

In this context of tedious and unexpectedly lengthy developments, it is surprising
that for the field of quantifier-free first-order inductive theorem proving based on
recursive functions, most of the progress toward general usefulness took place within
the 1970s and that usefulness was clearly demonstrated by 1986.4

In this article we describe how this leap took place, and sketch the further de-
velopment of automated inductive theorem proving.

1The currently (i.e. in 2012) most successful first-order automated theorem prover is Vampire,
cf. e.g. [Riazanov & Voronkov, 2001].

2A breakthrough toward industrial strength in deciding propositional validity (i.e. senten-
tial validity) (or its dual: propositional satisfiability) (which are decidable, butNP-complete) was the
SAT solver Chaff, cf. e.g. [Moskewicz &al., 2001].

The most successful automated theorem prover for purely equational logic is WaldMeister,
cf. e.g. [Buch & Hillenbrand, 1996], [Hillenbrand & Löchner, 2002].

Vol. 4 No. 5 2017
IFCoLog Journal of Logics and Their Applications

Moore and Wirth

Irrelevance

Cross-Fertilization

Destructor Elimination

User
Generalization

Induction

Simplification

pool

Elimination of

formula

Note that a formula falls back to the center pool after each successful application
of one of the stages in the circle.

Figure 1: The Boyer–Moore Waterfall

The work on this breakthrough in the automation of inductive theorem proving
was started in September 1972, by Robert S. Boyer and J Strother Moore, in Edin-
burgh, Scotland. Unlike the researchers in automated theorem proving until then,
Boyer and Moore chose induction as the focus of their work. Most of the crucial steps
and their synergetic combination in the “waterfall”5 of their now famous theorem
provers were developed in the span of a single year and implemented in their “Pure
LISP Theorem Prover”, presented at ĲCAI in Stanford (CA) in August 1973,6
and documented in Moore’s PhD thesis [1973], defended in November 1973.

3Driving forces in the automation of higher-order theorem proving are the TPTP-competition-
winning systems Leo-II (cf. e.g. [Benzmüller &al., 2008]) and Satallax (cf. e.g. [Brown, 2012]).

4See the last paragraph of § 6.4.

1506

Automation of Mathematical Induction

Boyer and Moore had met in August 1971, a year before the induction work
started, when Boyer took up the position of a post-doctoral research fellow at the
Metamathematics Unit7 of the University of Edinburgh. Moore was at that time
starting the second year of his PhD studies in “the Unit”. Ironically, they were
both from Texas and they had both come to Edinburgh from MIT. Boyer’s PhD
supervisor, W. W. Bledsoe, from The University of Texas at Austin, spent 1970–71
on sabbatical at MIT, and Boyer accompanied him and completed his PhD work
there. Moore obtained his bachelor’s degree at MIT (1966–70) before going to Edin-
burgh for his PhD.

Being “warm blooded Texans”, they shared an office in the Metamathematics
Unit at 9 Hope Park Square, Meadow Lane.8 The 18th century buildings at Hope
Park Square were the center of Artificial Intelligence research in Britain at a time
when the promises of AI were seemingly just on the horizon. In addition to mainline
work on mechanized reasoning by Rod M. Burstall, Robert A. Kowalski, Pat Hayes,
Gordon Plotkin, J Strother Moore, Mike J. C. Gordon, Robert S. Boyer, Alan Bundy,
and (by 1973) Robin Milner, there was work on new programming paradigms, pro-
gram transformation and synthesis, natural language, machine vision, robotics, and
cognitive modeling.9

5See Figure 1 for the Boyer–Moore waterfall. In [Bell & Thayer, 1976], credit is given to [Royce,
1970] for the probably first occurrence of “waterfall” as a term in software engineering. Boyer and
Moore, however, were inspired not by this metaphor from software engineering, but again by a real
waterfall, as can be clearly seen from [Boyer & Moore, 1979, p. 89]:

“A good metaphor for the organization of these heuristics is an initially dry waterfall. One pours
out a clause at the top. It trickles down and is split into pieces. Some pieces evaporate as they
are proved. Others are further split up and simplified. Eventually at the bottom a pool of clauses
forms whose conjunction suffices to prove the original formula.”

Readers who take a narrow view on the automation of inductive theorem proving might be
surprised that we discuss the waterfall. It is impossible, however, to build a good inductive
theorem prover without considering how to transform the induction conclusion into the hypothesis
(or, alternatively, how to recognize that a legitimate induction hypothesis can dispatch a subgoal).
So we take the expansive view and discuss not just the induction principle and its heuristic control,
but also the waterfall architecture that is effectively an integral part of the success.

6Cf. [Boyer & Moore, 1973].
7The Metamathematics Unit of the University of Edinburgh was renamed into “Dept. of Com-

putational Logic” in late 1971, and was absorbed into the new “Dept. of Artificial Intelligence” in
Oct. 1974. It was founded and headed by Bernard Meltzer.

8Today’s readers might have difficulty imagining the computing infrastructure in Scotland in
the early 1970s.

Boyer and Moore developed their software on an ICL–4130, with 64 kByte (128 kByte in 1972)
core memory (RAM). Paper tape was used for archival storage. The machine was physically located

1507

Moore and Wirth

Hope Park Square received a steady stream of distinguished visitors from around
the world, including J. Alan Robinson, John McCarthy, W. W. Bledsoe, Dana S.
Scott, and Marvin Minsky. An eclectic series of seminars were on offer weekly
to complement the daily tea times, where all researchers gathered around a table
and talked about their current problems.

Boyer and Moore initially worked together on structure sharing in resolution
theorem proving. The inventor of resolution, J. Alan Robinson, created and
awarded them the “1971 Programming Prize” on December 17, 1971 — half jokingly,
half seriously. The document, handwritten by Robinson, actually says in part:

“In 1971, the prize is awarded, by unanimous agreement of the Board, to
Robert S. Boyer and J Strother Moore for their idea, explained in [Boyer
& Moore, 1971], of representing clauses as their own genesis. The Board
declared, on making the announcement of the award, that this idea is
‘. . . bloody marvelous’.”

Their structure-sharing representation of derived clauses in a linear resolution
system is just a stack of resolution steps. This suggests the idea of resolution
being a kind of “procedure call.”10 Exploiting structure sharing, Boyer and Moore

in the Forrest Hill building of the University of Edinburgh, about 1 km from Hope Park Square.
A rudimentary time-sharing system allowed several users at once to run lightweight applications
from teletype machines at Hope Park Square.

During the day Boyer and Moore worked at Hope Park Square, with frequent trips by foot or
bicycle through The Meadows to Forrest Hill to make archival paper tapes or to pick up line-printer
output. During the night — when they could often have the ICL–4130 to themselves — they often
worked at Boyer’s home where another teletype was available.

The only high-level programming language supported was POP–2, a simple stack-based list-
processing language with an Algol-like syntax, cf. [Burstall &al., 1971].

Programs were prepared with a primitive text editor modeled on a paper-tape editor: A disk file
could be copied through a one byte buffer to an output file. By halting the copying and typing
characters into or deleting characters from the buffer one could edit a file — a process that usually
took several passes. Memory limitations of the ICL–4130 prohibited storing large files in memory
for editing.

In their very early collaboration, Boyer and Moore solved this problem by inventing what has
come to be called the “piece table”, whereby an edited document is represented by a linked list of
“pieces” referring to the original file which remains on disk. Their “77-editor” [Boyer &al., 1973]
(written in 1971 and named for the disk track on which it resided) provided an interface like MIT’s
Teco, but with POP–2 as the command language. It was thus with their own editor that Boyer
and Moore wrote the code for the Pure LISP Theorem Prover.

The 77-editor was widely used by researchers at Hope Park Square until the ICL–4130 was
decommissioned. When Moore went to Xerox PARC in Palo Alto (CA) (Dec. 1973), the Boyer–
Moore representation [Moore, 1981] was adopted by Charles Simonyi (*1948) for the Bravo editor
on the Alto and subsequently found its way into Microsoft Word, cf. [Verma, 2005?].

1508

Automation of Mathematical Induction

implemented a declarative LISP-like programming language called “Baroque”
[Moore, 1973], a precursor to Prolog.11 They then implemented a LISP inter-
preter in Baroque and began to use their resolution engine to prove simple theorems
about programs in LISP. Resolution was sufficient to prove such theorems as “there
is a list whose length is 3”, whereas the absence of a rule for induction prevented
the proofs of more interesting theorems like the associativity of list concatenation.

So, in the summer of 1972, they turned their attention to a theorem prover
designed explicitly to do mathematical induction — this at a time when uniform first-
order proof procedures were all the rage. The fall of 1972 found them taking turns at
the blackboard, proving theorems about recursive LISP functions and articulating
their reasons for each proof step. Only after several months of such proofs did they
sit down together to write the POP–2 code for the Pure LISP Theorem Prover.

9In the early 1970s, the University of Edinburgh hosted most remarkable scientists, of which
the following are relevant in our context (sources: [Meltzer, 1975], [Kowalski, 1988], etc.):

Univ. Edinburgh PhD life time
(time, Dept.) (year, advisor) (birth–death)

Donald Michie (1965–1984, MI) (1953, unknown) (1923–2007)
Bernard Meltzer (1965–1978, CL) (1953, Fürth) (1916(?)–2008)
Robin J. Popplestone (1965–1984, MI) (no PhD) (1938–2004)
Rod M. Burstall (1965–2000, MI & Dept.AI) (1966, Dudley) (*1934)
Robert A. Kowalski (1967–1974, CL) (1970, Meltzer) (*1941)
Pat Hayes (1967–1973, CL) (1973, Meltzer) (*1944)
Gordon Plotkin (1968–today, CL & LFCS) (1972, Burstall) (*1946)
J Strother Moore (1970–1973, CL) (1973, Burstall) (*1947)
Mike J. C. Gordon (1970–1978, MI) (1973, Burstall) (*1948)
Robert S. Boyer (1971–1973, CL) (1971, Bledsoe) (*1946)
Alan Bundy (1971–today, CL) (1971, Goodstein) (*1947)
Robin Milner (1973–1979, LFCS) (no PhD) (1934–2010)

CL = Metamathematics Unit (founded and headed by Bernard Meltzer)
(new name from late 1971 to Oct. 1974: Dept. of Computational Logic)
(new name from Oct. 1974: Dept. of Artificial Intelligence)

MI = Experimental Programming Unit (founded and headed by Donald Michie)
(new name from 1966 to Oct. 1974: Dept. for Machine Intelligence and Perception)
(new name from Oct. 1974: Machine Intelligence Unit)

LFCS = Laboratory for Foundations of Computer Science

10Cf. [Moore, 1973, Part I, § 6.1, pp. 68–69].

11For Baroque see [Moore, 1973, Part I, §§ 6.2 and 6.3, pp. 70–75]. For logic programming and
Prolog see [Moore, 1973, Part I, Chapter 6, pp. 68–75], [Kowalski, 1974; 1988], and [Clocksin &
Mellish, 2003].

1509

Moore and Wirth

2 Method of Procedure and Presentation
The excellent survey articles [Walther, 1994a] and [Bundy, 1999] cover the engineer-
ing and research problems and current standards of the field of explicit induction.
To cover the history of the automation of mathematical induction, we need a wider
scope in mathematics and more historical detail. To keep this article within rea-
sonable limits, we have to focus more narrowly on those developments and systems
which are the respectively first successful and historically more important ones.

It is always hard to see the past because we look through the lens of the present.
Achieving the necessary detachment from the present is especially hard for the his-
torian of recent history because the “lens of the present” is shaped so immediately
by the events being studied.

We try to mitigate this problem by avoiding the standpoint of a disciple of the
leading school of explicit induction. Instead, we put the historic achievements into
a broad mathematical context and a space of time from the ancient Greeks to a
possible future, based on a most general approach to recursive definition (cf. § 5),
and on descente infinie as a general, implementation-neutral approach to mathema-
tical induction (cf. § 4.7). Then we can see the achievements in the field with the
surprise they historically deserve — after all, until 1973 mathematical induction was
considered too creative an activity to be automated.

Because the historically most significant achievements in the automation of in-
ductive theorem proving manifest themselves for the first time mainly in the line of
the Boyer–Moore theorem provers, we cannot avoid the confrontation of the reader
with some more ephemeral forms of representation found in these software systems.
In particular, we cannot avoid some small expressions in the list programming lan-
guage LISP,12 simply because the Boyer–Moore theorem provers we discuss in this
article, namely the Pure LISP Theorem Prover, Thm, Nqthm, and ACL2, all
have logics based on a subset of LISP.

Note that we do not necessarily refer to the implementation language of these
software systems, but to the logic language used both for representation of formulas
and for communication with the user.

For the first system in this line of development, Boyer and Moore had a free
choice, but wrote:

“We use a subset of LISP as our language because recursive list process-
ing functions are easy to write in LISP and because theorems can be
naturally stated in LISP; furthermore, LISP has a simple syntax and

12Cf. [McCarthy &al., 1965]. Note that we use the historically correct capitalized “LISP” for
general reference, but not for more recent, special dialects such as Common Lisp.

1510

Automation of Mathematical Induction

is universal in Artificial Intelligence. We employ a LISP interpreter to
‘run’ our theorems and a heuristic which produces induction formulas
from information about how the interpreter fails. We combine with the
induction heuristic a set of simple rewrite rules of LISP and a heuristic
for generalizing the theorem being proved.”13

Note that the choice of LISP was influenced by the rôle of the LISP interpreter in
induction. LISP was important for another reason: Boyer and Moore were building
a computational-logic theorem prover:

“The structure of the program is remarkably simple by artificial intel-
ligence standards. This is primarily because the control structure is
embedded in the syntax of the theorem. This means that the system
does not contain two languages, the ‘object language’, LISP, and the
‘meta-language’, predicate calculus. They are identified. This mix of
computation and deduction was largely inspired by the view that the
two processes are actually identical. Bob Kowalski, Pat Hayes, and the
nature of LISP deserve the credit for this unified view.”14

This view was prevalent in the Metamathematics Unit by 1972. Indeed, “the Unit”
was by then officially renamed the Department of Computational Logic.7

In general, inductive theorem proving with recursively defined functions requires
a logic in which

a method of symbolic evaluation can be obtained from an interpretation
procedure by generalizing the ground terms of computation to terms
with free variables that are implicitly universally quantified.

So candidates to be considered today (besides a subset of LISP or of λ-calculus) are
the typed functional programming languages ml and Haskell,15 which, however,
were not available in 1972. LISP and ml are to be preferred to Haskell as the
logic of an inductive theorem prover because of their innermost evaluation strategy,
which gives preference to the constructor terms that represent the constructor-based
data types, which again establish the most interesting domains in hard- and software
verification and the major elements of mathematical induction.

13Cf. [Boyer & Moore, 1973, p. 486, left column].
14Cf. [Moore, 1973, p. 207f.].
15Cf. [Hudlak &al., 1999] for Haskell, [Paulson, 1996] for ml, which started as the meta-

language for implementations of LCF (the Logic of Computable Functions with a single undefined
element ⊥, invented by Scott [1993]) with structural induction over ⊥, 0, and s, but without original
contributions to the automation of induction, cf. [Milner, 1972, p. 8], [Gordon, 2000].

1511

Moore and Wirth

Yet another candidate today would be the rewrite systems of [Wirth, 1991; 2009]
and [Wirth & Gramlich, 1994a] with constructor variables16 and positive/negative-
conditional equations, designed and developed for the specification, interpretation,
and symbolic evaluation of recursive functions in the context of inductive theorem
proving in the domain of constructor-based data types. Neither this tailor-made
theory, nor even the general theory of rewrite systems in which its development is
rooted,17 were available in 1972. And still today, the applicative subset of Common
Lisp that provides the logic language for ACL2 (= (ACL)2 = A Computational
Logic for Applicative Common Lisp) is again to be preferred to these positive/nega-
tive-conditional rewrite systems for reasons of efficiency: The applications of ACL2
in hardware verification and testing require a performance that is still at the very
limits of today’s computing technology. This challenging efficiency demand requires,
among other aspects, that the logic of the theorem prover is so close to its own
programming language that — after certain side conditions have been checked —
the theorem prover can defer the interpretation of ground terms to the analogous
interpretation in its own programming language.

For most of our illustrative examples in this article, however, we will use the
higher flexibility and conceptual adequacy of positive/negative-conditional rewrite
systems. They are so close to standard logic that we can dispense their semantics
to the reader’s intuition,18 and they can immediately serve as an intuitively clear
replacement of the Boyer–Moore machines.19

Moreover, the typed (many-sorted) approach of the positive/negative-conditional
equations allows the presentation of formulas in a form that is much easier to grasp
for human readers than the corresponding sugar-free LISP notation with its over-
head of explicit type restrictions.

Another reason for avoiding LISP notation is that we want to make it most
obvious that the achievements of the Boyer–Moore theorem provers are not limited
to their LISP logic.

16See § 5.4 of this article.
17See [Dershowitz & Jouannaud, 1990] for the theory in which the rewrite systems of [Wirth

& Gramlich, 1994a], [Wirth, 1991; 2009] are rooted. One may try to argue that the paper that
launched the whole field of rewrite systems, [Knuth & Bendix, 1970], was already out in 1972,
but the relevant parts of rewrite theory for unconditional equations were developed only in the
late 1970s and the 1980s. Especially relevant in the given context are [Huet, 1980] and [Toyama,
1988]. The rewrite theory of positive/negative-conditional equations, however, started to become
an intensive area of research only with the burst of creativity at 1st Int. Workshop on Conditional
Term Rewriting Systems (CTRS), Orsay (France), 1987; cf. [Kaplan & Jouannaud, 1988].

18The readers interested into the precise details are referred to [Wirth, 2009].
19Cf. [Boyer & Moore, 1979, p. 165f.].

1512

Automation of Mathematical Induction

For the same reason, we also prefer examples from arithmetic to examples from
list theory, which might be considered to be especially supported by the LISP
logic. The reader can find the famous examples from list theory in almost any
other publication on the subject.20

In general, we tend to present the challenges and their historical solutions with
the help of small intuitive examples and refer the readers interested in the very
details of the implementations of the theorem provers to the published and easily
accessible documents on which our description is mostly based.

Nevertheless, small LISP expression cannot completely be avoided because we
have to describe the crucial parts of the historically most significant implementations
and ought to show some of the advantages of LISP’s untypedness.21 The readers,
however, do not have to know more about LISP than the following: A LISP term
is either a variable symbol, or a function call of the form (f t1 · · · tn), where f is
a function symbol, t1, . . . , tn are LISP terms, and n is one of the natural numbers,
which we assume to include 0.

3 Organization of this Article
This article is further organized as follows.

§§ 4 and 5 offer a self-contained reference for the readers who are not familiar
with the field of mathematical induction and its automation. In § 4 we introduce
the essentials of mathematical induction. In § 5 we have to become more formal re-
garding recursive function definitions, their consistency, termination, and induction
templates and schemes.

The main part is § 6, where we present the historically most important systems in
automated induction, and discuss the details of software systems for explicit induc-
tion, with a focus on the 1970s. After describing the application context in § 6.1,
we present the following Boyer–Moore theorem provers: the Pure LISP Theorem
Prover (§ 6.2), Thm (§ 6.3), Nqthm (§ 6.4), and ACL2 (§ 6.5). The historically
most important remaining explicit-induction systems are sketched in § 6.6.

Alternative approaches to the automation of induction that do not follow the
paradigm of explicit induction are discussed in § 7.

We conclude with § 8.

20Cf. e.g. [Moore, 1973], [Boyer & Moore, 1979; 1988b; 1998], [Walther, 1994a],
[Bundy, 1999], [Kaufmann &al., 2000a; 2000b].

21See the advantages of the untyped, type-restriction-free declaration of the shell CONS in § 6.3.

1513

Moore and Wirth

4 Mathematical Induction
In this section, we introduce mathematical induction and clarify the difference be-
tween descente infinie and Noetherian, structural, and explicit induction.

According to Aristotle, induction means to go from the special to the general, and
to realize the general from the memorized perception of particular cases. Induction
plays a major rôle in the generation of conjectures in mathematics and the natural
sciences. Modern scientists design experiments to falsify a conjectured law of nature,
and they accept the law as a scientific fact only after many trials have all failed
to falsify it. In the tradition of Euclid, mathematicians accept a mathematical
conjecture as a theorem only after a rigorous proof has been provided. According
to Kant, induction is synthetic in the sense that it properly extends what we think
to know — in opposition to deduction, which is analytic in the sense that it cannot
provide us with any information not implicitly contained in the initial judgments,
though we can hardly be aware of all deducible consequences.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19th century — the term “induction” was introduced and became standard in Ger-
man and English mathematics.22

In spite of this misnomer, for the sake of brevity, the term “induction” will always
refer to mathematical induction in what follows.

Although it received its current name only in the 19th century, mathematical
induction has been a standard method of every working mathematician at all times.
It has been conjectured23 that Hippasus of Metapontum (ca. 550 b.c.) applied a form
of mathematical induction, later named descente infinie (ou indéfinie) by Fermat.
We find another form of induction, nowadays called structural induction, in a text
of Plato (427–347 b.c.).24

In Euclid’s famous “Elements” [ca. 300 b.c.], we find several applications of des-
cente infinie and in a way also of structural induction.25 Structural induction

22First in German (cf. Note 39), soon later in English (cf. [Cajori, 1918]).
23It is conjectured in [Fritz, 1945] that Hippasus has proved that there is no pair of natural

numbers that can describe the ratio of the lengths of the sides of a pentagram and its enclosing
pentagon. Note that this ratio, seen as an irrational number, is equal to the golden number, which,
however, was conceptualized in entirely different terms in ancient Greek mathematics.

24Cf. [Acerbi, 2000].
25An example for descente infinie is Proposition 31 of Vol. VII of the Elements. Moreover,

the proof in the Elements of Proposition 8 of Vol. IX seems to be sound according to mathematical
standards; and so we can see it only as a proof by structural induction in a very poor linguistic
and logical form. This is in accordance with [Freudenthal, 1953], but not with [Unguru, 1991] and
[Acerbi, 2000]. See [Fowler, 1994] and [Wirth, 2010b, § 2.4] for further discussion.

1514

Automation of Mathematical Induction

was known to the Muslim mathematicians around the year 1000, and occurs in a
Hebrew book of Levi ben Gerson (Orange and Avignon) (1288–1344).26 Further-
more, structural induction was used by Francesco Maurolico (Messina) (1494–
1575),27 and by Blaise Pascal (1623–1662).28 After an absence of more than one
millennium (besides copying ancient proofs), descente infinie was reinvented by
Pierre Fermat (160?–1665).29 30

4.1 Well-Foundedness and Termination

A relation < is well-founded if, for each proposition Q(w) that is not constantly
false, there is a <-minimal m among the objects for which Q holds, i.e. there is
an m with Q(m), for which there is no u < m with Q(u).

Writing “Wellf(<)” for “< is well-founded”, we can formalize this definition as
follows:

(Wellf(<)) ∀Q.
≥

∃w. Q(w) ⇒ ∃m.
°
Q(m) ∧ ¬∃u<m. Q(u)

¢ ¥

Let <+ denote the transitive closure of <, and <∗ the reflexive closure of <+.
< is an (irreflexive) ordering if it is an irreflexive and transitive relation.
There is not much difference between a well-founded relation and a well-founded

ordering : 31

Lemma 4.1 < is well-founded if and only if <+ is a well-founded ordering.

Closely related to the well-foundedness of a relation < is the termination of its
reverse relation written as <−1 or >, and defined as { (u, v) | (v, u)∈< }.

26Cf. [Rabinovitch, 1970]. Also summarized in [Katz, 1998].
27Cf. [Bussey, 1917].
28Cf. [Pascal, 1954, p. 103].
29There is no consensus on Fermat’s year of birth. Candidates are 1601, 1607 ([Barner, 2007]),

and 1608. Thus, we write “160?”, following [Goldstein, 2008].
30The best-documented example of Fermat’s applications of descente infinie is the proof of the

theorem: The area of a rectangular triangle with positive integer side lengths is not the square of
an integer ; cf. e.g. [Wirth, 2010b].

31Cf. Lemma2.1 of [Wirth, 2004, § 2.1.1].

1515

Moore and Wirth

A relation > is terminating if it has no non-terminating sequences, i.e. if there
is no infinite sequence of the form x0 > x1 > x2 > x3

If > has a non-terminating sequence, then this sequence, taken as a set, is a
witness for the non-well-foundedness of <. The converse implication, however, is a
weak form of the Axiom of Choice;32 indeed, it allows us to pick a non-terminating
sequence for > from the set witnessing the non-well-foundedness of <.

So well-foundedness is slightly stronger than termination of the reverse relation,
and the difference is relevant here because we cannot take the Axiom of Choice for
granted in a discussion of the foundations of induction, as will be explained in § 4.3.

4.2 The Theorem of Noetherian Induction

In its modern standard meaning, the method of mathematical induction is easily seen
to be a form of deduction, simply because it can be formalized as the application of
the Theorem of Noetherian Induction:

A proposition P (w) can be shown to hold (for all w) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P (v) follows from the assumption that P (u) holds for all u < v.

Again writing “Wellf(<)” for “< is well-founded”, we can formalize the Theorem
of Noetherian Induction as follows:33

(N) ∀P.

µ
∀w. P (w) ⇐ ∃<.

µ
∀v.

°
P (v) ⇐ ∀u<v. P (u)

¢

∧ Wellf(<)

∂∂

The today commonly used term “Noetherian induction” is a tribute to the famous
female German mathematician Emmy Noether (1882–1935). It occurs as the “Gen-
eralized principle of induction (Noetherian induction)” in [Cohn, 1965, p. 20]. More-
over, it occurs as Proposition 7 (“Principle of Noetherian Induction”) in [Bourbaki,
1968a, Chapter III, § 6.5, p. 190] — a translation of the French original in its second
edition [Bourbaki, 1967, § 6.5], where it occurs as Proposition 7 (“principe de récur-
rence nœthérienne”).34 We do not know whether “Noetherian” was used as a name
of an induction principle before 1965;35 in particular, it does not occur in the first
French edition [Bourbaki, 1956] of [Bourbaki, 1967].36

32See [Wirth, 2004, § 2.1.2, p. 18] for the equivalence to the Principle of Dependent Choice, found
in [Rubin & Rubin, 1985, p.19], analyzed in [Howard & Rubin, 1998, p. 30, Form 43].

33When we write an implication A⇒B in the reverse form of B⇐A, we do this to indicate that
a proof attempt will typically focus on B and will then try to reduce the remaining open tasks to A.

1516

Automation of Mathematical Induction

4.3 An Induction Principle Stronger than Noetherian Induction?

Let us try to find a weaker replacement for the precondition of well-foundedness in
Noetherian induction, in the sense that we try to replace “Wellf(<)” in the Theorem
of Noetherian Induction (N) in § 4.2 with some weaker property, which we will
designate with “Weak(<,P)” (such that ∀P. Weak(<,P) ⇐ Wellf(<)). This
would result in the formula

(N�) ∀P.

µ
∀w. P (w) ⇐ ∃<.

µ
∀v.

°
P (v) ⇐ ∀u<v. P (u)

¢

∧ Weak(<,P)

∂∂
.

If we assume (N�), however, we get the converse ∀P. Weak(<,P) ⇒ Wellf(<). 37

This means that a proper weakening is possible only w.r.t. certain P, and the
Theorem of Noetherian Induction is the strongest among those induction principles
of the form (N�) where Weak(<, P) does not depend on P.

C is a <-chain if <+ is a total ordering on C. Let us write “u<C” for ∀c∈C. u<c,
and “∀u<C. F ” as usual for ∀u.(u<C ⇒ F). In [Geser, 1995], we find applications
of an induction principle that roughly has the form (N�) where Weak(<,P) is:

For every non-empty <-chain C [without a <-minimal element]:
∃v ∈C. P (v) ⇐ ∀u<C. P (u).

The resulting induction principle can be given an elegant form: If we drop the part
of Weak(<, P) given in optional brackets [. . .], then we can drop the conjunction
in (N�) together with its first element, because {v} is a non-empty <-chain.

34The peculiar French spelling “nœthérienne” imitates the German pronunciation of “Noether”,
where the “oe” is to be pronounced neither as a long “o” (the default, as in “Itzehoe”), nor as
two separate vowels as indicated by the diaeresis in “oë”, but as an umlaut, typically written in
German as the ligature “ö”. Neither Emmy nor her father Max Noether (1844–1921) (mathematics
professor as well) used this ligature, found however in some of their official German documents.

35In 1967, “Noetherian Induction” was not generally used as a name for the Theorem of Noether-
ian Induction yet: For instance, this theorem occurs as “course-of-values induction” in [Kleene, 1952,
p. 193], and as “principle of complete induction” in [Shoenfield, 1967, p. 205] (instantiated with the
ordering of the natural numbers). “Complete induction”, however, is a most confusing name hardly
used in English. Indeed, “complete induction” is the literal translation of the German technical
term “vollständige Induction”, which traditionally means structural induction (cf. Note 39) — and
these two kinds of mathematical induction are different from each other.

36Indeed, the main text of § 6.5 in the 1st edition [Bourbaki, 1956] ends (on Page 98) three lines
before the text of Proposition 7 begins in the 2nd edition [Bourbaki, 1967] (on Page 76 of § 6.5).

37Proof. Let <πA denote the range restriction of < to A (i.e. u<πAv if and only if u < v ∈ A).
Let us take P (w) to be Wellf(<πA(w)) for A(w) := { w� | w�<∗ w }. Then the reverse implication
follows from (N�) because P (v) ⇐ ∀u<v. P (u) holds for any v,38 and ∀w. P (w) implies Wellf(<).

1517

Moore and Wirth

Then the following equivalent is obtained by switching from proposition P to its
class of counterexamples Q: “If, for every non-empty <-chain C ⊆ Q, there is a
u ∈ Q with u<C, then Q= ∅.” Under the assumption that Q is a set, this is an
equivalent of the Axiom of Choice (cf. [Geser, 1995], [Rubin & Rubin, 1985]).

This means that the axiomatic status of induction principles ranges from the
Theorem of Noetherian Induction up to the Axiom of Choice. If we took the
Axiom of Choice for granted, this difference in status between a theorem and an
axiom would collapse and our discussion of the axiomatic status of mathematical
induction would degenerate. So the care with which we distinguished termination
of the reverse relation from well-foundedness in § 4.1 is justified.

4.4 The Natural Numbers
The field of application of mathematical induction most familiar in mathematics
is the domain of the natural numbers 0, 1, 2, Let us formalize the natural
numbers with the help of two constructor function symbols, namely one for the
constant zero and one for the direct successor of a natural number:

0 : nat
s : nat → nat

Moreover, let us assume in this article that the variables x, y always range over
the natural numbers, and that free variables in formulas are implicitly universally
quantified (as is standard in mathematics), such that, for example, a formula with
the free variable x can be seen as having the implicit outermost quantifier ∀x : nat.

After the definition (Wellf(<)) and the theorem (N), let us now consider some
standard axioms for specifying the natural numbers, namely that a natural number
is either zero or a direct successor of another natural number (nat1), that zero is
not a successor (nat2), that the successor function is injective (nat3), and that the
so-called Axiom of Structural Induction over 0 and s holds; formally:

38Proof. To show P (v), it suffices to find, for an arbitrary, not constantly false proposition Q,
an m with Q(m), for which, in case of m ∈ A(v), there is no m�< m with Q(m�).

If we have Q(m) for some m with m �∈ A(v), then we are done.
If we have Q(u�) for some u < v and some u� ∈ A(u), then, for Q�(u��) being the conjunction of

Q(u��) and u�� ∈ A(u), there is (because of the assumed P (u)) an m with Q�(m), for which there is
no m�< m with Q�(m�). Then we have Q(m). If there were an m�< m with Q(m�), then we would
have Q�(m�). Thus, there cannot be such an m�, and so m satisfies our requirements.

Otherwise, if none of these two cases is given, Q can only hold for v. As Q is not constantly
false, we get Q(v) and then v⌅ v (because otherwise the second case is given for u := v and u� := v).
Then m := v satisfies our requirements.

1518

Automation of Mathematical Induction

(nat1) x = 0 ∨ ∃y.
°

x = s(y)
¢

(nat2) s(x) �= 0

(nat3) s(x)= s(y) ⇒ x= y

(S) ∀P.
≥

∀x. P (x) ⇐ P (0) ∧ ∀y.
°

P (s(y)) ⇐ P (y)
¢ ¥

Richard Dedekind (1831–1916) proved the Axiom of Structural Induction (S) for
his model of the natural numbers in [Dedekind, 1888], where he states that the
proof method resulting from the application of this axiom is known under the name
“vollständige Induction”.39

Now we can go on by defining — in two equivalent40 ways — the destructor
function p : nat → nat, returning the predecessor of a positive natural number:
(p1) p(s(x)) = x
(p1�) p(x�) = x ⇐ x� = s(x)
The definition via (p1) is in constructor style, where constructor terms may occur
on the left-hand side of the positive/negative-conditional equation as arguments of
the function being defined. The alternative definition via (p1�) is in destructor style,
where only variables may occur as arguments on the left-hand side.

For both definition styles, the term on the left-hand side must be linear (i.e. all
its variable occurrences must be distinct variables) and have the function symbol to
be defined as the top symbol.

Let us define some recursive functions over the natural numbers, such as addition
and multiplication +, ∗ : nat, nat → nat, the irreflexive ordering of the natural num-
bers lessp : nat, nat → bool (see § 4.5.1 for the data type bool of Boolean values),
and the Ackermann function ack : nat, nat → nat : 41

39“Vollständige Induction” (literally: “complete induction”) is a term of Aristotelian
logic (“inductio completa” in [Wolff, 1740, Part I, § 478, p. 369]) and denotes a complete
case analysis, cf. [Lambert, 1764, Dianoiologie, § 287; Alethiologie, § 190]. Its misuse
as a designation also for mathematical induction originates in [Fries, 1822, p. 46f.] and
was perpetuated by Dedekind [1888]. In the 1920s, “dasAxiom der vollständige Induktion”
(“the axiom of . . .”) typically referred to Peano’s axiom of structural induction (following Fries
and Dedekind), cf. [Hilbert, 1926, p.117] ([Heĳenoort, 1971, p. 383]); the general term “voll-
ständige Induktion”, however, was not restricted to structural induction, cf. e.g. [Bernays,
1928, p. 92] ([Heĳenoort, 1971, p. 489]). In English mathematics, however, “complete induc-
tion” particularly refers to a third notion, the Theorem of Noetherian Induction, cf. Note 35. There-
fore, the translation of “vollständige Induction” is “mathematical induction” throughout our text,
throughout the famous source book [Heĳenoort, 1971] (including complete and commented trans-
lations of [Hilbert, 1905; 1926; 1928]), and in [Eisenreich & Sube, 1982].

40For the equivalence transformation between constructor and destructor style see Example 6.5
in § 6.3.2.

1519

Moore and Wirth

(+1) 0+ y = y (∗1) 0 ∗ y = 0

(+2) s(x)+ y = s(x+ y) (∗2) s(x) ∗ y = y +(x ∗ y)

(lessp1) lessp(x, 0) = false

(lessp2) lessp(0, s(y)) = true

(lessp3) lessp(s(x), s(y)) = lessp(x, y)

(ack1) ack(0, y) = s(y)

(ack2) ack(s(x), 0) = ack(x, s(0))

(ack3) ack(s(x), s(y)) = ack(x, ack(s(x), y))

The relation from a natural number to its direct successor can be formalized by the
binary relation λx, y. (s(x)= y). Then Wellf(λx, y. (s(x)= y)) states the well-
foundedness of this relation, which means according to Lemma4.1 that its transitive
closure — i.e. the irreflexive ordering of the natural numbers — is a well-founded
ordering; so, in particular, we have Wellf(λx, y. (lessp(x, y)= true)).

Now the natural numbers can be specified up to isomorphism either by42

• (nat2), (nat3), and (S) — following Guiseppe Peano (1858–1932),

or else by

• (nat1) and Wellf(λx, y. (s(x)= y)) — following Mario Pieri (1860–1913).43

41Rózsa Péter (1905–1977) (a female mathematician from Budapest of Jewish parentage) pub-
lished [Péter, 1951, § 9(2)] a simplified version of the first recursive, but not primitive recursive
function developed by Wilhelm Ackermann (1896–1962) [Ackermann, 1928]. It is actually Péter’s
version that is simply called “the Ackermann function” today. A very similar version already occurs
in [Hilbert & Bernays, 1934, p. 332] ([Hilbert & Bernays, 1968, p. 337]) as the function ψ, for which
credit is given to Rózsa Péter and to [Péter, 1932; 1935].

42Cf. [Wirth, 2004, § 1.1.2].
43Pieri [1908] stated these axioms informally and showed their equivalence to the version of the

Peano axioms [Peano, 1889] given in [Padoa, 1913]. For a discussion and an English translation see
[Marchisotto & Smith, 2007]. Pieri [1908] has also a version where, instead of the symbol 0, there
is only the statement that there is a natural number, and where (nat1) is replaced with the weaker
statement that there is at most one s-minimal element:

¬∃y0. (x0 = s(y0)) ∧ ¬∃y1. (x1 = s(y1)) ⇒ x0 = x1.
That non-standard natural numbers cannot exist in Pieri’s specification is easily shown as follows:
For every natural number x we can form the set of all elements that can be reached from x by the
reverse of the successor relation; by well-foundedness of s, this set contains the unique s-minimal
element (0); thus, we have x = sn(0) for some standard meta-level natural number n.

1520

Automation of Mathematical Induction

Immediate consequences of the axiom (nat1) and the definition (p1) are the
lemma (s1) and its flattened44 version (s1�):
(s1) s(p(x�)) = x� ⇐ x� �= 0

(s1�) s(x) = x� ⇐ x� �= 0 ∧ x= p(x�)

Moreover, on the basis of the given axioms we can most easily show
(lessp4) lessp(x, s(x)) = true

(lessp5) lessp(x, s(x+ y)) = true

by structural induction on x, i.e. by taking the predicate variable P in the Axiom
of Structural Induction (S) to be λx. (lessp(x, s(x))= true) in case of (lessp4), and
λx. ∀y. (lessp(x, s(x+ y)) = true) in case of (lessp5).

To show the necessity of doing induction on several variables in parallel, we will
present45 the more complicated proof of the strengthened transitivity of the ir-
reflexive ordering of the natural numbers, i.e. of
(lessp7) lessp(s(x), z)= true ⇐ lessp(x, y)= true ∧ lessp(y, z)= true

We will also prove the commutativity lemma (+3)46 and the simple lemma (ack4)
about the Ackermann function:47

(+3) x+ y = y +x,

(ack4) lessp(y, ack(x, y)) = true

4.5 Standard Data Types

As we are interested in the verification of hardware and software, more important
for us than natural numbers are the standard data types of higher-level programming
languages, such as lists, arrays, and records.

To clarify the inductive character of data types defined by constructors, and to
show the additional complications arising from constructors with no or more than
one argument, let us present the data types bool (of Boolean values) and list(nat) (of
lists over natural numbers), which we also need for some of our further examples.

44Flattening is an equivalence transformation that replaces a subterm (here: p(x�)) with a fresh
variable (here: x) and adds a condition that equates the variable with the subterm.

45We will prove (lessp7) twice: once in Example 4.3 in § 4.7, and again in Example 6.2 in § 6.2.6.
46We will prove (+3) twice: once in Example 4.2 in § 4.7, and again in Example 4.4 in § 4.8.1.
47We will prove (ack4) in Example 4.5 in § 4.9.

1521

Moore and Wirth

4.5.1 Boolean Values

A special case is the data type bool of the Boolean values given by the two construc-
tors true, false : bool without any arguments, for which we get only the following
two axioms by analogy to the axioms for the natural numbers.
(bool1) b = true ∨ b = false

(bool2) true �= false

We globally declare the variable b : bool; so b will always range over the Boolean
values.

Note that the analogy of the axioms of Boolean values to the axioms of the
natural numbers (cf. § 4.4) is not perfect: An axiom (bool3) analogous to (nat3)
cannot exist because there are no constructors for bool that take arguments. More-
over, an axiom analogous to (S) is superfluous because it is implied by (bool1).

Furthermore, let us define the Boolean function and : bool, bool → bool :
(and1) and(false, b) = false

(and2) and(b, false) = false

(and3) and(true, true) = true

4.5.2 Lists over Natural Numbers

Let us now formalize the data type of the (finite) lists over natural numbers with
the help of the following two constructors: the constant symbol

nil : list(nat)
for the empty list, and the function symbol

cons : nat, list(nat) → list(nat),
which takes a natural number and a list of natural numbers, and returns the list
where the number has been added to the input list as the new first element.

We globally declare the variables k, l : list(nat).

By analogy to natural numbers, the axioms of this data type are the following:
(list(nat)1) l = nil ∨ ∃y, k.

°
l = cons(y, k)

¢

(list(nat)2) cons(x, l) �= nil

(list(nat)31) cons(x, l)= cons(y, k) ⇒ x= y
(list(nat)32) cons(x, l)= cons(y, k) ⇒ l = k

(list(nat)S) ∀P.
°
∀l. P (l) ⇐

°
P (nil) ∧ ∀x, k.

°
P (cons(x, k)) ⇐ P (k)

¢¢¢

1522

Automation of Mathematical Induction

Moreover, let us define the recursive functions length, count : list(nat) → nat,
returning the length and the size of a list:
(length1) length(nil) = 0
(length2) length(cons(x, l)) = s(length(l))

(count1) count(nil) = 0
(count2) count(cons(x, l)) = s(x + count(l))

Note that, just as for the Boolean values, the analogy of the axioms of lists to
the axioms of the natural numbers is not perfect:

1. There is an additional axiom (list(nat)31), which has no analogue among the
axioms of the natural numbers.

2. None of the axioms (list(nat)31) and (list(nat)32) is implied by the
axiom (list(nat)1) together with the axiom

Wellf(λl, k. ∃x. (cons(x, l)= k)),
which is the analogue to Pieri’s second axiom for the natural numbers.48

3. The latter axiom is weaker than each of the two axioms
Wellf(λl, k. (lessp(length(l), length(k))= true)),
Wellf(λl, k. (lessp(count(l), count(k))= true)),

which state the well-foundedness of bigger49 relations. In spite of their relative
strength, the well-foundedness of these relations is already implied by the well-
foundedness that Pieri used for his specification of the natural numbers.

Therefore, the lists of natural numbers can be specified up to isomorphism by a
specification of the natural numbers up to isomorphism (see § 4.4), plus the axioms
(list(nat)31) and (list(nat)32), plus one of the following sets of axioms:

• (list(nat)2), (list(nat)S) — in the style of Peano,

• (list(nat)1), Wellf(λl, k. ∃x. (cons(x, l)= k)) — in the style of Pieri,50

• (list(nat)1), (length1–2) — refining the style of Pieri.51

Today it is standard to take one second-order axiom (for the natural numbers)
(possibly restricted to its first-order instances) as the only higher-order axiom, and
to avoid further higher-order axioms in the way exemplified in the last of these three
items.52

48See § 4.4 for Pieri’s specification of the natural numbers. The axioms (list(nat)31) and
(list(nat)32) are not implied because all axioms besides (list(nat)31) or (list(nat)32) are satisfied
in the structure where both natural numbers and lists are isomorphic to the standard model of the
natural numbers, and where lists differ only in their sizes.

1523

Moore and Wirth

Moreover, as some of the most natural functions on lists, let us define the de-
structors

car : list(nat) → nat
and

cdr : list(nat) → list(nat),
both in constructor and destructor style. Furthermore, let us define the recursive
member predicate

mbp : nat, list(nat) → bool,
and

delfirst : list(nat) → list(nat),
a recursive function that deletes the first occurrence of a natural number in a list:

(car1) car(cons(x, l)) = x

(cdr1) cdr(cons(x, l)) = l

(car1�) car(l�) = x ⇐ l� = cons(x, l)

(cdr1�) cdr(l�) = l ⇐ l� = cons(x, l)

(mbp1) mbp(x, nil) = false
(mbp2) mbp(x, cons(y, l)) = true ⇐ x= y
(mbp3) mbp(x, cons(y, l)) = mbp(x, l) ⇐ x �= y

(delfirst1) delfirst(x, cons(y, l)) = l ⇐ x= y
(delfirst2) delfirst(x, cons(y, l)) = cons(y, delfirst(x, l)) ⇐ x �= y

Immediate consequences of the axiom (list(nat)1) and the definitions (car1) and
(cdr1) are the lemma (cons1) and its flattened version (cons1�):

(cons1) cons(car(l�), cdr(l�)) = l� ⇐ l� �= nil

(cons1�) cons(x, l) = l� ⇐ l� �= nil ∧ x= car(l�) ∧ l = cdr(l�)

49Indeed, in case of cons(x, l) = k, we have lessp(length(l), length(k)) =
= lessp(length(l), length(cons(x, l))) = lessp(length(l), s(length(l))) = true because of (lessp4).
Moreover, we have lessp(count(l), count(k)) = lessp(count(l), count(cons(x, l))) =
lessp(count(l), s(x + count(l))) = true because of (+3) and (lessp5).

50This option is essentially the choice of the “shell principle” of [Boyer & Moore, 1979, p.37ff.]:
The one but last axiom of item (1) of the shell principle means (list(nat)2) in our formalization, and
guarantees that item (6) implies Wellf(λl, k. ∃x. (cons(x, l)= k)).

51Although (list(nat)2) follows from (length1–2) and (nat2), it should be included in this standard
specification because of its frequent applications.

52For this avoidance, however, we have to admit the additional function length. The same can be
achieved with count instead of length, which is only possible, however, for lists over element types
that have a mapping into the natural numbers.

1524

Automation of Mathematical Induction

Furthermore, let us define the Boolean function
lexless : list(nat), list(nat) → bool,

which lexicographically compares lists according to the ordering of the natural num-
bers, and lexlimless : list(nat), list(nat), nat → bool, which further restricts the length
of the first argument to be less than the number given as third argument:
(lexless1) lexless(l, nil) = false
(lexless2) lexless(nil, cons(y, k)) = true
(lexless3) lexless(cons(x, l), cons(y, k)) = lexless(l, k) ⇐ x= y
(lexless4) lexless(cons(x, l), cons(y, k)) = lessp(x, y) ⇐ x �= y

(lexlimless1) lexlimless(l, k, x) = and(lexless(l, k), lessp(length(l), x))

Such lexicographic combinations play an important rôle in well-foundedness ar-
guments of induction proofs, because they combine given well-founded orderings into
new well-founded orderings, provided there is an upper bound for the length of the
list:53

(lexlimless2) Wellf(λl, k. (lexlimless(l, k, x) = true))

Finally note that analogous axioms can be used to specify any other data type
generated by constructors, such as pairs of natural numbers or binary trees over
such pairs.

4.6 The Standard High-Level Method of Mathematical Induction
In general, the intuitive and procedural aspects of a mathematical proof method
are not completely captured by its logic formalization. For actually finding and
automating proofs by induction, we also need effective heuristics.

In the everyday mathematical practice of an advanced theoretical journal, the
common inductive arguments are hardly ever carried out explicitly. Instead,
the proof reads something like “by structural induction on n, q.e.d.” or

“by (Noetherian) induction on (x, y) over <, q.e.d.”,
expecting that the mathematically educated reader could easily expand the proof
if in doubt. In contrast, difficult inductive arguments, sometimes covering several
pages,54 require considerable ingenuity and have to be carried out in the journal
explicitly.

53The length limit is required because otherwise we have the following counterexample to termi-
nation: (s(0)), (0, s(0)), (0, 0, s(0)), (0, 0, 0, s(0)), Note that the need to compare lists of dif-
ferent lengths typically arises in mutual induction proofs where the induction hypotheses have a dif-
ferent number of free variables at measured positions. See [Wirth, 2004, § 3.2.2] for a nice example.

54Such difficult inductive arguments are the proofs of Hilbert’s first ε-theorem
[Hilbert & Bernays, 1970], Gentzen’s Hauptsatz [Gentzen, 1935], and confluence theorems such as
the ones in [Gramlich & Wirth, 1996], [Wirth, 2009].

1525

Moore and Wirth

In case of a proof on natural numbers, the experienced mathematician might
engineer his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis, typically
based on the axiom (nat1). When he realizes that the current goal
is similar to an instance of the conjecture, he applies the instantiated
conjecture just like a lemma, but keeps in mind that he has actually
applied an induction hypothesis. Finally, using the free variables of the
conjecture, he constructs some ordering whose well-foundedness follows
from the axiom Wellf(λx, y. (s(x)= y)) and in which all instances of the
conjecture applied as induction hypotheses are smaller than the original
conjecture.

The hard tasks of a proof by mathematical induction are thus:

(Induction-Hypotheses Task)
to find the numerous induction hypotheses,55 and

(Induction-Ordering Task)
to construct an induction ordering for the proof, i.e. a well-founded order-
ing that satisfies the ordering constraints of all these induction hypotheses in
parallel.56

The above induction method can be formalized as an application of the Theorem
of Noetherian Induction. For non-trivial proofs, mathematicians indeed prefer the
axioms of Pieri’s specification in combination with the Theorem of Noetherian Induc-
tion (N) to Peano’s alternative with the Axiom of Structural Induction (S), because
the instances for P and < in (N) are often easier to find than the instances for P
in (S) are.

4.7 Descente Infinie
The soundness of the induction method of § 4.6 is most easily seen when the argu-
ment is structured as a proof by contradiction, assuming a counterexample. For
Fermat’s historic reinvention of the method, it is thus just natural that he devel-
oped the method in terms of assumed counterexamples.57 Here is Fermat’s Method
of Descente Infinie in modern language, very roughly speaking:

55As, e.g., in the proof of Gentzen’s Hauptsatz on Cut-elimination.
56For instance, this was the hard part in the elimination of the ε-formulas in the proof of the

1st ε-theorem in [Hilbert & Bernays, 1970], and in the proof of the consistency of arithmetic by
the ε-substitution method in [Ackermann, 1940].

57Cf. [Fermat, 1891ff.], [Mahoney, 1994], [Bussotti, 2006], [Wirth, 2010b].

1526

Automation of Mathematical Induction

A proposition P (w) can be proved by descente infinie as follows: Show
that for each assumed counterexample v of P there is a smaller counter-
example u of P w.r.t. a well-founded relation < that is not dependent
on counterexamples.

If this method is executed successfully, we have proved ∀w. P (w) because no counter-
example can be a <-minimal one, and so the well-foundedness of < implies that there
are no counterexamples at all.

It was very hard for Fermat to obtain a positive version of his counterexample
method.58 Nowadays every logician immediately realizes that a formalization of
the method of descente infinie is obtained from the Theorem of Noetherian Induc-
tion (N) (cf. § 4.2) simply by replacing

P (v) ⇐ ∀u<v. P (u)
with its contrapositive

¬P (v) ⇒ ∃u<v. ¬P (u).
For the history of the automation of induction, however, that difference between

an implication and its contrapositive is not crucial. Indeed, for this endeavor, the
relevant mathematical logic was formalized during the 19th and the 20th centuries
and we may confine ourselves to classical (i.e. two-valued) logics. What actually
matters here is the heuristic task of finding proofs. Therefore — overlooking that
difference — we will take descente infinie in the remainder of this article59 simply
as a synonym for the modern standard high-level method of mathematical induction
described in § 4.6.

Let us now prove the lemmas (+3) and (lessp7) of § 4.4 (in the axiomatic context
of § 4.4) by descente infinie, seen as the standard high-level method of mathematical
induction described in § 4.6.

58Fermat reported in his letter for Christiaan Huygens (1629–1695) that he had had problems
applying the Method of Descente Infinie to positive mathematical statements. See [Wirth, 2010b,
p. 11] and the references there, in particular [Fermat, 1891ff., Vol. II, p. 432].

Moreover, a natural-language presentation via descente infinie (such as Fermat’s representation
in Latin) is often simpler than a presentation via the Theorem of Noetherian Induction, because
it is easier to speak of one counterexample v and to find one smaller counterexample u, than to
manage the dependences of universally quantified variables.

59In general, in the tradition of [Wirth, 2004], descente infinie is nowadays taken as a synonym
for the standard high-level method of mathematical induction as described in § 4.6. This way of
using the term “descente infinie” is found in [Brotherston & Simpson, 2007; 2011], [Voicu & Li,
2009], [Wirth, 2005a; 2010a; 2012c; 2017].

If, however, the historical perspective before the 19th century is taken, then this identification is
not appropriate because a more fine-grained differentiation is required, such as found in [Bussotti,
2006], [Wirth, 2010b].

1527

Moore and Wirth

Example 4.2 (Proof of (+3) by descente infinie)
By application of the Theorem of Noetherian Induction (N) (cf. § 4.2) with P set
to λx, y. (x+ y = y +x), and the variables v, u renamed to (x, y), (x��, y��), respec-
tively, the conjectured lemma (+3) reduces to

∃<.

µ
∀(x, y).

°
(x+ y = y +x) ⇐ ∀(x��, y��)< (x, y). (x�� + y�� = y�� + x��)

¢

∧ Wellf(<)

∂
.

Let us focus on the sub-formula x+ y = y +x. Based on axiom (nat1) we can
reduce this task to the two cases x = 0 and x= s(x�) with the two goals

0+ y = y + 0; s(x�)+ y = y + s(x�);
respectively. They simplify by (+1) and (+2) to

y = y + 0; s(x� + y) = y + s(x�);
respectively. Based on axiom (nat1) we can reduce each of these goals to the two
cases y = 0 and y = s(y�), which leaves us with the four open goals

0 = 0+ 0; s(x� + 0) = 0+ s(x�);
s(y�) = s(y�)+ 0; s(x� + s(y�)) = s(y�)+ s(x�).

They simplify by (+1) and (+2) to
0 = 0; s(x� + 0) = s(x�);
s(y�) = s(y� + 0); s(x� + s(y�)) = s(y� + s(x�));

respectively. Now we instantiate the induction hypothesis that is available in the
context60 given by our above formula in four different forms, namely we instantiate
(x��, y��) with (x�, 0), (0, y�), (x�, s(y�)), and (s(x�), y�), respectively. Rewriting with
these instances, the four goals become:

0 = 0; s(0+x�) = s(x�);
s(y�) = s(0+ y�); s(s(y�)+ x�) = s(s(x�)+ y�);

which simplify by (+1) and (+2) to
0 = 0; s(x�) = s(x�);
s(y�) = s(y�); s(s(y� +x�)) = s(s(x� + y�)).

Now the first three goals follow directly from the reflexivity of equality, whereas the
last goal also needs an application of our induction hypothesis: This time we have
to instantiate (x��, y��) with (x�, y�).

Finally, we instantiate our induction ordering < to the lexicographic combination
of length less than 3 of the ordering of the natural numbers. If we read our pairs as
two-element lists, i.e. (x��, y��) as cons(x��, cons(y��, nil)), then we can set < to

λl, k. (lexlimless(l, k, s(s(s(0)))) = true),
which is well-founded according to (lexlimless2) (cf. § 4.5). Then it is trivial to
show that (s(x�), s(y�)) is greater than each of (x�, 0), (0, y�), (x�, s(y�)), (s(x�), y�),
(x�, y�). This completes the proof of our conjecture by descente infinie. 2

60On how this availability can be understood formally, see [Autexier, 2005].

1528

Automation of Mathematical Induction

Example 4.3 (Proof of (lessp7) by descente infinie)
In the previous proof in Example 4.2 we made the application of the Theorem of
Noetherian Induction most explicit, and so its presentation was rather formal w.r.t.
the underlying logic. Contrary to this, let us now proceed more in the vernacular of
a working mathematician. Moreover, instead of p = true, let us just write p.

To prove the strengthened transitivity of lessp as expressed in lemma (lessp7) in
the axiomatic context of § 4.4, we have to show

lessp(s(x), z) ⇐ lessp(x, y) ∧ lessp(y, z).

Let us reduce the last literal. To this end, we apply the axiom (nat1) once to y and
once to z. Then, after reduction with (lessp1), the two base cases have an atom false
in their conditions, abbreviating false = true, which is false according to (bool2),
and so the base cases are true (ex falso quodlibet). The remaining case, where
we have both y = s(y�) and z = s(z�), reduces with (lessp3) to

lessp(x, z�) ⇐ lessp(x, s(y�))∧lessp(y�, z�)

If we apply the induction hypothesis instantiated via {y �→y�, z �→z�} to match the
last literal, then we obtain the two goals

lessp(x, z�) ⇐ lessp(x, s(y�))∧lessp(y�, z�)∧lessp(s(x), z�)
lessp(x, y�)∨lessp(s(x), z�)∨lessp(x, z�) ⇐ lessp(x, s(y�))∧lessp(y�, z�)

By elimination of irrelevant literals, the first goal can be reduced to the valid con-
jecture lessp(x, z�) ⇐ lessp(s(x), z�), but we cannot obtain a lemma simpler than
our initial conjecture (lessp7) by generalization and elimination of irrelevant literals
from the second goal. This means that the application of the given instantiation of
the induction hypothesis is useless.

Thus, instead of induction-hypothesis application, we had better apply the
axiom (nat1) also to x, obtaining the cases x= 0 and x= s(x�) with the two
goals — after reduction with (lessp2) and (lessp3) —

lessp(0, z�) ⇐ lessp(y�, z�)
lessp(s(x�), z�) ⇐ lessp(x�, y�) ∧ lessp(y�, z�),

respectively. The first is trivial by (lessp1), (lessp2) after another application of the
axiom (nat1) to z�. The second is just an instance of the induction hypothesis via
{x�→x�, y �→y�, z �→z�}. As the induction ordering we can select any of the variables
of the original conjecture w.r.t. the irreflexive ordering on the natural numbers or
w.r.t. the successor relation.

This completes the proof of the conjecture by descente infinie.
Note that we also have made clear that the given proof can only be successful

with an induction hypotheses where all variables are instantiated with predecessors.

1529

Moore and Wirth

It is actually possible to show that this simple example — ceteris paribus — requires
an induction hypothesis resulting from an instance {x�→x��, y �→y��, z �→z��} where,
for some meta-level natural number n, we have

x= sn+1(x��) ∧ y = sn+1(y��) ∧ z = sn+1(z��). 2

4.8 Explicit Induction

4.8.1 From the Theorem of Noetherian Induction to Explicit Induction

To admit the realization of the standard high-level method of mathematical induc-
tion as described in § 4.6, a proof calculus should have an explicit concept of an
induction hypothesis. Moreover, it would have to cope in some form with the second-
order variables P and < in the Theorem of Noetherian Induction (N) (cf. § 4.2),
and with the second-order variable Q in the definition of well-foundedness (Wellf(<))
(cf. § 4.1).

Such an implementation needs special care regarding the calculus and its heuris-
tics. For example, the theorem provers for higher-order logic with the strongest
automation today3 are yet not able to prove standard inductive theorems by just
adding the Theorem of Noetherian Induction, because this theorem immediately
effects an explosion of the search space. It is a main obstacle to practical useful-
ness of higher-order theorem provers that they are still poor in the automation of
induction.

Therefore, it is probable that — on the basis of the logic calculi and the computer
technology of the 1970s — Boyer and Moore would also have failed to implement
induction via these human-oriented and higher-order features. Instead, they con-
fined the concept of an induction hypothesis to the internals of single reductive
inference steps — namely the applications of the so-called induction rule — and
restricted all other inference steps to quantifier-free first-order deductive reasoning.
These decisions were crucial to their success.

Described in terms of the Theorem of Noetherian Induction, this induction rule
immediately instantiates the higher-order variables P and < with first-order pred-
icates. This is rather straightforward for the predicate variable P, which simply
becomes the (properly simplified and generalized) quantifier-free first-order conjec-
ture that is to be proved by induction, and the tuple of the free first-order variables
of this conjecture takes the place of the single argument of P ; cf. Example 4.4 below.

The instantiation of the higher-order variable < is more difficult: Instead of a
simple instantiation, the whole context of its two occurrences is transformed. For
the first occurrence, namely the one in the sub-formula ∀u<v. P (u), the whole sub-
formula is replaced with a conjunction of instances of P (u), for which u is known

1530

Automation of Mathematical Induction

to be smaller than v in some lexicographic combination of given orderings that are
already known to be well-founded. As a consequence, the second occurrence of <,
i.e. the one in Wellf(<), simplifies to true, and so we can drop the conjunction that
contains it.

At a first glance, it seems highly unlikely that there could be any framework of
proof-search heuristics in which such an induction rule could succeed in implement-
ing all applications of the Theorem of Noetherian Induction, simply because this
rule has to solve the two hard tasks of an induction proof, namely the Induction-
Hypotheses Task and the Induction-Ordering Task (cf. § 4.6), right at the beginning
of the proof attempt, before the proof has been sufficiently developed to exhibit its
structural difficulties.

Most surprisingly, but as a matter of fact, the induction rule has proved to
be most successful in realizing all applications of the Theorem of Noetherian
Induction required within the proof-search heuristics of the Boyer–Moore water-
fall (cf. Figure 1). Essential for this success is the relatively weak quantifier-free
first-order logic:

• No new symbols have to be introduced during the proof, such as the ones
of quantifier elimination. Therefore, the required instances of the induction
hypothesis can already be denoted when the induction rule is applied.61

• A general peculiarity of induction,62 namely that the formulation of lemmas
often requires the definition of new recursive functions, is aggravated by the
weakness of the logic; and the user is actually required to provide further
guidance for the induction rule via these new function definitions.63

Moreover, this success crucially depends on the possibility to generate additional
lemmas that are proved by subsequent inductions, which is best shown by example.

Example 4.4 (Proof of (+3) by Explicit Induction)
Let us prove (+3) in the context of § 4.4, just as we have done already in Exam-
ple 4.2 (cf. § 4.7), but now with the induction rule as the only way to apply the
Theorem of Noetherian Induction.

As the conjecture is already properly simplified and concise, we instantiate P (w)
in the Theorem of Noetherian Induction again to the whole conjecture and reduce
this conjecture by application of the Theorem of Noetherian Induction again to

∃<.

µ
∀(x, y).

°
(x+ y = y +x) ⇐ ∀(x��, y��)< (x, y). (x�� + y�� = y�� + x��)

¢

∧ Wellf(<)

∂
.

61Cf. Note 65.
62See item 2 of § 4.10.
63Cf. § 8.

1531

Moore and Wirth

Based, roughly speaking, on a termination analysis for the function +, the heuristic
of the induction rule of explicit induction suggests to instantiate < to

λ(x��, y��), (x, y). (s(x��)= x).
As this relation is known to be well-founded, the induction rule reduces the task
based on axiom (nat1) to two goals, namely the base case

0+ y = y + 0;
and the step case

(s(x�) + y = y + s(x�)) ⇐ (x� + y = y +x�).
This completes the application of the induction rule. Thus, instances of the

induction hypothesis can no longer be applied in the further proof (except the ones
that have already been added explicitly as conditions of step cases by the induction
rule).

The induction rules of the Boyer–Moore theorem provers are not able to find
the many instances we applied in the proof of Example 4.2. This is different for a
theoretically more powerful induction rule suggested by Christoph Walther (*1950),
which actually finds the proof of Example 4.2.64 In general, however, for harder
conjectures, a simulation of descente infinie by the induction rule of explicit induc-
tion would require an arbitrary look-ahead into the proofs, depending on the size
of the structure of these proofs; thus, because the induction rule is understood to
have a limited look-ahead into the proofs, such a simulation would not fall under the
paradigm of explicit induction any more. Indeed, the look-ahead of induction rules
into the proofs is typically not more than a single unfolding of a single occurrence
of a recursive function symbol, for each such occurrence in the conjecture.

Note that the two above goals of the base and the step case can also be obtained
by reducing the input conjecture with an instance of axiom (S) (cf. § 4.4), i.e. with
the Axiom of Structural Induction over 0 and s. Nevertheless, the induction rule of
the Boyer–Moore theorem provers is, in general, able to produce much more com-
plicated base and step cases than those that can be obtained by reduction with the
axiom (S).

Now the first goal is simplified again to y = y + 0, and then another applica-
tion of the induction rule results in two goals that can be proved without further
induction.

The second goal is simplified to
(s(x� + y) = y + s(x�)) ⇐ (x� + y = y +x�).

64See [Walther, 1993, p. 99f.]. On Page 100, the most interesting step case computed by Walther’s
induction rule is (rewritten in constructor-style):

s(x)+ s(y) = s(y)+ s(x) ⇐
`

x + s(y) = s(y)+ x ∧ ∀z. (z + y = y + z)
´
.

In practice, however, Walther’s induction rule has turned out to be overall less successful when
applied within a heuristic framework similar to the Boyer–Moore waterfall (cf. Figure 1).

1532

Automation of Mathematical Induction

Now we use the condition from left to right for rewriting only the left-hand side of the
conclusion and then we throw away the condition completely, with the intention to
obtain a stronger induction hypothesis in a subsequent induction proof. This is the
famous “cross-fertilization” of the Boyer–Moore waterfall (cf. Figure 1). By this,
the simplified second goal reduces to

s(y +x�) = y + s(x�).
Now the induction rule triggers a structural induction on y, which is successful
without further induction.

All in all, although the induction rule of the Boyer–Moore theorem provers does
not find the more complicated induction hypotheses of the descente infinie proof of
Example 4.2 in § 4.7, it is well able prove our original conjecture with the help of
the additional lemmas y = y + 0 and s(y +x�) = y + s(x�).

It is crucial here that the heuristics of the Boyer–Moore waterfall discover these
lemmas automatically, and that this is also typically the case in general.

From a logical viewpoint, these lemmas are redundant because they follow from
the original conjecture and the definition of +. From a heuristic viewpoint, however,
they are more useful than the original conjecture, because — oriented for rewriting
from right to left — their application tends to terminate in the context of the
overall simplification by symbolic evaluation, which constitutes the first stage of the
waterfall. 2

Although the two proofs of the very simple conjecture (+3) given in Examples 4.2
and 4.4 can only give a very rough idea on the advantage of descente infinie for
hard induction proofs,65 these two proofs nicely demonstrate how the induction
rule of explicit induction manages to prove simple theorems very efficiently and
with additional benefits for the further performance of the simplification procedure.

65For some of the advantages of descente infinie, see Example 6.2 in § 6.2.6, and especially the
more difficult, complete formal proof of Max H. A. Newman’s famous lemma in [Wirth, 2004, § 3.4],
where the reverse of a well-founded relation is shown to be confluent in case of local confluence —
by induction w.r.t. this well-founded relation itself. The induction rule of explicit induction cannot
be applied here because an eager induction hypothesis generation is not possible: The required
instances of the induction hypothesis contain δ-variables (or parameters, atoms) that can only be
generated later during the proof by quantifier elimination.

Though confluence is the Church–Rosser property, the Newman Lemma has nothing to do with the
Church–Rosser Theorem stating the confluence of the rewrite relation of αβ-reduction in untyped
λ-calculus, which has actually been verified with a Boyer–Moore theorem prover in the first half
of the 1980s by Shankar [1988] (see the last paragraph of § 6.4 and Note 176) following the short
Tait/Martin-Löf proof found e.g. in [Barendregt, 2012, p. 59ff.]. Unlike the Newman Lemma,
Shankar’s proof proceeds by structural induction on the λ-terms, not by Noetherian induction
w.r.t. the reverse of the rewrite relation; in fact, untyped λ-calculus is not terminating.

1533

Moore and Wirth

Moreover, for proving very hard theorems for which the overall waterfall heuristic
fails, the user can state hints and additional lemmas with additional notions in any
Boyer–Moore theorem prover, except the Pure LISP Theorem Prover.

4.8.2 Theoretical Viewpoint on Explicit Induction

From a theoretical viewpoint, we have to be aware of the possibility that the intended
models of specifications in explicit-induction systems may also include non-standard
models.

For the natural numbers, for instance, there may be Z-chains in addition to the
natural numbers N, whereas the higher-order specifications of Peano and Pieri spec-
ify exactly the natural numbers N up to isomorphism.66 This is indeed the case for
the Boyer–Moore theorem provers as explained in Note 138. These Z-chains cannot
be excluded because the inference rules realize only first-order deductive reasoning,
except for the induction rule to which all applications of the Theorem of Noether-
ian Induction are confined and which does not use any higher-order properties, but
only well-founded orderings that are defined in the first-order logic of the explicit-
induction system.

4.8.3 Practical Viewpoint on Explicit Induction

Note that the application of the induction rule of explicit induction is not imple-
mented via a reference to the Theorem of Noetherian Induction, but directly handles
the following practical tasks and their heuristic decisions.

In general, the induction stage of the Boyer–Moore waterfall (cf. Figure 1) applies
the induction rule once to its input formula, which results in a conjunction — or
conjunctive set — of base and step cases to which the input conjecture reduces, i.e.
whose validity implies the validity of the input conjecture.

Therefore, a working mathematician would expect that the induction rule of
explicit induction solves the following two tasks:

1. Choose some of the variables in the conjecture as induction variables, and split
the conjecture into several base and step cases, based on the induction vari-
ables’ demand on which governing conditions and constructor substitutions67

have to be added to be able to unfold — without further case analysis — some
of the recursive function calls that contain the induction variables as direct
arguments.

2. Eagerly generate the induction hypotheses for the step cases.

1534

Automation of Mathematical Induction

The actual realization of these tasks in the induction rule, however, is quite different
from these expectations: Except the very early days of explicit induction in the
Pure LISP Theorem Prover (cf. Example 6.1), induction variables play only a
very minor rôle toward the end of the procedure (in the deletion of flawed induction
schemes, cf. § 6.3.8). The focus, however, is on turning the defining equations of a
recursive function symbol occurring in the conjecture immediately into whole step
cases including an eagerly generated induction hypothesis tailored for each recursive
occurrence; and the complementing bases case are generated only at the very end.68

4.9 Generalization
Contrary to merely deductive, analytic theorem proving, an input conjecture for a
proof by induction is not only a task (as induction conclusion) but also a tool (as
induction hypothesis) in the proof attempt. Therefore, a stronger conjecture is often
easier to prove because it supplies us with a stronger induction hypothesis during
the proof attempt.

Such a step from a weaker to a stronger input conjecture is called generalization.
Generalization is to be handled with great care because it is a sound, but unsafe

reduction step in the sense that it may reduce a valid goal to an invalid goal, causing
the proof attempt to fail; such a reduction is called over-generalization.

Generalization of input conjectures directly supplied by humans is rarely helpful
because stating sufficiently general theorems is part of the standard mathematical
training in induction. As we have seen in Example 4.4 of § 4.8.1, however, explicit
induction often has to start another induction during the proof, and then the sec-
ondary, machine-generated input conjecture often requires generalization.

The two most simple syntactic generalizations are the replacement of terms with
fresh universal variables and the removal of irrelevant side conditions.

In the vernacular of Boyer–Moore theorem provers, the first is simply called
“generalization” and the second is called “elimination of irrelevance”. They are
dealt with in two consecutive stages of these names in the Boyer–Moore waterfall,

66Contrary to the Z-chains (which are structures similar to the integers Z, injectively generated
from an arbitrary element via s and its inverse, where every element is greater than every standard
natural number), “s-circles” cannot exist because it is possible to show by structural induction
on x the two lemmas lessp(x, x)= false and lessp(x, sn+1(x))= true for each standard meta-level
natural number n.

67This adding of constructor substitutions refers to the application of axioms like (nat1) (cf. § 4.4),
and is required whenever constructor style either is found in the recursive function definitions or is
to be used for the step cases. In the Pure LISP Theorem Prover, only the latter is the case.
In Thm, none is the case.

68See, e.g., Example 5.5 of § 5.8.

1535

Moore and Wirth

which come right before the induction stage.
The removal of irrelevant side conditions is intuitively clear. For formulas in

clausal form, it simply means to remove irrelevant literals. More interesting are the
heuristics of its realization, which we discuss in § 6.3.5.

The less clear process of generalization typically proceeds by the replacement of
all occurrences of a non-variable69 term with a fresh variable.

This is especially promising for subsequent induction if the same non-variable
term has multiple occurrences in the conjecture, and becomes even more promising
if these occurrences are found on both sides of the same positive equation or in
literals of different polarity, say in a conclusion and a condition of an implication.

To avoid over-generalization, subterms are to be preferred to their super-terms,70

and one should never generalize a term of any of the following forms: a construc-
tor term, a top level term, a term with a logical operator (such as implication or
equality) as top symbol, a direct argument of a logical operator, or the first argu-
ment of a conditional (IF). Indeed, for any of these forms, the information loss
by generalization is typically so high that the generalization results in an invalid
conjecture.

How powerful generalization can be is best seen by the multitude of its successful
automatic applications, which often surprise humans. Here is one of these:

Example 4.5 (Proof of (ack4) by Explicit Induction and Generalization)
Let us prove (ack4) in the context of § 4.4 by explicit induction. It is obvious that
such a proof has to follow the definition of ack in the three cases (ack1), (ack2),
(ack3), using the termination ordering of ack, which is just the lexicographic com-
bination of its arguments. So the induction rule of explicit induction reduces the
input formula (ack4) to the following goals:71

lessp(y, ack(0, y)) = true;

lessp(0, ack(s(x�), 0)) = true ⇐ lessp(s(0), ack(x�, s(0)))= true;

lessp(s(y�), ack(s(x�), s(y�)))= true

⇐
µ

lessp(y�, ack(s(x�), y�))= true
∧ lessp(ack(s(x�), y�), ack(x�, ack(s(x�), y�))) = true

∂
.

69Besides the replacement of (typically all) the occurrences of a non-variable term, there is also
the possibility of replacing some — but not all — occurrences of a variable with a fresh variable.
This is a very delicate process, but heuristics for it were discussed very early, namely in [Aubin,
1976, § 3.3].

70This results in a weaker conjecture and the stronger one remains available by a further gener-
alization.

71See Example 5.5 of § 5.8 on how these step cases are actually found in explicit induction.

1536

Automation of Mathematical Induction

After simplifying with (ack1), (ack2), (ack3), respectively, we obtain:
lessp(y, s(y)) = true;

lessp(0, ack(x�, s(0)))= true ⇐ lessp(s(0), ack(x�, s(0)))= true;

lessp(s(y�), ack(x�, ack(s(x�), y�)))= true

⇐
µ

lessp(y�, ack(s(x�), y�))= true
∧ lessp(ack(s(x�), y�), ack(x�, ack(s(x�), y�))) = true

∂
.

Now the base case is simply an instance of our lemma (lessp4). Let us simplify the
two step cases by introducing variables for their common subterms (by a partial
“flattening”):

lessp(0, z)= true ⇐
°

lessp(s(0), z)= true ∧ z = ack(x�, s(0))
¢
;

lessp(s(y�), z2)= true ⇐
µ

lessp(y�, z1)= true ∧ lessp(z1, z2)= true
∧ z1 = ack(s(x�), y�) ∧ z2 = ack(x�, z1)

∂
.

Now the first follows from applying (nat1) to z. Before we can prove the second
by another induction, however, we have to generalize it by deleting the last two
literals from the condition (“elimination of irrelevance”). In fact, the result of this
generalization is the lemma (lessp7) of § 4.4. 2

In combination with explicit induction, generalization becomes especially powerful
in the invention of new lemmas of general interest, because the step cases of explicit
induction tend to have common occurrences of the same term in their conclusion
and their condition. Indeed, the lemma (lessp7), which we have just discovered in
Example 4.5, is one of the most useful lemmas in the theory of natural numbers.

It should be noted that all Boyer–Moore theorem provers except the Pure LISP
Theorem Prover are able to do this whole proof completely automatically and
invent the lemma (lessp7) by generalization of the second step case; and they do
this even when they work with an arithmetic theory that was redefined, so that no
decision procedures or other special knowledge on the natural numbers can be used
by the system.

Moreover, as shown in § 3.3 of [Wirth, 2004], in a slightly richer logic, these
heuristics can actually synthesize the lower bound in the first argument of lessp from
the weaker input conjecture ∃z. (lessp(z, ack(x, y))= true), simply because lessp
does not contribute to the choice of the base and step cases.

1537

Moore and Wirth

4.10 Proof-Theoretical Peculiarities of Mathematical Induction
The following two proof-theoretical peculiarities of induction compared to first-order
deduction may be considered noteworthy:72

1. A calculus for arithmetic cannot be complete, simply because the theory of
the arithmetic of natural numbers is not enumerable.73

2. According to Gentzen’s Hauptsatz,74 a proof of a first-order theorem can
always be restricted to the “sub”-formulas of this theorem. In contrast to
lemma application in a deductive proof tree, however, the application of induc-
tion hypotheses and lemmas inside an inductive reasoning cycle cannot gener-
ally be eliminated in the sense that the “sub”-formula property could be ob-
tained.75 As a consequence, in first-order inductive theorem proving, “creati-
vity” cannot be restricted to finding just the proper instances, but may require
the invention of new lemmas and notions.76

4.11 Conclusion
In this section, after briefly presenting the induction method in its rich historical
context, we have offered a formalization and a first practical description. Moreover,
we have explained why we can take Fermat’s term “descente infinie” in our modern
context as a synonym for the standard high-level method of mathematical induction.
Finally, we have introduced explicit induction and generalization.

Noetherian induction requires domains for its well-founded orderings; and these
domains are typically built-up by constructors. Therefore, the discussion of the
method of induction required the introduction of some paradigmatic data types,
such as natural numbers and lists.

To express the relevant notions on these data types, we need recursion, a method
of definition, which we have often used in this section intuitively. We did not discuss
its formal admissibility requirements yet. We will do so in § 5, with a focus on
modes of recursion that admit an effective consistency test, including termination
aspects such as induction templates and schemes.

72Note, however, that these peculiarities of induction do not make a difference to first-order
deductive theorem proving in practice. See Notes 73 and 76.

73This theoretical result is given by Gödel’s first incompleteness theorem [1931]. In practice,
however, it does not matter whether our proof attempt fails because our theorem will not be
enumerated ever, or will not be enumerated before doomsday.

74Cf. [Gentzen, 1935].
75Cf. [Kreisel, 1965].

1538

Automation of Mathematical Induction

5 Recursion, Termination, and Induction

5.1 Recursion and the Rewrite Relation on Ground Terms
Recursion is a form of programming or definition where a newly defined notion may
even occur in its definientia. Contrary to explicit definitions, where we can always
get rid of the new notions by reduction (i.e. by rewriting the definienda (left-hand
sides of the defining equations) to the definientia (right-hand sides)), reduction
with recursive definitions may run forever.

We have already seen some recursive function definitions in §§ 4.4 and 4.5, such
as the ones of +, lessp, length, and count, where these function symbols occurred in
some of the right-hand sides of the equations of their own definitions; for instance,
the function symbol + occurs in the right-hand side of (+2) in § 4.4.

The steps of rewriting with recursive definitions can be formalized as a binary
relation on terms, namely as the rewrite relation that results from reading the defin-
ing equations as reduction rules, in the sense that they allow us to replace occur-
rences of left-hand sides of instantiated equations with their respective right-hand
sides, provided that their conditions are fulfilled.77

A ground term is a term without variables. We can restrict our considerations
here to rewrite relations on ground terms.

5.2 Confluence
The restriction that is to be required for every recursive function definition is the
confluence78 of this rewrite relation on ground terms.

The confluence restriction guarantees that no distinct objects of the data types
can be equated by the recursive function definitions.79

76In practice, however, proof search for harder theorems often requires the introduction of lem-
mas, functions, and relations, and it is only a matter of degree whether we have to do this for
principled reasons (as in induction) or for tractability (as required in first-order deductive theorem
proving, cf. [Baaz & Leitsch, 1995]).

77For the technical meaning of fulfilledness in the recursive definition of the rewrite relation
see [Wirth, 2009], where it is also explained why the rewrite relation respects the straightforward
purely logical, model-theoretic semantics of positive/negative-conditional equation equations, pro-
vided that the given admissibility conditions are satisfied (as is the case for all our examples).

78A relation −→ is confluent (or has the “Church–Rosser property”) if two sequences of steps
with −→, starting from the same element, can always be joined by an arbitrary number of further
steps on each side; formally: +←− ◦ +−→ ⊆ ∗−→ ◦ ∗←−. Here ◦ denotes the concatenation of
binary relations; for the further notation see § 4.1.

79As constructor terms are irreducible w.r.t. this rewrite relation, if the application of a defined
function symbol rewrites to two constructor terms, they must be identical in case of confluence.

1539

Moore and Wirth

This is essential for consistency if we assume axioms such as (nat2–3) (cf. § 4.4)
or (list(nat)2–3) (cf. § 4.5).

Indeed, without confluence, a definition of a recursive function could destroy the
data type in the sense that the specification has no model anymore; for example,
if we added p(x) = 0 as a further defining equation to (p1), then we would get
s(0) = p(s(s(0))) = 0, in contradiction to the axiom (nat2) of § 4.4.

For the recursive function definitions admissible in the Boyer–Moore theorem
provers, confluence results from the restrictions that there is only one (unconditional)
defining equation for each new function symbol,80 and that all variables occurring on
the right-hand side of the definition also occur on the left-hand side of the defining
equation.81

These two restrictions are an immediate consequence of the general definition
style of the list-programming language LISP. More specifically, recursive functions
are to be defined in all Boyer–Moore theorem provers in the more restrictive style
of applicative LISP.82

Example 5.1 (A Recursive Function Definition in Applicative LISP)
Instead of our two equations (+1), (+2) for +, we find the following single equation
on Page 53 of [Boyer & Moore, 1979], the standard reference for the Boyer–Moore
heuristics:

(PLUS X Y) = (IF (ZEROP X)
(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

Note that (IF x y z) is nothing but the conditional “IF x then y else z”, that
ZEROP is a Boolean function checking for being zero, that (FIX Y) returns Y if Y is a
natural number, and that ADD1 is the successor function s.

The primary difference to (+1), (+2) is that PLUS is defined in destructor style in-
stead of the constructor style of our equations (+1), (+2) in § 4.4. As a constructor-
style definition can always be transformed into an equivalent destructor-style defini-
tion, let us do so for our definition of + via (+1), (+2).

In place of the untyped destructor SUB1, let us use the typed destructor p defined
80Cf. item (a) of the “definition principle” of [Boyer & Moore, 1979, p. 44f.]. Confluence is also

discussed under the label “uniqueness” on Page 87ff. of [Moore, 1973].
81Cf. item (c) of the “definition principle” of [Boyer & Moore, 1979, p. 44f.].
82See [McCarthy &al., 1965] for the definition of LISP. The “‘applicative” subset of LISP lacks

side effects via global variables and the imperative commands of LISP, such as variants of PROG,
SET, GO, and RETURN, as well as all functions or special forms that depend on the concrete allocation
on the system heap, such as EQ, RPLACA, and RPLACD, which can be used in LISP to realize circular
structures or to save space on the system heap.

1540

Automation of Mathematical Induction

by either by (p1) or by (p1�) of § 4.4, which — just as SUB1 — returns the predeces-
sor of a positive natural number. Now our destructor-style definition of + consists
of the following two positive/negative-conditional equations:
(+1�) x+ y = y ⇐ x= 0

(+2�) x+ y = s(p(x)+ y) ⇐ x �= 0

If we compare this definition of + to the one via the equations (+1), (+2), then
we find that the constructors 0 and s have been removed from the left-hand sides of
the defining equations; they are replaced with the destructor p on the right-hand
side and with some conditions.

Now it is easy to see that (+1�), (+2�) represent the above definition of PLUS in
positive/negative-conditional equations, provided that we ignore that Boyer–Moore
theorem provers have no types and no typed variables. 2

If we considered the recursive equation (+2) together with the alternative recursive
equation (+2�), then we could rewrite s(x)+ y on the one hand with (+2) into
s(x+ y), and, on the other hand, with (+2�) into s(p(s(x))+ y). This does not
seem to be problematic, because the latter result can be rewritten to the former one
by (p1).

In general, however, confluence is undecidable and criteria sufficient for con-
fluence are extremely hard to develop. The only known decidable criterion that
is sufficient for confluence of conditional equations and applies to all our example
specifications, but does not require termination, is found in [Wirth, 2009].83 It can
be more easily tested than the admissibility conditions of the Boyer–Moore theorem
provers and avoids divergence even in case of non-termination; the proof that it
indeed guarantees confluence is very involved.

5.3 Termination and Reducibility

There are two restrictions that are additionally required for any function definition
in the Boyer–Moore theorem provers, namely termination of the rewrite relation
and reducibility of all ground terms that contain a defined function symbol w.r.t.
the rewrite relation.

The requirement of termination should be intuitively clear; we will further dis-
cuss it in § 5.5.

Let us now discuss the requirement of reducibility.
83The effective confluence test of [Wirth, 2009] requires binding-triviality or -complementary of

every critical peak, and effective weak-quasi-normality, i.e. that each equation in the condition must
be restricted to constructor variables (cf. § 5.4), or that one of its top terms either is a constructor
term or occurs as the argument of a definedness literal in the same condition.

1541

Moore and Wirth

First of all, note that it is not only so that we can check the soundness of (+1�)
and (+2�) independently from each other, we can even omit one of the equations,
resulting in a partial definition of the function +. Indeed, for the function p we did
not specify any value for p(0); so p(0) is not reducible in the rewrite relation that
results from reading the specifying equations as reduction rules.

A function defined in a Boyer–Moore theorem prover, however, must always
be specified completely, in the sense that every application of such a function to
(constructor) ground terms must be reducible. This reducibility immediately results
from the LISP definition style, which requires all arguments of the function symbol
on the left-hand side of its defining equation to be distinct variables.84

5.4 Constructor Variables

These restrictions of reducibility and termination of the rewrite relation are not
essential; neither for the semantics of recursive function definitions with data types
given by constructors,85 nor for confluence and consistency.86

Note that these two restrictions imply that only total recursive functions87 are
admissible in the Boyer–Moore theorem provers.

As a termination restriction is not in the spirit of the LISP logic of the Boyer–
Moore theorem provers, we have to ask ourselves:

Why did Boyer and Moore bring up this strong additional restriction?
The following cannot count as a satisfactory answer: When both reducibility

and termination are given, then — similar to the classical case of explicitly defined
notions — we can get rid of all recursively defined function symbols by rewriting,
but in general only for ground terms.

A better potential answer is found on Page 87ff. of [Moore, 1973], where con-
fluence of the rewrite relation is discussed and a reference to Russell’s Paradox
serves as an argument that confluence alone would not be sufficient for consistency.
The argumentation is essentially the following: First, a Boolean function russell is
recursively defined by
(russell1) russell(b) = false ⇐ russell(b) = true

(russell2) russell(b) = true ⇐ russell(b) = false

84Cf. item (b) of the “definition principle” of [Boyer & Moore, 1979, p. 44f.].
85Cf. [Wirth & Gramlich, 1994b].
86Cf. [Wirth, 2009].
87You may follow the explicit reference to [Shoenfield, 1967] as the basis for the logic of the Pure

LISP Theorem Prover on Page 93 of [Moore, 1973].

1542

Automation of Mathematical Induction

Then it is claimed that this function definition would result in an inconsistent
specification on the basis of the axioms (bool1–2) of § 4.5.

This inconsistency, however, arises only if the variable b of the axiom (bool1)
can be instantiated with the term russell(b), which is actually not our intention
and which we do not have to permit: If all variables we have introduced so far
are constructor variables88 in the sense that they can only be instantiated with
terms formed from constructor function symbols (incl. constructor constants) and
constructor variables, then irreducible terms such as russell(b) can denote junk objects
different from true and false, and no inconsistency arises.89

Note that these constructor variables are implicitly part of the LISP semantics
with its innermost evaluation strategy. For instance, in Example 5.1 of § 5.2, neither
the LISP definition of PLUS nor its representation via the positive/negative-condi-
tional equations (+1�), (+2�) is intended to be applied to a non-constructor term in
the sense that X or x should be instantiated to a term that is a function call of a
(partially) defined function symbol that may denote a junk object.

Moreover, there is evidence that Moore considered the variables already in 1973
as constructor variables: On Page 87 in [Moore, 1973], we find formulas on defined-
ness and confluence, which make sense only for constructor variables; the one on
definedness of the Boolean function (AND X Y) reads90

∃Z (IF X (IF Y T NIL) NIL) = Z,
which is trivial for a general variable Z and makes sense only if Z is taken to be a
constructor variable.

Finally, the way termination is established via induction templates in Boyer–
Moore theorem provers and as we will describe it in § 5.5, is sound for the rewrite
relation of the defining equations only if we consider the variables of these equations
to be constructor variables (or if we restrict the termination result to an innermost
rewriting strategy and require that all function definitions are total).

88Such constructor variables were formally introduced for the first time in [Wirth &al., 1993] and
became an essential part of the frameworks found in [Wirth & Gramlich, 1994a; 1994b], [Kühler &
Wirth, 1996; 1997], [Wirth, 1997; 2009] [Kühler, 2000], [Avenhaus &al., 2003], and [Schmidt-Samoa,
2006a; 2006b; 2006c].

89For the appropriate semantics see [Wirth & Gramlich, 1994b], [Kühler & Wirth, 1997].
90In the logic of the Pure LISP Theorem Prover, the special form IF is actually called

“COND”. This is most confusing because COND is a standard special form in LISP, different from IF.
Therefore, we will ignore this peculiarity and tacitly write “IF” here and in what follows for every
“COND” of the Pure LISP Theorem Prover.

1543

Moore and Wirth

5.5 Termination and General Induction Templates

In addition to the restricted style of recursive definition that is found in LISP and
that guarantees reducibility of terms with defined function symbols and confluence
as described in §§ 5.3 and 5.4, the theorem provers for explicit induction require
termination of the rewrite relation that results from reading the specifying equations
as reduction rules. More precisely, in all Boyer–Moore theorem provers except the
Pure LISP Theorem Prover,91 before a new function symbol fk is admitted
to the specification, a “valid induction template” — which immediately implies
termination — has to be constructed from the defining equation of fk.

92

Induction templates were first used in Thm and received their name when they
were first described in [Boyer & Moore, 1979].

Every time a new recursive function fk is defined, a system for explicit induction
immediately tries to construct valid induction templates; if it does not find any, then
the new function symbol is rejected w.r.t. the given definition; otherwise the system
links the function name with its definition and its valid induction templates.

The induction templates serve actually two purposes: as witnesses for termina-
tion and as the basic tools of the induction rule of explicit induction for generating
the step cases.

For a finite number of mutually recursive functions fk with arity nk (k ∈K),
an induction template in the most general form consists of the following:

1. A relational description93 of the changes in the argument pattern of these
recursive functions as found in their recursive defining equations:
For each k ∈ K and for each positive/negative-conditional equation with a left-
hand side of the form fk(t1, . . . , tnk

), we take the set R of all recursive function
calls of the fk� (k� ∈K) occurring in the right-hand side or the condition, and
some case condition C, which must be a subset of the conjunctive condition
literals of the defining equation. Typically, C is empty (i.e. always true) in the
case of constructor-style definitions, and just sufficient to guarantee proper
destructor applications in the case of destructor-style definitions.
Together they form the triple (fk(t1, . . . , tnk

), R, C), and a set containing such
a triple for each such defining equation forms the relational description.

91Note that termination is not proved in the Pure LISP Theorem Prover; instead, the sound-
ness of the induction proofs comes with the proviso that the rewrite relation of all defined function
symbols terminate.

92See also item (d) of the “definition principle” of [Boyer & Moore, 1979, p. 44f.] for a formulation
that avoids the technical term “induction template”.

93The name “relational description” comes from [Walther, 1992; 1993].

1544

Automation of Mathematical Induction

For our definition of + via (+1), (+2) in § 4.4, there is only one recursive
equation and only one relevant relational description, namely the following
one with an empty case condition:

© °
s(x) + y, {x+ y}, ∅

¢ ™
.

Also for our definition of + with (+1�), (+2�) in Example 5.1, there is only
one recursive equation and only one relevant relational description, namely

© °
x+ y, {p(x)+ y}, {x �= 0}

¢ ™
.

2. For each k ∈ K, a variable-free weight term wfk
in which the position numbers

(1), . . . , (nk)

are used in place of variables. The position numbers actually occurring in the
term are called the measured positions.
For our two relational descriptions, only the weight term (1) (consisting just
of a position number) makes sense as w+, resulting in the set of measured
positions {1}. Indeed, + terminates in both definitions because the argument
in the first position gets smaller.

3. A binary predicate < that is known to represent a well-founded relation.
For our two relational descriptions, the predicate λx, y. (lessp(x, y) = true) is
appropriate.

Now, an induction template is valid if for each element of the relational description
as given above, and for each fk�(t�1, . . . , t

�
nk�) ∈ R, the following conjecture is valid:

wfk� {(1)�→t�1, . . . , (nk�)�→t�nk� } < wfk
{(1)�→t1, . . . , (nk)�→tnk

} ⇐ V
C.

For our two relational descriptions, this amounts to showing lessp(x, s(x)) = true
and lessp(p(x), x)= true ⇐ x �= 0, respectively; so their templates are both valid
by lemma (lessp4) and axioms (nat1–2) and (p1).

Example 5.2 (Two Induction Templates, Different Measured Positions)
For the ordering predicate lessp as defined by (lessp1–3) of § 4.4, we get two ap-
propriate induction templates with the sets of measured positions {1} and {2},
respectively, both with the relational description© °

lessp(s(x), s(y)), {lessp(x, y)}, ∅
¢ ™

,
and both with the well-founded ordering λx, y. (lessp(x, y)= true). The first tem-
plate has the weight term (1) and the second one has the weight term (2). The
validity of both templates is given by lemma (lessp4) of § 4.4. 2

1545

Moore and Wirth

Example 5.3 (One Induction Template with Two Measured Positions)
For the Ackermann function ack as defined by (ack1–3) of § 4.4, we get only one
appropriate induction template. The set of its measured positions is {1, 2}, because
of the weight function cons((1), cons((2), nil)), which we will abbreviate in the fol-
lowing with [(1), (2)]. The well-founded relation is the lexicographic ordering λl, k.
(lexlimless(l, k, s(s(s(0))))= true). The relational description has two elements: For
the equation (ack2) we get°

ack(s(x), 0), {ack(x, s(0))}, ∅
¢
,

and for the equation (ack3) we get°
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅

¢
.

The validity of the template is expressed in the three equations
lexlimless([x, s(0)], [s(x), 0], s(s(s(0)))) = true;
lexlimless([s(x), y], [s(x), s(y)], s(s(s(0)))) = true;
lexlimless([x, ack(s(x), y)], [s(x), s(y)], s(s(s(0)))) = true;

which follow deductively from (lessp4), (lexlimless1), (lexless2–4), (length1–2). 2

For induction templates of destructor-style definitions see Examples 6.8 and 6.9
in § 6.3.7.

5.6 Termination of the Rewrite Relation on Ground Terms
Let us prove that the existence of a valid induction template for a new set of recur-
sive functions fk (k ∈K) actually implies termination of the rewrite relation after
addition of the new positive/negative-conditional equations for the fk, assuming an
arbitrary free-constructor model M of all (old and new) (positive/negative-condi-
tional) equations to be given.94

For an argumentum ad absurdum, suppose that there is an infinite sequence of
rewrite steps on ground terms. Consider each term in this sequence to be replaced
with the multiset that contains, for each occurrence of a function call fk(t1, . . . , tnk

)
with k ∈K, the value of its weight term wfk

{(1)�→t1, . . . , (nk)�→tnk
} in M.

Then the rewrite steps with instances of the old equations of previous function
definitions (of symbols not among the fk) can change the multiset only by deleting
some elements for the following two reasons: Instances that do not contain any
new function symbol have no effect on the values in M, because M is a model of
the old equations. There are no other instances because the new function symbols

94A free-constructor model is a model where two constructor ground terms are equal in M
only if they are syntactically equal. Because the confluence result of [Wirth, 2009] applies in our
case without requiring termination, there is always an initial free-constructor model according to
Corollary 7.17 of [Wirth, 1997], namely the factor algebra of the ground term algebra modulo the
equivalence closure of the rewrite relation.

1546

Automation of Mathematical Induction

do not occur in the old equations, and because we consider all our variables to be
constructor variables as explained in § 5.4.95

Moreover, a rewrite step with a new equation reduces only a single innermost
occurrence of a new function symbol, because only a single new function symbol
occurs on the left-hand side of the equation and because we consider all our variables
to be constructor variables. The other occurrences in the multiset are not affected
because M is a model of the new equations. Thus, such a rewrite step reduces
the multiset in a well-founded relation, namely the multiset extension of the well-
founded relation of the template in the assumed model M. Indeed, this follows from
the fulfilledness of the conditions of the equation and the validity of the template.

Thus, in each rewrite step, the multiset gets smaller in a well-founded ordering
or does not change. Moreover, if we assume that rewriting with the old equations
terminates, then the new equations must be applied infinitely often in this sequence,
and so the multiset gets smaller in infinitely many steps, which is impossible in a
well-founded ordering.

5.7 Applicable Induction Templates for Explicit Induction
We restrict the discussion in this section to recursive functions that are not mutually
recursive, partly for simplicity and partly because induction templates are hardly
helpful for finding proofs involving non-trivially mutually recursive functions.96

Moreover, in principle, users can always encode mutually recursive functions
fk(. . .) by means of a single recursive function f(k, . . .). Via such an encoding,
humans tend to provide additional heuristic information relevant for induction tem-
plates, namely by the way they standardize the argument list w.r.t. length and
position (cf. the “changeable positions” below).

Thus, all the fk with arity nk of § 5.5 simplify to one symbol f with arity n.
Under this restriction it is easy to partition the measured positions of a template
into “changeable” and “unchangeable” ones.97

95Among the old equations here, we may even admit projective equations with general variables,
such as for destructors and the conditional function IfThenElsenat : bool, nat, nat → nat:

p(s(X))= X car(cons(X, L)) = X
cdr(cons(X, L))= L

IfThenElsenat(true, X, Y) = X
IfThenElsenat(false, X, Y)= Y

for general variables X, Y : nat, L : list(nat), ranging over general terms (instead of constructor
terms only).

96See, however, [Kapur & Subramaniam, 1996] for explicit-induction heuristics applicable to
simple forms of mutual recursion.

97This partition into changeable and unchangeable positions (actually: variables) originates in
[Boyer & Moore, 1979, p. 185f.].

1547

Moore and Wirth

Changeable are those measured positions i of the template which sometimes
change in the recursion, i.e. for which there is a triple (f(t1, . . . , tn), R,C) in the
relational description of the template, and an f(t�1, . . . , t

�
n) ∈ R such that t�i �= ti.

The remaining measured positions of the template are called unchangeable. Un-
changeable positions typically result from the inclusion of a global variable into the
argument list of a function (to observe an applicative programming style).

To improve the applicability of the induction hypotheses of the step cases
produced by the induction rule, these induction hypotheses should mirror the recur-
sive calls of the unfolding of the definition of a function f occurring in the induction
rule’s input formula, say

A[f(t��1, . . . , t
��
n)].

An induction template is applicable to the indicated occurrence of its function sym-
bol f if the terms t��i at the changeable positions i of the template are distinct vari-
ables and none of these variables occurs in the terms t��i� that fill the unchangeable
positions i� of the template.98 For templates of constructor-style equations we addi-
tionally have to require here that the first element f(t1, . . . , tn) of each triple of the
relational description of the template matches (f(t��1, . . . , t

��
n))ξ for some constructor

substitution ξ that may replace the variables of f(t��1, . . . , t
��
n) with constructor terms,

i.e. terms consisting of constructor symbols and variables, such that t��i ξ = t��i for
each unchangeable position i of the template.

Example 5.4 (Applicable Induction Templates)
Let us consider the conjecture (ack4) from § 4.4. From the three induction tem-
plates of Examples 5.2 and 5.3, only the one of Example 5.3 is applicable. The two
of Example 5.2 are not applicable because lessp(s(x), s(y)) cannot be matched to
(lessp(y, ack(x, y)))ξ for any constructor substitution ξ. 2

5.8 Induction Schemes
Let us recall that for every recursive call f(t�j�,1, . . . , t

�
j�,n) in a positive/negative-

conditional equation with left-hand side f(t1, . . . , tn), the relational description of
an induction template for f contains a triple°

f(t1, . . . , tn), { f(t�j,1, . . . , t
�
j,n) | j ∈J }, C

¢
,

such that j� ∈J (by definition of an induction template).
Let us assume that the induction template is valid and applicable to the occur-

rence indicated in the formula A[f(t��1, . . . , t
��
n)] given as input to the induction rule

of explicit induction. Let σ be the substitution whose domain are the variables
98This definition of applicability originates in [Boyer & Moore, 1979, p. 185f.].

1548

Automation of Mathematical Induction

of f(t1, . . . , tn) and which matches the first element f(t1, . . . , tn) of the triple to
(f(t��1, . . . , t

��
n))ξ for some constructor substitution ξ whose domain are the variables

of f(t��1, . . . , t
��
n), such that t��i ξ = t��i for each unchangeable position i of the template.

Then we have tiσ = t��i ξ for i ∈ {1, . . . , n}.

Now, for the well-foundedness of the generic step-case formula
≥ °

A[f(t��1, . . . , t
��
n)]

¢
ξ ⇐ V

j∈J

°
A[f(t��1, . . . , t

��
n)]

¢
µj

¥
⇐ V

Cσ

to be implied by the validity of the induction template, it suffices (because of
t��i ξ = tiσ) to take substitutions µj whose domain dom(µj) is the set of variables
of f(t��1, . . . , t

��
n), such that the matching constraint

t��i µj = t�j,iσ

is satisfied for each measured position i of the template and for each j ∈ J.

If i is an unchangeable position of the template, then we have ti = t�j,i and t��i ξ = t��i .
Therefore, we can satisfy the matching constraint by requiring µj to be the identity
on the variables of t��i , simply because then we have t��i µj = t��i = t��i ξ = tiσ = t�j,iσ.

If i is a changeable position, then we know by the applicability of the template
that t��i is a variable not occurring in another changeable or unchangeable posi-
tion in f(t��1, . . . , t

��
n), and we can satisfy the matching constraint simply by defining

t��i µj := t�j,iσ.

On the remaining variables of f(t��1, . . . , t
��
n), we define µj in a way that we get

t��i µj = t�j,iσ for as many unmeasured positions i as possible, and otherwise as
the identity. This is not required for well-foundedness, but it improves the like-
liness of applicability of the induction hypothesis (A[f(t��1, . . . , t

��
n)])µj after unfold-

ing f(t��1, . . . , t
��
n)ξ in (A[f(t��1, . . . , t

��
n)])ξ.

Note that such an eager instantiation of the input formula via {µj | j ∈J } is
required in explicit induction unless the logic admits one of the following: existential
quantification, existential variables,99 lazy induction-hypothesis generation.

An induction scheme for the given input formula consists of the following items:

1. The position set contains the position of f(t��1, . . . , t
��
n) in A[f(t��1, . . . , t

��
n)].

Merging of induction schemes may lead to non-singleton position sets later.

2. The set of the induction variables, which are defined as the variables at the
changeable positions of the induction template in f(t��1, . . . , t

��
n).

3. To obtain a step-case description for all step cases by means of the generic
step-case formula displayed above, each triple in the relational description of
the considered form is replaced with the new triple°

ξ, {µj | j ∈J }, Cσ
¢
.

1549

Moore and Wirth

To make as many induction hypotheses available as possible in each case,
we assume that step-case descriptions are implicitly kept normalized by the
following associative commutative operation: If two triples are identical in
their first elements and in their last elements, we replace them with the single
triple that has the same first and last elements and the union of the middle
elements as new middle element.

4. We also add the hitting ratio of all substitutions µj with j ∈ J given by
|{ (j, i) ∈ J×{1, . . . , n} | t��i µj = t�j,iσ }|

|J×{1, . . . , n}| ,

where J actually has to be the disjoint sum over all the J occurring as index
sets of second elements of triples like the one displayed above. We newly
introduce the name “hitting ratio” here in the hope that it helps the readers
to remember that this ratio measures how well the induction hypotheses hit
the recursive calls according the matching constraint displayed before.

Note that the resulting step-case description is a set describing all step cases of
an induction scheme; these step cases are guaranteed to be well-founded,100 but
— for providing a sound induction formula — they still have to be complemented
by base cases, which may be analogously described by triples (ξ, ∅, C), such that
all substitutions in the first elements of the triples together describe a distinction of
cases that is complete for constructor terms and, for each of these substitutions, its
case conditions describe a complete distinction of cases again.

Example 5.5 (Induction Scheme)
The template for ack of Example 5.3 is the only one that is applicable to (ack4)
according to Example 5.4. It yields the following induction scheme.

The position set is {1.1.2}. It describes the occurrence of ack in the second
subterm of the left-hand side of the first literal of the formula (ack4) as input to the
induction rule of explicit induction:

(ack4) / 1.1.2 = ack(x, y).
The set of induction variables is {x, y}, because both positions of the induction

template are changeable.
99Existential variables are called “free variables” in modern tableau systems (cf. [Fitting, 1990;

1996]) and occur with extended functionality under different names in the inference systems of
[Wirth, 2004; 2012b; 2017].

100Well-foundedness is indeed guaranteed according to the above discussion. As a consequence,
the induction scheme does not need the weight term and the well-founded relation of the induction
template anymore.

1550

Automation of Mathematical Induction

The relational description of the induction template is replaced with the step-
case description© °

ξ1, {µ1,1}, ∅
¢
,

°
ξ2, {µ2,1, µ2,2}, ∅

¢ ™
.

that is given as follows.
The first triple of the relational description, namely°

ack(s(x), 0), {ack(x, s(0))}, ∅
¢

(obtained from the equation (ack2)) is replaced with
°

ξ1, {µ1,1}, ∅
¢
,

where
ξ1 = {x�→s(x�), y �→0} and

µ1,1 = {x�→x�, y �→s(0)}.

This can be seen as follows. The substitution called σ in the above discussion
— which has to match the first element of the triple to ((ack4)/1.1.2)ξ1 — has
to satisfy (ack(s(x), 0))σ = (ack(x, y))ξ1. Taking ξ1 as the minimal constructor
substitution given above, this determines σ = {x�→x�}. Moreover, as both positions
of the template are changeable, µ1,1 has to match (ack4)/1.1.2 to the σ-instance
of the single element of the second element of the triple, which determines µ1,1 as
given.

The second triple of the relational description, namely°
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅

¢

(obtained from the equation (ack3)) is replaced with
°

ξ2, {µ2,1, µ2,2}, ∅
¢
, where

ξ2 = {x�→s(x�), y �→s(y�)},
µ2,1 = {x�→s(x�), y �→y�}, and
µ2,2 = {x�→x�, y �→ack(s(x�), y�)}.

This can be seen as follows. The substitution called σ in the above discussion
has to satisfy (ack(s(x), s(y)))σ = (ack(x, y))ξ2. Taking ξ2 as the minimal con-
structor substitution given above, this determines σ = {x�→x�, y �→y�}. Moreover,
we get the constraints (ack(x, y))µ2,1 = (ack(s(x), y))σ and (ack(x, y))µ2,2 =
(ack(x, ack(s(x), y)))σ, which determine µ2,1 and µ2,2 as given above.

The hitting ratio for the three constraints on the two arguments of (ack4)/1.1.2
is 6

6 = 1. This is optimal: the induction hypotheses are 100% identical to the
expected recursive calls.

To achieve completeness of the substitutions ξk for constructor terms we have to
add the base case (ξ0, ∅, ∅) with ξ0 = {x�→0, y �→y} to the step-case description.

The three new triples now describe exactly the three formulas displayed at the
beginning of Example 4.5 in § 4.9. 2

1551

Moore and Wirth

6 Automated Explicit Induction

6.1 The Application Context of Automated Explicit Induction

Since the development of programmable computing machinery in the middle of the
20th century, a major problem of hard- and software has been and still is the uncer-
tainty that they actually always do what they should do.

It is almost never the case that the product of the possible initial states, input
threads, and schedulings of a computing system is a small number. Otherwise,
however, even the most carefully chosen test series cannot cover the often very huge
or even infinite number of possible cases; and then, no matter how many bugs have
been found by testing, there can never be certainty that none remain.

Therefore, the only viable solution to this problem seems to be:

Specify the intended functionality in a language of formal logic, and then
supply a formal mechanically checked proof that the program actually
satisfies the specification!

Such an approach also requires formalizing the platforms on which the system is
implemented. This may include the hardware, operating system, programming lan-
guage, sensory input, etc. One may additionally formalize and prove that the under-
lying platforms are implemented correctly and this may ultimately involve proving,
for example, that a network of logical gates and wires implements a given abstract
machine. Eventually, however, one must make an engineering judgment that certain
physical objects (e.g. printed circuit boards, gold plated pins, power supplies, etc.)
reliably behave as specified. To be complete, such an approach would also require a
verification that the verification system is sound and correctly implemented.101

A crucial problem, however, is the cost — in time and money — of doing the
many proofs required, given the huge amounts of application hard- and software
in our modern economies. Thus, we can expect formal verification only in areas
where the managers expect that mere testing does not suffice, that the costs of the
verification process are lower than the costs of bugs in the hard- or software, and that
the competitive situation admits the verification investment. Good candidates are
the areas of central processing units (CPUs) in standard processors and of security
protocols.

101See, for example, [Davis, 2009].

1552

Automation of Mathematical Induction

To reduce the costs of verification, we can hope to automate it with automated
theorem-proving systems. This automation has to include mathematical induction
because induction is essential for the verification of the properties of most data
types used in digital design (such as natural numbers, arrays, lists, and trees), for
the repetition in processing (such as loops), and for parameterized systems (such as
a generic n-bit adder).

Decision methods (many of them exploiting finiteness, e.g. the use of 32-bit data
paths) allow automatic verification of some modules, but — barring a completely
unexpected breakthrough in the future — the verification of a new hard- or software
system will always require human users who help the theorem-proving systems to
explore and develop the notions and theories that properly match the new system.

Already today, however, ACL2 often achieves complete automation in verify-
ing minor modifications of previously verified modules — an activity called proof
maintenance which is increasingly important in the microprocessor-design industry.

6.2 The Pure LISP Theorem Prover

Our overall task is to answer — from a historical perspective — the question:

How did Robert S. Boyer and J Strother Moore — starting virtually from
zero102 in the summer of 1972 — invent their long-lived solutions to the
hard heuristic problems in the automation of induction and implement
them in the sophisticated theorem prover Thm as described in [Boyer &
Moore, 1979]?

102No heuristics at all were explicitly described, for instance, in Burstall’s 1968 work on program
verification by induction over recursive functions in [Burstall, 1969], where the proofs were not even
formal, and an implementation seemed to be more or less utopian [Burstall, 1969, p. 41]:

“The proofs presented will be mathematically rigorous but not formalised to the point where
each inference is presented as a mechanical application of elementary rules of symbol manipulation.
This is deliberate since I feel that our first aim should be to devise methods of proof which will
prove the validity of non-trivial programs in a natural and intelligible manner. Obviously we will
wish at some stage to formalise the reasoning to a point where it can be performed by a computer
to give a mechanised debugging service.”

As far as we are aware, besides interactively invoked induction in resolution theorem proving (e.g.
by starting a resolution proof for the two clauses resulting from Skolemization of (P(0) ∧ ¬P(x)) ⇒
∃y. (P(y) ∧ ¬P(s(y))) [Darlington, 1968]), the only implementation of an automatically invoked
mathematical-induction heuristic prior to 1972 is in a set-theory prover by Bledsoe [1971], which
uses structural induction over 0 and s (cf. § 4.4) on a randomly picked, universally quantified variable
of type nat.

1553

Moore and Wirth

As already described in § 1, the breakthrough in the heuristics for automated
inductive theorem proving was achieved with the “Pure LISP Theorem Pro-
ver”, developed and implemented by Boyer and Moore. It was presented by Moore
at the third ĲCAI [Boyer & Moore, 1973], which took place in Stanford (CA) in
August 1973, and it is best documented in Part II of Moore’s PhD thesis [1973],
defended in November 1973.

The Pure LISP Theorem Prover was given no name in the before-mentioned
publications. The only occurrence of the name in publication seems to be in [Moore,
1975a, p. 1], where it is actually called “the Boyer–Moore Pure LISP Theorem
Prover”.

To make a long story short, the fundamental insights were

• to exploit the duality of recursion and induction to formulate explicit induction
hypotheses,

• to abandon “random” search and focus on simplifying the goal by rewriting
and normalization techniques to lead to opportunities to use the induction
hypotheses, and

• to support generalization to prepare subgoals for subsequent inductions.

Thus, it is not enough for us to focus here just on the induction heuristics per se, but
it is necessary to place them in the context of the development of the Boyer–Moore
waterfall (cf. Figure 1).

To understand the achievements a bit better, let us now discuss the material of
Part II of Moore’s PhD thesis in some detail, because it provides some explanation
of how Boyer and Moore could be so surprisingly successful. Especially helpful
for understanding the process of creation are those procedures of the Pure LISP
Theorem Prover that are provisional w.r.t. their refinement in later Boyer–Moore
theorem provers. Indeed, these provisional procedures help to decompose the leap
from nothing to Thm, which was achieved by two men in less than eight years of
work.

As W. W. Bledsoe (1921–1995) was Boyer’s PhD advisor, it is no surprise that
the Pure LISP Theorem Prover shares many design features with Bledsoe’s
provers. In [Moore, 1973, p.172], we read on the Pure LISP Theorem Pro-
ver:

“The design of the program, especially the straightforward approach of
‘hitting’ the theorem over and over again with rewrite rules until it can
no longer be changed, is largely due to the influence of W. W. Bledsoe.”

1554

Automation of Mathematical Induction

Boyer and Moore report103 that in late 1972 and early 1973 they were doing
proofs about list data structures on the blackboard and verbalizing to each other
the heuristics behind their choices on how to proceed with the proof. This means
that, although explicit induction is not the approach humans would choose for non-
trivial induction tasks, the heuristics of the Pure LISP Theorem Prover are
learned from human heuristics after all.

Note that Boyer and Moore’s method of learning computer heuristics from their
own human behavior in mathematical logic was a step of two young men against
the spirit of the time: the use of vast amounts of computational power to search an
even more enormous space of possibilities. Boyer and Moore’s goal, however, was
in a sense more modest:

“The program was designed to behave properly on simple functions.
The overriding consideration was that it should be automatically able to
prove theorems about simple LISP functions in the straightforward way
we prove them.” [Moore, 1973, p. 205]

It may be that the orientation toward human-like or “intelligible” methods and
heuristics in the automation of theorem proving had also some tradition in Edin-
burgh at the time,104 but, also in this aspect, the major influence on Boyer and
Moore is again W. W. Bledsoe.105

The source code of the Pure LISP Theorem Prover was written in the
programming language POP–2.106 Boyer and Moore were the only programmers
involved in the implementation. The average time in the central processing unit
(CPU) of the ICL–4130 for the proof of a theorem is reported to be about ten
seconds.107 This was considered fast at the time, compared to the search-dominated
proofs by resolution systems. Moore explains the speed:

“Finally, it should be pointed out that the program uses no search. At no
time does it ‘undo’ a decision or back up. This is both the primary reason
it is a fast theorem prover, and strong evidence that its methods allow
the theorem to be proved in the way a programmer might ‘observe’ it.
The program is designed to make the right guess the first time, and then
pursue one goal with power and perseverance.” [Moore, 1973, p. 208]

103Cf. [Wirth, 2012d].
104Cf. e.g. the quotation from [Burstall, 1969] in Note 102.
105Cf. e.g. [Bledsoe &al., 1972].
106Cf. [Burstall &al., 1971].

1555

Moore and Wirth

One remarkable omission in the Pure LISP Theorem Prover is lemma appli-
cation. As a consequence, the success of proving a set of theorems cannot depend on
the order of their presentation to the theorem prover. Indeed, just as the resolution
theorem provers of the time, the Pure LISP Theorem Prover starts every proof
right from scratch and does not improve its behavior with the help of previously
proved lemmas. This was a design decision; one of the reasons was:

“Finally, one of the primary aims of this project has been to demonstrate
clearly that it is possible to prove program properties entirely automati-
cally. A total ban on all built-in information about user defined functions
thus removes any taint of user supplied information.”

[Moore, 1973, p. 203]

Moreover, all induction orderings in the Pure LISP Theorem Prover are recom-
binations of constructor relations, such that all inductions it can do are structural
inductions over combinations of constructors. As a consequence, contrary to later
Boyer–Moore theorem provers, the well-foundedness of the induction orderings does
not depend on the termination of the recursive function definitions.108

Nevertheless, the soundness of the Pure LISP Theorem Prover depends on
the termination of the recursive function definitions, but only in one aspect: It sim-
plifies and evaluates expressions under the assumption of termination. For instance,
both (IF109 a d d) and (CDR (CONS a d)) simplify to d, no matter whether
a terminates; and it is admitted to rewrite with a recursive function definition even
if an argument of the function call does not terminate. Note that such a lazy form
of evaluation is sound w.r.t. the given logic only if each eager call terminates and
returns a constructor ground term, simply because all functions are meant to be
defined in terms of constructor variables (cf. § 5.4).110

The termination of the recursively defined functions, however, is not checked by
the Pure LISP Theorem Prover, but comes as a proviso for its soundness.

107Here is the actual wording of the timing result found on Page 171f. of [Moore, 1973]: “Despite
theses inefficiencies, the ‘typical’ theorem proved requires only 8 to 10 seconds of CPU time. For
comparison purposes, it should be noted that the time for CONS in 4130 POP–2 is 400 microseconds,
and CAR and CDR are about 50 microseconds each. The hardest theorems solved, such as those
involving SORT, require 40 to 50 seconds each.”

108Note that the well-foundedness of the constructor relations depends on distinctness of the
constructor ground terms in the models, but this does not really depend on the termination of the
recursive functions because (as discussed in § 5.2) confluence is sufficient here.

109Cf. Note 90.
110There is a work-around for projective functions as indicated in Note 95 and in [Wirth, 2009].

1556

Automation of Mathematical Induction

The logic of the Pure LISP Theorem Prover is an applicative111 subset of
the logic of LISP. The only destructors in this logic are CAR and CDR. They are
overspecified on the only constructors NIL and CONS by the following equations:

(CAR (CONS a d)) = a (CAR NIL) = NIL
(CDR (CONS a d)) = d (CDR NIL) = NIL

As standard in LISP, every term of the form (CONS a d) is taken to be true in the
logic of the Pure LISP Theorem Prover if it occurs at an argument position with
Boolean intention. The actual truth values (to be returned by Boolean functions) are
NIL (representing false) and T, which is an abbreviation for (CONS NIL NIL) and
represents true.112 Unlike conventional LISPs (both then and now), the natural
numbers are represented by lists of NILs to keep the logic simple; the natural
number 0 is represented by NIL and the successor function s(d) is represented by
(CONS NIL d).113

Let us now discuss the behavior of the Pure LISP Theorem Prover by describing
the instances of the stages of the Boyer–Moore waterfall (cf. Figure 1) as they are
described in Moore’s PhD thesis.

6.2.1 Simplification in the Pure LISP Theorem Prover

The first stage of the Boyer–Moore waterfall — “simplification” in Figure 1 —
is called “normalation”114 in the Pure LISP Theorem Prover. It applies the
following simplification procedures to LISP expressions until the result does not
change any more: “evaluation”, “normalization”, and “reduction”.

“Evaluation” is a procedure that evaluates expressions partly by simplification within
the elementary logic as given by Boolean operations and the equality predicate.
Moreover, “evaluation” executes some rewrite steps with the equations defining the
recursive functions. Thus, “evaluation” can roughly be seen as normalization with

111Cf. Note 82.
112Cf. 2nd paragraph of Page 86 of [Moore, 1973].
113Cf. 2nd paragraph of Page 87 of [Moore, 1973].
114During the oral defense of the dissertation, Moore’s committee abhorred the non-word and

instructed him to choose a word. Some copies of the dissertation call the process “simplification.”

1557

Moore and Wirth

the rewrite relation resulting from the elementary logic and from the recursive func-
tion definitions. The rewrite relation is applied according to the innermost left-to-
right rewriting strategy, which is standard in LISP.

“Evaluation” completely evaluates all ground terms to their normal forms.
Terms containing (implicitly universally quantified) variables, however, have to be
handled in addition. Surprisingly, the considered rewrite relation is not neces-
sarily terminating on non-ground terms, although the LISP evaluation of ground
terms terminates because of the assumed termination of recursive function defini-
tions (cf. § 5.5). The reason for this non-termination is the following: Because of
the LISP definition style via unconditional equations, the positive/negative condi-
tions are actually part of the right-hand sides of the defining equations, such that
the rewrite step can be executed even if the conditions evaluate neither to false nor
to true. For instance, in Example 5.1 of § 5.2, a rewrite step with the definition of
PLUS can always be executed, whereas a rewrite step with (+1�) or (+2�) requires
x= 0 to be definitely true or definitely false. This means that non-termination may
result from the rewriting of cases that do not occur in the evaluation of any ground
instance.115

As the final aim of the stages of the Boyer–Moore waterfall is a formula that
provides concise and sufficiently strong induction hypotheses in the last of these
stages, symbolic evaluation must be prevented from unfolding function definitions
unless the context admits us to expect an effect of simplification.116

Because the main function of “evaluation” — only to be found in this first one
of the Boyer–Moore theorem provers — is to collect data to assist the induction
rule in the generation of appropriate base and step cases later, the Pure LISP
Theorem Prover applies a unique procedure to stop the unfolding of recursive
function definitions:

115It becomes clear in the second paragraph on Page 118 of [Moore, 1973] that the code of both
the positive and the negative case of a conditional will be evaluated, unless one of them can be
canceled by the complete evaluation of the governing condition to true or false. Note that the
evaluation of both cases is necessary indeed and cannot be avoided in practice.

Moreover, note that a stronger termination requirement that guarantees termination independent
of the governing condition is not feasible for recursive function definitions in practice.

Later Boyer–Moore theorem provers also use lemmas for rewriting during symbolic evaluation,
which is another source of possible non-termination.

The mechanism for partially enforcing termination of “evaluation” according to this procedure
is vaguely described in the last paragraph on Page 118 of Moore’s PhD thesis. As this kind of
“evaluation” is only an intermediate solution on the way to more refined control information for the
induction rule in later Boyer–Moore theorem provers, the rough information given here may suffice.

116In QuodLibet this is achieved by contextual rewriting where evaluation stops when the gov-
erning conditions cannot be established from the context. Cf. [Schmidt-Samoa, 2006b; 2006c].

1558

Automation of Mathematical Induction

A rewrite step with an equation defining a recursive function f is canceled
if there is a CAR or a CDR in an argument to an occurrence of f in the right-
hand side of the defining equation that is encountered during the control flow of
“evaluation”, and if this CAR or CDR is not removed by the “evaluation” of the ar-
guments of this occurrence of f under the current environment updated by match-
ing the left-hand side of the equation to the redex. For instance, “evaluation” of
(PLUS (CONS NIL X) Y) returns (CONS NIL (PLUS X Y)); whereas “evaluation”
of (PLUS X Y) returns (PLUS X Y) and informs the induction rule that (CDR X)
occurred in the recursive call during the trial to rewrite with the definition of PLUS.
In general, such occurrences indicate which induction hypotheses should be gener-
ated by the induction rule.117

“Evaluation” provides a crucial link between symbolic evaluation and the
induction rule of explicit induction. The question “Which case distinction on which
induction variables should be used for the induction proof and how should the step
cases look?” is reduced to the quite different question “Where do destructors like
CAR and CDR heap up during symbolic evaluation?”. This reduction helps to under-
stand by which intermediate steps it was possible to develop the most surprising,
sophisticated recursion analysis of later Boyer–Moore theorem provers.

“Normalization” tries to find sufficient conditions for a given expression to have the
soft type “Boolean” and to normalize logical expressions. Contrary to clausal logic
over equational atoms, LISP admits EQUAL and IF to appear not only at the top
level, but in nested terms. To free later tests and heuristics from checking for their
triggers in every equivalent form, such a normalization w.r.t. propositional logic and
equality is part of most theorem provers today.

“Reduction” is a rudimentary form of what today is called contextual rewriting.
It is based on the fact that — in the logic of the Pure LISP Theorem Prover —
in the conditional expression

(IF c p n)
we can simplify occurrences of c in p to (CONS (CAR c) (CDR c)), and in n to NIL.
The replacement with (CONS (CAR c) (CDR c)) is executed only at positions with
Boolean intention and can be improved in the following two special cases:

117Actually, “evaluation” also informs which occurrences of CAR or CDR besides the arguments
of recursive occurrences of PLUS were permanently introduced during that trial to rewrite. Such
occurrences trigger an additional case analysis to be generated by the induction rule, mostly as a
compensation for the omission of the stage of “destructor elimination” in the Pure LISP Theorem
Prover.

1559

Moore and Wirth

1. If we know that c is of soft type “Boolean”, then we rewrite all occurrences
of c in p actually to T.

2. If c is of the form (EQUAL l r), then we can rewrite occurrences of l in p to r
(or vice versa). Note that we have to treat the variables in l and r as constants
in this rewriting. The Pure LISP Theorem Prover rewrites in this case
only if either l or r is a ground term;118 then the other cannot be a ground
term because the equation would otherwise have been simplified to T or NIL
in the previously applied “evaluation”. So replacing the latter term with the
ground term everywhere in p must terminate, and this is all the contextual
rewriting with equalities that the Pure LISP Theorem Prover does in
“reduction”.119

6.2.2 Destructor Elimination in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.120

6.2.3 (Cross-) Fertilization in the Pure LISP Theorem Prover

Fertilization is just contextual rewriting with an equality, as described before (cf. the
“reduction” that is part of the simplification of the Pure LISP Theorem Prover
in § 6.2.1), but now with an equation between two non-ground terms.

The most important case of fertilization is called “cross-fertilization”. It occurs
very often in step cases of induction proofs of equational theorems, and we have seen
it already in Example 4.4 of § 4.8.1.

Neither Boyer nor Moore ever explicitly explained why cross-fertilization is
“cross”, but in [Moore, 1973, p. 142] we read:

“When two equalities are involved and the fertilization was right-side”
[of the induction hypothesis put] “into left-side” [of the induction con-
clusion,] “or left-side into right-side, it is called ‘cross-fertilization’.”

“Cross-fertilization” is actually a term from genetics referring to the alignment of
haploid genetic code from male and female to a diploid code in the egg cell. This

118Actually, this ground term (i.e. a term without variables) here is always a constructor ground
term (i.e. a term built-up exclusively from constructor function symbols) because the previously
applied “evaluation” procedure has reduced any ground term to a constructor ground term, provided
that the termination proviso is satisfied.

119Note, however, that further contextual rewriting with equalities is applied in a later stage of
the Boyer–Moore waterfall, named cross-fertilization.

120See, however, Note 117 and the discussion of the Pure LISP Theorem Prover in § 6.3.2.

1560

Automation of Mathematical Induction

image may help to recall that only that side (i.e. left- or right-hand side of the equa-
tion) of the induction conclusion which was activated by a successful simplification is
further rewritten during cross-fertilization, namely everywhere where the same side
of the induction hypothesis occurs as a redex — just like two haploid chromosomes
have to start at the same (activated) sides for successful recombination. In [Moore,
1973, p. 139] we find the reason for this: cross-fertilization frequently produces a new
goal that is easy to prove because its uniform “genre” in the sense that its subterms
uniformly come from just one side of the original equality.

Furthermore — for getting a sufficiently powerful new induction hypothesis in
a follow-up induction — it is crucial to delete the equation used for rewriting
(i.e. the old induction hypothesis), which can be remembered by the fact that
— in the image — only one (diploid) genetic code remains.

The only noteworthy difference between cross-fertilization in the Pure LISP
Theorem Prover and later Boyer–Moore theorem provers is that the generaliza-
tion that consists in the deletion of the used-up equations is done in a halfhearted
way: the resulting formula is equipped with a link to the deleted equation.

6.2.4 Generalization in the Pure LISP Theorem Prover

Generalization in the Pure LISP Theorem Prover works as described in § 4.9.
The only difference to our presentation there is the following: Instead of just replac-
ing all occurrences of a non-variable subterm t with a new variable z, the definition
of the top function symbol of t is used to generate the definition of a new predi-
cate p, such that p(t) holds. Then the generalization of T [t] becomes T [z] ⇐ p(z)
instead of just T [z]. The version of this automated function synthesis actually im-
plemented in the Pure LISP Theorem Prover is just able to generate simple
type properties, such as being a number or being a Boolean value.121

Note that generalization is essential for the Pure LISP Theorem Prover
because it does not use lemmas, and so it cannot build up a more and more complex
theory successively. It is clear that this limits the complexity of the theorems it can
prove, because a proof can only be successful if the implemented non-backtracking
heuristics work out all the way from the theorem down to the most elementary
theory.

6.2.5 Elimination of Irrelevance in the Pure LISP Theorem Prover
There is no such stage in the Pure LISP Theorem Prover.

121See § 3.7 of [Moore, 1973]. As explained on Page 156f. of [Moore, 1973], Boyer and Moore
failed with the trial to improve the implemented version of the function synthesis, so that it could
generate a predicate on a list being ordered from a simple sorting-function.

1561

Moore and Wirth

6.2.6 Induction in the Pure LISP Theorem Prover

This stage of the Pure LISP Theorem Prover applies the induction rule of
explicit induction as described in § 4.8. Induction is tried only after the goal
formula has been maximally simplified and generalized by repeated trips through
the waterfall. The induction heuristic takes a formula as input and returns a con-
junction of base and step cases to which the input formula reduces. Contrary to
later Boyer–Moore theorem provers that gather the relevant information via induc-
tion schemes gleaned by preprocessing recursive definitions,122 the induction rule of
the Pure LISP Theorem Prover is based solely on the information provided by
“evaluation” as described in § 6.2.1.

Instead of trying to describe the general procedure, let us just put the induction
rule of the Pure LISP Theorem Prover to test with two paradigmatic examples.
In these examples we ignore the here irrelevant fact that the Pure LISP Theorem
Prover actually uses a list representation for the natural numbers. The only effect
of this is that the destructor p takes over the rôle of the destructor CDR.

Example 6.1 (Induction Rule in the Explicit Induction Proof of (ack4))
Let us see how the induction rule of the Pure LISP Theorem Prover proceeds
w.r.t. the proof of (ack4) that we have seen in Example 4.5 of § 4.9. The substi-
tutions ξ1, ξ2 computed as instances for the induction conclusion in Example 5.5
of § 5.8 suggest an overall case analysis with a base case given by {x �→ 0}, and two
step cases given by ξ1 = {x �→ s(x�), y �→ 0} and ξ2 = {x �→ s(x�), y �→ s(y�)}.
The Pure LISP Theorem Prover requires the axioms (ack1), (ack2), (ack3) to
be in destructor instead of constructor style:
(ack1�) ack(x, y) = s(y) ⇐ x= 0
(ack2�) ack(x, y) = ack(p(x), s(0)) ⇐ x �= 0 ∧ y = 0
(ack3�) ack(x, y) = ack(p(x), ack(x, p(y))) ⇐ x �= 0 ∧ y �= 0

“Evaluation” does not rewrite the input conjecture with this definition, but writes
a “fault description” for the permanent occurrences of p as arguments of the three
occurrences of ack on the right-hand sides, essentially consisting of the following
three “pockets”: (p(x)), (p(x), p(y)), and (p(y)), respectively. Similarly, the
pockets gained from the fault descriptions of rewriting the input conjecture with
the definition of lessp essentially consists of the pocket (p(y), p(ack(x, y))). Similar
to the non-applicability of the induction template for lessp in Example 5.4 of § 5.7,
this fault description does not suggest any induction because one of the arguments
of p in one of the pockets is not a variable. As this is not the case for the previous

122Cf. § 5.8.

1562

Automation of Mathematical Induction

fault description, it suggests the set of all arguments of p in all pockets as induction
variables. As this is the only suggestion, no merging of suggested inductions is
applicable here.

So the Pure LISP Theorem Prover picks the right set of induction variables.
Nevertheless, it fails to generate appropriate base and step cases, because the overall
case analysis results in two base cases given by {x �→ 0} and {y �→ 0}, and a step
case given by {x �→ s(x�), y �→ s(y�)}.123 This turns the first step case of the proof
of Example 4.5 into a base case. The Pure LISP Theorem Prover finally fails
(contrary to all other Boyer–Moore theorem provers, see Examples 4.5, 5.5, and 6.11)
with the step case it actually generates:

lessp(s(y�), ack(s(x�), s(y�)))= true ⇐ lessp(y�, ack(x�, y�))= true.

This step case has only one hypothesis, which is neither of the two we need. 2

Example 6.2 (Proof of (lessp7) by Explicit Induction with Merging)
Let us write T (x, y, z) for (lessp7) of § 4.4. From the proof of (lessp7) in Exam-
ple 4.3 of § 4.7 we can learn the following: The proof becomes simpler when we take
T (0, s(y�), s(z�)) as base case (besides say T (x, y, 0) and T (x, 0, s(z�))), instead of
any of T (0, y, s(z�)), T (0, s(y�), z), T (0, y, z). The crucial lesson from Example 4.3,
however, is that the step case of explicit induction has to be

T (s(x�), s(y�), s(z�)) ⇐ T (x�, y�, z�).
Note that the Boyer–Moore heuristics for using the induction rule of explicit induc-
tion look only one rewrite step ahead, separately for each occurrence of a recursive
function in the conjecture.

This means that there is no way for their heuristic to apply case distinctions on
variables step by step, most interesting first, until finally we end up with an instance
of the induction hypothesis as in Example 4.3.

Nevertheless, even the Pure LISP Theorem Prover manages the pretty hard
task of suggesting exactly the right step case. It requires all axioms to be in de-
structor style, so instead of (lessp1), (lessp2), (lessp3), we have to take:
(lessp1�) lessp(x, y) = false ⇐ y = 0
(lessp2�) lessp(x, y) = true ⇐ y �= 0 ∧ x= 0
(lessp3�) lessp(x, y) = lessp(p(x), p(y)) ⇐ y �= 0 ∧ x �= 0

“Evaluation” does not rewrite any of the occurrences of lessp in the input conjec-
ture with this definition, but writes one “fault description” for each of these occur-
rences about the permanent occurrences of p as argument of the one occurrence

123We can see this from a similar case on Page 164 and from the explicit description on the bottom
of Page 166 in [Moore, 1973].

1563

Moore and Wirth

of lessp on the right-hand sides, resulting in one “pocket” in each fault description,
which essentially consist of ((p(z))), ((p(x), p(y))), and ((p(y), p(z))), respectively.
The Pure LISP Theorem Prover merges these three fault descriptions to the
single one ((p(x), p(y), p(z))), and so suggests the proper step case indeed, although
it suggests the base case T (0, y, z) instead of T (0, s(y�), s(z�)), which requires some
extra work, but does not result in a failure. 2

6.2.7 Conclusion on the Pure LISP Theorem Prover

The Pure LISP Theorem Prover establishes the historic breakthrough regard-
ing the heuristic automation of inductive theorem proving in theories specified by
recursive function definitions.

Moreover, it is the first implementation of a prover for explicit induction going
beyond most simple structural inductions over s and 0.

Furthermore, the Pure LISP Theorem Prover has most of the stages of the
Boyer–Moore waterfall (cf. Figure 1), and these stages occur in the final order and
with the final overall behavior of throwing the formulas back to the center pool after
a stage was successful in changing them.

As we have seen in Example 6.1 of § 6.2.6, the main weakness of the Pure LISP
Theorem Prover is the realization of its induction rule, which ignores most of the
structure of the recursive calls in the right-hand sides of recursive function defini-
tions.124 In the Pure LISP Theorem Prover, all information on this structure
that is taken into account by the induction rule comes from the fault descriptions
of previous applications of “evaluation”, which store only a small part of the in-
formation that is actually required for finding the proper instances for the eager
instantiation of induction hypotheses required in explicit induction.

As a consequence, all induction hypotheses and conclusions of the Pure LISP
Theorem Prover are instantiations of the input formula with mere constructor
terms. Nevertheless, the Pure LISP Theorem Prover can generate multiple
hypotheses for astonishingly complicated step cases, which go far beyond the simple
ones typical for structural induction over s and 0.

Although the induction stage of the Pure LISP Theorem Prover is pretty
underdeveloped compared to the sophisticated recursion analysis of the later Boyer–
Moore theorem provers, it somehow contains all essential later ideas in a rudimentary
form, such as recursion analysis and the merging of step cases. As we have seen in

124There are indications that the induction rule of the Pure LISP Theorem Prover had to be
implemented in a hurry. For instance, on top of Page 168 of [Moore, 1973], we read on the Pure
LISP Theorem Prover: “The case for n term induction is much more complicated, and is not
handled in its full generality by the program.”

1564

Automation of Mathematical Induction

Example 6.2, the simple merging procedure of the Pure LISP Theorem Prover
is surprisingly successful.

The Pure LISP Theorem Prover cannot succeed, however, in the rare cases
where a step case has to follow a destructor different from CAR and CDR (such as
delfirst in § 4.5), or in the more general case that the arguments of the recursive
calls contain recursively defined functions at the measured positions (such as the
Ackermann function in Example 6.1).

The weaknesses and provisional procedures of the Pure LISP Theorem Pro-
ver we have documented, help to decompose the leap from nothing to Thm, and
so fulfill our historiographical intention expressed at the beginning of § 6.2.

Especially the link between symbolic evaluation and the induction rule of explicit
induction described at the end of the sub-section on “evaluation” in § 6.2.1 (right
before the sub-section on “normalization”) may be crucial for the success of the
entire development of recursion analysis and explicit induction.

6.3 Thm

“Thm” is the name used in this article for the release of the prover described in
[Boyer & Moore, 1979]. Note that the clearness, precision, and detail of the natural-
language descriptions of heuristics in [Boyer & Moore, 1979] is probably unique.125

To the best of our knowledge, there is no similarly broad treatment of heuristics
in theorem proving, at least not in subsequent publications about Boyer–Moore
theorem provers.

Except for ACL2, Boyer and Moore never gave names to their theorem pro-
vers.126 The names “Thm” (for “theorem prover”), “Qthm” (“quantified Thm”),
and “Nqthm” (“new quantified Thm”) were actually the directory names under
which the different versions of their theorem provers were developed and main-
tained.127 Qthm was never released and its development was discontinued soon

125In [Boyer & Moore, 1988b, p. xi] and [Boyer & Moore, 1998, p. xv] we can read about the book
[Boyer & Moore, 1979]:

“The main purpose of the book was to describe in detail how the theorem prover worked, its
organization, proof techniques, heuristics, etc. One measure of the success of the book is that
we know of three independent successful efforts to construct the theorem prover from the book.”

126The only further exception seems to be [Moore, 1975a, p.1], where the Pure LISP Theorem
Prover is called “the Boyer–Moore Pure LISP Theorem Prover”, because Moore wanted to stress
that, though Boyer appears in the references of [Moore, 1975a] only in [Boyer & Moore, 1975], Boyer
has had an equal share in contributing to the Pure LISP Theorem Prover right from the start.

127Cf. [Boyer, 2012].

1565

Moore and Wirth

after the “quantification” in Nqthm had turned out to be superior; so the name
“Qthm” was never used in public. Until today, it seems that “Thm” appeared in
publication only as a mode in Nqthm,128 which simulates the release previous to
the release of Nqthm (i.e. before “quantification” was introduced) with a logic that
is a further development of the one described in [Boyer & Moore, 1979]. It was
Matt Kaufmann (*1952) who started calling the prover “Nqthm”, in the second
half of the 1980s.129 The name “Nqthm” appeared for the first time in publication
in [Boyer & Moore, 1988b], namely as the name of a mode in Nqthm.

In this section we describe the enormous heuristic improvements documented in
[Boyer & Moore, 1979] as compared to [Moore, 1973] (cf. § 6.2). In case of the minor
differences of the logic described in [Boyer & Moore, 1979] and of the later released
version that is simulated by the THM mode in Nqthm as documented in [Boyer
& Moore, 1988b; 1998], we try to follow the later descriptions, partly because of
their elegance, partly because Nqthm is still an available program. Thus, we have
entitled this section “Thm” instead of “The standard reference on the Boyer–Moore
heuristics [Boyer & Moore, 1979]”.

From 1973 to 1981 Boyer and Moore were researchers at Xerox Palo Alto Re-
search Center (Moore only) and — just a few miles away — at SRI International
in Menlo Park (CA). From 1981 they were both professors at The University of
Texas at Austin or scientists at Computational Logic Inc. in Austin (TX). So they
could easily meet and work together. And — just like the Pure LISP Theorem
Prover — the provers Thm and Nqthm were again developed and implemented
exclusively by Boyer and Moore.130

In the six years separating Thm from the Pure LISP Theorem Prover, Boyer
and Moore extended the system in four important ways that especially affect induc-
tive theorem proving. The first major extension is the provision for an arbitrary
number of inductive data types, where the Pure LISP Theorem Prover sup-
ported only CONS. The second is the formal provision of a definition principle with
its explicit termination analysis based on well-founded relations which we discussed

128For the occurrences of “THM” in publications, and for the exact differences between the THM
and NQTHM modes and logics, see Pages 256–257 and 308 in [Boyer & Moore, 1988b], as well as
Pages 303–305, 326, 357, and 386 in the second edition [Boyer & Moore, 1998].

129Cf. [Boyer, 2012].
130In both [Boyer & Moore, 1988b, p. xv] and [Boyer & Moore, 1998, p. xix] we read:
“Notwithstanding the contributions of all our friends and supporters, we would like to make clear

that ours is a very large and complicated system that was written entirely by the two of us. Not
a single line of LISP in our system was written by a third party. Consequently, every bug in it is
ours alone. Soundness is the most important property of a theorem prover, and we urge any user
who finds such a bug to report it to us at once.”

1566

Automation of Mathematical Induction

in § 5.5. The third major extension is the expansion of the proof techniques used by
the waterfall, notably including the use of previously proved theorems, most often as
rewrite rules via what would come to be called “contextual rewriting”, and by which
the Thm user can “guide” the prover by posing lemmas that the system cannot dis-
cover on its own. The fourth major extension is the synthesis of induction schemes
from definition-time termination analysis and the application and manipulation of
those schemes at proof time to create “appropriate” inductions for a given formula,
in place of the Pure LISP Theorem Prover’s less structured reliance on sym-
bolic evaluation. We discuss Thm’s inductive data types, waterfall, and induction
schemes below.

By means of the new shell principle,131 it is now possible to define new data
types by describing the shell, a constructor with at least one argument, each of
whose arguments may have a simple type restriction, and the optional base object,
a nullary constructor.132 Each argument of the shell can be accessed133 by its
destructor, for which a name and a default value (for the sake of totality) have to
be given in addition. The user also has to supply a name for the predicate that
recognizes134 the objects of the new data type (as the logic remains untyped).

NIL lost its elementary status and is now an element of the shell PACK of sym-
bols.134 T and F now abbreviate the nullary function calls (TRUE) and (FALSE),
respectively, which are the only Boolean values. Any argument with Boolean inten-
tion besides F is taken to be T (including NIL).

131Cf. [Boyer & Moore, 1979, p. 37ff.].
132Note that this restriction to at most two constructors, including exactly one with arguments, is

pretty uncomfortable. For instance, it neither admits simple enumeration types (such as the Boolean
values), nor disjoint unions (e.g., as part of the popular record types with variants, say of [Wirth,
1971]). Moreover, mutually recursive data types are not possible, such as and-or-trees, where each
element is a list of or-and-trees, and vice versa, as given by the following four constructors:empty-or-tree : or-tree; or : and-tree, or-tree → or-tree;

empty-and-tree : and-tree; and : or-tree, and-tree → and-tree.
133Actually, in the jargon of [Boyer & Moore, 1979; 1988b; 1998], the destructors are called

accessor functions, and the type predicates are called recognizer functions.
134There are the following two different declarations for the shell PACK:
In [Boyer & Moore, 1979], the shell CONS is defined after the shell PACK because NIL is the default

value for the destructors CAR and CDR; moreover, NIL is an abbreviation for (NIL), which is the
base object of the shell PACK.

In [Boyer & Moore, 1988b; 1998], however, the shell PACK is defined after the shell CONS, we have
(CAR NIL) = 0, the shell PACK has no base object, and NIL just abbreviates

(PACK (CONS 78 (CONS 73 (CONS 76 0)))).
When we discuss the logic of [Boyer & Moore, 1979], we tacitly use the shells CONS and PACK as
described in [Boyer & Moore, 1988b; 1998].

1567

Moore and Wirth

Instead of discussing the shell principle in detail with all its intricacies resulting
from the untyped framework, we just present the first two shells:

1. The shell (ADD1 X1) of the natural numbers, with
• type restriction (NUMBERP X1),
• base object (ZERO), abbreviated by 0,
• destructor134 SUB1 with default value 0, and
• type predicate134 NUMBERP.

2. The shell (CONS X1 X2) of pairs, with
• destructors CAR with default value 0,

CDR with default value 0, and
• type predicate LISTP.

According to the shell principle, these two shell declarations add axioms to the
theory, which are equivalent to the following ones:
Axioms Generated by Shell ADD1 Axioms Generated by Shell CONS
0.1 (NUMBERP X) = T ∨ (NUMBERP X) = F (LISTP X) = T ∨ (LISTP X) = F
0.2 (NUMBERP (ADD1 X1)) = T (LISTP (CONS X1 X2)) = T
0.3 (NUMBERP 0) = T
0.4 (NUMBERP T) = F (LISTP T) = F
0.5 (NUMBERP F) = F (LISTP F) = F
0.6 (LISTP X) = F ∨ (NUMBERP X) = F
1 (ADD1 (SUB1 X)) = X (CONS (CAR X) (CDR X)) = X

⇐ X �= 0 ∧ (NUMBERP X) = T ⇐ (LISTP X) = T
2 (ADD1 X1) �= 0
3 (SUB1 (ADD1 X1)) = X1 (CAR (CONS X1 X2)) = X1

⇐ (NUMBERP X1) = T (CDR (CONS X1 X2)) = X2
4 (SUB1 0) = 0
5.1 (SUB1 X) = 0 ⇐ (NUMBERP X) = F (CAR X) = 0 ⇐ (LISTP X) = F

(CDR X) = 0 ⇐ (LISTP X) = F
5.2 (SUB1 (ADD1 X1)) = 0

⇐ (NUMBERP X1) = F

L1 135 (ADD1 X) = (ADD1 0)
⇐ (NUMBERP X) = F

L2 136 (NUMBERP (SUB1 X)) = T

135Proof of LemmaL1 from 0.2, 1–2, 5.2: Under the assumption of (NUMBERP X) = F, we show
(ADD1 X) = (ADD1 (SUB1 (ADD1 X))) = (ADD1 0). The first step is a backward application of the
conditional equation 1 via {X �→ (ADD1 X)}, where the condition is fulfilled because of 2 and 0.2.
The second step is an application of 5.2, where the condition is fulfilled by assumption.

1568

Automation of Mathematical Induction

Note that the two occurrences of “(NUMBERP X1)” in Axioms 3 and 5.2 are
exactly the ones that result from the type restriction of ADD1. Moreover, the occur-
rence of “(NUMBERP X)” in Axiom 0.6 is allocated at the right-hand side because the
shell ADD1 is declared before the shell CONS.

Let us discuss the axioms generated by declaration of the shell ADD1. Roughly
speaking, Axioms 0.1–0.3 are return-type declarations, Axioms 0.4–0.6 are about
disjointness of types, Axiom 1 and Lemma L2 imply the axiom (nat1) from § 4.4,
Axioms 2 and 3 imply axioms (nat2) and (nat3), respectively. Axioms 4 and 5.1–5.2
overspecify SUB1. Note that Lemma L1 is equivalent to 5.2 under 0.2–0.3 and 1–3.

Analogous to LemmaL1, every shell forces each argument not satisfying its type
restriction into behaving like the default object of the argument’s destructor.

By contrast, the arguments of the shell CONS (just as every shell argument
without type restriction) are not forced like this, and so — a clear advantage
of the untyped framework — even objects of later defined shells (such as PACK)
can be properly paired by the shell CONS. For instance, although NIL belongs to
the shell PACK defined after the shell CONS (and so (CDR NIL) = 0),135 we have
(CAR (CONS NIL NIL)) = NIL by Axiom 3.

Nevertheless, the shell principle also allows us to declare a shell
(CONSNAT X1 X2)

of the lists of natural numbers only — similar to the ones of § 4.5 — say, with
a type predicate LISTNATP, type restrictions (NUMBERP X1), (LISTNATP X2), base
object (NILNAT), and destructors CARNAT, CDRNAT with default values 0, (NILNAT),
respectively.

Let us now come to the admissible definitions of new functions in Thm. In § 5
we have already discussed the definition principle137 of Thm in detail. The defini-
tion of recursive functions has not changed compared to the Pure LISP Theorem
Prover besides that a function definition is admissible now only after a termina-
tion proof, which proceeds as explained in § 5.5. To this end, Thm can apply its
additional axiom of the well-foundedness of the irreflexive ordering LESSP on the
natural numbers,138 and the theorem of the well-foundedness of the lexicographic
combination of two well-founded orderings.

136Proof of Lemma L2 from 0.1–0.3, 1–4, 5.1–5.2 by argumentum ad absurdum:
For a counterexample X, we get (SUB1 X) �= 0 by 0.3, as well as (NUMBERP (SUB1 X)) = F by 0.1.
From the first we get X �= 0 by 4, and (NUMBERP X) = T by 5.1 and 0.1. Now we get the contra-
diction (SUB1 X) = (SUB1 (ADD1 (SUB1 X))) = (SUB1 (ADD1 0)) = 0; the first step is a backward
application of the conditional equation 1, the second of L1, and the last of 3 (using 0.3).

137Cf. [Boyer & Moore, 1979, p. 44f.].

1569

Moore and Wirth

6.3.1 Simplification in Thm

Just as in § 6.2, we will now again follow the Boyer–Moore waterfall (cf. Figure 1)
and sketch how the stages of the waterfall are realized in Thm in comparison to the
Pure LISP Theorem Prover.

We discussed simplification in the Pure LISP Theorem Prover in § 6.2.1.
Simplification in Thm is covered in ChaptersVI–IX of [Boyer & Moore, 1979], and
the reader interested in the details is strongly encouraged to read these descriptions
of heuristic procedures for simplification.

To compensate for the extra complication of the untyped approach in Thm,
which has a much higher number of interesting soft types than the Pure LISP
Theorem Prover, soft-typing rules are computed for each new function symbol
based on types that are disjunctions (actually: bit-vectors) of the following disjoint
types: one for T, one for F, one for each shell, and one for objects not belonging to
any of these.139 These soft-typing rules are pervasively applied in all stages of the
theorem prover, which we cannot discuss here in detail. Some of these rules can be
expressed in the LISP logic language as a theorem and presented in this form to
the human users. Let us see two examples on this.

Example 6.3 (continuing Example 5.1 of § 5.2)
As Thm knows (NUMBERP (FIX X)) and (NUMBERP (ADD1 X)), it produces the
theorem (NUMBERP (PLUS X Y)) immediately after the termination proof for the
definition of PLUS in Example 5.1. Note that this would neither hold in case of

138See Page 52f. of [Boyer & Moore, 1979] for the informal statement of this axiom on well-
foundedness of LESSP.

Because Thm is able to prove (LESSP X (ADD1 X)), well-foundedness of LESSP would imply —
together with Axiom 1 and LemmaL2 — that Thm admits only the standard model of the natural
numbers, as explained in Note 43.

Matt Kaufmann, however, was so kind and made clear in a private e-mail communication that
non-standard models are not excluded, because the statement “We assume LESSP to be a well-
founded relation.” of [Boyer & Moore, 1979, p. 53] is actually to be read as the well-foundedness of
the formal definition of § 4.1 with the additional assumption that the predicate Q must be definable
in Thm.

Note that in Pieri’s argument on the exclusion of non-standard models (as described in Note 43),
it is not possible to replace the application of the reflexive and transitive closure of the successor
relation s (which is not definable in first-order logic) to an arbitrary natural number x with the
Thm-definable predicate˘

Y (NUMBERP Y) = T ∧ ((LESSP Y x) = T ∨ Y = x)
¯
,

because (by the Thm-analogue of axiom (lessp2�) of Example 6.2 in § 6.2.6) this predicate will
contain 0 as a minimal element even for a non-standard natural number x; thus, in non-standard
models, LESSP is a proper super-relation of the reflexive and transitive closure of s.

139See ChapterVI in [Boyer & Moore, 1979].

1570

Automation of Mathematical Induction

non-termination of PLUS, nor if there were a simple Y instead of (FIX Y) in the
definition of PLUS. In the latter case, Thm would only register that the return-type
of PLUS is among NUMBERP and the types of its second argument Y. 2

Example 6.4 As Thm knows that the type of APPEND is among LISTP and the type
of its second argument, it produces the theorem (LISTP (FLATTEN X)) immediately
after the termination proof for the following definition:

(FLATTEN X) = (IF (LISTP X)
(APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))
(CONS X NIL)) 2

The standard representation of a propositional expression has improved from the
multifarious LISP representation of the Pure LISP Theorem Prover toward
today’s standard of clausal representation. A clause is a disjunctive list of literals.
Literals, however, deviating from the standard of being optionally negated atoms,
are just LISP terms here, because every LISP function can be seen as a predicate.

This means that the “water” of the waterfall now consists of clauses, and the
conjunction of all clauses in the waterfall represents the proof task.

Based on this clausal representation, we find a full-fledged description of con-
textual rewriting in Chapter IX of [Boyer & Moore, 1979], and its applications in
ChaptersVII–IX. This description comes some years before the term “contextual
rewriting” became popular in automated theorem proving, and the term does not
appear in [Boyer & Moore, 1979]. This may be the first description of contex-
tual rewriting in the history of logic, unless one counts the rudimentary contextual
rewriting in the “reduction” of the Pure LISP Theorem Prover as such.140

As indicated before, the essential idea of contextual rewriting is the following:
While focusing on one literal of a clause for simplification, we can assume all other
literals — the context — to be false, simply because the literal in focus is irrelevant
otherwise. Especially useful are literals that are negated equations, because they
can be used as a ground term-rewrite system. A non-equational literal t can always
be taken to be the negated equation (t �= F). The free universal variables of a clause
have to be treated as constants during contextual rewriting.141

140Cf. § 6.2.1.
141This has the advantage that we could take any well-founded ordering that is total on ground

terms and run the terminating ground version of a Knuth–Bendix completion procedure [Knuth &
Bendix, 1970] for all literals in a clause representation that have the form li �= ri, and replace the
literals of this form with the resulting confluent and terminating rewrite system and normalize the
other literals of the clause with it. Note that this transforms a clause into an equivalent one. None
of the Boyer–Moore theorem provers does this, however.

1571

Moore and Wirth

To bring contextual rewriting to full power, all occurrences of the function sym-
bol IF in the literals of a clause are expelled from the literals as follows. If the
condition of an IF-expression can be simplified to be definitely false F or definitely
true (i.e. non-F, e.g. if F is not set in the bit-vector as a potential type), then the
IF-expression is replaced with its respective case. Otherwise, after the IF-expression
could not be removed by those rewrite rules for IF whose soundness depends on ter-
mination,142 it is moved to the top position (outside-in), by replacing each case with
itself in the IF’s context, such that the literal C[(IF t0 t1 t2)] is intermediately
replaced with (IF t0 C[t1] C[t2]), and then this literal splits its clause in two: one
with the two literals (NOT t0) and C[t1] in place of the old one, and one with t0
and C[t2] instead.

Thm eagerly removes variables in solved form: If the variable X does not occur in
the term t, but the literal (X �= t) occurs in a clause, then we can remove that literal
after rewriting all occurrences of X in the clause to t. This removal is an equivalence
transformation, because the single remaining occurrence of X is implicitly universally
quantified and so (X �= t) must be false because it implies (t �= t). Alternatively, the
removal can be seen as a resolution step with the axiom of reflexivity.

It now remains to describe the rewriting with function definitions and with lem-
mas tagged for rewriting, where the context of the clause is involved again.

Non-recursive function definitions are always unfolded by Thm.
Recursive function definitions are treated in a way very similar to that of the

Pure LISP Theorem Prover. The criteria on the unfolding of a function call
of a recursively defined function f still depend solely on the terms introduced as
arguments in the recursive calls of f in the body of f, which are accessed during the
simplification of the body. But now, instead of rejecting the unfolding in case of the
presence of new destructor terms in the simplified recursive calls, rejections are based
on whether the simplified recursive calls contain subterms not occurring elsewhere
in the clause. That is, an unfolding is approved if all subterms of the simplified
recursive calls already occur in the clause. This basic occurrence heuristic is one of
the keys to Thm’s success at induction. As we will see, instead of the Pure LISP
Theorem Prover’s phrasing of inductive arguments with “constructors in the
conclusion”, such as P (s(x))) ⇐ P (x), Thm uses “destructors in the hypothesis”,
such as (P (x) ⇐ P (p(x))) ⇐ x �=0. Thanks to the occurrence heuristic, the very
presence of a well-chosen induction hypothesis gives the rewriter “permission” to
unfold certain recursive functions in the induction conclusion (which is possible
because all function definitions are in destructor style).

142These rewrite rules whose soundness depends on termination are (IF X Y Y) = Y;
(IF X X F) = X; and for Boolean X: (IF X T F) = X; tested for applicability in the given order.

1572

Automation of Mathematical Induction

There are also two less important criteria which individually suffice to unblock
the unfolding of recursive function definitions:

1. An increase of the number of arguments of the function to be unfolded that
are constructor ground terms.

2. A decrease of the number of function symbols in the arguments of the function
to be unfolded at the measured positions of an induction template for that
function.
So the clause

C[lessp(x, s(y))]

will be expanded by (lessp2�), (lessp3�), and (p1) into the clauses
x �= 0, C[true]

and
x= 0, C[lessp(p(x), y)]

— even if p(x) is a newly occurring subterm! — because the second argument
position of lessp is such a set of measured positions according to Example 6.8
of § 6.3.7.143

Thm is able to exploit previously proved lemmas. When the user submits a theorem
for proof, the user tags it with tokens indicating how it is to be used in the future
if it is proved. Thm supports four non-exclusive tags and they indicate that the
lemma is to be used as a rewrite rule, as a rule to eliminate destructors, as a rule to
restrict generalizations, or as a rule to suggest inductions. The paradigm of tagging
theorems for use by certain proof techniques focus the user on developing general
“tactics” (within a limited framework of very abstract control), while allowing the
user to think mainly about relevant mathematical truths. This paradigm has been
a hallmark of all Boyer–Moore theorem provers since Thm and partially accounts
for their reputation of being “automatic”.

Rewriting with lemmas that have been proved and then tagged for rewriting
— so-called rewrite lemmas — differs from rewriting with recursive function defini-
tions mainly in one aspect: There is no need to block them because the user has
tagged them explicitly for rewriting, and because rewrite lemmas have the form
of conditional equations instead of unconditional ones. Simplification with lemmas
tagged for rewriting and the heuristics behind the process are nicely described in
[Schmidt-Samoa, 2006c], where a rewrite lemma is not just tagged for rewriting, but
where the user can also mark the condition literals on how they should be dealt

143See Page 118f. of [Boyer & Moore, 1979] for the details of the criteria for unblocking the
unfolding of function definitions.

1573

Moore and Wirth

with. In Thm there is no lazy rewriting with rewrite lemmas, i.e. no case splits are
introduced to be able to apply the lemma.144 This means that all conditions of the
rewrite lemma have to be shown to be fulfilled in the current context. In partial
compensation there is a process of backward chaining, i.e. the conditions can be
shown to be fulfilled by the application of further conditional rewrite lemmas. The
termination of this backward chaining is achieved by avoiding the generation of con-
ditions into which the previous conditions can be homeomorphically embedded.145

In addition, rewrite lemmas can introduce IF-expressions, splitting the rewritten
clause into cases. There are provisions to instantiate extra variables of conditions
eagerly, which is necessary because there are no existential variables.146

Some collections of rewrite lemmas can cause Thm’s rewriter not to terminate.147

For permutative rules like commutativity, however, termination is assured by simple
term ordering heuristics.148

6.3.2 Destructor Elimination in Thm

We have already seen constructors such as s (in Thm: ADD1) and cons (CONS) with
the destructors p (SUB1) and car (CAR), cdr (CDR), respectively.

Example 6.5 (From Constructor to Destructor Style and back)
We have presented several function definitions both in constructor and in destructor
style. Let us do careful and generalizable equivalence transformations (reverse step
justified in parentheses) starting with the constructor-style rule (ack3) of § 4.4:

ack(s(x), s(y))= ack(x, ack(s(x), y)).
Introduce (delete) the solved variables x� and y� for the constructor terms s(x) and
s(y) occurring on the left-hand side, respectively, and add (delete) two further con-
ditions by applying the definition (p1�) (cf. § 4.4) twice.

144Matt Kaufmann and J Strother Moore added support for “forcing” and “case split” annotations
to ACL2 in the mid-1990s.

145See Page 109ff. of [Boyer & Moore, 1979] for the details.
146See Page 111f. of [Boyer & Moore, 1979] for the details.
147Non-termination of rewriting caused the Boyer–Moore theorem provers to run forever or ex-

haust the LISP stack or heap — except ACL2, which maintains its own user-adjustable stack size
and gives a coherent error on stack overflow without crashing the LISP system. Nqthm introduced
special tools to track down the rewriting process via the rewrite call stack (namely BREAK-REWRITE,
after setting (MAINTAIN-REWRITE-PATH T)) and to count the applications of a rewrite rule (namely
ACCUMULATED-PERSISTENCE), so the problematic rules can easily be detected and the user can disable
them. See § 12 of [Boyer & Moore, 1988b; 1998] for the details.

148See Page 104f. of [Boyer & Moore, 1979] for the details.

1574

Automation of Mathematical Induction

ack(s(x), s(y))= ack(x, ack(s(x), y)) ⇐
µ

x� = s(x) ∧ p(x�) =x
∧ y� = s(y) ∧ p(y�)= y

∂
.

Normalize the conclusion with leftmost equations of the condition from right to left
(left to right).

ack(x�, y�)= ack(x, ack(x�, y)) ⇐
µ

x� = s(x) ∧ p(x�)= x
∧ y� = s(y) ∧ p(y�)= y

∂
.

Normalize the conclusion with rightmost equations of the condition from right to
left (left to right).

ack(x�, y�)= ack(p(x�), ack(x�, p(y�))) ⇐
µ

x� = s(x) ∧ p(x�)= x
∧ y� = s(y) ∧ p(y�)= y

∂
.

Add (Delete) two conditions by applying axiom (nat2) twice.

ack(x�, y�)= ack(p(x�), ack(x�, p(y�))) ⇐
µ

x� = s(x) ∧ p(x�)= x ∧ x� �= 0
∧ y� = s(y) ∧ p(y�)= y ∧ y� �= 0

∂
.

Delete (Introduce) the leftmost equations of the condition by applying lemma (s1�)
(cf. § 4.4) twice, and delete (introduce) the solved variables x and y for the destructor
terms p(x�) and p(y�) occurring in the left-hand side of the equation in the conclusion,
respectively.

ack(x�, y�)= ack(p(x�), ack(x�, p(y�))) ⇐ x� �= 0 ∧ y� �= 0.
Up to renaming of the variables, this is the destructor-style rule (ack3�) of Exam-
ple 6.1 (cf. § 6.2.6). 2

Our data types are defined inductively over constructors.149 Therefore constructors
play the main rôle in our semantics, and practice shows that step cases of simple
induction proofs work out much better with constructors than with the respective
destructors, which are secondary (i.e. defined) operators in our semantics and have
a more complicated case analysis in applications.

For this reason — contrary to the Pure LISP Theorem Prover — Thm
applies destructor elimination to the clauses in the waterfall, but not (as in Exam-
ple 6.5) to the defining equations. This application of destructor elimination has
actually two further positive effects:

1. It tends to standardize the representation of a clause in the sense that the
numbers of occurrences of identical subterms tend to be increased.

149Here the term “inductive” means the following: We start with the empty set and take the
smallest fixpoint under application of the constructors, which contains only finite structures, such
as natural numbers and lists. Co-inductively over the destructors we would obtain different data
types, because we start with the universal class and obtain the greatest fixed point under inverse
application of the destructors, which typically contains infinite structures. For instance, for the
unrestricted destructors car, cdr of the list of natural numbers list(nat) of § 4.5, we co-inductively
obtain the data type of infinite streams of natural numbers.

1575

Moore and Wirth

2. Destructor elimination also brings the subterm property in line with the sub-
structure property; e.g., Y is both a sub-structure of (CONS X Y) and a sub-
term of it, whereas (CDR Z) is a sub-structure of Z in case of (LISTP Z), but
not a subterm of Z.

Both effects improve the chances that the clause passes the follow-up stages of cross-
fertilization and generalization with good success.150

As noted earlier, the Pure LISP Theorem Prover does induction using step
cases with constructors, such as P (s(x)) ⇐ P (x), whereas Thm does induction
using step cases with destructors, such as°

P (x) ⇐ P (p(x))
¢

⇐ x �= 0.
So destructor elimination was not so urgent in the Pure LISP Theorem Prover,
simply because there were fewer destructors around. Indeed, the stage “destructor
elimination” does not exist in the Pure LISP Theorem Prover.

Thm does not do induction with constructors because there are generalized de-
structors that do not have a straightforward constructor (see below), and because
the induction rule of explicit induction has to fix in advance whether the step cases
are destructor or constructor style. So with destructor style in all step cases and
in all function definitions, explicit induction and recursion in Thm choose the style
that is always applicable. Destructor elimination then confers the advantages of
constructor-style proofs when possible.

Example 6.6 (A Generalized Destructor Without Constructor)
A generalized destructor that does not have a straightforward constructor is the
function delfirst defined in § 4.5. To verify the correctness of a deletion-sort algo-
rithm based on delfirst, a useful step case for an induction proof is of the form151

°
P (l) ⇐ P (delfirst(max(l), l))

¢
⇐ l �= nil.

A constructor version of this induction scheme would need something like an in-
sertion function with an additional free variable indicating the position of insertion
— resulting in proof obligations more difficult than the ones resulting directly from
the algorithm to be verified. 2

Proper destructor functions take only one argument. The generalized destructor
delfirst we have seen in Example 6.6 has actually two arguments; the second one is
the proper destructor argument and the first is a parameter. After the elimination
of a set of destructors, the terms at the parameter positions of the destructors are
typically still present, whereas all the terms at the positions of the proper destructor
arguments are removed.

150See Page 114ff. of [Boyer & Moore, 1979] for a nice example for the advantage of destructor
elimination for cross-fertilization.

1576

Automation of Mathematical Induction

Example 6.7 (Division+Remainder: a pair of Generalized Destructors)
In case of y �= 0, we can construct each natural number x in the form of (q ∗ y)+ r
with lessp(r, y)= true. The related generalized destructors are the quotient div(x, y)
of x by y, and its remainder rem(x, y). Note that in both functions, the first
argument is the proper destructor argument and the second the parameter, which
must not be 0. The rôle that the definition (p1�) and the lemma (s1�) of § 4.4 play
in Example 6.5 (and which the definitions (car1�), (cdr1�) and the lemma (cons1�)
of § 4.5 play in the equivalence transformations between constructor and destructor
style for lists) is here taken by the following lemmas on the generalized destructors
div and rem and on the generalized constructor λq, r. ((q ∗ y)+ r):
(div1�) div(x, y) = q ⇐ y �= 0 ∧ (q ∗ y)+ r =x ∧ lessp(r, y)= true
(rem1�) rem(x, y) = r ⇐ y �= 0 ∧ (q ∗ y)+ r =x ∧ lessp(r, y)= true
(+9�) (q ∗ y)+ r = x ⇐ y �= 0 ∧ q = div(x, y) ∧ r = rem(x, y)
If we have a clause with the literal y = 0, in which the destructor terms div(x, y)
or rem(x, y) occur, we can — just as in the of Example 6.5 (reverse direction) —
introduce the new literals div(x, y) �= q and rem(x, y) �= r for fresh q, r, and apply
lemma (+9�) to introduce the literal x �=(q ∗ y)+ r. Then we can normalize (from
left to right) with the first two literals and then with the third, which is deleted152

afterward. Then all occurrences of div(x, y), rem(x, y), and x are gone.153 2

To enable the form of elimination of generalized destructors described in Exam-
ple 6.7, Thm allows the user to tag lemmas of the form (s1�), (cons1�), or (+9�) as
elimination lemmas to perform destructor elimination. In clause representation,
this form is in general the following: The first literal is of the form (tc =x), where x
is a variable which does not occur in the (generalized) constructor term tc. Moreover,
tc contains some distinct variables y0, . . . , yn, which occur only on the left-hand sides
of the first literal and of the last n+1 literals of the clause, which are of the form
(y0 �= td0), . . . , (yn �= tdn), for distinct (generalized) destructor terms td0 ,. . . ,tdn.154

151See Page 143f. of [Boyer & Moore, 1979].
152To delete the first two literals after normalization of their x, we would need the lemmas

div((q ∗ y)+ r, y)= q, lessp(r, y) �= true and rem((q ∗ y)+ r, y)= r, lessp(r, y) �= true,
whose application adds the literal lessp(r, y) �= true unless already present.

153For a nice, but non-trivial example on why proofs tend to work out much easier after this
transformation, see Page 135ff. of [Boyer & Moore, 1979].

154Thm adds one more restriction here, namely that the generalized destructor terms have
to consist of a function symbol applied to a list containing exactly the variables of the clause,
besides y0, . . . , yn.

Moreover, note that Thm actually does not use our flattened form of the elimination lemmas,
but the one that results from replacing each yi in the clause with tdi , and then removing the literal
(yi �= tdi). Thus, Thm would accept only the non-flattened versions of our elimination lemmas, such
as (s1) instead of (s1�) (cf. § 4.4), and such as (cons1) instead of (cons1�) (cf. § 4.5).

1577

Moore and Wirth

The idea of application for destructor elimination in a given clause is, of course,
the following: If, for an instance of the elimination lemma, the literals not mentioned
above (i.e. in the middle of the clause, such as y �= 0 in (+9�)) occur in the given
clause, and if td0 , . . . , tdn occur in the given clause as subterms, then rewrite all their
occurrences with (y0 �= td0), . . . , (yn �= tdn) from right to left and then use the first
literal of the elimination lemma from right to left for further normalization.155

After a clause enters the destructor-elimination stage of Thm, its most simple
destructor (actually: the one defined first) that can be eliminated is eliminated,
and destructor elimination is continued until all destructor terms introduced by
destructor elimination are eliminated if possible. Then, before further destructors
are eliminated, the resulting clause is returned to the center pool of the waterfall.
So the clause will enter the simplification stage where the (generalized) constructor
introduced by destructor elimination may be replaced with a (generalized) destruc-
tor. Then the resulting clauses re-enter the destructor-elimination stage, which may
result in infinite looping.

For example, destructor elimination turns the clause
x� = 0, C[lessp(p(x�), x�)], C �[p(x�), x�]

by the elimination lemma (s1) into the clause
s(x)= 0, C[lessp(x, s(x))], C �[x, s(x)].

Then, in the simplification stage of the waterfall, lessp(x, s(x)) is unfolded, result-
ing in the clause

x= 0, C[lessp(p(x), x)], C �[x, s(x)]

and another one.156

Looping could result from eliminating the destructor introduced by simplification
(such as it is actually the case for our destructor p in the last clause). To avoid
looping, before returning a clause to the center pool of the waterfall, the variables
introduced by destructor elimination (such as our variable x) are marked. (General-
ized) destructor terms containing marked variables are blocked for further destructor
elimination. This marking is removed only when the clause reaches the induction
stage of the waterfall.157

155If we add the last literals of the elimination lemma to the given clause, use them for contextual
rewriting, and remove them only if this can be achieved safely via application of the definitions of
the destructors (which may not be possible in Example 6.7, cf. Note 152), then the elimination of
destructors is an equivalence transformation. Destructor elimination in Thm, however, may (over-)
generalize the conjecture, because these last literals are not present in the non-flattened elimination
lemma of Thm and its variables yi are actually introduced in Thm by generalization. Thus, instead
of trying to delete the last literals of our deletion lemmas safely, Thm never adds them.

156The latter step is given in more detail in the context of the second of the two less important
criteria of § 6.3.1 for unblocking the unfolding of lessp(x, s(y)).

1578

Automation of Mathematical Induction

6.3.3 (Cross-) Fertilization in Thm

This stage has already been described in § 6.2.3. There is no noticeable difference
between the Pure LISP Theorem Prover and Thm here, besides some heuristic
fine tuning.158

6.3.4 Generalization in Thm

Thm adds only one new rule to the universally applicable heuristic rules for gener-
alization on a term t mentioned in § 4.9:

“Never generalize on a destructor term t !”
This new rule makes sense in particular after the preceding stage of destructor
elimination in the sense that destructors that outlast their elimination probably
carry some relevant information. Another reason for not generalizing on destructor
terms is that the clause will enter the center pool in case another generalization is
possible, and then the destructor elimination might eliminate the destructor term
more carefully than generalization would do.159

The main improvement of generalization in Thm over the Pure LISP Theo-
rem Prover, however, is the following: Suppose again that the term t is to be
replaced at all its occurrences in the clause T [t] with the fresh variable z. Recall
that the Pure LISP Theorem Prover restricts the fresh variable with a predicate
synthesized from the definition of the top function symbol of the replaced term. Thm
instead restricts the new variable in two ways. Both ways add additional literals to
the clause before the term is replaced by the fresh variable:

1. Assuming all literals of the clause T [t] to be false (i.e. of type F), the bit-vector
describing the soft type of t is computed and if only one bit is set (say the bit
expressing NUMBERP), then, for the respective type predicate, a new literal is
added to the clause (such as (NOT (NUMBERP t))).

2. The user can tag certain lemmas as generalization lemmas; such as
(SORTEDP (SORT X))

for a sorting function SORT; and if (SORT X) matches t, the respective
instance of (NOT (SORTEDP (SORT X))) is added to T [t].160 In general, for
the addition of such a literal (NOT t�), a proper subterm t� of a generalization
lemma must match t.161

157See Page 139 of [Boyer & Moore, 1979]. In general, for more sophisticated details of destructor
elimination in Thm, we have to refer the reader to ChapterX of [Boyer & Moore, 1979].

158See Page 149 of [Boyer & Moore, 1979].
159See Page 156f. of [Boyer & Moore, 1979].
160Cf. Note 121.

1579

Moore and Wirth

6.3.5 Elimination of Irrelevance in Thm

Thm includes another waterfall stage not in the Pure LISP Theorem Prover,
the elimination of irrelevant literals. This is the last transformation before we come
to “induction”. Like generalization, this stage may turn a valid clause into an invalid
one. The main reason for taking this risk is that the subsequent heuristic procedures
for induction assume all literals to be relevant: irrelevant literals may suggest in-
appropriate induction schemes which may result in a failure of the induction proof.
Moreover, if all literals seem to be irrelevant, then the goal is probably invalid and
we should not do a costly induction but just fail immediately.162

Let us call two literals connected if there is a variable that occurs in both of them.
Consider the partition of a clause into its equivalence classes w.r.t. the reflexive and
transitive closure of connectedness. If we have more than one equivalence class in a
clause, this is an alarm signal for irrelevance: if the original clause is valid, then a sub-
clause consisting only of the literals of one of these equivalence classes must be valid
as well. This is a consequence of the equivalence of ∀x.(A∨B) with A ∨ ∀x.B,
provided that x does not occur in A. Then we should remove one of the irrelevant
equivalence classes after the other from the original clause. To this end, Thm has
two heuristic tests for irrelevance.

1. An equivalence class of literals is irrelevant if it does not contain any properly
recursive function symbol. Based on the assumption that the previous stages
of the waterfall are sufficiently powerful to prove clauses composed only of
constructor functions (i.e. shells and base objects) and functions with explicit
(i.e. non-recursive) definitions, the justification for this heuristic test is the
following: If the clause of the equivalence class were valid, then the previous
stages of the waterfall should already have established the validity of this
equivalence class.

2. An equivalence class of literals is irrelevant if it consists of only one literal
and if this literal is the application of a properly recursive function to a list
of distinct variables. Based on the assumption that the soft typing rules are
sufficiently powerful and that the user has not defined a tautological, but tricky

161Moreover, the literal is actually added to the generalized clause only if the top function symbol
of t does no longer occur in the literal after replacing t with x. This means that, for a generalization
lemma (EQUAL (FLATTEN (GOPHER X)) (FLATTEN X)), the literal

(NOT (EQUAL (FLATTEN (GOPHER t��)) (FLATTEN t��)))
is added to T [t] in case of t being of the form (GOPHER t��), but not in case of t being of the
form (FLATTEN t��) where the first occurrence of FLATTEN is not removed by the generalization. See
Page 156f. of [Boyer & Moore, 1979] for the details.

162See Page 160f. of [Boyer & Moore, 1979] for a typical example of this.

1580

Automation of Mathematical Induction

predicate,163 the justification for this heuristic test is the following: The bit-
vector of this literal must contain the singleton type of F (containing only the
term F, cf. § 6.3.1); otherwise the validity of the literal and the clause would
have been recognized by the stage “simplification”. This means that F is most
probably a possible value for some combination of arguments.

6.3.6 Induction in Thm as compared to the Pure LISP Theorem Prover

As we have seen in § 6.2.6, the recursion analysis in the Pure LISP Theorem Pro-
ver is only rudimentary. Indeed, the whole information on the body of the recursive
function definitions comes out of the poor164 feedback of the “evaluation” proce-
dure of the simplification stage of the Pure LISP Theorem Prover. Roughly
speaking, this information consists only in the two facts

1. that a destructor symbol occurring as an argument of the recursive function
call in the body is not removed by the “evaluation” procedure in the context
of the current goal and in the local environment, and

2. that it is not possible to derive that this recursive function call is unreachable
in this context and environment.

In Thm, however, the first part of recursion analysis is done at definition time, i.e.
at the time the function is defined, and applied at proof time, i.e. at the time the
induction rule produces the base and step cases. Surprisingly, there is no reacha-
bility analysis for the recursive calls in this second part of the recursion analysis in
Thm. While the information in item1 is thoroughly improved as compared to the
Pure LISP Theorem Prover, the information in item 2 is partly weaker because
all recursive function calls are assumed to be reachable during recursion analysis.
The overwhelming success of Thm means that the heuristic decision to abandon
reachability analysis in Thm was appropriate.165

163This assumption is critical because it often occurs that updated program code contains recur-
sive predicates that are actually trivially true, but very tricky. See § 3.2 of [Wirth, 2004] for such
an example. Moreover, users sometimes supply such predicates to suggest a particular induction
ordering. For example, if we want to supply the function sqrtio of § 6.3.9 to Thm, then we have to
provide a complete definition, typically given by setting sqrtio to be T in all other cases. Luckily,
such nonsense functions will typically not occur in any proof.

164See the discussion in § 6.2.7 on Example 6.1 from § 6.2.6.
165Note that in most cases the step formula of the reachable cases works somehow in Thm, as long

as no better step case was canceled because of unreachable step cases, which, of course, are trivial
to prove, simply because their condition is false. Moreover, note that, contrary to descente infinie
which can get along with the first part of recursion analysis alone, the heuristics of explicit induction
have to guess the induction steps eagerly, which is always a fault-prone procedure, to be corrected
by additional induction proofs, as we have seen in Example 4.4 of § 4.8.1.

1581

Moore and Wirth

6.3.7 Induction Templates generated by
Definition-Time Recursion Analysis

The first part of recursion analysis in Thm consists of a termination analysis of every
recursive function at the time of its definition. The system does not only look for one
termination proof that is sufficient for the admissibility of the function definition,
but — to be able to generate a plenitude of sound sets of step formulas later —
actually looks through all termination proofs in a finite search space and gathers
from them all information required for justifying the termination of the recursive
function definition. This information will later be used to guarantee the soundness
and improve the feasibility of the step cases to be generated by the induction rule.

To this end, Thm constructs valid induction templates very similar166 to our
description in § 5.5. Let us approach the idea of a valid induction template with
some typical examples, which are actually the templates for the constructor-style
examples of § 5.5, but now for the destructor-style definitions of lessp and ack,
because only destructor-style definitions are admissible in Thm.

Example 6.8 (Two Induction Templates, Different Measured Positions)
For the ordering predicate lessp as defined by (lessp1�–3�) in Example 6.2 of § 6.2.6,
we get two induction templates with the sets of measured positions {1} and {2},
respectively, both for the well-founded ordering λx, y. (lessp(x, y) = true). The first
template has the weight term (1) and the relational description© °

lessp(x, y), {lessp(p(x), p(y))}, {x �= 0}
¢ ™

.
The second one has the weight term (2) and the relational description© °

lessp(x, y), {lessp(p(x), p(y))}, {y �= 0}
¢ ™

. 2

Example 6.9 (One Induction Template with Two Measured Positions)
For the Ackermann function ack as defined by (ack1�–3�) in Example 6.1 of § 6.2.6,
we get only one appropriate induction template. The set of its measured positions
is {1, 2}, because of the weight function cons((1), cons((2), nil)) (in Thm actually:
(CONS x y)) in the well-founded lexicographic ordering

166Those parts of the condition of the equation that contain the new function symbol f must be
ignored in the case conditions of the induction template because the definition of the function f is
admitted in Thm only after it has passed the termination proof.

That Thm ignores the governing conditions that contain the new function symbol f is described
in the 2nd paragraph on Page 165 of [Boyer & Moore, 1979]. Moreover, an example for this is the
definition of OCCUR on Page 166 of [Boyer & Moore, 1979].

After one successful termination proof, however, the function can be admitted in Thm, and then
these conditions could actually be admitted in the templates. So the actual reason why Thm ignores
these conditions in the templates is that it generates the templates with the help of previously proved
induction lemmas, which, of course, cannot contain the new function yet.

1582

Automation of Mathematical Induction

λl, k. (lexlimless(l, k, s(s(s(0))))= true).
The relational description has two elements: For the equation (ack2�) we get°

ack(x, y), {ack(p(x), s(0))}, {x �= 0}
¢
,

and for the equation (ack3�) we get°
ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, {x �= 0, y �= 0}

¢
. 2

To find valid induction templates automatically by exhaustive search, Thm allows
the user to tag certain theorems as “induction lemmas”. An induction lemma con-
sists of the application of a well-founded relation to two terms with the same top
function symbol w, playing the rôle of the weight term; plus a condition without
extra variables, which is used to generate the case conditions of the induction tem-
plate. Moreover, the arguments of the application of w occurring as the second
argument of the well-founded relation must be distinct variables in Thm, mirroring
the left-hand side of its function definitions in destructor style.

Certain induction lemmas are generated with each shell declaration. Such an
induction lemma generated for the shell ADD1, which is roughly

(LESSP (COUNT (SUB1 X)) (COUNT X)) ⇐ (NOT (ZEROP X)),
suffices for generating the two templates of Example 6.8. Note that COUNT, playing
the rôle of w here, is a special function in Thm, which is generically extended by
every shell declaration in an object-oriented style for the elements of the new shell.
On the natural numbers here, COUNT is the identity. On other shells, COUNT is
defined similar to our function count from § 4.5.167

6.3.8 Proof-Time Recursion Analysis in Thm

The induction rule uses the information from the induction templates as follows:
For each recursive function occurring in the input formula, all applicable induction
templates are retrieved and turned into induction schemes as described in § 5.8.
Any induction scheme that is subsumed by another one is deleted after adding its
hitting ratio to the one of the other. The remaining schemes are merged into new
ones with a higher hitting ratio, and finally, after the flawed schemes are deleted, the
scheme with the highest hitting ratio will be used by the induction rule to generate
the base and step cases.

Example 6.10 (Applicable Induction Templates)
Let us consider the conjecture (ack4) from § 4.4. From the three induction templates
of Examples 6.8 and 6.9, only the second one of Example 6.8 is not applicable because
the second position of lessp (which is the only measured position of that template)
is changeable, but filled in (ack4) by the non-variable ack(x, y). 2

1583

Moore and Wirth

From the destructor-style definitions (lessp1�–3�) (cf. Example 6.2) and (ack1�–3�)
(cf. Example 6.1), we have generated two induction templates applicable to
(ack4) lessp(y, ack(x, y)) = true

They yield the two induction schemes of Example 6.11. See also Example 5.5 for the
single induction scheme for the constructor-style definitions (lessp1–3) and (ack1–3).

Example 6.11 (Induction Schemes)
The induction template for lessp of Example 6.8 that is applicable to (ack4) according
to Example 6.10 and whose relational description contains only the triple°

lessp(x, y), {lessp(p(x), p(y))}, {x �= 0}
¢

yields the induction scheme with position set {1.1} (i.e. left-hand side of first literal
in (ack4)); the step-case description is

©°
{x,y}ªid, {µ1}, {y �= 0}

¢™
, where µ1 =

{x�→x, y �→p(y)}; the set of induction variables is {y}; and the hitting ratio is 1
2 .

This can be seen as follows: The substitution called ξ in the discussion of § 5.8
can be chosen to be the identity substitution {x,y}ªid on {x, y} because the first
element of the triple does not contain any constructors. This is always the case for
induction templates for destructor-style definitions such as (lessp1�–3�). The substi-
tution called σ in § 5.8 (which has to match the first element of the triple to the
term (ack4)/1.1, i.e. the term at the position 1.1 in (ack4)) is

σ = {x�→y, y �→ack(x, y)}.
So the constraints for µ1 (which tries to match (ack4)/1.1 to the σ-instance of
the second element of the triple) are: yµ1 = p(y) for the first (measured) posi-
tion of lessp; and ack(x, y)µ1 = p(ack(x, y)) for the second (unmeasured) position,
which cannot be achieved and is skipped. This results in a hitting ratio of only 1

2 .
The single measured position 1 of the induction template results in the induction
variable (ack4)/1.1.1 = y.

The template for ack of Example 6.9 yields an induction scheme with the position
set {1.1.2}, and the set of induction variables {x, y}. The triple°

ack(x, y), {ack(p(x), s(0))}, {x �= 0}
¢

(generated by the equation (ack2�)) is replaced with
°

{x,y}ªid, {µ�
1,1}, {x �= 0}

¢
,

where µ�
1,1 = {x�→p(x), y �→s(0)}. The triple°
ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, {x �= 0, y �= 0}

¢

(generated by (ack3�)) is replaced with
°

{x,y}ªid, {µ�
2,1, µ�

2,2}, {x �= 0, y �= 0}
¢
,

where µ�
2,1 = {x�→x, y �→p(y)}, and µ�

2,2 = {x�→p(x), y �→ack(x, p(y))}.

This can be seen as follows: The substitution called σ in § 5.8 is {x,y}ªid in
both cases, and so the constraints for the (measured) positions are xµ�

1,1=p(x),
yµ�

1,1=s(0); xµ�
2,1=x, yµ�

2,1=p(y); xµ�
2,2=p(x), yµ�

2,2=ack(x, p(y)).

As all six constraints are satisfied, and the hitting ratio is 6
6 = 1. 2

1584

Automation of Mathematical Induction

An induction scheme that is either subsumed by or merged into another induction
scheme adds its hitting ratio and sets of positions and induction variables to those
of the other’s, respectively, and then it is deleted.

The most important case of subsumption are schemes that are identical except
for their position sets, where — no matter which scheme is deleted — the result is
the same. The more general case of proper subsumption occurs when the subsumer
provides the essential structure of the subsumee, but not vice versa.

Merging and proper subsumption of schemes — seen as binary algebraic oper-
ations — are not commutative, however, because the second argument inherits the
well-foundedness guarantee alone and somehow absorbs the first argument, and so
the result for swapped arguments is often undefined.

More precisely, subsumption is given if the step-case description of the first
induction scheme can be injectively mapped to the step-case description of the
second one, such that (using the notation of § 5.8 and Example 6.11), for each
step case (id, { µj | j ∈J }, C) mapped to (id, { µ�

j | j ∈J�J � }, C �), we have
C ⊆ C �, and the set of substitutions { µj | j ∈J } can be injectively168 mapped
to { µ�

j | j ∈J � J � } (w.l.o.g. say µi to µ�
i for i∈J), such that, for each j ∈ J and

x ∈ dom(µj): x∈dom(µ�
j); xµj=x implies xµ�

j=x; and xµj is a subterm of xµ�
j .

Example 6.12 (Subsumption of Induction Schemes)
In Example 6.11, the induction scheme for lessp is subsumed by the induction scheme
for ack, because we can map the only element of the step-case description of the
former to the second element of the step-case description of latter: the case condition
{y �= 0} is a subset of the case condition {x �= 0, y �= 0}, and we have µ1 = µ�

2,1.
So the former scheme is deleted and the scheme for ack is updated to have the
position set {1.1, 1.1.2} and the hitting ratio 3

2 . 2

In Example 6.2 of § 6.2.6 we have already seen a rudimentary, but pretty successful
kind of merging of suggested step cases in the Pure LISP Theorem Prover.
As Thm additionally has induction schemes, it applies a more sophisticated merging
of induction schemes instead.

167For more details on the recursion analysis a definition time in Thm,
see Page 180ff. of [Boyer & Moore, 1979].

168From a logical viewpoint, it is not clear why this second injectivity requirement is found here,
just as in different (but equivalent) form in [Boyer & Moore, 1979, p. 191, 1st paragraph]. (The
first injectivity requirement may prevent us from choosing an induction ordering that is too small,
cf. § 6.3.9.) An omission of the second requirement would just admit a term of the subsumer to
have multiple subterms of the subsumee, which seems reasonable. Nevertheless, as pointed out in
§ 6.3.9, only practical testing of the heuristics is what matters here. See also Note 169.

1585

Moore and Wirth

Two substitutions µ1 and µ2 are [non-trivially] mergeable if xµ1 =xµ2 for each
x ∈ dom(µ1) ∩ dom(µ2) [and there is a y ∈ dom(µ1) ∩ dom(µ2) with yµ1 �= y].

Two triples (V1ªid, A1, C1) and (V2ªid, A2, C2) of two step-case descriptions of two
induction schemes, each with domain Vk = dom(µk) for all µk ∈ Ak (for k ∈ {1, 2}),
are [non-trivially] mergeable if for each µ1 ∈ A1 there is a µ2 ∈ A2 such that µ1 and
µ2 are [non-trivially] mergeable. The result of their merging is°

V1∪V2ªid, m(A1, A2), C1∪C2

¢
,

where m(A1, A2) is the set containing all substitutions µ1 ∪ µ2 with µ1 ∈ A1 and
µ2 ∈ A2 such that µ1 and µ2 are mergeable as well as all substitutions V1\V2

ªid ∪ µ2

with µ2 ∈ A2 for which there is no substitution µ1 ∈ A1 such that µ1 and µ2 are
mergeable.

Two induction schemes are mergeable if the step-case description of the first
induction scheme can be injectively169 mapped to the step-case description of the
second one, such that each argument and its image are non-trivially mergeable. The
step-case description of the induction scheme that results from merging the first
induction scheme into the second contains the merging of all mergeable triples of
the step-case descriptions of the first and second induction scheme, respectively.

Finally, we have to describe what it means that an induction scheme is flawed. This
simply is the case if — after merging is completed — the intersection of its induction
variables with the (common) domain of the substitutions of the step-case description
of another remaining induction scheme is non-empty.

If an induction scheme is flawed by another one that cannot be merged with it,
this indicates that an induction on it will probably result in a permanent clash
between the induction conclusion and the available induction hypotheses at some
occurrences of the induction variables.170

Example 6.13 (Merging and Flawedness of Induction Schemes)
Let us reconsider merging in the proof of lemma (lessp7) w.r.t. the definition of lessp
via (lessp1�–3�), just as we did in Example 6.2. Let us abbreviate p = true with p,
just as in our very first proof of lemma (lessp7) in Example 4.3, and also following
the LISP style of Thm. Simplification reduces (lessp7) first to the clause
(lessp7�) lessp(x, p(z)), ¬lessp(x, y), ¬lessp(y, z), z = 0

169From a logical viewpoint, it is again not clear why an injectivity requirement is found here, just
as in different (but equivalent) form in [Boyer & Moore, 1979, p. 193, 1st paragraph]. An omission of
the injectivity requirement would admit to define merging as a commutative associative operation.
Nevertheless, as pointed out in § 6.3.9, only practical testing of the heuristics is what matters here.
See also Note 168.

170See Page 194f. of [Boyer & Moore, 1979] for a short further discussion and a nice example.

1586

Automation of Mathematical Induction

pos. set ind. var.s step-case description hitting ratio
1 {1} {x}

© °
{x,z}ªid, {µ1}, {x �= 0}

¢ ™
1

2 {2} {x}
© °

{x,y}ªid, {µ2}, {x �= 0}
¢ ™

1

3 {2} {y}
© °

{x,y}ªid, {µ2}, {y �= 0}
¢ ™

1

4 {3} {y}
© °

{y,z}ªid, {µ3}, {y �= 0}
¢ ™

1

5 {3} {z}
© °

{y,z}ªid, {µ3}, {z �= 0}
¢ ™

1

6 {2} {x, y}
© °

{x,y}ªid, {µ2}, {x �= 0, y �= 0}
¢ ™

2

7 {3} {y, z}
© °

{y,z}ªid, {µ3}, {y �= 0, z �= 0}
¢ ™

2

8 {2, 3} {x, y, z}
© °

{x,y,z}ªid, {µ4}, {x �= 0, y �= 0, z �= 0}
¢ ™

4

9 {1, 2, 3} {x, y, z}
© °

{x,y,z}ªid, {µ4}, {x �= 0, y �= 0, z �= 0}
¢ ™

5

µ1 = {x�→p(x), z �→p(z)}, µ2 = {x�→p(x), y �→p(y)},
µ3 = {y �→p(y), z �→p(z)}, and µ4 = {x�→p(x), y �→p(y), z �→p(z)}.

pos. = position; ind. var.s = set of induction variables.
Figure 2: The induction schemes of Example 6.13

Then the Boyer–Moore waterfall sends this clause through three rounds of re-
duction between destructor elimination and simplification as discussed at the end
of § 6.3.2, finally returning again to (lessp7�), but now with all its variables marked
as being introduced by destructor elimination, which prevents looping by blocking
further destructor elimination.

Note that the marked variables refer actually to the predecessors of the values
of the original lemma (lessp7�), and that these three rounds of reduction already
include all that is required for the entire induction proof, such that descente infinie
would now conclude the proof with an induction-hypothesis application. This most
nicely illustrates the crucial similarity between recursion and induction, which Boyer
and Moore “exploit” . . . “or, rather, contrived”.171

The proof by explicit induction in Thm, however, now just starts to compute
induction schemes. The two induction templates for lessp found in Example 6.8 are
applicable five times, resulting in the induction schemes 1–5 in Figure 2.

From the domains of the substitutions in the step-case descriptions, it is obvious
that — among schemes 1–5 — only the two pairs of schemes 2 and 3 as well as
4 and 5 are candidates for subsumption, which is not given here, however, because
the case conditions of these two pairs of schemes are not subsets of each other.

Nevertheless, these pairs of schemes merge, resulting in the schemes 6 and 7,
respectively, which merge again, resulting in scheme 8.

171Cf. [Boyer & Moore, 1979, p. 163, last paragraph].

1587

Moore and Wirth

Now only the schemes 1 and 8 remain. As each of them has x as an induction
variable, both schemes would be flawed if they could not be merged.

It does not matter that the scheme 1 is subsumed by scheme 8 simply because the
phase of subsumption is already over; but they are also mergeable, actually with
the same result as subsumption would have, namely the scheme 9, which admits us
to prove the generic step-case formula it describes without further induction, and so
Thm achieves the crucial task of heuristic anticipation of an appropriate induction
hypotheses, just as well as the Pure LISP Theorem Prover.172 2

6.3.9 Conclusion on Thm

Logicians reading on Thm may ask themselves many questions such as: Why is
merging of induction schemes — seen as a binary algebraic operation — not realized
to satisfy the constraint of associativity, so that the result of merging become inde-
pendent of the order of the operations? Why does merging not admit the subterm-
property in the same way as subsumption of induction schemes does? Why do some
of the injectivity requirements173 of subsumption and mergeability lack a meaningful
justification, and how can it be that they do not matter?

The answer is trivial, although it is easily overlooked: The part of the automation
of induction discussed here belongs more to the field of heuristics than to the field
of logics. Therefore, the final judgment cannot come from logical and intellectual
adequacy and comprehensibility — which are not much more applicable here than in
the field of neural nets for instance — but must come from complete testing with a
huge and growing corpus of example theorems. A modification of an operation, say
merging of induction schemes, that may have some practical advantages for some
examples or admit humans some insight or understanding, can be accepted only if it
admits us to run, as efficiently as before, all the lemmas that could be automatically
proved with the system before. All in all, logical and formal considerations may help
us to find new heuristics, but they cannot play any rôle in their evaluation.174

172The base cases show no improvement to the proof with the Pure LISP Theorem Prover in
Example 6.2 and a further additional, but also negligible overhead is the preceding reduction from
(lessp7) over (lessp7�) to a version of (lessp7�) with marked variables.

173Cf. Notes 168 and 169.
174While Christoph Walther is well aware of the primacy of testing in [Walther, 1992; 1993], this

awareness is not reflected in the sloppy language of the most interesting papers [Stevens, 1988] and
[Bundy &al., 1989]: Heuristics cannot be “bugged” or “have serious flaws”, unless this would mean
that they turn out to be inferior to others w.r.t. a standard corpus. A “rational reconstruction” or
a “meta-theoretic analysis” may help to guess even superior heuristics, but they may not have any
epistemological value per se.

1588

Automation of Mathematical Induction

Moreover, it is remarkable that the well-founded relation that is expressed by the
subsuming induction scheme is smaller than that expressed by the subsumed one,
and the relation expressed by a merged scheme is typically smaller than those ex-
pressed by the original ones. This means that the newly generated induction schemes
do not represent a more powerful induction ordering (say, in terms of Noetherian
induction), but actually achieve an improvement w.r.t. the eager instantiation of the
induction hypothesis (both for a direct proof and for generalization), and provide
case conditions that further a successful generalization without further case analysis.

Since the end of the 1970s until today, Thm has set the standard for explicit
induction; moreover, Thm and its successors Nqthm and ACL2 have given many
researchers a hard time trying to demonstrate weaknesses of the explicit-induction
heuristics, because examples carefully devised to fail with certain steps of the con-
struction of induction schemes (or other stages of the waterfall) tend to end up with
alternative proofs not imagined before.

Restricted to the mechanization of the selection of an appropriate induction
scheme for explicit induction, no significant overall progress has been seen beyond
Thm and we do not expect any such progress for the future. A heuristic approach
that has to anticipate appropriate induction steps with a lookahead of one individual
rewrite step for each recursive function occurring in the input formula cannot go
much further than the carefully developed and exhaustively tested explicit-induction
heuristics of Thm.

Working with Thm (or Nqthm) for the first time will always fascinate infor-
maticians and mathematicians, simply because it helps to save more time with the
standard everyday inductive proof work than it takes, and the system often comes
up with completely unexpected proofs. Mathematicians, however, should be warned
that the less trivial mathematical proofs that require some creativity and would de-
serve to be explicated in a mathematics lecture, will require some hints, especially if
the induction ordering is not a combination of the termination orderings of the given
function definitions. This is already the case for the simple proofs of the lemma on
the irrationality of the square root of two, simply because the induction orderings
of the typical proofs exist only under the assumption that the lemma is wrong.
To make Thm find the standard proof, the user has to define a function such as
sqrtio with a defining rule such as (sqrtio1) in Figure 3 on the following page.

Note that the condition of (sqrtio1) cannot be fulfilled. The three different occur-
rences of sqrtio on the right-hand side of the positive/negative-conditional equation
become immediately clear from Figure 3. Actually, any single one of these occur-
rences is sufficient for a proof of the irrationality lemma with Thm, provided that
we give the hint that the induction templates of sqrtio should be used for computing
the induction schemes, in spite of the fact that sqrtio does not occur in the lemma.

1589

Moore and Wirth

(sqrtio1) sqrtio(x, y)
= and(sqrtio(y, div(x, s(s(0)))),

and(sqrtio(s(s(0)) ∗ (x− y), (s(s(0)) ∗ y)−x),
sqrtio((s(s(0)) ∗ y)−x, x− y)))

⇐ x ∗x= s(s(0)) ∗ y ∗ y ∧ y �= 0

The arguments of the three recursive calls of sqrtio in the right-hand side represent
the step from the left-hand side given as the the triangle with right angle at F to
those at C, G, and B, respectively.

x=AE

y =FE =BE =AF

div(x, s(s(0)))=AC =CF

x− y =AB =BD =BG=GF

s(s(0)) ∗ (x− y)= AD

(s(s(0)) ∗ y)−x=AG =GD

...

A

B
C

F E

D
G

Figure 3: Four possibilities to descend with rational representations of
√

2:

6.4 Nqthm

Subsequent theorem provers by Boyer and Moore did not add much to the selection
of an appropriate induction scheme. While both Nqthm and ACL2 have been very
influential in theorem proving, their inductive heuristics are nearly the same as those
in Thm and their waterfalls have quite similar structures. As we are concerned here
only with the essential history of the mechanization of induction, we just sketch
most interesting developments since 1979.

The one change from Thm to Nqthm that most directly affected the inductions
carried out by the system is the abandonment of fixed lexicographic relations on
natural numbers as the only available well-founded relations. Nqthm introduces
a formal representation of the ordinals up to ε0, i.e. up to ωω . . .

, and assumes that
the “less than” relation on such ordinals is well-founded. This did not change
the induction heuristics themselves, it just allowed the admission of more complex
function definitions and the justification of more sophisticated induction templates.

1590

Automation of Mathematical Induction

After the publication of [Boyer & Moore, 1979] describing Thm, Boyer and
Moore turned to the question of providing limited support for higher-order functions
in their first-order setting. This had two very practical motivations. One was to
allow the user to extend the prover by defining and mechanically verifying new
proof procedures in the pure LISP dialect supported by Thm. The other was to
allow the user the convenience of LISP’s “map functions” and LOOP facility. Both
required formally defining the semantics of the logical language in the logic, i.e.
axiomatizing the evaluation function EVAL. Ultimately this resulted in the provision
of metafunctions [Boyer & Moore, 1981b] and the non-constructive “value-and-cost”
function V&C$ [Boyer & Moore, 1988a], which were provided as part of the Nqthm
system described in [Boyer & Moore, 1988b; 1998].

The most important side-effect of these additions, however, is under the hood;
Boyer and Moore contrived to make the representation of constructor ground terms
in the logic be identical to their representation as constants in its underlying im-
plementation language LISP: integers are represented directly as LISP integers;
for instance, s(s(s(0))) is represented by the machine-oriented internal LISP repre-
sentation of 3, instead of the previous (ADD1 (ADD1 (ADD1 (ZERO)))). Symbols
and list structures are embedded this way as well, so that they can can profit from
the very efficient representation of these basic data types in LISP. It thus also
became possible to represent symbolic machine states containing actual assembly
code or the parse trees of actual programs in the logic of Nqthm. Metafunctions
were put to good use canonicalizing symbolic state expressions. The exploration of
formal operational semantics with Nqthm blossomed.

In addition, Nqthm adds a rational linear-arithmetic175 decision procedure to
the simplification stage of the waterfall [Boyer & Moore, 1988c], reducing the amount
of user interaction necessary to prove arithmetic theorems. The incompleteness
of the procedure when operating on terms beyond the linear fragment is of little
practical importance since induction is available (and often automatic).

With Nqthm it became possible to formalize and verify problems beyond the
scope of Thm, such as the correctness of a netlist implementing the instruction-
set architecture of a microprocessor [Hunt, 1985], Gödel’s first incompleteness
theorem,176 the verified hard- and software stack of Computational Logic, Inc., relat-
ing a fabricated microprocessor design through an assembler, linker, loader, several
compilers, and an operating system to simple verified application programs,177 and
the verification of the Berkeley C String Library.178 Many more examples are listed
in [Boyer & Moore, 1998].

175Linear arithmetic is traditionally called “Presburger Arithmetic” after Mojżesz Presburger
(actually: “Prezburger”) (1904–1943(?)); cf. [Presburger, 1930], [Stansifer, 1984], [Zygmunt, 1991].

1591

Moore and Wirth

6.5 ACL2

Because of the pervasive change in the representation of constants, the LISP subset
supported by Nqthm is exponentially more efficient than the LISPs supported by
Thm and the Pure LISP Theorem Prover. It is still too inefficient, however:
Emerging applications of Nqthm in the late 1980s included models of commercial
microprocessors; users wished to run their models on industrial test suites. The root
cause of the inefficiency was that ground execution in Nqthm was done by a purpose-
built interpreter implemented by Boyer and Moore. To reach competitive speeds,
it would have been necessary to build a good compiler and full run-time system
for the LISP subset axiomatized in Nqthm. Instead, in August 1989, less than a
year after the publication of [Boyer & Moore, 1988b] describing Nqthm, Boyer and
Moore decided to axiomatize a practical subset of Common Lisp [Steele, 1990], the
then-emerging standard LISP, and to build an Nqthm-like theorem prover for it.
To demonstrate that the subset was a practical programming language, they decided
to code the theorem prover applicatively in that subset. Thus, ACL2 was born.

Boyer left Computational Logic, Inc., (CLI) and returned to his duties at the
The University of Texas at Austin in 1989, while Moore resigned his tenure and
stayed at CLI. This meant Moore was working full-time on ACL2, whereas Boyer
was working on it only at night. Matt Kaufmann (*1952), who had worked with
Boyer and Moore since the mid-1980s on Nqthm and had joined them at CLI, was
invited to join the ACL2 project. By the mid-1990s, Boyer requested that his name
be removed as an author of ACL2 because he no longer knew every line of code.

The only major change to inductive reasoning introduced by ACL2 is the further
refinement of the induction templates computed at definition time: While Nqthm
built the case analysis from the case conditions “governing” the recursive calls,
ACL2 uses the more restrictive notion of the tests “ruling”179 the recursive calls.

176Cf. [Shankar, 1994]. In [Shankar, 1994, p. xii] we read on this work with Nqthm:
“This theorem prover is known for its powerful heuristics for constructing proofs by induction

while making clever use of previously proved lemmas. The Boyer–Moore theorem prover did not
discover proofs of the incompleteness theorem but merely checked a detailed but fairly high-level
proof containing over 2000 definitions and lemmas leading to the main theorems. These definitions
and lemmas were constructed through a process of interaction with the theorem prover which was
able to automatically prove a large number of nontrivial lemmas. By thus proving a well-chosen
sequence of lemmas, the theorem prover is actually used as a proof checker rather than a theorem
prover.

If we exclude the time spent thinking, planning, and writing about the proof, the verification of
the incompleteness theorem occupied about eighteen months of effort with the theorem prover.”

177Cf. [Moore, 1989b; 1989a], [Bevier &al., 1989], [Hunt, 1989], [Young, 1989],
[Bevier, 1989].

1592

Automation of Mathematical Induction

ACL2 represents a major step, however, toward Boyer and Moore’s dream of
a computational logic because it is a theorem prover for a practical programming
language. Because it is so used, scaling its algorithms and heuristics to deal with
enormous models and the formulas they generate has been a major concern, as has
been the efficiency of ground execution. Moreover, it also added many other proof
techniques including congruence-based contextual rewriting, additional decision pro-
cedures, disjunctive search (meaning the waterfall no longer has just one pool but
may generate several, one of which must be “emptied” to succeed), and many fea-
tures made possible by the fact that the system code and state is visible to the logic
and the user.

Among the landmark applications of ACL2 are the verification of a Motorola
digital signal processor [Brock & Hunt, 1999] and of the floating-point division
microcode for the AMD K5tm microprocessor [Moore &al., 1998], the routine verifi-
cation of all elementary floating point arithmetic on the AMD Athlontm [Russinoff,
1998], the certification of the Rockwell Collins AAMP7Gtm for multi-level secure
applications by the US National Security Agency based on the ACL2 proofs [Anon,
2005], and the integration of ACL2 into the work-flow of Centaur Technology, Inc.,
a major manufacturer of X86 microprocessors [Hunt & Swords, 2009]. Some of this
work was done several years before the publications appeared because the early use
of formal methods was considered proprietary.180

In most industrial applications of ACL2, induction is not used in every proof.
Many of the proofs involve huge intermediate formulas, some requiring megabytes
of storage simply to represent, let alone simplify. Almost all the proofs, however,
depend on lemmas that require induction to prove.

To be successful, ACL2 must be good at both induction and simplification and
integrate them seamlessly in a well-engineered system, so that the user can state
and prove in a single system all the theorems needed.

ACL2 is most relevant to the historiography of inductive theorem proving
because it demonstrates that the induction heuristics and the waterfall provide such
an integration in ways that can be scaled to industrial-strength applications.

ACL2 and, by extension, inductive theorem proving, have changed the way
microprocessors and low-level critical software are designed. Proof of correctness,
or at least proof of some important system properties, is now a possibility.

178Via verification of its gcc-generated Motorola MC68020 machine code [Boyer & Yu, 1996].
179Compare the definition of governors on Page 180 of [Boyer & Moore, 1998] to the definition of

rulers on Page 90 of [Kaufmann &al., 2000b].
180For example, the work for [Brock & Hunt, 1999] was completed in 1994, and that for

[Moore &al., 1998] in 1995.

1593

Moore and Wirth

Boyer, Moore, and Kaufmann were awarded the 2005 ACM Software Systems
Award for “the Boyer–Moore Theorem Prover”:

“The Boyer–Moore Theorem Prover is a highly engineered and effec-
tive formal-methods tool that pioneered the automation of proofs by
induction, and now provides fully automatic or human-guided verifica-
tion of critical computing systems. The latest version of the system,
ACL2, is the only simulation/verification system that provides a stan-
dard modeling language and industrial-strength model simulation in a
unified framework. This technology is truly remarkable in that simula-
tion is comparable to C in performance, but runs inside a theorem prover
that verifies properties by mathematical proof. ACL2 is used in industry
by AMD, IBM, and Rockwell-Collins, among others.”181

6.6 Further Historically Important Explicit-Induction Systems

Explicit induction is nowadays applied in many theorem proving systems, such as
Isabelle/HOL, Coq, PVS, and IsaPlanner, to name just a few. We cannot treat
all of these systems in this article. Thus, in this section, we sketch only those systems
that provided crucial contributions to the history of the automation of mathematical
induction.

6.6.1 Rrl

Rrl, the Rewrite Rule Laboratory [Kapur & Zhang, 1989], was initiated in 1982 and
showed its main activity during its first dozen years. Rrl is a system for proving
the viability of many techniques related to term rewriting. Besides other forms of
induction, Rrl includes cover-set induction, which has eager induction-hypothesis
generation, but is restricted to syntactic term orderings.

181For the complete text of the citation of Boyer, Moore, and Kaufmann see http://awards.acm.
org/citation.cfm?id=4797627&aw=149.

1594

Automation of Mathematical Induction

6.6.2 Inka

The Inka project and the development of the Inka induction systems began at the
University of Karlsruhe at the beginning of the 1980s. It became part of the Col-
laborative Research Center SFB 314 “Artificial Intelligence”, which started in 1985
and was financed by the German Research Community (DFG) to overcome a back-
wardness in artificial intelligence in Germany of more than a decade compared to
the research in Edinburgh and in the US.

The Inka systems were based on the concepts of Boyer & Moore [1979] and
proved the executability of several new concepts, but they were never competitive
with their contemporary Boyer–Moore theorem provers,182 and the development of
Inka was discontinued in the year 2000.

Three Inka system descriptions were presented at the CADE conference series:
[Biundo &al., 1986], [Hutter & Sengler, 1996], [Autexier &al., 1999].

Besides interfaces to users and other systems, and the integration of logics, speci-
fications, and results of other theorem provers, the essentially induction-relevant ad-
ditions of Inka as compared to the system described in [Boyer & Moore, 1979] are
the following: In [Biundo &al., 1986], there is an existential quantification where
the system tries to find witnesses for the existentially quantified variables by interac-
tive program synthesis. In [Hutter, 1994], there is synthesis of induction orderings
by rippling (cf. § 7.2).

Most interesting work on explicit induction was realized along the line of the
Inka systems: We have to mention here Christoph Walther’s (*1950) elegant treat-
ment of automated termination proofs for recursive function definitions [Walther,
1988; 1994b], and his theoretically outstanding work on the generation of step
cases with eager induction-hypothesis generation [Walther, 1992; 1993]. More-
over, there is Dieter Hutter’s (*1959) further development of rippling (cf. § 7.2),
and Martin Protzen’s (*1962) profound work on patching of faulty conjectures and
on breaking out of the imagined cage of explicit induction by “lazy induction”
[Protzen, 1994; 1995; 1996].

182Inka 5.0 [Autexier &al., 1999], however, was competitive in speed with Nqthm. This can
roughly be concluded from the results of the inductive theorem proving contest at the 16th Int.
Conf. on Automated Deduction (CADE), Trento (Italy), 1999 (the design of which is described in
[Hutter & Bundy, 1999]), where the following systems competed with each other (in interaction
with the following humans): Nqthm (Laurence Pierre), Inka 5.0 (Dieter Hutter), Oyster/CLaM
(Alan Bundy), and a first prototype of QuodLibet (Ulrich Kühler). Only Oyster/CLaM turned
out to be significantly slower than the other systems, but all participating systems would have been
left far behind ACL2 if it had participated.

1595

Moore and Wirth

6.6.3 Oyster/CLaM

The Oyster/CLaM system was developed at the University of Edinburgh in the
late 1980s183 and the 1990s by a large team led by Alan Bundy.184

Oyster is a reimplementation of Nuprl [Constable &al., 1985], a proof editor
for Martin-Löf constructive type theory with rules for structural induction in the
style of Peano — a logic that is not well-suited for inductive proof search, as discussed
in § 4.6. Oyster is based on tactics with specifications in a meta-level language
which provides a complete representation of the object level, but with a search space
much better suited for inductive proof search.

CLaM is a proof planner (cf. § 7.1) which guides Oyster, based on proof search
in the meta-language, which includes rippling (cf. § 7.2).

Oyster/CLaM is the slowest system explicitly mentioned in this article.181 One
reason for this inefficiency is its constructive object-level logic. Its successor systems,
however, are much faster.185

In its line of development, Oyster/CLaM proved the viability of several most
important new concepts:

• Among the approaches that more or less address theorem proving in general,
we have to mention rippling (cf. § 7.2) and a productive use of failure for the
suggestion of crucial new lemmas.186

• A most interesting approach that addresses the core of the automation of
inductive theorem proving and that deserves further development is the ex-
tension of recursion analysis to ripple analysis.187

183The system description [Bundy &al., 1990] of Oyster/CLaM appeared already in summer 1990
at the CADE conference series (with a submission in winter 1989/1990); so the development must
have started before the 1990s, contrary to what is stated in § 11.4 of [Bundy, 1999].

184For Alan Bundy see also Note 9.
185One of the much faster successor systems of Oyster/CLaM under further development is

IsaPlanner, which is based on Isabelle [Paulson, 1990]. See [Dixon & Fleuriot, 2003] and
[Dennis &al., 2005] for early publications on IsaPlanner.

186Cf. [Ireland & Bundy, 1994]. Moreover, see our discussion on the particular theoretical rel-
evance of finding new lemmas in mathematical induction in § 4.10. Furthermore, note that the
practical relevance of finding new lemmas addresses the efficiency of theorem proving in general, as
described in Notes 72, 73, and 76 of § 4.10.

187Ripple analysis is sketched already in [Bundy &al., 1989, § 7] and nicely presented in [Bundy,
1999, § 7.10].

1596

Automation of Mathematical Induction

7 Alternative Approaches Besides Explicit Induction
In this section we will discuss the approaches to the automation of mathematical
induction that do not strictly follow the method of explicit induction as we have
described it. In general, these approaches are not disjoint from explicit induction.
To the contrary, proof planning and rippling have until now been applied mostly
to systems more or less based on explicit induction, but they are not exclusively
related to induction and they are not following Boyer and Moore’s method of explicit
induction in every detail. Even systems for implicit induction may include many
features of explicit induction and some of them actually do, such as Rrl (cf. § 6.6.1)
and QuodLibet (cf. § 7.4).

7.1 Proof Planning
Suggestions on how to overcome an envisioned dead end in automated theorem
proving were summarized in the end of the 1980s under the keyword proof planning.
Besides its human-science aspects,188 the main idea189 of proof planning is to extend
a theorem-proving system — on top of the low-level search space of the logic calculus
of a proof checker — with a higher-level search space, which is typically smaller or
better organized w.r.t. searching, more abstract, and more human-oriented.

The extensive and sophisticated subject of proof planning is not especially related
to induction, but addresses automated theorem proving in general. We cannot cover
it here and have to refer the reader to the standard publications on the subject.190

7.2 Rippling
Rippling is a technique for augmenting rewrite rules with information that helps to
find a way to rewrite one expression (goal) into another (target), more specifically
to reduce the difference between the goal and the target by rewriting the goal.

Although rippling is not restricted to inductive theorem proving, it was first
used by Raymond Aubin191 in the context of the description of heuristics for the
automation of mathematical induction and found most of its applications there.

188Cf. [Bundy, 1989].
189Cf. [Bundy, 1988], [Dennis &al., 2005].
190In addition to [Bundy, 1988; 1989] and [Dennis &al., 2005], see also [Dietrich, 2011], [Melis

&al., 2008], [Jamnik &al., 2003], and the references there.
191The verb “to ripple up” is used in §§ 3.2 and 3.4 of [Aubin, 1976] — not as a technical term,

but just as an informal term for motivating some heuristics. The formalizers of rippling give explicit
credit to Aubin [1976] for their inspiration in [Bundy &al., 2005, § 1.10, p. 21], although Aubin does
not mention the term at any other place in his publications [Aubin, 1976; 1979]. Note, however,
that instead of today’s name “rippling out”, Aubin actually used “rippling up”.

1597

Moore and Wirth

The leading developers and formalizers of the technique are Alan Bundy, Dieter
Hutter, David Basin, Frank van Harmelen, and Andrew Ireland.

We have already mentioned rippling in § 6.6 several times, but this huge and
well-documented area of research cannot be covered here, and we have to refer the
reader to the monograph [Bundy &al., 2005].192

Let us explain here, however, why rippling can be most helpful in the automation
of simple inductive proofs.

Roughly speaking, the remarkable success in proving simple theorems by induc-
tion automatically, can be explained as follows: If we look upon the task of proving
a theorem as reducing it to a tautology, then we have more heuristic guidance when
we know that we probably have to do it by mathematical induction: Tautologies
can have arbitrary subformulas, but the induction hypothesis we are going to apply
can restrict the search space tremendously.

In a cartoon of Alan Bundy’s, the original theorem is pictured as a zigzagged
mountainscape and the reduced theorem after the unfolding of recursive operators
according to recursion analysis (goal) is pictured as the reflection of the mountain-
scape on the surface of a lake with ripples. To apply the induction hypothesis
(target), instead of the uninformed search for an arbitrary tautology, we have to
get rid of the ripples to be able to apply an instance of the theorem as induction
hypothesis to the mountainscape mirrored by the calmed surface of the lake.

A crucial advantage of rippling in the area of automated induction is that it can
also be used to suggest missing lemmas as described in [Ireland & Bundy, 1994].

Until today, rippling was applied to the automation of induction only within
explicit induction, whereas it is clearly not limited to explicit induction, and
we actually expect it to be more useful in areas of automated theorem proving
with bigger search spaces and, in particular, in descente infinie.

7.3 Implicit Induction
The remaining approaches to mechanize mathematical induction not subsumed by
explicit induction, however, are united under the name “implicit induction”.

Triggered193 by the success of Boyer & Moore [1979], publication on these alter-
native approaches started already in the year 1980 in purely equational theories.194

A sequence of papers on technical improvements195 was topped by [Bachmair, 1988],
which gave rise to a hope to develop the method into practical usefulness, although
it was still restricted to purely equational theories.

192Historically important are also the following publications on rippling: [Hutter, 1990],
[Bundy &al., 1991], [Ireland & Bundy, 1994], [Basin & Walsh, 1996].

1598

Automation of Mathematical Induction

Inspired by [Bachmair, 1988], in the late 1980s and the first half of the 1990s
several researchers tried to understand more clearly what implicit induction means
from a theoretical point of view and whether it could be useful in practice.196

While it is generally accepted that [Bachmair, 1988] is about implicit induction
and [Boyer & Moore, 1979] is about explicit induction, there are the following three
different viewpoints on what the essential aspect of implicit induction actually is.

Proof by Consistency:197 Systems for proof by consistency run some Knuth–
Bendix198 or superposition199 completion procedure.
A proof attempt is successful when the prover has drawn all necessary infer-
ences and stops without having detected any inconsistency.
The runs are typically infinite, however, and the admissibility conditions are
too restrictive for most applications.
Even in the rare case that it stops, proof by consistency has shown to perform
far worse than any other known form of mechanizing mathematical induction,
mainly because it requires the generation of far too many irrelevant and super-
fluous inferences, under which the ones relevant for establishing the induction
steps can hardly be made explicit.
Roughly speaking, the conceptual flaw of proof by consistency is that, instead
of finding a sufficient set of reasonable inferences, the research follows the idea
of ruling out as many irrelevant inferences as possible.

193Although it is obvious that in the relatively small community of artificial intelligence and
computer science in the 1970s, the success of [Boyer & Moore, 1979] triggered the publication of
papers on induction in the term rewriting community, we can document the influence of Boyer and
Moore’s work here only with the following facts: [Boyer & Moore, 1975; 1979] are both cited in
[Huet & Hullot, 1980]. [Boyer & Moore, 1977] is cited in [Musser, 1980] as one of the “important
sources of inspiration”. Moreover, Lankford [1980] constitutively refers to a personal communication
with Robert S. Boyer in 1979. Finally, Goguen [1980] avoids a direct reference to Boyer and Moore,
but cites only the PhD thesis [Aubin, 1976] of Raymond Aubin, following their work in Edinburgh.

194Cf. [Goguen, 1980], [Huet & Hullot, 1980], [Lankford, 1980], [Musser, 1980].
195Cf. [Göbel, 1985], [Jouannaud & Kounalis, 1986], [Fribourg, 1986], [Küchlin, 1989].
196Cf. e.g. [Zhang &al., 1988], [Kapur & Zhang, 1989], [Bevers & Lewi, 1990],

[Reddy, 1990], [Gramlich & Lindner, 1991], [Ganzinger & Stuber, 1992],
[Bouhoula & Rusinowitch, 1995], [Padawitz, 1996].

197The name “proof by consistency” was coined in the title of [Kapur & Musser, 1987], which is
the later published forerunner of its outstanding improved version [Kapur & Musser, 1986].

198See Unicom [Gramlich & Lindner, 1991] for such a system, following [Bachmair, 1988] with
several improvements. See [Knuth & Bendix, 1970] for the Knuth–Bendix completion procedure.

199See [Ganzinger & Stuber, 1992] for such a system.

1599

Moore and Wirth

Implicit Induction Ordering: In the early implicit-induction systems,200

induction proceeds over a syntactic term ordering, which typically cannot be
made explicit in the sense that there would be some predicate term in the
logical syntax that denotes this ordering in the intended models of the specifi-
cation. The semantic orderings of explicit induction, however, cannot depend
on the precise syntactic term structure of a weight w, but only on the value
of w under an evaluation in the intended models.
In contrast to rudimentary inference systems that turned out to be more or less
useless in practice (such as the one of [Bachmair, 1988] for inductive completion
in unconditional equational specifications), more powerful human-oriented in-
ference systems (such as the one of QuodLibet) are considerably restrained
by the constraint to be sound also for induction orderings that depend on the
precise syntactic structure of terms (beyond their values).201

The early implicit-induction systems needed such sophisticated term order-
ings,202 because they started from the induction conclusion and every inference
step reduced the formulas w.r.t. the induction ordering again and again, but
an application of an induction hypothesis was admissible to greater formulas
only. This deterioration of the ordering information with every inference step
was overcome by the introduction of explicit weight terms in [Wirth & Becker,
1995], which obviate the former need for syntactic term orderings as induction
orderings.

Descente Infinie (“Lazy Induction”): Contrary to explicit induction, where
induction is introduced into an otherwise merely deductive inference system
only by the explicit application of induction axioms in the induction rule,
the cyclic arguments and their well-foundedness in implicit induction need not
be confined to single inference steps.203 The induction rule of explicit induction
generates all induction hypotheses in a single inference step. To the contrary,
in implicit induction, the inference system “knows” what an induction hypo-
thesis is, i.e. it includes inference rules that provide or apply induction hypo-
theses, given that certain ordering conditions resulting from these applications
can be met by an induction ordering. Because this aspect of implicit induc-
tion can facilitate the human-oriented induction method described in § 4.6,

200See [Gramlich & Lindner, 1991] and [Ganzinger & Stuber, 1992] for such systems.
201This soundness constraint (still observed in [Wirth, 1997]) was dropped in the further develop-

ment of QuodLibet in [Kühler, 2000], because it turned out to be unintuitive and superfluous.
202Cf. e.g. [Bachmair, 1988], [Steinbach, 1988; 1995], [Geser, 1996].
203For this reason, the funny name “inductionless induction” was originally coined for implicit

induction in the titles of [Lankford, 1980; 1981] as a short form for “induction without induction
rule”. See also the title of [Goguen, 1980] for a similar phrase.

1600

Automation of Mathematical Induction

the name descente infinie was coined for it (cf. § 4.7). Researchers introduced
to this aspect by [Protzen, 1994] (entitled “Lazy Generation of Induction Hypo-
theses”) sometimes speak of “lazy induction” instead of descente infinie.

The entire handbook article [Comon, 2001] (with corrections in [Wirth, 2005a]) is
dedicated to the two aspects of proof by consistency and implicit induction orderings.
Today, however, the interest in these two aspects tends to be historical or theoretical,
especially because these aspects can hardly be combined with explicit induction.

In contrast, descente infinie synergetically combines with explicit induction,
as witnessed by the QuodLibet system, which we will discuss in § 7.4.

7.4 QuodLibet

In the last years of the Collaborative Research Center SFB 314 “Artificial Intelli-
gence” (cf. § 6.6.2), after extensive experiments with several inductive theorem prov-
ing systems,204 such as the explicit-induction systems Nqthm (cf. § 6.4) and Inka
(cf. § 6.6.2), the implicit-induction system Unicom [Gramlich & Lindner, 1991], and
the mixed system Rrl (cf. § 6.6.1), Claus-Peter Wirth (*1963) and Ulrich Kühler
(*1964) came to the conclusion that — in spite of the excellent interaction concept
of Unicom205 — descente infinie was actually the only aspect of implicit induction
that deserved further investigation. Moreover, the coding of recursive functions in
unconditional equations in Unicom turned out to be most inadequate for inductive
theorem proving in practice, where positive/negative-conditional equations were in
demand for specification, as well as clausal logic for theorem proving.206

Therefore, a new system had to be created, which was given the name Quod-
Libet (Latin for “as you like it”), because it should enable its users to avoid
overspecification by admitting partial function specifications, and to execute proofs
whose crucial proof steps mirror exactly the intended ones.207

A concept for partial function specification instead of the totality requirement of
explicit induction was easily obtained by elaborating the first part of [Wirth, 1991]
into the framework for positive/negative-conditional rewrite systems of [Wirth &
Gramlich, 1994a]. After inventing constructor variables in [Wirth &al., 1993], the
monotonicity of validity w.r.t. consistent extension of the partial specifications was
easily achieved [Wirth & Gramlich, 1994b], so that the induction proofs did not
have to be re-done after such an extension of a partially defined function.

204Cf. [Kühler, 1991].
205For the assessment of Unicom’s interaction concept see [Kühler, 1991, p. 134ff.].
206See [Kühler, 1991, pp. 134, 138].

1601

Moore and Wirth

Although the efficiently decidable confluence criterion that defines admissibility
of function definitions in QuodLibet and guarantees their (object-level) consistency
(cf. § 5.2) was very hard to prove and was presented completely and in an appropriate
form not before [Wirth, 2009], the essential admissibility requirements were already
clear in 1996.208

The weak admissibility conditions of QuodLibet — mutually recursive func-
tions, possibly partially defined because of missing cases or non-termination — are
of practical importance. Although humans can code mutually recursive functions
into non-mutually recursive functions,209 they will hardly be able to understand com-
plicated formulas where these encodings occur, and so they will have severe prob-
lems in assisting the proving system in the construction of hard proofs. Partiality
due to non-termination essentially occurs in interpreters with undecidable domains.
Partiality due to missing cases of the definition can often be avoided by overspecifica-
tion in theory, but not in practice where the unintended results of overspecification
may complicate matters considerably.

For instance, Bernd Löchner (*1967) (a user, not a developer of QuodLibet)
concludes in [Löchner, 2006, p. 76]:

“The translation of the different specifications into the input language
of the inductive theorem prover QuodLibet [Avenhaus &al., 2003] was
straightforward. We later realized that this is difficult or impossible
with several other inductive provers as these have problems with mutual
recursive functions and partiality” . . .

207We cannot claim that QuodLibet is actually able to execute proofs whose crucial proof steps
mirror exactly the ones intended by its human users, simply because this was not scientifically
investigated, say in terms of cognitive psychology. Users, however, considered it to be more appro-
priate than other systems in this aspect, mostly due to the direct support for partial and mutually
recursive function specification, cf. [Löchner, 2006]. Moreover, the four dozen elementary rules of
QuodLibet’s inference machine were designed to mirror the way human’s organize their proofs
(cf. [Wirth, 1997], [Kühler, 2000]); so a user has to deal with one natural inference step where Oys-
ter may have hundreds of intuitionistic steps. The appropriateness of QuodLibet’s calculus for
interchanging information with humans deteriorated, however, after adding inference rules for the
efficient implementation of Presburger Arithmetic. Note that the calculus is only the lowest logic
level a user of a theorem-proving system may have to deal with; from our experience with many such
systems we came to the firm conviction, however, that the automation of proof search will always
fail on the lowest logic level from time to time, such that human-oriented state-of-the-art logic
calculi are essential for the acceptance of automated, interactive theorem provers by their users.

208See [Kühler & Wirth, 1996] for the first publication of the object-level consistency of the
specifications that are admissible and supported with strong induction heuristics in QuodLibet.
In [Kühler & Wirth, 1996], a huge proof from the original 1995 edition of [Wirth, 2005b] guaranteed
the consistency. Moreover, the most relevant and appropriate one of the seven inductive validities
of [Wirth & Gramlich, 1994b] is chosen for QuodLibet in [Kühler & Wirth, 1996] (no longer the
initial or free models typical for implicit induction!).

1602

Automation of Mathematical Induction

Based on the descente infinie inference system for clausal first-order logic of
[Wirth & Kühler, 1995],210 the system development of QuodLibet in Common
Lisp (cf. § 6.5), mostly by Kühler and Tobias Schmidt-Samoa (*1973), lasted
from1995 to 2006. The system was described and demonstrated at the 19th Int.
Conf. on Automated Deduction (CADE), Miami Beach (FL), 2003 [Avenhaus &al.,
2003]. The extension of the descente infinie inference systems of QuodLibet to
the full [modal] higher-order logic of [Wirth, 2004; 2017] has not been implemented
yet.

To the best of our knowledge, QuodLibet is the first theorem prover whose
proof state is an and-or-tree (of clauses); actually, a forest of such trees, so that each
conjecture that can generate induction hypotheses in a possibly mutual induction
proof has its own tree [Kühler, 2000]. An extension of the recursion analysis of
[Boyer & Moore, 1979] for constructor-style specifications (cf. § 5.5) was developed
by writing and testing tactics in QuodLibet’s Pascal-like211 meta-language Qml
[Kühler, 2000]. To achieve an acceptable run-time performance (but not competitive
with ACL2, of course), Qml tactics are compiled before execution.

In principle, termination proofs are not required, simply because termination is
not an admissibility requirement in QuodLibet. Instead, definition-time recursion
analysis uses induction lemmas (cf. § 6.3.7) to prove lemmas on function domains
by induction.212

At proof time, recursion analysis is used by the standard tactic only to deter-
mine the induction variables from the induction templates: As seen in Example 4.3
of § 4.7 w.r.t. the strengthened transitivity of lessp (as compared to the explicit-
induction proof in Example 6.2 of § 6.2.6 and Example 6.13 of § 6.3.8), subsumption
and merging of schemes are not required in descente infinie.213

A considerable speed-up of QuodLibet and an extension of its automatically
provable theorems was achieved by Schmidt-Samoa during his PhD work with the
system in 2004–2006. He developed a marking concept for the tagging of rewrite
lemmas (cf. § 6.3.1), where the elements of a clause can be marked as Forbidden,

209See the first paragraph of § 5.7.
210Later improvements of this inference system are found in [Wirth, 1997], [Kühler, 2000], and

[Schmidt-Samoa, 2006b].
211See [Wirth, 1971] for the programming language Pascal. The critical decision for an impera-

tive instead of a functional tactics language turned out to be most appropriate during the ten years
of using Qml.

212While domain lemmas for totally defined functions are usually found without interaction and
total functions do not provide relevant overhead in QuodLibet, the user often has to help in case
of partial function definitions by providing domain lemmas such as

Def delfirst(x, l), mbp(x, l) �= true,
for delfirst defined via (delfirst1–2) of § 4.5.

1603

Moore and Wirth

Mandatory, Obligatory, and Generous, to control the recursive relief of conditions in
contextual rewriting [Schmidt-Samoa, 2006b; 2006c]. Moreover, a very simple, but
most effective reuse mechanism analyzes during a proof attempt whether it actually
establishes a proof of some sub-clause, and uses this knowledge to crop conjunctive
branches that do not contribute to the actual goal [Schmidt-Samoa, 2006b]. Finally,
an even closer integration of linear arithmetic (cf. Note 175) with excellent results
[Schmidt-Samoa, 2006a; 2006b] questioned one of the basic principles of Quod-
Libet, namely the idea that the prover does not try to be clever, but stops early
if there is no progress visible, and presents the human user the proof state in a
nice graphical tree representation: The expanded highly-optimized formulation of
arithmetic by means of special functions for the decidable fragment of Presburger
Arithmetic results in clauses that do not easily admit human inspection anymore.
We did not find means to overcome this, because we did not find a way to fold theses
clauses to achieve a human-oriented higher level of abstraction.

QuodLibet is, of course, able to do all214 descente infinie proofs of our examples
automatically. Moreover, QuodLibet finds all proofs for the irrationality of the
square root of two indicated in Figure 3 (sketched in § 6.3.9) automatically and
without explicit hints on the induction ordering (say, via newly defined nonsensical
functions, such as the one given in (sqrtio1) of § 6.3.9) — provided that the required
lemmas are available.

All in all, QuodLibet has proved that descente infinie (“lazy induction”) goes
well together with explicit induction and that we have reason to hope that eager
induction-hypotheses generation can be overcome for theorems with difficult induc-
tion proofs, sacrificing neither efficiency nor the usefulness of the excellent heuris-
tic knowledge developed in explicit induction. Why descente infinie and human-
orientedness should remain on the agenda for induction in mathematics assistance
systems is explained in the manifesto [Wirth, 2012c].

213Although it is not a must and not part of the standard tactic, induction hypotheses may
be generated eagerly in QuodLibet to enhance generalization as in Example 4.5 of § 4.9, in which
case subsumption and merging of induction schemes as described in § 6.3.8 are required. Moreover,
the concept of flawed induction schemes of QuodLibet (taken over from Thm as well, cf. § 6.3.8)
depends on the mergeability of schemes. Furthermore, QuodLibet actually applies some merging
techniques to plan case analyses optimized for induction [Kühler, 2000, § 8.3.3]. The question
why QuodLibet adopts the great ideas of recursion analysis from Thm, but does not follow them
precisely, has two answers: First, it was necessary to extend the heuristics of Thm to deal with
constructor-style definitions. The second answer was already given in § 6.3.9: Testing is the only
judge on heuristics.

214These three descente infinie proofs are presented as Examples 4.2 and 4.3 of § 4.7, and Exam-
ple 4.5 of § 4.9.

1604

Automation of Mathematical Induction

8 Conclusion

“One of the reasons our theorem prover is successful is that we trick
the user into telling us the proof. And the best example of that, that
I know, is: If you want to prove that there exists a prime factorization
— that is to say a list of primes whose product is any given number —
then the way you state it is: You define a function that takes a natural
number and delivers a list of primes, and then you prove that it does that.
And, of course, the definition of that function is everybody else’s proof.
The absence of quantifiers and the focus on constructive, you know,
recursive definitions forces people to do the work. And so then, when the
theorem prover proves it, they say ‘Oh what wonderful theorem prover!’,
without even realizing they sweated bullets to express the theorem in
that impoverished logic.”

said Moore, and Boyer agreed laughingly.215

Acknowledgments
We would like to thank Fabio Acerbi, Klaus Barner, Anne O. Boyer,
Robert S. Boyer, Alan Bundy, Catherine Goldstein, Bernhard Gramlich,
Warren A. Hunt, Dieter Hutter, Matt Kaufmann, Ulrich Kühler, Klaus
Madlener, Jo Moore, Peter Padawitz, Tobias Schmidt-Samoa, Jörg Siek-
mann, Judith Stengel, and Marianne Wirth.
In particular, we are obliged to our second reader Alan Bundy for his
most careful reading and long long list of flaws and elaborate suggestions
that improved this article considerably.
As our our second reader Bernhard Gramlich (1959–2014), a gifted
teacher, a most creative and scrutinous researcher, and a true friend,
passed away — much too early — before dawn on June 3, 2014, we would
like to dedicate this article to him. Besides the automation of mathema-
tical induction, Bernhard’s main focus was on confluence and termina-
tion of term rewriting systems, where he proved many of the hardest
theorems of the area [Gramlich, 1996].

215[Wirth, 2012d].

1605

Moore and Wirth

References
[Abrahams &al., 1980] Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne,

editors, 1980. Conference Record of the 7th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), Las Vegas (NV), 1980. ACM
Press. http://dl.acm.org/citation.cfm?id=567446.

[Acerbi, 2000] Fabio Acerbi, 2000. Plato: Parmenides 149a7–c3. A proof by complete induc-
tion? Archive for History of Exact Sciences, 55:57–76.

[Ackermann, 1928] Wilhelm Ackermann, 1928. Zum Hilbertschen Aufbau der reellen
Zahlen. Mathematische Annalen, 99:118–133. Received Jan. 20, 1927.

[Ackermann, 1940] Wilhelm Ackermann, 1940. Zur Widerspruchsfreiheit der Zahlentheorie.
Mathematische Annalen, 117:163–194. Received Aug. 15, 1939.

[Aït-Kaci & Nivat, 1989] Hassan Aït-Kaci and Maurice Nivat, editors, 1989. Proc. of the
Colloquium on Resolution of Equations in Algebraic Structures (CREAS), Lakeway
(TX), 1987. Academic Press (Elsevier).

[Anon, 1899] Anon, editor, 1899. Festschrift zur Feier der Enthüllung des Gauß-Weber-
Denkmals in Göttingen, herausgegeben von dem Fest-Comitee. Verlag von B. G.
Teubner, Leipzig.

[Anon, 2005] Anon, 2005. Advanced Architecture MicroProcessor 7 Government
(AAMP7G) microprocessor. Rockwell Collins, Inc. WWW only:
http://www.rockwellcollins.com/sitecore/content/Data/Products/
Information_Assurance/Cryptography/AAMP7G_Microprocessor.aspx.

[Armando &al., 2008] Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
2008. 4th Int. Joint Conf. on Automated Reasoning (ĲCAR), Sydney (Australia),
2008, number 5195 in Lecture Notes in Artificial Intelligence. Springer.

[Aubin, 1976] Raymond Aubin, 1976. Mechanizing Structural Induction. PhD thesis, Univ.
Edinburgh. Short version is [Aubin, 1979]. http://hdl.handle.net/1842/6649.

[Aubin, 1979] Raymond Aubin, 1979. Mechanizing Structural Induction — Part I: Formal
System. Part II: Strategies. Theoretical Computer Sci., 9:329–345+347–362. Received
March (Part I) and November (Part II) 1977, rev. March 1978. Long version is [Aubin,
1976].

[Autexier, 2005] Serge Autexier, 2005. On the dynamic increase of multiplicities in matrix
proof methods for classical higher-order logic. In [Beckert, 2005, pp. 48–62].

[Autexier &al., 1999] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer, 1999.
System description: Inka 5.0 – a logical voyager. In [Ganzinger, 1999, pp. 207–211].

[Avenhaus &al., 2003] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-
Peter Wirth, 2003. How to prove inductive theorems? QuodLibet! In [Baader, 2003,
pp. 328–333], http://wirth.bplaced.net/p/quodlibet.

[Baader, 2003] Franz Baader, editor, 2003. 19th Int. Conf. on Automated Deduction
(CADE), Miami Beach (FL), 2003, number 2741 in Lecture Notes in Artificial Intel-
ligence. Springer.

[Baaz & Leitsch, 1995] Matthias Baaz and Alexander Leitsch, 1995. Methods of functional
extension. Collegium Logicum — Annals of the Kurt Gödel Society, 1:87–122.

[Bachmair, 1988] Leo Bachmair, 1988. Proof by consistency in equational theories. In [LICS,
1988, pp. 228–233].

[Bachmair &al., 1992] Leo Bachmair, Harald Ganzinger, and Wolfgang J. Paul, editors,

1606

Automation of Mathematical Induction

1992. Informatik – Festschrift zum 60.Geburtstag von Günter Hotz. B. G. Teubner
Verlagsgesellschaft.

[Bajscy, 1993] Ruzena Bajscy, editor, 1993. Proc. 13th Int. Joint Conf. on Artificial Intel-
ligence (ĲCAI), Chambery (France). Morgan Kaufmann (Elsevier), Los Altos (CA).
http://ijcai.org/Past%20Proceedings.

[Barendregt, 1981] Hen(dri)k P. Barendregt, 1981. The Lambda Calculus — Its Syntax and
Semantics. Number 103 in Studies in Logic and the Foundations of Mathematics.
North-Holland (Elsevier). 1st edn. (final rev. edn. is [Barendregt, 2012]).

[Barendregt, 2012] Hen(dri)k P. Barendregt, 2012. The Lambda Calculus — Its Syntax and
Semantics. Number 40 in Studies in Logic. College Publications, London. 6th rev. edn.
(1st edn. is [Barendregt, 1981]).

[Barner, 2001a] Klaus Barner, 2001a. Pierre Fermat (1601?–1665) — His life beside
mathematics. European Mathematical Society Newsletter, 43 (Dec. 2001):12–16. Long
version in German is [Barner, 2001b]. www.ems-ph.org/journals/newsletter/pdf/
2001-12-42.pdf.

[Barner, 2001b] Klaus Barner, 2001b. Das Leben Fermats. DMV-Mitteilungen, 3/2001:12–
26. Extensions in [Barner, 2007]. Short versions in English are [Barner, 2001c; 2001a].

[Barner, 2001c] Klaus Barner, 2001c. How old did Fermat become? NTM Internationale
Zeitschrift für Geschichte und Ethik der Naturwissenschaften, Technik und Medizin,
Neue Serie, ISSN00366978, 9:209–228. Long version in German is [Barner, 2001b].
New results on the subject in [Barner, 2007].

[Barner, 2007] Klaus Barner, 2007. Neues zu Fermats Geburtsdatum. DMV-Mitteilungen,
15:12–14. (Further support for the results of [Barner, 2001c], narrowing down
Fermat’s birth date from 1607/8 to Nov. 1607).

[Basin & Walsh, 1996] David Basin and Toby Walsh, 1996. A calculus for and termination
of rippling. J. Automated Reasoning, 16:147–180.

[Becker, 1965] Oscar Becker, editor, 1965. Zur Geschichte der griechischen Mathematik.
Wissenschaftliche Buchgesellschaft, Darmstadt.

[Beckert, 2005] Bernhard Beckert, editor, 2005. 14th Int. Conf. on Tableaux and Related
Methods, Koblenz (Germany), 2005, number 3702 in Lecture Notes in Artificial Intel-
ligence. Springer.

[Bell & Thayer, 1976] Thomas E. Bell and T. A. Thayer, 1976. Software require-
ments: Are they really a problem? In [Yeh & Ramamoorthy, 1976,
pp. 61–68], http://pdf.aminer.org/000/361/405/software_requirements_are_
they_really_a_problem.pdf.

[Benzmüller &al., 2008] Christoph Benzmüller, Frank Theiss, Lawrence C. Paulson, and
Arnaud Fietzke, 2008. Leo-II — a cooperative automatic theorem prover for higher-
order logic. In [Armando &al., 2008, pp. 162–170].

[Berka & Kreiser, 1973] Karel Berka and Lothar Kreiser, editors, 1973. Logik-Texte – Kom-
mentierte Auswahl zur Geschichte der modernen Logik. Akademie Verlag GmbH,
Berlin. 2nd rev. edn. (1st edn. 1971; 4th rev. rev. edn. 1986).

[Bernays, 1928] Paul Bernays, 1928. Zusatz zu Hilberts Vortrag ”Die Grundlagen der
Mathematik“. Abhandlungen aus dem mathematischen Seminar der Univ. Hamburg,
6:89–92. English translation On the Consistency of Arithmetic in [Heĳenoort, 1971,
pp. 485–489].

[Bevers & Lewi, 1990] Eddy Bevers and Johan Lewi, 1990. Proof by consistency in condi-

1607

Moore and Wirth

tional equational theories. Tech. Report CW 102, Dept. Comp. Sci., K. U. Leuven.
Rev. July 1990. Short version in [Kaplan & Okada, 1991, pp. 194–205].

[Bevier, 1989] William R. Bevier, 1989. Kit and the short stack. J. Automated Reasoning,
5:519–530.

[Bevier &al., 1989] William R. Bevier, Warren A. Hunt, J Strother Moore, and William D.
Young, 1989. An approach to systems verification. J. Automated Reasoning, 5:411–
428.

[Bibel & Kowalski, 1980] Wolfgang Bibel and Robert A. Kowalski, editors, 1980. 5th Int.
Conf. on Automated Deduction (CADE), Les Arcs (France), 1980, number 87 in Lec-
ture Notes in Computer Science. Springer.

[Biundo &al., 1986] Susanne Biundo, Birgit Hummel, Dieter Hutter, and Christoph
Walther, 1986. The Karlsruhe inductive theorem proving system. In [Siekmann,
1986, pp. 673–675].

[Bledsoe, 1971] W. W. Bledsoe, 1971. Splitting and reduction heuristics in automatic
theorem proving. Artificial Intelligence, 2:55–77.

[Bledsoe &al., 1971] W. W. Bledsoe, Robert S. Boyer, and William H. Henneman, 1971.
Computer proofs of limit theorems. In [Cooper, 1971, pp. 586–600]. Long version is
[Bledsoe &al., 1972].

[Bledsoe &al., 1972] W. W. Bledsoe, Robert S. Boyer, and William H. Henneman, 1972.
Computer proofs of limit theorems. Artificial Intelligence, 3:27–60. Short version is
[Bledsoe &al., 1971].

[Bledsoe & Loveland, 1984] W. W. Bledsoe and Donald W. Loveland, editors, 1984. Auto-
mated Theorem Proving: After 25 Years. Number 29 in Contemporary Mathematics.
American Math. Soc., Providence (RI). Proc. of the Special Session on Automatic
Theorem Proving, 89th Annual Meeting of the American Math. Soc., Denver (CO),
Jan. 1983.

[Bouajjani & Maler, 2009] Ahmed Bouajjani and Oded Maler, editors, 2009. Proc. 21st Int.
Conf. on Computer Aided Verification (CAV), Grenoble (France), 2009, volume 5643
of Lecture Notes in Computer Science. Springer.

[Bouhoula & Rusinowitch, 1995] Adel Bouhoula and Michaël Rusinowitch, 1995. Implicit
induction in conditional theories. J. Automated Reasoning, 14:189–235.

[Bourbaki, 1939] Nicolas Bourbaki, 1939. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Fascicule De Résultats. Number 846 in Actualités Scientifiques et
Industrielles. Hermann, Paris. 1st edn., VIII + 50 pp.. Review is [Church, 1946]. 2nd

rev. extd. edn. is [Bourbaki, 1951].
[Bourbaki, 1951] Nicolas Bourbaki, 1951. Éléments des Mathématique — Livre 1: Théorie

des Ensembles. Fascicule De Résultats. Number 846-1141 in Actualités Scientifiques et
Industrielles. Hermann, Paris. 2nd rev. extd. edn. of [Bourbaki, 1939]. 3rd rev. extd. edn.
is [Bourbaki, 1958b].

[Bourbaki, 1954] Nicolas Bourbaki, 1954. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Chapitre I& II. Number 1212 in Actualités Scientifiques et Indus-
trielles. Hermann, Paris. 1st edn.. 2nd rev. edn. is [Bourbaki, 1960].

[Bourbaki, 1956] Nicolas Bourbaki, 1956. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Chapitre III. Number 1243 in Actualités Scientifiques et Indus-
trielles. Hermann, Paris. 1st edn., II + 119 + 4 (mode d’emploi) + 23 (errata no. 6) pp..
2nd rev. extd. edn. is [Bourbaki, 1967].

1608

Automation of Mathematical Induction

[Bourbaki, 1958a] Nicolas Bourbaki, 1958a. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Chapitre IV. Number 1258 in Actualités Scientifiques et Industrielles.
Hermann, Paris. 1st edn.. 2nd rev. extd. edn. is [Bourbaki, 1966a].

[Bourbaki, 1958b] Nicolas Bourbaki, 1958b. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et
Industrielles. Hermann, Paris. 3rd rev. extd. edn. of [Bourbaki, 1951]. 4th rev. extd. edn.
is [Bourbaki, 1964].

[Bourbaki, 1960] Nicolas Bourbaki, 1960. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Chapitre I& II. Number 1212 in Actualités Scientifiques et Indus-
trielles. Hermann, Paris. 2nd rev. extd. edn. of [Bourbaki, 1954]. 3rd rev. edn. is [Bour-
baki, 1966b].

[Bourbaki, 1964] Nicolas Bourbaki, 1964. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et In-
dustrielles. Hermann, Paris. 4th rev. extd. edn. of [Bourbaki, 1958b]. 5th rev. extd. edn.
is [Bourbaki, 1968b].

[Bourbaki, 1966a] Nicolas Bourbaki, 1966a. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Chapitre IV. Number 1258 in Actualités Scientifiques et Industrielles.
Hermann, Paris. 2nd rev. extd. edn. of [Bourbaki, 1958a]. English translation in [Bour-
baki, 1968a].

[Bourbaki, 1966b] Nicolas Bourbaki, 1966b. Éléments des Mathématique — Livre 1:
Théorie des Ensembles. Chapitres I& II. Number 1212 in Actualités Scien-
tifiques et Industrielles. Hermann, Paris. 3rd rev. edn. of [Bourbaki, 1960],
VI+143 + 7 (errata no. 13) pp.. English translation in [Bourbaki, 1968a].

[Bourbaki, 1967] Nicolas Bourbaki, 1967. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Chapitre III. Number 1243 in Actualités Scientifiques et Industrielles.
Hermann, Paris. 2nd rev. extd. edn. of [Bourbaki, 1956], 151+ 7 (errata no. 13) pp..
3rd rev. edn. results from executing these errata. English translation in [Bourbaki,
1968a].

[Bourbaki, 1968a] Nicolas Bourbaki, 1968a. Elements of Mathematics — Theory of Sets.
Actualités Scientifiques et Industrielles. Hermann, Paris, jointly published with
AdiWes International Series in Mathematics, Addison–Wesley, Reading (MA). English
translation of [Bourbaki, 1966b; 1967; 1966a; 1968b].

[Bourbaki, 1968b] Nicolas Bourbaki, 1968b. Éléments des Mathématique — Livre 1: Théorie
des Ensembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et In-
dustrielles. Hermann, Paris. 5th rev. extd. edn. of [Bourbaki, 1964]. English translation
in [Bourbaki, 1968a].

[Boyer, 1971] Robert S. Boyer, 1971. Locking: a restriction of resolution. PhD thesis, The
University of Texas at Austin.

[Boyer, 2012] Robert S. Boyer, 2012. E-mail to Claus-Peter Wirth, Nov. 19,.
[Boyer &al., 1973] Robert S. Boyer, D. Julian M. Davies, and J Strother Moore, 1973. The

77-editor. Memo 62, Univ. Edinburgh, Dept. of Computational Logic.
[Boyer & Moore, 1971] Robert S. Boyer and J Strother Moore, 1971. The sharing of struc-

ture in resolution programs. Memo 47, Univ. Edinburgh, Dept. of Computational
Logic. II + 24 pp.. Revised version is [Boyer & Moore, 1972].

[Boyer & Moore, 1972] Robert S. Boyer and J Strother Moore, 1972. The sharing of struc-

1609

Moore and Wirth

ture in theorem-proving programs. In [Meltzer & Michie, 1972, pp. 101–116].
[Boyer & Moore, 1973] Robert S. Boyer and J Strother Moore, 1973. Proving theorems

about LISP functions. In [Nilsson, 1973, pp. 486–493]. http://ijcai.org/Past%
20Proceedings/IJCAI-73/PDF/053.pdf. Rev. version, extd. with a section “Fail-
ures”, is [Boyer & Moore, 1975].

[Boyer & Moore, 1975] Robert S. Boyer and J Strother Moore, 1975. Proving theorems
about LISP functions. J. of the ACM, 22:129–144. Rev. extd. edn. of [Boyer & Moore,
1973]. Received Sept. 1973, Rev. April 1974.

[Boyer & Moore, 1977] Robert S. Boyer and J Strother Moore, 1977. A fast string search-
ing algorithm. Comm. ACM, 20:762–772. http://doi.acm.org/10.1145/359842.
359859.

[Boyer & Moore, 1977] Robert S. Boyer and J Strother Moore, 1977. A lemma driven auto-
matic theorem prover for recursive function theory. In [Reddy, 1977, Vol. I, pp. 511–
519]. http://ijcai.org/Past%20Proceedings/IJCAI-77-VOL1/PDF/089.pdf.

[Boyer & Moore, 1979] Robert S. Boyer and J Strother Moore, 1979. A Computational
Logic. Academic Press (Elsevier). http://www.cs.utexas.edu/users/boyer/acl.
text.

[Boyer & Moore, 1981a] Robert S. Boyer and J Strother Moore, editors, 1981a. The Cor-
rectness Problem in Computer Science. Academic Press (Elsevier).

[Boyer & Moore, 1981b] Robert S. Boyer and J Strother Moore, 1981b. Metafunctions:
Proving them correct and using them efficiently as new proof procedures. In [Boyer
& Moore, 1981a, pp. 103–184].

[Boyer & Moore, 1984a] Robert S. Boyer and J Strother Moore, 1984a. A mechanical proof
of the Turing completeness of pure LISP. In [Bledsoe & Loveland, 1984, pp. 133–167].

[Boyer & Moore, 1984b] Robert S. Boyer and J Strother Moore, 1984b. A mechanical proof
of the unsolvability of the halting problem. J. of the ACM, 31:441–458.

[Boyer & Moore, 1984c] Robert S. Boyer and J Strother Moore, 1984c. Proof checking the
RSA public key encryption algorithm. American Mathematical Monthly, 91:181–189.

[Boyer & Moore, 1985] Robert S. Boyer and J Strother Moore, 1985. Program verification.
J. Automated Reasoning, 1:17–23.

[Boyer & Moore, 1987] Robert S. Boyer and J Strother Moore, 1987. The addition of
bounded quantification and partial functions to a computational logic and its theorem
prover. Technical Report ICSCA-CMP-52, Inst. for Computing Science and Comput-
ing Applications, The University of Texas at Austin. Printed Jan. 1987. Also published
as [Boyer & Moore, 1988a; 1989].

[Boyer & Moore, 1988a] Robert S. Boyer and J Strother Moore, 1988a. The addition of
bounded quantification and partial functions to a computational logic and its theorem
prover. J. Automated Reasoning, 4:117–172. Received Feb. 11, 1987. Also pubished as
[Boyer & Moore, 1987; 1989].

[Boyer & Moore, 1988b] Robert S. Boyer and J Strother Moore, 1988b. A Computational
Logic Handbook. Number 23 in Perspectives in Computing. Academic Press (Elsevier).
2nd rev. extd. edn. is [Boyer & Moore, 1998].

[Boyer & Moore, 1988c] Robert S. Boyer and J Strother Moore, 1988c. Integrating decision
procedures into heuristic theorem provers: A case study of linear arithmetic. In [Hayes
&al., 1988, pp. 83–124].

[Boyer & Moore, 1989] Robert S. Boyer and J Strother Moore, 1989. The addition of

1610

Automation of Mathematical Induction

bounded quantification and partial functions to a computational logic and its theorem
prover. In [Broy, 1989, pp. 95–145] (received Jan. 1988). Also published as [Boyer &
Moore, 1987; 1988a].

[Boyer & Moore, 1990] Robert S. Boyer and J Strother Moore, 1990. A theorem prover for
a computational logic. In [Stickel, 1990, pp. 1–15].

[Boyer & Moore, 1998] Robert S. Boyer and J Strother Moore, 1998. A Computational
Logic Handbook. International Series in Formal Methods. Academic Press (Elsevier).
2nd rev. extd. edn. of [Boyer & Moore, 1988b], rev. to work with Nqthm–1992, a new
version of Nqthm.

[Boyer &al., 1976] Robert S. Boyer, J Strother Moore, and Robert E. Shostak, 1976.
Primitive recursive program transformations. In [Graham &al., 1976, pp. 171–174].
http://doi.acm.org/10.1145/800168.811550.

[Boyer & Yu, 1992] Robert S. Boyer and Yuan Yu, 1992. Automated correctness proofs of
machine code programs for a commercial microprocessor. In [Kapur, 1992, 416–430].

[Boyer & Yu, 1996] Robert S. Boyer and Yuan Yu, 1996. Automated proofs of object code
for a widely used microprocessor. J. of the ACM, 43:166–192.

[Brock & Hunt, 1999] Bishop Brock and Warren A. Hunt, 1999. Formal analysis of the
Motorola CAP DSP. In [Hinchey & Bowen, 1999, pp. 81–116].

[Brotherston, 2005] James Brotherston, 2005. Cyclic proofs for first-order logic with induc-
tive definitions. In [Beckert, 2005, pp. 78–92]. Thoroughly rev. version in [Brotherston
& Simpson, 2011].

[Brotherston & Simpson, 2007] James Brotherston and Alex Simpson, 2007. Complete se-
quent calculi for induction and infinite descent. In [LICS, 2007, pp. 51–62?]. Thor-
oughly rev. version in [Brotherston & Simpson, 2011].

[Brotherston & Simpson, 2011] James Brotherston and Alex Simpson, 2011. Sequent calculi
for induction and infinite descent. J. Logic and Computation, 21:1177–1216. Thor-
oughly rev. version of [Brotherston, 2005] and [Brotherston & Simpson, 2007]. Re-
ceived April 3, 2009. Published online Sept. 30, 2010, http://dx.doi.org/10.1093/
logcom/exq052.

[Brown, 2012] Chad E. Brown, 2012. Satallax: An automatic higher-order prover. In
[Gramlich &al., 2012, pp. 111–117].

[Broy, 1989] Manfred Broy, editor, 1989. Constructive Methods in Computing Science, num-
ber F 55 in NATO ASI Series. Springer.

[Buch & Hillenbrand, 1996] Armin Buch and Thomas Hillenbrand, 1996. WaldMeister:
Development of a High Performance Completion-Based Theorem Prover. SEKI-
Report SR–96–01 (ISSN 1860–5931). SEKI Publications, FB Informatik, Univ.
Kaiserslautern. agent.informatik.uni-kl.de/seki/1996/Buch.SR-96-01.ps.gz.

[Bundy, 1988] Alan Bundy, 1988. The use of Explicit Plans to Guide Inductive Proofs. DAI
Research Paper No. 349, Dept. Artificial Intelligence, Univ. Edinburgh. Short version
in [Lusk & Overbeek, 1988, pp. 111–120].

[Bundy, 1989] Alan Bundy, 1989. A Science of Reasoning. DAI Research Paper No. 445,
Dept. Artificial Intelligence, Univ. Edinburgh. Also in [Lassez & Plotkin, 1991,
pp. 178–198].

[Bundy, 1994] Alan Bundy, editor, 1994. 12th Int. Conf. on Automated Deduction (CADE),
Nancy, 1994, number 814 in Lecture Notes in Artificial Intelligence. Springer.

1611

Moore and Wirth

[Bundy, 1999] Alan Bundy, 1999. The Automation of Proof by Mathematical Induction.
Informatics Research Report No. 2, Division of Informatics, Univ. Edinburgh. Also in
[Robinson & Voronkow, 2001, Vol. 1, pp. 845–911].

[Bundy &al., 1989] Alan Bundy, Frank van Harmelen, Jane Hesketh, Alan Smaill, and An-
drew Stevens, 1989. A rational reconstruction and extension of recursion analysis. In
[Sridharan, 1989, pp. 359–365].

[Bundy &al., 1990] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill,
1990. The Oyster/CLaM system. In [Stickel, 1990, pp. 647–648].

[Bundy &al., 2005] Alan Bundy, Dieter Hutter, David Basin, and Andrew Ireland, 2005.
Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge Univ. Press.

[Bundy &al., 1991] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland,
and Alan Smaill, 1991. Rippling: A Heuristic for Guiding Inductive Proofs. DAI Re-
search Paper No. 567, Dept. Artificial Intelligence, Univ. Edinburgh. Also in Artificial
Intelligence 62:185–253, 1993.

[Burstall, 1969] Rod M. Burstall, 1969. Proving properties of programs by structural induc-
tion. The Computer Journal, 12:48–51. Received April 1968, rev. Aug. 1968.

[Burstall &al., 1971] Rod M. Burstall, John S. Collins, and Robin J. Popplestone, 1971.
Programming in POP–2. Univ. Edinburgh Press.

[Bussey, 1917] W. H. Bussey, 1917. The origin of mathematical induction. American
Mathematical Monthly, XXIV:199–207.

[Bussotti, 2006] Paolo Bussotti, 2006. From Fermat to Gauß: indefinite descent and methods
of reduction in number theory. Number 55 in Algorismus. Dr. Erwin Rauner Verlag,
Augsburg.

[Cajori, 1918] Florian Cajori, 1918. Origin of the name “mathematical induction". American
Mathematical Monthly, 25:197–201.

[Church, 1946] Alonzo Church, 1946. Review of [Bourbaki, 1939]. J. Symbolic Logic, 11:91.
[Clocksin & Mellish, 2003] William F. Clocksin and Christopher S. Mellish, 2003. Program-

ming in Prolog. Springer. 5th edn. (1st edn. 1981).
[Cohn, 1965] Paul Moritz Cohn, 1965. Universal Algebra. Harper & Row, New York. 1st edn..

2nd rev. edn. is [Cohn, 1981].
[Cohn, 1981] Paul Moritz Cohn, 1981. Universal Algebra. Number 6 in Mathematics and

Its Applications. D. Reidel Publ. (Springer Science+Business Media), Dordrecht (The
Netherlands). 2nd rev. edn. (1st edn. is [Cohn, 1965]).

[Comon, 1997] Hubert Comon, editor, 1997. 8th Int. Conf. on Rewriting Techniques and
Applications (RTA), Sitges (Spain), 1997, number 1232 in Lecture Notes in Computer
Science. Springer.

[Comon, 2001] Hubert Comon, 2001. Inductionless induction.
In [Robinson & Voronkow, 2001, Vol. I, pp. 913–970].

[Constable &al., 1985] Robert L. Constable, Stuart F. Allen, H. M. Bromly, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith, 1985. Implement-
ing Mathematics with the Nuprl Proof Development System. Prentice–Hall, Inc..
http://www.nuprl.org/book.

[Cooper, 1971] D. C. Cooper, editor, 1971. Proc. 2nd Int. Joint Conf. on Artificial Intel-
ligence (ĲCAI), Sept. 1971, Imperial College, London. Morgan Kaufmann, Los Al-
tos (CA), Los Altos (CA). http://ijcai.org/Past%20Proceedings/IJCAI-1971/

1612

Automation of Mathematical Induction

CONTENT/content.htm.
[DAC, 2001] DAC, 2001. Proc. 38th Design Automation Conference (DAC), Las Vegas (NV),

2001. ACM Press.
[Darlington, 1968] Jared L. Darlington, 1968. Automated theorem proving with equality

substitutions and mathematical induction. In [Michie, 1968, pp. 113–127].
[Davis, 2009] Jared Davis, 2009. A Self-Verifying Theorem Prover. PhD thesis, The Uni-

versity of Texas at Austin.
[Dedekind, 1888] Richard Dedekind, 1888. Was sind und was sollen die Zahlen?. Verlag

von Friedrich Vieweg und Sohn, Braunschweig. Also in [Dedekind, 1930–32, Vol. 3,
pp. 335–391]. Also in [Dedekind, 1969].

[Dedekind, 1930–32] Richard Dedekind, 1930–32. Gesammelte mathematische Werke. Ver-
lag von Friedrich Vieweg und Sohn, Braunschweig. Ed. by Robert Fricke, Emmy
Noether, and Öystein Ore.

[Dedekind, 1969] Richard Dedekind, 1969. Was sind und was sollen die Zahlen? Stetigkeit
und irrationale Zahlen. Verlag von Friedrich Vieweg und Sohn, Braunschweig.

[Dennis &al., 2005] Louise A. Dennis, Mateja Jamnik, and Martin Pollet, 2005. On the
comparison of proof planning systems λCLaM, Ωmega and IsaPlanner. Electronic
Notes in Theoretical Computer Sci., 151:93–110.

[Dershowitz, 1989] Nachum Dershowitz, editor, 1989. 3rd Int. Conf. on Rewriting Tech-
niques and Applications (RTA), Chapel Hill (NC), 1989, number 355 in Lecture Notes
in Computer Science. Springer.

[Dershowitz & Jouannaud, 1990] Nachum Dershowitz and Jean-Pierre Jouannaud, 1990.
Rewrite systems. In [Leeuwen, 1990, Vol. B, pp. 243–320].

[Dershowitz & Lindenstrauss, 1995] Nachum Dershowitz and Naomi Lindenstrauss, editors,
1995. 4th Int. Workshop on Conditional Term Rewriting Systems (CTRS), Jerusalem,
1994, number 968 in Lecture Notes in Computer Science.

[Dietrich, 2011] Dominik Dietrich, 2011. Assertion Level Proof Planning with Compiled
Strategies. Optimus Verlag, Alexander Mostafa, Göttingen. PhD thesis, Dept. In-
formatics, FR Informatik, Saarland Univ..

[Dixon & Fleuriot, 2003] Lucas Dixon and Jacques Fleuriot, 2003. IsaPlanner: A proto-
type proof planner in Isabelle. In [Baader, 2003, pp. 279–283].

[Eisenreich & Sube, 1982] Günther Eisenreich and Ralf Sube, 1982. Wörterbuch der
Mathematik: Englisch–Deutsch–Französisch–Russisch. VEB Verlag Technik, Berlin.
Two volumes, also under license to Verlag Harri Deutsch, Thun (Switzerland), 1982.
Reprinted in one volume as Langenscheidts Fachwörterbuch Mathematik by Langen-
scheidt, Berlin, 1996.

[Euclid, ca. 300 b.c.] Euclid of Alexandria, ca. 300 b.c.. Elements. Web version without the
figures: http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.
01.0085. English translation: Thomas L. Heath (ed.). The Thirteen Books of Euclid’s
Elements. Cambridge Univ. Press, 1908; web version without the figures: http://
www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0086. English
web version (incl. figures): D. E. Joyce (ed.). Euclid’s Elements. http://aleph0.
clarku.edu/~djoyce/java/elements/elements.html, Dept. Math. & Comp. Sci.,
Clark Univ., Worcester (MA).

[Fermat, 1891ff.] Pierre Fermat, 1891ff.. Œuvres de Fermat. Gauthier-Villars, Paris. Ed. by
Paul Tannery, Charles Henry.

[Fitting, 1990] Melvin Fitting, 1990. First-order logic and automated theorem proving.

1613

Moore and Wirth

Springer. 1st edn. (2nd rev. edn. is [Fitting, 1996]).
[Fitting, 1996] Melvin Fitting, 1996. First-order logic and automated theorem proving.

Springer. 2nd rev. edn. (1st edn. is [Fitting, 1990]).
[FOCS, 1980] FOCS, 1980. Proc. 21st Annual Symposium on Foundations of Computer Sci.,

Syracuse, 1980. IEEE Press. http://ieee-focs.org/.
[Fowler, 1994] David Fowler, 1994. Could the Greeks have used mathematical induction?

Did they use it? Physis, XXXI(1):253–265.
[Freudenthal, 1953] Hans Freudenthal, 1953. Zur Geschichte der vollständigen Induktion.

Archives Internationales d’Histoire des Sciences, 6:17–37.
[Fribourg, 1986] Laurent Fribourg, 1986. A strong restriction of the inductive completion

procedure. In [Kott, 1986, pp. 105–116]. Also in J. Symbolic Computation 8:253–276,
1989, Academic Press (Elsevier).

[Fries, 1822] Jakob Friedrich Fries, 1822. Die mathematische Naturphilosophie nach philo-
sophischer Methode bearbeitet – Ein Versuch. Christian Friedrich Winter, Heidelberg.
Facsimlie in [Fries, 1967ff., Vol. 13 (1979)].

[Fries, 1967ff.] Jakob Friedrich Fries, 1967ff.. Sämtliche Schriften. Scientia Verlag (Kloof
Booksellers & Scientia Verlag), Aalen (Germany). 33 volumes, ed. by Gert König
and Lutz Geldsetzer.

[Fritz, 1945] Kurt von Fritz, 1945. The discovery of incommensurability by Hippasus of
Metapontum. Annals of Mathematics, 46:242–264. German translation: Die Ent-
deckung der Inkommensurabilität durch Hippasos von Metapont in [Becker, 1965,
pp. 271–308].

[Fuchi & Kott, 1988] Kazuhiro Fuchi and Laurent Kott, editors, 1988. Programming of
Future Generation Computers II: Proc. of the 2nd Franco-Japanese Symposium. North-
Holland (Elsevier).

[Gabbay &al., 1994] Dov Gabbay, Christopher John Hogger, and J. Alan Robinson, editors,
1994. Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. 2:
Deduction Methodologies. Oxford Univ. Press.

[Gabbay & Woods, 2004ff.] Dov Gabbay and John Woods, editors, 2004ff.. Handbook of the
History of Logic. North-Holland (Elsevier).

[Ganzinger, 1996] Harald Ganzinger, editor, 1996. 7th Int. Conf. on Rewriting Techniques
and Applications (RTA), New Brunswick (NJ), 1996, number 1103 in Lecture Notes
in Computer Science. Springer.

[Ganzinger, 1999] Harald Ganzinger, editor, 1999. 16th Int. Conf. on Automated Deduction
(CADE), Trento (Italy), 1999, number 1632 in Lecture Notes in Artificial Intelligence.
Springer.

[Ganzinger & Stuber, 1992] Harald Ganzinger and Jürgen Stuber, 1992. Inductive Theorem
Proving by Consistency for First-Order Clauses. In [Bachmair &al., 1992, pp. 441–
462]. Also in [Rusinowitch & Remy, 1993, pp. 226–241].

[Gentzen, 1935] Gerhard Gentzen, 1935. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210,405–431. Also in [Berka & Kreiser, 1973,
pp. 192–253]. English translation in [Gentzen, 1969].

[Gentzen, 1969] Gerhard Gentzen, 1969. The Collected Papers of Gerhard Gentzen. North-
Holland (Elsevier). Ed. by Manfred E. Szabo.

[Geser, 1995] Alfons Geser, 1995. A principle of non-wellfounded induction. In [Margaria,

1614

Automation of Mathematical Induction

1995, pp. 117–124].
[Geser, 1996] Alfons Geser, 1996. An improved general path order. J. Applicable Algebra in

Engineering, Communication and Computing (AAECC), 7:469–511.
[Gillman, 1987] Leonard Gillman, 1987. Writing Mathematics Well. The Mathematical

Association of America.
[Göbel, 1985] Richard Göbel, 1985. Completion of globally finite term rewriting systems for

inductive proofs. In [Stoyan, 1985, pp. 101–110].
[Gödel, 1931] Kurt Gödel, 1931. Über formal unentscheidbare Sätze der Principia Mathema-

tica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198.
With English translation also in [Gödel, 1986ff., Vol. I, pp. 145–195]. English transla-
tion also in [Heĳenoort, 1971, pp. 596–616] and in [Gödel, 1962].

[Gödel, 1962] Kurt Gödel, 1962. On formally undecidable propositions of Principia
Mathematica and related systems. Basic Books, New York. English translation of
[Gödel, 1931] by Bernard Meltzer. With an introduction by R. B. Braithwaite. 2nd edn.
by Dover Publications, 1992.

[Gödel, 1986ff.] Kurt Gödel, 1986ff. Collected Works. Oxford Univ. Press. Ed. by Sol Fefer-
man, John W. Dawson Jr., Warren Goldfarb, Jean van Heĳenoort, Stephen C. Kleene,
Charles Parsons, Wilfried Sieg, et al..

[Goguen, 1980] Joseph Goguen, 1980. How to prove algebraic inductive hypotheses without
induction. In [Bibel & Kowalski, 1980, pp. 356–373].

[Goldstein, 2008] Catherine Goldstein, 2008. Pierre Fermat. In [Gowers &al., 2008, § VI.12,
pp. 740–741].

[Goodstein, 1945] R. L. Goodstein, 1945. Function theory in an axiom-free equation calcu-
lus. Proceedings of the London Mathematical Society, Ser. 2, 48:401–434.

[Goodstein, 1957] R. L. Goodstein, 1957. Recursive number theory — A development of
recursive arithmetic in a logic-free equation calculus. Studies in logic and the founda-
tions of mathematics. North-Holland (Elsevier), Amsterdam. 2nd edn. 1965.

[Gordon, 2000] Mike J. C. Gordon, 2000. From LCF to HOL: a short history. In [Plotkin
&al., 2000, pp. 169–186]. http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.
pdf.

[Gore &al., 2001] Rajeev Gore, Alexander Leitsch, and Tobias Nipkow, editors, 2001. 1st Int.
Joint Conf. on Automated Reasoning (ĲCAR), Siena (Italy), 2001, number 2083 in
Lecture Notes in Artificial Intelligence. Springer.

[Gowers &al., 2008] Timothy Gowers, June Barrow-Green, and Imre Leader, editors, 2008.
The Princeton Companion to Mathematics. Princeton Univ. Press.

[Graham &al., 1976] Susan L. Graham, Robert M. Graham, Michael A. Harrison, William I.
Grosky, and Jeffrey D. Ullman, editors, 1976. Conference Record of the 3rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), Atlanta (GA), Jan. 1976. ACM Press. http://dl.acm.org/citation.cfm?
id=800168.

[Gramlich, 1996] Bernhard Gramlich, 1996. Termination and Confluence Properties of
Structured Rewrite Systems. PhD thesis, FB Informatik, Univ. Kaiserslautern.
www.logic.at/staff/gramlich/papers/thesis96.pdf. x+217 pp..

[Gramlich & Lindner, 1991] Bernhard Gramlich and Wolfgang Lindner, 1991. A Guide to
Unicom, an Inductive Theorem Prover Based on Rewriting and Completion Tech-
niques. SEKI-Report SR–91–17 (ISSN 1860–5931). SEKI Publications, FB Informatik,

1615

Moore and Wirth

Univ. Kaiserslautern. http://agent.informatik.uni-kl.de/seki/1991/Lindner.
SR-91-17.ps.gz.

[Gramlich &al., 2012] Bernhard Gramlich, Dale A. Miller, and Uli Sattler, editors, 2012.
6th Int. Joint Conf. on Automated Reasoning (ĲCAR), Manchester, 2012, number
7364 in Lecture Notes in Artificial Intelligence. Springer.

[Gramlich & Wirth, 1996] Bernhard Gramlich and Claus-Peter Wirth, 1996. Confluence
of terminating conditional term rewriting systems revisited. In [Ganzinger, 1996,
pp. 245–259].

[Hayes &al., 1988] Jean E. Hayes, Donald Michie, and Judith Richards, editors, 1988.
Proceedings of the 11th Annual Machine Intelligence Workshop (Machine Intelli-
gence 11), Univ. Strathclyde, Glasgow, 1985. Clarendon Press (Oxford Univ. Press),
Oxford. aitopics.org/sites/default/files/classic/Machine_Intelligence_
11/Machine_Intelligence_v.11.pdf.

[Heĳenoort, 1971] Jean van Heĳenoort, 1971. From Frege to Gödel: A Source Book in
Mathematical Logic, 1879–1931. Harvard Univ. Press. 2nd rev. edn. (1st edn. 1967).

[Herbelin, 2009] Hugo Herbelin, editor, 2009. The 1st Coq Workshop. Inst. für Infor-
matik, Tech. Univ. München. TUM-I0919, http://www.lix.polytechnique.fr/
coq/files/coq-workshop-TUM-I0919.pdf.

[Hilbert, 1899] David Hilbert, 1899. Grundlagen der Geometrie. In [Anon, 1899, pp. 1–92].
1st edn. without appendixes. Reprinted in [Hilbert, 2004, pp. 436–525]. (Last edition
of “Grundlagen der Geometrie” by Hilbert is [Hilbert, 1930b], which is also most
complete regarding the appendixes. Last three editions by Paul Bernays are [Hilbert,
1962; 1968; 1972], which are also most complete regarding supplements and figures. Its
first appearance as a separate book was the French translation [Hilbert, 1900b]. Two
substantially different English translations are [Hilbert, 1902] and [Hilbert, 1971]).

[Hilbert, 1900a] David Hilbert, 1900a. Über den Zahlbegriff. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 8:180–184. Received Dec. 1899. Reprinted as AppendixVI
of [Hilbert, 1909; 1913; 1922; 1923; 1930b].

[Hilbert, 1900b] David Hilbert, 1900b. Les principes fondamentaux de la géométrie. Annales
Scientifiques de l’École Normale Supérieure, Série 3, 17:103–209. French translation by
Léonce Laugel of special version of [Hilbert, 1899], revised and authorized by Hilbert.
Also in published as a separate book by the same publisher (Gauthier-Villars, Paris).

[Hilbert, 1902] David Hilbert, 1902. The Foundations of Geometry. Open Court, Chicago.
English translation by E. J. Townsend of special version of [Hilbert, 1899], revised
and authorized by Hilbert, http://www.gutenberg.org/etext/17384.

[Hilbert, 1903] David Hilbert, 1903. Grundlagen der Geometrie. — Zweite, durch Zusätze
vermehrte und mit fünf Anhängen versehene Auflage. Mit zahlreichen in den Text
gedruckten Figuren. Druck und Verlag von B. G. Teubner, Leipzig. 2nd rev. extd. edn. of
[Hilbert, 1899], rev. and extd. with five appendixes, newly added figures, and an index
of notion names.

[Hilbert, 1905] David Hilbert, 1905. Über die Grundlagen der Logik und der Arithmetik.
In [Krazer, 1905, pp. 174–185]. Reprinted as Appendix VII of [Hilbert, 1909; 1913;
1922; 1923; 1930b]. English translation On the foundations of logic and arithmetic by
Beverly Woodward with an introduction by Jean van Heĳenoort in [Heĳenoort, 1971,
pp. 129–138].

[Hilbert, 1909] David Hilbert, 1909. Grundlagen der Geometrie. — Dritte, durch Zusätze

1616

Automation of Mathematical Induction

und Literaturhinweise von neuem vermehrte und mit sieben Anhängen versehene Auf-
lage. Mit zahlreichen in den Text gedruckten Figuren. Number VII in Wissenschaft und
Hypothese. Druck und Verlag von B. G. Teubner, Leipzig, Berlin. 3rd rev. extd. edn. of
[Hilbert, 1899], rev. edn. of [Hilbert, 1903], extd. with a bibliography and two addi-
tional appendixes (now seven in total) (Appendix VI: [Hilbert, 1900a]) (Appendix VII:
[Hilbert, 1905]).

[Hilbert, 1913] David Hilbert, 1913. Grundlagen der Geometrie. — Vierte, durch Zusätze
und Literaturhinweise von neuem vermehrte und mit sieben Anhängen versehene Auf-
lage. Mit zahlreichen in den Text gedruckten Figuren. Druck und Verlag von B. G.
Teubner, Leipzig, Berlin. 4th rev. extd. edn. of [Hilbert, 1899], rev. edn. of [Hilbert,
1909].

[Hilbert, 1922] David Hilbert, 1922. Grundlagen der Geometrie. — Fünfte, durch Zusätze
und Literaturhinweise von neuem vermehrte und mit sieben Anhängen versehene Auf-
lage. Mit zahlreichen in den Text gedruckten Figuren. Verlag und Druck von B. G.
Teubner, Leipzig, Berlin. 5th extd. edn. of [Hilbert, 1899]. Contrary to what the sub-
title may suggest, this is an anastatic reprint of [Hilbert, 1913], extended by a very
short preface on the changes w.r.t. [Hilbert, 1913], and with augmentations to Ap-
pendix II, Appendix III, and Chapter IV, § 21.

[Hilbert, 1923] David Hilbert, 1923. Grundlagen der Geometrie. — Sechste unveränderte
Auflage. Anastatischer Nachdruck. Mit zahlreichen in den Text gedruckten Figuren.
Verlag und Druck von B. G. Teubner, Leipzig, Berlin. 6th rev. extd. edn. of [Hilbert,
1899], anastatic reprint of [Hilbert, 1922].

[Hilbert, 1926] David Hilbert, 1926. Über das Unendliche — Vortrag, gehalten am
4. Juni 1925 gelegentlich einer zur Ehrung des Andenkens an Weierstraß von der
Westfälischen Math. Ges. veranstalteten Mathematiker-Zusammenkunft in Münster
i. W. Mathematische Annalen, 95:161–190. Received June 24, 1925. Reprinted as
Appendix VIII of [Hilbert, 1930b]. English translation On the infinite by Stefan
Bauer-Mengelberg with an introduction by Jean van Heĳenoort in [Heĳenoort, 1971,
pp. 367–392].

[Hilbert, 1928] David Hilbert, 1928. Die Grundlagen der Mathematik — Vortrag, gehalten
auf Einladung des Mathematischen Seminars im Juli 1927 in Hamburg. Abhandlun-
gen aus dem mathematischen Seminar der Univ. Hamburg, 6:65–85. Reprinted as
Appendix IX of [Hilbert, 1930b]. English translation The foundations of mathematics
by Stefan Bauer-Mengelberg and Dagfinn Føllesdal with a short introduction by Jean
van Heĳenoort in [Heĳenoort, 1971, pp. 464–479].

[Hilbert, 1930a] David Hilbert, 1930a. Probleme der Grundlegung der Mathematik. Mathe-
matische Annalen, 102:1–9. Vortrag gehalten auf dem Internationalen Mathematiker-
Kongreß in Bologna, Sept. 3, 1928. Received March 25, 1929. Reprinted as Ap-
pendix X of [Hilbert, 1930b]. Short version in Atti del congresso internationale dei
matematici, Bologna, 3–10 settembre 1928, Vol. 1, pp. 135–141, Bologna, 1929.

[Hilbert, 1930b] David Hilbert, 1930b. Grundlagen der Geometrie. — Siebente umgearbeit-
ete und vermehrte Auflage. Mit 100 in den Text gedruckten Figuren. Verlag und Druck
von B. G. Teubner, Leipzig, Berlin. 7th rev. extd. edn. of [Hilbert, 1899], thoroughly
revised edition of [Hilbert, 1923], extd. with three new appendixes (now ten in total)
(Appendix VIII: [Hilbert, 1926]) (Appendix IX: [Hilbert, 1928]) (Appendix X: [Hilbert,
1930a]).

[Hilbert, 1956] David Hilbert, 1956. Grundlagen der Geometrie. — Achte Auflage, mit

1617

Moore and Wirth

Revisionen und Ergänzungen von Dr. Paul Bernays. Mit 124 Abbildungen. B. G.
Teubner Verlagsgesellschaft, Stuttgart. 8th rev. extd. edn. of [Hilbert, 1899], rev. edn. of
[Hilbert, 1930b], omitting appendixes VI–X, extd. by Paul Bernays, now with 24
additional figures and 3 additional supplements.

[Hilbert, 1962] David Hilbert, 1962. Grundlagen der Geometrie. — Neunte Auflage, revi-
diert und ergänzt von Dr. Paul Bernays. Mit 129 Abbildungen. B. G. Teubner Verlags-
gesellschaft, Stuttgart. 9th rev. extd. edn. of [Hilbert, 1899], rev. edn. of [Hilbert, 1956],
extd. by Paul Bernays, now with 129 figures, 5 appendixes, and 8 supplements (I 1, I 2,
II, III, IV 1, IV 2, V 1, V 2).

[Hilbert, 1968] David Hilbert, 1968. Grundlagen der Geometrie. — Zehnte Auflage, revidiert
und ergänzt von Dr. Paul Bernays. Mit 124 Abbildungen. B. G. Teubner Verlags-
gesellschaft, Stuttgart. 10th rev. extd. edn. of [Hilbert, 1899], rev. edn. of [Hilbert, 1962]
by Paul Bernays.

[Hilbert, 1971] David Hilbert, 1971. The Foundations of Geometry. Open Court, Chicago
and La Salle (IL). Newly translated and fundamentally different 2nd edn. of [Hilbert,
1902], actually an English translation of [Hilbert, 1968] by Leo Unger.

[Hilbert, 1972] David Hilbert, 1972. Grundlagen der Geometrie. — 11.Auflage. Mit Sup-
plementen von Dr. Paul Bernays. B. G. Teubner Verlagsgesellschaft, Stuttgart.
11th rev. extd. edn. of [Hilbert, 1899], rev. edn. of [Hilbert, 1968] by Paul Bernays.

[Hilbert, 2004] David Hilbert, 2004. David Hilbert’s Lectures on the Foundations of Geo-
metry, 1891–1902. Springer. Ed. by Michael Hallett and Ulrich Majer.

[Hilbert & Bernays, 1934] David Hilbert and Paul Bernays, 1934. Grundlagen der
Mathematik — Erster Band. Number XL in Grundlehren der mathematischen Wissen-
schaften. Springer. 1st edn. (2nd edn. is [Hilbert & Bernays, 1968]). Reprinted by
J.W.Edwards Publ., Ann Arbor (MI), 1944. English translation is [Hilbert & Bernays,
2017a; 2017b].

[Hilbert & Bernays, 1939] David Hilbert and Paul Bernays, 1939. Grundlagen der
Mathematik — Zweiter Band. Number L in Grundlehren der mathematischen Wissen-
schaften. Springer. 1st edn. (2nd edn. is [Hilbert & Bernays, 1970]). Reprinted by
J.W.Edwards Publ., Ann Arbor (MI), 1944.

[Hilbert & Bernays, 1968] David Hilbert and Paul Bernays, 1968. Grundlagen der
Mathematik I. Number 40 in Grundlehren der mathematischen Wissenschaften.
Springer. 2nd rev. edn. of [Hilbert & Bernays, 1934]. English translation is [Hilbert
& Bernays, 2017a; 2017b].

[Hilbert & Bernays, 1970] David Hilbert and Paul Bernays, 1970. Grundlagen der
Mathematik II. Number 50 in Grundlehren der mathematischen Wissenschaften.
Springer. 2nd rev. extd. edn. of [Hilbert & Bernays, 1939].

[Hilbert & Bernays, 2017a] David Hilbert and Paul Bernays, 2017a. Grundlagen der
Mathematik I — Foundations of Mathematics I, PartA: Title Pages, Prefaces, and
§§ 1–2. Springer. First English translation and bilingual facsimile edn. of the 2nd

German edn. [Hilbert & Bernays, 1968], incl. the annotation and translation of all dif-
ferences of the 1st German edn. [Hilbert & Bernays, 1934]. Ed. by Claus-Peter Wirth,
Jörg Siekmann, Volker Peckhaus, Michael Gabbay, Dov Gabbay. Translated and com-
mented by Claus-Peter Wirth et al. Thoroughly rev. 3rd edn. (1st edn. College Pub-
lications, London, 2011; 2nd edn. http://wirth.bplaced.net/p/hilbertbernays,
2013).

[Hilbert & Bernays, 2017b] David Hilbert and Paul Bernays, 2017b. Grundlagen der

1618

Automation of Mathematical Induction

Mathematik I — Foundations of Mathematics I, Part B: §§ 3–5 and Deleted Part 1
of the 1st Edn.. Springer. First English translation and bilingual facsimile edn. of
the 2nd German edn. [Hilbert & Bernays, 1968], incl. the annotation and transla-
tion of all deleted texts of the 1st German edn. [Hilbert & Bernays, 1934]. Ed. by
Claus-Peter Wirth, Jörg Siekmann, Volker Peckhaus, Michael Gabbay, Dov Gab-
bay. Translated and commented by Claus-Peter Wirth et al. Thoroughly rev. 3rd edn.
(1st edn. College Publications, London, 2012; 2nd edn. http://wirth.bplaced.net/
p/hilbertbernays, 2013).

[Hillenbrand & Löchner, 2002] Thomas Hillenbrand and Bernd Löchner, 2002. The next
WaldMeister loop. In [Voronkov, 2002, pp. 486–500]. http://www.waldmeister.
org.

[Hinchey & Bowen, 1999] Michael G. Hinchey and Jonathan P. Bowen, editors, 1999.
Industrial-Strength Formal Methods in Practice. Formal Approaches to Computing
and Information Technology (FACIT). Springer.

[Hobson & Love, 1913] E. W. Hobson and A. E. H. Love, editors, 1913. Proc. 5th Int.
Congress of Mathematicians, Cambridge, Aug 22–28, 1912. Cambridge Univ. Press.
http://gallica.bnf.fr/ark:/12148/bpt6k99444q.

[Howard & Rubin, 1998] Paul Howard and Jean E. Rubin, 1998. Consequences of the Axiom
of Choice. American Math. Soc.. http://consequences.emich.edu/conseq.htm.

[Hudlak &al., 1999] Paul Hudlak, John Peterson, and Joseph H. Fasel, 1999. A gentle
introduction to Haskell. Web only: http://www.haskell.org/tutorial.

[Huet, 1980] Gérard Huet, 1980. Confluent reductions: Abstract properties and applications
to term rewriting systems. J. of the ACM, 27:797–821.

[Huet & Hullot, 1980] Gérard Huet and Jean-Marie Hullot, 1980. Proofs by induction in
equational theories with constructors. In [FOCS, 1980, pp. 96–107]. Also in J. Com-
puter and System Sci. 25:239–266, 1982, Academic Press (Elsevier).

[Hunt, 1985] Warren A. Hunt, 1985. FM8501: A Verified Microprocessor. PhD thesis, The
University of Texas at Austin. Also published as [Hunt, 1994].

[Hunt, 1989] Warren A. Hunt, 1989. Microprocessor design verification. J. Automated Rea-
soning, 5:429–460.

[Hunt, 1994] Warren A. Hunt, 1994. FM8501: A Verified Microprocessor. Number 795 in
Lecture Notes in Artificial Intelligence. Springer. Originally published as [Hunt, 1985].

[Hunt & Swords, 2009] Warren A. Hunt and Sol Swords, 2009. Centaur technology media
unit verification. In [Bouajjani & Maler, 2009, pp. 353–367].

[Hutter, 1990] Dieter Hutter, 1990. Guiding inductive proofs. In [Stickel, 1990, pp. 147–161].
[Hutter, 1994] Dieter Hutter, 1994. Synthesis of induction orderings for existence proofs. In

[Bundy, 1994, pp. 29–41].
[Hutter & Bundy, 1999] Dieter Hutter and Alan Bundy, 1999. The design of the CADE-16

Inductive Theorem Prover Contest. In [Ganzinger, 1999, pp. 374–377].
[Hutter & Sengler, 1996] Dieter Hutter and Claus Sengler, 1996. Inka: the next generation.

In [McRobbie & Slaney, 1996, pp. 288–292].
[Hutter & Stephan, 2005] Dieter Hutter and Werner Stephan, editors, 2005. Mechanizing

Mathematical Reasoning: Essays in Honor of Jörg Siekmann on the Occasion of His
60th Birthday. Number 2605 in Lecture Notes in Artificial Intelligence. Springer.

[IEEE WESTON, 1970] IEEE WESTON, 1970. Proc. IEEE WESCON, Aug. 1970. IEEE

1619

Moore and Wirth

Press, originally published by TRW software series, TRW–SS–70–01.
[Ireland & Bundy, 1994] Andrew Ireland and Alan Bundy, 1994. Productive Use of Failure

in Inductive Proof. DAI Research Paper No. 716, Dept. Artificial Intelligence, Univ.
Edinburgh. Also in: J. Automated Reasoning 16:79–111, 1996, Kluwer (Springer Sci-
ence+Business Media).

[Jamnik &al., 2003] Mateja Jamnik, Manfred Kerber, Martin Pollet, and Christoph Benz-
müller, 2003. Automatic learning of proof methods in proof planning. Logic J. of the
IGPL, 11:647–673.

[Jouannaud & Kounalis, 1986] Jean-Pierre Jouannaud and Emmanuël Kounalis, 1986. Au-
tomatic proofs by induction in equational theories without constructors. In [LICS,
1986, pp. 358–366]. Also in Information and Computation 82:1–33, 1989, Academic
Press (Elsevier), 1989.

[Kaplan & Jouannaud, 1988] Stéphane Kaplan and Jean-Pierre Jouannaud, editors, 1988.
1st Int. Workshop on Conditional Term Rewriting Systems (CTRS), Orsay (France),
1987, number 308 in Lecture Notes in Computer Science.

[Kaplan & Okada, 1991] Stéphane Kaplan and Mitsuhiro Okada, editors, 1991. 2nd Int.
Workshop on Conditional Term Rewriting Systems (CTRS), Montreal, 1990, number
516 in Lecture Notes in Computer Science.

[Kapur, 1992] Deepak Kapur, editor, 1992. 11th Int. Conf. on Automated Deduction
(CADE), Saratoga Springs (NY), 1992, number 607 in Lecture Notes in Artificial
Intelligence. Springer.

[Kapur & Musser, 1986] Deepak Kapur and David R. Musser, 1986. Inductive reasoning
with incomplete specifications. In [LICS, 1986, pp. 367–377].

[Kapur & Musser, 1987] Deepak Kapur and David R. Musser, 1987. Proof by consistency.
Artificial Intelligence, 31:125–157.

[Kapur & Subramaniam, 1996] Deepak Kapur and Mahadevan Subramaniam, 1996. Au-
tomating induction over mutually recursive functions. In [Wirsing & Nivat, 1996,
pp. 117–131].

[Kapur & Zhang, 1989] Deepak Kapur and Hantao Zhang, 1989. An overview of Rewrite
Rule Laboratory (Rrl). In [Dershowitz, 1989, pp. 559–563]. Journal version is [Kapur
& Zhang, 1995].

[Kapur & Zhang, 1995] Deepak Kapur and Hantao Zhang, 1995. An overview of Rewrite
Rule Laboratory (Rrl). Computers and Mathematics with Applications, 29(2):91–114.

[Katz, 1998] Victor J. Katz, 1998. A History of Mathematics: An Introduction. Addison–
Wesley, Reading (MA). 2nd edn..

[Kaufmann &al., 2000a] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, edi-
tors, 2000a. Computer-Aided Reasoning: ACL2 Case Studies. Number 4 in Advances
in Formal Methods. Kluwer (Springer Science+Business Media). With a foreword
from the series editor Mike Hinchey.

[Kaufmann &al., 2000b] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore,
2000b. Computer-Aided Reasoning: An Approach. Number 3 in Advances in For-
mal Methods. Kluwer (Springer Science+Business Media). With a foreword from the
series editor Mike Hinchey.

[Kleene, 1952] Stephen C. Kleene, 1952. Introduction to Metamathematics. D. Van Nos-
trand, Princeton (NJ); North-Holland (Elsevier), Amsterdam.

[Knuth & Bendix, 1970] Donald E Knuth and Peter B. Bendix, 1970. Simple word problems

1620

Automation of Mathematical Induction

in universal algebra. In [Leech, 1970, pp. 263–297].
[Kodratoff, 1988] Yves Kodratoff, editor, 1988. Proc. 8th European Conf. on Artificial In-

telligence (ECAI). Pitman Publ., London.
[Kott, 1986] Laurent Kott, editor, 1986. 13th Int. Colloquium on Automata, Languages and

Programming (ICALP), Rennes (France), number 226 in Lecture Notes in Computer
Science. Springer.

[Kowalski, 1974] Robert A. Kowalski, 1974. Predicate logic as a programming language. In
[Rosenfeld, 1974, pp. 569–574].

[Kowalski, 1988] Robert A. Kowalski, 1988. The early years of logic programming. Comm.
ACM, 31:38–43.

[Krazer, 1905] A. Krazer, editor, 1905. Verhandlungen des Dritten Internationalen
Mathematiker-Kongresses, Heidelberg, Aug. 8–13, 1904. Verlag von B. G. Teubner,
Leipzig.

[Kreisel, 1965] Georg Kreisel, 1965. Mathematical logic. In [Saaty, 1965, Vol. III, pp. 95–
195].

[Küchlin, 1989] Wolfgang Küchlin, 1989. Inductive completion by ground proof transfor-
mation. In [Aït-Kaci & Nivat, 1989, Vol. 2, pp. 211–244].

[Kühler, 1991] Ulrich Kühler, 1991. Ein funktionaler und struktureller Vergleich ver-
schiedener Induktionsbeweiser. (English translation of title: “A functional and struc-
tural comparsion of several inductive theorem-proving systems” (Inka, LP (Larch
Prover), Nqthm, Rrl, Unicom)). vi+143 pp., Diplomarbeit (Master’s thesis), FB
Informatik, Univ. Kaiserslautern.

[Kühler, 2000] Ulrich Kühler, 2000. A Tactic-Based Inductive Theorem Prover for Data
Types with Partial Operations. Infix, Akademische Verlagsgesellschaft Aka GmbH,
Sankt Augustin, Berlin. PhD thesis, Univ. Kaiserslautern, ISBN 1586031287, http:
//wirth.bplaced.net/p/kuehlerdiss.

[Kühler & Wirth, 1996] Ulrich Kühler and Claus-Peter Wirth, 1996. Conditional Equa-
tional Specifications of Data Types with Partial Operations for Inductive Theorem
Proving. SEKI-Report SR–1996–11 (ISSN 1437–4447). SEKI Publications, FB In-
formatik, Univ. Kaiserslautern. 24 pp., http://wirth.bplaced.net/p/rta97. Short
version is [Kühler & Wirth, 1997].

[Kühler & Wirth, 1997] Ulrich Kühler and Claus-Peter Wirth, 1997. Conditional equational
specifications of data types with partial operations for inductive theorem proving. In
[Comon, 1997, pp. 38–52]. Extended version is [Kühler & Wirth, 1996].

[Lambert, 1764] Johann Heinrich Lambert, 1764. Neues Organon oder Gedanken
über die Erforschung und Bezeichnung des Wahren und dessen Unterschei-
dung von Irrthum und Schein. Johann Wendler, Leipzig. Vol. I (Dianoiolo-
gie oder die Lehre von den Gesetzen des Denkens, Alethiologie oder Lehre
von der Wahrheit) (http://books.google.de/books/about/Neues_Organon_oder_
Gedanken_Uber_die_Erf.html?id=ViS3XCuJEw8C) & Vol. II (Semiotik oder Lehre
von der Bezeichnung der Gedanken und Dinge, Phänomenologie oder Lehre von dem
Schein) (http://books.google.de/books/about/Neues_Organon_oder_Gedanken_
%C3%BCber_die_Er.html?id=X8UAAAAAcAAj). Facsimile reprint by Georg Olms Ver-
lag, Hildesheim (Germany), 1965, with a German introduction by Hans Werner Arndt.

[Lankford, 1980] Dallas S. Lankford, 1980. Some remarks on inductionless induction. Memo
MTP-11, Math. Dept., Louisiana Tech. Univ., Ruston (LA).

[Lankford, 1981] Dallas S. Lankford, 1981. A simple explanation of inductionless induction.

1621

Moore and Wirth

Memo MTP-14, Math. Dept., Louisiana Tech. Univ., Ruston (LA).
[Lassez & Plotkin, 1991] Jean-Louis Lassez and Gordon D. Plotkin, editors, 1991. Compu-

tational Logic — Essays in Honor of J. Alan Robinson. MIT Press.
[Leech, 1970] John Leech, editor, 1970. Computational Word Problems in Abstract Algebra

— Proc. of a Conf. held at Oxford, under the auspices of the Science Research Coun-
cil, Atlas Computer Laboratory, 29th Aug. to 2nd Sept. 1967. Pergamon Press, Oxford.
With a foreword by J. Howlett.

[Leeuwen, 1990] Jan van Leeuwen, editor, 1990. Handbook of Theoretical Computer Sci..
MIT Press.

[LICS, 1986] LICS, 1986. Proc. 1st Annual IEEE Symposium on Logic In Computer Sci.
(LICS), Cambridge (MA), 1986. IEEE Press. http://lii.rwth-aachen.de/lics/
archive/1986.

[LICS, 1988] LICS, 1988. Proc. 3rd Annual IEEE Symposium on Logic In Computer
Sci. (LICS), Edinburgh, 1988. IEEE Press. http://lii.rwth-aachen.de/lics/
archive/1988.

[LICS, 2007] LICS, 2007. Proc. 22nd Annual IEEE Symposium on Logic In Computer
Sci. (LICS), Wrocław (i.e. Breslau, Silesia), 2007. IEEE Press. http://lii.
rwth-aachen.de/lics/archive/2007.

[Löchner, 2006] Bernd Löchner, 2006. Things to know when implementing LPO. Int. J.
Artificial Intelligence Tools, 15:53–79.

[Lusk & Overbeek, 1988] Ewing Lusk and Ross Overbeek, editors, 1988. 9th Int. Conf. on
Automated Deduction (CADE), Argonne National Laboratory (IL), 1988, number 310
in Lecture Notes in Artificial Intelligence. Springer.

[Mahoney, 1994] Michael Sean Mahoney, 1994. The Mathematical Career of Pierre de
Fermat 1601–1665. Princeton Univ. Press. 2nd rev. edn. (1st edn. 1973).

[Marchisotto & Smith, 2007] Elena Anne Marchisotto and James T. Smith, 2007. The
Legacy of Mario Pieri in Geometry and Arithmetic. Birkhäuser (Springer), Basel.

[Margaria, 1995] Tiziana Margaria, editor, 1995. Kolloquium Programmiersprachen und
Grundlagen der Programmierung. Tech. Report MIP–9519, Univ. Passau.

[McCarthy &al., 1965] John McCarthy, Paul W. Abrahams, D. J. Edwards, T. P. Hart, and
M. I. Levin, 1965. LISP 1.5 Programmer’s Manual. MIT Press.

[McRobbie & Slaney, 1996] Michael A. McRobbie and John K. Slaney, editors, 1996. 13th

Int. Conf. on Automated Deduction (CADE), New Brunswick (NJ), 1996, number
1104 in Lecture Notes in Artificial Intelligence. Springer.

[Melis &al., 2008] Erica Melis, Andreas Meier, and Jörg Siekmann, 2008. Proof planning
with multiple strategies. Artificial Intelligence, 172:656–684. Received May 2, 2006.
Published online Nov. 22, 2007. http://dx.doi.org/10.1016/j.artint.2007.11.
004.

[Meltzer, 1975] Bernard Meltzer, 1975. Department of A.I. – Univ. of Edinburgh. ACM
SIGART Bulletin, 50:5.

[Meltzer & Michie, 1972] Bernard Meltzer and Donald Michie, editors, 1972. Proceed-
ings of the 7th Annual Machine Intelligence Workshop (Machine Intelligence 7), Edin-
burgh, 1971. Univ. Edinburgh Press. http://aitopics.org/sites/default/files/
classic/Machine%20Intelligence%203/Machine%20Intelligence%20v3.pdf.

[Michie, 1968] Donald Michie, editor, 1968. Proceedings of the 3rd Annual Machine
Intelligence Workshop (Machine Intelligence 3), Edinburgh, 1967. Univ. Edin-
burgh Press. http://aitopics.org/sites/default/files/classic/Machine%

1622

Automation of Mathematical Induction

20Intelligence%203/Machine%20Intelligence%20v3.pdf.
[Milner, 1972] Robin Milner, 1972. Logic for computable functions — description of

a machine interpretation. Technical Report Memo AIM–169, STAN–CS–72–288,
Dept. Computer Sci., Stanford University. ftp://reports.stanford.edu/pub/
cstr/reports/cs/tr/72/288/CS-TR-72-288.pdf.

[Moore, 1973] J Strother Moore, 1973. Computational Logic: Structure Sharing and Proof
of Program Properties. PhD thesis, Dept. Artificial Intelligence, Univ. Edinburgh.
http://hdl.handle.net/1842/2245.

[Moore, 1975a] J Strother Moore, 1975a. Introducing iteration into the Pure LISP Theo-
rem Prover. Technical Report CSL 74–3, Xerox, Palo Alto Research Center, 3333
Coyote Hill Rd., Palo Alto (CA). ii+37 pp., Received Dec. 1974, rev. March 1975.
Short version is [Moore, 1975b].

[Moore, 1975b] J Strother Moore, 1975b. Introducing iteration into the Pure LISP Theo-
rem Prover. IEEE Transactions on Software Engineering, 1:328–338. http://doi.
ieeecomputersociety.org/10.1109/TSE.1975.6312857. Long version is [Moore,
1975a].

[Moore, 1979] J Strother Moore, 1979. A mechanical proof of the termination of Takeuti’s
function. Information Processing Letters, 9:176–181. Received July 13, 1979. Rev.
Sept. 5, 1979. http://dx.doi.org/10.1016/0020-0190(79)90063-2.

[Moore, 1981] J Strother Moore, 1981. Text editing primitives — the TXDT package.
Technical Report CSL 81–2, Xerox, Palo Alto Research Center, 3333 Coyote Hill Rd.,
Palo Alto (CA).

[Moore, 1989a] J Strother Moore, 1989a. A mechanically verified language implementation.
J. Automated Reasoning, 5:461–492.

[Moore, 1989b] J Strother Moore, 1989b. System verification. J. Automated Reasoning,
5:409–410.

[Moore &al., 1998] J Strother Moore, Thomas Lynch, and Matt Kaufmann, 1998. A me-
chanically checked proof of the correctness of the kernel of the AMD5K86 floating
point division algorithm. IEEE Transactions on Computers, 47:913–926.

[Moskewicz &al., 2001] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik, 2001. Chaff: Engineering an efficient SAT solver. In
[DAC, 2001, pp. 530–535].

[Musser, 1980] David R. Musser, 1980. On proving inductive properties of abstract data
types. In [Abrahams &al., 1980, pp. 154–162]. http://dl.acm.org/citation.cfm?
id=567461.

[Nilsson, 1973] Nils J. Nilsson, editor, 1973. Proc. 3rd Int. Joint Conf. on Artificial Intelli-
gence (ĲCAI), Stanford (CA). Stanford Research Institute, Publications Dept., Stan-
ford (CA). http://ijcai.org/Past%20Proceedings/IJCAI-73/CONTENT/content.
htm.

[Odifreddi, 1990] Piergiorgio Odifreddi, editor, 1990. Logic and Computer Science. Aca-
demic Press (Elsevier).

[Padawitz, 1996] Peter Padawitz, 1996. Inductive theorem proving for design specifications.
J. Symbolic Computation, 21:41–99.

[Padoa, 1913] Alessandro Padoa, 1913. La valeur et les rôles du principe d’induction math-
ématique. In [Hobson & Love, 1913, pp. 471–479].

[Pascal, 1954] Blaise Pascal, 1954. Œuvres Complètes. Gallimard, Paris. Ed. by Jacques
Chevalier.

1623

Moore and Wirth

[Paulson, 1990] Lawrence C. Paulson, 1990. Isabelle: The next 700 theorem provers. In
[Odifreddi, 1990, pp. 361–386].

[Paulson, 1996] Lawrence C. Paulson, 1996. ml for the Working Programmer. Cambridge
Univ. Press. 2nd edn. (1st edn. 1991).

[Peano, 1889] Guiseppe Peano, 1889. Arithmetices principia – nova methodo exposita.
Fratelli Bocca, Torino (i.e. Turin, Italy). Title page actually says: Ioseph Peano,
Fratres Bocca, Augustae Taurinorum.

[Péter, 1932] Rózsa Péter, 1932. Rekursive Funktionen. In [Saxer, 1932, Vol. II, p. 336].
Actually published under the name Rózsa Politzer.

[Péter, 1935] Rózsa Péter, 1935. Über den Zusammenhang der verschiedenen Begriffe der
rekursiven Funktion. Mathematische Annalen, 110:612–632. Received Sept. 21, 1934.

[Péter, 1951] Rózsa Péter, 1951. Rekursive Funktionen. Akad. Kiadó, Budapest. 1st edn..
[Péter, 1957] Rózsa Péter, 1957. Rekursive Funktionen. Akad. Kiadó, Budapest.

2nd extd. edn. (1st edn. 1951). English translation is [Péter, 1967].
[Péter, 1967] Rózsa Péter, 1967. Recursive Functions. Akad. Kiadó, Budapest; joint edn.

with Academic Press (Elsevier). 3rd rev. edn., 1st edn. in English, translated form the
German [Péter, 1957] by István Földes.

[Pieri, 1908] Mario Pieri, 1908. Sopra gli assiomi aritmetici. Il Bollettino delle seduta
della Accademia Gioenia di Scienze Naturali in Catania, Series 2, 1–2:26–30. Written
Dec. 1907. Received Jan. 8, 1908. English translation On the Axioms of Arithmetic in
[Marchisotto & Smith, 2007, § 4.2, pp. 308–313].

[Plotkin &al., 2000] Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, 2000. Proof,
Language, and Interaction, Essays in Honour of Robin Milner. MIT Press.

[Presburger, 1930] Mojżesz Presburger, 1930. Über die Vollständigkeit eines gewissen Sys-
tems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In Sprawozdanie z I Kongresu metematyków krajów słowianskich, Warszawa
1929 (Comptes-rendus du 1re Congrès des Mathématiciens des Pays Slaves, , Varsovie
1929), pages 92–101+395. Remarks and English translation in [Stansifer, 1984].

[Protzen, 1994] Martin Protzen, 1994. Lazy generation of induction hypotheses. In [Bundy,
1994, pp. 42–56].

[Protzen, 1995] Martin Protzen, 1995. Lazy Generation of Induction Hypotheses and Patch-
ing Faulty Conjectures. Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt
Augustin, Berlin. PhD thesis.

[Protzen, 1996] Martin Protzen, 1996. Patching faulty conjectures.
In [McRobbie & Slaney, 1996, pp. 77–91].

[Rabinovitch, 1970] Nachum L. Rabinovitch, 1970. Rabbi Levi ben Gerson and the origins
of mathematical induction. Archive for History of Exact Sciences, 6:237–248. Received
Jan. 12, 1970.

[Reddy, 1977] Ray Reddy, editor, 1977. Proc. 5th Int. Joint Conf. on Artificial Intelligence
(ĲCAI), Cambridge (MA). Dept. of Computer Sci., Carnegie Mellon Univ., Cam-
bridge (MA). http://ijcai.org/Past%20Proceedings.

[Reddy, 1990] Uday S. Reddy, 1990. Term rewriting induction. [Stickel, 1990, pp. 162–177].
[Riazanov & Voronkov, 2001] Alexander Riazanov and Andrei Voronkov, 2001. Vampire 1.1

(system description). In [Gore &al., 2001, pp. 376–380].
[Robinson & Voronkow, 2001] J. Alan Robinson and Andrei Voronkow, editors, 2001. Hand-

1624

Automation of Mathematical Induction

book of Automated Reasoning. Elsevier.
[Rosenfeld, 1974] Jack L. Rosenfeld, editor, 1974. Proc. of the Congress of the Int. Federa-

tion for Information Processing (IFIP), Stockholm (Sweden), Aug. 5–10, 1974. North-
Holland (Elsevier).

[Royce, 1970] Winsten W. Royce, 1970. Managing the development of large software sys-
tems. In [IEEE WESTON, 1970, pp. 1–9].

[Rubin & Rubin, 1985] Herman Rubin and Jean E. Rubin, 1985. Equivalents of the Axiom
of Choice. North-Holland (Elsevier). 2nd rev. edn. (1st edn. 1963).

[Rusinowitch & Remy, 1993] Michaël Rusinowitch and Jean-Luc Remy, editors, 1993. 3rd

Int. Workshop on Conditional Term Rewriting Systems (CTRS), Pont-à-Mousson
(France), 1992, number 656 in Lecture Notes in Computer Science.

[Russinoff, 1998] David M. Russinoff, 1998. A mechanically checked proof of IEEE compli-
ance of a register-transfer-level specification of the AMD-K7 floating-point multipli-
cation, division, and square root instructions. London Mathematical Society Journal
of Computation and Mathematics, 1:148–200.

[Saaty, 1965] T. L. Saaty, editor, 1965. Lectures on Modern Mathematics. John Wiley &
Sons, New York.

[Saxer, 1932] Walter Saxer, editor, 1932. Verhandlungen des Internationalen Mathematiker-
Kongresses, Zürich, 1932. Verlag Orell Füssli, Zürich.

[Schmidt-Samoa, 2006a] Tobias Schmidt-Samoa, 2006a. An even closer integration of linear
arithmetic into inductive theorem proving. Electronic Notes in Theoretical Computer
Sci., 151:3–20. http://wirth.bplaced.net/p/evencloser, http://dx.doi.org/
10.1016/j.entcs.2005.11.020.

[Schmidt-Samoa, 2006b] Tobias Schmidt-Samoa, 2006b. Flexible Heuristic Control for Com-
bining Automation and User-Interaction in Inductive Theorem Proving. PhD thesis,
Univ. Kaiserslautern. http://wirth.bplaced.net/p/samoadiss.

[Schmidt-Samoa, 2006c] Tobias Schmidt-Samoa, 2006c. Flexible heuristics for simplification
with conditional lemmas by marking formulas as forbidden, mandatory, obligatory,
and generous. J. Applied Non-Classical Logics, 16:209–239. http://dx.doi.org/10.
3166/jancl.16.208-239.

[Scott, 1993] Dana S. Scott, 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Sci., 121:411–440. Annotated version of a manuscript from the
year 1969. www.cs.cmu.edu/~kw/scans/scott93tcs.pdf.

[Shankar, 1986] Natarajan Shankar, 1986. Proof-checking Metamathematics. PhD thesis,
The University of Texas at Austin. Thoroughly rev. version is [Shankar, 1994].

[Shankar, 1988] Natarajan Shankar, 1988. A mechanical proof of the Church–Rosser
theorem. J. of the ACM, 35:475–522. Received May 1985, rev.Aug. 1987. See also
Chapter 6 in [Shankar, 1994].

[Shankar, 1994] Natarajan Shankar, 1994. Metamathematics, Machines, and Gödel’s
Proof. Cambridge Univ. Press. Originally published as [Shankar, 1986]. Paperback
reprint 1997.

[Shoenfield, 1967] Joseph R. Shoenfield, 1967. Mathematical Logic. Addison–Wesley, Read-
ing (MA). 1st edn. 1967; 2nd edn. 1973; 3rd edn. 2001, facsimile of 2nd edn., A K Peters,
Natick (MA), copyright 1967 by the Association for Symbolic Logic.

[Siekmann, 1986] Jörg Siekmann, editor, 1986. 8th Int. Conf. on Automated Deduction
(CADE), Oxford, 1986, number 230 in Lecture Notes in Artificial Intelligence. Sprin-

1625

Moore and Wirth

ger.
[Sridharan, 1989] N. S. Sridharan, editor, 1989. Proc. 11th Int. Joint Conf. on Artificial

Intelligence (ĲCAI), Detroit (MI). Morgan Kaufmann (Elsevier), Los Altos (CA).
http://ijcai.org/Past%20Proceedings.

[Stansifer, 1984] Ryan Stansifer, 1984. Presburger’s Article on Integer Arithmetic: Remarks
and Translation. Technical Report TR 84–639, Dept. of Computer Sci., Cornell Univ.,
Ithaca (NY). http://hdl.handle.net/1813/6478.

[Steele, 1990] Guy L. Steele Jr., 1990. Common Lisp — The Language. Digital Press
(Elsevier). 2nd edn. (1st edn. 1984).

[Steinbach, 1988] Joachim Steinbach, 1988. Term Orderings With Status. SEKI-Report SR–
88–12 (ISSN 1437–4447). SEKI Publications, FB Informatik, Univ. Kaiserslautern.
57 pp., http://wirth.bplaced.net/SEKI/welcome.html#SR-88-12.

[Steinbach, 1995] Joachim Steinbach, 1995. Simplification orderings — history of results.
Fundamenta Informaticae, 24:47–87.

[Stevens, 1988] Andrew Stevens, 1988. A Rational Reconstruction of Boyer and Moore’s
Technique for Constructing Induction Formulas. DAI Research Paper No. 360, Dept.
Artificial Intelligence, Univ. Edinburgh. Also in [Kodratoff, 1988, pp. 565–570].

[Stickel, 1990] Mark E. Stickel, editor, 1990. 10th Int. Conf. on Automated Deduction
(CADE), Kaiserslautern (Germany), 1990, number 449 in Lecture Notes in Artifi-
cial Intelligence. Springer.

[Stoyan, 1985] Herbert Stoyan, editor, 1985. 9th German Workshop on Artificial Intelligence
(GWAI), Dassel (Germany), 1985, number 118 in Informatik-Fachberichte. Springer.

[Toyama, 1988] Yoshihito Toyama, 1988. Commutativity of term rewriting systems. In
[Fuchi & Kott, 1988, pp. 393–407]. Also in [Toyama, 1990].

[Toyama, 1990] Yoshihito Toyama, 1990. Term Rewriting Systems and the Church–Rosser
Property. PhD thesis, Tohoku Univ. / Nippon Telegraph and Telephone Corporation.

[Unguru, 1991] Sabetai Unguru, 1991. Greek mathematics and mathematical induction.
Physis, XXVIII(2):273–289.

[Verma, 2005?] Shamit Verma, 2005? Interview with Charles Simonyi. WWW only: http:
//www.shamit.org/charles_simonyi.htm.

[Voicu & Li, 2009] Răzvan Voicu and Mengran Li, 2009. Descente Infinie proofs in Coq.
In [Herbelin, 2009, pp. 73–84].

[Voronkov, 1992] Andrei Voronkov, editor, 1992. Proc. 3rd Int. Conf. on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR), number 624 in Lecture Notes in
Artificial Intelligence. Springer.

[Voronkov, 2002] Andrei Voronkov, editor, 2002. 18th Int. Conf. on Automated Deduction
(CADE), København (Denmark), 2002, number 2392 in Lecture Notes in Artificial
Intelligence. Springer.

[Walther, 1988] Christoph Walther, 1988. Argument-bounded algorithms as a basis for
automated termination proofs. In [Lusk & Overbeek, 1988, pp. 601–622].

[Walther, 1992] Christoph Walther, 1992. Computing induction axioms.
In [Voronkov, 1992, pp. 381–392].

[Walther, 1993] Christoph Walther, 1993. Combining induction axioms by machine. In
[Bajscy, 1993, pp. 95–101].

[Walther, 1994a] Christoph Walther, 1994a. Mathematical induction.

1626

Automation of Mathematical Induction

In [Gabbay &al., 1994, pp. 127–228].
[Walther, 1994b] Christoph Walther, 1994b. On proving termination of algorithms by ma-

chine. Artificial Intelligence, 71:101–157.
[Wirsing & Nivat, 1996] Martin Wirsing and Maurice Nivat, editors, 1996. Proc. 5th Int.

Conf. on Algebraic Methodology and Software Technology (AMAST), München (Ger-
many), 1996, number 1101 in Lecture Notes in Computer Science. Springer.

[Wirth, 1991] Claus-Peter Wirth, 1991. Inductive theorem proving in theories specified by
positive/negative-conditional equations. Diplomarbeit (Master’s thesis), FB Infor-
matik, Univ. Kaiserslautern.

[Wirth, 1997] Claus-Peter Wirth, 1997. Positive/Negative-Conditional Equations: A
Constructor-Based Framework for Specification and Inductive Theorem Proving, vol-
ume 31 of Schriftenreihe Forschungsergebnisse zur Informatik. Verlag Dr. Kovač, Ham-
burg. PhD thesis, Univ. Kaiserslautern, ISBN 386064551X, http://wirth.bplaced.
net/p/diss.

[Wirth, 2004] Claus-Peter Wirth, 2004. Descente Infinie + Deduction. Logic J. of the IGPL,
12:1–96. http://wirth.bplaced.net/p/d.

[Wirth, 2005a] Claus-Peter Wirth, 2005a. History and future of implicit and inductionless
induction: Beware the old jade and the zombie! In [Hutter & Stephan, 2005, pp. 192–
203], http://wirth.bplaced.net/p/zombie.

[Wirth, 2005b] Claus-Peter Wirth, 2005b. Syntactic Confluence Criteria for Positive/
Negative-Conditional Term Rewriting Systems. SEKI-Report SR–95–09 (ISSN 1437–
4447). SEKI Publications, Univ. Kaiserslautern. Rev. edn. Oct. 2005 (1st edn. 1995),
ii+188 pp., http://arxiv.org/abs/0902.3614.

[Wirth, 2009] Claus-Peter Wirth, 2009. Shallow confluence of conditional term rewriting
systems. J. Symbolic Computation, 44:69–98. http://dx.doi.org/10.1016/j.jsc.
2008.05.005.

[Wirth, 2010a] Claus-Peter Wirth, 2010a. Progress in Computer-Assisted Inductive
Theorem Proving by Human-Orientedness and Descente Infinie? SEKI-Working-
Paper SWP–2006–01 (ISSN 1860–5931). SEKI Publications, Saarland Univ.
Rev. edn.Dec 2010 (1st edn. 2006), ii+36 pp., http://arxiv.org/abs/0902.3294.

[Wirth, 2010b] Claus-Peter Wirth, 2010b. A Self-Contained and Easily Accessible Discus-
sion of the Method of Descente Infinie and Fermat’s Only Explicitly Known Proof
by Descente Infinie. SEKI-Working-Paper SWP–2006–02 (ISSN 1860–5931). SEKI
Publications. Rev. ed. Dec. 2010, ii+36 pp., http://arxiv.org/abs/0902.3623.

[Wirth, 2012a] Claus-Peter Wirth, 2012a. Herbrand’s Fundamental Theorem in the eyes of
Jean van Heĳenoort. Logica Universalis, 6:485–520. Received Jan. 12, 2012. Published
online June 22, 2012, http://dx.doi.org/10.1007/s11787-012-0056-7.

[Wirth, 2012b] Claus-Peter Wirth, 2012b. lim +, δ+, and Non-Permutability of β-Steps.
J. Symbolic Computation, 47:1109–1135. Received Jan. 18, 2011. Published online
July 15, 2011, http://dx.doi.org/10.1016/j.jsc.2011.12.035.

[Wirth, 2012c] Claus-Peter Wirth, 2012c. Human-oriented inductive theorem proving
by descente infinie — a manifesto. Logic J. of the IGPL, 20:1046–1063. Re-
ceived July 11, 2011. Published online March 12, 2012, http://dx.doi.org/10.1093/
jigpal/jzr048.

[Wirth, 2012d] Claus-Peter Wirth, 2012d. Unpublished Interview of Robert S. Boyer and
J Strother Moore at Boyer’s place in Austin (TX) on Thursday, Oct. 7.

[Wirth, 2017] Claus-Peter Wirth, 2017. A simplified and improved free-variable framework

1627

Moore and Wirth

for Hilbert’s epsilon as an operator of indefinite committed choice. IFCoLog J. of
Logics and Their Applications, 4:435–526. Received Oct. 23, 2015.

[Wirth & Becker, 1995] Claus-Peter Wirth and Klaus Becker, 1995. Abstract notions and
inference systems for proofs by mathematical induction.
In [Dershowitz & Lindenstrauss, 1995, pp. 353–373].

[Wirth & Gramlich, 1994a] Claus-Peter Wirth and Bernhard Gramlich, 1994a. A
constructor-based approach to positive/negative-conditional equational specifications.
J. Symbolic Computation, 17:51–90. http://dx.doi.org/10.1006/jsco.1994.1004,
http://wirth.bplaced.net/p/jsc94.

[Wirth & Gramlich, 1994b] Claus-Peter Wirth and Bernhard Gramlich, 1994b. On notions
of inductive validity for first-order equational clauses. In [Bundy, 1994, pp. 162–176],
http://wirth.bplaced.net/p/cade94.

[Wirth &al., 1993] Claus-Peter Wirth, Bernhard Gramlich, Ulrich Kühler, and Horst Prote,
1993. Constructor-Based Inductive Validity in Positive/Negative-Conditional Equa-
tional Specifications. SEKI-Report SR–93–05 (SFB) (ISSN 1437–4447). SEKI Pub-
lications, FB Informatik, Univ. Kaiserslautern. iv+58 pp., http://wirth.bplaced.
net/SEKI/welcome.html#SR-93-05. Rev. extd. edn. of 1st part is [Wirth & Gramlich,
1994a], rev. edn. of 2nd part is [Wirth & Gramlich, 1994b].

[Wirth & Kühler, 1995] Claus-Peter Wirth and Ulrich Kühler, 1995. Inductive Theorem
Proving in Theories Specified by Positive/Negative-Conditional Equations. SEKI-
Report SR–95–15 (ISSN 1437–4447). SEKI Publications, Univ. Kaiserslautern.
iv+126 pp..

[Wirth &al., 2009] Claus-Peter Wirth, Jörg Siekmann, Christoph Benzmüller, and Serge
Autexier, 2009. Jacques Herbrand: Life, logic, and automated deduction. In [Gabbay
& Woods, 2004ff., Vol. 5: Logic from Russell to Church, pp. 195–254].

[Wirth, 1971] Niklaus Wirth, 1971. The programming language Pascal. Acta Informatica,
1:35–63.

[Wolff, 1728] Christian Wolff, 1728. Philosophia rationalis sive Logica, methodo scientifica
pertractata et ad usum scientiarium atque vitae aptata. Rengerische Buchhandlung,
Frankfurt am Main & Leipzig. 1st edn..

[Wolff, 1740] Christian Wolff, 1740. Philosophia rationalis sive Logica, methodo scientifica
pertractata et ad usum scientiarium atque vitae aptata. Rengerische Buchhandlung,
Frankfurt am Main & Leipzig. 3rd extd. edn. of [Wolff, 1728]. Facsimile reprint by
Georg Olms Verlag, Hildesheim (Germany), 1983, with a French introduction by Jean
École.

[Yeh & Ramamoorthy, 1976] Raymond T. Yeh and C. V. Ramamoorthy, editors, 1976.
Proc. 2nd Int. Conf. on Software Engineering, San Francisco (CA), Oct. 13–15, 1976.
IEEE Computer Sci. Press, Los Alamitos (CA). http://dl.acm.org/citation.cfm?
id=800253.

[Young, 1989] William D. Young, 1989. A mechanically verified code generator. J. Auto-
mated Reasoning, 5:493–518.

[Zhang &al., 1988] Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy, 1988.
A mechanizable induction principle for equational specifications.
In [Lusk & Overbeek, 1988, pp. 162–181].

[Zygmunt, 1991] Jan Zygmunt, 1991. Mojżesz Presburger: Life and work. History and
Philosophy of Logic, 12:211–223.

1628

Automation of Mathematical Induction

Index
77-editor, 1508

accessor functions, 1567
Acerbi, Fabio (*1965), 1514, 1605, 1606
Ackermann function, 1519–1521, 1546, 1565,

1582
Ackermann, Wilhelm (1896–1962), 1520,

1526, 1606
ACL2, 1510, 1512, 1513, 1553, 1565, 1574,

1589, 1590, 1592–1595, 1603, 1620
Aristotle (384–322 b.c.), 1514
Aubin, Raymond, 1536, 1597, 1599, 1606
Autexier, Serge (*1971), 1528, 1595, 1606,

1628
Axiom of Choice, see choice, Axiom of Choice
Axiom of Structural Induction, see induction,

structural

Barner, Klaus, 1515, 1605, 1607
Baroque, 1509
Basin, David, 1598, 1607, 1612
Bauer-Mengelberg, Stefan (1927–1996), 1617
Benzmüller, Christoph (*1968), 1506, 1607,

1620, 1628
Bernays, Paul (1888–1977), 1519, 1520, 1525,

1526, 1607, 1616, 1618, 1619
Bledsoe, W. W. (1921–1995), 1507, 1508,

1553–1555, 1608, 1610
Bourbaki, Nicolas (pseudonym), 1516, 1517,

1608, 1609, 1612
Boyer, Robert S. (*1946), 1506–1513, 1524,

1531–1535, 1537, 1540–1544, 1547,
1548, 1553, 1554, 1556–1567, 1569–
1571, 1573, 1574, 1576, 1577, 1579,
1580, 1582, 1585–1587, 1591–1595,
1598, 1599, 1603, 1605, 1608–1611,
1627

Boyer–Moore fast string searching algorithm,
1610

Boyer–Moore machines, 1512
Boyer–Moore theorem provers, 1510, 1512,

1513, 1532–1535, 1537, 1540–1544,
1554, 1556, 1558, 1559, 1561–1565,
1571, 1573, 1574, 1592, 1594, 1595

Boyer–Moore waterfall, 1506, 1507, 1531–
1535, 1554, 1557, 1558, 1560, 1564,
1570, 1587

Bundy, Alan (*1947), 1507, 1509, 1510, 1513,
1588, 1595–1598, 1605, 1611, 1612,
1619, 1620, 1624, 1628

Burstall, Rod M. (*1934), 1507–1509, 1553,
1555, 1612

changeable positions, 1547–1551, 1583
choice

Axiom of Choice, 1516, 1518
Principle of Dependent Choice, 1516

Church, Alonzo (1903–1995), 1608, 1612
Church–Rosser property, 1533, 1539
Church–Rosser Theorem, 1533
Common Lisp, 1510, 1512, 1592, 1603, 1626
confluence, 1525, 1533, 1539–1544, 1556, 1602
consistency, 1526, 1538, 1540, 1542, 1543,

1599, 1602
constructor function symbols, 1518, 1543,

1560, 1580
constructor style, 1519, 1524, 1535, 1540,

1562, 1576, 1577
constructor substitutions, 1534, 1535, 1548,

1549, 1551
constructor variables, 1512, 1541–1543, 1547,

1556, 1601
Coq, 1594, 1616, 1626
cross-fertilization, 1506, 1533, 1560–1561,

1576, 1579

Dawson, John W., Jr. (*1944), 1615
Dedekind, Richard (1831–1916), 1519, 1613
descente infinie, 1514, 1515, 1526–1529, 1532,

1533, 1538, 1581, 1587, 1598, 1600,
1601, 1603, 1604, 1626, 1627

destructor elimination, 1506, 1559, 1574–
1579, 1587

destructor style, 1519, 1524, 1540, 1541, 1544,
1546, 1562, 1563, 1572, 1574–1577,
1582–1584

elimination of irrelevance, 1506, 1535, 1580–
1581

1629

Moore and Wirth

Euclid, 1514, 1613

Feferman, Sol(omon) (1928–2016), 1615
Fermat, Pierre (160?–1665), 1515, 1526, 1527,

1538, 1607, 1615, 1622
Fries, Jakob Friedrich (1773–1843), 1519,

1614

Gabbay, Dov (*1945), 1614, 1618, 1619, 1627,
1628

Gabbay, Michael, 1618, 1619
generalization, 1506, 1535–1537, 1561, 1579
Gentzen, Gerhard (1909–1945), 1525, 1538,

1614
Gerson, Levi ben (1288–1344), 1515, 1624
Gödel, Kurt (1906–1978), 1606, 1615
Goldfarb, Warren (*1949), 1615
Goldstein, Catherine (*1958), 1515, 1605,

1615
Goodstein, R. L. (1912–1985), 1509, 1615
Gordon, Mike J. C. (*1948), 1507, 1509, 1511,

1615
Gramlich, Bernhard (1959–2014), 1512, 1525,

1542, 1543, 1599–1602, 1605, 1611,
1615, 1616, 1628

ground terms, 1539

Harmelen, Frank van (*1960), 1598, 1612
Haskell, 1511, 1619
Hayes, Pat(rick) J. (*1944), 1507, 1509, 1511
Heĳenoort, Jean van (1912–1986), 1519,

1607, 1615–1617, 1627
Herbrand’s Fundamental Theorem, 1627
Herbrand, Jacques (1908–1938), 1628
Hilbert, David (1862–1943), 1519, 1520, 1525,

1526, 1616–1619
Hillenbrand, Thomas (*1970), 1505, 1611,

1619
Hippasus of Metapontum (ca. 550 b.c.), 1514,

1614
hitting ratio, 1550, 1551, 1583–1585
HOL, 1594, 1615
Hope Park, 1507, 1508
Howard, Paul (*1943), 1516, 1619
Hunt, Warren A., 1591–1593, 1605, 1608,

1611, 1619
Hutter, Dieter (*1959), 1595, 1598, 1605,

1606, 1608, 1612, 1619, 1627

Huygens, Christiaan (1629–1695), 1527

induction
complete, 1517
course-of-values, 1517
descente infinie, see descente infinie
explicit, 1530–1539, 1544, 1547–1550,

1552–1601, 1603, 1604
implicit, 1597–1602
inductionless, 1600
lazy, 1549, 1595, 1600, 1601, 1604
mathematical, 1519
Noetherian, 1516–1519, 1526–1531, 1534
structural, 1514, 1515, 1517–1519, 1521,

1525, 1526, 1532, 1533, 1535, 1553,
1556, 1564, 1596

induction rule, 1530–1536, 1544, 1548, 1550,
1558, 1559, 1562–1564, 1576, 1581–
1583, 1600

induction schemes, 1548–1551, 1562, 1567,
1576, 1580, 1583–1590, 1603, 1604

induction templates, 1544–1551, 1562, 1573,
1582–1584, 1587, 1589, 1590, 1592,
1603

induction variables, 1534, 1535, 1549, 1550,
1563, 1584–1586, 1588, 1603

Induktion
vollständige, 1519

Inka, 1595, 1601, 1606, 1619, 1621
Ireland, Andrew, 1596, 1598, 1612, 1620
Isabelle, 1596, 1613, 1624
Isabelle/HOL, 1594
IsaPlanner, 1594, 1596, 1613

Kant, Immanuel (1724–1804), 1514
Kaufmann, Matt (*1952), 1513, 1566, 1570,

1574, 1592, 1593, 1605, 1620, 1623
Kleene, Stephen C. (1909–1994), 1517, 1615,

1620
Kowalski, Robert A. (*1941), 1507, 1509,

1511, 1608, 1615, 1621
Kühler, Ulrich (*1964), 1543, 1595, 1600–

1606, 1621, 1628

LCF, 1511, 1615
Leo-II, 1506, 1607
lexicographic combination, 1525
linear arithmetic, 1591, 1604, 1610, 1625

1630

Automation of Mathematical Induction

linear resolution, 1508
linear terms, 1519
LISP, 1506, 1508–1513, 1534, 1535, 1537,

1540, 1542–1544, 1553–1567, 1569–
1572, 1574–1576, 1579–1581, 1585,
1586, 1588, 1591, 1592, 1603, 1610,
1623, 1626

Löchner, Bernd (*1967), 1505, 1602, 1619,
1622

logic
Aristotelian, 1519

Maurolico, Francesco (1494–1575), 1515
McCarthy, John (1927–2011), 1508
measured positions, 1525, 1545–1549, 1565,

1573, 1582–1584
Meltzer, Bernard (1916(?)–2008), 1507, 1509,

1610, 1615, 1622
Michie, Donald (1923–2007), 1509, 1610,

1613, 1616, 1622
Microsoft Word, 1508
Milner, Robin (1934–2010), 1507, 1509, 1624
ml, 1511, 1624
Moore, J Strother (*1947), 1506–1513, 1524,

1531–1535, 1537, 1540–1544, 1547,
1548, 1553–1567, 1569–1571, 1573,
1574, 1576, 1577, 1579, 1580, 1582,
1585–1587, 1591–1595, 1598, 1599,
1603, 1608–1611, 1620, 1623, 1627

Newman Lemma, 1533
Newman, Max(well) H. A. (1897–1984), 1533
Noether, Emmy (1882–1935), 1516, 1613
Noetherian induction, see induction, Noethe-

rian
normalation, 1557
Nqthm, 1510, 1513, 1565, 1566, 1574, 1589–

1592, 1595, 1601, 1611, 1621
Nuprl, 1596, 1612

Oyster/CLaM, 1595, 1596, 1612

Péter, Rózsa (1905–1977), 1520, 1624
Padoa, Alessandro (1868–1937), 1520, 1623
Parsons, Charles (*1933), 1615
Pascal, Blaise (1623–1662), 1515
Peano axioms, 1520
Peano, Guiseppe (1858–1932), 1520, 1523,

1526, 1534, 1596, 1624

Peckhaus, Volker (*1955), 1618, 1619
Pieri, Mario (1860–1913), 1520, 1523, 1526,

1534, 1570, 1622, 1624
Plato (427–347 b.c.), 1514
POP–2, 1509, 1555, 1556
position sets, 1549, 1550, 1584, 1585
Presburger Arithmetic, see linear arithmetic
Presburger, Mojżesz (1904–1943(?)), 1591,

1624, 1626, 1628
Prolog, 1509, 1612
proof by consistency, 1599, 1601
proof planning, 1597
Protzen, Martin (*1962), 1595, 1601, 1624
Pure LISP Theorem Prover, 1506, 1508–

1510, 1513, 1534, 1535, 1537, 1542–
1544, 1553–1567, 1569–1572, 1575,
1576, 1579–1581, 1585, 1588, 1592,
1623

PVS, 1594

Qthm, 1565, 1566
QuodLibet, 1558, 1595, 1597, 1600–1604,

1606

recognizer functions, 1567
recursion, 1539
recursion analysis, 1559, 1564, 1565, 1581–

1588, 1596, 1598, 1603, 1604
reducibility, 1541
relational descriptions, 1544–1546, 1548,

1549, 1551, 1582–1584
rewrite relation, 1539
ripple analysis, 1596
rippling, 1595–1598
Robinson, J. Alan (1930–2016), 1508, 1612,

1614, 1622, 1624
Rrl, 1594, 1597, 1601, 1620, 1621
Rubin, Herman (*1926), 1516, 1518, 1625
Rubin, Jean E. (1926–2002), 1516, 1518,

1619, 1625
Russell’s Paradox, 1542

Satallax, 1506, 1611
Schmidt-Samoa, Tobias (*1973), 1543, 1558,

1573, 1603–1606, 1625
Scott, Dana S. (*1932), 1508, 1511, 1625
Shankar, Natarajan, 1533, 1592, 1625
shell principle, 1524, 1567–1569

1631

Moore and Wirth

shells, 1513, 1524, 1567–1570, 1580, 1583
Shoenfield, Joseph R. (1927–2000), 1517,

1542, 1625
Sieg, Wilfried, 1615
Siekmann, Jörg (*1941), 1605, 1608, 1618,

1619, 1622, 1625
Simonyi, Charles, 1508, 1626
simplification, 1506, 1557–1559, 1570–1574
Smith, James T., 1520, 1622, 1624
step-case descriptions, 1549–1551, 1584–1587
structural induction, see induction, structural

termination, 1515, 1541, 1544–1547
Theorem of Noetherian Induction, see induc-

tion, Noetherian
Thm, 1510, 1513, 1535, 1544, 1553, 1554,

1565–1592, 1604

Unicom, 1599, 1601, 1615, 1621

WaldMeister, 1505, 1611, 1619
Walther, Christoph (*1950), 1510, 1513,

1532, 1544, 1588, 1595, 1608, 1626,
1627

well-foundedness, 1515
Wirth, Claus-Peter (*1963), 1512, 1514–1516,

1520, 1525–1527, 1533, 1537, 1539,
1541–1543, 1546, 1550, 1555, 1556,
1581, 1600–1606, 1609, 1616, 1618,
1619, 1621, 1627, 1628

1632

Automation of Mathematical Induction

Received 15 September 20161633

