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Proceedings of the Third Workshop:
Introduction

Katalin Bimbó
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<bimbo@ualberta.ca>, www.ualberta.ca/~bimbo

J. Michael Dunn
School of Informatics and Computing and Department of Philosophy,

Indiana University, Bloomington, IN, U.S.A.
<dunn@indiana.edu>

The present collection of papers resulted from the Third Workshop that was held
at the Department of Philosophy, University of Alberta, on May 16–17, 2016. Are
you wondering about when and where the Second and the First workshops took
place? Well, we should probably explain why the first workshop is the Third. Since
2014, we have been working on a research project (under the umbrella of an Insight
Grant) entitled “The third place is the charm: The emergence, the development
and the future of the ternary relational semantics for relevance and some other non-
classical logics.” To make a long story short, we took the salient word from the long
title of the project to create a short catchy brand for the workshop.

The “third place” refers to the third argument place of a three-place relation,
specifically, the third argument place of the ternary accessibility relation in the
semantics of relevance logics. In the contemporary literature, this semantics is often
referred to as “the Routley–Meyer semantics” of relevance logics. The idea of using
a ternary relation, instead of the familiar binary relation from the so-called Kripke
semantics for modal logic, is fascinating. Our own paper in this collection is an
attempt to give an outline of the history while we also aim at describing the variations
of the semantics that several logicians produced (quite independently from each
other).1 We give the latter descriptions by “translating” all the semantics into a

The support of the Insight Grant #435–2014–0127, awarded by the Social Sciences and Humanities
Research Council of Canada, is gratefully acknowledged.

1In addition to what we say in our paper in this proceedings about L. L. Maksimova’s work on
relational semantics, we wrote [11] concerning her contributions to relevance logics more generally.
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uniform language. Our hope is that this will facilitate a greater appreciation toward
the potential variations of the “standard” relational semantics.

The development of relational semantics did not stop in the mid 1970s. We
cannot give an exhaustive account of what happened later on in a couple of pages,
but we can list some pointers. On one hand, the idea of representing a binary op-
eration by a ternary relation can be separated from the aim of giving a semantics
for relevance logics. On the other hand, the relational semantics can be informally
explained.2 Some binary operations that have been included into logics are simi-
lar to implications. Barwise considered channels between situations or information
states, sometimes identifying channels with situations that determine them (hence,
the ternary relation).3 Another use of →’s is the arrows (i.e., the maps) of a category.
Van Benthem and Venema abstracted the idea of composable arrows into what they
labeled “arrow logic,” which can be given a ternary relational semantics.4 Girard in-
troduced a “phase semantics” for his linear logic that used a binary operation, which
is of course a special case of a ternary relation. He gave a definition of implication
very similar to that of Urquhart, but Girard’s operation is not idempotent.5

An old idea—compared to situation theory, arrow logic or even the ternary rela-
tional semantics—is that grammaticality can be described by exploiting merely one
operation, namely, function application. Atomic components of a language (per-
haps, words) come with syntactic categories attached to them, and then several
words form grammatically a correct expression when their categories can be com-
bined together using function application. Lambek introduced his associative and
non-associative calculi in the late 1950s–early 1960s. The two inverses of the compo-
sition operation—denoted by \ and /—do share certain properties with →. Namely,
\ is monotone decreasing in its first, and monotone increasing in its second argu-
ment place. Similarly for /, but with the order of the arguments reversed. Ternary
relational semantics for Lambek calculi were given decades after Lambek’s work.6

At the beginning of the 1990s, Dunn created what he called “gaggle theory”
(spelling out “ggl” and abbreviating “generalized Galois logics”). The scope of the
theory extends the ternary relational semantics along two dimensions. First of all,
a connective in a logic may be n-ary (e.g., unary or quaternary) rather than binary.

2For an article outlining various interpretations of the ternary accessibility relation within the
context of relevance logic, see Beall et al. [4]. For an interpretation of the ternary relation in terms
of “relevance,” see Dunn [20]. Lastly, for a “catalog” of interpretations both inside and outside of
relevance logic, see [21].

3See [2], [3] and [18]. Tedder’s paper in this volume connects channel theory and the ternary
relational semantics, building on work by Restall.

4[28] gives an introduction into arrow logic. For further investigations, see [27] and [19].
5See Girard’s first paper [24] on linear logic.
6Lambek’s original papers are [25] and [26]. For semantics of Lambek calculi, see [12] and [15].
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Then, the modeling relation will have to have n + 1 argument places. Secondly, the
algebra of the logic does not need to be (or to have as a reduct) a De Morgan lattice
(or even a distributive lattice), but it can be a stronger or weaker structure (e.g., a
Boolean algebra or a partial order).7 An advantage of gaggle theory is that relational
semantics no longer appear to be ad hoc contraptions; they have certain components
for a reason. Gaggle theory opened the door to approaching the interpretation of
a wide range of intensional logics—from modal logics to combinatory logic—in a
systematic and uniform way.8

We cannot point to all the publications that belong to the gaggle paradigm; we
limit ourselves to briefly pointing out some papers—and be warned, our list is biased.
Allwein and Dunn in [1] gave a relational semantics for a group of logics that do
not prove the distributivity of disjunction and conjunction. Dunn and Meyer [23]
introduced structurally free logics (in which structural rules are replaced by rules
introducing combinators that trace structural changes), and they provided a ternary
relational semantics for them. Dunn in [18] gave a ternary relational semantics for
relation algebras (which works out smoothly, unlike the representation by binary
relations). Bimbó is interested in tweaking and dualizing the ternary relational
semantics; some fruits of her efforts are reported in [5, 6, 7, 10, 8] and [9].

This collection of papers is directly related to the Third Workshop, as we men-
tioned at the beginning. However, we should caution against a possible confusion.
Although all the authors were speakers at the workshop, not all speakers chose to
contribute a paper. Moreover, the papers in this volume are not exactly the papers
that their authors presented. On one hand, the papers were finalized months after
the workshop, which allowed the authors to absorb the reactions to their papers
— indeed, the workshop included lively interactions and plenty of discussion. On
the other hand, some authors decided to substitute another paper (with related
content).

We feel that we should explain the order of the papers. First of all, we would
like to provide an excuse for placing our own paper at the beginning by pointing out
that our paper provides the historical setting for the contemporary developments
that figure into the other papers.

Alasdair Urquhart utilizes the Routley–Meyer semantics for the logic KR di-
rectly. Arnon Avron uses the semantics to prove the cut theorem for his hyper-
sequent calculus for RM. Guillermo Badia looks at the language of the relational

7Dunn actually required an underlying distributive lattice as part of a gaggle in [13], his first
paper on gaggles. But he quickly came to work with “partial gaggles,” “Boolean gaggles,” “lattice
ordered gaggles,” etc.

8Dunn’s other papers on gaggle theory include [14, 15, 16] and [17]. Gaggles also figure into
[22], and they are the sole topic of [10].

553



Bimbó and Dunn

semantics from a model-theoretic point of view. Chrysafis Hartonas defines seman-
tics for logics that are based on a lattice. Edwin Mares and Shawn Standefer work
out an informal interpretation of the ternary relational semantics and motivate and
interpret logics in the neighborhood of E. Andrew Tedder considers the channel
interpretation of the ternary relation and its logics. Ross Brady summarizes his
worries about semantics in general, and the Routley–Meyer semantics in particular.
Bryson Brown looks at the ternary relational semantics from the point of view of
the preservationist approach. Nicholas Ferenz gives an informal interpretation of
the ternary relational semantics using a notion of ambiguity.

We wish to thank these authors for their contributions to this volume, and we
also thank the referees.

References
[1] Gerard Allwein and J. Michael Dunn. Kripke models for linear logic. Journal

of Symbolic Logic, 58:514–545, 1993.

[2] Jon Barwise, editor. The Situation in Logic, volume 17 of CSLI Lecture Notes.
CSLI Publications, Stanford, CA, 1989.

[3] K. Jon Barwise. Constraints, channels and the flow of information. In Peter
Aczel, David Israel, Yasuhiro Katagiri, and Stanley Peters, editors, Situation
Theory and its Applications (v. 3), volume 37 of CSLI Lecture Notes, pages
3–27. CSLI, Stanford, CA, 1993.

[4] Jc Beall, Ross Brady, J. Michael Dunn, A. P. Hazen, Edwin Mares, Robert K.
Meyer, Graham Priest, Greg Restall, David Ripley, John Slaney, and Richard
Sylvan. On the ternary relation and conditionality. Journal of Philosophical
Logic, 41:595–612, 2012.

[5] Katalin Bimbó. Semantics for dual and symmetric combinatory calculi. Journal
of Philosophical Logic, 33:125–153, 2004.

[6] Katalin Bimbó. Relevance logics. In D. Jacquette, editor, Philosophy of Logic,
volume 5 of Handbook of the Philosophy of Science (D. Gabbay, P. Thagard and
J. Woods, eds.), pages 723–789. Elsevier (North-Holland), Amsterdam, 2007.

[7] Katalin Bimbó. Functorial duality for ortholattices and De Morgan lattices.
Logica Universalis, 1:311–333, 2007.

554



Proceedings of the Third Workshop: Introduction

[8] Katalin Bimbó. Dual gaggle semantics for entailment. Notre Dame Journal of
Formal Logic, 50:23–41, 2009.

[9] Katalin Bimbó. Some relevance logics from the point of view of relational
semantics. Logic Journal of the IGPL, 24:268–287, 2016. O. Arieli and A. Za-
mansky (eds.), Israeli Workshop on Non-classical Logics and their Applications
(IsraLog 2014).

[10] Katalin Bimbó and J. Michael Dunn. Generalized Galois Logics. Relational
Semantics of Nonclassical Logical Calculi, volume 188 of CSLI Lecture Notes.
CSLI Publications, Stanford, CA, 2008.

[11] Katalin Bimbó and J. Michael Dunn. Larisa Maksimova’s early contributions to
relevance logic. In S. Odintsov, editor, L. Maksimova on Implication, Interpo-
lation and Definability, Outstanding Contributions to Logic. Springer Nature,
Switzerland, 2017. (forthcoming, 28 pages).

[12] Kosta Došen. Sequent-systems and groupoid models. II. Studia Logica, 48:
41–65, 1989.

[13] J. Michael Dunn. Gaggle theory: An abstraction of Galois connections and
residuation, with applications to negation, implication, and various logical op-
erators. In J. van Eijck, editor, Logics in AI: European Workshop JELIA ’90,
number 478 in Lecture Notes in Computer Science, pages 31–51. Springer,
Berlin, 1991.

[14] J. Michael Dunn. Star and perp: Two treatments of negation. Philosophical
Perspectives, 7:331–357, 1993. (Language and Logic, 1993, J. E. Tomberlin
(ed.)).

[15] J. Michael Dunn. Partial gaggles applied to logics with restricted structural
rules. In K. Došen and P. Schroeder-Heister, editors, Substructural Logics,
pages 63–108. Clarendon, Oxford, UK, 1993.

[16] J. Michael Dunn. Gaggle theory applied to intuitionistic, modal and relevance
logics. In I. Max and W. Stelzner, editors, Logik und Mathematik. Frege-
Kolloquium Jena 1993, pages 335–368. W. de Gruyter, Berlin, 1995.

[17] J. Michael Dunn. Generalized ortho negation. In H. Wansing, editor, Negation:
A Notion in Focus, pages 3–26. W. de Gruyter, New York, NY, 1996.

555



Bimbó and Dunn

[18] J. Michael Dunn. A representation of relation algebras using Routley–Meyer
frames. In C. A. Anderson and M. Zelëny, editors, Logic, Meaning and Compu-
tation. Essays in Memory of Alonzo Church, pages 77–108. Kluwer, Dordrecht,
2001.

[19] J. Michael Dunn. Arrows pointing at arrows: Arrow logic, relevance logic and
relation algebras. In A. Baltag and S. Smets, editors, Johan van Benthem on
Logic and Information Dynamics, Outstanding Contributions to Logic, pages
881–894. Springer, New York, NY, 2014.

[20] J. Michael Dunn. The relevance of relevance to relevance logic. In M. Banerjee
and S. N. Krishna, editors, Logic and its Applications: 6th Indian Conference,
ICLA 2015, Mumbai, India, January 8–10, 2015, number 8923 in Lecture Notes
in Computer Science, pages 11–29. Springer, Heidelberg, 2015.

[21] J. Michael Dunn. Various interpretations of the ternary accessibility relation,
(abstract). In Devyatye Smirnovskie chteniya po logike: materialy mezhdunaro-
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Abstract

The early history of the relational (“possible world”) semantics for modal
logics is well investigated. Successful applications of a relational semantics for
relevance logics started to appear about a decade after the first set-theoretical
semantics for normal modal logics were designed. This paper gives a brief out-
line of the results from the late 1960s and the first years of the 1970s. We
provide an exposition of three types of attempts (by five people) to provide
set-theoretical semantics for relevance logics or some related logics—together
with some historical details. The crucial technical features of the semantics can
be characterized along the lines of the modeling of the implication connective,
in particular, whether the modeling derives from a binary operation or from a
ternary relation (which is not assumed to be an operation).

Keywords: entailment, relational semantics, relevant implication, relevance logic,
rigorous implication

1 Introduction
The use of a binary “accessibility” relation for what is commonly known as the
“Kripke semantics” or “possible world semantics” for modal logic is well-known.
There was once a lot of confusion about its origins, but now its history has been

Vol. 4 No. 3 2017
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written, or to be more precise, there are at least two histories. Copeland and Gold-
blatt have each written excellent accounts ([13] and [27], respectively) of the begin-
nings of the semantics for modal logic, and they agree on the basic history. What
is less well-known is the use of a ternary accessibility relation for the semantics of
relevance logic and various other non-classical logics. The aim of this paper is to
give a brief but relatively fulsome account of the history of this development, with
a focus on relevance logic.1

Relevance logics emerged in the late 1950s as a new attempt to restrict traditional
logic in order to exclude certain undesirable theorems, in particular, implications
where there was no “variable sharing” between antecedent and consequent, e.g., (p∧
∼p)→ q. The logic of entailment (E) proved to be a coherent logic; so did the logic
of relevant implication (R). Many others followed. Relevance logics originated—
exactly like traditional logic, modal logics, etc.—as axiom systems, but natural
deduction and consecution calculi for various fragments were soon found too; then,
they were algebraized and their metatheory started to be developed.

The 1950s and 1960s had brought about a breakthrough and vast expansion in
terms of relational semantics for modal logics. The key idea was to define the modal
operators of necessity and possibility using the abstractions of “possible worlds” and
a binary relation R on them, which is called “accessibility” or “relative possibility.”
Valuations are then not simply assignments of truth values to sentences, but rather
assignments relativized to possible worlds. The key semantic clause for the necessity
operator is that �A is true at a world w iff A is true at every world w′ such that
wRw′, and of course, the clause for the possibility operator is that ♦A is true at a
world w iff A is true at some world w′ such that wRw′. Propositions can be viewed
as sets of possible worlds, and the proposition assigned to a sentence is the set of
possible worlds in which it is true.

The “Kripke semantics” did not stop with modal logic. Kripke in [34], and
independently Grzegorczyk in [30], used a binary accessibility relation to define
intuitionistic implication and negation. Kripke in his paper did not speak of “possible
worlds,” but rather of “evidential situations,” and Grzegorczyk spoke of “information
states.” Their core idea was the same. Following Kripke, we define an intuitionistic
model structure to be an ordered triple 〈G,K,R〉, where K is a non-empty set,
G ∈ K, and R is a reflexive, transitive relation on K. An intuitionistic model on a
model structure 〈G,K,R〉 is a function ϕ assigning to each pair of an atomic sentence
p and an H ∈ K a truth value T or F (ϕ(p,H) = T or F). Oops, that would be

1Dunn has contributed his views on this early history before (see Anderson et al. [3, sec. 48.3]
and Dunn [17]), and the scholarly reader might want to go back and look at those. He regrets that
he did not say more about Larisa Maksimova’s role, but is glad he had the opportunity to correct
this here and in another forthcoming publication, Bimbó and Dunn [10].
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a modal model for the modal logic S4. We must also add that if ϕ(p,H) = T and
HRH ′, then ϕ(p,H ′) = T. This “Hereditary Condition” (as it would ultimately be
called by Routley and Meyer) is of extreme importance. It captures the idea that
once we have enough information to establish (“to prove”) that something is true,
it continues to hold as we increase our information; the Hereditary Condition was
shown using mathematical induction to extend to compound sentences.

Dunn in [16] showed how the Grzegorczyk–Kripke semantics for the intuitionistic
logic J could be extended to produce a semantics for the semi-relevant logic R-Mingle
(RM). RM is called “semi-relevant” because, as was shown by Meyer, if ∼A is a
theorem and B is a theorem, then so is A → B, even if A and B do not share
a propositional variable (otherwise, they must). This means, for example, that
∼(p→ p)→ (q → q) is a theorem of RM. This is surprising since RM is obtained
from R by simply adding the seemingly relevant A → (A → A) as an axiom schema.

Dunn modified the Grzegorczyk–Kripke semantics in five ways. First, the notion
of a model was extended to allow for a sentence to be assigned both of the values
T and F. Second, the Hereditary Condition was strengthened so as to require that
the relation R not only preserve the assignment of T to an atomic sentence but also
the assignment of F. Third, the satisfaction clause for implication (A → B) was
restated so as to not just requiring that truth be preserved from A to B, but also
that falsity be preserved from B to A. Fourth, negation is evaluated so that ∼A is
assigned the value T if A is assigned the value F, and ∼A is assigned the value F if
A is assigned the value T. So far the changes might be summarized as requiring that
evidential situations treat F even-handedly with T. But the fifth change is different,
and made for technical reasons. It requires that R be connected, i.e., that for every
H and H ′, either HRH ′ or H ′RH.

Despite [16]’s publication date of 1976, it explains that this “Kripke style” se-
mantics for RM was first announced in a talk in the symposium “Natural Language
versus Formal Language” at a joint symposium of the Association for Symbolic Logic
and the American Philosophical Association in December 1969, and in June 1971,
it was presented at the Tarski Symposium at UC–Berkeley. As he confessed in the
published paper, Dunn was so “overwhelmed by the ingenuity and the power of
ternary semantics” that he considered for a while not publishing his binary seman-
tics for RM. But the result and the fact that they could not be extended to obtain
semantics for better known relevance logics such as R and E, implicitly showed the
limitations of a binary accessibility relation.

Because of their “Kripke semantics,” modal logic (and a bit later intuitionistic
logic) enjoyed a reinvigorated interest, but relevance logics were often overlooked.
Moreover, some quibbled about their lack of a concrete semantics. The last problem
in Alan Ross Anderson’s famous list of open problems [1] was the problem of finding
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a semantics for the Anderson–Belnap system E of entailment (p. 16), but despite its
being listed at the end, Anderson said that “the writer does not regard this question
as ‘minor’; it is rather the principal ‘large’ question remaining open.” That open
problem was solved in the late 1960s and early 1970s when several logicians quite
independently invented a “possible world” semantics for relevance logic. The scare
quotes are there because these “possible worlds” might be incomplete, inconsistent,
or both.2

The problem was not always solved for E (seemingly, Anderson’s favorite logic),
but rather the logicians who solved the problem of finding a concrete semantics for
relevance logics often put the system R of relevant implication on the operating
table as they explored solutions. But at least two of these logicians (Fine and
Maksimova) did solve the problem for E at the roughly the same time. Maybe,
Routley and Meyer had the ideas for a solution earlier, but they did not publish it
for another decade.

It ironic that despite the series of paper “Semantics of entailment I, II, III, IV,”
and despite solving the problem for E+, the positive fragment of E in “I,” they
did not published a semantics for the whole system E until “IV,” which had a very
delayed publication and appeared as Appendix 1 of [52]. Routley and Meyer say
there (p. 430):

World semantics for system E were found not only by Routley and Meyer,
but also, though not independently of the similar earlier semantic for R
(of SE I), by Maksimova 73, and subsequently by Fine (see 74) who knew
of the first degree theory (of FD) which already included a key idea of
the operational semantics, the world-shift in making evaluations.3

2These last are certainly not the possible worlds envisaged in the semantics of modal logic, and
hence, researchers have variously called them “situations,” “set-ups,” “theories,” or “information
states.” And sometimes they have been called just “worlds,” or “incomplete or inconsistent worlds.”
We shall use the term “situations” when we want to be neutral among these.

3“Maksimova 73” is [37], and “Fine (see 74)” refers to [19]. “SE I” is of course [50]. Routley is
probably thinking of the fact that in the cited paper Maksimova does refer to Routley and Meyer’s
“II” and “III.” (See footnote 11 about the attribution to Routley here.) But he does not mention,
and probably did not know about her earlier paper [36], which antedates all of the Routley–Meyer
papers. See the section on Maksimova below where we explain why we think this is the first discovery
of a ternary semantics for the systems E and R. Regarding Fine, when Routley says Fine “knew
of the first degree theory (of FD) which already included a key idea of the operational semantics,
the world-shift in making evaluations,” Routley is presumably claiming that Fine knew about the
use of the Routleys’ ∗ to interpret negation in first-degree entailments. No evidence is given for
this, but it is not clear what the point would be anyway. At its heart, ∗ is a binary relation, and
Fine must have known about the binary accessibility relation used by Kripke in his—by then very
well-known—semantics for modal logic, and where the evaluation of necessity and possibility at
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There is then an amazing footnote [52, fn. 4 on p. 430], which says:

As with other intellectual break-throughs, grand or small (e.g. modal
logic semantics, the infinitesimal calculus, relativity theory, etc.), so with
semantics for relevant logics, the time was ripe, e.g. requisite techniques
were sufficiently available, and several people somewhat independently
reached similar results at around the same time.

The sociologist of science Robert K. Merton in his famous 1961 article [41] wrote
about this general phenomenon of simultaneous discovery, labeling it as “multiples.”
He says (p. 473) that “[t]o say that discoveries occur when their time has come is
to say that they occur only under identifiable requisite conditions.” He goes on to
develop an explanation for independent simultaneous discoveries of essentially the
same scientific theories by appeal to the accumulation of the requisite conditions in
various places. In a similar spirit, we give a reconstruction of how five different (but
conceptually related) semantics for relevance logics were proposed independently by
a handful of logicians around 1970.

There are other researchers whom we could mention in connection to the inven-
tion of a (ternary) relational semantics for (relevance) logics, first of all, Dana Scott,
but more broadly Bjarni Jónsson and Alfred Tarski ([31] and [32]), and even Charles
S. Peirce (see e.g., [44, p. 148]).4 However, because of limitations of space, we fo-
cus on the work of Robert K. Meyer, Richard Routley, Alasdair Urquhart, Larisa
L. Maksimova, and Kit Fine, as the most “relevant.”5 We shall also discuss some
related and independent work of Dov Gabbay from about the same time, which
though was not focused on relevance logic, still is “almost relevant.”

The authors we consider often used different and distinctive terminology and
symbols. This makes it difficult to pinpoint real similarities and real differences. We
will use a kind of “pidgin” of their languages and ours, hoping to convey something
of the essence of their original work with our interpretation of it. This paper contains
no proofs—difficult or easy. The reader who wants to consider proofs in more depth
a world involves a similar “world shift” in considering other worlds which are accessible from the
given world. The real issue is the ternary relation, and it seems that Fine came up with his version
of it independently. (See the section on Fine below.)

4We found out via communication with both Dov Gabbay and Dana Scott that Scott presented
his idea in a seminar at Stanford University when he was a postdoc there. (Gabbay was in the
audience.) Scott was thinking specifically about Łukasiewicz’s many-valued logic, thus the ternary
relation being x+y = z. What results is in effect an operational semantics, and it was not published
until 1974 as [53].

5Routley changed his name to Sylvan when he remarried in 1983, but we shall refer to him
as Routley given that this is the name he used when he did pioneering work on the semantics of
relevance logic, or “relevant logic,” as he and Meyer would call it.
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is referred to the papers by the original authors, or to [3], [17] and [9], as well as to
some further publications among the references.

Incidentally, while the problem of a semantics for the propositional relevance
logics was solved by several researchers about 1970, the problem for quantification
relevance logics was left open until some years later. Routley and Meyer had raised
the problem of proving completeness with respect to their ternary frames to which
a domain of individuals had been added that would be the same for each set-up
(so-called constant domain semantics). Fine in [22] showed that this does not work,
at least for EQ and RQ (he does mention that Routley had shown completeness
for the system BQ). We shall not discuss the details here but do cite a couple of
different ways of providing models that do work: first, Fine’s in [21], and later,
Goldblatt and Mares’s in [29] and Goldblatt’s in [28].

2 Logic and Algebras
Algebraization is a widely used and highly fruitful approach to increase the efficiency
of dealing with knowledge. The Lindenbaum algebra of a logic is the result of the
abstraction process that groups together formulas which are provably equivalent into
a single element in the algebra. In the case of a propositional logic (meaning a logic
with no quantifiers whatsoever), the algebraization typically leads to a structure that
is an algebra in a plain sense, that is, a set with finitely many finitary operations
(each of which is a total operation on the carrier set). A logic does not reduce to
its Lindenbaum algebra, for instance, because there can be different proof systems
for a logic with compelling properties. However, the Lindenbaum algebra can be
a stepping stone toward a semantics for the logic, exactly, because it focuses on
provably equivalent formulas.

The Lindenbaum algebra can serve as the blueprint for an algebraic semantics
for a logic. An advantage of an algebraic semantics is that it brings with itself
results and techniques from (universal) algebra, but it is sometimes perceived as
too abstract to constitute the meaning of the logical particles of a logic. Set theory
comes to rescue through concrete representations of abstract algebras.

The concrete set-based semantics are looked upon favorably, especially, when a
more or less informal interpretation is sought. In the case of traditional propositional
logic, a propositionA is the set of all those maximally consistent theories that contain
A. Equivalently, a proposition A is the set of all those (proper) prime filters that
contain [A] (the equivalence class of A).6

6This is the real backbone of Stone’s representation of Boolean algebras in his [54].
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Traditional logic has a certain simplicity, and this is very clear from facts such as
one (well-chosen) connective suffices for this whole logic and the concrete semantics
of sets does not need to be enriched with any new operations. We want to emphasize
that in the Stone representation of Boolean algebras the algebraic operations turn
into operations on sets.

It would be preferable to have (if possible) a set-theoretical semantics for rele-
vance logics, in which the connectives, especially,→ (entailment or relevant implica-
tion), would be interpreted by an operation. Philosophically, it would allow us “to
read” the operation in the semantics as the interpretation of →, like ∪ interprets
∨. From a mathematical point of view, we would be dealing with an algebra of sets
over some underlying set U , which would be more simple than having to deal with a
relational structure. This can be done for classical logic with the so-called material
implication (A ⊃ B =df ¬A∨B), where ∨ is interpreted as ∪ and ¬ is interpreted as
complement relative to U . But we need some additional structure on the underlying
set U to help us define an operation corresponding to the relevant implication →.

Our running example will be propositional R. Although R was not necessar-
ily the logic each approach focused on, fixing a logic allows us to provide better
comparisons.

Definition 2.1. The language of R comprises a denumerable set of propositional
variables (P = { p0, p1, . . . }), a unary connective ∼ (negation), binary connectives→
(implication), ◦ (fusion), ∧ (conjunction), ∨ (disjunction) and a zero-ary connective
t (truth).

The set of well-formed formulas is generated by the following grammar, with the
proviso that P rewrites to any of its elements.

A := P | t | ∼A | (A → A) | (A ◦ A) | (A ∧A) | (A ∨A).

We define R as an axiom system; its schemas and rules are (1)–(20).

(1) A → A

(2) (A → B)→ ((B → C)→ (A → C))

(3) (A → (A → B))→ (A → B)

(4) (A → (B → C))→ (B → (A → C))

(5) (A ∧ B)→ A

(6) (A ∧ B)→ B
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(7) ((A → B) ∧ (A → C))→ (A → (B ∧ C))

(8) A → (A ∨ B)

(9) B → (A ∨ B)

(10) ((A → B) ∧ (C → B))→ ((A ∨ C)→ B)

(11) (A ∧ (B ∨ C))→ ((A ∧ B) ∨ (A ∧ C))

(12) (A → (B → C))→ ((A ◦ B)→ C)

(13) ((A ◦ B)→ C)→ (A → (B → C))

(14) (A → ∼B)→ (B → ∼A)

(15) ∼∼A → A

(16) (A → ∼A)→ ∼A

(17) t

(18) A → (t→ A)

(19) A → B, A imply B

(20) A, B imply A ∧ B

A formula A is a theorem iff it has a proof, that is, if there is a finite sequence
of formulas ending with A, each element of which is either an instance of an axiom
or obtained from earlier elements of the sequence by an application of a rule.

Actually, the original system R did not have the propositional constant t, but it
plays an important role in Dunn’s algebraization of R in his Ph.D. Thesis [14] (see
also §28.2 by him in [2]). t can be added conservatively, that is, in such a way that
no new theorems result that do not contain t. This constant in R corresponds to the
identity element of a monoid, and Dunn called the R algebras De Morgan monoids.
(The definition we give below is not the original one, but it is equivalent to that.
We use the same symbols for the operations in an algebra as for the connectives;
context always determines whether a symbol stands for a connective or an algebraic
operation.)

Definition 2.2. A De Morgan monoid is an algebra D = 〈A; t,∼,→, ◦,∧,∨〉 of
similarity type 〈0, 1, 2, 2, 2, 2〉 that satisfies (1)–(5). (a, b and c range over A.)
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(1) 〈A;∧,∨〉 is a distributive lattice;

(2) ∼(a ∧ b) = ∼a ∨ ∼b and ∼(a ∨ b) = ∼a ∧ ∼b;

(3) ∼∼a = a;

(4) a ◦ b ≤ c iff a ≤ b→ c (where a ≤ b iff a ∧ b = a);

(5) 〈A; t, ◦〉 is an Abelian monoid in which a ≤ a ◦ a.

We are now ready to start discussing the relational semantics of relevance logic.
We start with the so-called Routley–Meyer semantics, because it seems to be the
most widely known set-theoretical semantics for relevance logics.

3 Routley–Meyer Semantics: Ternary Relation
We have to “preface” our findings, especially in the case of the Routley–Meyer
semantics, with some explanations about what we could and what we could not
accomplish. The reconstruction of what Routley and Meyer did, respectively, runs
into some obstacles. Regrettably, both of them passed away some years ago. Several
other people who were privy to the relevant developments in the early 1970s moved to
other lines of work. However, we thank Nuel Belnap, Kit Fine, Dov Gabbay, Larisa
Maksimova, Sergěı Odintsov and Alasdair Urquhart for providing the information
(sometimes even documentation) that they did, and we thank Michael McRobbie for
providing us with access to his archive that contains many manuscripts and preprints
from the time when he was a research assistant to Routley in the mid-1970s.
Historical sketch. The Routley–Meyer semantics was initiated by Routley, prob-
ably in 1970. He penned a 97-page manuscript in longhand, which he entitled as
“Semantical analysis of entailment and relevant implication, I.” Routley sent a copy
of this manuscript to Meyer, likely in January 1971, who was then on the faculty of
Indiana University in Bloomington. Both Meyer and Dunn were faculty members
in the Philosophy Department, and they discussed Routley’s manuscript. Routley’s
idea was to use an operation in the semantics. Meyer and Dunn discovered that the
operational semantics is not complete; then, Meyer set out to develop an idea that
was mentioned (but not worked out) by Routley: the use of a three-place relation
rather than of a binary operation. By mid February, Meyer has obtained sufficient
results to claim completeness for the semantics with a ternary relation. He com-
pleted an 11-page typescript on the completeness in the spring of 1971 (see [42]).7
On page 1 Meyer says:

7We have a copy of this typescript, thanks to Michael McRobbie.
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Fertile new ideas have recently been introduced into the semantical anal-
ysis of relevant implication and related concepts by Routley and by
Urquhart. The purpose of the present note, to be circulated informally
among those who care, is to recast these ideas in a way which yields a
simple and straightforward semantical completeness result, at least for R.
It is believed by me, anyway, and maybe by Dunn--that this is the first
investigation along these lines which actually does yield such a result,
though I freely acknowledge the priority of those who have suggested the
lines and wish them well in what seems to be their considerably more
intricate projects.8

Urquhart and Dunn met at the Temple University conference on alternative se-
mantics in December 1970, and kept in touch afterward. As a result, Urquhart
contacted Routley, who sent him a copy of his manuscript in early March 1971.9 By
this time, Dunn informed Urquhart that Meyer claimed to have proved a complete-
ness result for the relational semantics.

According to Dunn, Meyer finished his manuscript on the ternary relational
semantics sometime in March, and this became the core of the paper [50], “The
semantics of entailment.” (Later on, an “I” was added to the title in references
to distinguish it from the papers with numbers II, III and IV, which are [47], [48]
and Appendix 1 in [52].) Also Meyer presented essentially the content of “I” at the
annual meeting of the Association for Symbolic Logic in December 1971, and an
abstract [49] was published.

These four papers develop their semantics for the R, E, and some related rele-
vance logics.10 They were all coauthored by Routley and Meyer, but the first three
seems to be more in the style of Meyer’s writings, whereas the fourth is more similar
to Routley’s style.11 The papers did not appear in the order in which they were

8Note (by Dunn): At the time I was completely convinced that both Routley’s and Urquhart’s
operational approaches were incomplete for all of R (after all Meyer and I together showed this),
and I was convinced that Meyer did have a completeness result for all of R. But I now believe
that Maksimova likely had the first completeness theorem. See more about this in the section on
Maksimova below.

9We have a scan of Urquhart’s copy of Routley’s manuscript.
10Each of the papers contains some interesting technical results using the semantics developed

in that paper. To give just two examples, “I” shows that Ackermann’s rule γ is admissible in R,
and “II” shows that both R and NR are reasonable in the sense of Halldén.

11The authorship of “Semantics of entailment, I, II, III” is consistent with what Dunn remembers.
Also, the style and content of [50] is very similar to that of [42], which is headed “From the desk
of Robert K. Meyer.” “Semantics of entailment IV” is Appendix 1 of [52], and on p. xv of that
volume it says “The text has been almost entirely written by the first author, contributions from
other authors have been, to various degrees, overwritten by him.” The first author of that volume
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written, with the papers “II” and “III” appearing in 1972, outstripping “I,” which
appeared in 1973 (in a conference proceedings despite the fact that the paper was
not presented at that conference). “I” is devoted to developing a semantics for the
system R of relevant implication, though it is worth mentioning that it also extends
this to a ternary semantics for RM. It also examines the positive fragment R+ of
the system R and a version of R with propositional quantifiers. “II” is focused on
developing a semantics for the system NR (R with an S4-type necessity operator
N) by adding a binary relation S to interact with the ternary relation R. The system
NR was developed by Meyer earlier, with the hope that the entailment operator
in E would turn out to be equivalent to necessary relevant implication N(A→ B).
Then, this would provide in effect a semantics for E. While the connection holds for
the implicational fragments, as Meyer showed, it unfortunately failed for the whole
E and NR, as was proved by Maksimova in [37]. “III” is devoted to developing a
semantics for the positive fragment E+ of E, along with semantics for other positive
relevance logics (R+, T+ and B+). Routley and Meyer say (p. 192):

The time has come to extend our semantical methods to other systems
of relevant logic besides the system R. We shall do so in two stages. The
present paper deals only with positive systems of entailment, since these
may be handled quite simply along previous lines; complications arising
from negation are put off until the sequel.

But the “sequel” did not appear until 1982, and not as a paper in the ordinary
sense, but rather as Appendix 1 of [52]. There is a long and somewhat personal
explanation of the delay given by Routley (cf. [52, p. 430]), but whatever the reason,
it seems that Routley and Meyer left the door open for someone else to claim the
first publication of a ternary semantics for E.

Now we turn to a standard formulation of the Routley–Meyer semantics for R.12

Definition 3.1. A structure for R is a quintuple F = 〈U ;≤, I, R, ∗〉, where the
elements satisfy (1)–(7). (Lower-case Greek letters range over elements of U .)

(1) 〈U ;≤〉 is a quasi-ordered set;

is Richard Routley.
12We do not follow verbatim Routley and Meyer’s original papers, though the semantics we

present is essentially the same. Terminology and notation in logic has evolved in the last 40 years
or so, and we present the semantics in a slightly “modernized” fashion. Also, note that there is a
typo in their requirement p4 [50, p. 205] that R2abcd ⇒ Rabc. The first a should be 0, and the
postulate should look like R20bcd ⇒ Rbcd. Routley and Meyer abbreviate ∃e (Rabe & Recd) by
R2abcd.

567



Bimbó and Dunn

(2) ∅ 6= I ⊆ U , R ⊆ U × U × U , ∗ : U −→ U ;

(3) α ≤ β iff ∃ι ∈ I Rιαβ, (δ ≤ α & γ ≤ ε & Rαβγ) ⇒ Rδβε;

(4) α∗∗ = α, Rαβγ ⇒ Rαγ∗β∗;

(5) ∃ζ(Rαβζ & Rζγδ) ⇒ ∃ζ(Rβζδ & Rαγζ);

(6) ∃ζ(Rαβζ & Rζγδ) ⇒ ∃ζ(Rζβδ & Rαγζ);

(7) Rαβγ ⇒ ∃ζ(Rαβζ & Rζβγ).

The last three conditions may be stated concisely as R2αβγδ ⇒ R2β(αγ)δ,
R2αβγδ ⇒ R2α(βγ)δ and Rαβγ ⇒ R2αββγ.

Definition 3.2. A model for R is an ordered pair M = 〈F, v〉, where F is a structure
for R, and v (of type v : P −→ P(U)) satisfies (8).

(8) If α ∈ v(p) & α ≤ β, then β ∈ v(p).

The satisfaction relation � emerges from v by clauses (9)–(15).

(9) M, α � p iff α ∈ v(p) in M;

(10) M, α � t iff ∃ι ∈ I ι ≤ α in F;

(11) M, α � ∼A iff M, α∗ 2 A;

(12) M, α � A → B iff for all β, γ, Rαβγ and M, β � A imply M, γ � B;

(13) M, α � A ◦ B iff there are β, γ s.t. Rβγα and M, β � A and M, γ � B;

(14) M, α � A ∧ B iff M, α � A and M, α � B;

(15) M, α � A ∨ B iff M, α � A or M, α � B.

Remark 3.3. There are (hopefully) obvious similarities between the above defini-
tions and Kripke’s semantics for, let us say the modal logic S4 or the intuitionistic
logic J. U , the set of what Routley and Meyer called “set-ups,” is like W , the set
of possible worlds.13 ≤ is an order relation, which occurs in both the semantics for
S4 (usually denoted as R), and in the semantics of J (often denoted as ≤). I, the

13Though it is interesting that in “Semantics of entailment IV” (Appendix 1 of [52]) they are
called “situations.”
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set of logical set-ups, is like { 0 }, the singleton set of the actual world. v is like the
valuation function in the semantics of J.

Some differences also exist; ≤ here is not the relation that figures into the truth
condition for → or ∼. The actual world in the semantics for S4 can be any possible
world and the ι’s in I are special set-ups. ∼ is not a complementation in a De
Morgan monoid, hence, the set-theoretical relative complement is not suitable as its
modeling, which leads to the addition of ∗.14

Incidentally, there are other ways to treat De Morgan negation, as discussed by
Dunn in [18]. First, we may use 4 truth values, which can be labeled as true, false,
both and neither. This is a generalization of the two truth values T and F , by not
requiring that at least T or F is assigned to a sentence, and not excluding that both
are assigned. Then these four truth values can be identified with the subsets of
{T, F }. Negation retains its property of flipping truth with falsity and vice versa.
The lattice 4 is characteristic for the implication-free logic of the De Morgan lattices
(i.e., for fde).

Second, we could use an orthogonality relation ⊥, that originated in Birkhoff
and von Neumann’s quantum logic. The negation of a proposition holds at a point
when that is orthogonal to all points in the proposition. An informal rendering of
“orthogonal” is to say that two points are incompatible. In terms of gaggle theory
(as in [9]), ∼’s distibution type is taken to be ∨ −→ ∧ when we use the orthogonality
relation. However, De Morgan negation has the double negation property (negations
count mod 2), and it obeys the De Morgan laws. If we give a preference to the
De Morgan law ∼(A ∧ B) → (∼A ∨ ∼B) over the other one, that is, we consider
negation with the distribution type ∼ : ∧ −→ ∨, then we get yet another way to
model negation in De Morgan lattices, namely, using a compatibility relation.15

The following theorem has a straightforward proof (which we omit).

Theorem 3.4. If `R A, then in any M for R, and for any ι ∈ I, M, ι � A.

As we mentioned above, the departure from an operational approach was mo-
tivated by the lack of a completeness result for Routley’s operational semantics.
Thus, it seems imperative that we give a flavor of what the completeness for the

14The definition of negation using the involution ∗ was used slightly earlier by Richard Routley,
together with Val Routley (later Plumwood) in [51] to obtain a semantics for first-degree entailments.
It is interesting that both Fine and Maksimova use an involution as well. This can be found much
earlier in an algebraic form in Białnycki-Birula and Rasiowa’s 1957 [4] representation of what
they called “pseudo-Boolean algebras” (now commonly referred to as De Morgan lattices). Dunn
discussed these and other representations of De Morgan lattices, in 1966, in his dissertation [14]
and in [15].

15In addition to Dunn [18], see also Restall [46], and Mares’s [39, 40] on these further approaches.
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relational semantics hinges on. De Morgan monoids are teeming with patterns of
distributivity; beyond the usual ∧–∨ and the De Morgan laws for negation, both →
and ◦ distribute in the underlying lattice. Moreover, → is a residual of ◦ (what is
revealed by axioms (12) and (13) above).

Definition 3.5. The canonical frame is Fc = 〈P;⊆, Ic, Rc,
∗c〉, where the elements

are defined by (1)–(5).

(1) P is the set of prime filters on the Lindenbaum algebra of R;

(2) ⊆ is the subset relation;

(3) Ic = {P ∈ P : [t ]↑ ⊆ P };

(4) Rcαβγ iff for any [A], [B], [A ◦ B] ∈ γ, when [A] ∈ α and [B] ∈ β;

(5) α∗c = { [A] : [∼A] /∈ α }.

The canonical valuation vc is defined by (6).

(6) vc([p]) = {P ∈ P : [ p ] ∈ P }.

The proof of the next theorem is more elaborate and it crucially relies on there
being enough many prime filters, moreover, R being well-defined with respect to the
distribution type of ◦ (which is ◦ : ∨,∨ −→ ∨). Details of similar completeness proofs
may be found in Routley and Meyer’s papers, as well as in [17] and [9]. We only
mention a core lemma, which is sometimes labeled as squeeze lemma. The multitude
of prime filters, certainly, does not mean that all filters are prime. Moreover, taking
the fusion of two filters may not result in a prime filter. However, the relation Rc is
in harmony with prime filters in the sense that the following is true.

(7) If R′cxyγ (γ ∈ P), then there are α, β ∈ P such that x ⊆ α, y ⊆ β and Rcαβγ.

By R′c we denoted Rc on the set of all filters defined like in (4) above, and we
assumed that x and y are filters (i.e., x, y ∈ F). The squeeze lemma is essential in
proving that Rc in the frame in Definition 3.5 has the properties that are special for
R, and in proving that vc is a valuation. Having set out some pointers, we state the
following (without giving a proof here).

Theorem 3.6. If 0R A, then there is an M for R in which there is an ι ∈ I such
that M, ι 2 A.
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4 Urquhart’s Semi-lattice Semantics: Binary Operation

Historical sketch. Urquhart set out on a path similar to Routley’s original path
toward a semantics for entailment and relevant implication, namely, using a binary
operation. Urquhart told us that he recollects finding the ∗-semantics for first-degree
entailment in the spring of 1970, but was “quite down cast” when Alan Anderson told
him it was anticipated by Białynicki-Birula and Rasiowa [4]. Sometime later in the
summer he hit upon the semilattice semantics and wrote something out in longhand
and showed it to Nuel Belnap. This showed completeness for some fragments of R
and E, and became the basis of a paper he wrote and submitted to the Journal of
Symbolic Logic. The journal received his paper on November 27, 1970. He told us
that “[n]aturally, I thought that it would be a piece of cake to put it [the semilattice
semantics] together with the ∗-semantics to get a semantical analysis for all of R.
But it was not to be!”

We have already mentioned that Urquhart and Dunn met at the Temple con-
ference in December. (As further “background information” we may mention that
Urquhart, Meyer and Dunn had the same Ph.D. advisor when they were students:
Nuel Belnap. However, Meyer and Dunn, who overlapped studying at Pitt, left by
the time Urquhart started his Ph.D. there.) Urquhart’s ideas were heavily influ-
enced by the natural deduction formulation calculi for the implicational fragments
of E and R. One may see a certain similarity between the union operation on the
index sets of formulas and the fusion of formulas; it seems that the latter moti-
vated Urquhart to introduce a semi-lattice right away. (Hence, the label by which
Urquhart’s semantics is often identified: semi-lattice semantics.)

Dunn received a copy of Urquhart’s submitted paper soon after the Temple
conference, and Meyer and he discovered that while the semantics indeed works for
the implicational fragments (even for the implication–conjunction fragments), if ∨
is added with a usual truth condition, then there is a formula that is valid in the
semi-lattice semantics, but it is not a theorem of R (let alone of E). Urquhart’s
paper was accepted for publication on June 1st, 1971, and the revised version was
received by the journal on June 21st, 1971. This is [55]. The semi-lattice semantics
also was at the heart of his dissertation [56], written under the supervision of Nuel
D. Belnap.

Now we outline the semi-lattice semantics. First, we restrict our language to
propositional variables and the arrow. The implicational fragment of R is denoted
by R→, and it can be axiomatized by the first four axiom schemas above together
with detachment as the sole rule.

Definition 4.1. A structure for R→ is a three-tuple F = 〈U ;⊥, ∪〉 satisfying (1)–(2).

571



Bimbó and Dunn

(1) 〈U ; ∪〉 is a semi-lattice;

(2) ⊥ ∪ α = α ∪⊥ = α.

Urquhart called the elements of U “pieces of information.” (It is tempting to
draw a parallel between pieces or bits of information and bits (in computers), but
instead of bits, tables, records or even databases would be a more appropriate analog
from computer science.)

Definition 4.2. A model for R→ is an ordered pair M = 〈F, v〉, where F is a
structure for R→, and v : P −→ P(U). The satisfaction relation is defined by (3)–
(4), given a valuation v.

(3) M, α � p iff α ∈ v(p);

(4) M, α � A → B iff for all β, either M, β 2 A or M, α ∪ β � B.

Remark 4.3. Set-theoretically speaking, all binary operations are ternary relations,
though of a special kind. Thus, it is instructive to glance at (4) written in a form
that resembles the matching satisfaction condition in the relational semantics.

(4′) M, α � A → B iff for all β, γ, α ∪ β = γ and M, β � A imply M, α ∪ β � B.

We have not posited specifics about the informal metalanguage, and therefore,
we may keep it simple. Then we can rewrite “not–or” in (4) (which is close to
Urquhart’s original formulation) as “imply” in (4′). The other change we made was
the introduction of γ, but it should be obvious that since ∪ is an operation, γ can
be eliminated in lieu of α ∪ β.

Theorem 4.4. If `R→ A, then in any M for R→, M,⊥ � A.

For the completeness proof, a canonical structure is defined. Urquhart works
with proofs rather than the algebra of R→.

Definition 4.5. The canonical structure is Fc = 〈Ufin; ∅,∪〉, where (1)–(2) specify
the elements of the three-tuple.

(1) Ufin is the set of finite sets of formulas;

(2) ∅ and ∪ have their usual set-theoretical meaning.

The canonical valuation vc is defined by (3).
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(3) vc(p) = { {A0, . . . ,An } ∈ Ufin : `R→ A0 → · · ·An → p }.

Remark 4.6. We commented on the irrelevant proofs in the axiomatic system for
R. For the implicational fragment, “relevant proofs” can be defined easily using a
natural deduction calculus. The first volume of Entailment practically starts off with
FR→, the Fitch-style natural deduction calculus for R→ (cf. [2, §3]), which does not
allow slipping in an extra (i.e., never used) hypothesis here or there. This should
explain the restriction to finite sets of formulas, which are the “premise sets” or the
“sets of hypotheses” from which a formula can be proved, for instance, in FR→.

Theorem 4.7. If 0R→ A, then there is an M for R→ in which M,⊥ 2 A.

The proof is not difficult, because Mc is obviously a semi-lattice with a zero.
Hence, what needs to be verified is that vc is a valuation according to (4). (We omit
the details which may be found in [55], which uses a slightly different notation.)

Urquhart’s idea was to add the usual satisfiability conditions for ∧ and ∨, once
those connectives are included in the language. His clauses (in our notation) are
(5) and (6). (Due to our notational conventions, these two conditions are literally
the same as (14) and (15) in the Routley–Meyer semantics, but the M here is not
the same as the M there. Also, earlier, α was a set-up, but now, it is a piece of
information.)

(5) M, α � A ∧ B iff M, α � A and M, α � B;

(6) M, α � A ∨ B iff M, α � A or M, α � B.

Urquhart noted that although soundness is provable, completeness fails.

Example 4.8. The counterexample developed by Dunn and Meyer that Dunn com-
municated to Urquhart in his letter of February 17th, 1971 is the following. We
added values for all subformulas on the line below the formula; the calculations are
carried out according to the matrix M0, which may be found in [2, pp. 252–253].

(( A → A ) ∧ (( A ∧ B ) → C ) ∧ ( A → ( B ∨ C ))) → A → C
+3 +3 +3 −0 +3 +0 +0 −0 −0 −0 +3 +3 +0 +3 −0 −3 +3 −3 −0

Since −3 is not a distinguished element in M0, the formula is not a theorem of
R. On the other hand, the formula is valid on the semi-lattice semantics, when the
natural clause for ∨ is added.

We quickly go through the validation of this formula in the semi-lattice semantics.
Let us assume that ⊥ does not satisfy the formula. (We omit mentioning M, since it
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is the same everywhere.) By (4), there is an α that satisfies the antecedent, but not
the consequent. From the former, it is immediate that α � A → A, α � (A∧B)→ C
and α � A → (B∨C). From the latter, we get that β � A whereas α∪β 2 C, for some
β. Since α � A → A and β � A, α ∪ β � A. Similarly, we obtain that α ∪ β � B ∨ C.
But α ∪ β 2 C, so it must be that α ∪ β � B. Combining α ∪ β � A and α ∪ β � B,
we have α ∪ β � A ∧ B, hence, also α ∪ β � C, which contradicts to what we have
already established. One can see how the subformulas allow us to “move around”
with α ∪ β to arrive at a contradiction.16

Although Meyer and Dunn showed that Urquhart’s semi-lattice semantics was
not complete for the positive fragment of the relevance logic R, the question re-
mained as to how the semi-lattice semantics might be axiomatized. This was first
addressed by Fine [20] and developed further by Charlwood in his Ph.D. thesis [11]
(directed by Urquhart and published in [12]), where he deployed a rule that might
charitably be said to be elegant in its complication. Charlwood also developed two
natural deduction systems, one with subscripts and the other without. This last is in
fact equivalent to the system of Prawitz [45], which Prawitz had wrongly conjectured
to be the same as the positive fragment of R.

5 Fine: Binary Operation Plus Partial Order
Historical sketch. Fine started to work on a semantics for R sometime during
1970 after attending a talk presented by Belnap, who spent a few months at Oxford
University. Belnap was visiting at Oxford as a senior research fellow, probably, from
January to March, or so, in 1971. He gave a talk at the Mathematical Institute, in
which he said the problem of finding a semantics for R was open. This stimulated
Fine to create his semantics and prove it complete. Fine recalls finishing the work
before his junior research fellowship at Oxford ended in June 1971. Fine submitted
two manuscripts (one of which was a version of his paper later published as [19]) to
an editor of the Journal of Symbolic Logic, who received them on April 17th, 1972.
About a year later, the editor informed Fine that he still had not received anything
from the referee and suggested that instead of waiting longer he send his paper to
the recently founded Journal of Philosophical Logic. A revised version of his paper—
including a brief comparison with the Routley–Meyer semantics—appeared in the
JPL in 1974.

In what follows, we consider Fine’s semantics forR; we do not follow his notation
or terminology though.

16There are shorter formulas that do the job. Urquhart gives ((A → (B ∨ C)) ∧ (B → D)) →
(A → (D ∨ C)) in [55], whereas Dunn provides ((A → (B ∨ C)) ∧ (B → C)) → (A → C) in [17, §4.6].
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Definition 5.1. A structure for R is a sextuple F = 〈T,U ;≤, i, · ,−〉, where the
components have properties (1)–(10). (Lower-case Greek letters range over U ,
whereas x, y, z, . . . are elements of T .)

(1) ∅ 6= U ⊆ T , i ∈ T , · : T × T −→ T , − : U −→ U ;

(2) 〈T ;≤〉 is a poset;

(3) 〈T ; · , i〉 is a groupoid in which · is left monotone and i is its left identity;

(4) x · y ≤ α implies that there are β, γ such that x ≤ β & y ≤ γ and β · y ≤
α & x · γ ≤ α;

(5) i ≤ α implies −α ≤ α;

(6) −−α = α, α ≤ β implies −β ≤ −α;

(7) x · (y · z) ≤ (y · x) · z;

(8) x · y ≤ y · x;

(9) x · x ≤ x;

(10) x · α ≤ β implies x · −β ≤ −α.

Definition 5.2. A model for R is an ordered pair M = 〈F, v〉, where F is a structure
for R and v satisfies (11).

(11) If x ∈ v(p) & x ≤ y, then y ∈ v(p).

The satisfaction relation is defined from v by (12)–(17).17

(12) M, x � p iff x ∈ v(p) in M;

(13) M, x � t iff i ≤ x in F;

(14) M, x � ∼A iff for all α, x ≤ α implies M,−α 2 A;

(15) M, x � A → B iff for all y, M, y � A implies M, x · y � B;

(16) M, x � A ∧ B iff M, x � A and M, x � B.

17Fine did not consider fusion, hence we do not include a clause for that.
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Fine calls the members of T theories and the members of U consolidated or
saturated theories (many would call them prime theories because they correspond
to prime filters as we shall see). Unlike Routley and Meyer, Fine does not take ∨ as
primitive, but defines A∨B in a customary way as ∼(∼A∧∼B). It is straightforward
to show that (14) can be replaced with the much simpler clause (17) used by Routley
and Meyer.

(17) M, α � ∼A iff −α 2 A,

from which the Routley-Meyer clause (18) follows.

(18) M, α � A ∨ B iff M, α � A or M, α � B.

Clause (14) might appear at first to have an intuitionistic flavor, but it should be
noted that A is evaluated at −α not at α. It is not difficult to see that Rαβγ in the
Routley–Meyer semantics corresponds to α · β ≤ γ here. Condition (4) guarantees
that elements of T in a product when it is included in a saturated theory can be
replaced in one or the other argument place of · by elements of U , that is, saturated
theories. This stipulation is similar to what is established in the so-called “Squeeze
Lemma” in the Routley–Meyer semantics for the canonical frame. Fine must have
this as a postulate, because his frames contain two sorts of theories, which have to
relate to each other appropriately. The operation that Fine denotes as “−” is easily
seen to be the ∗ in the Routley–Meyer semantics.

Remark 5.3. The missing satisfiability condition for ◦ could be given as (19).

(19) M, x � A ◦ B iff there are y, z s.t. y · z ≤ x and M, y � A and M, z � B.

Theorem 5.4. If `R A, then in any model M for R, M, i � A.

The presence of prime theories (i.e., the elements of U) in addition to theories
(the members of T ) makes possible the simpler looking notion of validity by an
appeal to i alone.

Definition 5.5. The canonical frame is Fc = 〈F,P;⊆, ic, ·c,−c〉, where the elements
are defined by (1)–(6).

(1) F is the set of (non-empty, proper) filters on the algebra of R;

(2) P is the set of prime filters on the algebra of R;

(3) ⊆ is the subset relation;
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(4) ic is [t ]↑;

(5) x · y = { [B] : ∃ [A] ∈ y [A → B] ∈ x };

(6) −α = { [A] : [∼A] /∈ α }.

The canonical valuation vc is specified by (7).

(7) vc(p) = {F ∈ F : [ p ] ∈ F }.

Remark 5.6. If ◦ is in the language of R, then (5) can be replaced by (5′).

(5′) x · y = { [C] : ∃ [A], [B]([A] ∈ x & [B] ∈ y & [A ◦ B] ≤ [C]) }.

This may be viewed as a sort of explanation for the two-layered structure of
Fine’s semantics in which he uses both T and U : the binary operation · , which is
straightforwardly definable from→ or ◦ is not an operation on the set that we want
to comprise our situations. α ·c β may not be an element of P, though it is surely
an element of F. This obstacle is not new or peculiar to relevance logics. Indeed, in
a normal modal logic (whether K or S5, or some other logic), the operation that is
directly definable from ♦ turns out not to be an operation on the set of prime theories
(also known in that context as maximally consistent theories or ultrafilters). Hence,
Kripke’s relational approach, in a sense, is necessitated for normal modal logics,
exactly as the ternary relational approach is entailed for relevance logics.

The proof of the following theorem can be reconstructed from Fine’s paper.

Theorem 5.7. If 0R A, then there is a model M for R in which i 2 A.

6 Maksimova: A Variety of Ways
Historical sketch. We described in detail Larisa Maksimova’s work on semantics
for relevance logics in another paper [10] not long ago. Hence we will limit our
exposition here to emphasize the historical aspects. As you will see, Maksimova in a
sense did it all, for in various papers she used a ternary relation (much like Routley
and Meyer), and a combination of a binary operation and a binary relation (much
like Fine), and her early work was completely independent. Despite the “Cold War”
and the relative isolation of Novosibirsk, her work came to be known to Anderson
and Belnap and other relevance logicians largely through her many publications in
the journal Algebra i logika, more precisely, through the English translation of that
journal Algebra and Logic.
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Maksimova started to work on Ackermann’s Π′ calculus and then on relevance
logics in 1963, and systematically investigated various features of those logics. First,
she dealt with questions about axiomatic formulations and deductions, then she
turned to algebraizations and algebraic semantics. She even isolated a sublogic,
which she called SE, within E that she proved decidable.

In 1969, she gave a talk at an algebraic conference in Novosibirsk, which attracted
participants from across the USSR. The abstract of her talk was published as [35],
and it makes clear that she was the first to hit on the idea of using a ternary
relation for the modeling of →. It is impossible to fully reconstruct her models
from the half-page abstract, but she stated the satisfiability condition for → clearly
and claimed soundness and completeness in the form of representation theorems for
algebraic models in terms of clopen subsets of a topological space with an involution
g, a partial-order ≤ and a ternary relation τ . It seems that she never gives colorful
names to the points; she does not call them situations, set-ups, pieces of information,
theories, information states or whatever. Rather, she immediately proceeds with
the mathematics. Maksimova used an involution g on the space to define negation,
anticipating the Routleys’ ∗, and most importantly for our present paper, she defined
implication using a ternary relation τ on the space. Here is her definition of→, first
verbatim, and then in a notation closer to what we have used above.

(i) S1 → S2 = { z : ∀x, y ((x ∈ S1 & τ(x, y, z))⇒ y ∈ S2) };

(ii) M, γ � A → B iff for all α, β, R(α, β, γ) and M, α � A imply M, β � B.

In her paper [36] from (1971), however, she in effect defines a ternary relation
using a groupoid operation and a partial order (much in the spirit of Fine, but there
is no reason to think she knew of his work, or vice versa). The semantics is developed
for use as a tool, to prove interpretation and separation theorems for fragments of
R and E. Despite its title “Interpretation and separation theorems for the logical
systems E and R,” it turns out that she examines only the implication, implication–
conjunction, and implication–conjunction–disjunction (E+, R+) fragments of these
systems, and provides semantics only for these. So we find no completeness theorem
for whole E (or R).

In [37], Maksimova provides a semantics for all of E (and for E+). Again she
has an application in mind, this time to provide a counterexample to Dag Prawitz’s
and Meyer’s independent conjecture that entailment in the system E can be defined
as necessary relevant implication. Maksimova uses an explicit ternary accessibility
relation to define relevant implication, and defines negation using an involution (just
like the ∗ in the Routley–Meyer semantics).
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[38] from 1973, focuses on “strict implication lattices.” She calls them “strimplas”
for str ict implication lattices.18 These are the underlying algebraic structures for
a wide variety of positive relevance logics, including E and R. They can also be
outfitted with De Morgan complement so as to get algebras (“strimplanas”—the
“n” is for negation) corresponding to the full logics E and R.19 Maksimova gives
representation theorems for both the strimplas (using a ternary relation) and the
strimplanas (adding an involution), which amount to completeness theorems for E+,
E, R+ and R. She uses these to show that E is a conservative extension of E+,
and R is a conservative extension of R+. We suppose it is worth noting that this
paper cites Routley and Meyer’s “III” [48].20

7 Gabbay: Quaternary Relation
Historical sketch. A very interesting early contribution from 1972 is [23], whose
title is “A general theory of the conditional in terms of a ternary operator.” The
title sounds relevant until one reads it twice and notices that it says “ternary op-
erator,” not “ternary relation.” Gabbay’s goal here is to analyze the subjunctive
conditional (not the relevant conditional) A > B with the aim of reducing it to the
form �A,B (A → B). He wants this to be a special case of �A,B C, and he gives
a semantics for this in terms of a quaternary relation R. If S is a set of possible
worlds, the relation R is R ⊆ S × ℘(S) × ℘(S) × S, i.e., R relates a possible world
s, a set of possible worlds Q1, a set of possible worlds Q2, and a possible world t.
Intuitively, s is the possible world at which the sentence �A,B C is being evaluated,
Q1 is the set of possible worlds in which the sentence A is true, Q2 is the same but
in relation to the sentence B, and t is a possible world accessible from these via the
relation R. The idea is that for �A,B C to be true at s, C should be true at all such t.

Spelling this out, for an arbitrary sentence A, let |A| be the set of worlds in which
the sentenceA is true. This is a standard way of representing a proposition expressed
by a sentence. Then the pair 〈|A|, |B|〉 determines the binary relation R〈|A|,|B|〉
which holds between s and t just when 〈s, |A|, |B|, t〉 ∈ R. �A,B C is then a kind of

18Do not be confused by the term “strict implication lattice” (or “strimpla”) that Maksimova
uses in this paper. “Strict implication” is the English translation of the Russian term used to
translate Ackermann’s “strenge Implikation.” Anderson and Belnap translated this into English as
“rigorous implication” to avoid a confusion with Lewis’s “strict implication” (which is a necessary
material implication, requiring no connection between antecedent and consequent).

19The R strimplanas are closely related to Dunn’s De Morgan monoids mentioned above.
20She also cites Meyer’s [43] as containing a similar proof of the conservative extension result

for R/R+. It is interesting that Meyer did not prove this for E/E+ and it would seem to suggest
that Routley and Meyer as yet did not have a completeness theorem for E with respect to their
semantics.
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relativized necessity operator, whose binary accessibility relation is determined by
the propositions expressed by A and B.

(1) s � �A,B C iff ∀t (sR〈|A|,|B|〉t⇒ t ∈ |C|).

Gabbay introduces a ternary logical operator  so we can write A,B  C instead
of �A,B C. The satisfaction clause for this ternary operator (given in (2)) naturally
uses the quaternary relation.

(2) s � (A1,A2  B) iff for all t, such that 〈s, |A1|, |A2|, t〉 ∈ R, t � B.

The simplest way to obtain an n-place relation R− from an n+ 1-place relation
R is to ignore one of the arguments; e.g., we can reduce R4xyy′z to R−xyz (where
R− is ternary) by omitting y′. Gabbay does something similar—by ignoring |A2|,
he in effect, simplifies the ternary operator A1,A2  B to a binary operator A1 → B
with the satisfaction clause (3).

(3) s � (A → B) iff for all t, such that 〈s, |A|, t〉 ∈ R−, t � B.

There is still some symbol pushing left to do. Let us define R′ so that R′sat iff
both 〈s, |A|, t〉 ∈ R− and a ∈ |A|, i.e., a � A. It is now straightforward to show that
the clause above is equivalent to that in (4).

(4) s � A → B iff for all t, if a � A and R′sat, then t � B.

This at least has the superficial form of the satisfaction clause for implication in
the Routley–Meyer semantics. We say “superficial” because it has hidden within it
the fact that the relation R′ depends upon the proposition |A2|.

Communications with Gabbay have established that he worked out this semantics
while teaching a course called “63B Modal Logic” at Stanford University during the
Winter Term, January 4–March 25, 1971. In an email (6/10/2016) he wrote:

1. The whole course was devoted to the conditional and the results
were obtained while teaching it.

2. So after the course, time was needed to write the paper and more
time to get it typed it with symbols included. This was done in those
days by one secretary in the math dept using an IBM golf ball typewriter.
She did the job for everybody, and there was a queue and one had to
join the queue. So the timeline is correct. Note that the paper 19 was
received by Theoria in Dec 1971.
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Gabbay ends up in the photo finish in a way because it seems he worked out
the idea in the first couple of months of 1971, just like Meyer, and maybe like Fine.
Thus Gabbay’s contribution falls within that magical first several months of 1971,
just like Meyer’s bringing together the contribution by Routley and Meyer, and
Fine’s coming up with his version of the ternary semantics. But he does not really
end up in the photo finish because his contribution is not “relevant” (pun intended).
He was running in another race since he was not focused on relevant implication
but rather on the subjunctive conditional. Also his Theoria paper uses a 4-place
accessibility relation—RxQ1, Q2y, where x and y are possible worlds, and Q1 and
Q2 are sets of worlds—not a ternary one. It does contain a ternary relation as a
special case, say when you ignore Q2, but as we saw above this seems to give only
superficially the Routley–Meyer method of evaluating conditionals.

Incidentally, this semantics is reproduced in Gabbay’s 1976 book [26], which also
contains a ternary semantics for relevance logic. Footnote 8 on page 301 credits the
idea of using a ternary relation to Scott, saying that it “first occurred to Scott in
1964.”21 It goes on to say that “It was found independently and widely applied by
R. Routley, R. Meyer, A. Urquhart,” and then says to see Anderson and Belnap’s
Entailment, which is listed in the references as “to appear.” In fact, the published
first volume of the Entailment contains no mention of the ternary semantics. It took
vol. 2 to do that though vol. 1 does list the early papers on the semantics by those
whom we mentioned so far.

Some other papers of Gabbay that might be “relevant” (but we think are not)
include [24] and [25]. Section 1 of [24] is titled “General Entailment Type Logics.”
Also, that section does contain Routley–Meyer structures with a ternary relation
(and ∗) and gives truth conditions for→ and ∼ in just the way that Routley–Meyer
do. But the Bibliography contains [48], and the Introduction cites this paper (along
with a paper by Dana Scott, and another by Gabbay himself [25]), saying that
the general methods presented are abstracted from these. Because of this citation,
[25] is the other paper that attracted our attention as “perhaps relevant.” At the
first glance, we thought it might well be, because Definition 10 contains the idea of
defining a semantics for an n-ary “modality” �. But a closer reading reveals that
there is no n+ 1-place relation hiding behind the scenes.

So we conclude that despite the fact that Gabbay had some original ideas about
using relational semantics to interpret conditionals, he did not have relevant con-
ditionals as his primary target, rather he was aiming his modeling at subjunctive
conditionals. When he shortly thereafter began to discuss the ternary relational
semantics for relevance logic, he did so while citing the work of Routley and Meyer.

21But it was not published until 1974 in [53]. See footnote 4 above.
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Addendum: Gabbay sent us the following email on 10/18/2016 after reading the
draft above.

I remember in 1968 I wrote a Henkin Type completeness proof for
implicational relevance logic and gave the proof to Y. Bar-Hillel. Bar-
Hillel sent it to Nuel Belnap? (I think and not to Anderson) in a letter
saying (he showed me the letter) “I have this young fellow who can write
a completeness proof for anything.” The proof had to rely on the syntax,
i.e., A → B was a modality on B dependent on A, in modern notation
�AB. So the accessibility relation depended on the syntactical A. I
never got a response from Belnap via Bar-Hillel. I did not think at the
time this was “Kosher,” and dismissed it.

It did not occur to me that maybe “A” can be identified as a set.
In 1971, I wrote the paper on conditional[s]. There I used dependence

on both A and B, but only because of examples like:
If New York were in Georgia then NY were in the South (Georgia

were in the North),
you need to see both A and B to evaluate. I did not consider relevance
logic, nor Bar Hillel, nor Belnap.

A few days later he warned us that in reading this we should be aware of “the
danger of anachronism. Later time way of thinking applied to the past.” He went
on to say:

Now let us be very accurate.
1. The facts I remember is that there was a proof (correct or not) treating
essentially “A→ B” as a modality [A]B.
2. It was sent to Belnap by Bar-Hillel. (Try Anderson archive as well?)
3. This introduced the possibility of dependence on A which, if pursued
technically could lead to certain semantics.
4. I considered this “not kosher.” Bar-Hillel must have sensed something
there, and sent it to Belnap.
5. However, it may have been a preliminary in my mind for treating the
conditional in 1971.

So far neither Gabbay nor we have had any luck locating a copy of Bar-Hillel’s
letter, however, Gabbay sent us a reconstruction of some of his ideas about relevant
implication on 11/02/2016. The following is a sketch that shows the connections to
modality as well as syntax.
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Let us consider the implicational fragment of the logicR. The models are defined
over the set of finite sets of formulas. If Γ,∆ are such sets, then RA is defined as
∆RAΓ iff (Γ − ∆) → A is a theorem. Of course, Γ − ∆ is a finite set of formulas
itself, let us say { C1, . . . , Cn }, and so we let (Γ − ∆) → A be the formula (C1 →
· · · (Cn → A)...). The order of the C’s does not matter in the set, nor does in matter
in the formula, because of the permutation axiom (axiom (4)) in R.

The “satisfiability” condition for formulas makes explicit both the role of syntax
and the necessity-like modality. If p is a proposition letter, then ∆ � p iff `R→ ∆→
p. For implicational formulas, we have the next definition with two reformulations.

∆ � A → B iff ∀Γ(∆RAΓ⇒ Γ � B)
iff ∀Γ( ` (Γ−∆)→ A⇒ Γ � B)
iff ∀Θ( ` Θ→ A⇒ ∆ ∪Θ � B)

Then a theorem—which may be viewed as a version of the soundness and com-
pleteness theorem—may be proved. It says that ∆ � A iff ` ∆ → A, and requires
that ` ∆→ (A → B) iff ∀Γ( ` Γ→ A⇒ ` ∆ ∪ Γ ` B), which is true in R→.

From this sketch, we can get soundness and completeness for R→, by a straight-
forward induction. However, it seems that extending it to a semantics for E→ would
be difficult, despite entailment being the relevant connective that was thought by
Anderson and Belnap to incorporate some modality.

8 Conclusions
We gave a short overview of how four set-theoretical semantics were proposed for
relevance logics within a few years of each other (Routley–Meyer, Urquhart, Fine,
Maksimova), and how a related semantics was proposed by Gabbay about the same
time for subjunctive conditionals. There is a clear commonality in the starting
point in each case: the aim to provide a set-theoretical semantics for the condi-
tional, and the first four all had the relevant conditional as their target. It is quite
remarkable that logicians on four continents came up with comparable results. Our
presentation—using similar notation and terminology—intends to help making fur-
ther comparisons between the semantics. As we mentioned at the beginning of
Section 2, in our view the most interesting aspect for a comparison of these seman-
tics is whether they model the arrow from a binary operation or a ternary relation.
The ternary relation worked for Routley and Meyer. The binary operation failed
for Urquhart, at least for obtaining a semantics for the whole system R (and for
Routley too in his draft). Fine and Maksimova, in effect, by composing a binary
operation and a binary relation (≤) to get a ternary relation achieved the “best of
both.” Gabbay had a different target and came up with a quaternary relation of
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mixed type, that includes a ternary accessibility relation, but again of mixed type
and so not really like the other four semantics.
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Abstract

This paper is a continuation of earlier work by the author on the connection
between the logic KR and projective geometry. It contains a simplified con-
struction of KR model structures; as a consequence, it extends the previous
results to a much more extensive class of projective spaces and the correspond-
ing modular lattices.
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1 The Logic KR
The logic KR occupies a rather unusual place in the family of relevant logics. In
fact, it is questionable whether it should even be classified as a relevant logic, since it
is the result of adding to R the axiom ex falso quodlibet, that is to say, (A∧¬A)→B.
This is of course one of the paradoxes of material implication that relevant logics
were devised specifically to avoid, a paradox of consistency. The other type of
paradox is a paradox of relevance, of which the paradigm case is the weakening
axiom A→ (B→ A). The surprising thing about KR is that although it contains
the first type of paradox, it avoids the second, contrary to what we might at first
suspect. In fact, it is a complex and highly non-trivial system. The credit for
its initial investigation belongs to Adrian Abraham, Robert K. Meyer and Richard
Routley [13].

The model theory for KR is elegantly simple. The usual ternary relational
semantics for R includes an operation ∗ designed to deal with the truth condition
for negation

x � ¬A ⇔ x∗ 2 A.
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The effect of adding ex falso quodlibet to R is to identify x and x∗; this in turn has
a notable effect on the ternary accessibility relation. The postulates for an R model
structure include the following implication:

Rxyz ⇒ (Ryxz & Rxz∗y∗).

The result of the identification of x and x∗ is that the ternary relation in a KR
model structure (KRms) is totally symmetric. In detail, a KRms K = 〈S, R, 0〉 is a
3-place relation R on a set containing a distinguished element 0, and satisfying the
postulates:

1. R0ab ⇔ a = b;

2. Raaa;

3. Rabc ⇒ (Rbac & Racb) (total symmetry);

4. (Rabc & Rcde) ⇒ ∃f(Radf & Rfbe) (Pasch’s postulate).

The result of adding the weakening axiom A→ (B→A) to R is a collapse into
classical logic. The addition of (A ∧ ¬A)→ B does not result in such a collapse —
but is the result a trivial or uninteresting system? This is very far from the case, as
we shall see in the next section.

2 KR and Modular Lattices
Given aKR model structure K = 〈S, R, 0〉, we can define an algebra A(K) as follows:

Definition 2.1. The algebra A(K) = 〈P(S),∩,∪,¬,>,⊥, t, ◦〉 is defined on the
Boolean algebra 〈P(S),∩,∪,¬,>,⊥〉 of all subsets of S, where > = S, ⊥ = ∅,
t = { 0 }, and the operator A ◦B is defined by

A ◦B = { c : ∃a ∈ A∃b ∈ B(Rabc) }.

The algebra A(K) is a De Morgan monoid [1], [4] in which a∧a = ⊥, where ⊥ is
the least element of the monoid; we shall call any such algebra a KR-algebra. Hence
the fusion operator A ◦ B is associative, commutative, and monotone. In addition,
it satisfies the square-increasing property, and t is the monoid identity:

A ◦ (B ◦ C) = (A ◦B) ◦ C,

A ◦B = B ◦A,
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(A ⊆ B ∧ C ⊆ D) ⇒ A ◦ C ⊆ B ◦D,

A ⊆ A ◦A,

A ◦ t = A.

In what follows, we shall assume basic results from the theory of De Morgan monoids,
referring the reader to the expositions in Anderson and Belnap [1] and Dunn and
Restall [4] for more background. We have defined KR-algebras above as arising
from De Morgan monoids by the addition of the axiom a ∧ a = ⊥. However, we
could also have defined them using the construction of Definition 2.1, since any
KR-algebra can be represented as a subalgebra of an algebra produced by that
construction. This is not hard to prove by using the known representation theorems
for De Morgan monoids — see for example [19]. KR-algebras are closely related
to relation algebras. In fact, they can be defined as square-increasing symmetric
relation algebras — for basic definitions the reader can consult the monograph [12]
by Roger Maddux.

In a KR-algebra, we can single out a subset of the elements that form a lattice;
this lattice plays a key role in the analysis of the logic KR.

Definition 2.2. Let A be a KR-algebra. The family L(A) is defined to be the
elements of A that are ≥ t and idempotent, that is to say, a ∈ L(A) if and only
if a ◦ a = a and t ≤ a. If K is a KR model structure, then we define L(K) to be
L(A(K)).

The following lemma provides a useful characterization of the elements of L(A);
it is based on some old observations of Bob Meyer.

Lemma 2.3. Let A be a KR-algebra. Then the following conditions are equivalent:

1. a ∈ L(A);

2. a = (a→ a);

3. ∃b [a = (b→ b)].

Proof. (1 ⇒ 2 ⇒ 3): Since t ≤ a, we have t ≤ (a→ a)→ a, t ◦ (a→ a) ≤ a, hence
(a→ a) ≤ a. Since a ◦ a ≤ a, a ≤ (a→ a), so a = (a→ a), proving the second and
hence the third condition.

(3⇒ 1): First, we have t ≤ (b→ b) = a. Second, (b→ b) ≤ (b→ b)→ (b→ b), so
(b→ b) ◦ (b→ b) ≤ (b→ b), that is to say, a ◦ a ≤ a, so a ◦ a = a.
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If K = 〈S, R, 0〉 is aKR model structure, then a subset A of S is a linear subspace
if it satisfies the condition

(a, b ∈ A ∧Rabc) ⇒ c ∈ A.

A lattice is modular if it satisfies the implication

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

For background on modular lattice theory, the reader can consult the texts of
Birkhoff [2] or Grätzer [7].

We require a few basic lattice-theoretic definitions here. A chain in a lattice L
is a totally ordered subset of L; the length of a finite chain C is |C| − 1. A chain
C in a lattice L is maximal if for any chain D in L, if C ⊆ D then C = D. If L is
a lattice, a, b ∈ L and a ≤ b, then the interval [a, b] is defined to be the sublattice
{ c : a ≤ c ≤ b }.

Let L be a lattice with least element 0. We define the height function: for a ∈ L,
let h(a) denote the length of a longest maximal chain in [0, a] if there is a finite
longest maximal chain; otherwise put h(a) = ∞. If L has a largest element 1, and
h(1) <∞, then L has finite height.

Let L be a modular lattice with 0 of finite height. Then for a ∈ L, h(a) is the
length of any maximal chain in [0, a]. In addition, the height function in L satisfies
the condition

h(a) + h(b) = h(a ∧ b) + h(a ∨ b),

for all a, b ∈ L. For a lattice of finite height, this last condition is equivalent to
modularity. These results are proved in the text of Grätzer [7, Chapter IV, §2].

Lemma 2.4. If K is a KR model structure, then the elements of L(K) are exactly
the non-empty linear subspaces of K.

Proof. The lemma follows from the definition of A ◦B and the fact that Raa0 and
Raaa hold in any KR model structure.

Theorem 2.5. If A is a KR-algebra, then L(A), ordered by containment, forms
a modular lattice, with least element t, and the lattice operations of join and meet
defined by a ∧ b and a ◦ b.

Proof. The fact that L(A) forms a lattice, with ∧ as the lattice meet and ◦ as the
lattice join, can be proved from the basic properties of De Morgan lattices.
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We now prove modularity; in the following computation, we use juxtaposition ab
for meet a∧ b, and a for the Boolean complement. Note that a∨ b is the extensional
(Boolean) join, not the lattice join in L(A). If a ≥ c, then

a(b ◦ c) = a[(ba ∨ ba) ◦ c]
= a[(ba ◦ c) ∨ (ba ◦ c)]
≤ a[(ba ◦ c) ∨ (a ◦ a)]
= a(ba ◦ c) ∨ aa

≤ ab ◦ c.

The opposite inequality ab ◦ c ≤ a(b ◦ c) follows from the lattice properties of L(A),
so a(b ◦ c) = ab ◦ c. In the fourth line above, the equation a ◦ a = a follows from
Lemma 2.3, since for a ∈ L(A), a = a→ a, so a = a→ a = a ◦ a.

Theorem 2.5 is closely related to Theorem 2.18 of Chin and Tarski [3], [14, p. 268].
The result also appears in a paper of Jónsson [9] from 1959. The result of Chin and
Tarski appears somewhat more general than Theorem 2.5 since it does not rely on
the square-increasing postulate. However, an examination of the proof above shows
that this postulate is not used in the proof, and in fact, the calculation goes through
in a more general class of algebras — see, for example, Lemma 5.5 of [18].

The preceding theorem shows that there is a modular lattice canonically asso-
ciated with any KR-algebra. It is natural to ask the question: how general is this
construction? That is to say, which modular lattices arise in this way? In earlier pa-
pers [15, 16, 17], I provided a partial answer to this question by showing that a very
large family of modular lattices, closely connected with classical projective geome-
tries, can be represented as the lattices L(K) associated with KR model structures.
This construction made possible the solution of some long-standing problems in the
area of relevance logic, particularly those of decidability and interpolability.

The lattices arising from projective spaces, however, are of a rather special type,
and the construction given in my earlier work does not make clear whether more
general modular lattices can be represented. In this section, I give a very simple
construction for KR model structures showing that any modular lattice can be
represented as a sublattice of a lattice L(K). The earlier representation of geometric
lattices can be obtained as a direct corollary of this construction, as is shown in
Section 4.

Definition 2.6. Let L be a lattice with least element 0. Define a ternary relation
R on the elements of L by:

Rabc ⇔ a ∨ b = b ∨ c = a ∨ c,
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a

b v c

c

a ^ c

b

Figure 1: N5: The five-element non-modular lattice

and let K(L) be 〈L, R, 0〉.

Theorem 2.7. K(L) is a KR model structure if and only if L is modular.

Proof. The first three postulates for a KR model structure follow immediately from
the definition of R, using only the fact that L is a lattice. Now assume that L is
modular; we need to verify the last postulate (the Pasch postulate). Assume that
Rabc and Rcde, that is to say, a ∨ b = b ∨ c = a ∨ c and c ∨ d = c ∨ e = d ∨ e.
Define f = (a ∨ d) ∧ (b ∨ e). We need to show that Radf and Rfbe, that is to say,
a ∨ f = a ∨ d = d ∨ f and b ∨ f = b ∨ e = e ∨ f . We compute

a ∨ f = a ∨ [(a ∨ d) ∧ (b ∨ e)] (1)
= (a ∨ d) ∧ (a ∨ b ∨ e) (2)
= (a ∨ d) ∧ (a ∨ c ∨ e) (3)
= (a ∨ d) ∧ (a ∨ c ∨ d) (4)
= a ∨ d, (5)

where the equality (2) follows by modularity. The remaining three equalities follow
by an exactly symmetrical argument.

For the converse implication, assume that the Pasch postulate holds, but L is not
modular. Then L has a sublattice isomorphic to N5, the five-element nonmodular
lattice (see Figure 1). In N5, we have R(a, c, a∨c) and (b∨c, b, c). Since a∨c = b∨c,
it follows by the Pasch postulate that there is an f so that R(a, b, f) and R(f, c, c).
Then f ≤ a ∨ f = a ∨ b = a, and f ≤ f ∨ c = c ∨ c = c, so f ≤ a ∧ c. Thus
b∨ f ≤ b∨ (a∧ c); hence, a ≤ a∨ b = b∨ f ≤ b∨ (a∧ c) = b, contradicting a > b.

In Definition 2.6, if a, b and c are distinct points in a projective space, then Rabc
holds if and only if the three points are collinear. Hence, the defined ternary relation
can be considered as a generalized notion of collinearity that applies to any elements
in a modular lattice.
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Definition 2.8. If L is a lattice, then an ideal of L is a non-empty subset I of L
such that

1. If a, b ∈ I then a ∨ b ∈ I;

2. If b ∈ I and a ≤ b, then a ∈ I.

The family of ideals of a lattice L, ordered by containment, forms a complete
lattice I(L). The original lattice L is embedded in I(L) by mapping an element
a ∈ L into the principal ideal containing a, (a] = { b : b ≤ a }. It is easy to verify
that the mapping a 7−→ (a] is a lattice isomorphism between L and a sublattice
of I(L).

Theorem 2.9. Let L be a modular lattice with least element 0, and K(L) = 〈L, R, 0〉
the KR model structure constructed from L. Then L(K(L)) is identical with the
lattice of ideals of L.

Proof. We need to show that the non-empty linear subspaces of K(L) are exactly
the ideals of L. Let S ⊆ L be a non-empty linear subspace of L. If a, b ∈ S, and
a∨b = c, then Rabc, so c ∈ S. If a ≤ b and b ∈ S, then Rbba, so that a ∈ S, showing
that S is an ideal. Conversely, assume that S is an ideal of L. By definition, S is
non-empty. If a, b ∈ S and Rabc, then a∨b = a∨c ∈ S, so c ∈ S, since c ≤ a∨c.

Corollary 2.10. Any modular lattice of finite height (hence any finite modular
lattice) is representable as L(K), for some KR model structure K. In addition,
any modular lattice is representable as a sublattice of L(K), for some KR model
structure K.

The preceding theorem and corollary constitute a general representation theory
for modular lattices. Faigle and Herrmann [5] provided a related representation
theorem for modular lattices of finite height. They define a set of axioms for a
projective geometry as an incidence structure on partially ordered sets of “points”
and “lines,” and show that every modular lattice of finite length is isomorphic to
the lattice of linear subsets of some finite-dimensional projective geometry.

3 Anticipations of the Main Construction
The construction of Definition 2.6 is very simple and natural, and it is not surprising
that it has occurred earlier in the mathematical literature. In a paper of 1959 [9,
p. 463], Bjarni Jónsson asked whether every modular lattice is isomorphic to a lat-
tice of commuting equivalence elements of some relation algebra. His question was
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answered affirmatively by Roger Maddux in a paper published in 1981 [11]. The
construction that he used to answer Jónsson’s question is the same as that of Defi-
nition 2.6; his paper also contains a version of Theorem 2.9. Maddux’s monograph
on relation algebras also describes the construction [12, pp. 501–502].

A surprising anticipation of Maddux’s construction can be found in a paper by
D. K. Harrison [8] published in 1979. Harrison defines a Pasch geometry (also known
as a multigroup) to be a set A with a distinguished element e and a ternary relation
∆ defined on A satisfying four postulates. His first postulate is:

For each a ∈ A, there exists a unique b ∈ A with (a, b, e) ∈ ∆; denote b
by a#.

In Harrison’s terminology, a KR model structure is a Pasch geometry in which
a# = a, for all a ∈ A. Proposition 8 of his paper shows that if the construction
of Definition 2.6 is applied to a lattice L with least element e, then the resulting
structure (L, ∆, e) is a Pasch geometry if and only if L is modular. The second part
of Theorem 2.7 above is adapted from Harrison’s proof of his Proposition 8.

4 KR and Projective Spaces

In an earlier paper [15], I showed that there is a close connection between KR
and projective geometry. More precisely, I proved that every lattice arising from
a broad class of projective spaces can be represented as L(K) for some KR model
structure K. The proof proceeded by a direct construction of a model structure from
a projective space; the construction is essentially the same as that given earlier by
Roger C. Lyndon [10] to produce examples of non-representable relation algebras.
In the 1983 paper [15], the construction is only sketched; my paper on interpolation
from 1993 [17] contains a full exposition.

The present section gives a new proof of the earlier results, based on Theorems 2.7
and 2.9. Before giving the proof, we need some definitions and results relating to
projective spaces and the lattices that arise from them; they are adapted from the
text of Grätzer [7, Chapter IV, §5].

Definition 4.1. Let A be a set and L a collection of subsets of A. The pair 〈A, L〉
is a projective space iff the following properties hold:

1. Every l ∈ L has at least two elements;

2. For any two distinct p, q ∈ A, there is exactly one l ∈ L so that p, q ∈ l;
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Figure 2: The Pasch Postulate

3. Pasch Postulate: For a, b, c, d, e ∈ A and l1, l2 ∈ L satisfying a, b, c ∈ l1 and
c, d, e ∈ l2, there exist f ∈ A and l3, l4 ∈ L satisfying a, d, f ∈ l3 and b, e, f ∈ l4.

We call the members of A points and those of L lines. For p, q ∈ A, p 6= q, let
p + q denote the unique line containing p and q; if p = q, set p + q = { p }. Apart
from degenerate cases, the Pasch Postulate states that if a line b + e intersects two
sides, a + c and c + d of the triangle { a, c, d }, then it intersects the third side, a + d;
see Figure 2.

If L is a lattice with least element 0, then a ∈ L is an atom if h(a) = 1. An
element a of a complete lattice L is compact if and only if a ≤ ∨

X for some X ⊆ L
implies that a ≤ ∨

Y for some finite Y ⊆ X.

Definition 4.2. A lattice L is a modular geometric lattice iff L is complete, every
element of L is a join of atoms, all atoms are compact, and L is modular.

A subset X of the set of atoms of a projective space is a linear subspace iff
p + q ⊆ X whenever p, q ∈ X.

Theorem 4.3. The linear subspaces of a projective space form a modular geometric
lattice, where A ∧B = A ∩B and

A ∨B =
⋃
{ a + b : a ∈ A, b ∈ B }.

Proof. See Grätzer [7, Chapter IV, §5, Theorem 5].

The construction of a modular geometric lattice from a projective space can be
reversed. Given such a lattice L, define a geometry G(L) by defining the points to
be the set of atoms of L, while the lines are the elements of L with height 2.
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Theorem 4.4. If L is a modular geometric lattice, then G(L) is a projective space,
and L is isomorphic to the lattice of linear subspaces of G(L).

Proof. See Grätzer [7, Chapter IV, §5].

The two preceding theorems show that there is an exact correspondence between
projective spaces and modular geometric lattices.

Lemma 4.5. Let L be a modular geometric lattice. Then the set F of elements of
L of finite height is an ideal of L, and every element of F is a finite join of atoms.
L is isomorphic to I(F ), the lattice of all ideals of F .

Proof. See Grätzer [7, Corollary 2, p. 179].

Theorem 4.6. Let L be a modular geometric lattice. Then L is isomorphic to L(K),
for some KR model structure K.

Proof. Let F be the family of elements of L of finite height. Then F forms a
modular lattice, so we can construct a KR model structure K(F ) by Definition 2.6.
By Theorem 2.9 and Lemma 4.5, L is isomorphic to L(K(F )).

Figure 3: The Fano Plane

The preceding theorem includes the results of [15], but in fact goes further,
because the earlier results omitted certain projective spaces and the corresponding
geometries. In particular, the construction of KRmodel structures in my 1984 paper
required that the underlying projective spaces have at least four points on each line
(the construction of Lyndon [10] has the same restriction). This restriction means
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that the important special case of geometries constructed from the two-element field
are not represented. In particular, the best known example of a finite geometry, the
Fano plane (Figure 3), is not included in the family of lattices represented in the
construction of [15]. The present construction is not only much simpler, but includes
these geometries in its scope.

Roger Maddux has reminded me of the fact that Lyndon does treat the case
of geometries over the two-element field, though only as an aside [10, p. 24]. The
difficulty in the case of the two-element field arises from contraction. If we assume
the second postulate in the definition of a KR model structure, Raaa, then there
are not enough points on a line to validate the Pasch postulate. If we omit this
postulate, though, we can construct models for contraction-free logics, following
Lyndon’s method.

5 An Application, a Problem and Acknowledgments
The simple construction of this paper indicates that further results about KR and
other relevant logics can very likely be obtained by adapting ideas from the well
developed and deep theory of modular lattices. As a minor application illustrating
these possibilities, we show that if A(G) is a KR-algebra freely generated by G, then
there is a set G∗ ⊆ L(A(G)) so that G∗ freely generates a sublattice of L(A(G)).
No doubt other such applications can be found, and we include as an open problem
another possible use for the construction.

Theorem 5.1. Let A be a KR-algebra, and G a subset that freely generates A. If
G∗ = { a→ a : a ∈ G }, then G∗ freely generates a sublattice of L(A).

Proof. Let L be the sublattice of L(A) generated by G∗. If M is a modular lattice
with least element 0, and f : G∗ 7−→ M a function from G∗ to M , then we need to
show that f can be extended to a lattice homomorphism from L to M .

Using Definition 2.6, we can define theKR model structure K(M), and hence by
Definition 2.1, the KR-algebra B = A(K(M)). For a ∈ G, define g(a) = f(a→ a).
Since G freely generates A, g can be extended to a homomorphism h from A to
B. By Theorem 2.9, L(B) is identical with the lattice of ideals of M , so that we
can identify M with a sublattice of L(B) by the embedding a 
 (a] that maps an
element a ∈M into the principal ideal generated by a.

For a ∈ G∗, let a = b→ b, for b ∈ G. Then

h(a) = h(b→ b) = h(b)→ h(b) = g(b)→ g(b)
= f(b→ b)→ f(b→ b) = f(a)→ f(a) = f(a).
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Thus, h restricted to L is a lattice homomorphism from L to M extending f , showing
that G∗ freely generates L.

Corollary 5.2. In the logic KR, there are infinitely many distinct formulas built
from the formulas p→ p, q→ q, r→ r and s→ s using only the connectives ∧ and ◦.

Proof. Theorem 5.1 shows that the formulas p→ p, q→ q, r→ r and s→ s generate
an algebra of formulas isomorphic to the free modular lattice on four generators.
This algebra is infinite [2, p. 64].

Beth’s theorem equating implicit and explicit definability is known to fail in
many of the well known relevant logics such as R. However, the proof of this result
[20] depends on the fact that classical Boolean negation is missing from these logics,
and so does not apply to KR.

Problem 5.3. Does Beth’s definability theorem hold in the logic KR?

The construction of this paper suggests a way to attack this problem. The
algebraic counterpart of the Beth definability theorem in a variety of algebras is
the property that epimorphisms are surjective. Ralph Freese [6, Theorem 3.3] has
shown that this property fails in the category of modular lattices and lattice homo-
morphisms. Consequently, a possible strategy to attack this problem would be to
adapt Freese’s proof to the algebra of KR.

This paper was presented at a special session on algebraic logic (organized by
Nick Galatos and Peter Jipsen) at the regional meeting of the AMS in Denver, Octo-
ber 2016. At my talk, Roger Maddux told me of his earlier work on the construction
of §2; I am indebted to him for his comments on this paper, and for providing the
list of references in §3.
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Abstract

A purely semantic proof is presented for the admissibility of the Cut rule in
the hypersequential Gentzen-type system for RM.

Keywords: cut admissibility, hypersequents, relevant logics, semi-relevance, Sugi-
hara matrices

1 Introduction
There are essentially two main approaches to proving cut-elimination for a given
Gentzen-type system G. One is Gentzen’s original proof-theoretic method (from
[12]). The other is semantic; one shows that the system without the Cut rule is
complete for some semantics for which the full system (that is, the system with the
Cut rule) is sound. The first method has the advantage that it usually provides an
algorithm for converting a proof with cuts to a cut-free proof of the same sequent. In
contrast, the semantic method only guarantees the admissibility of Cut, but usually
does not provide a clue how to extract a cut-free proof from a given proof that
contains cuts. On the other hand, the proof-theoretic method is notoriously difficult
to verify, and very error-prone. Due to his very bad experience with mistakes in
syntactic proofs of cut-elimination (of himself and of others), the author of this
paper tends in recent years to trust semantic proofs of cut-elimination much more
than he trusts syntactic ones, to the point in which he simply does not believe a
cut-elimination theorem for some system if only syntactic proofs are known for it.
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What was said above is particularly true for hypersequential Gentzen-type sys-
tems (that is, Gentzen-type systems which employ hypersequents rather than ordi-
nary sequents).1 A good example is provided by the original proof of cut-elimination
for GRM (the hypersequential system for RM) in [3]. That proof is extremely
complicated (and its author himself, who is thirty years older now, cannot read it
anymore), practically impossible to be fully checked, and at best looks correct (as
the referee of that paper has said in his/her review). To be confident of the validity
of this theorem, this paper presents a new, semantic proof of it. Though one cannot
claim it is very simple, its main advantage is that it leaves no gaps, and can be (and
has been) fully checked to the last detail.

2 The Logic RM and its Characteristic Matrix
The semi-relevant logicRM was introduced by Dunn and McCall (see e.g., [1, 11] for
more information about RM, its history and motivation). It was later extensively
investigated by Meyer and Dunn. As noted in [11], it is “by far the best understood
of the Anderson–Belnap style systems.” A recent detailed description of RM and
its properties can be found in [9]. We assume that the reader is acquainted with
RM, and so we review here only material which is needed later in this paper.

In the sequel, L denotes a propositional language. The set of well-formed for-
mulas of L is denoted by W(L), and ϕ,ψ, σ vary over its elements. T varies over
theories of L (where by a ‘theory’ we mean simply a subset of W(L)). We denote
by Atoms the set of atomic formulas of L, and by Atoms(ϕ) (Atoms(T )) the set of
atomic formulas that appear in ϕ (in formulas of T ).

Definition 2.1. Let L be a propositional language.

• A matrix for L is a tripleM = 〈V,D,O〉, where

– V is a non-empty set of truth values;
– D is a non-empty proper subset of V (the designated elements of V);
– O is a function that associates an n-ary function �̃M : Vn → V with every
n-ary connective � of L.

We say thatM is (in)finite, if so is V.

1This type of systems was first introduced in [15], and independently in [3]. Since then the
framework of hypersequential calculi has been applied to many logics of different sorts ([7]). In
particular, it is the main framework for the proof theory of fuzzy logics ([14]).
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• Let M = 〈V,D,O〉 be a matrix for L. An M-valuation for L is a function
ν : W(L)→ V such that for every n-ary connective � of L and every ψ1, . . . , ψn
in W(L), ν(�(ψ1, . . . , ψn)) = �̃M(ν(ψ1), . . . , ν(ψn)).

• AnM-valuation ν is anM-model of a formula ψ, or νM-satisfies ψ (notation:
ν �M ψ), if ν(ψ) ∈ D. We say that ν is anM-model of a theory T (notation:
ν �M T ), if it is anM-model of every element of T .

• Let M be a matrix for L. `M, the consequence relation that is induced by
M, is defined by T `M ψ if every M-model of T is an M-model of ψ. We
shall denote by LM the logic 〈L,`M〉 which is induced byM.

Definition 2.2.

• A Sugihara chain is a triple S = 〈V,≤,−〉 such that V has at least two ele-
ments, ≤ is a linear order on V, and − is an involution for ≤ on V (i.e., for
every a, b ∈ V, −− a = a and − b ≤ − a whenever a ≤ b).

• Let S = 〈V,≤,−〉 be a Sugihara chain, and let a, b ∈ V.

– a < b if a ≤ b and a 6= b.
– |a| = max(− a, a).
– a �+ b iff either |a| < |b|, or |a| = |b| and a < b.

• Let S = 〈V,≤,−〉 be a Sugihara chain. The Sugihara matrix M(S) is the
matrix 〈V,D,O〉 for the language LRM = {¬,∧,∨,→} in which:

– D = {a ∈ V : a ≥ − a};
– The functions that O associates with the connectives of LRM are the

following:
∗ ¬̃(a) = − a;
∗ a ∧̃ b = min(a, b) and a ∨̃ b = max(a, b);
∗ a →̃ b = max�+(− a, b).

Definition 2.3. M(Z) is the Sugihara matrixM(〈Z,≤,−〉), where Z is the set of
the integers, ≤ is the standard order relation on Z, and − is the standard involution
on Z. (Note that inM(Z), D = {n ∈ Z : n ≥ 0}.)

Note 2.4. The intensional disjunction + is frequently defined in relevance logics by
ϕ+ ψ =df ¬ϕ→ ψ. Obviously, inM(Z) a +̃ b = max�+(a, b). It is also easy to see
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that the above definition of →̃ in Sugihara matrices is equivalent to the following
original definition of Sugihara ([16]):

a →̃ b =
{

max(− a, b) if a ≤ b,
min(− a, b) if a > b.

It easily follows that a →̃ b ∈ D iff a ≤ b.

The following key theorem has been proved by Meyer. (See [9] for a proof.)

Theorem 2.5. If T is a finite theory then T `RM ϕ iff T `M(Z) ϕ. In particular,
M(Z) is weakly characteristic for RM.

The following observation proved in [9] will also be useful in the sequel.

Proposition 2.6. Let S = 〈V,≤,−〉 be a Sugihara chain, and let a ∈ V. Suppose
that ν1 and ν2 are valuations inM(S) such that the following holds for every atom
p: if max{ |ν1(p)|, |ν2(p)| } ≥ a, then ν1(p) = ν2(p). Then for every formula ϕ, if
max{ |ν1(ϕ)|, |ν2(ϕ)| } ≥ a, then ν1(ϕ) = ν2(ϕ).

Another important fact from [9] that we need (originally proved in [2]) is that
RM has an implication respecting the classical–intuitionistic deduction theorem.

Definition 2.7. ϕ ⊃ ψ =df (ϕ→ ψ) ∨ ψ.

Proposition 2.8. T `RM ϕ ⊃ ψ iff T , ϕ `RM ψ.

3 The System GRM

Definition 3.1. Let L be a propositional language. By a sequent for L, we mean in
this paper a construct of the form Γ⇒ ∆, where Γ,∆ denote finite sets of formulas.
A hypersequent for L is a non-empty, finite multiset of sequents.

Notation 3.2. In the sequel, Γ, ∆, and Σ vary over finite sets of formulas, s varies
over sequents, and G varies over hypersequents. We denote by s1 | s2 | · · · | sn the
hypersequent (that is, a multiset) whose elements are s1, s2, . . . , sn.

Figure 1 presents a hypersequential Gentzen-type proof system GRM for RM.
Γ,∆ denote finite sets of formulas. The short names [EC], [EW], [Mi], and [Sp] stand
for External Contraction, External Weakening, Mingle, and Splitting, respectively.

The next proposition provides several useful properties of GRM .
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Axioms: G | ψ ⇒ ψ

Logical rules:

[¬⇒]
G | Γ⇒ ∆, ϕ
G | ¬ϕ,Γ⇒ ∆

[⇒¬]
G | ϕ,Γ⇒ ∆
G | Γ⇒ ∆,¬ϕ

[→⇒]
G | Γ1 ⇒ ∆1, ϕ G | ψ,Γ2 ⇒ ∆2

G | Γ1,Γ2, ϕ→ ψ ⇒ ∆1,∆2
[⇒→]

G | Γ, ϕ⇒ ∆, ψ
G | Γ⇒ ∆, ϕ→ ψ

[∧⇒]
G | Γ, ϕ⇒ ∆

G | Γ, ϕ ∧ ψ ⇒ ∆
G | Γ, ψ ⇒ ∆

G | Γ, ϕ ∧ ψ ⇒ ∆

[⇒∧]
G | Γ⇒ ∆, ϕ G | Γ⇒ ∆, ψ

G | Γ⇒ ∆, ϕ ∧ ψ

[∨⇒]
G | Γ, ϕ⇒ ∆ G | Γ, ψ ⇒ ∆

G | Γ, ϕ ∨ ψ ⇒ ∆

[⇒∨]
G | Γ⇒ ∆, ϕ

G | Γ⇒ ∆, ϕ ∨ ψ
G | Γ⇒ ∆, ψ

G | Γ⇒ ∆, ϕ ∨ ψ

Structural rules:

[EC]
G | s | s
G | s [EW]

G

G | s

[Sp]
G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
[Mi]

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

[Cut]
G | Γ1 ⇒ ∆1, ϕ G | ϕ,Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

Figure 1: The proof system GRM

Proposition 3.3.
1. `GRM G | ¬ϕ,Γ⇒ ∆ iff `GRM G | Γ⇒ ∆, ϕ.

2. `GRM G | Γ⇒ ∆,¬ϕ iff `GRM G | ϕ,Γ⇒ ∆.

3. `GRM G | Γ⇒ ∆, ϕ→ ψ iff `GRM G | ϕ,Γ⇒ ∆, ψ.

4. `GRM G | ϕ ∧ ψ,Γ⇒ ∆ iff `GRM G | ϕ,Γ⇒ ∆ | ψ,Γ⇒ ∆.

5. `GRM G | Γ⇒ ∆, ϕ ∧ ψ iff `GRM G | Γ⇒ ∆, ϕ and `GRM G | Γ⇒ ∆, ψ.
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6. `GRM G | ϕ ∨ ψ,Γ⇒ ∆ iff `GRM G | ϕ,Γ⇒ ∆ and `GRM G | ψ,Γ⇒ ∆.

7. `GRM G | Γ⇒ ∆, ϕ ∨ ψ iff `GRM G | Γ⇒ ∆, ϕ | Γ⇒ ∆, ψ.

Proof. We show the last item as an example, leaving the others to the reader. One
direction is easy; G | Γ⇒ ∆, ϕ∨ψ is derived in GRM from G | Γ⇒ ∆, ϕ | Γ⇒ ∆, ψ
by using two applications of [⇒∨], followed by an application of [EC]. For the
converse, note that ϕ ⇒ ψ | ψ ⇒ ϕ can be derived from ϕ ⇒ ϕ and ψ ⇒ ψ using
[Mi] and [Sp], and then ϕ ∨ ψ ⇒ ψ | ϕ ∨ ψ ⇒ ϕ can be derived from these three
sequents by using two applications of [∨⇒]. A cut on ϕ ∨ ψ of this sequent and
G | Γ ⇒ ∆, ϕ ∨ ψ yields G | ϕ ∨ ψ ⇒ ϕ | Γ ⇒ ∆, ψ. Another cut on ϕ ∨ ψ of this
last sequent and G | Γ ⇒ ∆, ϕ ∨ ψ yields G | G | Γ ⇒ ∆, ϕ | Γ ⇒ ∆, ψ. From this
G | Γ⇒ ∆, ϕ | Γ⇒ ∆, ψ can be derived using applications of [EC].

Note 3.4. Proposition 3.3 can be used for reducing the provability of a hypersequent
G to the provability of a finite set of hypersequents, the components of each have only
atomic formulas on their right-hand side, and only atomic formulas or implications
on their left-hand side.

Next we turn our attention to the semantics of the hypersequents of GRM .

Definition 3.5. Let ν be a valuation inM(Z).

• Let Γ⇒ ∆ be a non-empty sequent. Define

– dν(Γ⇒ ∆) =df max{ |ν(ϕ)| : ϕ ∈ Γ ∪∆ }

– ν(Γ⇒ ∆) =df





dν(Γ⇒ ∆) if ∃ϕ ∈ Γ(ν(ϕ) = − dν(Γ⇒ ∆)),
dν(Γ⇒ ∆) if ∃ψ ∈ ∆(ν(ψ) = dν(Γ⇒ ∆)),
− dν(Γ⇒ ∆) otherwise.

• We say that ν is a model of a sequent Γ⇒ ∆ (in symbols, ν � Γ⇒ ∆), if either
Γ ⇒ ∆ is empty and there is an atom p such that ν(p) = 0, or Γ ⇒ ∆ is not
empty and ν(Γ⇒ ∆) ≥ 0 (i.e., there is ϕ ∈ Γ such that ν(ϕ) = − dν(Γ⇒ ∆),
or ψ ∈ ∆ such that ν(ψ) = dν(Γ⇒ ∆)).

• We say that ν is a model of a hypersequent G (in symbols, ν � G), if ν is a
model of at least one component of G.

Definition 3.6 (RM-validity of hypersequents). A hypersequent G is RM-valid if
every valuation inM(Z) is a model of G.
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Note 3.7. Let the translation σs of s = ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk (where n+ k > 0)
be the sentence ¬ϕ1 + · · · + ¬ϕn + ψ1 + · · · + ψk, and let the translation σG of a
hypersequent G be the ∨-disjunction of the translations of its components. It is
easy to check that ν � G iff ν � σG. In particular, if ϕ is a sentence then ν � ϕ
iff ν � ⇒ϕ. Hence, ⇒ϕ is RM-valid iff ϕ is valid inM(Z). By Theorem 2.5, this
implies that ⇒ϕ is RM-valid iff `RM ϕ.

Proposition 3.8 (Soundness of GRM). Let G be a hypersequent in LR.
If `GRM G, then G is RM-valid.

Proof. Using an induction on the length of proofs, we can prove something stronger,
namely, that if G follows in GRM from a set S of hypersequents, then every model
ν (inM(Z)) of all the elements of S is also a model of G. For this, we need to show
that all axioms of GRM are RM-valid, and that if a valuation ν inM(Z) is a model
of all premises of some application of a rule of GRM , then it is also a model of the
conclusion of that application. This is straightforward but tedious, so we omit the
details. We only note one case that requires special attention. An application of the
cut rule in the unusual case in which both of the contexts Γ1 ⇒ ∆1 and Γ2 ⇒ ∆2
are empty. In that case, G | ⇒ is derived from G | ⇒ϕ and G | ϕ⇒. Let ν be a
model of the premises. Then either it is a model of some component of G, in which
case it is a model of G | ⇒ too, or it is a model of both ⇒ϕ and ϕ⇒. The latter is
possible only if ν(ϕ) = 0. A necessary condition for this is that ν(p) = 0 for some
atom p ∈ Atoms(ϕ). Hence, in that case ν is model of ⇒, and so also of G | ⇒.

4 Completeness and the Admissibility of Cut
In this section, we simultaneously show that GRM is also complete, and that the
cut-elimination theorem holds for it. We do this by constructing a refutingM(Z)-
valuation for every hypersequent G that does not have a cut-free proof in GRM .
This is done by first extendingG to a hypersequent G∗, for which a refuting valuation
ν can be constructed in stages from its components and formulas. For this, we define
a strictly decreasing (and so finite) sequence of natural numbers k1, k2, . . . , km and
a corresponding sequence ν1, ν2, . . . , νm of partial valuations. The desired ν is νm,
the last element of the latter sequence. The construction of ki and νi is done in a
way that ensures that νi has the following properties for each i (1 ≤ i ≤ m):

1. If i < m, then νi+1 is a proper extension of νi;

2. if ν(ϕ) is defined, then ki ≤ |ν(ϕ)| ≤ k1;
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3. every component of G∗ which contains a formula ϕ such that νi(ϕ) is defined
is necessarily refuted by anyM(Z)-valuation which extends νi.

Let us turn to the details.

Notation 4.1. `cf
GRM G means that G has a cut-free proof in GRM .

Lemma 4.2. If Σ 6= ∅ and Atoms(Γ ∪∆) ⊆ Σ, then `cf
GRM Σ,Γ⇒ ∆,Σ.

Proof. Induction on the complexity of Γ∪∆. The base case, where Γ∪∆ consists of
Atoms, is proved using the Mingle rule. The induction steps are straightforward.

Definition 4.3. A hypersequent G is maximal, if 0cf
GRM G but `cf

GRM G | s when

• s consists only of subformulas of formulas in G;

• s is not a component of G.

Lemma 4.4. If 0cf
GRM G, then G can be extended to a maximal hypersequent G∗.

Proof. This follows from the fact that the number of hypersequents which consist
only of subformulas of formulas in G is finite.

Definition 4.5. Let ν be a partial function from Atoms to Z. We call ν a k-
semivaluation, if the following two conditions are satisfied:

1. |ν(p)| ≥ k, for every p ∈ Dom(ν).

2. If Dom(ν) 6= Atoms, then ](Atoms−Dom(ν)) < k.

Note 4.6. If ν is a 0-semivaluation or a 1-semivaluation, then ν is a full valuation,
i.e., ν : Atoms→ Z.

Definition 4.7. A valuation ν∗ : Atoms→ Z is a k-completion of a k-semivaluation
ν, if ν∗(p) = ν(p), for p ∈ Dom(ν), while |ν∗(p)| < k, otherwise.

Definition 4.8. Let ν be an l-semivaluation, and let k ≥ l. A formula ϕ is a νl<k-
formula (in symbols, ϕ ∈ νl<k), if |ν∗(ϕ)| < k for every l-completion ν∗ of ν. ϕ is a
νl≥k-formula (in symbols, ϕ ∈ νl≥k), if |ν∗(ϕ)| ≥ k for every l-completion ν∗ of ν. ϕ
is a ν<l-formula (in symbols, ϕ ∈ ν<l) or a ν≥l-formula (in symbols, ϕ ∈ ν≥l), if it
is a νl<l or νl≥l-formula, respectively.

Lemma 4.9. Let ν be an l-semivaluation, and let k ≥ l.

1. Every formula is either a νl<k-formula or a νl≥k-formula.
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2. ϕ is a νl≥k-formula iff |ν∗(ϕ)| ≥ k for some l-completion ν∗ of ν.
ϕ is a νl<k-formula, if |ν∗(ϕ)| < k for some l-completion ν∗ of ν.

3. Let ν1 and ν2 be l-completions of ν. If ϕ is an νl≥k-formula, then ν1(ϕ) = ν2(ϕ).

Proof. Immediate from Proposition 2.6.

Definition 4.10. Let G be a hypersequent, and ν be a k-semivaluation. We say
that ν is k-adequate for G, if the following conditions are satisfied:

1. If Γ ⇒ ∆ is a component of G, and Γ ∪ ∆ contains some ν≥k-formula, then
every k-completion of ν refutes Γ⇒ ∆.

2. If k = 0 and the empty sequent ⇒ is a component of G, then ν(p) 6= 0 for
every p ∈ Atoms.

3. Let Σ be the set of atoms for which ν is not defined. Suppose Σ 6= ∅, and
that Γ ⇒ ∆ is a component of G which consists only of ν<k-formulas. Then
`cf
GRM G | ϕ,Σ⇒ Σ for ϕ ∈ Γ, and `cf

GRM G | Σ⇒ Σ, ψ for ψ ∈ ∆. (By using
repeated applications of Mingle, this implies that `cf

GRM G | Σ,Γ′ ⇒ ∆′,Σ
whenever Γ′ ⊆ Γ and ∆′ ⊆ ∆.)

Lemma 4.11. If G is a maximal hypersequent, and ν is a k-semivaluation which
is k-adequate for G, then ν has a k-completion which is not a model of G.

Proof. By induction on k.
The case k = 0 is trivial, since if ν is a 0-semivaluation, then ν is a full valuation,

and every formula is a ν≥0-formula. Hence, if ν is 0-adequate for G, then (by
definition) ν is a 0-completion of itself which is not a model of G.

Similarly, the case where k > 0 and Dom(ν) = Atoms is trivial, since in this case
ν is a k-completion of itself, every formula is a ν≥k-formula, and ν(p) 6= 0 for every
p. Hence, the k-adequacy of ν implies that ν itself is a k-completion as required. It
follows that the lemma is true in the particular case where k = 1.

Now assume that k > 1, and the claim is true for every l < k. Let ν be
a k-semivaluation such that Dom(ν) 6= Atoms, and ν is k-adequate for G. Let
I = {Γj ⇒ ∆j : 1 ≤ j ≤ m } be the set of all components of G which consist only of
ν<k-formulas.

Suppose first that I is empty (i.e., m = 0). Then every component of G contains
some ν≥k-formula, and so every k-completion of ν refutes G, by definition of k-
adequacy.

Now assume that I is not empty, and let Γ0 = ⋃
1≤j≤m Γj , ∆0 = ⋃

1≤j≤m ∆j .
Suppose that Γ0 ⇒ ∆0 is not a component of G. Then the maximality of G entails

613



Avron

that there exists a cut-free proof in GRM of Γ0 ⇒ ∆0 | G. By using the Splitting
rule [Sp], we can get from such a proof a cut-free proof of I | G, and so of G (since
I ⊆ G). A contradiction. It follows that Γ0 ⇒ ∆0 ∈ G. Since this sequent consists
only of ν<k-formulas, this entails that Γ0 ⇒ ∆0 ∈ I, and so it is actually the maximal
element of I. Let Σ be the set of atoms for which ν is not defined. Since Σ 6= ∅ by our
assumption, and ν is k-adequate for G, the third item of Definition 4.10 implies that
`cf
GRM Σ,Γ0 ⇒ ∆0,Σ | G. It follows that Σ(=) = Σ− Γ0 ∩∆0 is not empty, because

otherwise Σ,Γ0 ⇒ ∆0,Σ | G is identical to G. Let Σ(<) = Σ− Σ(=) = Σ ∩ Γ0 ∩∆0,
and let l = 1 + ](Σ(<)). Now 0 < l < k, since Σ(<) is a proper subset of Σ,
while ](Σ) < k, because ν is a k-semivaluation. Extend ν to a semivaluation ν̃ on
Dom(ν) ∪ Σ(=) as follows:

ν̃(p) =





ν(p) if p ∈ Dom(ν),
l if p ∈ Σ(=) ∩ Γ0,

− l if p ∈ Σ(=) − Γ0.

Note that Σ(<) is the set of atoms for which ν̃ is not defined. It follows that ν̃
is an l-semivaluation, and its definition implies that every l-completion of ν̃ is a
k-completion of ν. Moreover, for every l-completion ν∗ of ν̃ and every ϕ, either
|ν∗(ϕ)| ≥ k, or |ν∗(ϕ)| ≤ l. Now we show that the following two claims are true for
every ϕ ∈ Γ0 ∪∆0 and every l-completion ν∗ of ν̃:

(a) If ϕ ∈ Γ0, then ν∗(ϕ) = l, or ϕ ∈ ν̃<l and `cf
GRM ϕ,Σ(<) ⇒ Σ(<) | G.

(b) If ϕ ∈ ∆0, then ν∗(ϕ) = − l, or ϕ ∈ ν̃<l and `cf
GRM Σ(<) ⇒ Σ(<), ϕ | G.

What follows is a proof of these claims by an induction on the complexity of ϕ.
We assume that ν∗ is some l-completion of ν̃, and so also a k-completion of ν. By
Lemma 4.9, this implies that |ν∗(ϕ)| < l iff ϕ ∈ ν̃<l, and |ν∗(ϕ)| < k iff ϕ ∈ ν̃l<k.

ϕ ∈ Γ0, and ϕ is atomic.
Then ϕ ∈ Σ, because ν is a k-semivaluation, and so an atom is a ν<k-formula
iff ν is not defined for it. It follows that either ϕ ∈ Σ(=) ∩ Γ0, or ϕ ∈ Σ(<). In
the first case ν∗(ϕ) = l, by definition of ν̃. In the second ϕ ∈ ν̃<l (since ν̃ is an
l-semivaluation, and Σ(<) is the set of atoms for which ν̃ is not defined), and
ϕ,Σ(<) = Σ(<). Hence, `cf

GRM ϕ,Σ(<) ⇒ Σ(<) | G, by using [Mi] and [EW].

ϕ ∈ ∆0, and ϕ is atomic.
Then ϕ ∈ Σ, and so either ϕ ∈ Σ(=) − Γ0, or ϕ ∈ Σ(<). In the first case,
ν∗(ϕ) = − l, by definition of ν̃. In the second case, ϕ ∈ ν̃<l, and again we have
`cf
GRM Σ(<) ⇒ Σ(<), ϕ | G, by using [Mi] and [EW].
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ϕ ∈ Γ0, and ϕ = ¬ψ.
Then ϕ is a ν<k-formula, and so ψ is a ν<k-formula, since |ν∗(¬ψ)| = |ν∗(ψ)|.
It is impossible that `cf

GRM Γ0 ⇒ ∆0, ψ | G, since otherwise, we would have
got that `cf

GRM G, by using (¬ ⇒). It follows that Γ0 ⇒ ∆0, ψ is in G (because
G is maximal), and since it consists only of ν<k-formulas, necessarily ψ ∈ ∆0.
Therefore, we get by the induction hypothesis on ψ that either ν∗(ψ) = − l,
or `cf

GRM Σ(<) ⇒ Σ(<), ψ | G and ψ ∈ ν̃<l. Hence, either ν∗(ϕ) = l, or ϕ ∈ ν̃<l
and (using [¬⇒]) `cf

GRM ϕ,Σ(<) ⇒ Σ(<) | G.
ϕ ∈ ∆0, and ϕ = ¬ψ.

This case is similar to the previous one.

ϕ ∈ Γ0, and ϕ = σ → ψ.
Then ϕ is a ν<k-formula, and so ψ and σ are ν<k-formulas, because |ν∗(ϕ)| =
max{|ν∗(ψ)|, |ν∗(σ)|} in this case. It is impossible that both `cf

GRM ψ,Γ0 ⇒
∆0 | G and `cf

GRM Γ0 ⇒ ∆0, σ | G, since otherwise, we would have gotten
that `cf

GRM G, by using [→⇒]. Assume e.g., that 0cf
GRM ψ,Γ0 ⇒ ∆0 | G.

Then ψ,Γ0 ⇒ ∆0 is in G (because G is maximal), and since it consists only of
ν<k-formulas, necessarily ψ ∈ Γ0. It follows by the induction hypothesis on ψ
that either ν∗(ψ) = l, or ψ ∈ ν̃<l and `cf

GRM ψ,Σ(<) ⇒ Σ(<) | G. In the first
case, ν∗(ϕ) = l (since σ is a ν<k-formula, and so |ν∗(σ)| ≤ l). In the second
case, we consider the following two subcases:

• Suppose that σ /∈ ∆0. Then Γ0 ⇒ ∆0, σ 6∈ I, and since this sequent
consists only of ν<k-formulas, Γ0 ⇒ ∆0, σ /∈ G. Hence, `cf

GRM Γ0 ⇒
∆0, σ | G. Using [→⇒], this and our assumption `cf

GRM ψ,Σ(<) ⇒ Σ(<) |
G imply `cf

GRM ϕ,Σ(<),Γ0 ⇒ ∆0,Σ(<) | G. Since, Σ(<) ⊆ Γ0 ∩∆0, and
ϕ ∈ Γ0, we get that `cf

GRM G. A contradiction. Hence, this subcase is
actually impossible.
• If σ ∈ ∆0, then by the induction hypothesis, either ν∗(σ) = − l, or σ ∈ ν̃<l
and there is a cut-free proof of Σ(<) ⇒ Σ(<), σ | G. In the first case, again
ν∗(ϕ) = l. In the second case, ϕ ∈ ν̃<l (because ψ ∈ ν̃<l and σ ∈ ν̃<l),
and we can get a cut-free proof of ϕ,Σ(<) ⇒ Σ(<) | G by applying [→⇒]
to ψ,Σ(<) ⇒ Σ(<) | G and Σ(<) ⇒ Σ(<), σ | G.

ϕ ∈ ∆0, and ϕ = σ → ψ.
Then ϕ is a ν<k-formula, and so ψ and σ are ν<k-formulas. It is impossible that
`cf
GRM Γ0, σ ⇒ ∆0, ψ | G, since otherwise, we would have got that `cf

GRM G by
using [⇒→]. Hence, Γ0, σ ⇒ ∆0, ψ is in G, and since it consists only of ν<k-
formulas, necessarily ψ ∈ ∆0 and σ ∈ Γ0. Hence, by the induction hypothesis
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(b) applies to ψ and (a) to σ. If ν∗(ψ) = − l and ν∗(σ) = l, or ν∗(ψ) = − l
and |ν∗(σ)| < l, or ν∗(σ) = l and |ν∗(ψ)| < l, then ν∗(ϕ) = − l. Otherwise,
ψ ∈ ν̃<l, σ ∈ ν̃<l, `cf

GRM Σ(<) ⇒ Σ(<), ψ | G, and `cf
GRM σ,Σ(<) ⇒ Σ(<) | G.

It follows that ϕ ∈ ν̃<l, and `cf
GRM σ,Σ(<) ⇒ Σ(<), ψ | G (using Mingle). By

using [⇒→], we get `cf
GRM Σ(<) ⇒ Σ(<), ϕ | G.

ϕ ∈ Γ0, and ϕ = ψ ∨ σ.
It is impossible that `cf

GRM ψ,Γ0 ⇒ ∆0 | G and `cf
GRM σ,Γ0 ⇒ ∆0 | G are both

true, since this would have implied `cf
GRM G by using [∨⇒]. Assume e.g., that

0cf
GRM ψ,Γ0 ⇒ ∆0 | G. Then ψ,Γ0 ⇒ ∆0 is in G. Assume for contradiction

that ψ ∈ ν≥k. Then ν∗ refutes ψ,Γ0 ⇒ ∆0 (since ν∗ is a k-completion of ν, and
ν is k-adequate). This is possible only if ν∗(ψ) ≥ k, because Γ0 ∩∆0 ⊆ ν<k,
and so ν∗(ψ,Γ0 ⇒ ∆0) = − ν∗(ψ) under our assumptions. But in such a
case, also ν∗(ϕ) ≥ k, contradicting the fact that ϕ ∈ Γ0, and so ϕ ∈ ν<k. It
follows that ψ ∈ ν<k, hence, ψ,Γ0 ⇒ ∆0 ∈ I, and so ψ ∈ Γ0. By applying the
induction hypothesis to ψ, we get that either ν∗(ψ) = l, or ψ ∈ ν̃<l (and so
|ν∗(ψ)| < l) and `cf

GRM ψ,Σ(<) ⇒ Σ(<) | G. In the first case, ν∗(ϕ) ≥ l, and
since ϕ ∈ ν<k (because ϕ ∈ Γ0), ν∗(ϕ) = l. In the second case, we consider
the following three subcases:

• Assume that σ ∈ ν≥k. Then either ν∗(σ) ≥ k or ν∗(σ) ≤ − k. In the
first case, also ν∗(ϕ) ≥ k as well, contradicting the fact that ϕ ∈ ν<k. So
ν∗(σ) ≤ − k. Since |ν∗(p)| < l for every p ∈ Σ(<), ν∗(σ,Σ(<) ⇒ Σ(<)) =
− ν∗(σ) ≥ k in this case, and so ν∗ is a model of the sequent σ,Σ(<) ⇒
Σ(<). Hence, σ,Σ(<) ⇒ Σ(<) is not in G (since ν is k-adequate for G, ν∗
is a k-completion of ν, and σ,Σ(<) ⇒ Σ(<) contains the ν≥k-formula σ).
It follows that `cf

GRM σ,Σ(<) ⇒ Σ(<) | G. From this and our assumption
that `cf

GRM ψ,Σ(<) ⇒ Σ(<) | G, it follows that `cf
GRM ϕ,Σ(<) ⇒ Σ(<) | G

(using [∨⇒]). Moreover, |ν∗(ϕ)| < l because ν∗(σ) ≤ − k < − l while
|ν∗(ψ)| < l. Hence, ϕ ∈ ν̃<l.
• Assume that ν∗(σ) = l. Then ν∗(ϕ) = l (since |ν∗(ψ)| < l).
• Assume that σ ∈ ν<k and ν∗(σ) 6= l. Then ν∗(σ) = − l or |ν∗(σ)| < l
(recall that |ν∗(α)| ≥ k or |ν∗(α)| ≤ l, for every α). In the first case,
ν∗(ϕ) = ν∗(ψ) and so |ν∗(ϕ)| < l. In the second case, our assumption
on ν∗(ψ) again implies that |ν∗(ϕ)| < l. It remains to prove that `cf

GRM

ϕ,Σ(<) ⇒ Σ(<) | G. Since `cf
GRM ψ,Σ(<) ⇒ Σ(<) | G, it suffices to

prove that `cf
GRM σ,Σ(<) ⇒ Σ(<) | G. If σ ∈ Γ0, this would follow from

our induction hypothesis applied to σ, since ν∗(σ) 6= l. If σ /∈ Γ0 then
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σ,Σ(<) ⇒ Σ(<) is not in I, and since we are assuming that σ ∈ ν<k, it
follows that σ,Σ(<) ⇒ Σ(<) is not in G. Hence, the maximality of G
implies that `cf

GRM σ,Σ(<) ⇒ Σ(<) | G in this case too.

ϕ = ψ ∨ σ and ϕ ∈ ∆0.
Without a loss of generality, we may assume that ν∗(σ) ≤ ν∗(ψ), and so
ν∗(ϕ) = ν∗(ψ). Now ϕ ∈ ∆0 ⊆ ν<k, and so |ν∗(ϕ)| < k. It follows that
|ν∗(ψ)| < k, and so ψ ∈ ν<k. Suppose that ψ /∈ ∆0. Then Γ0 ⇒ ∆0, ψ is not
in I, and since this sequent consists only of formulas in ν<k, Γ0 ⇒ ∆0, ψ is not
in G either. Hence, `cf

GRM Γ0 ⇒ ∆0, ψ | G, and so `cf
GRM G (by using [⇒∨]).

A contradiction. It follows that ψ ∈ ∆0, and so by the induction hypothesis
either ν∗(ψ) = − l, or ψ ∈ ν̃<l and `cf

GRM Σ(<) ⇒ Σ(<), ψ | G. In the first case,
ν∗(ϕ) = − l. In the second case, |ν∗(ϕ)| = |ν∗(ψ)| < l, and so ϕ ∈ ν̃<l. Using
[⇒∨], that `cf

GRM Σ(<) ⇒ Σ(<), ϕ | G in this case follows from the assumption
that `cf

GRM Σ(<) ⇒ Σ(<), ψ | G.

ϕ = ψ ∧ σ and ϕ ∈ Γ0.
The proof in this case is similar to that in the previous one.

ϕ = ψ ∧ σ and ϕ ∈ ∆0.
The proof is similar to the case where ϕ = ψ ∨ σ and ϕ ∈ Γ0.

This concludes the proof of (a) and (b). Next we show that ν̃ is l-adequate for
G. Since l < k, this will end the proof of the lemma by the induction hypothesis for
l (and the fact that any l-completion of ν̃ is a k-completion of ν).

Now the second condition in Definition 4.10 is vacuously satisfied (since l > 0),
while the third is immediate from (a) and (b), since if Γ⇒ ∆ is a component of G
which consists only of ν̃<l-formulas, then Γ ⊆ Γ0 and ∆ ⊆ ∆0. This follows from
the definitions of I, Γ0, and ∆0, and the fact that ν̃<l ⊂ ν̃<k = ν<k.

To show the first condition, assume that ν∗ is an l-completion of ν̃, Γ⇒ ∆ is a
component of G, and Γ∪∆ contains some ν̃≥l-formula. If Γ⇒ ∆ /∈ I, then ν∗ refutes
Γ⇒ ∆, because ν is k-adequate, and ν∗ is a k-completion of ν. If Γ⇒ ∆ ∈ I, then
Γ ⊆ Γ0 and ∆ ⊆ ∆0, and so (a) and (b) imply that ν∗(ϕ) = l for every ν̃≥l-formula
ϕ ∈ Γ, and ν∗(ϕ) = − l for every ν̃≥l-formula ϕ ∈ ∆. Now since Γ ∪ ∆ contains
some ν̃≥l-formula, only such formulas determine whether ν∗ is a model of Γ⇒ ∆ or
not. It follows that ν∗ refutes Γ⇒ ∆.

Theorem 4.12. Let G be hypersequent in LR. Then either `cf
GRM G, or G is not

RM-valid.
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Proof. Suppose that 0cf
GRM G. Let Σ be the set of atomic formulas which occur

in G, and assume that the number of elements in Σ is n. Let G∗ be a maximal
hypersequent which extends G (Lemma 4.4). Define ν(p) = n + 1 for every p ∈
Atoms−Σ. Obviously, ν is an n+ 1-semivaluation, and if ϕ occurs in G∗, then ϕ is
a ν<n+1-formula such that Atoms(ϕ) ⊆ Σ. These facts and Lemma 4.2 easily imply
(using External Weakenings) that ν is n + 1-adequate for G∗. Therefore, it follows
from Lemma 4.11 that ν has an n + 1-completion ν∗ which is not a model of G∗,
and so not a model of G either. Hence, G is not RM-valid.

Theorem 4.13 (Adequacy of GRM). `GRM G iff G is RM-valid.

Proof. Immediate from Proposition 3.8 and Theorem 4.12.

Corollary 4.14. `GRM ⇒ϕ iff `RM ϕ.

Proof. Immediate from Theorem 4.13 and Note 3.7.

Corollary 4.14 shows how GRM can be used to characterize the validity of for-
mulas inRM. The next theorem generalizes it by showing how GRM can be used to
characterize the consequence relation of RM. Since the latter is finitary, it suffices
to treat the case of inferences from finite theories.

Theorem 4.15. Let T = {ϕ1, . . . , ϕn}. Then T `RM ψ iff the hypersequent ϕ1 ⇒
ψ | · · · | ϕn ⇒ ψ | ⇒ψ is provable in GRM .

Proof. Since ⊃ (Definition 2.7) is an implication for RM (Proposition 2.8), and ∧
is a conjunction for it, T `RM ψ iff `RM ϕ1 ∧ · · · ∧ ϕn ⊃ ψ. By Corollary 4.14,
this is equivalent to `GRM ⇒ϕ1 ∧ · · · ∧ ϕn ⊃ ψ, which in turn is equivalent to
`GRM ϕ1 ⇒ ψ | · · · | ϕn ⇒ ψ | ⇒ψ, by Proposition 3.3 and the Definition of ⊃.

Theorem 4.16 (Cut-elimination for GRM). If `GRM G, then G has in GRM a
cut-free proof.

Proof. Immediate from Proposition 3.8 and Theorem 4.12.

Note 4.17. Theorems 4.12, 4.13 and 4.16 and their proofs can easily be generalized
to derivations from a set of hypersequents. Thus a hypersequent G follows in GRM
from a set S of hypersequents iff every model of S is a model of G. Moreover, the
strong cut-elimination theorem applies to GRM . That is, if S `GRM G, then there
is a proof in GRM of G from S in which all cuts are on formulas from ⋃

H∈S FH ,
where FH is the set of formulas (not subformulas!) which appear in some component
of H.
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Note 4.18. We have proved that `GRM ϕ iff `RM ϕ by using the semantics of the
systems. However, it is not difficult to prove it syntactically, by directly showing
that `GRM G iff `HRM σG (see Note 3.7), where HRM is the standard Hilbert-type
system for RM (using which RM was actually originally defined. See [1, 11, 9]).

Here are two examples of the use of the cut-elimination theorem for GRM in
order to prove a property of RM.

Example 4.19. Let Z∗ = Z−{ 0 }. The matrixM(Z∗) for LRM is defined similarly
to M(Z), but with Z∗ as its set of truth-values. Definition 3.5 can be adapted to
M(Z∗) in a straightforward way. It then follows from the definitions that G | ⇒ is
valid inM(Z) iff G is valid inM(Z∗). Now, it is easy to prove by induction on the
length of a cut-free proof of a sequent of the form G |⇒ | · · · |⇒ that such a sequent
is provable in GRM iff G is provable in GRM . It follows that a hypersequent G is
valid in M(Z) iff it is valid in M(Z∗). Hence, the weak completeness of RM for
M(Z) (see Theorem 2.5) implies the weak completeness of RM forM(Z∗).

Example 4.20. As already noted in [3], Dunn and Meyer’s well-known result that
the disjunctive syllogism is admissible in RM can easily be proved using GRM as
follows. Suppose that `RM ¬ϕ, and `RM ϕ ∨ ψ. Then `GRM ⇒¬ϕ, and `GRM
⇒ϕ ∨ ψ. By Proposition 3.3, this implies that `GRM ϕ⇒ and `GRM ⇒ϕ | ⇒ψ.
Using a cut, we infer that `GRM ⇒ | ⇒ψ. It follows, by the observation made in
the previous example, that `GRM ⇒ψ, and so `RM ψ.

5 Conclusion and Further Research
The work presented in this paper is a continuation of an ongoing project, whose goal
is to provide semantic proofs of the admissibility of the cut rule in calculi of hyper-
sequents, especially those that are due to the author.2 As said in the introduction,
we strongly believe that these proofs are more reliable and easier to be followed and
verified than the original syntactic proofs of cut-elimination for those systems. The
project started in [8], which treats the case of GLC, the hypersequential system for
Gödel–Dummett logic (first introduced in [5]).3 We intend next to attack the case
of GRMI (the hypersequential system for the purely relevant logic RMI), which is
described in [4]. We believe that a proof which is similar to the one given here, but
more complicated, should be possible. (Note that our proof here for GRM is itself

2In the case of our hypersequential system for the modal logic S5, such a semantic proof has
already been presented in [6].

3M. Baaz and A. Ciabattoni have discovered an annoying gap in the treatment of ∨ in the
syntactic proof of cut-elimination given in [5]. Their discovery has been the trigger for this project.
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far more complicated than that given for GLC in [8].) Then it will be natural to
see to what extent can the method used in this paper be extended to hypersequent
calculi for fuzzy substructural logics (cf. [13]) other than RM, like UML.4 (See [14]
for several such systems.)

Another interesting line of research is to compare the approach taken here to
other semantic completeness proofs for hypersequent calculi, like the general method
of Ciabattoni, Galatos, and Terui in [10]. Note that the latter so far has been
developed only for single-conclusion hypersequent calculi.
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Abstract

It is shown that the classes of Routley–Meyer models which are axioma-
tizable by a theory in a propositional relevant language with fusion and the
Ackermann constant can be characterized by their closure under certain model-
theoretic operations involving prime filter extensions, relevant directed bisimu-
lations and disjoint unions.

Keywords: directed bisimulations, model definability, model theory, prime filter
extensions, relevant logic, Routley–Meyer semantics

1 Introduction
In this note we give a non-classical answer to the question of which classes of
Routley–Meyer models (cf. [20, 19, 17, 18]) can be defined (or, in other words,
axiomatized) in the language of relevant logic. In particular, we give a criterion in
terms of closure under certain model-theoretic operations for a class of Routley–
Meyer models to be axiomatizable.

By a “non-classical answer” we mean that we use constructions intrinsically be-
longing to the Routley–Meyer semantic framework as opposed to more generic ones
like ultraproducts (although we also provide similar answers employing these). A
good general recent reference (with a well-developed duality theory) on the Routley–
Meyer framework and similar relational semantics is [3].

The history of this kind of questions in the setting of non-classical logics seems to
have started with [11], a review by Kaplan of one of Kripke’s foundational papers on
possible worlds semantics. Kaplan asked which properties of the binary relation on
Kripke frames were expressible by formulas of a propositional modal language. Some
years later, an answer to this problem was provided in [8] (Theorem 3) using closure
under “non-trivial disjoint unions” and “SA-constructions” (a construction similar
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to what is also known as ultrafilter extensions). Moreover, the authors also provided
what came to be known as the “Goldblatt–Thomason theorem” (Theorem 8 from
[8]), which gave a characterization of those Kripke frames definable by propositional
modal formulas which were also definable by a first order theory. It involved closure
under subframes, p-morphic images, disjoint unions and reflection under ultrafilter
extensions. The original proof of this theorem was obtained by algebraic methods
via duality theory, but later J. van Benthem showed that it could be established by
direct model-theoretic methods (see the proof of Theorem 3.19 from [4]). Similar
results were obtained for intuitionistic logic in §13–§17 of the, sadly hard to find, [16].
In particular, Theorem 15.3 from [16] established a Goldblatt–Thomason theorem
for intuitionistic logic generalizing the ultrafilter extension construction to prime
filters.

In [16], the author also moved the characterization question to classes of models
rather than just frames and provided a result for intuitionistic logic involving ultra-
products and bisimulations among other things (Theorem 13.8). M. de Rijke later
did a similar thing for arbitrary pointed Kripke relational structures (Corollary 6.2
from [15]) again involving ultraproducts and bisimulations. In [23], Y. Venema
aimed to do away with ultraproducts (an “impure” modal model theoretic construc-
tion) in the case of these characterizations for Kripke models and modal logic. The
replacement was ultrafilter extensions. More recently, [7] provided an analogue to
the main result of [23] for the setting of intuitionistic logic.

Our goal is to generalize the ideas and results from [7] for intuitionistic logic
to another class of logics. This comes to complement — for the particular case of
relevant logic — the sort of results obtained in [2], where a Goldblatt–Thomason
theorem was established for a wide variety of substructural logics (Theorem 7.6)
using co-algebraic methods inspired by [12]. This is why the focus of our paper has
been on classes of models rather than frames ´since the latter question has already
been answered.1

The layout of the paper is as follows. In Section 2, we provide some necessary
background regarding relevant languages and the Routley–Meyer framework as well
as how they fit in the more general setting of first order logic. In Section 3, we
introduce the key model-theoretic relations and constructions that will be used in
the paper, namely, relevant directed bisimulations, bounded morphisms, (definable)
prime filter extensions and disjoint unions. We also establish in this section a group
of simple results that would be used latter on. In Section 4, we provide the promised
characterization of axiomatizability or definability using closure conditions under the
model-theoretic dramatis personae introduced in the previous section. Finally, in

1We are thankful to the referee who pressed us to clarify this point.
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Section 5, we summarize our work and provide some final observations.

2 Preliminaries
2.1 Routley–Meyer Semantics
We will work with the relevant language L which has a countable set PROP of propo-
sitional variables together with the following logical symbols: K (an absurdity con-
stant), J (a truth constant), _ (disjunction), ^ (conjunction), Ñ (implication), ˝
(fusion) and t (the Ackermann constant). Formulas are constructed in the expected
manner:

φ ::“ p | K | J | t | ∼φ | φ^ ψ | φ_ ψ | φÑ ψ | φ ˝ ψ,
where p P PROP. The set of all formulas is sometimes called FmlapLq in these pages.

A structureM “ xWM , RM , ˚M , OM , VMy is called a B˝t-model for L, if for any
x, y, z, v PW , letting x ďM y abbreviate that there is z P OM such that RMzxy, we
have that:

(i) x ďM x;

(ii) if x ďM y and RMyzv, then RMxzv;

(iii) if x ďM y and RMzyv, then RMzxv;

(iv) if x ďM y and RMzvx, then RMzvy;

(v) if x ďM y, then y˚M ďM x˚M ;

(vi) x “ x˚M˚M .

while VM : PROP ÝÑ ℘pWM q is a valuation function such that for every p P PROP,
VM ppq is upwards closed under the ďM relation, that is,

(viii) x P VM ppq and x ď y implies that y P VM ppq. Moreover, we also require that
OM be upwards closed under the ďM .

The system known as B˝t (essentially Routley and Meyer’s B system with the
appropriate axioms for t, J and K plus the residuation rule between ˝ andÑ) based
on L is sound and complete with respect to the class of B˝t-models (cf. [5]). In this
paper, all models will be B˝t-models so sometimes we just talk about “Routley–
Meyer models” or simply “models.”

We define the expression φ is satisfied at w in M recursively as follows:
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M,w , K never,
M,w , J always,
M,w , t iff w P OM ,
M,w , p iff w P V ppq,
M,w , ∼φ iff M,w˚ . φ,
M,w , φ^ ψ iff M,w , φ and M,w , ψ,
M,w , φ_ ψ iff M,w , φ or M,w , ψ,
M,w , φÑ ψ iff for every a, b such that RMwab, if M,a , φ then M, b , ψ,
M,w , φ ˝ ψ iff there are a, b such that RMabw, M,a , φ and M, b , ψ.

The valuation VM can be extended to a function from all formulas of L to
℘pWM q using this definition. So, VM pφq will denote the collection of all worlds in
M that satisfy φ. We will denote by UpďM q the collection of all subsets of WM

upward closed under the ďM relation.
Now, ifM is a model, we will say that a formula φ is true in M if for all w P OM

we have that M,w , φ. Given a set Γ of relevant formulas we will denote the class
of all models where all the formulas in Γ are true as ModpΓq. This leads us to the
following definition, fundamental for the purposes of this paper.

Definition 2.1. A class K of Routley–Meyer models is said to be definable or
axiomatizable in a given relevant language L, if there is a set Θ of formulas of L such
that ModpΘq “ K.

2.2 Embedding Relevant Languages into First Order Logic
Take now a first order language (that is, a language with a countable list of indi-
vidual variables x, y, z, . . . and the following logical symbols: ^ (conjunction), _
(disjunction),  (boolean negation), Ą (material implication), D (existential quanti-
fier), @ (universal quantifier) and (if necessary) “ (equality or identity)) that comes
with one function symbol ˚, a distinguished three place relation symbol R, a unary
predicate O, and a unary predicate P for each p P PROP. We might call this a corre-
spondence language Lcorr for L. Now we can read a model M as a first order model
for Lcorr in a straightforward way: W is taken as the domain of the structure, V
specifies the denotation of each of the predicates P,Q, . . . , while ˚ is the denotation
of the function symbol ˚ of Lcorr (in what follows we will write x˚ instead of the
customary ˚pxq), the subset O of W the denotation of the obvious unary predicate
and R the denotation of the relation R of Lcorr.

Where t is a term in the first order correspondence language, we write φt{x for
the result of replacing x with t everywhere in the formula φ. As expected, it is
easy to specify a translation from the formulas of the basic relevant language with
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absurdity (and fusion) into formulas of first order logic with one free variable as
follows:

STxpKq “ Rxxx^ Rxxx
STxpJq “ Rxxx_ Rxxx
STxptq “ Ox
STxppq “ Px

STxp∼φq “  STxpφqx˚{x
STxpφ^ ψq “ STxpφq ^ STxpψq
STxpφ_ ψq “ STxpφq _ STxpψq
STxpφÑ ψq “ @y, zpRxyz ^ STxpφqy{x Ą STxpψqz{xq
STxpφ ˝ ψq “ Dy, zpRyzx^ STxpφqy{x ^ STxpψqz{xq

In the above, it is worth noting that in STxpφÑ ψq and STxpφ ˝ ψq, y needs to
be free at the free occurrences of the variable x in the formula STxpφq and, similarly,
z has to be free at the free occurrences of the variable x in the formula STxpψq. This
can easily be arranged by taking y, z to be new variables every time but one can, of
course, also economize by reusing variables.

Next we prove a lemma to the effect that our proposed translation is adequate.
Note that while , stands for satisfaction as defined for basic relevant languages
with absurdity, ( is the usual Tarskian satisfaction relation from classical logic. In
particular, when φ is a first order formula and a a sequence of elements of a first
order model M “ xD,PM0 , PM1 , . . .y, M ( φras means that the sequence a satisfies
the formula φ in M according to the usual recursive definition:

M,w ( Pnras iff a P PMn
M,w (  φras iff M,w * φras

M,w ( pφ^ ψqras iff M,w ( φras and M,w ( ψras
M,w ( @xφras iff for every b P D, M,w ( φrabs

The reader should keep in mind the difference between ,,( and $ since we will
make use of all three below.

Lemma 2.2 (Switch Lemma). For any w, M,w , φ if and only if M ( STxpφqrws.
Proof. Simply note that φ and STxpφq express the same thing about w inM . Strictly
speaking, this would be established by a routine induction on formula complexity.

In what follows we will make free use of this lemma since it works as a useful
bridge between first order logic and relevant logic. In particular, it lets us bring all
the classical machinery of ultraproducts and ultrapowers into our setting.
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2.3 Countably Saturated Structures
We start by recalling some useful ideas from the model theory of first order logic. The
following notions can be found in any of the standard references such as [1, 6, 10].
They are included here only for the sake of completeness. For the ultraproduct
construction the best places are [1, 6]. The symbols a, b, and x, y are used to denote
sequences of elements of a model and variables, respectively.

We speak of a set of first order formulas Φpxq as being realizable in a model M ,
if there is some sequence a of elements of M such that M ( Φras. Φpxq is said to
be refutable in M if Φ1pxq “ t φ : φ P Φpxq u is realizable in M .

When M is a model of first order logic, by dompMq we denote the domain of
M . If X Ď dompMq, then pM,aqaPX is the expansion of M obtained by adding a
constant ca for each a P X.

Definition 2.3. Let λ be a cardinal. A model M of first order logic is said to be
λ-saturated if whenever X Ď dompMq and |X| ă λ, then the expansion pM,aqaPX of
M realizes every set of formulas Φpxq of the language of pM,aqaPX which is consistent
with the set of all first order sentences true in pM,aqaPX .

Note that if κ ă λ, λ-saturation implies κ-saturation.

Definition 2.4. Let M and N be two first order models. N is an elementary
extension of M if M is (isomorphic to) a submodel N 1 of N such that where a is a
sequence of elements of N 1, for each first order formula φ,

N 1 ( φras iff N ( φras.
Proposition 2.5. Each model of the correspondence first order language of a basic
propositional relevant language with absurdity has an ω-saturated elementary exten-
sion.

Proof. Let M be one such model. Since the correspondence language is countable,
by a result due to Keisler (Theorem 11.2.1 in [1] and Theorem 6.1.1 in [6]), we see
that we can form an ω1-saturated ultrapower of M . But the canonical embedding
betweenM and the ultrapower obtained is elementary (Lemma 5.2.3 in [1]). Finally,
recall that ω1-saturation implies ω-saturation.

Proposition 2.6. Let M be an ω-saturated model for the correspondence first order
language of basic relevant logic, and Φpx, yq a set of formulas. If M ( DxŹ

Ψras
for every finite Ψ Ď Φ, M ( Φra, bs for some finite tuple b of elements of M .

Proof. Immediate from Theorem 10.1.7 in [10].
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The important thing to keep in mind about elementary extensions of a given
model is that we have a transfer principle, which is an immediate consequence of
the fact that the extension is elementary. In other words, if we can show that first
order statements involving parameters only from the original model are true in the
extended model, we know that those statements are also true in the original model.

3 Some Model Theory
In this section, we will discuss some model-theoretic relations and constructions that
will play a fundamental role in our characterization result (Theorem 4.5 below). We
will start with the relevant analogue of the concept of bisimulation from modal logic.
Bisimulations for the setting of relevant logic were originally introduced in [14].

3.1 Relevant Directed Bisimulations
Definition 3.1. LetM1 “ xW1, R1, ˚1, O1, V1y andM2 “ xW2, R2, ˚2, O2, V2y be two
Routley–Meyer models for a relevant language L. A relevant directed bisimulation for
L betweenM1 andM2 is a pair of non-empty relations xZ1, Z2y where Z1 ĎW1ˆW2
and Z2 ĎW2 ˆW1, such that (1)–(5) hold when i, j P t 1, 2 u, i ‰ j:

(1) xZiy only if y˚jZjx˚i ;

(2) if xZiy and Rjybc for some b, c P Wj , there are b1, c1 P Wi such that Rixb1c1,
bZjb

1 and c1Zic;

(3) if xZiy and p P PROP Ă L, then Mi, x , p only if Mj , y , p;

(4) if xZiy and Ribcx for some b, c P Wi, there are b1, c1 P Wj such that Rjb1c1y,
bZib

1 and cZic1;

(5) if xZiy and x P Oi, then y P Oj .
The bisimulation is said to be surjective with respect to Oi if for each w P Oi there
is w1 P Oj such that w1Zjw.

Proposition 3.2. Let M1 “ xW1, R1, ˚1, O1, V1y and M2 “ xW2, R2, ˚2, O2, V2y be
two Routley–Meyer models for a relevant language L and xZ1, Z2y be a relevant
directed bisimulation between these models. If i ‰ j, i, j P t 1, 2 u and wZiv, then
Mi, w , φ only if Mj , v , φ for φ a formula of L.

Proof. We proceed by induction on formula complexity. The case of propositional
variables uses (3) from Definition 3.1. The case of t uses (5). The cases of Ñ and ˝
use (2) and (4), respectively.
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Corollary 3.3. Let M1 “ xW1, R1, ˚1, O1, V1y and M2 “ xW2, R2, ˚2, O2, V2y be two
Routley–Meyer models for a relevant language L. Suppose that xZ1, Z2y is a relevant
directed bisimulation surjective w.r.t. O2 between these models, then M1 , φ only if
M2 , φ for every formula φ of L.

Proof. Suppose that M2 . φ. Let w P O2 be such that M2, w . φ. Then contrapose
Proposition 3.2.

Corollary 3.4 (Hereditary Lemma). LetM be a Routley–Meyer model for a relevant
language L. Then for every w, v P WM , w ďM v only if for all formulas φ of L,
M,w , φ implies that M,v , φ.

Proof. Simply check that xďM ,ďMy is a relevant directed auto-bisimulation (i.e., a
relation between M and itself).

Let us write rel-tpSpeq for the relevant type of a world e in a model S, i.e., the
set of all first order translations of relevant formulas that e satisfies. If M1,M2 are
models, we will write M1, w VL M2, v if for every formula φ of L, M1, w , φ only
if M2, v , φ.

Proposition 3.5. Let L be a basic relevant language with absurdity and M1 and M2
two models for L. Suppose that M1 and M2 are ω-saturated as first order models.
Then the relation VL induces a relevant directed bisimulation xZ1, Z2y between M1
and M2 defined as follows:

xZ1y iff rel-tpM1pxq Ď rel-tpM2pyq,
xZ2y iff rel-tpM2pxq Ď rel-tpM1pyq.

Proof. Suppose that k,m P t 1, 2 u, k ‰ m, and for every formula φ of L, Mk, w , φ
only if Mm, u , φ.

Let us start by noting that Zk is non-empty since rel-tpMk
pwq Ď rel-tpMmpuq.

By the argument for clause (1) in the definition of a relevant directed bisimulation
in the paragraph below, we also obtain that Zm is non-empty for rel-tpMmpu˚mq Ď
rel-tpMk

pw˚kq, i.e., u˚mZmw˚k . Since k ‰ m we must have that both Z1 and Z2 are
non-empty.

In what follows, let i, j P t 1, 2 u. If xZiy, i.e., rel-tpMipxq Ď rel-tpMj pyq, we will
see that Mj , y

˚j , ψ then Mi, x
˚i , ψ for any formula ψ of L, so we will obtain

that rel-tpMj py˚j q Ď rel-tpMipx˚iq, i.e., y˚jZjx˚i . Suppose that Mi, x
˚i . ψ, so

Mi, x , p∼ψq and since rel-tpMipxq Ď rel-tpMj pyq, Mj , y , p∼ψq. Consequently,
Mj , y

˚j . ψ as we wanted. This proves (1) in Definition 3.1.
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For clause (2) in Definition 3.1, suppose that xZiy, i.e., rel-tpMipxq Ď rel-tpMj pyq,
and Rjybc for some b, c. Consider

nrel-tpMj pyq “ t STxpψq : Mj , y . ψ,ψ P FmlapLq u,
where FmlapLq denotes the set of formulas of L. We claim that the set of formulas
rel-tpMj pbq Y nrel-tpMj pcq (we need some care and make sure by renaming that the
variable free in rel-tpMj pbq is different from the variable free in nrel-tpMj pcq) is satis-
fiable inMi by a pair b1, c1 of elements such that Rixb1c1. Take any finite subset of rel-
tpMj pbqYrel-tpMj pcq. Say it is tSTzpδ1q, . . . , STzpδnq uYt STvpσ1q, . . . , STvpσmq u,
where tSTzpδ1q, . . . , STzpδnq u Ď rel-tpMj pbq and t STvpσ1q, . . . , STvpσmq u Ď
nrel-tpMj pcq. It is clear that Mj , y . Źt δ1, . . . , δn u Ñ Žtσ1, . . . , σm u, i.e., Mj *
STzpŹt δ1, . . . , δn u Ñ Žtσ1, . . . , σm uqrys, so given that rel-tpMipxq Ď rel-tpMj pyq,
Mi * STzpŹt δ1, . . . , δn u Ñ Žtσ1, . . . , σm uqrxs. It follows that tSTzpδ1q, . . . ,
STzpδnq u Y t STvpσ1q, . . . , STvpσmq u is satisfiable in Mi by a pair of elements
b0, c0 such that Rixb0c0. By the ω-saturation of Mi, there must be a pair b1, c1 such
that Rixb1c1 realizing the whole of rel-tpMj pbqYnrel-tpMj pcq. Since rel-tpMj pbq is re-
alized by b1, we have that bZjb1 and since c1 realizes nrel-tpMj pcq, i.e., Mj , c . ψ only
if Mi, c

1 . ψ, by contraposing it must be the case that rel-tpMipc1q Ď rel-tpMj pcq,
i.e., c1Zic.

Condition (3) in Definition 3.1 is obvious; if xZiy, i.e., rel-tpMipxq Ď rel-tpMj pyq,
then a fortiori, Mi, x , p only if Mj , y , p for any propositional variable p of L.

For clause (4) in Definition 3.1, suppose that xZiy, i.e., rel-tpMipxq Ď rel-tpMj pyq,
and Ribcx for some b, c. We claim that the set of formulas rel-tpMipbq Y rel-tpMipcq
is satisfiable in Mj by a pair b1, c1 of elements such that Rjb1c1y. Take any finite
subset of rel-tpMipbqY rel-tpMipcq. Say it is tSTzpδ1q, . . . , STzpδnq uYtSTvpσ1q, . . . ,
STvpσmq u, where tSTzpδ1q, . . . , STzpδnq u Ď rel-tpMipbq and tSTvpσ1q, . . . , STvpσmqu
Ď rel-tpMipcq. It is clear thatMi, x , Źt δ1, . . . , δn u˝Źtσ1, . . . , σm u, so given that
rel-tpMipxq Ď rel-tpMj pyq, Mj , y , Źt δ1, . . . , δn u ˝Źtσ1, . . . , σm u. It follows that
tSTzpδ1q, . . . , STzpδnq u Y tSTvpσ1q, . . . , STvpσmq u is satisfiable in Mj by a pair of
elements b0, c0 such that Rjb0c0y. By the ω-saturation of Mi, there must be a pair
b1, c1 such that Rjb1c1y realizing the whole of rel-tpMipbq Y rel-tpMipcq. Since rel-
tpMipbq is realized by b1, we have that bZib1 and since c1 realizes rel-tpMipcq, cZic1.

Finally, clause (5) in Definition 3.1 is obvious by the semantics of t.

3.2 Morphisms and Disjoint Unions

The following definition has appeared in places like [21] and [13].

631



Badia

Definition 3.6. Let M1 “ xW1, R1, ˚1, O1, V1y and M2 “ xW2, R2, ˚2, O2, V2y be
two Routley–Meyer models for a relevant language L. Let us denote by ď1,ď2 the
partial orders of M1 and M2, respectively. A map f : W1 ÝÑ W2 is a bounded
morphism if for all a, b, c PW1 and a1, b1, c1 PW2:

(i) fpa˚1q “ fpaq˚2 ,

(ii) R2fpaqb1c1 only if there are b, c P W1 such that R1abc while b1 ď2 fpbq and
fpcq ď2 c1,

(iii) a P V1ppq iff fpaq P V2ppq pp P PROPq,
(iv) R2b1c1fpaq only if there are b, c P W1 such that R1bca while b1 ď2 fpbq and

c1 ď2 fpcq,
(v) a P O1 only if fpaq P O2,

(vi) R1abc only if R2fpaqfpbqfpcq.
Proposition 3.7. Let M1 “ xW1, R1, ˚1, O1, V1y and M2 “ xW2, R2, ˚2, O2, V2y be
two Routley–Meyer models for a relevant language L. Furthermore, let f : W1 ÝÑ
W2 be a bounded morphism. Then, the pair xZ1, Z2y is a relevant directed bisimula-
tion, where:

xZ1y iff fpxq ď2 y,

xZ2y iff x ď2 fpyq.
Moreover, if for each x P O2 there is a y P O1 such that fpyq ď2 x, then the relevant
directed bisimulation is surjective w.r.t. both O1 and O2.

Proof. To establish (1) from Definition 3.1 simply use (i) from Definition 3.6. For if
xZ1y, i.e., fpxq ď2 y, then, by properties of Routley–Meyer B˝t-models, it must be
that y˚2 ď2 fpxq˚2 “ fpx˚1q, i.e., y˚2Z2x˚1 . On the other hand, if xZ2y, i.e., x ď2

fpyq then, by properties of Routley–Meyer B˝t-models, it must be that fpyq˚2 “
fpy˚1q ď2 x˚2 , i.e., y˚1Z1x˚2 .

Clauses (2) and (4) in Definition 3.1 follow along similar lines applying clauses
(ii) and (iv), respectively (in conjunction with (vi)) from Definition 3.6. Clause (iii)
from Definition 3.1 is straightforward from (iii) of Definition 3.6 and the Hereditary
Lemma.

Finally, we know by the hypothesis of the proposition and the definition of Z1
that xZ1, Z2y is surjective w.r.t. O2. On the other hand, if w P O1, then since
fpwq ď2 fpwq we must have that fpwqZ2w. But also by (v) in Definition 3.6, we
have that indeed fpwq P O2, so xZ1, Z2y is surjective w.r.t. O1.
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Definition 3.8. Let Mi “ xWi, Ri, ˚i, Oiypi P Iq be a collection of frames indexed
by the set I such that Wi XWj “ H for distinct i, j P I. The disjoint union of
tMi : i P I u, in symbols,

À
iPIMi is the structure xWÀ

, R
À
, ˚À

, O
Ày such that

W
À “

ď

iPI
Wi,

R
À “

ď

iPI
Ri,

˚À “
ď

iPI
˚i,

O
À “

ď

iPI
Oi,

V
À “

ď

iPI
Vi.

If our initial family is not disjoint, in order to apply this construction, we can
replace it by a disjoint family of isomorphic copies of the models in the original
family, that is, we replace each Mi by an isomorphic copy M 1

i such that for all
i, j P I, W 1

i XW 1
j “ H.

From now on, we will make the tacit assumption that all our classes of model
are closed under isomorphic images. This means that in Proposition 3.9 below
the general case where the family tMi : i P I u is not disjoint follows taking the
appropriate isomorphic copies of the models in the family in conjunction with the
fact that the class defined by φ is closed under isomorphic images.

Proposition 3.9. Let φ be a formula of L and tMi : i P I u a collection of models.
If Mi , φ (for all i P I), then also

À
iPIMi , φ.

Proof. This can be seen noting that the inclusion relation induces a relevant directed
bisimulation between each Mi and

À
iPIMi relating the worlds in Oi. Thus, if

Mi , φ (for all i P I), when we take an arbitrary w P OÀ
, we will have that, indeed,À

iPIMi, w , φ, by Proposition 3.2.

3.3 (Definable) Prime Filter Extensions

Definition 3.10. A structure xA,Ñ, ˝,´,X,Y,J,K, 1y is called a relevant algebra
([22, p. 264]) if the following holds:

(i) xA,Y,X,J,Ky is a bounded distributive lattice,
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(ii) x ˝ py Y zq “ px ˝ yq Y px ˝ zq,
(iii) py Y zq ˝ x “ py ˝ xq Y pz ˝ xq,
(iv) ´pxY yq “ ´xX´y,
(v) ´pxX yq “ ´xY´y,
(vi) ´J “ K and ´K “ J,
(vii) x ˝ K “ K ˝ x “ K,
(viii) 1 ˝ x “ x,

(ix) x ˝ y ď z iff x ď y Ñ z,

where ď in this context is the standard lattice order in terms of either X or Y.
Definition 3.11. Given a modelM “ xWM , RM , ˚M , OM , VMy, we will useM` to
denote the dual algebra of M , which is the structure xUpďM q,Ñ, ˝,´,X,Y,J,K, 1y
where X,Y are simply set intersection and union respectively, 1 “ OM , K “ H,J “
WM and the remaining operations of sets are as follows:

(i) X ˝ Y “ tw PWM : Dv, u PWM pRMvuw ^ v P X ^ u P Y q u,
(ii) X Ñ Y “ tw PWM : @v, u PWM pRMwvu^ v P X Ą u P Y q u,
(iii) ´X “ tw PWM : w˚M R X u.
Proposition 3.12. Let M be a Routley–Meyer B˝t-model for L. Then M` is a
relevant algebra.

Proof. Left to the reader. Straightforward from the definition of M` and the prop-
erties of a Routley–Meyer model.

Definition 3.13. Given a modelM “ xWM , RM , ˚M , OM , VMy, we will use pM`q`
to denote the dual model of M`, which is the structure xPF pUpďM qq, R, ˚, O, V y
where:

(i) PF pUpďM qq is the set of all prime filters of UpďM q in the algebra M`,

(ii) O “ tw P PF pUpďM qq : OM P w u,
(iii) Rwvu iff for all x, y P UpďM q, if xÑ y P w and x P v then y P u,
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(iv) w˚ “ tx P UpďM q : ´ x R w u,
(v) V ppq “ tw P PF pUpďM qq : VM ppq P w u.
pM`q` will be also called the prime filter extension ofM and denoted by pepMq.

This is because we can define the following map π : WM ÝÑ PF pUpďM qq:
w ÞÑ tx P UpďM q : w P x u,

which is an embedding (in the standard model-theoretic sense) of the structure M
into pepMq.
Proposition 3.14. Let M be a Routley–Meyer B˝t-model for L. Then for any
prime filter u of UpďM q and formula φ of L we must have that VM pφq P u iff
pepMq, u , φ. Hence, M,w , φ iff pepMq, πpwq , φ for any formula φ of L.
Moreover, M , φ iff pepMq , φ for any such φ.

Proof. We establish that VM pφq P u iff pepMq, u , φ by induction on the complexity
of φ. The case when φ is a propositional variable is immediate by definition of V pepMq.
The case when φ “ K is trivial since VM pKq “ H, which can never belong to a filter
u. When φ “ t, we have that V ptq “ OM P u iff u P OpepMq iff pepMq, u , t, as
desired. The cases for _ and ^ are obvious.

Let now φ “ ∼ψ. Then VM p∼ψq “ tw P WM : w˚M R VM pψ qu “ ∼VM pψq P u
iff VM pψq R u˚pepMq iff pepMq, u˚pepMq . ψ iff pepMq, u , ∼ψ, where the second
biconditional follows by inductive hypothesis.

Let φ “ ψ Ñ χ. Suppose that pepMq, u . ψ Ñ χ, i.e., there are u1, u2 such
that RpepMquu1u2 while pepMq, u1 , ψ and pepMq, u2 . χ. By inductive hypothesis,
VM pψq P u1 and VM pχq R u2. Hence VM pφq Ñ VM pχq “ VM pψ Ñ χq R u by
definition of RpepMq. On the other hand, if VM pφq Ñ VM pχq “ VM pψ Ñ χq R u,
then by Lemma 4.1 from [21], we see that indeed pepMq, u . φ. Finally, the case
φ “ ψ ˝ χ is established similarly only this time appealing to Lemma 4.2 from [21].

For the last part of the proposition suppose that M , φ, so OM Ď VM pφq, but
OM is a member of any prime filter u of UpďM q which belongs to OpepMq. By general
properties of filters then VM pφq P u, so indeed pepMq , φ. Conversely, if M . φ,
there is some w P OM such that M,w . φ. Thus, pepMq, πpwq . φ. But w P OM iff
M,w , t iff pepMq, πpwq , t iff πpwq P OpepMq. Consequently, pepMq . φ.

Definition 3.15. Given a modelM “ xWM , RM , ˚M , OM , VMy, we will useM`δ to
denote the definable dual algebra of M , which is the structure xUpMq,Ñ, ˝,´,X,Y,
J,K, 1y where UpMq “ tVM pφq : φ P FmlapLq u and the operations are defined
as in Definition 3.11. In particular, note that OM “ VM ptq, VM pJq “ WM and
VM pKq “ H.
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Proposition 3.16. Let M be a Routley–Meyer B˝t-model for L. Then M`δ is a
relevant algebra.

Definition 3.17. Given a modelM“ xWM , RM , ˚M , OM , VMy, we will use pM`δq`
to denote the dual model of ofM`δ, which is the structure xPF pUpMqq, R, ˚, O, V y,
where:

(i) PF pUpMqq is the set of all prime filters of UpMq in the algebra M`δ;

(ii) O “ tw P PF pUpMqq : OM P w u;
(iii) Rwvu iff for all x, y P UpMq, if xÑ y P w and x P v then y P u;
(iv) w˚ “ tx P UpMq : ´ x R w u;
(v) V ppq “ tw P PF pUpMqq : VM ppq P w u.
Once more, pM`δq` (or simply M δ) will be also called the definable prime filter

extension of M since again we can define the following embedding π : WM ÝÑ
PF pUpMqq:

w ÞÑ tx P UpMq : w P x u.
Proposition 3.18. Let M be a Routley–Meyer B˝t-model for L. The map x ÞÑ
xXUpMq is a bounded morphism from pepMq ontoM δ. Moreover, for each x P OMδ

there is y P OpepMq such that x “ y X UpMq.
Proof. Consider the inclusion homomorphism i fromM`δ intoM`. Recall from [21,
p. 106] that the dual mapping i` : pM`q` ÝÑ pM`δq` is defined by the equation:

i`pxq “ i´1pxq.
But i´1pxq “ t y P UpMq : y P x u, so i` is indeed the map mentioned in the
statement of the proposition. However, i` is a bonded morphism, by Lemma 6.1
of [21]. The only thing that we need to notice is that pepMq, x , p iff VM ppq P x iff
VM ppq P xX UpMq iff M δ, xX UpMq , p, for any propositional variable p of L.

Finally, let x P OMδ . Since x is a prime filter of UpMq it is not difficult to see
that x is separated from UpMqzx, that is for any finite x1 Ď x, Y Ď UpMqzx, we
have that

Ş
x1 is not a subset of

Ť
Y . Hence, using the prime filter theorem ([9,

p. 186], or Lemma 6.1 in [7]), there must be a prime filter of UpďM q, y Ě x such
that y X UpMqzx “ H, so indeed y “ x X UpMq, as desired. Furthermore, since
OM P x Ď y, we have that y P OpepMq as well. A similar argument establishes that
the mapping under consideration is surjective.
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We will say that a class K is closed under surjective relevant directed bisimu-
lations w.r.t. O, if whenever xZ1, Z2y is a relevant directed bisimulation surjective
w.r.t. O2 between two models M1,M2, then M1 P K only if M2 P K.

Corollary 3.19. Suppose K is a class of Routley–Meyer B˝t-models for L closed un-
der surjective relevant directed bisimulations w.r.t. O. Then pepMq P K iff M δ P K.

Proof. Consider the bounded morphism x ÞÑ xX UpMq (call it g) given by Propo-
sition 3.18. By Proposition 3.7, the pair xZ1, Z2y is a relevant directed bisimulation
which is surjective w.r.t. both OMδ and OpepMq, where:

xZ1y iff x ďMδ
gpyq,

xZ2y iff gpxq ďMδ
y.

Consequently, pepMq P K iff M δ P K by the closure assumption on K.

Corollary 3.20. Let M be a Routley–Meyer B˝t-model for L. Then for any prime
filter u of UpW q and formula φ of L we must have that VM pφq P u iff M δ, u , φ.
Moreover, M , φ iff M δ , φ for any such φ.

Proof. Consider the mapping given in Proposition 3.18. We have that pepMq, x , φ
iff M δ, xXUpMq , φ and that indeed all elements of M δ are of the form xXUpMq.
Therefore, using Proposition 3.14, we see that if u “ x X UpMq is a prime filter of
UpW q, VM pφq P u iff VM pφq P x iff pepMq, x , φ iff M δ, u , φ.

The last part of the result follows from Proposition 3.14 again using Corol-
lary 3.19.

So, according to Corollaries 3.3, 3.20 and Propositions 3.14, 3.9 we can see that
a class of models K definable by a theory of the relevant language L is always going
to be closed under surjective relevant directed bisimulations, (definable) prime ex-
tensions and disjoint unions. Indeed, both K and K will be closed under (definable)
prime extensions.

4 Characterizing Definable Classes of Models
In this section, we finally tackle the main result of the paper (Theorem 4.5). We
start with a simple lemma, which was first established by Goldblatt for modal logic.

We will call a submodel — in the classical sense of first order logic — M 1 of
a given model M an inner submodel if the pair xI, Iy, where I is just the identity
relation on M 1, is a relevant directed bisimulation between M and M 1. Indeed,
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then xI, Iy is a relevant directed bisimulation surjective w.r.t. OM 1 . Note that, using
Corollary 3.3, it follows that a definable class of models is always going to be closed
under inner submodels, that is, given a class K, if M P K and M 1 is an inner
submodel of M , then M 1 P K.

Lemma 4.1. Let tMi : i P I u be a family of B˝t-models and
ś
Mi{U an ul-

traproduct. Then
ś
Mi{U is isomorphic to an inner submodel of the ultrapower

pÀiPIMiqI{U . Hence, a class closed under disjoint unions, inner submodels and
ultrapowers is closed under ultraproducts.

Proof. Simply consider the mapping f{U ÞÑ f 1{U where f 1 : I ÝÑ Ť
iPIWi is defined

by f 1piq “ fpiq.
Lemma 4.2. Let Lcorr` be obtained by adding a list of constants to Lcorr. Suppose
K is a class of Routley–Meyer B˝t-models which is closed under ultraproducts. Then
for any set Θ of formulas of Lcorr`, if Θ is finitely satisfiable in K then Θ is indeed
satisfiable in K.

Proof. This is simply the proof of the compactness theorem using ultraproducts
which can be found, for example, in [1] (Theorem 4.1).

Proposition 4.3. Let M be a Routley–Meyer B˝t-model and N an ω-saturated
Routley–Meyer B˝t-model such that N , φ iff M , φ for any formula φ of L.
Then there is a relevant directed bisimulation surjective w.r.t. both ON and OM

δ

between N and M δ.

Proof. Given x PWN , let fpxq “ tMpφq : N, x , φ, φ P FmlapLq u. It is not difficult
to verify that fpxq is indeed in the domain of M δ. Now define the following pair of
relations Z1 ĎWMδ ˆWN , Z2 ĎWN ˆWMδ :

xZ1y iff x Ď fpyq,
xZ2y iff fpxq Ď y.

Next we show that xZ1, Z2y is a relevant directed bisimulation surjective w.r.t. both
ON and OMδ .

To establish (1) from Definition 3.1 we start by noting that

fpxq˚δ “ tMpφq : Mp∼φq R fpxq, φ P FmlapLq u
“ tMpφq : N, x . ∼φ, φ P FmlapLq u
“ tMpφq : N, x˚N , φ, φ P FmlapLq u
“ fpx˚N q.

638



Model Definability in Relevant Logic

Suppose next that xZ1y, i.e., x Ď fpyq. Then fpy˚N q “ fpyq˚δ “ tMpφq : Mp∼φq
R fpyq, φ P FmlapLq u Ď tMpφq : Mp∼φq R x, φ P FmlapLq u, which means that
fpyq˚δZ2x˚N . On the other hand, if xZ2y, i.e., fpxq Ď y, we have that y˚δ “
tMpφq : Mp∼φq R y, φ P FmlapLq u Ď tMpφq : N, x . ∼φ, φ P FmlapLq u “ tMpφq :
N, x˚N , φ, φ P FmlapLq u “ fpx˚N q, so y˚δZ1x˚N as desired.

To establish (2) from Definition 3.1 suppose that xZ1y, i.e., x Ď fpyq and RNybc.
Take fpbq and fpcq. It is easy to see that Rδxfpbqfpcq. For assume that Mpφq Ñ
Mpψq “ Mpφ Ñ ψq P x while Mpφq P fpbq. Then N, b , φ whereas Mpφ Ñ
ψq P fpyq, which means that N, y , φ Ñ ψ, so N, c , ψ given that RNybc. Thus,
Mpψq P fpcq as desired. Moreover, bZ2fpbq while fpcqZ1c. On the other hand,
assume that xZ2y, i.e., fpxq Ď y and Rδybc. Consider the set ∆ defined as

tSTxpφq : M δ, b , φ, φ P FmlapLq u Y t STxpψq : M δ, c . ψ,ψ P FmlapLq u.
Take any finite ∆0 Ď ∆. We may assume it is tSTxpφ0q, . . . , STxpφjq uYt STxpψ0q,
. . . , STxpψkq u. Now,M δ, y . Ź

iăj`1 φi Ñ
Ž
iăk`1 ψi, soMp

Ź
iăj`1 φi Ñ

Ž
iăk`1

ψiq R y, so MpŹiăj`1 φi Ñ
Ž
iăk`1 ψiq R fpxq. The latter means then that N, x .Ź

iăj`1 φi Ñ
Ž
iăk`1 ψi, hence, there must be b0, c0 such that RNxb0c0 and N, b0 ,Ź

iăj`1 φi while N, c0 . Ž
iăk`1 ψi. By the ω-saturation of N we must have b1, c1

such that RNxb1c1 while also b1 satisfies tSTxpφq : M δ, b , φ, φ P FmlapLq u (i.e.,
M δ, bVL N, b

1) and c1 satisfies t STxpψq : M δ, c . ψ,ψ P FmlapLq u (i.e., N, c1 VL

M δ, c). Finally, b Ď fpb1q, i.e., bZ2b1 since Mpφq P b implies that M δ, b , φ which
means that N, b1 , φ, so indeed Mpφq P fpb1q, and fpc1q Ď c, i.e., c1Z2c similarly
since N, c1 VL M

δ, c.
To check (3) from Definition 3.1 first assume that xZ1y, i.e., x Ď fpyq. Now,

M δ, x , p implies that Mppq P x, so by assumption, Mppq P fpyq as well. The latter
means that N, y , p by definition of f . On the other hand, if xZ2y, i.e., fpxq Ď y
and N, x , p, then Mppq P fpxq. Consequently, Mppq P y, by our assumption, and
that means that M δ, y , p as desired.

Clause (4) from Definition 3.1 is established along similar lines to (2) above. For
(5), from Definition 3.1 let us assume that xZ2y, i.e., fpxq Ď y and that x P ON .
Hence, N, x , t, so Mptq “ OM P fpxq, so OM P y, which means that y P OMδ .
The case of Z1 follows simply by reversing this argument.

Finally, we show that xZ1, Z2y is surjective w.r.t. both ON and OMδ . So assume
first that x P ON , then fpxq is such that fpxqZ1x trivially and also fpxq P OMδ given
that N, x , t implies that Mptq P fpxq, which in turn means that fpxq P OMδ . On
the other hand, if x P OMδ , then it suffices to find y P ON such that M δ, x . φ
implies that N, y . φ for all formulas φ of L. This will show that yZ2x. Consider
the set tSTxptq uYt STxpφq : M δ, x . φ, φ P FmlapLq u and take some finite subset
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tSTxptq u Y t STxpφ0q, . . . , STxpφnq u. We know that M δ, x . Ž
j ă n` 1φj , so

M δ . Ž
jăn`1 φj , so M . Ž

jăn`1 φj and by the hypothesis of the proposition,
N . Ž

jăn`1 φj . Consequently, there is z P ON such that N, z . Ž
jăn`1 φj , so z

satisfies tSTxptq u Y t STxpφ0q, . . . , STxpφnq u. By the ω-saturation of N , there
must be y satisfying tSTxptq uYt STxpφq : M δ, x . φ, φ P FmlapLq u as desired.
Lemma 4.4. Let K be a class of Routley–Meyer B˝t-models. If K is closed under
surjective (w.r.t. O) relevant directed bisimulations and both K and K are closed
under definable prime extensions, then both K and its complement are closed under
ultrapowers.

Proof. First suppose M P K and
ś
M{U is an ultrapower of M . Consider next an

ultrapower N “ śpśM{Uq{D obtained by Keisler’s method which is ω-saturated.
Applying Łoś’s theorem a couple of times, we have that M , φ iff

śpśM{Uq{D ,
φ. Thus, using Proposition 4.3, there is a surjective (w.r.t. ON ) relevant directed
bisimulation between M δ and M .

Now M δ P K by the closure of K under definable prime extensions. By the
closure under surjective (w.r.t. O) relevant directed bisimulations, we also see that
N P K. Again applying Proposition 4.3 with N and

ś
M{U this time, there must be

a relevant directed bisimulation surjective w.r.t. O
ś
M{U between N and pśM{Uqδ,

so indeed the latter is in K and since K is closed under definable prime extensions,
we must have that

ś
M{U P K, as desired.

On the other hand, if M P K, since also M δ P K, then by Proposition 4.3,
we have that

śpśM{Uq{D P K by the closure of K under surjective (w.r.t. O)
relevant directed bisimulations. Moreover,

ś
M{U P K by the above established

closure of K under ultrapowers.

Theorem 4.5. Let K be a class of Routley–Meyer B˝t-models. Then the following
are equivalent:

(i) K is relevantly definable, that is, K “ ModpΘq for some collection Θ of for-
mulas of L.

(ii) K is closed under surjective (w.r.t. O) relevant directed bisimulations and
disjoint unions while both K and its complement K are closed under prime
filter extensions.

(iii) K is closed under surjective (w.r.t. O) relevant directed bisimulations and
disjoint unions while both K and its complement K are closed under definable
extensions.
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(iv) K is closed under surjective (w.r.t. O) relevant directed bisimulations and dis-
joint unions while both K and its complement K are closed under ultrapowers.

Proof. (i)ñ (ii): Closure under surjective (w.r.t. O) relevant directed bisimulations
comes from Corollary 3.3. Closure under disjoint unions is a consequence of Propo-
sition 3.9. Finally, the remaining closure properties follow from Proposition 3.14.

(ii) ñ (iii): By Corollary 3.19, we see that if K is closed under prime filter
extensions, then it is also closed under definable extensions.

(iii)ñ (iv): By Lemma 4.4.
(iv) ñ (i): Suppose that K and K are closed as indicated. Observe that K is

closed under ultraproducts according to Lemma 4.1. Consider

ThrelpKq “ tφ P L : M , φ, for all M P K u.
All we need to do is show that K “ ModpThrelpKqq. The direction K Ď ModpThrel
pKqq is obvious, so let M P ModpThrelpKqq to establish that M P K. We may
assume thatM is an ω-saturated model (for if we can establish that some ω-saturated
ultrapower of M is in K then since K is closed under ultrapowers, M will be in K).

Expand Lcorr to a language Lcorr` by adding a constant ca for each a P OM .
Next consider the union ∆ of the following sets of formulas of Lcorr`:

t ST ca{xx pφq : M . φ, φ P Fmla(L) u Y tST ca{xx ptq u pa P OM q.
Now we can see that ∆ is finitely satisfiable in K, which in conjunction with K’s
closure under ultraproducts, lets us conclude, by appealing to Lemma 4.2, that
indeed ∆ is satisfiable in K. So take any finite ∆0 Ď ∆. Without loss of generality,
we may assume that ∆0 is of the following form:

t ST ca0{x
x pφq : M . φ0j , φ0j P Fmla(L), j ă l0 u Y tST ca0{x

x ptq u Y ¨ ¨ ¨
Y t ST can{xx pφq : M . φnj , φnj P Fmla(L), j ă ln u Y tST can{xx ptq u.

Since ap ďM ap (p ă n ` 1), we must have that M,ap . Ž
jălp φpj , so

Ž
jălp φpj R

ThrelpKq. The latter implies, by definition, that there is a model Np P K such that
for some bp P ONp , Np, bp . Ž

jălp φpj . Now take the disjoint union
À

păn`1Np

which is in K by its closure under this construction.
À

păn`1Np can be expanded
in the obvious way to a model of ∆0, that is, the constant cap gets assigned the
element bp.

Given a model N P K of ∆, we can assume it is ω-saturated by the closure of
K under ultrapowers. Now we have that for each a P OM , there is a1 P ON such
that N, a1 VL M,a. But the relation VL can be used to define a relevant directed
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bisimulation between ω-saturated models according to Proposition 3.5, and in this
case we get indeed a surjective directed bisimulation with respect to OM . Thus, we
must have that M P K as desired by the closure properties of K.

Observe that, as a referee points out, even though on the face of it, this proof
might seem to show that we only needed closure under finite disjoint unions, this is
in fact not true. The reason is that we appealed to Lemma 4.1, where closure under
arbitrary disjoint unions was required.

5 Concluding Remarks

We have seen that a class K of Routley–Meyer models is relevantly definable iff K is
closed under surjective (w.r.t. O) relevant directed bisimulations and disjoint unions
while both K and its complement K are closed under prime filter extensions. More-
over, prime filter extensions could be replaced by definable prime filter extensions.
This provides a complete characterization of definability in relevant languages at the
level of models.

One final word on our inclusion of K in our language (we do not discuss J for,
in fact, it is definable as ∼K). Note that if we look at the empty class of models
H and L has only the set of connectives t∼,^,_,Ñ, ˝, t u, then H is simply not
definable in L for a model with a trivial world (in the sense that it satisfies all the
formulas of L) included among the distinguished worlds cannot really be ruled out.
But H is trivially closed under any model-theoretic relations or constructions, so
we could not get a characterization like the one we have presented here. One way
to solve this would be to add to the language a connective KO with the semantics:
M,w . KO if w P OM . We could have gone this way rather than added K, but we
have decided in favor of the latter for simplicity and to work in the same setting
as [22], where we have gotten our duality theory from.

Finally, this paper is part of a larger project by the author to fill in some gaps
in the literature on the Routley–Meyer semantics and bring it up to date with the
state of the research on the Kripkean semantics for modal logic. We are under
the, perhaps misguided, impression that the late 1970s, the 1980s and the 1990s
were the golden days of the Routley–Meyer framework in terms of the number of
people actively working in the field and results appearing. In this sense, following
the current political climate, we are seeking to make the Routley–Meyer semantics
great again.
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Abstract
This article introduces Kripke–Galois frames and, more specifically, τ -frames

for a similarity type τ , and studies their logics. τ -logics include a number of
well-known logic systems and we focus here on providing a semantic treatment
of familiar substructural logics, ranging from the Full Lambek and Lambek–
Grishin calculi, to Linear Logic (with, or without exponentials) and to non-
distributive Relevance Logic.

Keywords: gaggle theory, Lambek calculus, linear logic, non-distributive logics,
relational semantics, relevance logic

1 Introduction
Kripke–Galois relational semantics is proposed as an alternative and improvement
(in the opinion of this author at least) over generalized Kripke frames [11], bi-
approximation semantics [27], or approaches [10, 1] building on Urquhart’s repre-
sentation of lattices [28], including TiRS graphs [7]. Whereas [11] builds on the
canonical extensions theory of Gehrke and Harding [12], where the latter builds on
this author’s shared work with Dunn on lattice representation [24], the framework
presented here is developed in the context of this author’s Stone duality for lattice
expansions [16] and it may be also seen as an elaboration of Dunn’s theory of Gener-
alized Galois Logics (gaggle theory) [8], a comprehensive presentation of which can
be found in Bimbó and Dunn [6].

Kripke–Galois frames are a simple generalization of Kripke frames and the focus
of the approach lies, first, with delineating appropriate classes of first-order definable
frames for the logics of interest and second with re-capturing the classical interpre-
tation of familiar operators, such as possibility, or cotenability (fusion), despite the
lack of distribution of conjunctions over disjunctions and conversely. The signifi-
cance of this latter goal is that it makes it possible to study applied logics, such as
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temporal, epistemic, or dynamic logics over a non-distributive propositional basis
[22, 20]. For example, tense logic is interpreted in linear orders and the tense opera-
tors ‘sometimes/always in the future/past’ are used to capture properties of points
in time. In the generalized Kripke frames approach of [11], the possibility operator
is interpreted over 2-sorted frames by the clause

X ∋ x ⊩ ◊ϕ iff ∀y ∈ Y (∀z ∈X(z ⊩ ϕ Ô⇒ yR◊z) Ô⇒ x ≤R y)
and there appears to be no intelligible way to understand the meaning of diamond as
a future operator. Similarly, processes are typically interpreted as binary relations
and then graphs are the appropriate frame structures for the interpretation of modal
operators in dynamic logic. However, again, the semantic condition above makes it
hard to understand the meaning of ⟨α⟩ϕ in the approach of [11], not to mention the
fact that 2-sorted frames are used in [11].

It is this author’s opinion that there is no reason why the absence of distribution
of conjunctions over disjunctions and conversely should affect the way we understand
and interpret other operators in the logic. It, therefore, becomes important to seek
a solution where the standard interpretation of familiar operators is recaptured and
this has been the objective of this author’s recent research. Naturally, recapturing
the meaning that operators have in a distributive context cannot apply to disjunc-
tion, which can no longer be interpreted as union. But we have demonstrated in
[20, 21] that non-distributive disjunction can be interpreted modally and this sheds
some light into its semantics.

Though ‘Kripke–Galois semantics’ is a term we introduce in this article, pub-
lished results and applications of the framework to the semantics of non-distributive
logics have appeared in [19, 22, 18, 20] and in [21], where the groundwork for the
framework of this article first appeared (called ‘order-dual relational semantics’ in
[20, 21]). Our approach is based on a Stone-type representation and duality result
for bounded lattices with operators published several years ago [16], with minor
improvements, first explicitly presented in [21].

The main objective of the present article is to demonstrate the wide application
scope of the Kripke–Galois semantics approach and its ability to handle, in a uniform
way, a variety of logical systems lacking distribution. Having studied modal and
temporal extensions of non-distributive propositional logic in [22, 20], we turn here
to studying a number of well-known substructural logic systems.

Following an introduction to Kripke–Galois frames, to generalized image oper-
ators and τ -frames, as well as to τ -logics for some similarity type τ (Section 2),
applications of the proposed framework are considered in detail, providing a seman-
tic treatment of both the associative and the non-associative Full Lambek Calculus

648



Kripke–Galois Frames and their Logics

(FL) with, or without exchange, contraction and weakening (Section 3). An exten-
sion of the calculus with the Grishin dual operators is also considered and complete-
ness results for both the minimal Full Lambek–Grishin calculus (FLG∅) as well
as with Grishin’s interaction axioms are proven. FLG∅ includes non-commutative,
contraction, weakening and negation-free Relevance Logic, or Linear Logic without
negation and without exponentials. We then also turn to a study of applications of
Kripke–Galois semantics to relational semantics for the logic of De Morgan Lattices
and Monoids (Section 5.1), for (non-distributive) RL and for LL without exponen-
tials (Sections 5.2, 5.3 and 5.4), and, finally, for full Linear Logic (Section 5.5).

Notational Conventions: We use a, b, c, d, e for lattice elements and x, y, z, u, v
for lattice filters. xa = a ↑ designates the principal filter generated by the lattice
element a, while Γ,∆ are used to designate closure operators, typically on subsets of
some set X and we simplify notation by writing Γx for the more accurate Γ({x}), for
x ∈X, and similarly for ∆. Furthermore, we overload the use of ≤ whose primary use
is for the lattice order and write x ≤ y for filter inclusion, x ≤ U , where x ∈X,U ⊆X
as an abbreviation for ∀u ∈ U x ≤ u. Similarly for U ≤ x. Also, we let a ≤ x, for
a lattice element a and a filter x, designate the fact that a is a lower bound of the
elements in x (i.e., ∀b ∈ x a ≤ b). Note that a ≤ x iff x ≤ xa.
2 Kripke–Galois Frames and Models
2.1 From Kripke Frames to Kripke–Galois Frames
By a Kripke–Galois frame we mean any relational structure (X,R, (Ri)i∈I), where
R ⊆ X ×X is called the Galois relation of the frame and each Ri is a relation of
some specified arity on the carrier set X of the frame. Whereas any subset of X is
classically viewed as a proposition, we restrict to Galois stable subsets, i.e., subsets
A ⊆ X such that A = λρA and where λ, ρ is the Galois connection generated by the
relation R as shown in equations (1, 2) below.

λU = {x ∶URx} = {x ∶ ∀u (u ∈ U Ô⇒ uRx)} (1)
ρV = {y ∶ yRV } = {y ∶ ∀v (v ∈ V Ô⇒ yRv)} (2)

Gλ(X) hereafter designates the set of stable subsets A = λρA = ΓA of the carrier
set of a Kripke–Galois frame F = (X,R, (Ri)i∈I). The co-stable sets are the sets
B = ρλB = ∆B and Gρ(X) designates the dual family of co-stable sets. The Galois
connection restricts to a dual isomorphism of the complete lattices of stable and,
respectively, co-stable sets. We refer to members of Gρ(X) as the co-propositions of
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the frame. A stable set interpreting a sentence ϕ will be designated by [[ϕ]], while the
co-interpretation of ϕ will be written as ((ϕ)), and we shall write x ⊩ ϕ (x satisfies
ϕ) iff x ∈ [[ϕ]] and x ⊩∂ ϕ (x co-satisfies, or refutes, ϕ) iff x ∈ ((ϕ)).

It is a straightforward observation that given a binary relation R and where R
is its complement, if λ, ρ is the Galois connection generated by R as in equations (1,
2) and ∎,◇ is the residuated pair generated by R as in equation (3)

∎U = {x ∶ ∀x′ (x′Rx Ô⇒ x′ ∈ U)} ◇ V = {x ∶ ∃x′ (xRx′ and x′ ∈ V )} (3)

then the Galois connection and the residuated pair generate the same closure oper-
ator, in other words λρ = ∎◇. Therefore, if [[ϕ]] stands for the interpretation of a
sentence, then λρ([[ϕ]] ∪ [[ψ]]) = [[ϕ ∨ ψ]] = ∎(◇[[ϕ]] ∪◇[[ψ]]). Hence, disjunction can
be modeled either as the closure of a union, or equivalently, it can be interpreted
modally by the clause x ⊩ ϕ∨ψ iff ∀y (yRx Ô⇒ ∃z (yRz and (z ⊩ ϕ or z ⊩ ψ))).
The reader is referred to [20] for further details on the modal representation of
lattices, a result which was implicit in the lattice representation and duality of [16].

An orthoframe (X,⊥) [14] is a well-known example of what is called here a
Kripke–Galois frame (where ⊥ is symmetric and then λ = ρ), with no additional
relations. TiRS graphs [7] are also instances of what we call Kripke–Galois frames.

An ordinary Kripke frame is a Kripke–Galois frame where Gλ(X) = ℘(X) =Gρ(X), i.e., every subset of the carrier set X is both Galois stable and co-stable.
This is the case when the Galois relation is chosen to be the non-identity relation
xRy iff x ≠ y, as the reader can easily verify, since in that case each of the maps of
the Galois connection is set-complementation and U = − −U for any U ⊆X.

Therefore, Kripke–Galois frames, to be used in providing semantics to non-
distributive lattice-based logics, are a generalization of classical Kripke frames, used
for the semantics of distributive, or Boolean logics. The generalization resides pre-
cisely in abandoning set-complementation as the Galois connection with respect to
which stable sets are determined, and replacing it by an arbitrary Galois connection.

2.2 τ-Frames and Generalized Image Operators
This section introduces τ -frames, as a subclass of the general Kripke–Galois frame
class. Having fixed the semantic structures, our interest is with studying the log-
ics of τ -frames. τ -frames are specified in Definition 2.2, following a preliminary
definition of distribution and similarity types and of generalized image operators
(Definition 2.1). τ -languages, i.e., the languages of τ -frames are introduced in Def-
inition 2.3. In [21], we studied the minimal logic Λ0(τ) of τ -frames and we turn
here to a number of substructural logical systems which are naturally regarded as
τ -logics for appropriate classes of τ -frames.
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A distribution type is an element δ of the set {1, ∂}n+1, for some n ≥ 0, typically
to be written as δ = (i1, . . . , in; in+1) and where in+1 ∈ {1, ∂} will be referred to
as the output type of δ. A similarity type τ is a finite sequence of distribution
types, τ = ⟨δ1, . . . , δk⟩. To each distribution type δ = (i1, . . . , in; in+1) Kripke–Galois
semantics associates a pair of frame relations Rδ,R∂δ ⊆X×Xn from which generalized
image operators are defined (see Definition 2.1) on Gλ(X) and Gρ(X), respectively.

The reason we associate to a distribution type a pair of relations Rδ,R∂δ , rather
than a single relation, is grounded on an essential feature of every lattice represen-
tation theorem, where two dually isomorphic concrete meet-semilattices S ⋍ Kop
are shown to be isomorphic and dually isomorphic to the original lattice L, see
[24, 16, 28, 25]. Thereby, a normal n-ary lattice operator f is also both represented
as an operator ⊙f and dually represented as an operator ⊙∂f in each of S and K,
respectively, and so that ⊙f(e1, . . . , en) = λ ⊙∂f (ρe1, . . . , ρen). Each of the relations
Rδ,R

∂
δ is used to generate its respective operator ⊙f (on S) and ⊙∂f (on K).

Definition 2.1 (Generalized Image Operators). Let (X,R) be a frame with R ⊆
X ×X, λ, ρ the generated Galois connection, δ = (i1, . . . , in; in+1) a distribution type
and let Rδ,R∂δ ⊆ X ×Xn, for some n depending on δ, be (n + 1)-ary relations on
the set X. When δ = (i1, . . . , in; 1) is of output type 1, we designate the relations
by R⦶,R∂⦶, rather than Rδ,R

∂
δ . Similarly, if δ = (i1, . . . , in;∂) is of output type ∂,

we use the notation R⊖,R∂⊖ for Rδ,R∂δ . In other words, Rδ is either R⦶, or R⊖,
depending on the output type of δ, and similarly for R∂δ . The relations R⦶,R∂⦶
(and similarly for R⊖,R∂⊖) are used to define a pair of order-dual operators ⦶,⦶∂
(⊖,⊖∂ , respectively) and we think of a relation R∂δ as the ‘dual’ of the relation Rδ.
Equations (4, 5) define the generalized image operators on P(X) generated by the

⦶(U1, . . . , Un) = {x ∶ ∃u1, . . . , un (xR⦶u1⋯un ∧ ij=1⋀
j=1⋯n(uj ∈ Uj) ∧

ir=∂⋀
r=1⋯n(ur ∈ ρUr))} (4)

⦶∂(U1, . . . , Un) = {x ∶ ∀u1, . . . , un ( ij=1⋀
j=1⋯n(uj ∈ λUj) ∧

ir=∂⋀
r=1⋯n(ur ∈ Ur)Ô⇒ xR∂⦶u1⋯un)} (5)

relations, when δ = (i1, . . . , in; 1) is of output type 1, while equations (6, 7)

⊖(U1, . . . , Un) = {x ∶ ∀u1, . . . , un ( ij=1⋀
j=1⋯n(uj ∈ Uj) ∧

ir=∂⋀
r=1⋯n(ur ∈ ρUr)Ô⇒ xR⊖u1⋯un)} (6)

⊖∂(U1, . . . , Un) = {x ∶ ∃u1, . . . , un (xR∂⊖u1⋯un ∧ ij=1⋀
j=1⋯n(uj ∈ λUj) ∧

ir=∂⋀
r=1⋯n(ur ∈ Ur))} (7)

define them when δ = (i1, . . . , in;∂) is of output type ∂.
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The definition of the image operator ⦶ in (4) is a generalization of the Jónsson–
Tarski additive image operators in a mere distributive setting (lacking a comple-
mentation operator), resulting by the addition of the extra conditions that ur ∈ ρUr,
whenever ir = ∂, a case that is captured in a Boolean context by composition with
classical negation. The reader may wish to consider the case where the operators
are defined on a plain Kripke frame, i.e., the relation R is the non-identity relation
xRy iff x ≠ y and then λU = ρU = −U .

Definition 2.2 (τ -Frames). Let τ = ⟨δ1, . . . , δk⟩ be a similarity type. A Kripke–
Galois τ -frame (or simply τ -frame) Fτ = (X,R, (Rδ,R∂δ )δ∈τ) is a frame (X,R) to-
gether with a pair of relations Rδ,R∂δ ⊆X ×Xn, for each δ ∈ τ , where n + 1 = `(δ) is
the length of δ = (i1, . . . , in; in+1). If τ = ⟨ ⟩ is the empty sequence, then we refer to
the frame as a lattice frame.

For each δ∨ = (i1, . . . , in; 1) ∈ τ of output type 1, and where (R⦶,R∂⦶) is its
corresponding relation pair, let ⦶,⦶∂ be the generalized image operators gener-
ated by R⦶,R∂⦶, respectively, defined by equations (4, 5). Similarly, for each δ∧ =(i1, . . . , in;∂) ∈ τ of output type ∂ and where (R⊖,R∂⊖) is its corresponding relation
pair, let ⊖,⊖∂ be the generalized image operators generated by R⊖,R∂⊖, respectively,
defined by equations (6, 7). The following requirements are placed on the operators
of the frame.

1. Gλ(X) is closed under the operators ⦶,⊖, while Gρ(X) is closed under the
operators ⦶∂ ,⊖∂ .

2. The operators ⦶,⦶∂ and the operators ⊖,⊖∂ are order-dual, i.e., they are
interdefinable by means of the Galois connection generated by the binary re-
lation R of the frame. More specifically, for any sets A1, . . . ,An ∈ Gλ(X)
and any D1, . . . ,Dn ∈ Gρ(X) the following two (equivalent) conditions hold:⦶(A1, . . . ,An) = λ(⦶∂(ρA1, . . . , ρAn)),⦶∂(D1, . . . ,Dn) = ρ(⦶(λD1, . . . , λDn)).
Similarly, the following two (equivalent) conditions hold: ⊖(A1, . . . ,An) =
λ(⊖∂(ρA1, . . . , ρAn)) and ⊖∂(D1, . . . ,Dn) = ρ(⊖(λD1, . . . , λDn)).

A general τ -frame Gτ = (X,R, (Rδ,R∂δ )δ∈τ ,Pλ) is a frame with a distinguished
sublattice Pλ ⊆ Gλ(X) such that ⦶,⊖ restrict to operators of the respective distri-
bution type on Pλ and similarly for ⦶∂ ,⊖∂ and Pρ = {ρA ∶A ∈Pλ}.
2.3 (Co)Interpretation of Propositional τ-Languages
If L = (L,∧,∨,0,1) is a bounded lattice, PLL designates Positive Lattice Logic,
whose language is generated by the schema ϕ ∶= p (p ∈ P ) ∣ ⊺ ∣ � ∣ ϕ∧ϕ ∣ ϕ∨ϕ, where
P is a countable set of propositional variables.
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Definition 2.3 (Propositional τ -Languages). Given a similarity type τ , the propo-
sitional τ -language is the extension PLLτ of the language of PLL with an n-ary
operator symbol ◯δ for each δ ∈ τ . Explicitly, sentences are generated by the gram-
mar ϕ ∶= p (p ∈ P ) ∣ ⊺ ∣ � ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ◯δ(ϕ, . . . , ϕ) (δ ∈ τ).

Given a lattice frame F = (X,R), where R ⊆ X ×X, a lattice model M = (F, V )
is a frame together with an admissible valuation V = (V1, V2) consisting of a pair of
valuations V1 ∶ P Ð→ Gλ(X) and V2 ∶ P Ð→ Gρ(X) such that V1(p) = λV2(p) and
then also V2(p) = ρV1(p).

An interpretation [[ ]] and co-interpretation (or refutation) (( )) is a pair of func-
tions extending V1, V2, respectively, to all sentences of the language and subject to
the conditions in Table 1, together with the constraint that for all ϕ, [[ϕ]] = λ((ϕ))
and ((ϕ)) = ρ([[ϕ]]). A model on a general lattice frame G = (F,Pλ) is a pair
M = (G, V ) where V is an admissible valuation as previously detailed, but with the
additional requirement that for every propositional variable p, V1(p) ∈Pλ and then
also V2(p) ∈ Pρ. The satisfaction ⊩ and co-satisfaction ⊩∂ relations are defined by
x ⊩ ϕ iff x ∈ [[ϕ]] and x ⊩∂ ϕ iff x ∈ ((ϕ)).
x ⊩ p iff x ∈ V1(p) x ⊩∂ p iff x ∈ V2(p)
x ⊩ ⊺ always x ⊩∂ � always
x ⊩ � iff x ∈ ∅λ x ⊩∂ ⊺ iff x ∈ ∅ρ
x ⊩ ϕ ∧ ψ iff x ⊩ ϕ and x ⊩ ψ x ⊩∂ ϕ ∨ ψ iff x ⊩∂ ϕ and x ⊩∂ ψ
x ⊩ ϕ ∨ ψ iff ∀y (yRx implies x ⊩∂ ϕ ∧ ψ iff ∀y (xRy implies∃z (yRz and (z ⊩ ϕ or z ⊩ ψ)) ∃z (zRy and (z ⊩∂ ϕ or z ⊩∂ ψ))

iff ∀y (y ⊩∂ ϕ ∨ ψ implies yRx) iff ∀y (y ⊩ ϕ ∧ ψ implies xRy))

x ⊩ ⦶δ(ϕ1, . . . , ϕn) iff ∃u1, . . . , un(xR⦶u1⋯un ∧ ij=1⋀
j=1⋯n(uj ⊩ ϕj) ∧

ir=∂⋀
r=1⋯n(ur ⊩∂ ϕr)) (8)

x ⊩∂ ⦶δ(ϕ1, . . . , ϕn) iff ∀u1, . . . , un( ij=1⋀
j=1⋯n(uj ⊩ ϕj) ∧

ir=∂⋀
r=1⋯n(ur ⊩∂ ϕr)Ô⇒ xR∂⦶u1⋯un) (9)

x ⊩ ⊖δ(ϕ1, . . . , ϕn) iff ∀u1, . . . , un( ij=1⋀
j=1⋯n(uj ⊩ ϕj) ∧

ir=∂⋀
r=1⋯n(ur ⊩∂ ϕr)Ô⇒ xR⊖u1⋯un) (10)

x ⊩∂ ⊖δ(ϕ1, . . . , ϕn) iff ∃u1, . . . , un (xR∂⊖u1⋯un ∧ ij=1⋀
j=1⋯n(uj ⊩ ϕj) ∧

ir=∂⋀
r=1⋯n(ur ⊩∂ ϕr)) (11)

Table 1: Interpretation and Dual Interpretation

A model M = (G, V ) on a general τ -frame G is a lattice model (on the underlying
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general lattice frame) where the satisfaction and co-satisfaction relations are subject
to the conditions of Table 1, where we make the convention to write ⦶δ for ◯δ
when δ = (i1, . . . , in; 1) is of output type 1 and we write ⊖δ, respectively, when
δ = (i1, . . . , in;∂) is of output type ∂. A sentence ϕ is (dually) satisfied in a model
M if there is a world x ∈ X such that x ⊩ ϕ (respectively, y ⊩∂ ϕ, for some y ∈ X).
It is (dually) valid in M iff it is satisfied (respectively, dually satisfied) at all worlds
x ∈X (respectively, at all y ∈X).

A symmetric sequent ϕ ⊢ ψ is valid in a model M iff for every world x of M, if
x ⊩ ϕ, then x ⊩ ψ. Equivalently, the sequent is valid in the model iff for every world
y, if y ⊩∂ ψ, then y ⊩∂ ϕ. The sequent is valid in a general frame G if it is valid in
every model M based on the frame G. Finally, we say that the sequent is valid in a
class G of general frames iff it holds in every frame in G.

The operators semantically specified by (8–11) include all cases of unary and
binary operators of various logical calculi, such as the Full Lambek and Lambek–
Grishin calculus, Orthologic, Relevance and Linear Logic etc., see Sections 3–5.5.
Example 2.4. We present some cases of interest for the operators:

• If δ = (1; 1), then (8) specializes to the clause

x ⊩ ⦶1;1ϕ iff ∃u (xR⦶1;1u and u ⊩ ϕ)
so that ⦶1;1 is a unary diamond operator ◊. Similarly, ⦶1,...,1;1 = y is an
n-ary diamond operator with the familiar satisfaction clause. In particular,
the distribution type δ = (1,1; 1) corresponds to the binary diamond operator
known as the fusion operator in substructural and relevance logics.

• If δ = (∂; 1), then ⦶∂;1 is a falsifiability operator. Indeed, the satisfaction clause
(8) provided above becomes

x ⊩ ⦶∂;1ϕ iff ∃u (xR⦶∂;1u and u ⊩∂ ϕ)
In words, ϕ is falsifiable at x iff it is refuted at some successor state u of x.

• If δ = (1;∂), then ⊖1;∂ is an impossibility operator, i.e., a modally interpreted
negation operator ∼. This can be seen from the respective clause (10) instan-
tiated below, where R⊖1;∂ is the complement of R⊖1;∂

x ⊩ ⊖1;∂ϕ iff ∀u (u ⊩ ϕ Ô⇒ xR⊖1;∂u) iff ∀u (xR⊖1;∂u Ô⇒ u ⊮ ϕ)
• If δ = (∂;∂) then the respective clause (10) reads as follows

x ⊩ ⊖∂;∂ϕ iff ∀u (u ⊩∂ ϕ Ô⇒ xR⊖∂;∂u) iff ∀u (xR⊖∂;∂u Ô⇒ u ⊮∂ ϕ)
which is precisely an irrefutability operator.
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• If δ = (1, ∂;∂), then ⊖1,∂;∂ = −◇ is an implication operator, with satisfaction
clause instantiating (10),

x ⊩ ϕ−◇ψ iff ∀u, v (u ⊩ ϕ and v ⊩∂ ψ Ô⇒ xR−◇uv)
iff ∀u, v (xR−◇uv and u ⊩ ϕ Ô⇒ v ⊮∂ ψ)

which we treated in [20] and as noted there it resembles the clause for Rel-
evant implication [2, 3], except for replacing satisfaction of the conclusion at
v by its non-refutation. Co-satisfaction is specified by the following clause,
instantiating (11)

x ⊩∂ ϕ−◇ψ iff ∃u, v (xR−◇uv and u ⊩ ϕ, but v ⊩∂ ψ)
which is the natural analogue of a clause for negated implication.

• For δ = (∂,1;∂), the operator ⊖δ = ⊖∂,1;∂ is a reverse implication ◇−, as the
reader can easily see by instantiating clause (10).

• The case δ = (∂, ∂;∂) corresponds to a binary non co-refutability operator,
with semantic clause (instantiating (10) and after contraposition and writing⊘ for ⊖∂,∂;∂)

x ⊩ ϕ⊘ ψ iff ∀u, v (xR⊘uv Ô⇒ (u ⊮∂ ϕ or v ⊮∂ ψ))
iff ∀u, v (xR⊘uv and u ⊩∂ ϕ Ô⇒ v ⊮∂ ψ)

In [21], we defined the minimal logic Λ0(τ) for a similarity type τ as the logic
on the τ -language PLLτ that includes the usual lattice axioms and rules, as well
as monotonicity and distribution axioms for each operator ◯δ corresponding to its
distribution type δ, but no interaction axioms between the operators. The following
general soundness and completeness result was proved in [21].

Theorem 2.5 (Completeness, [21]). Let τ = ⟨δ1, . . . , δk⟩ be a similarity type and
Λ0(τ) the corresponding minimal propositional logic for this type. Then Λ0(τ) is
sound and complete in the class of general τ -frames of Definition 2.2.

The objective of this article is to apply the Kripke–Galois semantic framework
and extend the completeness Theorem 2.4 to various substructural logic systems,
which are naturally viewed as τ -logics for appropriate classes of τ -frames.
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3 The Full Lambek Calculus
We consider here systems that arise from the Gentzen system LJ for intuitionistic
logic by dropping a combination of the structural rules of exchange, contraction
and weakening (perhaps, also association) and expanding the logical signature of
the language to include the operator symbols ○ (fusion, cotenability), ← (reverse
implication) and a constant t. The algebraic semantics of these systems has been
investigated by Hiroakira Ono, see [26]. Following Ono, we let FL be the system
with all structural rules dropped, which is precisely the (associative) Full Lambek
calculus, and for r ⊆ {c, e,w} we designate by FLr the system resulting by adding
to FL the structural rules in r (where c abbreviates ‘contraction’, e abbreviates
‘exchange’ and similarly for w and ‘weakening’). With the exception of FLecw,
which is precisely LJ, distribution of conjunctions over disjunctions and conversely
does not hold, unless explicitly postulated in the axiomatization.

An FL-algebra is a structure ⟨L,≤,∧,∨,0,1,←, ○,→, t⟩ where
1. ⟨L,≤,∧,∨,0,1⟩ is a bounded lattice

2. ⟨L,≤, ○, t⟩ is a partially-ordered monoid (○ is monotone and associative and t
is a two-sided identity element a ○ t = a = t ○ a)

3. ←, ○,→ are residuated, i.e., a ○ b ≤ c iff b ≤ a→ c iff a ≤ c← b

4. for any a ∈ L, a ○ 0 = 0 = 0 ○ a
An FL-algebra is known as a residuated lattice. FL-algebras (residuated lattices)

are precisely the algebraic models of the (associative) full Lambek calculus.
An FLew-algebra adds to the axiomatization the exchange (commutativity) ax-

iom a ○ b = b ○ a for the cotenability operator (in which case ← and → coincide), as
well as the weakening axiom b ○ a ≤ a, in which case combining with commutativity
a ○ b ≤ a ∧ b follows. In addition, by 1 ○ t ≤ t, the identity t = 1 holds in FLew-
algebras. FLew-algebras are also referred to in the literature as full BCK-algebras,
corresponding to full BCK-logic, resulting from BCK whose purely implicational
signature is expanded to include conjunction and disjunction connectives, alongside
the cotenability logical operator and the constants 0,1. Algebraically, they consti-
tute the class of commutative integral residuated lattices.

The language of FL is displayed below, where P is a non-empty, countable set
of propositional variables.

L ∋ ϕ ∶= p (p ∈ P ) ∣ ⊺ ∣ � ∣ t ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ϕ← ϕ ∣ ϕ ○ ϕ ∣ ϕ→ ϕ
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Note that we have preferred to use the notation common in the substructural logics
community for the residuals of the cotenability operator, rather than the typical
notation of the Lambek calculus where ϕ/ψ is used instead of ϕ → ψ and similarly
for ψ/ϕ and ψ ← ϕ.

Since we have no interest in this article in studying proof theoretic issues, we
may as well assume that the proof system is presented as a symmetric consequence
system, directly encoding the corresponding algebraic specification.

3.1 Kripke–Galois Frames for the Full Lambek Calculus
Cotenability is a binary diamond operator, generated by a relation R⊗ in a Kripke–
Galois frame G = (X,R,R⊗,R∂⊗,Pλ) by equation (4), for n = 2, instantiated below.

A⊗C = {x ∶ ∃u, v (xR⊗uv and u ∈ A and v ∈ C)}
B ⊗∂ D = {x ∶ ∀u, v (u ∈ λB and v ∈ λD Ô⇒ xR∂⊗uv)}

The corresponding satisfaction clauses, resulting by instantiating clauses (8, 9), are
displayed below.

x ⊩ ϕ ○ ψ iff ∃u, v (xR⊗uv and u ⊩ ϕ and v ⊩ ψ)
x ⊩∂ ϕ ○ ψ iff ∀u, v (u ⊩ ϕ and v ⊩ ψ Ô⇒ xR∂⊗uv)

Observe that fusion (a binary diamond) is interpreted by the familiar clause from
the distributive setting and it is this author’s opinion that there is no reason why
lack of distribution of conjunctions over disjunctions and conversely should force
abandoning the way we semantically understand other operators in the logic.

If the Kripke–Galois frame is a plain Kripke frame (X,≠,R⊗,R⊗), i.e., R is the
non-identity relation, λU = ρU = −U , hence Gλ(X) = P(X), and then x ⊩∂ ϕ iff
x ⊮ ϕ and the relation R∂⊗ = R⊗ is the complement of R⊗, then neither R, nor R∂⊗
need to be mentioned and the frame is simply (X,R⊗).

What does force a difference of Kripke–Galois semantics from classical Kripke
semantics is lack of classical complementation, which dictates the use of Galois-
stable sets as propositions, for a non-trivial Galois connection λ, ρ, and where unlike
the classical case ρA ≠ −A and λB ≠ −B. Non-triviality of the Galois connection
results in a refutation (co-satisfaction, or dual satisfaction) relation x ⊩∂ ϕ which is
distinct from x ⊮ ϕ and, similarly, its negation x ⊮∂ ϕ is distinct from satisfaction
x ⊩ ϕ. This becomes relevant when considering the semantics of some operators,
such as implication.

Forward implication → has the distribution type (1, ∂;∂) (it takes joins in the
first and meets in the second argument place to meets) and backwards implication
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← has the distribution type (∂,1;∂). Kripke–Galois frames for forward implication
are of the form (X,R,R1∂;∂ ,R

∂
1∂;∂ ,Pλ) and they are equipped with the indicated

relations, which generate set operators by equations (6, 7), instantiated below.

A⇒ C = {x ∶ ∀u, v (u ∈ A and v ∈ ρC Ô⇒ xR1∂;∂uv)} (12)
B ⇒∂ D = {x ∶ ∃u, v (xR∂1∂;∂uv and u ∈ λB, but v ∈D)} (13)

Correspondingly, thinking that A = [[ϕ]],C = [[ψ]] and then B = ((ϕ)),D = ((ψ)),
the appropriate semantic clauses are obtained by instantiating clauses (10, 11):

x ⊩ ϕ→ ψ iff ∀u, v (u ⊩ ϕ and v ⊩∂ ψ Ô⇒ xR1∂;∂uv)
x ⊩∂ ϕ→ ψ iff ∃u, v (xR∂1∂;∂uv and u ⊩ ϕ, but v ⊩∂ ψ)

We consider Kripke–Galois general frames (X,≤, (Ri,R∂i )i∈I ,Pλ), where Ri,R∂i
are appropriate relations on X and the partial order ≤ is the Galois relation of the
frame. The partial order generates the Dedekind–MacNeille Galois connection λ, ρ
and Gλ(X),Gρ(X) designate the stable and co-stable sets, respectively. By choice
of the Galois relation, each upper set x↑ is Γ-stable x↑= Γ(x↑) = Γ({x}) (which we
hereafter designate simply by Γx) and similarly x↓= ∆(x↓) = ∆x is a co-stable set.
We set things up in a way that ensures first-order definability of frames. For this
purpose, we further require that there is a subset M ⊆ X such that every A ∈ Pλ

is A = Γx for some x ∈M and then it follows that every B ∈ Pρ is of the form B =
∆x = ρ(Γx), for some x ∈M . Thus, frames (X,≤,R11;1,R

∂
11;1,M) can be described

in the first-order frame language L1(≤,R11;1,R
∂
11;1,M), where M ⊆ X, since Pλ

is completely determined by M . For use in the sequel we define the properties
Ψ(x,u, v),Ψ∂(x,u, v) by conditions (14, 15):

Ψ(x,u, v) ≡ ∃u′, v′ (u ≤ u′ ∧ v ≤ v′ ∧ xR11;1u
′v′) (14)

Ψ∂(x,u, v) ≡ ∀u′, v′ (u ≤ u′ ∧ v ≤ v′ Ð→ xR∂11;1u
′v′) (15)

Note that, given (4), Ψ(x,u, v) holds iff x ∈ Γu⊗ Γv and similarly Ψ∂(x,u, v) holds
iff x ∈ ∆u ⊠∆v. As usual, for any property Φ we define ∃!x Φ(x) as shorthand for∃x (Φ(x) ∧ ∀y (Φ(y)Ð→ y = x)).
Modeling the Cotenability (Fusion) Operator: Groupoid and monoid fra-
mes are next defined. Conditions 1(a,b) of Definition 3.1 ensure that each of Pλ,Pρ

is closed under binary intersections. Conditions 1(c,d) ensure that Pλ,Pρ are closed
under ⊗ and ⊠ = ⊗∂ , respectively. Condition 2 enforces A ⊗ C = λ(ρA ⊠ ρC) and
B ⊠D = ρ(λB ⊗ λD), for A,C ∈ Pλ and B,D ∈ Pρ. Condition 3 equips Pλ with
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a bottom element which is a zero element for ⊗. Likewise, Condition 4 equips Pλ

with an identity element T = Γ(e). Condition 5 forces distribution of ⊗ over joins in
Pλ, in each argument place. All of the above are verified in the proof of Lemma 3.2.

Definition 3.1 (Groupoid frames). A structure (X,≤,R11;1,R
∂
11;1,M), withM ⊆X

and such that R11;1,R
∂
11;1 ⊆ X ×X2 and ≤ is a partial order on X, will be called a

Groupoid-frame (G-frame) provided that

1. the following closure conditions hold:

(a) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ ∀u ((x ≤ u ∧ y ≤ u)←→ z ≤ u)]
(b) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ ∀u ((u ≤ x ∧ u ≤ y)←→ u ≤ z)]
(c) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ ∀u (Ψ(u,x, y) ←→ z ≤ u)]
(d) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ ∀u (Ψ∂(u,x, y) ←→ u ≤ z)]

2. For all x, y, z ∈M the following equivalences hold:

(a) Ψ(z, x, y)←→ ∀z′ [Ψ∂(z′, x, y) Ð→ z′ ≤ z]
(b) Ψ∂(z, x, y)←→ ∀z′ [Ψ(z′, x, y) Ð→ z ≤ z′]

3. ∃x (x ∈M ∧ ∀y (y ≤ x ∧ ∀x′, u ((x′R11;1xu ∨ x′R11;1ux)Ð→ x′ = x)))
Thus X has an upper bound, which belongs to M and we shall freely use the
name ω for it in the sequel (extending the signature of the frame language
with the constant ω). Part of the above condition then is equivalent to the
statement ∀x,u ((xR11;1ωu ∨ xR11;1uω)Ð→ x = ω).

4. ∃!w ∈M ∀u, z (u ∈M Ð→ ((Ψ(z, u,w)←→ u ≤ z) ∧ (Ψ(z,w, u)←→ u ≤ z)))
For ease of reference we again extend the signature of the frame language,
introducing the constant e for the unique w ∈M ⊆X of this axiom.

5. For all x, y, z ∈M and all u ∈X
(a) Ψ∂(u,x, y) ∧ Ψ∂(u,x, z) Ð→ ∀u′, v′ (x ≤ u′ ∧ y ≤ v′ ∧ z ≤ v′ Ð→

uR∂11;1u
′v′)

(b) Ψ∂(u,x, z) ∧ Ψ∂(u, y, z) Ð→ ∀u′, v′ (x ≤ u′ ∧ y ≤ u′ ∧ z ≤ v′ Ð→
uR∂11;1u

′v′)
A Monoid frame (M-frame) is a frame where the associativity condition (M) holds.

(M) for any points x ∈X and u, v, z ∈M , the following equivalence holds

∃w ∈M (wR11;1vz ∧ xR11;1uw) ←→ ∃w ∈M (wR11;1uv ∧ xR11;1wz)
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An E,C,W-frame is a monoid frame such that, in addition, the following correspond-
ing condition holds:

(E) For all x,u, v in X, xR11;1uv holds, iff xR11;1vu does.

(C) For all u ∈X and any x, y ∈M , x ≤ u ∧ y ≤ u Ð→ Ψ(u,x, y).
(W) For all u ∈X and any x, y ∈M , Ψ(u,x, y) implies y ≤ u.
Lemma 3.2. Let G = (X,≤,R11;1,R

∂
11;1,M) be a G-frame and ⊗ the binary operator

on subsets of X generated according to equation (4) by the relation R11;1 and ⊠ = ⊗∂
the dual operator generated by the relation R∂11;1 by equation (5). Then

1. Pλ is closed under ⊗, Pρ is closed under ⊠ and both are closed under binary
intersections, where Pλ is the set {Γx ∶ x ∈M} and, similarly, Pρ = {∆x ∶ x ∈
M}. Furthermore, for any stable sets A,C ∈ Pλ and co-stable sets B,D ∈ Pρ

we have A⊗C = λ(ρA⊠ρC) and B ⊠D = ρ(λB⊗λD). Hence, G is a τ -frame
for the similarity type τ = ⟨(1,1; 1)⟩.

2. (Pλ,∩,∨,⊗,T,O) is a lattice-ordered groupoid with two-sided identity element
T and zero element O, where the latter are defined by T = Γ(e) and O = Γ(ω),
while joins in Pλ are defined by A ∨C = λ(ρA ∩ ρC).

3. If condition (M) holds as well, then (Pλ,∩,∨,⊗,T) is a lattice-ordered monoid.

4. If the frame is an EW-frame, then (Pλ,∩,∨,⊗,T,O) is a commutative integral
lattice-ordered monoid.

5. If the frame is an EC-frame, A ∩C ⊆ A⊗C holds in Pλ.

Proof. For 1), closure of Pλ under ⊗, of Pρ under ⊠ and of both under binary
intersections follows from Conditions 1(c), 1(d) and 1(a,b), respectively. Now z ∈
A⊗C = Γx⊗Γy, for some x, y ∈M iff (using Definition (4)) there exist u ∈ A,v ∈ C,
i.e., x ≤ u and y ≤ v, such that zR11;1uv. By the second frame condition, given the
definition (5) this is equivalent to z ∈ λ(∆x ⊠ ∆y) = λ(ρΓx ⊠ ρΓy). The proof of
the second part is similar, now using the second equivalence of the second frame
condition.

For 2), it is straightforward to show that (Pλ,∩,∨,⊗,T,O) is a lattice with
bottom element Γ(ω) = {ω}. By a simple calculation it is verified that the third
condition in the definition of G-frames entails that for any set A ∈Pλ, it holds that
A ⊗O = O = O ⊗A and therefore O is a zero element. Next, Condition 4 enforces
that z ∈ (Γu ⊗ T) iff u ≤ z and z ∈ (T ⊗ Γu) iff u ≤ z, which is equivalent to z ∈ Γu
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and this establishes that T is an identity element for ⊗. It remains to show that ⊗
distributes over binary joins in Pλ, in each argument place. Given part 1 of this
lemma, the claim is equivalent to showing that the dual operator ⊠ distributes over
binary intersections in Pρ. One direction follows from the monotonicity properties
verified in Lemma 2.7 of [21]. Condition 5(a) ensures inclusion in the other direction(∆x ⊠∆y) ∩ (∆x ⊠∆z) ⊆ ∆x ⊠ (∆y ∩∆z) holds. Similarly, for Condition 5(b) and
distribution in the first argument place.

For 3), using condition (M) of Definition 3.1 and closure of Pλ under ⊗, we have
x ∈ Γu⊗ (Γv ⊗ Γz)

iff ∃u′,w (w ∈M ∧ u ≤ u′ ∧ (∃v′, z′ (v ≤ v′ ∧ z ≤ z′ ∧wR11;1v
′z′)) ∧ xR11;1u

′w)
iff ∃u′, v′, z′ (u ≤ u′ ∧ v ≤ v′ ∧ z ≤ z′ ∧ ∃w ∈M (wR11;1v

′z′ ∧ xR11;1u
′w))

iff ∃u′, v′, z′ (u ≤ u′ ∧ v ≤ v′ ∧ z ≤ z′ ∧ ∃w ∈M (wR11;1u
′v′ ∧ xR11;1wz

′))
iff ∃w, z′ (w ∈M ∧ ∃u′, v′ (u ≤ u′ ∧ v ≤ v′ ∧ wR11;1u

′v′) ∧ z ≤ z′ ∧ xR11;1wz
′)

iff x ∈ (Γu⊗ Γv)⊗ Γz,

hence, ⊗ is associative on Pλ.
For 4), the (E) condition implies directly that the ⊗ operator is commutative,

while if the (W) condition holds then it immediately follows that for any A,C ∈Pλ

the inclusion A ⊗ C ⊆ C obtains. The (C) condition directly enforces inclusion of
intersections A ∩C into their product A⊗C, for any A,C ∈Pλ.

Modeling Implication: The following properties will be useful in this section,
defined in the first-order frame language L1(≤,R1∂;∂ ,R

∂
1∂;∂ ,R∂1;∂ ,R

∂
∂1;∂ ,M).

Φ(x,u, v) iff ∀u′, v′ (u ≤ u′ ∧ v′ ≤ v Ð→ xR1∂;∂u
′v′) (16)

Φ∂(x,u, v) iff ∃u′, v′ (u ≤ u′ ∧ v′ ≤ v ∧ xR∂1∂;∂u
′v′) (17)

Θ(x,u, v) iff ∀u′, v′ (u ≤ u′ ∧ v′ ≤ v Ð→ xR∂1;∂v
′u′) (18)

Θ∂(x,u, v) iff ∃u′, v′ (u ≤ u′ ∧ v′ ≤ v ∧ xR∂∂1;∂v
′u′) (19)

To fix our notation, we adopt the conventions below:● An operator for the distribution type (1, ∂;∂) (the distribution type of forward
implication) will be designated by ⇒. It is defined using equation (6), instantiated
below for subsets of the form Γu,Γv

Γu⇒ Γv = {x ∶Φ(x,u, v)} (20)

● Its dual, ⇒∂ , will be designated by ⇓. It is defined using equation (7), instantiated
below for the case of interest

∆u ⇓∆v = {x ∶Φ∂(x,u, v)} (21)
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● An operator for the distribution type (∂,1;∂) (the distribution type of backwards
implication) will be designated by ⇐. It is also defined using equation (6), instan-
tiated below for the case of interest

Γv⇐ Γu = {x ∶Θ(x,u, v)} (22)

● Its dual, ⇐∂ , will be designated by ⇑, defined also by equation (7), instantiated
below for the case of interest

∆v ⇑∆u = {x ∶Θ∂(x,u, v)} (23)

We next introduce a definition for biimplicative frames. Conditions 1(a, b) are
the same as the corresponding conditions in the definition of groupoid frames and
their significance is that they enforce that each of Pλ,Pρ is closed under binary
intersections. The remaining Conditions 1(c, d) enforce closure of Pλ under the
implication operators ⇐ and ⇒, as well as closure of Pρ under the dual operators ⇓
and ⇑. Condition 2 ensures that dual operators are interdefinable using the Galois
connection, i.e., A ⇒ C = λ(ρA ⇓ ρC) and B ⇓ D = ρ(λB ⇒ λD), for A,C ∈ Pλ

and B,D ∈ Pρ, and similarly for ⇐ and ⇑. Conditions 3–4 enforce the distribution
properties of ⇒ and ⇐, while Condition 5 enforces the residuation condition of
biimplicative lattices. All of these claims are proven in Lemma 3.4.

Definition 3.3 (Biimplicative frames). A biimplicative-frame is a structure (X,R,(R1∂;∂ ,R
∂
1∂;∂), (R∂1;∂ ,R

∂
∂1;∂),M) such that

1. the following closure conditions hold:

(a) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ (∀u (x ≤ u ∧ y ≤ u)←→ z ≤ u)]
(b) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ (∀u (u ≤ x ∧ u ≤ y)←→ u ≤ z)]
(c) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ ∀u (Υ(u,x, y) ←→ z ≤ u)],

for each case Υ ∈ {Φ,Θ}
(d) ∀x, y∃z[x ∈M ∧ y ∈M Ð→ z ∈M ∧ ∀u (Υ∂(u,x, y) ←→ u ≤ z)],

for each case Υ∂ ∈ {Φ∂ ,Θ∂}.
2. For all x, y, z ∈M the following hold, for each case Υ ∈ {Φ,Θ} with its corre-

sponding Υ∂ ∈ {Φ∂ ,Θ∂}:
(a) Υ(z, x, y)←→ ∀z′ [Υ∂(z′, x, y) Ð→ z′ ≤ z]
(b) Υ∂(z, x, y)←→ ∀z′ [Υ(z′, x, y) Ð→ z ≤ z′].

3. For all x, y, z ∈M and any w ∈X,
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(a) Φ(w,x, z) ∧Φ(w,y, z) Ð→ ∀u1, v1 (v1 ≤ z ∧ ∀u′ (u′ ≤ x ∧ u′ ≤ y Ð→ u′ ≤
u1) Ð→ wR1∂;∂u1v1)

(b) Φ(w,x, y) ∧Φ(w,x, z) Ð→ ∀u1, v1 (x ≤ u1 ∧ ∀v′ (y ≤ v′ ∧ z ≤ v′ Ð→ v1 ≤
v′) Ð→ wR1∂;∂u1v1).

4. For all x, y, z ∈M and any w ∈X,

(a) Θ(w,x, y) ∧Θ(w,x, z) Ð→ ∀u1, v1 (u1 ≤ x ∧ ∀v′ (v′ ≤ y ∧ v′ ≤ z Ð→ v′ ≤
v1) Ð→ wR∂1;∂u1v1)

(b) Θ(w,x, z) ∧Θ(w,y, z) Ð→ ∀u1, v1 (z ≤ v1 ∧ ∀u′ (x ≤ u′ ∧ y ≤ u′ Ð→ u1 ≤
u′) Ð→ wR∂1;∂u1v1).

5. The following two conditions are equivalent, forall x, y, z ∈M .

(a) ∀w (y ≤ w Ð→ Φ(w,x, z))
(b) ∀w (x ≤ w Ð→ Θ(w, z, y))

Lemma 3.4. Let G = (X,≤,R1∂;∂ ,R
∂
1∂;∂ ,R∂1;∂ ,R

∂
∂1;∂ ,M) be a biimplicative frame

and ⇒,⇐,⇓,⇑ the binary operators on subsets of X generated according to equations
(20, 21, 22, 23) by the frame relations. Then

1. Pλ is closed under ⇒,⇐, Pρ is closed under ⇓,⇑ and both are closed under
binary intersections, where Pλ is the set {Γx ∶ x ∈ M} and, similarly, Pρ ={∆x ∶ x ∈ M}. Furthermore, for any stable sets A,C ∈ Pλ and co-stable sets
B,D ∈ Pρ we have A ⇒ C = λ(ρA ⇓ ρC) and B ⇓ D = ρ(λB ⇒ λD) and
similarly for ⇐ and ⇑. Therefore, G is a τ -frame for the similarity type
τ = ⟨(1, ∂;∂), (∂,1;∂)⟩.

2. (Pλ,∩,∨,⇐,⇒) is a biimplicative lattice, where joins in Pλ are defined by
A ∨C = λ(ρA ∩ ρC).

Proof. Closure under intersections and under the respective operators is immediate
by conditions 1(a–d). For interdefinability of the operators, we do one case as an
example, leaving the other cases to the interested reader.

z ∈ (Γx⇒ Γy) iff Φ(z, x, y)
iff ∀z′ [Φ∂(z′, x, y) Ð→ z′ ≤ z]
iff ∀z′ (z′ ∈ (∆x ⇓∆y) Ð→ z′ ≤ z)
iff z ∈ λ(∆x ⇓∆y) = λ(ρΓx ⇓ ρΓy)
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It follows that G is a τ -frame.
For the distribution properties, one direction of the relevant identities follows

from the monotonicity properties of the operators, verified in Lemma 2.7 of [21]. For
the other direction, Condition 3(a) directly enforces the inclusion (A⇒ C) ∩ (B ⇒
C) ⊆ (A∨B)⇒ C, for A,B,C ∈Pλ, and similarly, for left implication ⇐, now using
Condition 4(a). For distribution over intersections in the consequent place, again
one direction of the inclusion follows by monotonicity, see Lemma 2.7 of [21]. For
the other direction, Condition 3(b) directly enforces that (A⇒ B)∩(A⇒ C) ⊆ A⇒(B ∩C), and similarly, for ⇐, using Condition 4(b), and where A,B,C ∈Pλ.

Finally, the equivalence Γy ⊆ Γx⇒ Γz iff Γx ⊆ Γz ⇐ Γy is directly derivable from
the fifth frame condition.

Remark 3.5 (Implicative Frames). Frames with a single relation pair only for the
distribution type (1, ∂;∂) (corresponding to right implication ⇒) are defined by
simplifying Definition 3.3 in the obvious way. More specifically,

• Conditions 1(a, b) and 2 of Definition 3.3 now have a single instance Υ = Φ
and Υ∂ = Φ∂ ;

• Condition 4, relating to the distribution properties of ⇐ is now redundant;

• Condition 5 now simply needs to capture that Γx ⊆ Γy⇒ Γz iff Γy ⊆ Γx⇒ Γz
and this is achieved by replacing the occurrence of Θ in 5(b) by Φ.

Lemma 3.4 can be restated for the case of a single implication and the proof only
needs a minor adjustment to the single implication situation.

Modeling Fusion–Implication Residuation:

Definition 3.6 (FL frames). An FL−-frame G = (X,≤, (R11;1,R
∂
11;1), (R1∂;∂ ,R

∂
1∂;∂),(R∂1;∂ ,R

∂
∂1;∂),M) is a structure G, where

1. (X,≤,R11;1,R
∂
11;1,M) is a groupoid frame (Definition 3.1)

2. (X,≤,R1∂;∂ ,R
∂
1∂;∂ ,R∂1;∂ ,R

∂
∂1;∂ ,M) is a biimplicative frame (Definition 3.3)

and, in addition,

3. the condition ∀w (Ψ(w,x, y) Ð→ z ≤ w), for any x, y, z ∈M and where Ψ is
defined by (14), is equivalent to each of the two conditions 5(a) and 5(b) of
biimplicative frames.

If the associativity condition (M) for groupoid frames holds, then the frame will be
called an FL-frame. An FLe-frame is an FL-frame where, in addition,
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1. the Exchange condition (E) for monoid frames holds (Definition 3.1);

2. the frame is now reduced to an implicative frame (X,≤,R1∂;∂ ,R
∂
1∂;∂ ,M), as

specified in Remark 3.5;

3. the residuation Condition 3 above assumes that both of the above mentioned
Conditions 5(a), 5(b) for biimplicative frames use Φ (see Remark 3.5).

Lemma 3.7. If G is an FL−-frame, then its dual algebra (Pλ,∩,∅λ,X,O,T,⇐,⊗,⇒) is a non-associative FL-algebra. It is an FL-algebra (i.e., ⊗ is associative) if
condition (M) holds in the frame and it is an FLe-algebra if, in addition, condition
(E) holds. If, furthermore, condition (W) holds, then it is an FLew-algebra and if
conditions (E) and (C) hold, then it is an FLec-algebra, i.e., it satisfies A∩C ⊆ A⊗C.
Proof. Immediate, left to the interested reader.

Models and Soundness: The definition of models over general τ -frames for
each of the cases of the logic of lattice-ordered groupoids, monoids, or abelian
monoids, or biimplicative lattices, as well as over τ -frames for the associative, or
non-associative Full Lambek calculus, with or without Exchange and Weakening, is
a specialization of the general definition of models over τ -frames (see Section 2.3).
For concreteness, we list the related satisfaction and refutation clauses.

x ⊩ ϕ ○ ψ iff ∃u, v (u ⊩ ϕ ∧ v ⊩ ψ ∧ xR11;1uv) iff x ∈ [[ϕ]]⊗ [[ψ]]
x ⊩∂ ϕ ○ ψ iff ∀u, v (u ⊩∂ ϕ ∧ v ⊩∂ ψ Ô⇒ xR∂11;1uv) iff x ∈ ((ϕ)) ⊠ ((ψ))
x ⊩ ϕ→ ψ iff ∀u, v (xR1∂;∂uv ∧ u ⊩ ϕ Ô⇒ v ⊮∂ ψ) iff x ∈ [[ϕ]]⇒ [[ψ]]
x ⊩∂ ϕ→ ψ iff ∃u, v (xR∂1∂;∂uv ∧ u ⊩ ϕ ∧ v ⊩∂ ψ) iff x ∈ ((ϕ)) ⇓ ((ψ))
x ⊩ ϕ← ψ iff ∀u, v(xR∂1;∂uv ∧ v ⊩ ψ Ô⇒ u ⊮∂ ϕ) iff x ∈ [[ϕ]]⇐ [[ψ]]
x ⊩∂ ϕ← ψ iff ∃u, v (xR∂∂1;∂uv ∧ u ⊩∂ ϕ ∧ v ⊩ ψ) iff x ∈ ((ϕ)) ⇑ ((ψ))
x ⊩ t iff x ∈ T x ⊩∂ t iff x ∈ ρ(T)
Theorem 3.8 (Soundness). The following hold:

1. The logic of lattice-ordered groupoids is sound in models over G-frames, and
similarly for the logic of lattice-ordered monoids and M-frames, as well as for
the logic of lattice-ordered abelian monoids and M-frames with condition (E).

2. The logic of (bi)implicational lattices is sound in the class of models over
(bi)implicative frames.

3. The non-associative Full Lambek Calculus is sound in models over FL−-frames
and, similarly for the associative Full Lambek calculus and models over FL-
frames, as well as the associative-commutative calculus over FLe-frames.
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Proof. The proof is a straightforward consequence of Lemmas 3.2, 3.4 and 3.7.

3.2 Canonical Model Construction and Completeness
In this section, we construct a canonical τ -frame and model, based on [21], itself
extending and improving work first presented in [16], where a full functorial, Stone-
type duality was presented for lattice-ordered algebras (lattice expansions).

Let (X,≤) be the partially ordered set of filters, including the improper filter
ω (the whole lattice) of the Lindenbaum–Tarski algebra of the logic. The partial
order will be the Galois relation of the frame. To define relation pairs Rδ,R∂δ for
each of the operators of corresponding distribution type δ we first define operators
on points (filters) of the carrier set X, assuming the logic is equipped with the
respective logical connective.

u⊗̂v =⋀{(a ○ b)↑ ∶ a ≤ u and b ≤ v} = {e ∶ ∀a, b (a ≤ u and b ≤ v Ô⇒ a ○ b ≤ e)} (24)
u→̂v =⋁{(a→ b)↑ ∶ a ≤ u and b ∈ v} = {e ∶ ∃a, b (a ≤ u and b ∈ v and a→ b ≤ e)} (25)
u←̂v =⋁{(a← b)↑ ∶ a ∈ v and b ≤ u} = {e ∶ ∃a, b (a ∈ v and b ≤ u and a← b ≤ e)} (26)

The definitions follow a general pattern first introduced in [16] and presented in a
simpler form in [21], to which we refer the reader for intuitions and details. Define
also relations on filters by (27), as shown below:

xR⊗uv iff u⊗̂v ≤ x xR→uv iff u→̂v ≤ x xR←vu iff v←̂u ≤ x (27)

Let ⊗,⇒,⇐ be the operators generated by the relations R⊗,R→,R← by equations (4,
6) corresponding to the respective distribution types (1,1; 1), (1, ∂;∂) and (∂,1;∂).
Define also the dual relations by (28).

xR∂⊗uv iff x ≤ u⊗̂v xR∂→uv iff x ≤ u→̂v xR∂←vu iff x ≤ v←̂u (28)

and let ⊠,⇓,⇑ be the dual operators, generated by the relations R∂⊗,R∂→,R∂←, respec-
tively, according to equations (5, 7). Furthermore, let M ⊆X be the set of principal
filters and let T = Γ(e) = Γxt and O = Γx0 = Γω.

Lemma 3.9. Let ⊛ be any of ←, ○,→, of respective distribution type (i1, i2; i3) ∈{(∂,1;∂), (1,1; 1), (1, ∂;∂)}. Let also ⊛̂ be any of the defined filter operators ←̂, ⦶̂, →̂.
1. ⊛, ⊛̂ have the same monotonicity type. In other words, if for all j = 1,2, if xj ≤

uj whenever ij = 1 and uj ≤ xj whenever ij = ∂, then ⊛̂(x1, x2) ≤i3 ⊛̂(u1, u2),
where ≤i3 is ≤ if i3 = 1 and it is ≥ if i3 = ∂

2. ⊛̂(xa, xb) = ⊛(a, b)↑, for any lattice elements a, b
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Proof. The lemma is a special case of Lemma 4.3 of [21], to which we refer the
reader.

Lemma 3.10 (Canonical Frame Lemma). Let G = (X,≤,R⊗,R∂⊗,R→,R∂→,R←,R∂←,
O,T,M), where X is the filter space of the Lindenbaum–Tarski algebra of the Full
Lambek calculus. Then G is an FL−-frame and it is an FL-frame if the associativity
condition (M) on the relation R11;1 is further assumed.

Proof. The proof is given in a sequence of claims.

Claim 3.11. The structure (X,≤,R⊗,R∂⊗,O,T,M) is a groupoid frame. If the logic
assumes associativity, then it is an M-frame. If the logic further assumes the Ex-
change and Weakening rules, then the generated set operator ⊗ is commutative and
for A,C ∈Pλ the inclusion A⊗C ⊆ C obtains.

Proof. Recall that a stable set A ∈ Pλ of the canonical structure is an upper set
Γxa over a principal filter xa, for some a in the Lindenbaum–Tarski algebra of the
logic. By Γxa ∩ Γxb = Γ(xa∨b) and ∆xa ∩∆xb = ∆(xa∧b) it follows that each of Pλ

and Pρ is an intersection semilatice. Since λ, ρ restricts to a duality on Pλ and
Pρ, each is a lattice, with joins in Pλ and Pρ defined by A ∨ C = λ(ρA ∩ ρC) and
B∨D = ρ(λB∩λD), respectively. If ω = x0 is the improper filter (the whole lattice),
then Γω = {ω} and for any filter x, ω ∈ Γx, hence Γω = O is the bottom element of
Pλ, while ∆ω =X is the top element of Pρ. The trivial filter x1 = {1} generates the
whole space by Γx1 = X, while ∆x1 = {x1}, so that these elements are the top and
bottom elements of Pλ and Pρ, respectively. Hence (Pλ,∩,∨,{x0},X) is a bounded
lattice and so is its dual isomorphic copy (Pρ,∩,∨,{x1},X).

By the definition of ⊗ using the canonical relation,

Γu⊗ Γv = {z ∶ ∃u′, v′ (u ≤ u′ and v ≤ v′ Ô⇒ u′⊗̂v′ ≤ z)} = Γ(u⊗̂v)
(where Lemma 3.9 was used) and so Gλ(X) is closed under ⊗. In particular, given
Lemma 3.9, it follows that Pλ is closed under ⊗ as well. Similarly, both Gλ(X) and
Pλ are closed under ⇒ and ⇐.

By definition of the dual operator ⊠, using the dual canonical relation and re-
calling Lemma 3.9 again we obtain

∆u ⊠∆v = {z ∶ ∀u′, v′ (u ≤ u′ and v ≤ v′ and z ≤ u′ ⊠ v′)} = ∆(u⊗̂v)
so that each of Gρ(X) and Pρ is closed under ⊠. By similar argument, left to the
reader, closure of Pρ under ⇓,⇑ follows.
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Since ∆x = ρ(Γx) and Γx = λ(∆x) it immediately follows that

Γu⊗ Γv = λ(∆u ⊠∆v) = λ(ρΓu ⊠ ρΓv) Γu⇒ Γv = λ(ρΓu ⇓ ρΓv)
Γu⇐ Γv = λ(ρΓu ⇑ ρΓv).

It follows from the above that the canonical structure is a τ -frame for τ = ⟨(1,1; 1)⟩
and the first and second conditions of G-frames (Definition 3.1) obtain.

For the third condition, the upper bound in the canonical structure is the im-
proper filter ω and since ω = x0 and M is the set of principal filters we get ω ∈M .
Note that ω⊗̂u = {e ∶ ∀a, b (a ≤ ω, b ≤ u Ô⇒ a ○ b ≤ e)}. If a ≤ ω, then a = 0,
hence a ○ b = 0 ○ b = 0 ≤ e for any e and thereby ω⊗̂u = ω, and similarly u⊗̂ω = ω. By
definition, xR⊗uω iff u⊗̂ω ≤ x and therefore the hypothesis implies that ω ≤ x, i.e.,
x = ω. Hence, if xR⊗uω or xR⊗ωu, then x = ω and therefore the third condition on
G-frames also holds in the canonical structure.

For the fourth condition, we have set e = xt and T = Γe = Γxt. For any xa ∈M , it
is immediate that Γxa⊗Γxt = Γxa = Γxt⊗Γxa, because a ○t = a = t ○a. Uniqueness
of xt follows by uniqueness of the identity element t.

For the fifth condition, relating to the distribution properties of ⊗, assuming
Ψ∂(u,x, y) and Ψ∂(u,x, z), for x = xa, y = xb, z = xc ∈ M and given the defining
clause for Ψ∂ , the hypothesis is equivalent to u ∈ ∆xa ⊠∆xb and u ∈ ∆xa ⊠∆xc. In
fact, either one of these hypotheses suffices to derive the conclusion. We let u′, v′
be any filters such that xa ≤ u′, xb ≤ v′ and xc ≤ v′ and demonstrate that u ≤ u′⊗̂v′.
By ∆xa ⊠ ∆xb = ρ(Γxa ⊗ Γxb) = ρΓ(xa⊗̂xb) = ∆(xa⊗̂xb), if u ∈ ∆xa ⊠ ∆xb and
xa ≤ u′, xb ≤ v′, then it follows that u ≤ xa⊗̂xb ≤ u′⊗̂v′.

By the above arguments, it has been established that the canonical structure is
a G-frame.

Now suppose the underlying logic assumes association, in other words that ○ is an
associative operator in the Lindenbaum–Tarski algebra of the logic. Let u = xa, v = xb
and z = xc and x be any filter. Assume that w = xe satisfies the left-hand-side of the
biconditional (M). Then it follows that e ≤ b ○ c and a ○ e ∈ x. Hence, since x is a
filter, we obtain a ○ e ≤ a ○ (b ○ c) ∈ x. By associativity, (a ○ b) ○ c ∈ x and then letting
d = a ○ b and w′ = xd the conclusion is immediate. The other direction is similar.

For the exchange condition (E) we assume that the underlying logic assumes the
Exchange rule, hence ○ is commutative. It is then obvious that xa⊗̂xb = xb⊗̂xa. In
fact, from the definition of the filter operator ⊗̂ and the commutativity assumption
for ○, it immediately follows that ⊗̂ is commutative on all filters, which is equivalent
to condition (E) in Definition 3.1.

If the logic assumes, in addition, the Weakening rule, then since condition (W)
for the canonical structure is reduced to deriving c ∈ x from a ○ c ∈ x and a ○ c ≤ c
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holds in the Lindenbaum-Tarski algebra of the calculus, it is immediate that (W)
obtains in the canonical structure.

Claim 3.12. The canonical structure (X,≤,R→,R∂→,R←,R∂←,M) is a biimplicative
frame (Definition 3.3).

Proof. The closure Conditions 1(a, b) are the same as for G-frames and they have
already been shown to hold in the proof of Claim 3.11. The stronger closure property
of Gλ(X), rather than just Pλ, under ⇐,⇒ actually holds and similarly for Gρ(X)
andPρ. Since every stable set in the canonical frame is of the form Γx, for some filter
x, and the definition of Γx⇒ Γy identifies the latter with Γ(x→̂y), it is immediately
seen that Condition 1(c) obtains. The arguments for each of the Conditions 1(d, f)
is similar.

For Condition 2, we only discuss 2(a). It is immediate that 2(a) is equivalent in
the canonical frame to the equivalence of z ∈ Γx ⇒ Γy and z ∈ ρ(∆x ⇓ ∆y), which
falls out directly from definitions. The cases 2(b–d) are similar.

For 3(a), the hypothesis is equivalent to w ∈ (Γx ⇒ Γz) ∩ (Γy ⇒ Γz), i.e., to
x→̂z ≤ w and y→̂z ≤ w. Let u1, v1 be filters such that v1 ≤ z and for any u′, if
u′ ≤ x and u′ ≤ y, then u′ ≤ u1. The latter means that u1 = x ∩ y. It needs to be
shown that wR1∂;∂u1v1, i.e., (x∩ y)→̂v1 ≤ w. Under the hypothesis of the condition
that x, y, z ∈ M , let x = xa, y = xb, z = xc, so that x ∩ y = xa∨b, c ≤ v1 and both
a → c, b → c ∈ w, using Lemma 3.9. Since x ∩ y→̂v1 ≤ x ∩ y→̂z, by Lemma 3.9, it
suffices to verify that x∩ y→̂z ≤ w. But this is immediate since the left hand side of
the inclusion is the principal filter xa∨b→c and a ∨ b→ c = (a→ c) ∧ (b→ c) ∈ w.

The Conditions 3(b) and each of 4(a, b) are similar and they can be safely left
to the interested reader.

For the last condition, observe that it follows from definitions that the condition
is equivalent to Γy ⊆ Γx ⇒ Γz iff Γx ⊆ Γz ⇐ Γy, for principal filters x = xa, y = yb
and z = xc. Hence the desired equivalence of the conditions is immediate, given
Lemma 3.9 and this completes the proof of the claim.

Returning to the proof of Lemma 3.10, it only remains to prove residuation of⊗ with ⇐ and ⇒, i.e., the equivalence claimed in Condition 3 of Definition 3.6 with
the equivalent, by the previous claim, Conditions 5(a), 5(b) of Definition 3.3. In the
canonical frame, this amounts to showing that Γx ⊗ Γy ⊆ Γz iff Γy ⊆ Γx ⇒ Γz, for
principal filters x = xa, y = yb and z = xc. Given definitions, this reduces directly
to the residuation condition of the underlying logic, a ○ b ≤ c iff b ≤ a → c. Then
the canonical frame is an FL−-frame and it is an FL-frame when the association
rule is assumed, by the proof of Claim 3.11. Hence, the proof of Lemma 3.10 is
complete.
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By the arguments in the proof of Claim 3.11, provided in the course of the proof
of Lemma 3.10, the following is a direct conclusion.

Corollary 3.13. If the logic assumes in addition both the exchange and the weak-
ening rule, then the canonical frame is an FLew-frame.

Lemma 3.14 (Canonical Interpretation Lemma). The canonical interpretation and
co-interpretation [[ϕ]] = {x ∈ X ∶ [ϕ] ∈ x} and ((ϕ)) = {x ∈ X ∶ [ϕ] ≤ x} satisfy the
recursive conditions of Section 2.3.

Proof. Set V1(p) = {x ∶ [p] ∈ x} and V2(p) = {x ∶ [p] ≤ x}. Then ρV1(p) = {z ∶ ∀u (u ∈
V1(p) implies z ≤ u)}. Therefore, for z ∈ ρV1(p), since the principal filter x[p] ∈ V1(p),
it holds that z ≤ x[p], which is equivalent to [p] ≤ z. Thus ρV1(p) = V2(p). By a
similar argument, which is left to the reader, λV2(p) = V1(p).

Clearly, [[T ]] = {x ∶ 1 ∈ x} = X and [[�]] = {x ∶ 0 ∈ x} = {ω} = ∅λ in the canonical
frame, while ((⊺)) = {x ∶ 1 ≤ x} = {1} = ∅ρ in the canonical frame and ((�)) = {x ∶
0 ≤ x} = X. For conjunctions, obviously [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] = {x ∶ a ∈ x and
b ∈ x} and ((ϕ ∧ ψ)) = {x ∶ a ∧ b ≤ x}, where we set a = [ϕ] and b = [ψ]. Then
λ((ϕ ∧ ψ)) = {z ∶∀x (a∧b ≤ x implies x ≤ z)}. Since a∧b ≤ xa∧b, it follows a∧b ∈ z, for
any z ∈ λ((ϕ ∧ ψ)), hence λ((ϕ ∧ ψ)) ⊆ [[ϕ ∧ ψ]] and then also ρ([[ϕ ∧ ψ]]) ⊆ ((ϕ ∧ ψ)).
For the converse inclusions, if x ∈ [[ϕ ∧ ψ]], i.e., a∧ b ∈ x, then since x is a filter any y
with a∧ b ≤ y will be contained in x, hence [[ϕ ∧ ψ]] ⊆ λ((ϕ ∧ ψ)). A similar argument
establishes that [[ϕ ∧ ψ]] ⊆ λ((ϕ ∧ ψ)). Hence,
x ⊩∂ ϕ ∧ ψ iff x ∈ ((ϕ ∧ ψ)) = ρ([[ϕ ∧ ψ]])

iff ∀y (y ∈ [[ϕ ∧ ψ]] implies x ≤ y)
iff ∀y (x ≰ y implies y ∉ [[ϕ]] ∩ [[ψ]])
iff ∀y (x ≰ y implies y ∉ λ(ρ[[ϕ]] ∪ ρ[[ψ]]))
iff ∀y (x ≰ y implies ∃z (z ≰ y and (z ⊩∂ ϕ or z ⊩∂ ψ)))

which is precisely the co-satisfaction clause for conjunction, given that the Galois
relation of the canonical frame is the partial order ≤ of filter inclusion. A similar
argument applies to the satisfaction clause for disjunction. The satisfaction and
co-satisfaction clauses for the unit element t are immediately seen to hold in the
canonical model, by definition of the unit element T = Γxt for the ⊗ operator on
stable sets.

For the cotenability operator, the proof is provided in the following claim, where
recall that we set a = [ϕ], b = [ψ].
Claim 3.15. For all a, b and any filter x,

1. a ○ b ∈ x iff ∃u, v (xR⊗uv and a ∈ u and b ∈ v).
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2. a ○ b ≤ x iff ∀u, v (a ≤ u and b ≤ v implies xR∂⊗uv).
Proof. The claim is an instance of Claims 4.9, 4.11 of [21], where we handled the
case of any operator of distribution type (i1, . . . , in; 1).

By definition of the canonical interpretation and by the proof of the above claim
it follows that the satisfaction and co-satisfaction clauses for ϕ ○ψ are respected by
the canonical model.

Claim 3.16. For all a, b and any filter x,

1. a→ b ∈ x iff ∀u, v (a ∈ u and b ≤ v implies xR→uv)
2. a→ b ≤ x iff ∃u, v (xR∂→ and a ∈ u and b ≤ v)

Proof. Again the claim is an instance of Claims 4.10, 4.12 of [21].

The definition of the canonical interpretation and the above claim entail that
the satisfaction and co-satisfaction clauses for ϕ→ ψ are respected by the canonical
model.

Claim 3.17. For all a, b and any filter x,

1. a← b ∈ x iff ∀u, v (a ∈ u and b ≤ v implies xR←vu)
2. a← b ≤ x iff ∃u, v (xR←vu∂ and a ∈ u and b ≤ v)

Proof. The proof is similar to that of the previous claim.

Hence the satisfaction and co-satisfaction clauses for ϕ← ψ are respected by the
canonical model and the proof of the canonical interpretation lemma is complete.

Theorem 3.18 (Completeness). The associative and non-associative Full Lam-
bek calculus, without, or with Exchange and Weakening (Full BCK), as well as its
reducts, the logic of groupoids, or monoids and the logic of (bi)implicative bounded
lattices are sound and complete in the class of τ -frames, where τ is the corresponding
similarity type of the logic.

Proof. Immediate, by the Canonical Frame and Interpretation Lemmas 3.10, 3.14.
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4 The Full Lambek–Grishin Calculus
In this section, we consider the Lambek–Grishin calculus [15], in fact its full exten-
sion with conjunctions and disjunctions, without distribution, to which we refer as
the Full Lambek–Grishin calculus (FLG). The minimal system, without interaction
axioms between the two sets of dual operators will be referred to as FLG∅. Al-
gebraically, an FLG∅-algebra is a structure ⟨L,≤,∧,∨,0,1,←, ○,→, t,↽,∗,⇁, f⟩ such
that the reduct without the constant f and the operators ↽,∗,⇁ is an FL-algebra
and in addition, the following residuation axioms (in L∂) hold: a∗b ≥ c iff b ≥ a⇁ c iff
a ≥ c↽ b. By residuation, ∗ distributes over joins of L∂ , in other words it distributes
over meets of L: a∗(b∧ c) = (a∗b)∧ (a∗c) and similarly for the first argument place.
Hence ∗ behaves like a binary box and its distribution type is (∂, ∂;∂). Similarly,(a ∧ b) ⇁ c = (a ⇁ c) ∨ (b ⇁ c) and a ⇁ (b ∨ c) = (a ⇁ b) ∨ (a ⇁ c), hence the
distribution type of ⇁ is (∂,1; 1) and that of ↽ is (1, ∂; 1).

The FLG∅ language is generated by the schema (where (p ∈ P ))
L ∋ ϕ ∶= p ∣ ⊺ ∣ � ∣ t ∣ f ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ϕ← ϕ ∣ ϕ ○ ϕ ∣ ϕ→ ϕ ∣ ϕ↽ ϕ ∣ ϕ∗ϕ ∣ ϕ⇁ ϕ

The Grishin dual operator ∗ of cotenability ○ may be semantically understood as a
non-corefutability operator, witness the definition of respective set operators

A⊗C = {u ∶ ∃u′, v′ (xR⊗u′v′ and u′ ∈ A and v′ ∈ C)}
A⊕C = {u ∶ ∀u′, v′(u′ ∈ ρA ∧ v′ ∈ ρC Ô⇒ uR⊕u′v′)}= {u ∶ ∀u′, v′ (uR⊕u′v′ Ô⇒ (u′ ∉ ρA or v′ ∉ ρC))}

Non-corefutability is a binary box-like operator and in plain Kripke frames where
ρA = −A the definition reduces to that of a binary box image operator, generated
by the relation R⊗.
4.1 Kripke–Galois Frames for the Full Lambek–Grishin calculus
Kripke–Galois frames for FLG∅ are next specified, where the properties defined
below will be of use:

Ψ∗(u,x, y) ≡ ∀u′, v′ (u′ ≤ x ∧ v′ ≤ y Ô⇒ uR∂∂;∂u
′v′)

Ψ∂∗(u,x, y) ≡ ∃u′, v′ (uR∂∂;∂u
′v′ ∧ x ≤ u′ ∧ y ≤ v′) (29)

Φ∗(u,x, y) ≡ ∃u′, v′ (uR∂1;1u
′v′ ∧ u ≤ x ∧ y ≤ v)

Φ∂∗(u,x, y) ≡ ∀u′, v′ (x ≤ u′ ∧ v′ ≤ y Ô⇒ uR∂∂1;1u
′v′) (30)

Θ∗(u,x, y) ≡ ∃u′, v′ (uR1∂;1 ∧ x ≤ u′ ∧ v′ ≤ y)
Θ∂∗(u,x, y) ≡ ∀u′, v′ (u′ ≤ x ∧ y ≤ v′ Ô⇒ uR∂1∂;1u

′v′) (31)
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The properties Ψ∗,Φ∗,Θ∗ define respective set operators ⊕,▷,◁, while their
duals Ψ∂∗,Φ∂∗,Θ∂∗ define the dual operators, which we designate, respectively, by|,▽,△.

Definition 4.1 (FLG∅-frames). An FLG∅-frame is a τ -frame (X,≤, (R11;1,R
∂
11;1),(R1∂;∂ ,R

∂
1∂;∂), (R∂1;∂ ,R

∂
∂1;∂), (R∂∂;∂ ,R

∂
∂∂;∂), (R1∂;1,R

∂
1∂;1), (R∂1;1,R

∂
∂1;1),M), where

τ = ⟨(1,1; 1), (1, ∂;∂), (∂,1;∂), (∂, ∂;∂), (1, ∂; 1), (∂,1; 1)⟩ and
1. (X,≤, (R11;1,R

∂
11;1), (R1∂;∂ ,R

∂
1∂;∂), (R∂1;∂ ,R

∂
∂1;∂),M) is an FL-frame (Defini-

tion 3.6)

2. (closure conditions)

(a) ∀x, y ∃z [x ∈M ∧ y ∈M Ð→ (z ∈M ∧ ∀u (Υ(u,x, y) ←→ z ≤ u))], for
each case Υ ∈ {Ψ∗,Φ∗,Θ∗}

(b) ∀x, y ∃z [x ∈ M ∧ y ∈ M Ð→ (z ∈ M ∧ ∀u (Υ∂(u,x, y) ←→ u ≤ z))],
for each case Υ∂ ∈ {Ψ∂∗,Φ∂∗,Θ∂∗}

3. (dual operator interdefinability conditions) For all x, y, z ∈ M the following
equivalences hold, for each case Υ ∈ {Ψ∗,Φ∗,Θ∗} with its corresponding Υ∂ ∈{Ψ∂∗,Φ∂∗,Θ∂∗}
(a) Υ(u,x, y) ←→ ∀z (Υ∂(z, x, y) Ð→ z ≤ u)
(b) Υ∂(u,x, y) ←→ ∀z (Υ(z, x, y) Ð→ u ≤ z)

4. (existence of left-right identity for ∗ condition)∃!w ∈M ∀u, z (u ∈M Ð→ ((Ψ∗(z, u,w)←→ u ≤ z)∧ (Ψ∗(z,w, u)←→ u ≤ z)))
The unique w ∈ M of this condition will be designated by the constant f,
extending again the signature of the frame language.

5. (∗ distribution conditions) For all x, y, z ∈M and all u ∈X,

(a) Ψ∗(u,x, y) ∧ Ψ∗(u,x, z) Ð→ ∀u′, v′ (x ≤ u′ ∧ y ≤ v′ ∧ z ≤ v′ Ð→
uR∂∂;∂u

′v′)
(b) Ψ∗(u,x, z) ∧ Ψ∗(u, y, z) Ð→ ∀u′, v′ (x ≤ u′ ∧ y ≤ u′ ∧ z ≤ v′ Ð→

uR∂∂;∂u
′v′)

To assist the reader in keeping track of symbols for the various operators and
their duals, we display our notational choices in a table below. The last row of the
table displays the Lambek and Grishin notation for the operators.
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δ ∗ ∶ (∂, ∂;∂) ⇁ ∶ (∂,1; 1) ↽ ∶ (1, ∂; 1) ○ ∶ (1,1; 1) → ∶ (∂,1;∂) ← ∶ (1, ∂;∂)
1 ⊕ (6) ▷ (4) ◁ (4) ⊗ (4) ⇒ (6) ⇐ (6)
∂ | = ⊕∂ (7) ▽ =▷∂ (5) △ =◁∂ (5) ⊠ = ⊗∂ (5) ⇓ =⇒∂ (7) ⇑ =⇐∂ (7)
LG ⊕ ⦸ ⊘ ⊗ / /

For later use we list the following definition.

Definition 4.2 (FLG→e -frames). An FLG→e -frame is a τ -frame

(X,≤, (R11;1,R
∂
11;1), (R1∂;∂ ,R

∂
1∂;∂), (R∂∂;∂ ,R

∂
∂∂;∂),M),

where τ = ⟨(1,1; 1), (1, ∂;∂), (∂, ∂;∂), ⟩ and
1. (X,≤, (R11;1,R

∂
11;1), (R1∂;∂ ,R

∂
1∂;∂),M) is an FLe-frame (Definition 3.6);

2. the closure Conditions 2(a, b) of Definition 4.1 hold with the restriction of Υ
to Ψ,Φ and of Υ∂ to Ψ∂ ,Φ∂ , respectively;

3. the dual operator interdefinability Conditions 3(a, b) of Definition 4.1 hold,
with the restriction again of Υ to Ψ,Φ and of Υ∂ to Ψ∂ ,Φ∂ , respectively;

4. Condition 4 of Definition 4.1 for the existence of a left-right identity for ∗
holds;

5. Condition 5 of Definition 4.1 for the distribution properties of ∗ holds.

Lemma 4.3. Let G be a frame, let Pλ be the family of upper closures Γx of members
x ∈M and Pρ the family of images ρA of A ∈Pλ. Let also F = Γ(f), I = Γ(t) ∈Pλ.

1. If G is an FLG∅-frame, then

(a) Pλ is closed under all operators ⇐,⊗,⇒ (Lemma 3.7) and ◁,⊕,▷, while
Pρ is closed under the dual operators ⇑,⊠,⇓ (Lemma 3.7) as well as△,|,▽. Furthermore, for any stable sets A,C ∈ Pλ and co-stable sets
B,D ∈ Pρ the following interdefinability identities hold, in addition to
those of Lemma 3.7:
A⊕C = λ(ρA| ρB), A▷C = λ(ρA▽ ρB), A◁C = λ(ρA△ ρB).
Hence, G is a τ -frame (Definition 2.2) for the specific similarity type τ .

(b) (Pλ,∩,∨,⇐,⊗,⇒, I) is a residuated lattice,
(c) (Pλ,∩,∨,◁,⊕,▷,F) is a dual residuated lattice (i.e., residuation is with

respect to the opposite order), A⊕A′ ⊇ C iff A′ ⊇ A▷C iff A ⊇ C◁A′
with identity element F⊕A = A = A⊕ F.
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2. If G is an FLG→
e -frame, then claims 1(a, b) above hold, with the obvious

restrictions to the operators ⊗,⇒ and ⊕ only.

Proof. The frame conditions are completely analogous to those for FL-frames and
the proof arguments are, correspondingly, completely similar, as the interested
reader can easily verify.

Definition 4.4 (FLG∅-models). An FLG∅-model M = (G, V ) is an instance of a τ -
model (see Section 2.3) for the specific similarity type τ = ⟨(1,1; 1), (1, ∂;∂), (∂,1;∂),(∂, ∂;∂), (1, ∂; 1), (∂,1; 1)⟩. In particular, instantiating the general semantic defini-
tions (8–11) we obtain the following semantic conditions for the satisfaction and
co-satisfaction (refutation) relations, setting R∗ = R∂∂;∂ ,R⇁ = R∂1;1,R↽ = R1∂;1 and
similarly for their duals.

x ⊩ ϕ↽ ψ iff ∃u, v (xR↽uv ∧ u ⊩∂ ϕ ∧ v ⊩ ψ) (32)
x ⊩∂ ϕ↽ ψ iff ∀u, v (u ⊩ ϕ ∧ v ⊩∂ ψ Ô⇒ xR∂↽uv) (33)
x ⊩ ϕ⇁ ψ iff ∃u, v (xR⇁uv ∧ u ⊩ ϕ ∧ v ⊩∂ ψ) (34)
x ⊩∂ ϕ⇁ ψ iff ∀u, v (u ⊩∂ ϕ ∧ v ⊩ ψ Ô⇒ xR∂⇁uv) (35)
x ⊩ ϕ∗ψ iff ∀u, v (xR∗uv Ô⇒ (u ⊮∂ ϕ ∨ v ⊮∂ ψ)) (36)
x ⊩∂ ϕ∗ψ iff ∃u, v (xR∂∗uv ∧ u ⊩∂ ϕ ∧ v ⊩∂ ψ) (37)

x ⊩ f iff x ∈ F (38)
x ⊩∂ f iff x ∈ ρ(F) (39)

The definitions of satisfaction and validity of a sentence or of a sequent are the same
as in Section 2.3.

The reader can easily verify that [[ϕ∗ψ]] = [[ϕ]]⊕ [[ψ]], ((ϕ∗ψ)) = ((ϕ))| ((ψ)) and
similarly for ⇁,↽. As a consequence, the proof of soundness follows, by arguments
analogous to those developed for the FL-calculus.

Theorem 4.5 (Soundness). FLG∅ is sound in the class of FLG∅-frames.

4.2 Canonical Model Construction and Completeness

For completeness, we extend the canonical frame construction of Section 3.2. The
definitions of the filter operators corresponding to the new logical operators are
obtained as a special case from the corresponding general filter operator definitions
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of [16, 21], to which we refer the reader for intuitions and details.

u∗̂v = {e ∶ ∃a, b (a ∈ u and b ∈ v and a∗b ≤ e)} (40)
u⇁̂v = {e ∶ ∀a, b (a ∈ u and b ≤ v Ô⇒ a⇁ b ≤ e)} (41)
u↽̂v = {e ∶ ∀a, b (a ≤ u and b ∈ v Ô⇒ a↽ b ≤ e)} (42)

and we define F = Γ(f) = Γxf. The canonical accessibility relations are also defined
as special instances of a general schema, see [21], instantiated below for the cases of
interest.

xR⊕uv iff u∗̂v ≤ x xR∂⊕uv iff ≤ u∗̂v (43)
xR⇁uv iff u⇁̂v ≤ x xR∂⇁uv iff x ≤ u⇁̂v (44)
xR↽uv iff u↽̂v ≤ x xR∂↽uv iff x ≤ u↽̂v (45)

Lemma 4.6. Let ⊚ be any of ↽,∗,⇁, of respective distribution type (i1, i2; i3) ∈{(1, ∂; 1), (∂, ∂;∂), (∂,1; 1)}. Let also ⊚̂ be any of the defined filter operators ↽̂, ∗̂, ⇁̂.
1. ⊚, ⊚̂ have the same monotonicity type. In other words, if for all j = 1,2, if xj ≤

uj whenever ij = 1 and uj ≤ xj whenever ij = ∂, then ⊚̂(x1, x2) ≤i3 ⊚̂(u1, u2),
where ≤i3 is ≤ if i3 = 1 and it is ≥ if i3 = ∂.

2. ⊚̂(xa, xb) = ⊚(a, b)↑, for any lattice elements a, b.

Proof. The lemma is analogous to Lemma 3.9 and it is again a special case of
Lemma 4.3 of [21] (restricted to the three additional operators of interest in this
section).

To drive the completeness proof to a conclusion, what is needed is to prove a
canonical frame and a canonical interpretation lemma.

Lemma 4.7 (Canonical Frame Lemma). The canonical frame

(X,≤,R⊗,R∂⊗,R→,R∂→,R←,R∂←,R⊕,R∂⊕,R⇁,R∂⇁,R↽,R∂↽,F,T,O,M)
where X is the filter space of the Lindenbaum–Tarski algebra of FLG∅, M ⊆ X is
the set of principal filters and the relations and special sets are as previously defined,
is an FLG∅-frame (Definition 4.3).

Proof. Much of the proof (corresponding to the first condition in the Definition 4.3
of FLG∅-frames) has been already given, see the canonical frame lemma for FL,
Lemma 3.10. What remains to be proved is that (Pλ,∩,∨,◁,⊕,▷,F) is a dual
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residuated lattice. Members of Pλ are the upper sets over principal filters Γxa,
where a is the equivalence class of a sentence. As in the case of Lemma 3.10 it
is readily verified, given the definitions of the filter operators and of the canonical
accessibility relations that, for u, v any filters

Γu⊕ Γv = Γ(u∗̂v) Γu▷ Γv = Γ(u⇁̂v) Γu◁ Γv = Γ(u↽̂v)
and similarly for the dual operators

∆u|∆v = ∆(u∗̂v) ∆u△∆v = ∆(u⇁̂v) ∆u▽∆v = ∆(u↽̂v)
Hence Condition 2 of Definition 4.3 holds.

Lemma 4.6 ensures that for u, v ∈M (where recall that M is the set of principal
filters) the filter operators return a principal filter xa∗̂xb = xa∗b, xa⇁̂xb = xa⇁b,
xa↽̂xb = xa↽b. Therefore, Pλ is closed under the operators ◁,⊕,▷ and similarly Pρ

is closed under the dual operators △,|,▽ and it is readily verified, from definitions,
that

Γu⊕ Γv = λ(∆u|∆v) = λ(ρΓu| ρΓv) Γu▷ Γv = λ(∆u△∆v)
Γu◁ Γv = λ(∆u▽∆v)

We may conclude that Condition 3 of Definition 4.3 holds.
Verifying that F is an identity for ⊕ restricted to members of Pλ is elementary,

so Condition 4 of Definition 4.3 also holds. Condition 5 refers to the distribution
properties of ⊕ on Pλ. Recall that we proved the corresponding condition for dis-
tribution of ⊗ over joins by proving that its dual distributes over intersections. The
observant reader will have noticed the analogy of the distribution conditions in Def-
inition 4.3 with the definition of the conditions for the case of ⊗. We shall leave
it up to the interested reader to verify the required distribution property of ⊕ over
intersections, by imitating the corresponding argument given for ⊗ and we shall
conclude that Condition 5 of Definition 4.3 also holds and thereby the proof of the
canonical frame lemma is complete.

Lemma 4.8 (Canonical Interpretation Lemma). The canonical interpretation [[ϕ]] ={x ∶ [ϕ] ∈ x} and co-interpretation ((ϕ)) = {x ∶ [ϕ] ≤ x} satisfy the recursive conditions
(32–33).

Proof. The cases for conjunction, disjunction, the constants ⊺,� and the operators←, ○,→ and t have been dealt with in Lemma 3.14, hence they are not mentioned in
the present proof. As mentioned in the proof of Claims 3.15 and 3.16 in the course
of the proof of the canonical interpretation lemma for FL the proof is actually a
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specialization to the particular operators of a general argument for n-ary logical
operators of any distribution type that was developed in a recent article by this
author [21]. The same applies to the new operators ↽,∗,⇁.
Claim 4.9. For all a, b and any filter x

1. a∗b ∈ x iff ∀u, v (xR∂∂;∂uv Ô⇒ (a ≰ u or b ≰ v))
2. a∗b ≤ x iff ∃u, v (xR∂∂∂;∂uv and a ≤ u and b ≤ v)

Proof. Consult the proof of Claims 4.10 and 4.12 of [21].

Claim 4.10. For all a, b and any filter x

1. a⇁ b ∈ x iff ∃u, v (xR∂1;∂uv and a ∈ u and b ≤ v)
2. a⇁ b ≤ x iff ∀u, v (a ≤ u and b ∈ v Ô⇒ xR∂∂1;∂uv)

Proof. Consult the proof of Claims 4.9 and 4.11 of [21].

Claim 4.11. For all a, b and any filter x

1. a↽ b ∈ x iff ∃u, v; (xR1∂;1uv and a ≤ u and b ∈ v)
2. a↽ b ≤ x iff ∀u, v (a ∈ u and b ≤ v Ô⇒ xR∂1∂;1uv)

Proof. Consult the proof of Claims 4.9 and 4.11 of [21].

By the above, the proof of the canonical interpretation lemma (Lemma 4.8) is
complete.

Thereby, the proof of completeness has been concluded.

Theorem 4.12 (Completeness). The minimal Full Lambek–Grishin calculus FLG∅
is (sound and) complete in the class of τ -frames of Definition 4.1.

4.3 Grishin’s Interaction Axioms
Grishin further proposed the strengthening of the system by the addition of inter-
action axioms from the following two dual axiom groups.

(G1) (a⇁ b) ○ c ≤ a⇁ (b ○ c) (G3) c ○ (b↽ a) ≤ (c ○ b)↽ a(G2) c ○ (a⇁ b) ≤ a⇁ (c ○ b) (G4) (b↽ a) ○ c ≤ (b ○ c)↽ a (46)(G1′) (c∗b)← a ≤ c∗(b← a) (G3′) a→ (b∗c) ≤ (a→ b)∗c(G2′) (b∗c)← a ≤ (b← a)∗c (G4′) a→ (c∗b) ≤ c∗(a→ b) (47)
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In this article, Kripke–Galois frames (X,≤, (Rδ,R∂δ )δ∈τ ,M) of similarity type τ ,
withM ⊆X, take the set Pλ of propositions to be the set Γx with x ∈M , where Γx is
apparently a stable set under the Dedekind–MacNeille Galois connection generated
by the partial order. The Grishin axioms translate directly to inclusion requirements,
like (Γx▷Γy)⊗Γz ⊆ Γx▷ (Γy⊗Γz), corresponding to (G1). The properties Ψ and
Φ∗ define, respectively, the sets generated by ⊗ and ▷, given also the requirement of
closure of Pλ under the operators. It is then a straightforward exercise to translate
the inclusion to a frame requirement captured by a sentence in the first-order frame
language. In particular for (G1), this is the requirement that condition (A) below
implies condition (B), for all w ∈X and any x, y, z ∈M :

(A) ∃u, v (Φ∗(u,x, y) ∧ z ≤ v ∧ wR⊗uv)
(B) ∃u′, v′ [x ≤ u′ ∧ ∀y′, z′ (y′ ≤ y ∧ z′ ≤ z Ð→ vR∂⊗y′z′) ∧ xR⇁u′v′]
The implication ∀x, y, z (x ∈M ∧ y ∈M ∧ z ∈M Ð→ (A Ð→ B)) is equivalent to
the inclusion requirement (Γx▷Γy)⊗Γz ⊆ Γx▷ (Γy ⊗Γz) and this is what is used
to prove soundness of the G1 axiom.

For completeness, only the canonical frame lemma is affected and the proof must
be extended to verify that the canonical frame satisfies the above condition. By
definition of ⊗,▷ we have (Γx▷Γy)⊗Γz = Γ(x⇁̂y)⊗Γz = Γ((x⇁̂y)⊗̂z) and when
x, y, z are principal filters xa, xb, xc this is just the upper closure of the principal filter
x(a⇁b)○c, by Lemmas 3.9, 4.6. Similarly, the right hand side is the upper closure
of the principal filter xa⇁(b○c) and Γx(a⇁b)○c ⊆ Γxa⇁(b○c) iff xa⇁(b○c) ≤ x(a⇁b)○c iff(a ⇁ b) ○ c ≤ a ⇁ (b ○ c) hence the frame is canonical. The same type of argument
applies to any of the other axioms and we may then safely conclude with the following
theorem.

Theorem 4.13. The Full Lambek–Grishin calclus axiomatized by also including any
combination of G or G′ axioms (see 46, 47) is sound and complete in the correspond-
ing class of τ -frames.

5 Relevance and Linear Logic
We next provide Kripke–Galois semantics for (non-distributive) Relevance Logic
(RL) and Linear Logic (LL), its original [13] commutative version where the left
and right residuals ⟜,⊸ of intensional conjunction coincide. Both RL and LL are
equipped with a De Morgan negation ϕ⊥ converting multiplicatives to additives and
vice versa, (ϕ ∨ ψ)⊥ ≡ ϕ⊥ ∧ ψ⊥, (ϕ ○ ψ)⊥ ≡ ϕ⊥∗ψ⊥ etc., and where ϕ⊸ ψ ≡ ϕ⊥∗ψ. It
is useful to study separately the logic of abelian residuated De Morgan monoids.
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5.1 The Logic of Abelian Residuated De Morgan Monoids

τ -frames for negation are structures (X,≤,⊥,⊥∂ , (Rδ,R∂δ )δ∈τ1 ,M), where M ⊆ X,
since Pλ = {Γx ∶ x ∈ M} is completely determined by M , with further conditions
to be placed on M,⊥,⊥∂ . This section relies partly on definitions and results from
[19], to which we shall refer the reader for details and proofs. Partially ordered
spaces for ortholattices and De Morgan lattices (assuming distribution) have been
also considered by Bimbó in [5], where the partial order structure allows for an
extension of Goldblatt’s [14] representation of ortholattices to a full duality.

Definition 5.1. An FL⊥e -frame G = (X,≤, (⊥,⊥∂), (Rδ,R∂δ )δ∈τ1 ,M) is a structure
where (1) ⊥,⊥∂ are binary relations on X, (2) M ⊆ X, (3) τ1 = ⟨(1,1; 1), (1, ∂;∂)⟩,
with τ = ⟨(1;∂)⟩⌢τ1 and the following axioms in the frame language are assumed:

1. (X,≤, (Rδ,R∂δ )δ∈τ1 ,M) is an FLe frame (Definition 3.6).

2. For each x ∈M the set {y ∶ x ⊥ y} is generated as the upper closure of a single
point z ∈ M , which also generates the set {y ∶ x ⊥∂ y} as its down closure in
the partial order. In addition, the set {u ∶ z ⊥ u}, for this z, is contained in the
upper closure of x, while the set {u ∶ z ⊥∂ u} is contained in the down closure
of x. In symbols,

∀x [x ∈M Ð→ ∃z (z ∈M ∧ ∀y [(x ⊥ y ←→ z ≤ y) ∧ ∀u (z ⊥ u Ð→ x ≤ u)]) ∧∀y′ [(x ⊥∂ y′ ←→ y′ ≤ z) ∧ ∀u′ (z ⊥∂ u′ Ð→ u′ ≤ x)]]
3. (symmetry and increasingness axioms for the binary relation ⊥)

(a) ∀x∀y (x ∈M ∧ y ∈M Ð→ (x ⊥ y Ð→ y ⊥ x))
(b) ∀x∀y∀z (x ⊥ y ∧ x ≤ z Ð→ z ⊥ y)

4. (symmetry and decreasingness axioms for the dual binary relation ⊥∂)
(a) ∀x∀y (x ∈M ∧ y ∈M Ð→ (x ⊥∂ y Ð→ y ⊥∂ x))
(b) ∀x∀y∀z (x ⊥∂ y ∧ z ≤ x Ð→ z ⊥∂ y).

Note that, comparing with the partially ordered orthoframes of [19] the irreflex-
ivity condition on ⊥ is not included in the above defined frames, since irreflexivity
is precisely the condition that validates the characteristic axiom of intuitionistic
negation ϕ ∧ ¬ϕ ⊢⊥. Note also that we have not yet included duality conditions to
validate equivalences such as ¬(ϕ ○ψ) = (¬ϕ)∗(¬ψ). We shall do this in the sequel.
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For U ⊆X, let U⊥ and U⊥∂ be defined as in equations (6, 7), instantiated below

U⊥ = {z ∶ ∀u (u ∈ U Ô⇒ x ⊥ u)} U⊥∂ = {z ∶ ∃u (z ⊥∂ u and u ∈ λU)}.
For the proof of the following claim the reader may wish to consult [19].

Lemma 5.2. Let G be an FL⊥e -frame. Then,

1. for all x ∈X, {x}⊥ = (Γx)⊥ and {x}⊥∂ = (∆x)⊥∂ ;

2. for each x ∈M , there is a point x∗ ∈M such that

(a) {x}⊥ = Γx∗ and {x}⊥∂ = ∆x∗
(b) ∗ is an antitone operator and an involution on M : x ≤ yÔ⇒ y∗ ≤ x∗ and

x = x∗∗, for x, y ∈M .

The following is an immediate consequence of Lemma 5.2.

Corollary 5.3. The following hold:

1. Pλ is closed under ( )⊥ and Pρ is closed under ( )⊥∂ . Furthermore, ( )⊥ has
the Galois property on Pλ, i.e., A ⊆ C⊥ iff C ⊆ A⊥, for A,C ∈Pλ and similarly
for ( )⊥∂ and Pρ.

2. for all x ∈M , (Γx)⊥⊥ = Γx and (∆x)⊥∂⊥∂ = ∆x.

3. for all x ∈M , λ((ρΓx)⊥∂) = (Γx)⊥ and (∆x)⊥∂ = ρ((λ∆x)⊥).
Note that closure of both Pλ,Pρ under intersections (imposed by Conditions

1(a, b) of frames (see Definition 3.1) imply that ( )⊥ is a De Morgan negation on Pλ

and similarly for ( )⊥∂ and Pρ. Consequently, the above suffices in order to prove
that FL⊥e , i.e., FLe enriched with a De Morgan negation, is sound in the class of
FL⊥e -frames of Definition 5.1, where models on the frames are extended by adding
to the clauses for fusion and implication the following:

x ⊩ ¬ϕ iff ∀y (y ⊩ ϕ Ô⇒ x ⊥ y) x ⊩∂ ¬ϕ iff ∃y (y ⊩ ϕ and x ⊥∂ y)
Proposition 5.4 (Soundness). FL⊥e (i.e., the logic of residuated De Morgan abelian
monoids) is sound in the class of frames of Definition 5.1.

For completeness, let X be the set of filters of the Lindenbaum–Tarski algebra of
the logic, including the improper filter ω. In Section 3, we proved completeness for
variants of FL, including its associative-commutative version FLe. Since we assume
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no interaction of the negation operator with the monoidal operator and its residual,
we only need to extend the proof of the canonical frame and interpretation lemmas
of Section 3 to cover the case of negation as well. Define a filter star operator,
following the representation approach of [16, 18, 21, 19], as in equation (48).

x∗ = {a ∶ ¬a ≤ x} (48)

The reader can easily verify that x∗ is a filter, when x is one.

Lemma 5.5. The filter operator ∗ has the following properties, where we use xe for
the principal filter e↑ generated by the lattice element e:

1. (xa)∗ = x¬a
2. x ≤ y Ô⇒ y∗ ≤ x∗
3. x ≤ x∗∗

Proof. For the proof, the reader may consult any of [16, 18, 21, 19].

It follows from the Lemma that ( )∗ is a Galois connection on the set X of filters
and that it has the properties of De Morgan negation on the set M ⊆X of principal
filters. For any stable set A ∈ Pλ = {Γx ∶ x ∈M}, define the operator ( )⊥ by setting
A⊥ = (Γx)⊥ = Γx∗. It is then straightforward to verify that ( )⊥ is a De Morgan
negation on Pλ, since (Γxa)⊥ = Γx∗a = Γxa⊥ . We leave it to the reader to verify that
all conditions for FL⊥e -frames (Definition 5.1) obtain in the canonical frame and [19]
can be consulted for this purpose.

For the canonical ⊥ relation, we may define x ⊥ z iff x∗ ≤ z and x ⊥∂ z iff z ≤ x∗,
following the general approach of [16, 20, 21]. It is typical to model negation by
the clause x ⊥G z iff ∃a (a ∈ x and ¬a ∈ z), see [14, 9], but it is easy to verify
that xa ⊥G z iff ¬a ∈ z iff ∃e (e ∈ xa and ¬e ∈ z), so that ⊥ and ⊥G coincide
on the set of principal filters. Symmetry of ⊥,⊥∂ on M is immediate and so is
increasingness (decreasingness) of ⊥ (respectively, ⊥∂) on M . The following lemma
has been proved in [20].

Lemma 5.6. For any element a of the Lindenbaum–Tarski algebra of the logic and
filter x we have

1. ∼a ∈ x iff ∀y (a ∈ y Ô⇒ y ⊥ x)
2. ¬a ≤ x iff ∀z (a ≤ z Ô⇒ x ⊥∂ z)

Proof. See the proofs of Lemmas 3.6 and 3.7 in [20].
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It follows from the lemma that the canonical interpretation satisfies the recursive
clauses for satisfaction and co-satisfaction:

x ⊩ ϕ⊥ iff ∀y (x ⊩ ϕ Ô⇒ x ⊥ y) x ⊩∂ ϕ⊥ iff ∃y (x ⊥∂ y and y ⊩∂ ϕ)
This suffices to establish a completeness theorem for FL⊥e , listed below.

Theorem 5.7 (Completeness for FL⊥e ). The logic of De Morgan residuated abelian
monoids is complete in the class of FL⊥e -frames, as specified in Definition 5.1.

5.2 Exponential-free Linear Logic (MALL)
The language of LL without exponentials (Multiplicative–Additive Linear Logic,
MALL) is generated by the following grammar

ϕ ∶= p, p⊥ (p ∈ P ) ∣ ⊺ ∣ � ∣ t ∣ f ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ϕ ○ ϕ ∣ ϕ∗ϕ
where P is a non-empty, countable set of propositional variables and where negation
is defined on all sentences by the syntactic identities of Table 2 and linear implication
is then defined as ϕ⊸ ψ = ϕ⊥∗ψ.

t⊥ = � �⊥ = t⊺⊥ = f f⊥ = ⊺(p)⊥ = p⊥ (p⊥)⊥ = p(ϕ ∧ ψ)⊥ = ϕ⊥ ∨ ψ⊥ (ϕ ∨ ψ)⊥ = ϕ⊥ ∧ ψ⊥(ϕ ○ ψ)⊥ = ϕ⊥∗ψ⊥ (ϕ∗ψ)⊥ = ϕ⊥ ○ ψ⊥
Table 2: Definition of negation in LL

For LL’s sequent system, the reader may consult [13]. It is a known fact that the
Lindenbaum–Tarski algebra of LL is a bounded lattice L = (L,∧,∨,0,1, ○, t,∗, f,⊸,( )⊥) where 0 = [[�]],1 = [[⊺]], t = [[t]], (L, ○,⊸, t) is a residuated abelian monoid with
identity element t (a ○ b = b ○ a, a ○ t = a = t ○ a and a ○ b ≤ c iff b ≤ a⊸ c), ( )⊥ is a De
Morgan complementation operator (a ≤ b⊥ iff b ≤ a⊥, a⊥⊥ ≤ a) and (a ○ b)⊥ = a⊥∗b⊥,
while a⊸ b = a⊥∗b and t = 0⊥. Similarly, (L,∗, f) is an abelian monoid with identity
element [[f]] = f = 1⊥. An algebra (L,∧,∨,0,1, ○,→,∗, ( )⊥, t, f) such that the above
conditions hold is referred to in the literature as a MALL-algebra.

Kripke–Galois frames for LL will be defined as τ -frames, where τ is the sim-
ilarity type ⟨(1,1; 1), (1, ∂;∂), (∂, ∂;∂), (1;∂)⟩, with appropriate conditions in the
first-order frame language L1(≤, (Rδ,R∂δ )δ∈τ ,M).
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Note that in FL⊥e the dual of multiplicative conjunction can be defined using De
Morgan negation: a∗b = (a⊥○b⊥)⊥. What MALL adds to the axiomatization is that
a⊥ ∗ b is the residual of (commutative) ○, hence identical to the → operation of FL⊥e .
Alternatively, MALL can be seen as obtained from the associative-commutative
Full Lambek–Grishin calculus (see Section 4), dropping the co-implication residuals
of ∗ and augmented with a De Morgan negation. Both observations underly the
definition of MALL-frames below.

Definition 5.8 (MALL-Frames). A MALL-frame

G = (X,≤, (⊥,⊥∂), (R⊗,R∂⊗), (R⊕,R∂⊕), (R→,R∂→),M)
is a τ -frame where

1. G1 = (X,≤, (⊥,⊥∂), (R⊗,R∂⊗), (R→,R∂→),M) is an FL⊥e -frame (Definition 5.1)

2. G2 = (X,≤, (R⊗,R∂⊗),(R⊕,R∂⊕),(R→,R∂→),M) is an FLG→e -frame (Definition 4.2)

3. For all x, y ∈M and any u ∈X,

(a) Ψ∗(u,x, y) ←→ ∀v [Ψ(v, x∗, y∗) Ð→ u ⊥ v]
(b) Φ(u,x, y) ←→ Ψ∗(u,x∗, y)

where Ψ,Φ,Ψ∗ are defined respectively by (14), (16), (29) and where ( )∗ is the
operator on members ofM whose existence, resting on Condition 2 of Definition 5.1,
was proved in Lemma 5.2.

Lemma 5.9. The dual algebra of a MALL-frame is a MALL-algebra.
Proof. The last frame condition directly enforces that for A,C ∈ Pλ both identities
A⊕C = (A⊥⊗C⊥)⊥ and A⇒ C = A⊥⊕C hold. The rest is a combination of previous
results, proved in Lemmas 4.3 and 5.2.

Models for MALL are defined by only keeping the relevant satisfaction and
refutation clauses for FLG∅ models (listed below) and adding the clauses for De
Morgan negation, which are the clauses specified for FL⊥e (Section 5.1).

x ⊩ ϕ∗ψ iff ∀u, v (xR∗uv Ô⇒ (u ⊮∂ ϕ ∨ v ⊮∂ ψ)) (49)
x ⊩∂ ϕ∗ψ iff ∃u, v (xR∂∗uv ∧ u ⊩∂ ϕ ∧ v ⊩∂ ψ) (50)

x ⊩ f iff x ∈ F (51)
x ⊩∂ f iff x ∈ ρ(F) (52)

The proof of soundness for MALL is a direct consequence of Lemma 5.9.
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Theorem 5.10 (Soundness). Multiplicative–Additive Linear Logic is sound in the
class of Kripke–Galois frames specified in Definition 5.8.

The completeness proof is given in Section 5.4.

5.3 Relevance Logic (without Distribution)
Non-distributive Relevance Logic and exponential-free Linear Logic differ only by
their acceptance or rejection of contraction, or as Avron [4] puts it:

Linear Logic + contraction = Relevance Logic without distribution

Therefore, Kripke–Galois frames for (non-distributive) Relevance Logic are just
frames for MALL, with the addition of condition (C) for the underlying monoid
frame (see Definition 3.1). Soundness is immediate by Lemma 3.2 in combination
with the soundness Theorem 5.10 for MALL.

Theorem 5.11 (Soundness for Non-Distributive RL). Non-Distributive Relevance
Logic is sound in RL-frames, i.e., LL-frames assuming, in addition, condition (C)
in their underlying monoid frame.

5.4 Completeness for MALL and RL
For MALL, Conditions 1 and 2 for MALL-frames (Definition 5.8) hold in the
canonical frame, by the work presented in the canonical frame construction for
FLG∅ (see Section 4) and we only need to verify that Condition 3 also holds. As
pointed out in the proof of Lemma 5.9, the condition is equivalent to the claim that
for A,C ∈ Pλ both identities A ⊕ C = (A⊥ ⊗ C⊥)⊥ and A ⇒ C = A⊥ ⊕ C hold. But
this is immediate in the canonical frame for any A = Γxa, C = Γxb ∈ Pλ. Hence the
canonical frame is aMALL-frame. We verified above, when discussing completeness
for FL⊥e that the canonical interpretation satisfies the required recursive conditions
(Lemma 5.6), hence we may conclude with completeness.

Theorem 5.12 (Completeness for MALL). Multiplicative–Additive Linear Logic
(MALL) is complete in the class of MALL-frames (Definition 5.8).

Non-distributive RL is obtained from MALL by adding contraction. We have
verified in Lemma 3.7 that for a groupoid frame the requirement that the contraction
condition (C) holds is equivalent to the requirement that the inclusion A∩C ⊆ A⊗C
holds in the dual algebra of the frame. In the canonical frame for RL, verifying that
the required inclusion holds is immediate, since Γxa ∩ Γxb = Γ(xa ∨ xb) = Γxa∧b ⊆
Γxa○b, since a∧b ≤ a○b holds in the logic. Hence we may conclude with the respective
completeness result.
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Theorem 5.13 (Completeness for Non-Distributive RL). Non-Distributive Rele-
vance Logic is complete in the respective class of RL-frames, i.e., MALL-frames
assuming in addition that condition (C) holds in their underlying groupoid frame.

5.5 Controlling Resources: Full Linear Logic

Full Linear Logic, as originally proposed by Girard [13], includes devices to control
the use of resources (where sentences are viewed as representing resources), by con-
trolling the use of contraction and weakening in the Gentzen system for the logic.
Girard [13] introduced a single operator ! (of course, bang) with its dual (why not)
?ϕ = (!ϕ⊥)⊥. The exponential operators !, ? in [13] control both contraction and
weakening. Though it is possible to separate control of weakening and contraction
by distinct operators, whose composition delivers the original !, ? (cf. [17]), we shall
restrict ourselves in this article to the original exponential operators of LL. For full
LL’s Gentzen system [13] may be consulted. Algebraically, ! is a monotone operator,
a ≤ b Ô⇒ !a ≤ !b, and it satisfies both !a ≤ a and !!a = a, hence it is an interior
operator. It’s dual is a closure operator a ≤ b Ô⇒ ?a ≤ ?b, a ≤ ?a and ??a = ?a.
The distinctive property of ! is that it maps extensional to intentional conjunctions:
!(a ∧ b) =!a○!b. Finally, ! satisfies the identity !⊺ = t. The ! operator has been re-
garded as an S4-modality, a (monotone) box operator satisfying both the T and the
S4 axioms, ◻a ≤ a and ◻a ≤ ◻ ◻ a. Despite such appearances, we share the view of
Bimbó and Dunn [6] that ! is best viewed as a diamond-like operator, rather than a
box-like one. Definition 5.14 introduces τ -frames for Linear Logic.

Definition 5.14 (LL Frames). An LL-frame is a Kripke–Galois frame

G = (X,≤, (⊥,⊥∂), (R⊗,R∂⊗), (R⊕,R∂⊕), (R→,R∂→), (R!,R
∂
! ), (R?,R

∂
? ),M)

of similarity type τ = ⟨(1;∂), (1,1; 1), (∂, ∂;∂), (1, ∂;∂), (1; 1), (∂;∂)⟩, where
1. G = (X,≤, (⊥,⊥∂), (R⊗,R∂⊗), (R⊕,R∂⊕), (R→,R∂→),M) is a MALL-frame (Def-

inition 5.8)

2. R!,R
∂
! ,R?,R

∂
? ⊆ X × X are binary relations on X generating the respective

operators in (53, 54), instantiating equations (4–7) to the case of distribution
types (1; 1) for ! and (∂;∂) for ?.

!A = {x ∶ ∃y (xR!y and y ∈ A)} !∂B = {x ∶ ∀y; (y ∈ λB Ô⇒ xR∂! y)} (53)
?A = {x ∶ ∀y (y ∈ ρA Ô⇒ xR?y)} ?∂B = {x ∶ ∃y (xR∂?y and y ∈ B)} (54)
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3. For each x ∈X, the set R!x = {y ∶yR!x} is point-generated by some point above
x. More specifically,

∀x ∃!wx (x ≤ wx and wxR!wx and ∀y [(yR!x ←→ wx ≤ y)
and (y ≤ x Ð→ wxR!y)]). (55)

For the convenience of referencing, we again extend the frame language by
introducing a function symbol s on X with the property prescribed above,
letting wx = sx.

4. For any u ∈X and any x, y ∈M ,

Ψ(u, sx, sy) ←→ ∀z [∀u′ (x ≤ u′ ∧ y ≤ u′ Ð→ z ≤ u′) Ð→ sz ≤ u] (56)

where Ψ is defined by (14).

5. Conditions (A) and (B) below are equivalent, for all z ∈X and any x ∈M ,

(A) ∀u (∀y (y ≤ x Ð→ uR?y) Ð→ z ⊥ u)
(B) ∃v (zR!v ∧ ∀v′ (x ≤ v′ Ð→ v ⊥ v′)).

6. ∀x (x ⊥ ω ←→ ∃y xR!y)
Models for LL are the MALL-models with the addition of the obvious clauses

for !, ? resulting from definitions (53, 54) of the corresponding set-operators.

Lemma 5.15. The following hold in LL-frames, for all z, z′ ∈X and any x, y ∈M ,

1. !(Γz) = Γ(sz)
2. !(Γz) ⊆ Γz and !(Γz) = !!(Γz)
3. If z′ ≤ x, then !(Γz) ⊆ !(Γz′)
4. !(Γx ∩ Γy) = !(Γx)⊗!(Γy)
5. !X = {ω}⊥

Proof. The first three claims follow from the definition of !, see (53), and the third
condition imposed on frames, see (55). The last claim follows from closure of Pλ ={Γx∶x ∈M} and ofPρ under binary intersections, the duality betweenPλ,Pρ (which
turns each to a lattice) and from the fourth frame condition, see (56). The claim
that !X = {ω}⊥ follows directly from the last condition on LL-frames, where recall
that ω is the ≤-largest element of X and it belongs to M .

687



Hartonas

Lemma 5.16. For any x ∈M , ?(Γx) = (!((Γx)⊥))⊥. Consequently, for each z ∈M ,
there is a point ⫯z such that ?(Γz) = Γ(⫯z), and therefore, Pλ is closed under the
set-operator ?. Furthermore, ? is a closure operator on Pλ, i.e.,

1. if z′ ≤ z, then ?(Γz) ⊆ ?(Γz′);
2. Γz ⊆ ?(Γz) and ?(Γz) = ??(Γz).

Proof. To show that (?Γx)⊥ =!((Γx)⊥), just use the equivalence of Conditions 5(A)
and 5(B). By Lemma 5.2, (Γx)⊥ = Γx∗, for x ∈M , and by Lemma 5.15, !Γx = Γ(sx).
Hence, ?Γx = Γ(s(x∗))∗ and we let ⫯x = (s(x∗))∗, so that ?Γx = Γ(⫯x). Fromssu = su, which follows from !!Γu =!Γu and given the definition of ⫯, we obtain⫯⫯x = ⫯x, hence, ??Γx =?Γx, for x ∈ M . The monotonicity of ? and the inclusion
Γx ⊆ ?Γx are immediate, and left to the interested reader.

Corollary 5.17 (Soundness for LL). Full Linear Logic is sound in the class of
Kripke–Galois frames specified in Definition 5.14.

Proof. Rather than proving rules to be sound we verify that all the inequalities of
the Lindenbaum–Tarski algebra of LL, as these were summarized in the beginning
of this section, actually hold. But this was precisely the content of Lemmas 5.15
and 5.16.

Most of the work needed for completeness of full Linear Logic has been already
done in previous sections. For full LL, we have already verified that the canonical
frame is a MALL-frame, hence Condition 1 in the definition of LL-frames holds.
Define now operators s, ⫯ on filters and canonical relations R!,R? and their dual
relations R∂! ,R∂? , by (57, 58), so that Condition 2 of LL-frames is satisfied,

sx = {e ∶ ∀b (b ≤ x Ô⇒ !b ≤ e)} xR!y iff sy ≤ x xR∂! y iff x ≤ sy (57)
⫯x = {e ∶ ∃b (b ∈ x and ?b ≤ e)} xR?y iff ⫯y ≤ x xR∂?y iff x ≤ ⫯y, (58)

following again the approach of [16, 18, 20, 21]. The relations R!,R? generate set-
operators, by instantiating equations (4, 6) and dual set-operators, by instantiating
equations (5, 7):

!U = {x ∶ ∃y (xR!y and y ∈ U)} !∂U = {x ∶ ∀y (y ∈ λU Ô⇒ xR∂! y)}
?U = {x ∶ ∀y (y ∈ ρU Ô⇒ xR?y)} ?∂U = {x ∶ ∃y (xR∂?y and y ∈ U)}

The reader is invited to verify that sxa = x!a and, similarly, ⫯xa = x?a, for any
principal filter xa.
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Lemma 5.18 (Canonical Frame Lemma for full LL). The canonical frame defined
as above is an LL-frame in the sense of Definition 5.14.

Proof. The proof of the following claim is needed.

Claim 5.19. The following hold for the filter operators s, ⫯ and the set operators !, ?.

1. For all x ∈X, x ≤ sx, hence !Γx ⊆ Γx.

2. s, ⫯ are monotone functions on X, i.e., x ≤ y implies sx ≤ sy and ⫯x ≤ ⫯y,
hence, Γy ⊆ Γx implies !Γy ⊆ !Γx and ?Γy ⊆ ?Γx.

3. For all x ∈X, sx = ssx, and consequently, !!Γx = !Γx.

4. For all x ∈M , ⫯x = (s(x∗))∗.
5. λ(!∂(ρΓx)) =!Γx and !∂∆x = ρ(!(λ∆x)).

Proof. For 1), if e ∈ x and b ≤ x, then b ≤ e, hence !b ≤ b ≤ e and therefore e ∈ sx. It
follows then that !Γx ⊆ Γx, using the fact proved above that !Γz = Γ(sz).

For 2), assume x ≤ y and let e ∈ sx and b ≤ y. The hypothesis implies b ≤ x and
then !b ≤ e follows, since e ∈ sx, which shows that e ∈ sy. This implies also that if
Γy ⊆ Γx, then !Γy ⊆ !Γx.

For 2) again, but for the ⫯ operator, assuming x ≤ y and e ∈ ⫯x, any b ∈ x such
that ?b ≤ e is a b ∈ y and ?b ≤ e, hence, e ∈ ⫯y. It then also follows that Γx ⊆ Γy
implies ?Γx ⊆ ?Γy.

For 3), it only needs to be verified that ssx ≤ sx. Let d ∈ ssx and assume
b ≤ x. To show that d ∈ sx it suffices to verify that !b ≤ d. From b ≤ x the filter
inclusion x ≤ xb is obtained and then by monotonicity of s we get sx ≤ sxb. From the
definition of the filter operator s it easily follows that sxb = x!b, hence it follows by
monotonicity that ssx ≤ ssxb = x!!b = x!b and therefor !b ≤ ssx and since we assume
that d ∈ ssx the desired conclusion !b ≤ d follows. As a consequence, we also obtain
the identity !!Γx = !Γx.

For 4), the result is immediate since ?a = (!(a⊥))⊥ holds in the Lindenbaum–
Tarski algebra of LL and given that M is the set of principal filters and that ⫯xa ={e ∶ ∃b (a ≤ b and ?b ≤ e)} = {e ∶ ?a ≤ e} = x?a.

Case 5) is easy to prove, and it is left to the reader.

Now, for any filter z ∈X, we obtain by monotonicity of the filter operators

!Γz = {x ∶ ∃u (xR!u and u ∈ Γz)} = {x ∶ ∃u (z ≤ u and su ≤ x)}= {x ∶ sz ≤ x} = Γ(sz)
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?Γz = {x ∶ ∀u (u ∈ ρ(Γz) Ô⇒ xR?u)} = {x ∶ ∀u (u ≤ z Ô⇒ ⫯u ≤ x)}= {x ∶ ⫯z ≤ x} = Γ(⫯x)
This shows, in particular, that if A ∈Pλ, then also !A, ?A ∈Pλ.

Condition 4 for LL-frames is easily seen to hold for any x, y ∈M (i.e., principal
filters). This is shown by the following calculation: !(Γxa ∩ Γxb) =!Γ(xa ∨ xb) =
Γs(xa∧b) = Γx!(a∧b) = Γx!a○!b = !(Γxa)⊗ !(Γxb).

The equivalence of Conditions 5A and 5B, as noted in the proof of Lemma 5.16, is
equivalent to the requirement that (?Γx)⊥ = !((Γx)⊥), for x ∈M , which is equivalent
to (⫯x)∗ = s(x∗), itself equivalent to the last case of Claim 5.19, already proved.

Finally, for Condition 6 for LL-frames, for any x ∈X we have

x ⊥ ω iff x ∈ {ω}⊥ iff x ∈ (Γω)⊥ (using Lemma 5.2)
iff x ∈ Γω∗ (using Lemma 5.2 again)
iff x ∈ Γx0⊥ (using the fact ω = x0 and x∗e = xe⊥)
iff x ∈ Γx!1 (since !1 = t = 0⊥)
iff x ∈ Γ(sx1) (since sxa = x!a, any a)
iff x ∈!Γx1 (given that !Γz = Γ(sz), any z ∈M)
iff x ∈!X (since Γx1 = {u ∶ 1 ∈ u} =X)
iff x ∈ {x ∶ ∃y (xR!y and y ∈X)} (by definition of !)
iff ∃y xR!y

This completes the proof that the canonical frame is an LL-frame in the sense of
Definition 5.14.

For completeness, it remains to prove the following claim.

Lemma 5.20 (Canonical Interpretation Lemma for full LL). The canonical inter-
pretation satisfies the requisite recursive clauses in the definition of LL-models.

Proof. The proof of the lemma rests on the truth of the next claim.

Claim 5.21. For any a and any filter x,

1. !a ∈ x iff ∃y (xR!y and a ∈ y), and !a ≤ x iff ∀y (a ∈ y Ô⇒ xR∂! y);
2. ?a ∈ x iff ∀y (a ≤ y Ô⇒ xR?y), and ?a ≤ x iff ∃y (a ≤ y and xR∂?y).

Proof. The claim is a special instance of Claims 4.9–4.12 proved in the course of
the proof of the canonical interpretation Lemma 4.8 of [21], to which the reader is
referred for details, though this instance can be easily proved by a reader who may
wish to verify it.
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Cases 1–2 of the above claim are clearly equivalent to the recursive clauses for
the interpretation and co-interpretation of exponentials and therefore, by the above
proofs, we can conclude with the completeness for full LL.

Theorem 5.22 (Completeness for full LL). Linear Logic (with exponentials) is
complete in the class of LL-frames (Definition 5.14).

6 Conclusions
This article presented Kripke–Galois Frames and more specifically τ -frames (Defi-
nition 2.2) F = (X,R, (Rδ,R∂δ )δ∈τ), where the relations Rδ,R∂δ generate dual image
operators ◯δ,◯∂δ (generalizing the Jónsson–Tarski image operators) on the familiesGλ(X),Gρ(X) of stable, and respectively, co-stable subsets of X (where stability
refers to the closure operator produced by composing the two maps of the Galois
connection generated on subsets of X by the Galois relation R of the frame).

A τ -logic is the logic of some class of τ -frames, for a given similarity type τ .
τ -logics include a number of familiar logical systems and we have examined in this
article substructural systems ranging from the Full Lambek and Lambek–Grishin
calculi, to the logics of De Morgan monoids and to Linear Logic (with, or without
exponentials) and to non-distributive Relevance Logic.

Modal and temporal systems have been previously treated by this author in
[22, 20], while the groundwork of the Kripke–Galois framework was first published
in [21]. The present article is a revised and condensed version of the report [23].
The Kripke–Galois semantics approach is based on a Stone-type representation and
duality result published several years ago [16] and the motivation has been to extend
Dunn’s theory of Generalized Galois Logics (GGLs, gaggles) [8, 6] to the case of an
underlying non-distributive propositional calculus.

It is this author’s opinion that the approach taken in [16, 22, 19, 20, 21, 23] and in
this article overcomes the difficulties encountered in the approaches taken in [11, 27,
10, 7] as far as providing a meaningful semantic account of applied non-distributive
logics is concerned, such as dynamic, temporal, epistemic, or more generally, modal
logics over a non-distributive propositional basis.
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Abstract

This paper has two aims. First, it sets out an interpretation of the relevant
logic E of relevant entailment based on the theory of situated inference. Second,
it uses this interpretation, together with Anderson and Belnap’s natural deduc-
tion system for E, to generalise E to a range of other systems of strict relevant
implication. Routley–Meyer ternary relation semantics for these systems are
produced and completeness theorems are proven.

Keywords: entailment, relevant logic, strict implication, situated inference, ternary
relation semantics

1 Introduction
The logic E is supposed to be the logic of relevant entailment. E incorporates
intuitions concerning both relevance and necessity. In the 1960s, Alan Anderson and
Nuel Belnap constructed two central relevant logics. E and the logic of contingent
relevant implication, R. They viewed the entailment connective of E as the strict
version of the implication of R. To show that the two logics had this relationship,
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Robert Meyer constructed a modal version of R, R�, that adds to R a necessity
operator and relevant versions of the axioms for S4 [13]. It was hoped that the
conjunction, disjunction, negation, and strict implication fragment of R� was the
same as E. But Larisa Maksimova showed that these two logics are distinct [10].

In Entailment, volume 1, Anderson and Belnap wrote:

we predict that if in fact it is found that R� and E diverge, then we
shall, with many a bitter tear, abandon E. [1, p. 351]

The logic E has not, however, been completely abandoned. It continues to be studied.
Entailment volume 2 has both very interesting technical and historical information
about E, including Belnap’s elegant display logic proof theory for it [2, §62.5.3].
Mark Lance defends E over R as the central relevant logic [8] and Lance and Philip
Kremer have developed a theory of linguistic commitment that had E as its logic [9].
Despite all of this, however, E seems to be ignored by most contemporary relevant
logicians.

In this paper, we focus on E and some logics that closely resemble it. We give
E an interpretation based on the theory of situated inference of [11] and gener-
alise the intuitions behind this interpretation to develop a small class of entailment
logics. These entailment logics are formulated first in terms of Fitch-style natural
deduction systems which make clear both the components of relevance and modality
incorporated into them. The logics are then formulated in terms of traditional ax-
iom systems and these are shown complete with respect to classes of Routley–Meyer
ternary relation models. The indices of these models are taken to be situations
and the ternary relations in these models are interpreted in terms of the theory of
situated inference.

The logics that we examine in this paper are negation-free. Although negation
is easily added to the semantics of these systems using the Routley star operator,
available treatments of it in the natural deduction system are not illuminating in
the way that we desire. We promise to investigate the role and representation of
negation in entailment logics in a future paper, but we do not do so here.

The plan of the paper is as follows. We begin by reviewing the theory of situated
inference as it is applied to the logic R. We show how this theory can be used
to understand the Routley–Meyer semantics for that logic. We then modify the
theory to apply to the logic E. We examine E through its axiomatic formulation,
natural deduction system, and Routley–Meyer semantics. The situated inference
interpretation of E employs both situations and worlds. This interpretation is then
generalised to treat a small class of other systems that incorporate principles from
various modal logics. An E-like logic that is similar to the modal logic K, which
we call E.K is explored, and so are its extensions E.KT, E.K4, and E.KT4 (which
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is just E itself). We end by exploring a suggestion of Alasdair Urquhart for an
axiomatisation of an S5-ish entailment logic, E5.

2 Situated Inference

Routley–Meyer models for relevant logics are indexical models, that is, in them the
truth or falsity of formulas is relativised to points. We call these points situations.
A situation is a potential part or state of a possible world. Some situations actually
obtain in some worlds, and so can be called possible situations and some do not
and can be thought of as impossible situations. Impossible situations are important
for the analysis of negation, which is not our main concern here and so we will not
mention impossible situations further.

A situation contains or fails to contain particular pieces of information. For
example, a situation that includes all the information available at a given time in
a lecture room (in which no one is connected to the internet) may not contain
information about the weather outside or about the current polls in the American
presidential race. Whether a situation satisfies a formula in a model is given by an
information condition rather than a truth condition. These information conditions
abstract from the canonical ways in which information is made available in actual
situations. For example, the way in which we usually tell that an object is not red
is that it is of some colour that is incompatible with its being red. The information
condition for negation is a more general representation of this sort of information
condition. It states that a � ¬A if and only if a is incompatible with any situation
b that satisfies A. This means that a contains the information that there is no
situation in the same world as a that contains the information that A.

One feature of the informational interpretation of relevant logic is that the satis-
faction conditions for the connectives need not be homomorphic. As we can see, we
do not in every case set a � ¬A iff a 2 A. The requirement that satisfaction condi-
tions be homomorphisms between the object language and semantic metalanguage
does not hold for information. The way in which we find information structured in
our environment need not mirror the structure of way that we express that infor-
mation linguistically.

The main focus of this paper is the notion of entailment. We approach it through
the closely related concept of relevant implication. As we have said, Anderson and
Belnap think of entailment as modalised implication and implication as a contingent
form of entailment. The Routley–Meyer satisfaction condition for implication is

a � A→ B iff ∀x∀y((Raxy ∧ x � A) ⊃ y � B).
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The information in one situation can be applied to the information in another situ-
ation. For example, if C → D is in a and C is in b, then combining this information
we obtain D. One way of understanding this condition is to think of the information
in a combined with the information in b in this way always results in information
that is in c.1

The theory of situated inference explains why one would care about combining
information in this way. Suppose that one is in a situation a and in a world w. She
might hypothesise that another situation b also exists in w. Then she can combine
the information in a and b to determine that other sort of situations are in w. For
example, suppose that a person has available to him in situation a information
that there are absolutely no ticks in New Zealand. Then, on the hypothesis that
a particular woodland is in New Zealand, he has the licence to infer that there are
no ticks in it. The theory of situated inference breaks this inference as being an
inference from there being one situation in which the park is in New Zealand and
(perhaps) another in which it contains no ticks. The theory of situated inference
connects relevant implications in a direct way with ordinary inferences.

What the theory of situated inference tells us is that the ternary relation R
relates a and b to a set of situations (call it Rab), such that given the information in
a, on the hypothesis that b is in the same world as a, there is a situation c in Rab also
in that world. We sometimes say that Rabc says that some situation like c can be
inferred from that application of a to b. The word ‘like’ here is not being used in any
technical sense. It is just an abbreviation to say that c is one of the set of situations
that contains all the information that can be inferred from the combination of the
information in a with that in b.

The demodalised nature of relevant implication, as it is characterised by the logic
R, is made explicit in the theory of situated inference by the reading of situated
inferences as being inferences about situations and information all contained in a
single world. As we have said Rabc means that the hypothesis of a and b in the
same world allows us to infer the existence of a situation like c in that world. The
reading of inferences as being in a single world, together with a rather liberal notion
of application, enables justifications of certain particular postulates of the Routley–
Meyer semantics for R.

For example, consider the permutation postulate of the Routley–Meyer semantics
for R: for any situations a, b, c, if Rabc then Rbac. This postulate tells us that the

1A rather sophisticated reading of the notion of combination is in [3]. In that paper, combination
is understood in terms of the application of one situation to another in the sense that functions are
applied to arguments. The application reading of R works well for weaker relevant logics but can
be used to interpret the logic R as well. It just takes quite a bit of effort to show how it fits with
the Routley–Meyer semantics for R and so we do not use it here.
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result of combining the information in a with that in b is the same as combining
the information in b with that in a. This seems natural as the common notion of
combination is symmetric. As we shall see later, however, in the semantics for E the
permutation postulate fails, and it fails (on our reading) because E is a modal logic.

The permutation postulate makes valid the thesis of assertion: A → ((A →
B)→ B).

Derivation 1. The following is a proof of assertion in the Anderson–Belnap Fitch
system for R:

1 A1 hypothesis

2 A→ B2 hypothesis

3 A{1} 1, reiteration

4 B{1,2} 2, 3, →E

5 (A→ B)→ B{1} 2–4, →I

6 A→ ((A→ B)→ B)∅ 1–5, →I

The subscripts are to be understood as referring to situations. When we make
a hypothesis, say, A1, we are postulating the existence of a situation, say, a1 that
contains the information that A. When the subscript is the empty set, the formula is
proven to hold in every normal situation. (We discuss normal situations in Section 4.)
The expression B{1,2} is read as saying that an arbitrary situation c that is in the
result of combining the information in a1 with that in a2. The use of permutation
can be seen in this proof through the fact that it does not matter when a number is
added to the subscript (in an application of the rule of implication elimination) nor
when it is removed (in an application of implication introduction) which order the
numbers are in. If we were to reject permutation, the subscript the minor premise in
an implication elimination would have to be added at the end of the new subscript
and likewise, when a hypothesis is discharged its number could only be removed
from the end of the subscript. Having permutation allows us to commute the order
the numbers in subscripts.

We can generalise the R relation to be an n-place relation for any positive integer
n by taking products of R. We say that Rabcd if and only if ∃x(Rabx ∧Rxcd) and
more generally (for n ≥ 3) Ra1 . . . anc if and only if ∃x(Ra1 . . . an−1x∧Rxanc). We
read Ra1 . . . anc as saying that the hypothesis of a1, . . . , an all in the same world
justifies the inference to there being a situation like c also in that world. The
generalised R relation and its interpretation justifies a more general permutation
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postulate: if Ra1 . . . amam+1 . . . anc, then Ra1 . . . am+1am . . . anc, for any m, 1 ≤
m ≤ n. This generalised permutation postulate justifies the derivation of various
theses such as the permutation of antecedents ((A→ (B → C))→ (B → (A→ C))).

Before we leave R, let us look at a semantic postulate that is related to situated
inference in a more complicated manner: the contraction postulate. The simple
version of the contraction postulate says

Rabc =⇒ Rabbc.

The generalised version of contraction says thatRa1 . . . am . . . anc implies thatRa1 . . .
amam . . . anc. This generalisation follows from the simple version. We read contrac-
tion as saying that if we hypothesise that a1, . . . , am, . . . , an in a world to infer that
there is a situation like c is also present in that world, in an inference we can really
use the information in am twice as part of the inference the presence of a situation
like c. We will return to the topic of contraction in our discussion of entailment
logics weaker than E.

3 E
This paper is not about R, but about the logic of relevant entailment, E and some
similar systems. The implication of E is usually understood as a form of strict rele-
vant implication. One way of thinking about strict relevant implication is through
combining relevant implication with modality. If we think of it that way, then it is
natural to represent strict relevant implication in a modal extension of R. But we
suggest that the notion of entailment be considered a unified notion that has the
properties of being relevant and necessary.

The obvious difference between R and E is in their conditionals. The conditional
of R is a contingent implication and that of E is entailment. We can compare the
two logics in terms of axiomatisations of their conditional only fragments, R→ and
E⇒. Here are some axiom schemes that, together with the usual modus ponens rule,
generate E⇒:

1. A⇒ A (Identity);

2. (A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C)) (Suffixing);

3. (B ⇒ C)⇒ ((A⇒ B)⇒ (A⇒ C)) (Prefixing);

4. (A⇒ (A⇒ B))⇒ (A⇒ B) (Contraction);

5. ((A⇒ A)⇒ B)⇒ B (EntT).
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The axiom EntT tells us that if any formula is entailed by a theorem it is true. It
is, in effect, a form of the T-axiom from modal logic that tells us that any necessary
formula is true. For contrast, consider a set of axioms for R→:

R1 A→ A (Identity);

R2 (A→ B)→ ((B → C)→ (A→ C)) (Suffixing);

R3 (A→ (A→ B))→ (A→ B) (Contraction);

R4 (A→ (B → C))→ (B → (A→ C)) (Permutation of Antecedents).

The permutation axiom of R→ “demodalises” its implication. From (A → B) →
(A→ B), which is an instance of identity, it allows us infer that A→ ((A→ B)→
B). The latter clearly makes → into a non-strict form of implication. If we read →
as J, even in the sense of S5, this formula is not a logical truth.

The axiomatic basis for conjunction and disjunction are the same for both logics,
if we replace ⇒ with → throughout to obtain the axioms for positive R:

7. A⇒ (A ∨B); B ⇒ (A ∨B);

8. (A ∧B)⇒ A; (A ∧B)⇒ B;

9. ((A⇒ B) ∧ (A⇒ C))⇒ (A⇒ (B ∧ C));

10. ((A⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C);

11. (A ∧ (B ∨ C))⇒ ((A ∧B) ∨ (A ∧ C)).

The rules for positive R and positive E are just modus ponens and adjunction.
E also has the axiom,

(�A ∧�B)⇒ �(A ∧B) (Agg�)

The axiom Agg� (Aggregation for �) is a translation of the usual aggregation thesis
into the idiom of E. Here �A is defined as (A⇒ A)⇒ A.

We also add the Ackermann constant t, to facilitate the formulation of another,
but more easily used, notion of necessity, �. This notion of necessity is defined as
follows:

�A =df t⇒ A

The operator � is extremely difficult to use in proofs. Consider, for example, the
axiom Agg�. Written in primitive notation it is ((((A⇒ A)⇒ A)) ∧ ((B ⇒ B)⇒
B))⇒ (((A ∧B)⇒ (A ∧B))⇒ (A ∧B)). Using this formula to prove other modal
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theses can be quite difficult. Agg�, i.e., (�A ∧ �B) ⇒ �(A ∧ B), however, is just
((t⇒ A) ∧ (t⇒ B))⇒ (t⇒ (A ∧B)), and this is just an instance of axiom 9.

The axiom and rule for t are the following:

12. (t⇒ A)⇒ A (Tt).

Rule Nt (necessitation for t)
` A
` t⇒ A

` t follows from axiom 1, i.e., t⇒ t, and axiom 12, (t⇒ t)⇒ t.
In the context of E, � and � are equivalent. Here is a proof.

Lemma 3.1. In E, it is a theorem that �A⇔ �A.

Proof. First, the left-to-right direction of the biconditional:
1. (t⇒ A)⇒ ((A⇒ A)⇒ (t⇒ A)) Suffixing
2. ((t⇒ A)⇒ A)⇒ (((A⇒ A)⇒ (t⇒ A))⇒

((A⇒ A)⇒ A)) Prefixing
3. (t⇒ A)⇒ A Tt
4. ((A⇒ A)⇒ (t⇒ A))⇒ ((A⇒ A)⇒ A) 2, 3, MP
5. (t⇒ A)⇒ ((A⇒ A)⇒ A) 1, 4, Suffixing, MP
6. �A⇒ �A 5, def �, def �.

Now, the right-to-left direction:
1. t⇒ (A⇒ A) Axiom 1 and Nt
2. (t⇒ (A⇒ A))⇒ (((A⇒ A)⇒ A)⇒ (t⇒ A)) Suffixing
3. ((A⇒ A)⇒ A)⇒ (t⇒ A) 1, 2, MP
4. �A⇒ �A 3, def �, def �.

Lemma 3.1 shows that Agg� is redundant in the logic with t. Moreover, the def-
inition of � does not determine a modality with natural properties in some of the
weaker systems we discuss later. These facts allow us to ignore � for the remainder
of this paper.

Natural deduction proofs for E differ from those for R in the way in which
subproofs are understood. In Anderson and Belnap’s system [1, 2], only implicational
formulas can be reiterated into subproofs. We modify that rule in order to produce
proof systems for our other logics. We eliminate the reiteration rule altogether and
change the implication eliminate proof to allow that the major premise be a previous
step in a superior proof. We use ⇒ for relevant entailment.

Derivation 2. The following is a derivation of the thesis of suffixing in the natural
deduction system for E:

702



The Relevant Logic E and Some Close Neighbours . . .

1 A⇒ B1 hypothesis

2 B ⇒ C2 hypothesis

3 A3 hypothesis

4 B{1,3} 1, 3, ⇒E

5 C{1,2,3} 2, 4, ⇒E

6 A⇒ C{1,2} 3–5, ⇒I

7 (B ⇒ C)⇒ (A⇒ C){1} 2–6, ⇒I

8 (A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))∅ 1–7, ⇒I

At step 4, the first hypothesis is used as the major premise of an implication elim-
ination and the third hypothesis as its minor premise. We can think of scope lines
as introducing new possible worlds at which situations indicated by the subscripts
(as in proofs in R) hold. Thus, we can rewrite the above proof as:

1 A⇒ B1 w1 hypothesis

2 B ⇒ C2 w2 hypothesis

3 A3 w3 hypothesis

4 B{1,3} w3, 1, 3, ⇒E

5 C{1,2,3} w3 2, 4, ⇒E

6 A⇒ C{1,2} w2 3–5, ⇒I

7 (B ⇒ C)⇒ (A⇒ C){1} w1 2–6, ⇒I

8 (A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))∅ 0, 1–7, ⇒I

The world parameters on the right indicate worlds that are hypothesised in each of
the subproofs. (0 in the final line indicates that the formula is true at every normal
situation. We will discuss the relationship between normal situations and worlds in
Section 4.)

E has a ternary relation semantics like the semantics for R, but we wish to read
it in a somewhat different way. We use E for the ternary relation in E-frames. The
expression ‘Eabc’ means that, for any worlds w1, w2, if a is in w1, w2 is modally
accessible from w1, and b is in w2, then a situation like c is also in w2. In order to
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understand the accessibility relation E, we appeal to a second accessibility relation,
in this case a binary modal accessibility relation. The status of worlds and the modal
accessibility relation are best explained by appealing to the formal semantics for E.
Let us move on, then, to this semantics.

4 Routley–Meyer Models for E
A positive E frame is a structure (S, 0, E) such that S is a set (of situations), 0 is
a non-empty subset of S, and E ⊆ S3 such that all the following definitions and
conditions hold. Where a, b, c, d are situations,

a ≤ b =df ∃x(x ∈ 0 ∧ Exab)

E2abcd =df ∃x(Eabx ∧ Excd)

1. if a ∈ 0 and a ≤ b, then b ∈ 0;

2. if a ≤ b and Ebcd then Eacd; if c ≤ d and Eabc then Eabd;

3. there is a b ∈ 0 such that Eaba;

4. if E2abcd then ∃x(Eacx ∧ Ebxd);

5. if Eabc then E2abbc.

Semantic postulates 3, 4, and 5 need some explanation. Below, we define a modal
accessibility relation on situations, M , as Mab =df ∃x(x ∈ 0 ∧ Eaxb). Postulate 3
tells us that this accessibility relation on situations is reflexive. Postulate 4, however,
has to do with the modal accessibility relation on worlds. E2abcd says that if a is in
a world w1, b is in a world w2, c is in w3, then there is a situation like d in w3 and
w2 is accessible from w1 and w3 is accessible from w2. Since the modal accessibility
relation on worlds is transitive, w3 is accessible from w1. ∃x(Eacx ∧Ebxd) tells us,
in this instance, that there is a situation x such that if a is in w1 and d is in w3,
then a situation like x is in w3 and if b is in w2 and x is in w3, then a situation like
d is also in w3. The fact that the modal accessibility relation on worlds is transitive
allows us to make sense of this postulate.

Semantic postulate 5 relies on reflexivity rather than transitivity. It tells us that
if Eabc, then there if a is in w1, b is in w2, b is in w3, then we can infer that there
is a situation like c in w3. This seems unintelligible, unless we read this as saying
that if Eabc, then if a is in w1, b is in w2, b is in w2, then we can infer that c is
also in w2. This makes so much sense as to seem obvious. What does the work
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here is identifying the worlds in which the first and second instance of b are located.
We can do this if the modal accessibility relation is reflexive. To labour the point
slightly, we read E2abbc as saying that there is some situation x such that if a is in
w1 and b is in w2, we can infer that there is a situation like x in w2 and if x is in w2
and b is in w2 then there is a situation like c also in w2, such that w2 is accessible
from w1 and w2 is accessible from itself.

At this point, we reflect on the nature of the set 0 of normal situations. In the
natural deduction system, we can use A∅ at any stage, if A has been proved. In
allowing this, we assume that every world contains at least one normal situation. A
possible world (one that contains no contradictions) is covered by a normal situation.
In full models for E, that contain mechanisms to deal with negation as well as the
other connectives, normal situations are all bivalent. They make true the law of
excluded middle. In this way, we can think of normal situations to some extent as
surrogates for worlds in models. We do not, however, want to identify worlds with
normal situations, at least as the latter are characterised in frames, since the way
in which we understand the E relation in terms of worlds is not made explicit in
frames.2

A positive E model is a quadruple (S, 0, E, V ) such that (S, 0, E) is a positive E
frame and V assigns sets of situations to propositional variables such that for any
propositional variable p, V (p) is closed upwards under ≤. Each value assignment V
determines a satisfaction relation �V , between situations and formulas by means of
the following inductive definition:

• a �V p if and only if a ∈ V (p);

• a �V t if and only if a ∈ 0;

• a �V A ∧B if and only if a �V A and a �V B;

• a �V A ∨B if and only if a �V A or a �V B;

• a �V A⇒ B if and only if ∀b∀c((Eabc ∧ b �V A) ⊃ c �V B).

We write � instead of �V where no confusion will result.
The following satisfaction condition for � can be derived:

a � �A iff ∀b∀c((Eabc ∧ b ∈ 0) ⊃ c � A)

We can extract from this condition a definition of a modal accessibility relation:

Mab =df ∃x(x ∈ 0 ∧ Eaxb)
2For contrast, see Urquhart’s semantics discussed in Section 5.

705



Mares and Standefer

Now we can state a Kripke-style satisfaction condition for necessity:

a � �A iff ∀b(Mab ⊃ b � A)

The relationM might not seem as if it is the right relation to represent necessity
in E models. After all, this is a relation between situations, not worlds. But we have
certain situations that can be treated as worlds. They might be mere proxies of “real”
worlds or they might be the worlds themselves. This is a matter for metaphysicians
to ponder. We set it aside here. These worlds are the members of the set 0. This is
the set of normal situations — the situations at which all of the theorems of E are
true under all interpretations.

The M relation, as defined above, has the properties of the accessibility relation
in Kripke models for S4:

Proposition 4.1. In any E-frame, M is transitive and reflexive.

Proof. Suppose that Mab and Mbc. Then there is an x ∈ 0 and a y ∈ 0 such that
Eaxb and Ebyc. Therefore, E2axyc. Thus, by semantic postulate 4, there is some
situation z such that Eayz and Exzc. Thus, Maz and z ≤ c. Thus, by semantic
postulate 2, Mac. Generalising, M is transitive.

Reflexivity follow directly from semantic postulate 3 and the definition ofM .

In later sections of this paper, we will examine systems with weakerM relations.

5 Urquhart Semantics for E
In his PhD thesis [17] and in [16], Alasdair Urquhart gives a semantics for the im-
plicational fragment of E. This semantics has a lot in common with the semantics
for R�. In particular, it is an extension of his semantics for the implicational frag-
ment of R. The semantics uses a set of pieces of information and a semi-lattice join
operator, ∪, between pieces of information. The information condition for relevant
implication is

x � A→ B iff ∀y(y � A ⊃ x ∪ y � B).

Urquhart modifies this semantics to fit E by adding a set of worlds and a binary
relation, N , on them. He also has formulas’ being satisfied at a pair of a piece of
information and a world. The condition for entailment becomes

(x,w0) � A⇒ B iff ∀y∀w1((Nw0w1 ∧ (y, w1) � A) ⊃ (x ◦ y, w1) � B).
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The debt our interpretation owes to Urquhart’s semantics is clearly extensive. The
difference is that in Urquhart’s semantics an R structure is present under the surface
of the E structure.

In order to see what formal difference it makes to have an R structure underlying
E models, let us consider using Urquhart’s idea to model all of E. Consider a model
(S, 0, R,W,N, V ) where (S, 0, R) is a positive R frame, W is a non-empty set (of
worlds), and N is a reflexive and transitive binary relation on W . Then we set

(a,w0) � A⇒ B iff ∀b∀c∀w1((Nw0w1 ∧Rabc ∧ (b, w1) � A) ⊃ (c, w1) � B).

The conditions for the other connectives are the obvious ones.
We can prove that this model satisfies the formula that Maksimova constructed

to show that NR is a proper extension of E — ((A⇒ (B ⇒ C))∧ (B ⇒ (A∨C)))⇒
(B ⇒ C).

Proof. Suppose that (a,w0) � (A⇒ (B ⇒ C)) ∧ (B ⇒ (A ∨ C)). Also assume that
Rabc, Nw0w1, and (b, w1) � B. We show that (c, w1) � C. Since (a,w0) � B ⇒
(A∨C) and (b, w1) � B, (c, w1) � A∨C. Rccc, so R2abcc. Suppose that (c, w1) � A.
By the Pasch postulate, R2acbc, and so there is some situation x such that Racx
and Rxbc. Since (a,w0) � A ⇒ (B ⇒ C), (x,w1) � B ⇒ C. Rxbc, Nw1w1w1, and
(b, w1) � B, so (c, w1) � C. Thus, if either (c, w1) � A or (c, w1) � C, (c, w1) � C.
Thus, (a,w0) � B ⇒ C.

The bolded step is not available, in general, for Routley–Meyer models for E.
The Pasch Postulate — ∃x(Rabx ∧ Rxcd) ⊃ ∃x(Racx ∧ Rxbd) — is in Routley–
Meyer frames for R in order to make valid (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C))
(among other things), which would demodalise E. It would allow the inference from
(A⇒ A)⇒ (A⇒ A), which is valid in E, to A⇒ ((A⇒ A)⇒ A), which is not.

We suggest, however, that Urquhart’s semantics be used as a guide for the con-
struction of entailment logics. It provides an intuitive treatment of modality in
relevant logics. Although the semantics proves too much for E and for the generali-
sations of E that we examine below, it gives us upper bounds on the logics that we
are to consider. It shows us what stronger forms of these logics (that incorporate
elements from R) look like and our constructions remain weaker than these logics,
but somewhat similar to them.

5.1 Note on R�

The system R� — sometimes called “NR” — is a modal extension of R, formulated
with a necessity operator and some axioms and rules taken from the modal logic S4.
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The axioms are: (�A ∧ �B) → �(A ∧ B), �(A → B) → (�A → �B). And the
additional rule is the rule of necessitation. The definition of a model for R� adds a
second accessibility relation, N , for the necessity operator and the usual satisfaction
condition for statements of the form �A applies:

a � �A iff ∀x(Nax ⊃ x � A)

The difficulty in extending Urquhart’s semantics to a semantics for all of E is repli-
cated in the proof that R� is not a conservative extension of E. The underlying R
frame in R� models creates the conditions for the proof of the Maksimova formula.

One difference between R� and E is that, viewed in terms of situated inference,
the two logics represent different standards of information content. Consider the
disjunction elimination rules for the two systems written in standard form. They
look the same:

A ∨Bα
Ak hypothesis
...

Cβ∪{k}

Bk hypothesis
...

Cβ∪{k}

Cα∪β ∨E

where k /∈ β. This similarity, however, is rather superficial. Given our situated in-
formational interpretation of them, we can see a real difference here. We are licensed
to make an inference from a disjunction by this rule in R when we have contingent
relevant implications from both A and B. According to E, we can only make a
similar inference when we have entailments from those two propositions. E places
a stronger demand on what counts as the information available in a situation than
does R. If we add an R semantic structure to an E frame, as happens in the Urquhart
semantics and the semantics for R�, then we undermine the E demand of stricter
relations between the states of affairs of a situation and the further information that
they carry. We can think of this distinction as a normative one. The two logics E
and R� warrant different claims about what information is available in situations.
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6 Two Notions of Necessity
In the semantics for E, there are really two notions of necessity. The first is the
one that is incorporated into the entailment connective, ⇒. Having A ⇒ B true
at a world (i.e., having the information that A ⇒ B in some situation in that
world) means that in any accessible world, if there is a situation that contains the
information that A, there is also one that contains the information that B. We call
this closure necessity, since it expresses closure conditions for worlds. The other sort
of necessity is fill necessity. This sort of necessity is represented by �.

Fill necessity can be understood both in terms of relationships between situa-
tions and relationships between worlds. As we said in Section 4, we place a modal
accessibility relation between situations that acts in terms of necessity in the same
way as accessibility relations in the standard worlds semantics do. A formula �A is
satisfied by a situation a if and only if A is satisfied by all situations M -accessible
to a. In terms of worlds, suppose that �A is true at a world w1. Let’s suppose that
w2 is accessible from w1. As we said in Section 4, in each world there is at least one
normal situation. Thus, there is some normal situation b in w2 and there is at least
one situation c in w2 such that Eabc. Since Eabc, c � A. Hence there is a situation
in w2 that contains the information that A, that is, A is true in w2.

In E, both closure and fill necessity are formulated in terms of entailment. In
R�, they are both formulated in terms of �. This turns out to be a very important
difference between the two logics. As we have seen, they do not give us logically
equivalent systems. They are also conceptually quite different. For E, and the
associated logics that we will turn to presently, closure necessity is primary. In R�,
fill necessity is more important.

7 E.K
The foregoing analysis of necessity in E suggests that we look at logics in which
the virtual accessibility relation between worlds has different properties. We call
this relation virtual because it is present only in a very shadowy sense (in terms
of the M relation between normal situations) in the formal semantics. As we have
seen in Section 4, the modal accessibility relation of E is reflexive and transitive. It
seems reasonable to look at systems in which the modal accessibility relation has
different properties. The modal accessibility relation, however, is defined in terms of
the ternary accessibility relation, which concerns entailment. Thus, we must adjust
the ternary relation to modify the binary accessibility relation.

Our strategy is to formulate the properties of modality in terms of the way it is
represented in the natural deduction system and then to modify this representation
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to incorporate different properties for modality. Then we axiomatise the resulting
system and construct a Routley–Meyer semantics for it.

We begin with a logic we call E.K, to indicate that it is the basic system in much
the same way that K is the basic normal modal logic.

The natural deduction rule is changed to allow applications of ⇒E for cases in
which the subproof in which the major premise is contained to be adjacent to the
subproof in which the minor premise resides:

A⇒ Bα
...

...

Aβ

Bα∪β

There is one exception to this. If the major premise has an empty-set subscript, then
we allow ⇒E to be applied to premises in the same subproof. We have to change
the rule ∨E in a similar way:

A⇒ Cα

B ⇒ Cα
...

...

A ∨Bβ
Cα∪β

Again, we allow the exception that the entailment formulas can be in the same sub-
proof as the disjunction if the subscript on the entailment formulas is the empty set.
In addition, we add a rule to allow the closure of worlds under provable implications:

A⇒ B∅

Aα
...

Bα Th⇒
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Otherwise, the rules are the same as for E.
The following is an axiomatisation of E.K:

Axioms

1. A⇒ A

2. A⇒ (A ∨B); B ⇒ (A ∨B)

3. (A ∧B)⇒ A; (A ∧B)⇒ B

4. (A ∧ (B ∨ C))⇒ ((A ∧B) ∨ (A ∧ C))

5. ((A⇒ B) ∧ (A⇒ C))⇒ (A⇒ (B ∧ C))

6. ((A⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C)

7. t

Rules
` A⇒ B

` A
` B (MP)

` A
` A
` A ∧B (ADJ)

` A
` �A

N

` B ⇒ C

` (A⇒ B)⇒ (A⇒ C) (PR) ` A⇒ B

` (B ⇒ C)⇒ (A⇒ C) (SR)

` Am ⇒ (Am+1 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .)
` Ap ⇒ (Ap+1 ⇒ · · · (An ⇒ B) . . .)
` A1 ⇒ (A2 ⇒ · · · (An ⇒ C) . . .)

(RK)

where 1 ≤ m ≤ n− 1, 1 ≤ p ≤ n, and at least one of m = 1 or p = 1.
The proof that all the axioms are provable in the natural deduction system and

that the rules, with the exception of RK, are admissible in it is straightforward.
To prove that the axiom system includes all the theorems provable in the natural
deduction system, we show that in a given proof, if C{i1,...,in} is provable, then
Ai1 ⇒ (· · · (Ain ⇒ C) . . .) is provable in the axiom system, where Ai1 , . . . , Ain are
the i1th, . . . , inth hypotheses in the proof, respectively. Before we can prove this,
we need to prove a crucial lemma.

Lemma 7.1. If Aα is a step in a valid natural deduction proof in the system for
E.K, then either α = ∅ or the numbers in α are numerically consecutive and if α is
non-empty, then α includes the numeral of the hypothesis of the subproof in which
Aα occurs.
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Proof. By induction on the length of the proof of Aα. If α is empty, then the lemma
follows. If Aα is a hypothesis, then it follows as well. The cases for conjunction
introduction and elimination and disjunction introduction are straightforward, as
is the case for implication introduction. Implication elimination and disjunction
elimination are similar to one another. Suppose that we have a proof segment of the
following form:

A⇒ Bβ
...

Aγ

Bβ∪γ ⇒E

By the inductive hypothesis, the numbers in β and γ are consecutive. By the
entailment elimination rule the maximal number in γ is one higher than the maximal
number in β. Let n be the maximal number in γ. Then γ − {n} is either a subset
of β or a proper superset. If it is a proper superset then γ ∪ β = γ. If it is a subset,
then γ ∪β = β ∪{n}. In either case, the lemma follows. As we said, the disjunction
elimination case is similar.

The following proposition shows that E.K is at least as strong as the logic DJ,
which in its class of theorems is the same as Ross Brady’s logic of meaning contain-
ment, MC [4].

Proposition 7.2. ((A⇒ B) ∧ (B ⇒ C))⇒ (A⇒ C) is a theorem of E.K.

Proof. Let (A⇒ B) ∧ (B ⇒ C) be A1 and A be A2.

1. ((A⇒ B) ∧ (B ⇒ C))⇒ (B ⇒ C) axiom 3
2. ((A⇒ B) ∧ (B ⇒ C))⇒ (A⇒ B) axiom 3
3. ((A⇒ B) ∧ (B ⇒ C))⇒ (A⇒ C) 1, 2, RK

Given the definition of�A as t⇒ A, Proposition 7.2 also shows that the following
version of the K axiom is a theorem of E.K:

(�A ∧ (A⇒ B))⇒ �B

Moreover, the following aggregation principle is an instance of axiom 5:

(�A ∧�B)⇒ �(A ∧B)
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Thus, E.K contains a good deal of what are relevant counterparts of the key theorems
of the modal logic K.

For the following theorem, we use an abbreviation. Where {1, . . . , n} is a set of
subscripts of hypotheses in a derivation, A1, . . . , An, respectively, {1, . . . , n} ⇒ C is
the formula A1 ⇒ (An ⇒ C).

Theorem 7.3. For any formula C, if C{i1,...,in} is a step in a valid natural deduction
proof then Ai1 ⇒ (· · · (Ain ⇒ C) . . .) is provable in the E.K axiom system.

Proof. By induction on the length of the proof C{i1,...,in}.
Base Case. Suppose that Ci is a hypothesis. By axiom 1, C ⇒ C is a theorem

of the axiom system.
The conjunction and negation cases are straightforward, as are the cases for the

entailment and disjunction introduction rules. Thus, we prove only the cases for
entailment and disjunction elimination.

Entailment Elimination. Suppose that C{i1,...,in} is proven from A⇒ Cα and Aβ.
Then, by the rules of the natural deduction system, the maximal number in β is 1
greater than the maximal number in α. By the inductive hypothesis, ` α⇒ (A⇒ C)
and ` β ⇒ C. By RK, then, ` (α ∪ β)⇒ C.

Disjunction Elimination. Suppose that C{i1,...,in} is proven from A ⇒ Cα and
B ⇒ Cα and A ∨ Bβ by ∨E. Then α ∪ β = {i1, . . . , in} and by the inductive
hypothesis, ` α ⇒ (A ⇒ C), ` α ⇒ (B ⇒ C), and ` β ⇒ (A ∨ B). Thus, by
axiom 5 and repeated applications of the prefixing rule, ` α⇒ ((A⇒ C)∧(B ⇒ C))
and so, by Proposition 7.2 and repeated applications of the prefixing rule, ` α ⇒
((A ∨B)⇒ C). Thus, by ` β ⇒ (A ∨B) and RK, we obtain ` (α ∪ β)⇒ C.

We need the following lemmas for the completeness proof.

Lemma 7.4. The following rule is derivable in E.K:

` A1 ⇒ (· · · (An−1 ⇒ (An ⇒ C)) . . .)
` B ⇒ An

` A1 ⇒ (· · · (An−1 ⇒ (B ⇒ C)) . . .)
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Proof.

1. ` A1 ⇒ (· · · (An−1 ⇒ (An ⇒ C)) . . .) Premise
2. ` B ⇒ An Premise
3. ` (An ⇒ C)⇒ (B ⇒ C) 2, PR
4. ` (An−1 ⇒ (An ⇒ C))⇒ (An−1 ⇒ (B ⇒ C)) 3, PR
5. . . .

6. ` (A1 ⇒ (· · · (An−1 ⇒ (An ⇒ C)) . . .))⇒
(A1 ⇒ (· · · (An−1 ⇒ (B ⇒ C)) . . .))

7. ` A1 ⇒ (· · · (An−1 ⇒ (B ⇒ C)) . . .) 1, 6, MP

Lemma 7.5. The following rule is derivable in E.K. Where m ≤ n,

` (A1 ⇒ (· · · (An ⇒ (D ⇒ E)) . . .))
` (B1 ⇒ (. . . (Bm ⇒ (C ⇒ D)) . . .))

`(A1⇒(· · · ((An−m∧B1)⇒((A(n−m)+1∧B2)⇒(· · · ((An∧Bm)⇒(C⇒E)) . . .))) . . .))

Proof.

1. ` (A1 ⇒ (· · · (An ⇒ (D ⇒ E)) . . .)) Premise
2. ` (B1 ⇒ (· · · (Bm ⇒ (C ⇒ D)) . . .)) Premise
3. ` (An ∧Bm)⇒ An Axiom 3
4. ` (A1 ⇒ (· · · ((An ∧Bm)⇒ (D ⇒ E)) . . .)) 1, 3, Lemma 7.4
5. . . .

6. ` (A1 ⇒ (· · · ((An−m ∧B1)⇒ (· · · ((An ∧Bm)⇒
(D ⇒ E)) . . .)) . . .))

7. ` (B1 ⇒ (· · · ((An ∧Bm)⇒ (C ⇒ D)) . . .)) 2, 3, Lemma 7.4
8. . . .

9. ` (An−m ∧B1)⇒ (· · · ((An ∧Bm)⇒ (C ⇒ D)) . . .)
10. ` (A1 ⇒ (· · · ((An−m ∧B1)⇒ ((A(n−m)+1 ∧B2)⇒

(· · · ((An ∧Bm)⇒ (C ⇒ E)) . . .))) . . .)) 6, 9 RK
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8 E.K Models
A positive E.K frame is a triple (S, 0, E) just as for E frames, except that the
semantic postulates are now the following:

1. ≤ is a partial order;

2. if a ∈ 0 and a ≤ b, then b ∈ 0;

3. if a ≤ b and Ebcd then Eacd; if c ≤ d and Eabc then Eabd;

4. if Ea1 . . . anc, then ∃x∃y(Eam . . . an−1x∧Eap . . . any∧Exyc) (where n−m ≥ 2
and n− p ≥ 1).

Here we use an extension of the definition of E2 given in Section 4. We define

En+1a1 . . . anan+1an+2c as ∃x(Ena1 . . . an+1x ∧ Exan+2c).

For convenience, we drop the superscript from En and merely write Ea1 . . . an+1c.
A positive E.K model is a quadruple (S, 0, E, V ) such that (S, 0, E) is a positive

E.K frame and V assigns sets of situations to propositional variables such that for
any propositional variable p, V (p) is closed upwards under ≤. Each value assignment
V determines a satisfaction relation �V , applying the same clauses as for E models.
We write ‘� ’ instead of ‘�V ’ where no confusion will result.

The meaning of entailment in E.K is, on one level, the same as it is for E: A⇒ B
says that if, in an accessible world, there is a situation that contains the information
that A, then there is a situation that contains B. Without reflexivity or transitivity,
one use of E.K’s implication could be to represent a form of doxastic entailment. An
agent might be said to hold A → B in the sense of E.K if and only if she believes
that B follows from A.

Excluding the rule RK, the axiomatic basis for E.K is the same as that of the
minimal relevant logic B. The soundness of B over the Routley–Meyer semantics
is well known [14, 15]. Thus it is sufficient to show that the class of E.K frames
satisfy RK.
Lemma 8.1. In any E.K model, if � Am ⇒ (· · · (An−1 ⇒ (B ⇒ C)) . . .) and
� Ap ⇒ (· · · (An ⇒ B) . . .), then � A1 ⇒ (· · · (An ⇒ C) . . .).
Proof. Suppose that � Am ⇒ (· · · (An−1 ⇒ (B ⇒ C)) . . .) and � Ap ⇒ (· · · (An ⇒
B) . . .) and suppose that Ea1 . . . anc and ai � Ai for each i, 1 ≤ i ≤ n. Let m = 1.
The case in which p = 1 is similar. By semantic condition 4, there is a situation
x such that Ea1 . . . an−1x and a situation y such that Eap . . . any and Exyc. By
assumption and the information condition for implication, x � B ⇒ C and y � B.
So c � C.
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Thus, we can now state the following soundness theorem:

Theorem 8.2 (Soundness). All the theorems of E.K are valid in the class of E.K
frames.

8.1 Completeness of E.K
In order to construct the canonical model, we define a form of logical consequence
for a logic L:

Γ `L∆ iff ∃G1, . . . , Gm∈Γ ∃D1, . . . , Dn∈∆(`L (G1∧ . . . ∧Gm)⇒(D1∨ . . . ∨Dn)).

We use this consequence relation for a wide variety of purposes in what follows, first
to define the notion of a theory.

Definition 8.3 (Theory). An L-theory Γ is a set of formulas such that if Γ `L {A},
then A ∈ Γ.

It is easy to show that if Γ is an L-theory, A ∈ Γ, and B ∈ Γ, then A∧B ∈ Γ. A
theory Γ is said to be prime if and only if for all formulas A ∨ B ∈ Γ, either A ∈ Γ
or B ∈ Γ. Γ is said to be regular if and only if t ∈ Γ.

We also use the consequence relation to define the notion of L-consistency: a
pair of sets of formulas (Γ,∆) is said to be L-consistent if and only if Γ 0L ∆.
The form of Lindenbaum extension theorem that is used for relevant logics employs
L-consistency, rather than the more standard notion of negation consistency. This
lemma was originally proven by Nuel Belnap and Dov Gabbay (see [5]).

Theorem 8.4. If (Γ,∆) is L-consistent, then there is a prime theory Γ′ ⊇ Γ such
that (Γ′,∆) is L-consistent.

Corollary 8.5. A formula A is a theorem of L if and only if A ∈ Γ for all regular
prime L-theories Γ.

Proof. If `L A, then `L t ⇒ A, by RN. If Γ is regular, then, by definition, t ∈ Γ,
hence Γ `L {A}. Since Γ is a theory, A ∈ Γ. If 0L A then (L, {A}) is L-consistent,
where L is taken here to be the set of theorems of L. Thus, by the Lindenbaum
theorem, there is a prime regular L-theory Γ such that Γ 0L {A}.

In order to formulate our canonical model, we utilise a binary fusion operator
on theories. Where a and b are L-theories for any of our logics L,

a ◦ b =df {B ∈ Fml : ∃A((A⇒ B) ∈ a ∧ A ∈ b) }.
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It is easy to prove that the fusion of two L-theories is an L-theory. Note, however,
that the fusion of two prime theories may not be prime, but we can prove the
following lemma.

Lemma 8.6. (a) If a, b, and c are L-theories, a and c are prime, and a ◦ b ⊆ c,
then there is a prime L-theory b′ ⊇ b such that a ◦ b′ ⊆ c; (b) if a, b, and c are L
theories, b and c are prime, and a ◦ b ⊆ c, then there is a prime L-theory a′ ⊇ a
such that a′ ◦ b ⊆ c; (c) where a, b, and c are L-theories, if a ◦ b ⊆ c, then there are
prime L-theories a′, b′, and c′ such that a′ ◦ b′ ⊆ c′.

Proof. (a) Suppose that a, b, and c are L-theories, a and c are prime and a ◦ b ⊆ c.
Let X be the set of formulas A such that there is some B 6∈ c and A⇒ B ∈ a.

We show that (b,X) is L-consistent. Suppose that (b,X) is L-inconsistent. Then
there are B1, . . . , Bm ∈ b and C1, . . . , Cn ∈ X such that `L (B1 ∧ · · · ∧Bm)⇒ (C1 ∨
· · ·∨Cn). By the definition of X, there are A1, . . . , An, not in c such that C1 ⇒ A1 ∈
a, . . . , Cn ⇒ An ∈ a. By a simple logical derivation, (C1∨· · ·∨Cn)⇒ (A1∨· · ·∨An).
Since c is prime, (A1 ∨ · · · ∨ An) /∈ c. But if `L (B1 ∧ · · · ∧ Bm)⇒ (C1 ∨ · · · ∨ Cn),
then (C1 ∨ . . .∨Cn) ∈ b. Hence, a ◦ b 6⊆ c. Thus, by reductio, (b,X) is L-consistent.

By Theorem 8.4, there is a prime theory b′ extending b such that (b′, X) is
L-consistent. Hence a ◦ b′ ⊆ c.

(b) The proof is similar to that of (a).
(c) Suppose that a ◦ b ⊆ c. Then, there is a prime L-theory c′ extending c such

that a ◦ b ⊆ c′. Now we extend a to a prime L-theory a′ such that a′ ◦ b ⊆ c′. We
do so by noting that the set X = {A ⇒ B : A ∈ b ∧ B 6∈ c′} is such that (a,X) is
L-consistent (see the proof of (a) above). Then, by the Lindenbaum lemma, a can
be extended to a prime L-theory a′ such that a′ ◦ b ⊆ c′. By (a) above, there is a
prime L-theory b′ such that a′ ◦ b′ ⊆ c′.

Lemma 8.7. For every L-theory a, there is some regular prime L-theory o such
that o ◦ a = a.

Proof. Let a be an L-theory. Then Thm(L) ◦ a = a and so Thm(L) ◦ a ⊆ a. By
Lemma 8.6(b), there is a prime L-theory o extending Thm(L) such that o ◦ a ⊆ a.
Since o extends Thm(L), o is regular.

We are now ready to construct the canonical model. The canonical model is a
quadruple ML = (S, 0, E, V ) such that

• S is the set of prime theories of L;

• 0 is the set of regular prime theories of L;
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• E ⊆ S3 is such that Eabc if and only if a ◦ b ⊆ c;

• V is a function from propositional variables to subsets of S such that a ∈ V (p)
if and only if p ∈ a.

Lemma 8.8. For all L-theories, a ≤ b if and only if a ⊆ b.

Proof. Suppose that a ≤ b. Then there is some regular prime L-theory o such that
Eoab. By the definition of E, o ◦ a ⊆ b. Since A⇒ A ∈ o, a ⊆ b.

Suppose now that a ⊆ b. By Lemma 8.7, there is a o ∈ 0 such that o ◦ a ⊆ a,
thus by the transitivity of subset, o ◦ a ⊆ b. Therefore, a ≤ b.

Lemma 8.9. For 2 ≤ n, Ea1 . . . anb if and only if (. . . (a1 ◦ a2) ◦ · · · ) ◦ an ⊆ b.

Proof. By induction on n.
Base case: n = 2. Follows from the definition of E for the canonical model.
Inductive case: Suppose that, for all b ∈ S, Ea1 . . . anb iff (. . . (a1 ◦ a2) ◦ · · · ) ⊆ b.
We show that for all an+1, b ∈ S, Ea1 . . . an+1b iff (. . . (a1 ◦ a2) ◦ · · · ) ◦ an+1 ⊆ b.

Suppose that Ea1 . . . an+1b. By definition, Ea1 . . . anan+1b if and only if there is
some x ∈ S, Ea1 . . . anx and Exan+1b. By hypothesis, (. . . (a1 ◦ a2) ◦ · · · ) ◦ an) ⊆ x.
Clearly, for all L-theories x, y, z, if z ⊆ w, then z ◦ y ⊆ w ◦ y. So, (. . . (a1 ◦ a2) ◦
· · · ) ◦ an) ◦ an+1 ⊆ x ◦ an+1. Since Exan+1b, x ◦ an+1 ⊆ b. Thus, by the transitivity
of subset, (. . . (a1 ◦ a2) ◦ · · · ) ◦ an+1 ⊆ b.

Suppose now that (. . . (a1 ◦ a2) ◦ · · · ) ◦ an+1 ⊆ b. (. . . (a1 ◦ a2) ◦ · · · ) ◦ an is an
L-theory. Thus, by Lemma 8.6(b), there is a prime L-theory x such that (. . . (a1 ◦
a2) ◦ · · · ) ◦ an ⊆ x and x ◦ an+1 ⊆ b. By hypothesis, Ea1 . . . anx and, by definition
of E, xan+1b. Therefore, Ea1 . . . an+1b.

Lemma 8.10. If Ea1 . . . anb, then for all p, 1 ≤ p ≤ n − 1, Ea1 . . . an−1x and
Eap . . . any and Exyb.

Proof. Suppose that Ea1 . . . anb. Then, by Lemma 8.9, (. . . (a1 ◦ a2) ◦ · · · ) ◦ an ⊆ b.
We show that (. . . (am ◦ am+1) ◦ · · · ) ◦ an−1) ◦ (. . . (ap ◦ ap+1) ◦ · · · ) ◦ an) ⊆ b, where
either m or p is 1. Case 1. m = 1. Suppose that C ∈ (. . . (a1 ◦ a2) ◦ · · · ) ◦ an−1) ◦
(. . . (ap ◦ ap+1) ◦ · · · ) ◦ an). We show that C ∈ b. Then, by the definition of fusion
on theories, there is some formula B such that B ⇒ C ∈ (. . . (a1 ◦ a2) ◦ · · · ) ◦ an−1
and B ∈ (. . . (ap ◦ap+1)◦ · · · )◦an). Using the same reasoning, we can see that there
are A2, . . . , An−1 such that for 2 ≤ i ≤ n− 1, Ai ∈ ai and

A2 ⇒ (· · · (Ap ⇒ (· · · (B ⇒ C) . . .)) . . .) ∈ a1.
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Similarly, there are formulas Dp+1, . . . , Dn such that for all j, p+1 ≤ j ≤ n, Dj ∈ aj
and

Dp ⇒ (· · · (Dn ⇒ B) . . .) ∈ ap.
Now, we know that E.K proves

(A2⇒(· · · (Ap⇒(· · · (B⇒C) . . .)) . . .))⇒ (A2⇒(· · · (Ap⇒(· · · (B⇒C) . . .)) . . .))

and
`E.K (Dp ⇒ (· · · (Dn ⇒ B) . . .))⇒ (Dp ⇒ (· · · (Dn ⇒ B) . . .)).

By Lemma 7.5, then, we can derive

`E.K (A2 ⇒ (. . . (Ap ⇒ (. . . (B ⇒ C) . . .))⇒
((. . . (Ap ∧ (Dp ⇒ (. . . (Dn ⇒ B) . . .))⇒ (Dp ⇒ (. . . (Dn ⇒ B) . . .))⇒

((Ap+1 ∧Dp+1)⇒ ((An−1 ∧Dn−1)⇒ (Dn ⇒ C) . . .).

Thus,

((. . . (Ap ∧Dp)⇒ (. . . (Dn ⇒ B) . . .))⇒ (Dp ⇒ (. . . (Dn ⇒ B) . . .))⇒
((Ap+1 ∧Dp+1)⇒ ((An−1 ∧Dn−1)⇒ (Dn ⇒ C) . . .) ∈ a1.

For all i, 2 ≤ i < p, and all j, p+1 ≤ j ≤ n, Ai ∈ ai and (Ai∧Dj) ∈ aj . In addition,
(Ap ∧Dp)⇒ (· · · (Dn ⇒ B) . . .)) ∈ ap, so

C ∈ (. . . (a1 ◦ a2) ◦ · · · ) ◦ an).

Since (. . . (a1 ◦ a2) ◦ · · · ) ◦ an ⊆ b, C ∈ b, as required. Generalising, (. . . (a1 ◦ a2) ◦
· · · ) ◦ an−1) ◦ (. . . (ap ◦ ap+1) ◦ · · · ) ◦ an) ⊆ b. Hence, by Lemma 8.6, there is a
prime theory x extending (. . . (a1 ◦ a2) ◦ · · · ) ◦ an−1 and a prime theory y extending
(. . . (ap ◦ ap+1) ◦ · · · ) ◦ an and x ◦ y ⊆ b, i.e., Exyb.

Case 2. p = 1. Similar to case 1.

9 E.KT and E.K4
We now look at two logics between E.K and E. These are E.KT and E.K4. In
terms of their natural deduction systems, E.KT adds to E.K modified forms of the
entailment and disjunction elimination rules. In E.KT, we can apply a major to a
minor premise when the two are in the same subproof:

A⇒ Bα

Aβ

Bα∪β ⇒E
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For E.K4, the ⇒E rule is modified to allow, not premises in the same subproof, but
a major premise that is in a subproof separated from the minor by one or more other
subproofs.

A⇒ Bα
. . .

Aβ

Bα∪β ⇒E

For E.KT we replace the rule RK with the rule RKT:

` Am ⇒ (Am+1 ⇒ · · · (Aq ⇒ (B ⇒ C)) . . .)
` Ap ⇒ (Ap+1 ⇒ · · · (An ⇒ B) . . .)
` A1 ⇒ (A2 ⇒ · · · (An ⇒ C) . . .)

where either p = 1 or q = 1, n− 1 ≤ q ≤ n, and 1 ≤ p ≤ n. For E.KT we also need
to add the rule RTh:

` A1 ⇒ (· · · (An ⇒ (B ⇒ C)) . . .)
` B

` A1 ⇒ (· · · (An ⇒ C) . . .)

To obtain E.K4 we replace RK with the rule RK4. We begin with a finite
sequence of formulas Σ = 〈A1, . . . , An〉. Let Γ and ∆ be sequences, in which all of
the formulas that occur in them occur in Σ and occur in the same order as in Σ.
Moreover, for any Ai (1 ≤ i ≤ n − 1), the total number of times that it occurs in
both Γ and ∆ is at least the number of times that it occurs in 〈A1, . . . , An−1〉. (It
follows from this that every formula that occurs in Σ occurs at least once in one of
Γ or ∆.)

` Γ⇒ (B ⇒ C)
` ∆⇒ (An ⇒ B)

` A1 ⇒ (· · · (An ⇒ C) . . .)

Here 〈D1, . . . , Dm〉 ⇒ E is defined as D1 ⇒ (D2 ⇒ (· · · (Dm ⇒ E) . . .)).

Proposition 9.1. Each of (i) ((A ⇒ B) ∧ A) ⇒ B, (ii) (A ⇒ (A ⇒ B)) ⇒ (A ⇒
B), and (iii) ((A⇒ A)⇒ B)⇒ B are theorems of E.KT.
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Proof. (i)
1. ` ((A⇒ B) ∧A)⇒ (A⇒ B) Axiom 3
2. ` ((A⇒ B) ∧A)⇒ A Axiom 3
3. ` ((A⇒ B) ∧A)⇒ B 1, 2, RKT

(ii) Taking A⇒ (A⇒ B) to be A1 and A to be A2, we get:

1. ` (A⇒ (A⇒ B))⇒ (A⇒ (A⇒ B)) Axiom 1
2. ` A⇒ A Axiom 1
3. ` (A⇒ (A⇒ B))⇒ (A⇒ B) 1, 2, RKT

(iii)
1. ` ((A⇒ A)⇒ B)⇒ ((A⇒ A)⇒ B) Axiom 1
2. ` A⇒ A Axiom 1
3. ` ((A⇒ A)⇒ B)⇒ B 1, 2, RTh

Proposition 9.2. (a) (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C)) and (b) (B ⇒ C) ⇒
((A⇒ B)⇒ (A⇒ C)) are theorems of E.K4.

Proof. (a) Let A⇒ B be A1, B ⇒ C be A2, and A be A3.

1. (A⇒ B)⇒ (A⇒ B) axiom 1
2. (B ⇒ C)⇒ (B ⇒ C) axiom 1
3. (A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C)) 1, 2,RK4

(b) Let B ⇒ C be A1, A⇒ B be A2, and A be A3.

1. (B ⇒ C)⇒ (B ⇒ C) axiom 1
2. (A⇒ B)⇒ (A⇒ B) axiom 1
3. (B ⇒ C)⇒ ((A⇒ B)⇒ (A⇒ C)) 1, 2,RK4

Proposition 9.2 shows that E.K4 is an extension of TW, which is Anderson
and Belnap’s system of ticket entailment, T, without the axiom of contraction.
The entailment fragment, TW⇒, is extraordinary because in any case in which an
equivalence A ⇒ B and B ⇒ A is provable, then A and B are the same formula
[12, 2]. We do not know at this point in time whether E.K4 is exactly the same logic
(i.e., has the same theorems) as TW.
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Propositions 9.1 and 9.2 together show that the logic E.KT4 which results from
the axiom basis for E.KT together with the rule RK4 yields an extension of E. To
show that it is E, it suffices to show that the rules RK, RKT, RTh, and RK4 are
all derivable in E. This is easy (although somewhat tedious) to show, and so we can
say that E.KT4 is equivalent to E.

Proposition 9.3. �A⇒ ��A is a theorem of E.K4.

Proof. Let t⇒ A be A1 and t be A2

1. (t⇒ A)⇒ ((t⇒ t)⇒ (t⇒ A)) Proposition 9.2(b)
2. t⇒ (t⇒ t) axiom 1 and RN
3. (t⇒ A)⇒ (t⇒ (t⇒ A)) 1, 2, RK4
4. �A⇒ ��A 3, def. �

Proposition 9.3 shows that the fill necessity of E.K4 is very much like that of the
classical modal logic K4.

10 E.KT and E.K4 Models

An E.KT frame is an E.K frame with two additional conditions. The first condition
that we add is

(SRT) If Ea1 . . . anc, then ∃x∃y(Eam . . . anx ∧ Eap . . . any ∧ Exyc),

where at least one of m or p is 1. We do not require that either n − m or that
n− p be at least 0, although we do require that n ≥ 2. When m = n, then we read
Eam . . . anx as an ≤ x, and similarly for p = n.

Suppose that Eabc. By SRT we have Eabx and b ≤ y and Exyc. By semantic
condition 3 on E.K frames, we have Exbc and so we have Eabbc. Thus, Eabc implies
Eabbc. This is the condition for contraction from the definition of an E frame.

We can also derive the condition Eaaa for all situations a. Here is the proof.
By semantic condition 1 on E.K frames, ∃x(x ∈ 0∧Exaa). By contraction, Exaaa,
i.e., there is some y such that Exay and Eyaa. By the definition of ≤, a ≤ y and so
by semantic condition 3, Eaaa. The condition Eaaa is called complete reflexivity.
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Complete reflexivity allows us to prove simple instances of RKT such as:
` A⇒ (B ⇒ C)
` A⇒ B

` A⇒ C

The second condition we add is the following:

(T) ∃x(x ∈ 0 ∧ Eaxa)

The condition T just says that M is reflexive for E.KT, as one would expect.
Lemma 10.1. The rule RKT is valid in the class of E.KT frames.
Proof. The only cases that are not covered by the soundness proof for E.K are
instances of the rule in which q = n. We have already proven the case in which
q = n = 2. Suppose that A1 ⇒ (Am+1 ⇒ · · · (An ⇒ (B ⇒ C)) . . .) and Ap ⇒
(Ap+1 ⇒ · · · (An ⇒ B) . . .) are both valid in the class of E.KT frames. Now, consider
an E.KT model and situations a1, . . . , an and c such that Ea1 . . . anc and ai � Ai

for all i, 1 ≤ i ≤ n. By the assumption and SCT, c � B ⇒ C and c � B. By Eccc
and the satisfaction condition, c � C. Generalising, � A1 ⇒ (· · · (An ⇒ C) . . .).

Theorem 10.2. E.KT is sound over the class of E.KT frames.
The proof of completeness for E.KT is very like the one for E.K. Lemma 8.10

has to be tweaked slightly, but the proof is essentially the same. Thus we merely
state the completeness theorem:
Theorem 10.3. E.KT is complete over the class of E.KT frames.

The soundness and completeness theorems for E.KT show that there is an alter-
native axiomatisation of the logic that includes the axiomatic basis for E.K plus the
two axiom schemes PMP and T.

The definition of an E.K4 frame is the same as for an E.K frame except that it
includes the following condition. Where 〈a1, . . . , an〉 is a sequence of situations and
Ea1 . . . anc, there are situations x and y such that Eai1 . . . aimx and Eaj1 . . . ajpany
and Exyc, where each of the ais and ajs are in the original sequence and numbered
in the same order as in the original sequence.

An E.K4 frame is an E.K frame with the addition of the condition SK4. Let
σ = 〈a1, . . . , an−1〉 be a finite sequence of situations. Let γ and δ be sequences of
situations taken from σ, such that in γ and δ every situation occurs in the same
order as it occurs in σ and between γ and δ each situation occurs at least as many
times as it occurs in σ.

(SK4) If Ea1 . . . an−1anc, then ∃x∃y(Eγx ∧ Eδany ∧ Exyc).
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Lemma 10.4. In all E.K4 frames, for all situations a, b, c, d, if Eabcd then there
is some situation x such that Eacx and Ebxd.

Proof. Suppose that Eabcd. Then, there is some situation y such that Eacy and
some situation x such that Ebx and Exyd. By definition, Ebx is just b ≤ x, so by
semantic condition 3 for E.K frames, Ebxd.

Lemma 10.4 shows that the condition used in E frames to prove the prefixing ax-
iom is satisfied by E.K4 frames as well. This also shows that the modal accessibility
relation M is transitive (see Proposition 4.1).

Lemma 10.5. The rule RK4 is sound over the class of E.K4 frames.

Proof. Let A1, . . . , An be a sequence of formulas such that Γ⇒ (B ⇒ C) and ∆⇒ B
are valid in the class of E.K4 frames, where Γ is a subset of the sequence not including
An and ∆ is a subset of the sequence that includes An and Γ ∪∆ = {A1, . . . , An}.
Suppose that Ea1 . . . anc, where ai � Ai for each i, 1 ≤ i ≤ n. Let S(Γ) be a subset
of {a1, . . . , an} such that for each Aj ∈ Γ, there is a situation aj ∈ S(Γ) such that
aj � Aj and similarly for S(∆).

Let 〈aj1 , . . . , ajm〉 be the sequence of situations in S(Γ) placed in the same order
as they appear in 〈a1, . . . , an〉, and similarly let 〈ak1 , . . . , akp〉 be the sequence of
situations in S(∆) placed in the same order as they appear in 〈a1, . . . , an〉. Then
by the special semantic condition defining E.K4 frames, there are situations x and
y such that ES(Γ)x, ES(∆)y and Exyc. Therefore, c � C. Generalising, A1 ⇒
(· · · (An ⇒ C) . . .) is valid on the class of E.K4 frames.

The completeness proof is a slightly more complicated version of the proof for
E.K. We do not present it here.

An E.KT4 frame is an E.K frame that satisfies the conditions T and SKT4.
The condition SKT4 is the following. Let σ = 〈a1, . . . , an〉 be a finite sequence of
situations. Let γ and δ be sequences of situations taken from σ, such that in γ and
δ every situation occurs in the same order as it occurs in σ, and between γ and δ
each situation occurs the same number of times it occurs in σ.

(SKT4) If Ea1 . . . anc, then ∃x∃y(Eγx ∧ Eδany ∧ Exyc)

We have shown that E.KT frames satisfy the contraction condition and that
E.K4 frames satisfy the condition that Eabcd implies ∃x(Eacx ∧ Ebxd). Together
with the conditions satisfied by every E.K frame and T, we are justified in stating
the following theorem:

Theorem 10.6. Every E.KT4 frame is an E frame.
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We think the converse is true as well, but we have no proof of this so we leave
it open.

11 Symmetry
In order to axiomatise the logic that is characterised by symmetry of the modal
accessibility relation, we suggest adding the Urquhart–Fine axiom:

(UF) A⇒ ((A⇒ (B ⇒ C))⇒ (B ⇒ C)).

Urquhart used this axiom to distinguish between E⇒ and the system E5⇒, which is
characterised by his semantics in which the modal accessibility relation is reflexive,
transitive, and symmetric [16, 17]. Kit Fine proved that E⇒ together with UF is
E5⇒, that is, that it is complete over Urquhart’s semantics for it [6].

UF is a relative of the axiom of E sometimes called Restricted Assertion, (A⇒
B) ⇒ (((A ⇒ B) ⇒ C) ⇒ C), which is equivalent to E’s Permutation axiom,
A ⇒ ((A ⇒ B) ⇒ C) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)). It is, in the presence of the
transitivity axioms of Theorem 15, equivalent to a form of Permutation as well.

(UF′) (A⇒ (B ⇒ (C ⇒ D)))⇒ (B ⇒ (A⇒ (C ⇒ D)))

UF follows from UF′ and an appropriate instance of axiom 1.
While Fine proved that E5⇒ is complete for Urquhart’s semantics where the

accessibility relation is reflexive, transitive, and symmetric, E5 with negation and
the conditional does not appear to validate the symmetry principle one would expect,
namely, the B axiom: A⇒ �¬�¬A. This leaves open the possibility that a different
axiom is needed for completeness on the symmetric E.K frames, rather than the
reflexive, transitive, symmetric frames. The lack of fit between the B axiom and
symmetry is not peculiar to the entailment systems. The extension of R� with the
B axiom is not characterised by the class of models in which the modal accessibility
relation is transitive, reflexive and symmetric. Rather, a weaker postulate than
symmetry is used [7].

UF does, however, capture a kind of symmetry. The axiom can be recovered in
the Fitch system by adding another ⇒ E rule.

Aα
. . .

A⇒ (B ⇒ C)β
B ⇒ Cα∪β
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This permits one to use ⇒E when the antecedent is in a superior proof, provided
the consequent is itself a conditional. If A is true at a situation a in w, Mww′, and
A⇒ (B ⇒ C) is true at a situation b in w′ then we can infer that there is a situation
c in w′ in which B ⇒ C is true, justified by the situation in w.

The strengthening of this rule that permits the consequent of the conditional to
be a non-conditional, B, would permit the derivation of the R axiom of Assertion,
A → ((A → B) → B), which is equivalent to the Permutation axiom whose proof
was displayed in Derivation 1. This strengthening is unavailable to us, since it would
move us to the non-modal logic R.

It seems that however we axiomatise E5, it should have UF as a theorem. This
is perhaps easiest to see on the Urquhart semantics. Suppose that UF is not valid
on a reflexive, transitive, symmetric frame, i.e., for some a,w, a,w 6� A ⇒ ((A ⇒
(B ⇒ C)) ⇒ (B ⇒ C)). Then there is a b, w′ with Nww′, such that b, w′ � A
and a ◦ b, w′ 6� (A ⇒ (B ⇒ C)) ⇒ (B ⇒ C). There is, then, a c, w′′ with Nw′w′′
such that c, w′′ � A ⇒ (B ⇒ C) but a ◦ b ◦ c, w′′ 2 B ⇒ C. But, by transitivity
and symmetry of N , Nw′′w, so c ◦ a,w � B ⇒ C. Again by the symmetry of N ,
Nww′′, so, by the properties of ◦, a ◦ b ◦ c, w′′ � B ⇒ C. We conclude that, contrary
to the assumption, UF is valid. The preceding proof used the transitivity of N ,
which underlines the possibility that a different axiom is needed for symmetry in
the absence of transitivity.

As we said in Section 5, we use Urquhart’s semantics (and the systems charac-
terised by it) as an upper bound of our E-based systems. E5 is the upper bound,
although it should perhaps be called E.KT45. We will leave open the question
of whether E.K5, E.K45, and E.KT5, obtained by adding UF to E.K, E.K4, and
E.KT, respectively, are complete for the classes of symmetric, symmetric transitive,
and symmetric reflexive frames, respectively.

Appendix I: The Natural Deduction System for E

Hypothesis: Any formula can be hypothesised with a new numeral as a subscript
and introducing a new subproof.
Repetition: Any formula can be repeated within the same sub-proof.
Theorem: Any formula that has been previously proven or the constant t can be
stated anywhere in any proof with the subscript ∅.
In ⇒E the premises can be in the same subproof or the minor premise may be in a
(not necessarily immediate) subproof of the proof in which the major premise occurs.
The same is true for ∨E.
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A⇒ Bα
. . .

Aβ
...

Bα∪β ⇒E

Ai hypothesis
...

Bα

A⇒ Bα−{i} ⇒I

In ⇒I, i ∈ α.
Aα

Bα
...

A ∧Bα ∧I

A ∧Bα
...

Aα ∧E

A ∧Bα
...

Bα ∧E

Aα
...

A ∨Bα ∨I

Bα
...

A ∨Bα ∨I

A⇒ Cβ

B ⇒ Cβ
. . .

A ∨Bα
...

Cα∪β ∨E

A∅
...

t⇒ A∅ t⇒

A ∧ (B ∨ C)α
...

(A ∧B) ∨ (A ∧ C)α Distribution

Appendix II: Proof of Derivability of RK

Lemma 11.1. The rule RK is admissible in the natural deduction system for E.K.

Proof. Suppose that Am ⇒ (Am+1 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .) and Ap ⇒
(Ap+1 ⇒ · · · (An ⇒ B) . . .) are provable in the natural deduction system. Let
m = 1. The case in which p = 1 is similar. We then can construct a proof of C from
A1, . . . , An as follows:
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A1
1 hypothesis

A1 ⇒ (A2 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .)∅ assumption

A2 ⇒ (A3 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .){1} 1,2, ⇒E

A2
2 hypothesis

A3 ⇒ (A4 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .){1,2} 3,4, ⇒E
.. .

App hypothesis

Ap+1 ⇒ (Ap+2 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .){1,...,p} . . .⇒E

Ap ⇒ (Ap+1 ⇒ · · · (An ⇒ B) . . .)∅ assumption

Ap+1 ⇒ (Ap+2 ⇒ · · · (An ⇒ B) . . .){p} . . .⇒E

Ap+1
p+1 hypothesis

Ap+2 ⇒ (Ap+3 ⇒ · · · (An−1 ⇒ (B ⇒ C)) . . .){1,...,p} . . .⇒E

Ap+2 ⇒ (Ap+3 ⇒ · · · (An ⇒ B) . . .){p} . . .⇒E
.. .

An−1
n−1 hypothesis

B ⇒ C{1,...,n−1} . . .⇒E

An ⇒ B 1,...,n−1} . . .⇒E

Ann hypothesis

B{1,...,n} . . .⇒E

C{1,...,n} . . .⇒E

An ⇒ C{1,...,n−1} . . .⇒I
...

A2 ⇒ (· · · (An ⇒ C) . . .){1} . . .⇒I

A1 ⇒ (A2 ⇒ (· · · (An ⇒ C) . . .))∅ . . .⇒I
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Channel Composition and Ternary Relation
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Abstract

The focus of this paper is on the channel-theoretic interpretation given by
Restall [19] as built on work by Barwise [2] in the framework of situation se-
mantics. I characterise the notion of serial composition of channels, due to
Barwise, and extend the ternary relation semantic framework to incorporate
sets of points fitting the bill. It is shown that such an extension of the basic
ternary relation semantic framework by such points is adequate for B∧, and so
that restricting the class of B∧ models to those including composites is conser-
vative over B∧. We close by noting directions for future research.

Keywords: channel theory, information based logic, relevant logic, situation se-
mantics, ternary relation semantics

1 Ternary Relation Semantics and the Problem of
Interpretation

The ternary relation semantic framework, as most famously developed in [23], though
very powerful, has long presented difficulties in interpretation.1 The proposal with
∗I would like to thank Katalin Bimbó and J. Michael Dunn for organising the Third Workshop

and these proceedings. In addition, I would like to thank members of the Melbourne Logic Seminar
for comments on a draft of this paper. Particular mention is due to Rohan French, Greg Restall,
Dave Ripley, Shawn Standefer, and an anonymous referee for helpful feedback and suggestions
— remaining mistakes are purely my fault. For material support, thanks to the University of
Connecticut, the Department of Philosophy, CLAS, and Global Affairs Office and the University
of Melbourne SHAPS. An extended visit to Melbourne for research provided the impetus for this
paper, and these organisations made that trip possible.

1Note the classic challenge in [8] that the semantics is merely a technical device with little of the
intuitive grip had by truth-functional semantics or the Kripke semantic framework for intuitionist
logic and modal logics.
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which we are primarily concerned is that of channel theory, as developed by Barwise
[2] and Restall [19], within the broader theoretical framework provided by situation
semantics as developed in [3], [4], and elsewhere.2

The basic theoretical posit of situation semantics are situations. These can be
understood, as following Barwise and Seligman [4], as classification-systems of a
kind. A classification system is a collection of types and tokens and an assignment
to each type, a set of tokens. In some slightly different terms, a situation is a
collection of objects and properties, and an assignment to each property of some
(possibly empty) set of objects. Formally, a situation can simply be modelled as a
set of sentences over some vocabulary containing predicate-symbols (for the types)
and name constants (for the tokens).3

Barwise [2] develops an account of how information flows between situations by
considering an additional kind of entity, namely, an information channel. A channel,
for Barwise, supports information flow from a situation (the signal of the channel)
to a situation (its target), and just which kind of information flow it supports deter-
mines what conditional propositions are made true at that channel. He employs a
ternary relation, evocatively notated β α7→ γ, to indicate that the channel α supports
information flow from the signal β to the target γ. It was not long in the waiting
for relevant logicians to recognise the similarity between this semantics and that
employed in the ternary relation (Routley–Meyer) semantics for relevant logics.4 In-
deed, the formal match makes the interpretation of relevant semantics by channels
quite natural.

As another brief point of motivation, while situation semantics has fallen out of
fashion, it is, by my estimation, a very natural setting for a theory of inference, and
due for a reappraisal in the broader philosophical community. Situated inference
is general enough that it can provide a (somewhat) neutral background for debates
about logic, and those contested principles of logic. That is, since something like
the situation semantics (particularly, in the extended sense presaged by the set-
ups of [24]) can be tweaked to provide semantics for many logics with a variety of
consequence relations, non-classical and otherwise, it could provide a fairly natural
setting for debates between proponents of these various logics. In any case, despite

2For a broad overview of the interaction between semantics for relevant logics and situation
semantics/channel theory see [16].

3There is a great deal more to be said of the situation semantics and, for instance, the interpre-
tation of negation on such a framework. However, our interests are, for the most part, restricted to
the conditional, so we leave these other considerations to the side.

4Though this semantic framework often goes by the name “the Routley–Meyer semantics,”
a better name, given proper attention to the history, might be “the Maksimova–Urquhart–
Routley(Sylvan)–Meyer–Fine semantics.” What this name lacks in elegance, it makes up in cor-
rectness
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the dearth of new work in situation semantics in the last decade or so, it is still a
framework in which interested new work is desirable (or so I hold, having missed
situation semantics in its heyday).

Now let me come back to the work at hand. There are a number of ways to
proceed in fleshing out a channel theory in the ternary relation semantic frame-
work. First, I shall focus on Greg Restall’s approach as developed in [19], which is
an interpretation of the ternary relation in terms quite similar to Barwise’s theory.
Of particular interest is Restall’s treatment of serial composition (from here on just
composition) and its relation to an operation of his related to the relevant connective
fusion, which we shall come to define, as cashing out a notion of application. I shall
provide some reasons to be dissatisfied with Restall’s account, and shall instead go
back to Barwise’s approach, with a particular focus on his treatment of composition.
The aim of this paper is to provide some more definition to the account by pulling
Barwise’s composition apart from Restall’s application, and to set out an extension
to the ternary relation semantics to provide a logic for channels and channel com-
position. I’ll set out the basic semantic framework for the basic relevant logic B in
the language of conjunction and implication, and show that this extension to the
ternary relation semantics for this logic is conservative. Finally, I’ll display some
interesting differences between Restall’s account and the account to be developed
here as regards the idempotence and commutativity of composition, before closing
with a problem about extending the approach to incorporate negation.

1.1 B∧ Frames and Models
Our formal language includes a set of propositional atoms and the connectives ∧
and → (both of arity 2).5 In Section 5, we shall also discuss ←, but shall set out its
semantics as we come to it. A,B,C, . . . are metavariables ranging over propositions.

A ternary relation model for B∧ is defined as follows:6

Definition 1.1. A ternary relation model for B∧ is a pair 〈F ,�〉 of a frame Fand
valuation � meeting the following criteria:
F = 〈S,N,R,v〉

• N ⊆ S and N 6= ∅

• R ⊆ S3

5The situation-semantic story we shall be interested in here is given in a first order language,
but for our purposes it is sufficient to stay at the level of propositional logic.

6We shall occasionally employ ⇒ and & as metalanguage connectives which shall behave in
accordance with material implication and classical conjunction, respectively. In addition, we shall
occasionally use metalanguage quantifiers ∀, ∃ for brevity, and these always range over situations.
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• ∃x ∈ N(Rxαβ)⇔ α v β

• v is a partial order

• α′ v α, β′ v β, γ v γ′, and Rαβγ imply that Rα′β′γ′ Tonicity Conditions

• for any proposition A, α v β ⇒ (α � A⇒ β � A) Heredity

The following conventions will be useful for a short expression of some features of
the ternary relation.

• R2αβγδ iff ∃ε(Rαβε&Rεγδ)

• R2α(βγ)δ iff ∃ε(Rαεδ &Rβγε)

• R3α(β(γδ))ε iff ∃ζ(R2α(βζ)ε&Rγδζ)

Finally, to get a modelM = 〈F ,�〉 of B∧, we define the valuation � as follows:

• α � A ∧B iff α � A and α � B

• α � A→ B iff for all β, γ ∈ S, if both Rαβγ and β � A then γ � B

Given �, we can define theorem and model-validity as usual.

Definition 1.2. A is valid on the B∧ modelM (M � A) iff x � A, for all x ∈ N .

Definition 1.3. A is a B∧ validity (�B∧A) iff for every modelM of B∧,M � A.

1.2 B∧ — a Hilbert System
There are a handful of options regarding how to axiomatise B∧, but we use the
following axioms and rules:7

A1 A→ A I

A2 (A ∧B)→ A Simplification1

A3 (A ∧B)→ B Simplification2

A4 ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C)) Lattice-∧
7See [24] for details. Upper case sans serif letters are used as names for some axioms and these

refer to the names of the combinators of which these formulae are the principal type schemata. See
[12], for more information about this convention.
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R1 A,B ` A ∧B Adjunction

R2 A→ B,A ` B Modus Ponens

R3 A→ B,C → D ` (B → C)→ (A→ D) Affixing

Note here that our rules are rules of proof, in Smiley’s sense (see Humberstone
[13] for clarifications). That is, our statement of (R1) is intended to be understood
as “when A and B are both theorems, then so is A ∧B.”

1.2.1 Axioms and Frame Conditions for Some Extensions of B∧
A11 ((A→ B) ∧ (B → C))→ (A→ C) Conjunctive Syllogism

A12 (A→ B)→ ((C → A)→ (C → B)) B

A13 (A→ B)→ ((B → C)→ (A→ C)) B′

A14 (A→ (A→ B))→ (A→ B) W

The following conditions are associated with the above axioms.

S11 Rαβγ ⇒ R2α(αβ)γ

S12 R2αβγδ ⇒ R2α(βγ)δ

S13 R2αβγδ ⇒ R2β(αγ)δ

S14 Rαβγ ⇒ R2αββγ

This association between the frame conditions and provable formulae amounts to
a correspondence of the following sort: M � A1i iff the frame ofM obeys restriction
S1i, for 1 ≤ i ≤ 4. Proofs of these facts are sketched in [24, p. 313] and [22, pp. 203–
204]. We shall have reason to refer to other pairs of provabilities and corresponding
ternary relation conditions from time to time, but for the most part, our concern
shall be with those above. The following logics are notable for our interests:

DJ∧ is B∧ plus A11.
TW∧ is B∧ plus A12 and A13.
T∧ is TW∧ plus A14.

TW, DJ and their neighbours, including B itself, have long been of interest as
potential homes for theories of naïve truth and sets.8 While this paper won’t involve

8The paradox to which we refer here is, of course, Curry’s paradox and derivative paradoxes,
like the validity curry [6]. For general information see [5].
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any substantial comment on the paradoxes, it’s worth a passing note that we are in
the neighbourhood and that the channel theoretic interpretation seems a good fit
for these very weak logics.

2 Information Channels
To begin with, some comments are in order to set out our focal notions of application
and composition.

Some notion of application plays an essential role in many interpretations of
relevant logics and particularly the ternary relation. For instance, Restall interprets
Rαβγ as “the conditional information given in α applied to β results in no more than
γ” [19] and elsewhere as “applying the information in α to β gives information which
is already in γ.” [18] One can find similar intuitions and terminology at work in [25],
[15], and parts of [7]. A natural way to make these intuitions concrete, following the
lead of algebraic semantics for relevant logics, is to introduce a collection of points
α ◦ β into the semantics which, speaking loosely, are the results of applying α to β.
Well-known problems with an operational semantics for relevant logics mean that
we cannot, in general, assume that α ◦ β is a unique point in the frame.9 Thus,
Restall [19] defines this as a set-forming operation:

Definition 2.1. α ◦ β = { γ : Rαβγ }.

In order to make sense of how points like this behave in the ternary relation
semantics, we need to enforce at least the following condition:10

α ◦ β � A only if for every γ ∈ α ◦ β, γ � A.

Even with this operation providing only a set of points, rather than a unique
point, the application story is fairly natural, in abstract. The key fact here is that
(α � A → B & β � A) ⇒ α ◦ β � B, as follows immediately from the definition
of ◦. This fact provides the key intuition behind the ternary relation: when α is a
channel from β to γ (Rαβγ), and β � A implies γ � B, then α � A→ B.

On the other hand, we have composition α;β as channels. The key job we want
composition to do is to enforce (α � A → C & β � C → B) ⇒ α;β � A → B.
Intuitively, when α is a channel supporting information flow from A-propositions to
some propositions from which β supports information flow to B-propositions, there

9See [26] for details.
10In addition, we need some posits governing how ◦ interacts with v but these details are not

necessary for the comments in this paper.
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is a situation which is a channel cutting out the middle, as it were. As an example,
suppose that a phone call allows for information to flow from my home in Connecticut
to Edmonton, and an email allows for that (or some related) information to flow
from Edmonton to my next-door neighbour in Connecticut. Then there is a channel
resulting of the composition of the relevant bits of the phone-network connecting my
house to Edmonton with the relevant bits of the internet and servers which support
that email connection from Edmonton to my neighbour. It’s the phone line composed
with the email connection which allow for information to flow from me to my next
door neighbour. Barwise [2] makes the following demands of composition, where 0
is a logic channel behaving essentially as a member of N as set out in Section 1 and
β

α7→ γ is to be read as Rαβγ.11

• For any α, β, there is a unique α;β.

• γ α;β7→ δ ⇔ ∃ε(γ α7→ ε& ε
β7→ δ)

• 0;α = α = α; 012

• α; (β; γ) = (α;β); γ

He proceeds to show, given his very abstract framework, that composition has
these features, and leaves open the questions of whether α = α;α and α;β = β;α,
taking these as substantial questions to be filled in by fuller channel theories.

2.1 Restall and Application
Restall’s move [19] is to identify α;β and α ◦ β. An equivalent statement of Rαβγ,
given his account of ◦, is α ◦ β v γ. This has some interesting features. One nice
feature is that we can carry over intuitions about composition in order to explain
some features of application, and hence the ternary relation. Barwise’s desiderata
for composition, when read in terms of ◦, are either built into the ternary relation
semantics, or underwrite what many take to be plausible axioms and arguments,
understood in information-theoretic terms. Consider Barwise’s normality condition
that 0;α = α = α; 0. For Restall’s reading to capture this it must at least demand
the following condition, where α ◦ (β ◦ γ) v δ holds just when there exists an ε s.t.
α ◦ ε v δ and β ◦ γ v ε, and (α ◦ β) ◦ γ v δ just in case some ε is s.t. α ◦ β v ε and
ε ◦ γ v δ.

11While, for the purposes of generality, we consider non-reduced models, that is, models with
multiple normal points, in the remainder of Section 2, we follow Barwise and Restall in focusing on
a distinguished normal point, 0.

12For this desideratum and some discussion, see [2, p. 19].
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α ◦ β v γ ⇔ (0 ◦ α) ◦ β v γ ⇔ (α ◦ 0) ◦ β v γ, i.e.,
Rαβγ ⇔ R20αβγ ⇔ R2α0βγ.

Note, that Rαβγ ⇔ R20αβγ is immediate. For Rαβγ ⇒ R2α0βγ, some more
robust assumptions are required, but it is, perhaps, a plausible demand on this
story.13

For Restall, satisfying the desired associativity property, α; (β; γ) = (α;β); γ,
involves at least admitting:

(α ◦ β) ◦ γ v δ ⇒ α ◦ (β ◦ γ) v δ i.e., R2αβγδ ⇒ R2α(βγ)δ,

which corresponds to (A12). In addition, in order to enforce the condition: α � A→
B and β � B → C imply α ◦ β � A→ C, one needs the condition:

(α ◦ β) ◦ γ v δ ⇒ β ◦ (α ◦ γ) v δ i.e., R2αβγδ ⇒ R2β(αγ)δ,

which corresponds to (A13). So, setting aside the concerns with our logic channels,
the weakest logic which can be given a Restall-style channel account is around the
strength of TW.14

There are a couple of potential problems here.

1. ◦ is not functional, so given some appropriate α, β, α ◦ β is not unique.

2. This version renders the associativity of composition as a fairly substantial
property, corresponding to the provability of the B′ axiom (A→ B)→ ((B →
C) → (A → C)). On Restall’s scheme, one also gets the B axiom (A →
B) → ((C → A) → (C → B)), and so rules out some very weak logics as
underwriting a channel theory. However, its unclear how the provability of
the axiom corresponding to this property of composition is to be justified
on channel-theoretic terms. The frame conditions corresponding to B and
B′ involve at least blurring the distinction between channels and situations
operated upon by channels.15

13A far too strong one, for instance, being Rαβγ ⇒ Rβαγ, which collapses the distinction
between → and ← (see the semantics of this arrow below), and corresponds to the axiom A →
((A → B) → B). Perhaps a more natural answer is just R0αβ ⇒ Rα0β, which is somewhat
weaker.

14Adding disjunction and negation to TW∧ involves adding the axioms A5–A9 of [24, p. 287] in
addition to the contraposition axiom we consider in Section 6.

15While Restall takes this to be a feature, it is at least prima facie unclear if this is the case.
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3. Surely composition and application are distinct operations with distinct no-
tions, and even if it makes sense to identify them, such an argument would
need more detail about how they operate separately.

4. The requirement that Rαβγ ⇒ R2α0βγ seems potentially problematic on the
intended reading, in that it seems to demand that we accept something like
Rα0α which is quite implausible, when understanding 0 as some kind of logic
channel, in line with Barwise. Why should it be that any channel given a logic
channel as an input produces itself?

In the rest of this paper, we shall be interested to develop an account more in line
with Barwise’s initial proposal. This proposal has quite broad applications, applying
naturally to classical, intuitionist, and some other logics, as Barwise showed, and as
we shall show, to an important fragment of the basic relevant logic B.

3 Some Preliminaries
The ternary relation semantic framework set out in Section 1 by itself meets some of
Barwise’s desiderata for composition. In this section, we shall show that important
consequences of the identity and associativity contraints are met.

The best way to proceed would be to define and fully work out the details of
a composition operation or function on the ternary relation semantics of the type
S2 7→ S. This would involve defining an operation which interacts with R and v
in ways which produce the desired behaviour. This project is difficult, and we start
slow. The first demand is that for any pair of points in S there exists a point which
behaves as their composite. That is, for any α � A → B and β � B → C, there is
some α;β � A→ C.

First, however, we should set out just when a putative composite point is a
channel between some points. The following condition fits the bill:

• ∃ε(R2β(αγ)δ ⇔ Rεγδ) Existence of Composites

We use α;β to name the ε for α, β in question. Then the above has the effect that
R2β(αγ)δ ⇔ R(α;β)γδ, so long as α;β exists. On the intended reading, R(α;β)γδ
tells us that there is some information one gets from applying α to γ which, when
β is applied to it, results in δ. That is, there is a chain of channels along which we
can reason where we take a signal γ for α, get its target, and then apply β to that
target to get a situation which supports the target of β, namely δ.

That this fits the bill is easy to see. Suppose that α � A→ B and β � B → C.
Then since ∀γ∀δ(Rαγδ ⇒ (γ � A ⇒ δ � B)) and ∀ε∀ζ(Rβεζ ⇒ (ε � B ⇒ ζ � C)),
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so there is an η s.t. Rαγη and Rβηδ and γ � A, then η � B and so δ � C after all.
So R(α;β)γδ ⇒ (γ � A⇒ δ � C) as desired.

We first present two preliminary results showing that if composite points are
around in the frame, they behave in much the way that Barwise wanted. In lieu of
0;α = α = 0;α, we can show that something like Rαβγ ⇔ R(0;α)βγ ⇔ R(α; 0)βγ,
where we generalise to the non-reduced framework introduced in Section 1. This
shows that when α is a channel from β to γ, then so is the composition of α with some
normal point, which captures at least part of the spirit of Barwise’s desideratum.

Theorem 3.1. If M satisfies the existence of composites condition, then it also
satisfies Rαβγ ⇔ ∃x ∈ NR(α;x)βγ ⇔ ∃y ∈ NR(y;α)βγ.

Proof. Suppose that Rαβγ. Then we have that Rαβγ and ∃x ∈ N(Rxγγ), and thus
∃y∃x ∈ N(Rαβy &Rxyγ). That is, ∃x ∈ NR2x(αβ)γ.

Suppose that ∃x ∈ NR2x(αβ)γ. That is, ∃x ∈ N∃y(Rxyγ & Rαβy). Since
x ∈ N and Rxyγ, we have that y v γ, and so since Rαβy, it is the case that Rαβγ,
by the tonicity conditions on R.

So, we have that Rαβγ ⇔ ∃x ∈ NR2x(αβ)γ, that is Rαβγ ⇔ ∃x ∈ NR(α;x)βγ.
Suppose that Rαβγ. Note that ∃x ∈ NRxββ and hence ∃y∃x ∈ N(Rαyγ &

Rxβy), that is ∃x ∈ NR2α(xβ)γ.
For the other direction, note that if R2α(xβ)γ then ∃y s.t. Rαyγ and β v y, and

so the tonicity conditions on R guarantee that Rαβγ.

In a similar vein, we can show that the following important consequence of
associativity for composition holds in any ternary relation model:

Theorem 3.2. If M satisfies the existence of composites condition, then it also
satisfies R(α; (β; γ))δε⇔ R((α;β); γ)δε.

Proof. Suppose R(α; (β; γ))δε, that is R2(β; γ)(αδ)ε. So ∃ζ(R(β; γ)ζε & Rαδζ). So
∃ζ(R2γ(βζ)ε&Rαδζ). Thus ∃ζ(∃λ(Rβζλ&Rγλε)&Rαδζ). Hence, since λ does not
occur in Rαδζ, we have that ∃ζ∃λ(Rβζλ&Rγλε&Rαδζ). So ∃λ(∃ζ(Rβζλ&Rαδζ)
&Rγλε). Thus ∃λ(R2β(αδ)λ&Rγλε). Hence ∃λ(R(α;β)δλ&Rγλε) and so
R2γ((α;β)δ)ε and so R((α;β); γ)δε.
The other direction is similar (just do the above proof ‘backwards’, so to speak).

You can understand this proof as essentially giving us that both R(α; (β; γ))δε
and R((α;β); γ)δε are equivalent to R3γ(β(αδ))ε (from simply pulling the two exis-
tential quantifiers to the front as we did before). The series of equivalences can be
nicely demonstrated linearly:

R3γ(β(αδ))ε⇔ R2(β; γ)(αδ)ε⇔ R(α; (β; γ))δε⇔ R2γ((α;β)δ)ε⇔ R((α;β); γ)δε.
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Note that we only needed to appeal to the definition of R2 and R3, so nothing
beyond the basic definition of ternary relation models is needed for the result. So,
these facts hold even in B. So, our extension of the ternary relation framework by
composite points will have at least these desired features.

4 Adequacy of B∧ for Channel Models
Let us call a B∧ ternary relation model a channel model just in case it includes
composite points meeting our Existence of Composites condition from Section 3.
Our goal is to prove that the proof theory we have presented for B∧ is adequate,
i.e., sound and complete, for channel models. From this, we can obtain a conservative
extension result that adding channel-composites to the B∧ ternary relation model
structure does not alter the validities of that structure. First, we should make note
of another salient adequacy fact.

Theorem 4.1. The class of models in Section 1.1 is sound and complete with respect
to B∧ as defined in Section 1.2.

Proof. The proof can be found in [24], Chapter 4 using essentially the canonical
model construction as set out below.

The composite points α;β, for some α, β, will have to include all the arrow
statements A → B s.t. α supports A → C and β supports C → B. This feature is
captured by simply incorporating the definition of R(α;β)γδ into something much
like the usual valuation clause for →:

α;β � A→ B iff ∀γ∀δ(R2β(αγ)δ ⇒ (γ � A⇒ δ � B)).

These are the points added to a ternary relation model for B∧ to result in a
channel model. Essentially, all one needs to do to obtain a channel model from a B∧
model is to outfit the set of situations in that model with the appropriate composite
points.

Theorem 4.2. The class of channel models are sound with respect to B∧.

Proof. This is obvious, as every channel model is a model of B∧.

Completeness is a bit more involved. Our strategy is to show that the canonical
model of B∧ is a channel model, and to do this, we need only to show that each
composite point is already in the canonical set Sc of B∧ situations, which we’ll define
shortly.
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Definition 4.3. α is a B∧-theory just in case the following conditions hold:

• A,B ∈ α⇒ A ∧B ∈ α

• (`B∧ A→ B &A ∈ α)⇒ B ∈ α

Furthermore, α is a regular B∧-theory just in case α is a B∧-theory and

• `B∧ A⇒ A ∈ α.

Definition 4.4. The canonical frame of B∧ is Fc = 〈Sc, Nc, Rc, 〉, where

• Sc is the set of B∧ theories

• Nc is the set of regular B∧ theories

• Rcαβγ ⇔ ((A→ B ∈ α&A ∈ β)⇒ B ∈ γ)

To get the canonical model Mc = 〈Fc,�c〉, we need to add only the canonical
valuation as follows:

α �c A⇔ A ∈ α.

In this setting, we are interested to find a point α;β in Fc which obeys the
following condition:

A→ B ∈ α;β ⇔ ∀γ∀δ((R2β(αγ)δ &A ∈ γ)⇒ B ∈ δ).

The question of finding a point like this can be recast as one of whether one can
take a set of conditional formulae meeting this condition and build a B∧-theory out
of it. Importantly, the process of building a theory out of this set of conditionals
must not involve adding any conditionals beyond those added to satisfy the above
condition. If this were not to be the case, then one of these new conditionals A→ B
would not be such that α � A → C and β � C → B. If we can build such a
set without any additional conditionals, then we’ll have shown that α;β is in the
canonical model after all and behaves as we want.

4.1 Construction of α; β

We employ a standard theory construction. Let us begin with the following:

α;β0 = {A→ B : ∀γ∀δ(R2β(αγ)δ ⇒ (A ∈ γ ⇒ B ∈ δ))}.

742



Channel Composition and Ternary Relation Semantics

To make sure α;β is a theory in the language, we need only add conjunctions as
follows:

A,B ∈ α;βn ⇒ A ∧B ∈ α;βn+1

to get α;β as:

α;β = ⋃
n<ω

α;βn.

4.2 Verification of α; β

Now, our concern is to verify that α;β is a B∧-theory after all. That it obeys the
conjunction property clearly falls out of the construction (conjunctive formulae only
get in when both conjuncts do). So, the remainder of the verification requires that
we show that when A→ B is a theorem of B∧, then A ∈ α;β ⇒ B ∈ α;β. First, we
need some lemmata. The first is reported by Dezani-Ciancaglini et al. [9, p. 210]:

Lemma 4.5 (Bubbling). Suppose `B∧
∧
i∈I

(Ai → Bi)→ (A→ B) for some proposi-

tions indexed by I ⊆ N. Then there is some non-empty finite J ⊆ I s.t. `B∧ A →∧
j∈J

Aj and `B∧
∧
j∈J

Bj → B.

Proof. See Barendregt et al. [1, p. 933] and note that as we don’t have anything
like > matching their ω, so the initial non-identity clause, which would amount to
B 6= > as in [9], is unnecessary for our purposes.16

It is easy to extend this lemma to an equivalence:

Lemma 4.6 (Double Bubbling). Suppose that there exists a J ⊆ I s.t. `B∧ A →∧
j∈J

Aj and `B∧
∧
j∈J

Bj → B. Then `B∧
∧
i∈I

(Ai → Bi)→ (A→ B).

Proof. The proof is completed in two stages. First is to show, in the ternary relation
semantics for B∧, that if for every x ∈ Nc, x � A → ∧

j∈J
Aj and x � ∧

j∈J
Bj → B,

then for every x ∈ Nc, x � ∧
i∈J

(Aj → Bj)→ (A→ B).

Suppose otherwise. That is, suppose that there exists α, β s.t. α v β and α �∧
j∈J

(Aj → Bj) and β 2 A → B. Thus, there are γ, δ s.t. Rβγδ and γ � A and

16It is worth noting here that the proof given here bears a substantial resemblance to work done
by Dunn and Meyer to provide ternary relation semantics for combinatory logic in [11]. Indeed,
thanks are due to a referee for noting this point of resemblance.
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δ 2 B. Since γ v γ it follows that γ � ∧
j∈J

Aj , and so γ � Aj for each j ∈ J .

The tonicity properties of R guarantee that Rαγδ, and so δ � Bj for each j ∈ J .
Hence, since δ v δ, we have that δ � B after all. So, each x ∈ N must satisfy∧
j∈J

(Aj → Bj)→ (A→ B).

So if `B A → ∧
j∈J

Aj and `B
∧
j∈J

Bj → B then `B
∧
j∈J

(Aj → Bj) → (A → B).

By (R3) `B ( ∧
i∈I

(Ai → Bi)→
∧
j∈J

(Aj → Bj))→ ( ∧
i∈I

(Ai → Bi)→ (A→ B)) follows.

However, when J ⊆ I, ∧
i∈I

(Ai → Bi) →
∧
j∈J

(Aj → Bj) is provable with either (A2)

or (A3). Hence, if there exists J ⊆ I s.t. `B
∧
j∈J

(Aj → Bj) → (A → B) then

`B
∧
i∈I

(Ai → Bi)→ (A→ B).

Lemma 4.7. If `B∧C then there exists some ∧
i∈I

(Ai → Bi) s.t. `B∧ C ↔
∧
i∈I

(Ai →
Bi), for formulae with indeces from some I ⊆ N.
Proof. Since `B∧ C, we know that C must not be an atomic formula. Similarly,
since a conjunction is provable in B∧ iff both conjuncts are provable, we can be
sure that C does not have an atomic formula as a conjunct. So C must have some
complex structure, and every non-atomic formulae in the language {→,∧} has the
desired structure, hence every conjunction of non-atomic formulae in the language
has the desired structure.

Theorem 4.8. (`B∧ A→ B &A ∈ α;β)⇒ B ∈ α;β.
Proof. We proceed by structural induction on the proof of A→ B.
Base: A→ B is an instance of a B∧ axiom.
(A1) That A ∈ α;β ⇒ A ∈ α;β follows from the fact that α;β is a set.

(A2) Suppose that A ∧ B ∈ α;β. Then at some stage n, A ∈ α;βn and B ∈ α;βn.
If A ∈ α;βn then A ∈ α;β. (A3) is similar.

(A4) Suppose that (A→ B) ∧ (A→ C) ∈ α;β. Suppose that A→ (B ∧ C) /∈ α;β.
So ∃γ, δ(R2

cβ(αγ)δ&A ∈ γ&B∧C /∈ δ). Since R2
cβ(αγ)δ and A ∈ γ, it follows

that B ∈ δ and C ∈ δ. By supposition, δ is a B∧-theory, and so B ∧ C ∈ δ
after all.

Induction Step: Consider the cases when A → B is a result of an application of a
B∧ rule to some other B∧ theorems. In particular, suppose that each premise to
the application of the rule is respected by α;β, for induction, and we’ll show that
the consequence of the rule application is respected by α;β.
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(R2) Suppose that `B∧ C → (A → B) and `B∧ C. From `B∧ C, Lemma 4.7
guarantees that `B∧ C ↔ ∧

i∈I
(Ai → Bi) for some collection of arrow for-

mulae. Thus, the replacement property guarantees that both `B∧
∧
i∈I

(Ai →
Bi) → (A → B) and `B∧

∧
i∈I

(Ai → Bi). Suppose that A ∈ α;β. Since

`B∧
∧
i∈I

(Ai → Bi)→ (A→ B), the Bubbling Lemma ensures that there exists

a finite non-empty J ⊆ I where `B∧ A→
∧
j∈J

Aj and `B∧
∧
j∈J

Bj → B. Under

the supposition that both of these are respected by α;β, given by the equiv-
alence shown in Lemmas 4.5 and 4.6, we have that ∧

j∈J
Aj ∈ α;β and so each

Aj ∈ α;β. By IH, we have that Ai ∈ α;β ⇒ Bi ∈ α;β for all i ∈ I, so for each
j ∈ J , Bj ∈ α;β and so ∧

j∈J
Bj ∈ α;β. Thus B ∈ α;β.

(R3) Suppose that `B∧ A → B and `B∧ C → D and, in addition, that B → C ∈
α;β and A → D /∈ α;β. By this last supposition, we have ∃γ∃δ(R2β(αγ)δ &
A ∈ γ&D /∈ δ). It follows that B ∈ γ, since γ is a B∧-theory. Therefore, since
B → C ∈ α;β, C ∈ δ, and so D ∈ δ as δ is a B∧-theory as well.

On our way to the conservative extension result, we note an additional result.
Namely, that whenever both α, β ∈ Nc, then α;β ∈ Nc. This is a straightforward
result of the construction, but one which guarantees that these composite points
are not only around in the frame, but are sensitive to the points of which they are
composites.

Theorem 4.9. When α, β are regular B∧-theories, then so is α;β.

Proof. By supposition, we have that `B∧ A⇒ A ∈ α ∩ β. Suppose that `B∧ A, to
show that A ∈ α;β. We have already shown that α;β is closed under the rules of
the system, so it is sufficient for our purposes to show that if α, β are normal, then
α;β must contain each axiom of the system, as the fact that α;β is a B∧ theory will
ensure that anything provable from the axioms is in α;β. Note that every axiom of
B∧ has → as its main connective. So, we need only to consider the cases where the
A in question is B → C, and show that B → C ∈ α;β when it is a theorem.

Suppose that `B∧ B → C, ∃x(Rcβxδ & Rcαγx), α, β ∈ Nc, and B ∈ γ. Since
α ∈ Nc, we have that B → C ∈ α as `B∧ B → C. Since Rcαγx and B ∈ γ, we have
that C ∈ x. Now, as β ∈ Nc, we have that C → C ∈ β, and so since Rcβxδ, we have
that C ∈ δ. Hence, B → C ∈ α;β given the construction of α;β.

745



Tedder

Corollary 4.10. ∃ε(R2
cβ(αγ)δ ⇔ Rcεγδ).

Proof. We start by showing that R2
cβ(αγ)δ ⇔ Rc(α;β)γδ.

First, for the left-to-right direction suppose that R2
cβ(αγ)δ and let α;β be in

accordance with the construction in Section 4.1. Theorems 4.8 and 4.9 show that
the defined set is, indeed, a B∧ theory (which is regular if α, β are) — since Sc is the
set of all B∧ theories, then, α;β ∈ Sc. The construction ensures that Rc(α;β)γδ,
and so R2

cβ(αγ)δ ⇒ Rc(α;β)γδ.
Second, the right-to-left direction. Suppose that Rc(α;β)γδ. We want to show

that ∃x(Rcαγx&Rcβxδ). Let x = {B : ∃A(A→ B ∈ α&A ∈ γ)} — we can ensure
that x is a theory using a construction very much like that given in Section 4.1. Note
that we have immediately that Rcαγx. Suppose, then, that A → B ∈ β & A ∈ x.
Then, there is a C s.t. C → A ∈ α&C ∈ γ. The construction of α;β guarantees that
C → B ∈ α;β when C → A ∈ α and A → B ∈ β, so, since Rc(α;β)γδ and C ∈ γ,
B ∈ δ. Hence Rcβxδ after all, and thus R2

cβ(αγ)δ. So Rc(α;β)γδ ⇒ R2
cβ(αγ)δ.

Thus, R2
cβ(αγ)δ ⇔ Rc(α;β)γδ, and so ∃ε(R2

cβ(αγ)δ ⇔ Rcεγδ).

Note that R2
cβ(αγ)δ ⇒ ∃εRcεγδ follows from Corollary 4.11. This is, perhaps,

the most natural statement that for any α, β standing in the correct relation, there
is a composite point in the canonical model.

Corollary 4.11. The logic characterised by the class of channel models conserva-
tively extends that characterised by the class of B∧ models.

Proof. Given Corollary 4.10, for any α, β in the B∧ canonical model, there exists
a B∧ theory (which is regular whenever α, β are). That is, the canonical model
satisfies the existence of composites property. So, the canonical model of B∧ is a
channel model, and hence the class of channel models is complete for B∧. Hence, the
class of channel models admits no validities not already admitted by the class of B∧
models, and so the extension of the B∧ model structures by additional composite
points is conservative over B∧.

The facts proven in Section 3 also provide an argument for the associativity
and left/right normality of our composition ‘operation’. Theorem 4.8 implies that
Theorems 3.1 and 3.2 also hold in the canonical model (as they hold in any B∧-
model). It is a key question whether or not this construction continues to work in
logics extending B∧.

This proof strategy, at very least, does not extend any further, due to its reliance
on the Bubbling Lemma. This lemma fails in B∧∨, more commonly referred to as
B+, because it includes all instances the following theorem for ∨:
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`B+ ((A→ C) ∧ (B → C))→ ((A ∨B)→ C),

some instances of which are counterexamples to the Bubbling Lemma.17 So, we
cannot extend this proof to cover any of the extensions of B∧ including the usual
disjunction. However, we can say something interesting about other potential ex-
tensions of B∧ and how composition as we have defined it operates in those logics.
First, we can say something about the question whether ; is commutative and idem-
potent under the intended interpretation, and how our answers stack up against
Restall’s. Second, there is a more serious problem into which this approach runs as
soon as we consider logics with negations obeying a certain contraposition property.

5 Idempotence and Commutativity of Composition
Whether α;α = α and α;β = β;α are interesting questions, and ones which Barwise
leaves open. Our concern here is to consider what results enforcing these conditions
has on our approach, as opposed to Restall’s. Unsurprisingly, we get quite different
answers, and answers which provide some indication of the split in the approaches.
We’ll display some of the key differences, and reflect on which approach is more
natural for the channel theoretic interpretation.

α;α = α looks to be some kind of contraction principle. Understood as Restall
does, the most salient consequence of this is, in Restall’s notation, α ◦ α v α, or
more commonly Rααα, which corresponds with the axiom ((A → B) ∧ A) → B,
which we call WI. As has been known since at least [17], this theorem is bad news for
the usual naïve theories, as it provides for a straightforward Curry paradox. This
is an interesting result, and, understood as Restall wants, there is a nice story one
can give for why this principle ought to fail along channel-theoretic terms. However,
understood in our terms, the important related upshot of this idempotence principle
is Rαβγ ⇔ R(α;α)βγ ⇔ R2α(αβ)γ. Under interpretation, this is a somewhat
different kind of ‘reuse of resources’ than one has in something like WI. With our
interpretation, what this tells us is that exploiting a situation α qua-channel to get
from β to γ is in no way different from exploiting α twice. This is to be contrasted
with what contraction allows, namely, that one can exploit a situation qua-signal
twice. In other words, that one can use the same proposition as a premise as many
times as one likes, with no change in the validity of the argument.

Consider notRααα and WI, which is contraction ‘mixed’ with identity, but rather
the pure contraction axiom W: (A → (A → B)) → (A → B). The frame condition
corresponding to this axiom is Rαβγ ⇒ R2αββγ. Using Restall’s notation, this

17This can be seen by noting that, in general, 0B+ (A ∨B)→ (A ∧B).
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comes to α ◦ β v γ ⇒ (α ◦ β) ◦ β v γ, which can naturally be read in terms
of allowing the exploitation of an antecedent-supporting situation multiple times
when it can be exploited once. Our way of cashing out composition provides for a
kind of ‘contraction’ of the channel in use which is quite distinct from employing
some premise information twice. Note that Rαβγ ⇒ R2α(αβ)γ is a consequence
of our precisification of the idempotence clause. This frame condition corresponds
to (A11):

((A→ B) ∧ (B → C))→ (A→ C).

A natural reading of this formula, and its associated ternary relation condition,
is that whenever some situation supports two constraints A→ B and B → C, then
it must also ‘act as its own composition’ and support A→ C. This is, indeed, what
Rαβγ ⇒ R(α;α)βγ most naturally gives us. That is, that when α is a channel from
β to γ, so is α;α. There may be reasons to accept this principle, perhaps resulting
in a theory not too dissimilar from that of [14], but it is at least not obvious.

Consider a channel understood in purely physical terms, as a part of the world
which connects some site of information to another site. Then employing a channel,
as it were by applying it to some signal, is one instance of application of that channel.
If the same channel supports A → B and B → C, it is at least questionable that
one can pass across both conditionals with only one application of the channel.18

We leave off the interpretation for now simply to point out two interesting fea-
tures of this approach. These have to do with the interaction between → and the
← which is available in this logical setting where we don’t have Rαβγ ⇒ Rβαγ.19

Briefly, the valuation clause for ← is as follows:

α � B ← A iff ∀β∀γ(Rβαγ ⇒ (β � A⇒ γ � B)).

When we enforce idempotence for our composition, Rαβγ ⇒ R(α;α)βγ, an
immediate consequence is a contraction principle for ←, namely:

((B ← A)← A)→ (B ← A).

This is noteworthy because of its connection to the commutativity of composi-
tion. An immediate consequence of the commutativity of ; in our sense is:

R(α;β)γδ ⇔ R(β;α)γδ (i.e., R2β(αγ)δ ⇔ R2α(βγ)δ)
18Thanks go to Dave Ripley for pushing me on this point.
19Details on this connective and its relation to→ are available in many places, and [20] provides

a nice overview.
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which enforces:

((C ← B)← A)→ ((C ← A)← B),

which is a kind of permutation for ←. However, there seems to be no obvious
connection to the frame conditions which enforce prefixing or suffixing for ←, i.e.,
R2α(βγ)δ ⇒ R2(αβ)γδ and R2α(βγ)δ ⇒ R2(αγ)βδ, respectively. This is an avenue
for some future work.

6 The Axiom Form of Contraposition
Something difficult happens here when we consider a common contraposition axiom,
namely:

A15 (A→ B)→ (¬B → ¬A).

Negation is generally interested in the ternary relation semantics for relevant
logics by means of an operation ∗ on worlds, the Routley–Routley star (see [24]).
For the small point we make here, it is enough to note that the valuation condition
on negation in this semantics is α � ¬A iff α∗ 2 A, and that the above axiom
corresponds to the following frame condition:

S15 Rαβγ ⇒ Rαγ∗β∗

Note, given what we have up to this point, α;β does not provide what we want
if we are to consider logics including this axiom. Suppose that α � A → B and
β � B → C, so that α � ¬B → ¬A and β � ¬C → ¬B. We have α;β � A→ C, but
not necessarily α;β � ¬C → ¬A.

Fact 6.1. If α;β � A→ B, then β;α � ¬B → ¬A.

Proof. Suppose that α;β � A → B and β;α 2 ¬B → ¬A. Unpacking the latter,
we have ∃γ∃δ(R2α(βγ)δ & γ � ¬B & δ 2 ¬A). Since γ � ¬B, we get that γ∗ 2 B,
and since δ 2 ¬A, we have δ∗ � A. Since R2α(βγ)δ) we know there is an ε s.t.
Rαεδ & Rβγε. Therefore, Rαδ∗ε∗ & Rβε∗γ∗, and thus R2β(αδ∗)γ∗. Since α;β �
A→ B and δ∗ � A, we get that γ∗ � B, contrary to hypothesis.

If we impose merely Rαβγ ⇒ Rαγ∗β∗, what we get by assuming R2β(αγ)δ is
not R2β(αδ∗)γ∗, as we’d want, but rather R2α(βδ∗)γ∗. So, we don’t have:

R(α;β)γδ ⇒ R(α;β)δ∗γ∗,
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but rather,

R(α;β)γδ ⇒ R(β;α)δ∗γ∗.

One way to enforce the result we want is to enforce that R(α;β)γδ ⇒ R(β;α)γδ,
but this is a fairly hefty assumption, and hard to justify. At the very least, I don’t
see any intuitive reason to think it holds.

For the general case, we need only to enforce:

R2α(βγ)δ ⇒ R2α(βδ∗)γ∗

Now, we needn’t necessarily enforce the above commutativity principle to get
this. The question is, what does this add to the frames of logics containing DW?

This raises a more general question, namely, what should negation look like in
channel theory in the first place? While the ternary relation of the relevant semantics
is fairly natural in the channel-setting, the Routley–Routley star is another matter
entirely.20

7 Concluding Remarks
We have proved the main result, that one can supplement the ternary relation se-
mantics for B∧ with points behaving as the composites of other points in the frame.
This is a good first step to the larger project of fully laying out how Barwise’s initial
approach to channel theory helps to interpret the ternary relation semantics, but,
as we have seen, there are some difficulties ahead. Some, like extending the result
to full B+, seem plausible, but clearly require some other proof tactic. From there,
one might hope that it is not a difficult manner to extend the picture upwards into
other positive logics gotten by extending B+ by various additional axioms and rules.
Incorporating negation into the picture, on the other hand, seems to require some
more foundational work before the formalism can get off the ground.

In addition to these forward looking comments, as mentioned at the start of
Section 2, the work we have done here, though it is a step to giving us some insight
into channel composition in relevant semantics, doesn’t yet settle the behaviour of
this operation in any other than purely extensional terms. Future work is, certainly,
needed to expand the picture we’ve given to one which provides a more robust insight
into just what kind of critter this composition operation really is, and not just that
we can find composites when we want them, at least as far as B∧ is concerned.

20As are Dunn’s ‘perp’ in [10] and Restall’s compatibility in [21].
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Semantics and Truth-theoretic Semantics
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Abstract

This paper deals with a collection of concerns that, over a period of time,
led the author away from the Routley–Meyer semantics, and towards proof-
theoretic approaches to relevant logics, and indeed to the weak relevant logic
MC of meaning containment.

Keywords: completeness deception, meaning discrepancies, proof-theoretic meth-
ods, Routley–Meyer semantics, truth-theoretic semantics

1 Introduction
It is hoped that the concerns dealt with in this paper will help to round out the
philosophical discussion around ternary relation semantics, which was the subject of
the Third Workshop, held at the University of Alberta, Edmonton, Canada, during
May 16–17, 2016, for which this paper was written.

Whilst these concerns form a rather motley collection, the main point to be made
is that proof theory and semantics have distinct interpretations, with special refer-
ence to disjunction and existential quantification. (See Section 3.1 below for the
details.) One should especially note that the author supports the proof-theoretic
interpretation over the semantic one, this contributing to the concern about seman-
tics in general. (See Section 3.2 for this point.) Though the author has given some
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Humberstone for their discussion and comments.
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earlier presentations of these two distinct interpretations, this is the first time such
material would appear in published form.

Another major point is the importance of decidability in establishing a two-
valued meta-logic, whilst completeness is of lesser value than the current literature
espouses. (Sections 3.3 and 3.4 deal with these respective points.) This again covers
new ground.

2 Some Concerns about the Routley–Meyer Semantics
2.1 The Complexity of Fine’s Semantics for Quantified Relevant

Logics
Logics need to include quantifiers and lead into (non-logical) applications in order
for logic to be applied and thus be a worthwhile study. The central value of logic is in
its application to mathematics, computer science, science in general, and to familiar
everyday arguments. However, sentential matters largely define the logic one is
using, since the main differentiation between logics occurs at the sentential level.
The addition of quantifiers is more clear-cut and its other premises are determined
largely by the (non-logical) concepts to which one is applying the logic. So, sentential
logic is still a worthwhile study in itself, but one still should be able to indicate
how such a logic would be extended into applications, which would pass through
quantification.

At the sentential level, the ternary-relation semantics of Routley and Meyer,
culminating in their book [43], does have a somewhat bearable complexity, with its
string of semantic postulates capturing the appropriate properties of the ternary
relation R, and Priest in [39] sets out corresponding tree methods that can by-
and-large be used to determine validity or invalidity of sentential formulae. Bear
in mind that some strong relevant logics such as R and T are undecidable at the
sentential level. This result being due to Urquhart in [48], but nevertheless some
weaker relevant logics such as RW, TW, DW and DJ are decidable (see Fine [26]
and Brady [10, 11] and [15]). The undecidability for these strong logics does mean
that there is a certain inner complexity in them. (For axiomatizations of the above
logics, see Section 2.3 below.)

However, when we pass to Fine’s variable-domain semantics for quantified rele-
vant logics in [28], there is a step up in complexity mainly due to the variability of
domains from world to world. This complexity is so much so that there is a general
lack of corresponding use in the literature to determine the validity or otherwise
of quantified formulae. Further, there is also a general lack of research work into
Fine’s quantified semantics, with Mares’ addition of the identity relation and his and
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Goldblatt’s alternative semantics being the main contributions the author is aware
of. (See Mares [31] and Mares and Goldblatt [29].) Also, Priest in [40] sets out a
tree method for the quantified relevant logic BQ and its familiar relevant extensions,
and with identity, but for constant-domain semantics only. Without knowledge of
completeness for a quantified logic such as B with respect to such a semantics, this
tree method also works by-and-large, as it does for the strong sentential logics such
as R in his [39].

Furthermore, one also has the task of interpreting Fine’s semantics, leaving one
with the two questions of what a semantics for a logic ought to look like and what the
logical concepts of the connectives and quantifiers are. (More on this in Sections 3.1
and 4.1.) Recall too that Routley in [42] put forward the proposal for a constant-
domain quantified semantics, but Fine showed that the logic RQ is incomplete with
respect to this type of semantics. As far as the author is aware, this incompleteness
is still an open question for weaker relevant logics such as DW or DJ, though this
will seem doubtful when Section 3.4 is taken into account. It was at this point that
the author started to become disillusioned with the ternary semantics in general,
especially as I had spent a lot of time trying to make this constant-domain semantics
work.1 Here, I was having difficulty in establishing witnesses for existential quantifi-
cation within a domain that is constant across worlds. The author is now of the view
that in applying quantified inferential logic, the domain of quantification should be
constant. It is understandable that for quantified modal logics that possible worlds
might have differing domains from world to world, but this is not clear for practi-
cal non-modalized examples such as Peano arithmetic. Indeed, logical applications
generally have fixed domains of objects, such as natural numbers or sets, and one
should not have to vary such a domain when replacing classical logic by a supposedly
superior logic. Further, in any proof theory with quantification, except maybe in
a modal logic, it is understood that each quantifier is applied to the same domain,
although sub-domains can be determined by a restricting predicate. (There will be
some more on this point later in Section 4.1.)

The author’s general concern with complexity is as follows. Put oneself in the
mind of a reasoner conducting a simple inference step and ask the question: what
is the rationale or justification for the inference? Here, we are assuming that any
complexity that does occur results from the transitivity of a sequence of inferences.
One can understand if the reasoner says that he or she is preserving truth in that
the truth of the consequent or conclusion follows, given the truth of the premises
and/or antecedent. One can also understand if the reasoner says that he or she

1Indeed, this paper will sketch out the subsequent journey undertaken by the author over many
years, although not in strict historical order.
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is preserving meaning through a meaning analysis of premises and/or antecedents.
The author cannot think of any other criteria that could be going on in the mind of
such a reasoner, except perhaps a combination of both, though many systems have
been created and their semantics has been studied over the years. In the case of
a combination however, one can reduce it to single inference steps involving only
one of the two preservations. Further, such criteria need to be simple as such a
reasoner is not going to embrace much complexity in making and justifying a single
inference step. The logic governing the step would be clean and clear, based on
well-understood concepts. (There is some complexity to follow, but the reason for
it will be explained in each circumstance.)

2.2 The Lack of a Single Logical Concept Captured by the Routley–
Meyer Semantics

In a group paper Beall et al. [3], it was argued that the inferential concept captured
by the ternary relation R of the Routley–Meyer semantics was that of conditionality.
This is a broad concept intended by the above group of authors to accommodate
the various logics which can be given such a semantics and this is very inclusive,
ranging from B to R and beyond to classical logic, with very few logics missing out.
However, this does not tell us what the specific inferential concepts pertaining to
these logics are.

Len Goddard verbally made the point at the time when the Routley–Meyer
semantics was introduced in the early 1970s that the semantic postulates are just
in one-one correspondence with the axioms. Essentially, his idea was that one could
more-or-less determine the semantic postulate for a given axiom and vice versa.
What he thought was needed here was a semantics that characterised a particular
logic through a semantic rendition of a particular concept of inference.

The problem for relevant logics is that there are far too many of them and, as
such, there is a lack of definition in the concept of relevance. If we take relevance
as meaning relatedness, which is its immediately intuitive concept, this is, by itself,
not a suitable concept upon which to base a logic as it is too vague. Relevance,
as determined in its sharper form by the variable-sharing property (if A → B is a
theorem then A and B share a sentential variable), has been taken as a necessary
condition for a good logic, but not a sufficient one, leaving a plethora of systems to
consider. The strong relevant logics such as R, satisfying this property, are based on
technical criteria such as the neatness in the presentation of their natural deduction
systems rather than on a specific logical concept. (That natural deduction systems
are more complex for logics weaker than R can be seen in Brady [6].) This lack
of concept makes application difficult, as there needs to be some logical concept
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prior to the non-logical applied concepts so that the application can be completed
by embracing both logical and non-logical concepts.

Historically, this difficulty has borne out in a number of ways. Meyer tried to
prove that the Disjunctive Syllogism rule, ∼A,A → B ⇒ B, was admissible for
relevant arithmetic based on the logic R, but ultimately a counter-example was found
(see Meyer and Friedman [36]). This is an example of what was seen as an important
admissible rule of the logic R, not extending to arithmetic based on R. Furthermore
and more clearly, Meyer showed that the irrelevant implication, x = y → .p ↔ p,
is derivable from the Extensionality Axiom in the form: x = y → . x ∈ {x : p } ↔
y ∈ {x : p }, also based on R. This example shows up the difficulty of maintaining
relevance in an application, given that the variable-sharing property holds for this
form of Extensionality Axiom when applied to free variables. (See Meyer [35] and
[33] on relevant arithmetic and Brady [12] for Meyer’s example from set theory.)

So, one does need some further specification to fix upon a particular logic, which
we will consider within the following section.

2.3 The Lack of Facility to Drop the Distribution Axiom in the
Routley–Meyer Semantics

As an answer to Section 2.2 and as stated in Section 2.1, there are essentially two key
semantic concepts relating to logic, that of truth and meaning. These two concepts
can be used to provide an understanding of inferential connectives and rules. Truth-
preservation clearly applies to rules A ⇒ B, these being meta-theoretic in nature
and based on the notion of a deductive argument. (See Brady [23] for discussion of
this, and also the relationship between this (classical) deduction and relevant deduc-
tion.) The material implication ⊃ of classical logic is essentially truth-preservation,
expressed as a connective, as can be seen from its truth-table. Furthermore, the
relationship between the classical connective A ⊃ B and the rule A ⇒ B can be
seen from their deductive equivalence, assuming that the Law of Excluded Middle
(LEM), A∨∼A, and the Disjunctive Syllogism (DS), ∼A,A∨C ⇒ C, both hold for
the antecedent A. (We base the deductive equivalence on the basic system Bd, which
is the logic B with the addition of the meta-rule: if A⇒ B then C ∨A⇒ C ∨B.)

The inferential connective associated with meaning is an entailment, represent-
ing the containment of the meaning of the consequent in that of the antecedent.
Such a logic, called MC, based on the connective → representing meaning contain-
ment was introduced by Brady, after some tweaking which dropped the distribution
axiom from an earlier version DJd, set out in Brady [12] and [18]. The logic DJd,
was initially determined using ‘set-theoretic containment’ properties which are in
evidence in its content semantics (see below in Section 4.1 for such content seman-
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tics). This was then modified to ‘intensional set-theoretic containment’ to form the
distribution-less MC, as set out in Brady and Meinander [5], where MC was intro-
duced. The axiomatisation of MC and also its quantificational extension MCQ are
below.

Indeed, there is a strong case made in Brady and Meinander [5] for dropping the
distribution in axiom-form from such a logic, as distribution does not follow from
the standard meanings of conjunction and disjunction. Although the problem with
distribution was initially pointed out in a review of Brady [18] by Restall in [41], it
was Schroeder-Heister in [45] who made it clear to the author that the introduction
and elimination rules for conjunction and disjunction sufficed to uniquely specify
these two concepts, i.e., without the addition of distribution. (See also Schroeder-
Heister [44].)

What Schroeder-Heister showed was the following. Let & and &′ satisfy the
introduction and elimination rules:

A B

A&B

A B

A&′ B
A&B

A

A&B

B

A&′ B
A

A&′ B
B

Then: A&B

A&′ B and A&′ B
A&B

Thus, A & B and A &′ B are equivalent and can be substituted in all contexts of
the logic. The same sort of argument applies to A ∨ B and A ∨′ B, where the
introduction and elimination rules that apply to ∨ also apply to ∨′. Thus, we also
have the following equivalence:

A ∨B
A ∨′ B

A ∨′ B
A ∨B

So, the introduction and elimination rules uniquely specify standard conjunction
and disjunction concepts. Anderson and Belnap in [2] indicated, for their natural
deduction systems for strong relevant logics such as R, that distribution requires a
separate rule, i.e., &∨, over and above the introduction and elimination rules for
conjunction and disjunction. The separation of this rule is also required for logics
weaker than R, as can be seen in Brady [6].

The logic MC is set out as follows:
Primitives: ∼, &, ∨, →.
Axioms:

1. A→ A

2. A&B → A
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3. A&B → B

4. (A→ B) & (A→ C)→ . A→ B & C

5. A→ A ∨B2

6. B → A ∨B

7. (A→ C) & (B → C)→ . A ∨B → C

8. A→ ∼B → . B → ∼A

9. ∼∼A→ A

10. (A→ B) & (B → C)→ . A→ C (conjunctive syllogism)

Rules:

1. A,A→ B ⇒ B

2. A,B ⇒ A&B

3. A→ B,C → D ⇒ B → C → . A→ D

Meta-rule:

1. If A,B ⇒ C, then D ∨A,D ∨B ⇒ D ∨ C

This two-premise meta-rule is deductively equivalent to the one-premise meta-
rule ‘if A⇒ B then C∨A⇒ C∨B’, together with the distribution rule ‘A&(B∨C)⇒

2Over the years, there has been some discussion as to whether A → A ∨ B and B → A ∨ B
should be included as axioms in a logic based on meaning containment. Indeed, Kit Fine raised
this issue in Edmonton and we exchanged a series of e-mails on this topic. The objections to these
axioms, in accordance with Analytic Implication, first introduced by Parry (see his account in [38])
and more recently taken up by Fine (see his re-publication in [27]), are based on the respective
lack of B in A and of A in B in these axioms. However, I contend that logic is a representation
of the meanings of the connectives and quantifiers and other non-logical concepts, expressed in a
logical language. This language is only a vehicle for transmitting the logical meanings and one
must thus look into the meaning of A ∨ B as an ‘either . . . or’ rather than how it is expressed
syntactically. A (alternatively B) clearly adds to the meaning of ‘either A or B’ by creating the
witness, establishing that the meaning of A ∨ B is contained within A (and within B). Further,
Lloyd Humberstone pointed out in discussion that A ↔ A & (A ∨ B) holds in MC (as originally
pointed out by Dunn) and if the right hand equivalent is substituted for the first A in A→ A ∨B
then it becomes A & (A∨B)→ A∨B, which is then an instance of A & B → B, which is not under
contention. This then has the effect of linking A→ A ∨B with its De Morgan dual A & B → A.
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(A&B)∨(A&C)’. Thus, distribution in rule-form still holds in MC, with the inclusion
of MR1.

For the general purposes of this paper, we extend the logic MC to MCQ with
the following quantificational additions:
Primitives: ∀, ∃.
a, b, c, . . . range over free variables. x, y, z, . . . range over bound variables. Terms
s, t, u, . . . can be individual constants (when introduced) or free variables.

Quantificational Axioms:

1. ∀xA→ At/x, for any term t.

2. ∀x(A→ B)→ . A→ ∀xB

3. At/x→ ∃xA, for any term t.

4. ∀x(A→ B)→ . ∃xA→ B

Quantificational Rule:

1. Aa/x⇒ ∀xA, where a is not free in A.

Meta-Rule:
1. If A,Ba/x⇒ Ca/x, then A,∃xB ⇒ ∃xC, where QR1 is not used to generalize on
any free variables occurring in the A nor in the Ba/x of the rule A,Ba/x⇒ Ca/x.
This restriction on QR1 also applies to the rule A,B ⇒ C of MR1 for the sentential
component.

Note that the existential distribution rule, A& ∃xB ⇒ ∃x(A&B), follows from
R2 and QMR1. However, as with intuitionist logic, the universal distribution rule,
∀x(A ∨ B) ⇒ A ∨ ∀xB, fails, as the universal quantifier ∀ and the disjunction
∨ are essentially the same for intuitionist logic as for MCQ, since they are both
constructively interpreted concepts.

Largely, the sentential distribution axiom is an add-on, except where it falls into
place in extensional contexts such as classical logics. Routley–Meyer semantics, set
in classical meta-logic, has no means at its disposal of dropping distribution, without
some further complexity, as can essentially be seen from Dunn and Allwein [1] on
linear logic.

Thus, the Routley–Meyer semantics cannot be used as it stands for the logic MC
of meaning containment. For proof theory however, the lack of distribution generally
simplifies the rules and makes results easier to prove. For the Fitch-style natural
deduction systems, which can be seen in Anderson and Belnap [2] and in Brady [6],
there is an additional distribution rule &∨, over and above the introduction and
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elimination rules for conjunction and disjunction. This rule would be removed for
a distribution-less system. For Gentzen systems, the lack of distribution usually al-
lows one to have only one structural connective instead of two, as can be seen from
Dunn’s Gentzenization of R+ in Anderson and Belnap [2], which has two structural
connectives. Compare this with Brady [13] and [14], where there is only one struc-
tural connective required in the final Gentzen systems for a range of distribution-less
contraction-less logics, with the added bonus of decidability at the quantificational
level. Thus, whilst the lack of distribution would add significant complexity to the
Routley–Meyer semantics when attempted, such a lack would considerably simplify
the standard proof theories.

So, this lack of distribution essentially puts paid to the standard ternary seman-
tics and we will need to consider other structures to provide such a semantics and
to enable invalidity of formulae and other results to be shown. Here, the structures
need not be the same as these two functions do differ, unlike the Routley–Meyer
semantics and other semantics that attempt to play both the role of semantics and
the role of being a technical vehicle for the proof of a range of results. (There is
further discussion on this point in Section 4.3.)

3 Some Concerns about Truth-theoretic Semantics in
General

3.1 The Discrepancy in the Meanings of Disjunction and Existen-
tial Quantification

The most telling differentiation between proof theory and semantics is the discrep-
ancy in the meanings of disjunction and existential quantification. Both disjunction
and existential quantification are characterised by the expression ‘at least one of . . . ’,
the disjunction applying to two sentences and the existential quantification applying
to a predicate expression. The issue is whether this means that there is a witness
disjunct and a witness existential instantiation or whether there need not be such
witnesses. Note that the priming property, ‘if A ∨ B then either A or B’ requires
a disjunctive witness and the existential property, ‘if ∃xA then Aa/x, for some a’
requires an existential witness.

In standard semantics, which are all based on formula-induction, there must be
such witnesses, as seen by the Henkin-style completeness proofs where a canonical
model is built up so as to ensure that all such witnesses are in place. This is achieved
by constructing the canonical model using an enumeration of formulae and, as each
formula is selected, a decision is made on whether to admit it to the constructed
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model or not, so as to ensure each required witness is present. In his completeness
proof for the predicate calculus in [30], Henkin added existential witnesses in the
construction of maximally consistent sets based on an initial consistent set. Since
the LEM holds in classical logic, we can alternatively replace maximal consistency
(ensuring negation-completeness) with disjunctive closure, i.e., requiring that each
disjunction be witnessed by one of its disjuncts, yielding negation-completeness in
particular. Indeed, disjunctive closure occurs in the completeness proof for the
Routley–Meyer semantics, and this can be used for classical logic as well with some
additional semantic postulates. (See Chapter 4 of Routley, Meyer, Plumwood and
Brady [43].)

Fine’s semantics in [27] makes this point clearer. There, Fine uses theories
to capture conjunction and implication, whilst prime theories are used to capture
disjunction and negation. (Fine used the term ‘saturated theories’.) Thus, Fine
separated theories and prime theories in his semantics, instead of bundling them all
into worlds, which are all prime, as in the Routley–Meyer semantics. This emphasises
the fact that it is negation and disjunction that minimally require priming. The
reason negation is affected here is largely because of De Morgan’s Laws which relate
disjunction with conjunction through negation.

In proof theory however, there is no requirement for such witnesses. Consider
the ∨E and ∃E rules of Fitch-style natural deduction below, where a general argu-
ment to a common conclusion suffices, whether for each disjunct or for any possible
instantiation.

∨S: If A ∨Ba, A→ Cb and B → Cb, then Ca∪b.

∃E: If ∃xAa and ∀x(A→ B)b, then Ba∪b.

Both these rules can have a restriction on the index sets a and b, in accordance with
the particular logic involved. (See Brady [6] for details of this.) This is appropriate
as hypotheses can be disjunctive or existential, where no specification of a witness
would be required. An assumption of A ∨ B need not spell out which disjunct
applies and an assumption of ∃xA need not spell out which instantiation of x in A
applies. This is quite appropriate as A ∨B or ∃xA can be assumptions or premises
of an argument, where it may not be part of such an assumption to name or imply a
particular disjunct or a particular existential instantiation. So, there is a discrepancy
in the meaning of disjunction and existential quantification between the semantics
and this proof theory (and other proof theories follow suit). And, it does seem overly
restrictive to insist on a witness disjunct or existential instantiation that may not
exist in many cases.
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It depends too on one’s view of logic here, i.e., whether logic is about arguments
from premises to conclusions or about worlds specified by formula-induction based
on atoms.

3.2 What is Logic About?

To attempt to answer this last question, we need to briefly examine the classical
account and its influence on worlds semantics. There, logic is about propositions
which are either true or false, but not both. This essentially locks in classical two-
valued logic, with its truth-tables determining the truth-values of the connectives
and hence its subsequent analyticities. It relies on a body of truths, initially taken
from the real world. Falsity is just a fall-back position for sentences that are not
true, since there is no other value they can take. Worlds are built up from atomic
propositions by using a formula-induction process, which then extends to the univer-
sal and existential quantifiers. The objects of the domain of quantification initially
consist of the existing things of the real world. As Quine said “To be is to be the
value of a bound variable.” In such a case, logic is abstracted from the real world.
However, this domain can be extended in various ways by using truth-bearers. It is
this world semantics that is taken to be the semantics of the classical predicate logic,
and extended to possible worlds by Kripke for modal logics, using binary relations
between these worlds. Then, Routley and Meyer, using ternary relations, extended
this style of semantics to include relevant implications and entailments, but impor-
tantly the worlds can be impossible as well as possible. (Initially, such worlds were
called set-ups by Routley to distinguish them from possible worlds.) And, people like
David Lewis have attempted to give some reality to possible worlds whilst Meinong
and Priest attempted to give some sort of reality to impossible worlds. Nevertheless,
such semantics is still based on worlds of a sort, which are determined using formula-
induction, based on atoms, but incorporating binary or ternary relations between
worlds, largely to capture modal and inferential concepts, whilst maintaining the
true-false dichotomy. One should note that for the Routley–Meyer semantics, the
∗-function is used, under the Australian Plan, to maintain this true-false dichotomy,
despite its negation being non-classical.

The main alternative is to take logic to be about the proof of conclusions from
premises. This broadens logic to include arguments and concepts that do not fit the
worlds picture, i.e., as considered in Section 3.1 above, they may include witness-less
disjunctions and existentials. In the case of classical worlds, before one can even pro-
ceed with a piece of reasoning, every question must have a yes-or-no answer in order
to establish the two values, truth and falsity. In most practical reasoning, not every
question is answered, though allowances are made for this in the Routley–Meyer
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semantics through the use of their ∗-function but not in Kripke semantics. Never-
theless, Routley–Meyer semantics still requires each disjunction to have a witness,
and an extension of the semantics to include quantifiers over a constant domain
would still require every existential quantification to have an instantiation.

Further, a proof account does attempt to capture the logical and non-logical
concepts being dealt with in its axioms, premises and rules. However, a concept
may not be completely captured in the logical system that underspecifies it, giving
rise to negation-incompleteness. On the other hand, concepts may sometimes be
overspecified in a logical system, giving rise to contradictions, but here we generally
try to eliminate them by removing a conceptual clash or tightening up the concepts
so that they are not overspecified. (Brady [24] and [25] has some recent discussion
on this point.) This attempt to capture concepts axiomatically is, we believe, at the
heart of logic and the worlds approach is too restrictive as not all logical concepts
precisely fit the worlds picture. Indeed, most logical reasoning proceeds without all
questions being answered and without all witnesses being determined in advance.

3.3 What is the Meta-logic?

What is not generally realized is that a proof-theoretic view of logic requires one to
review the meta-logic. Firstly, the meta-logic should be the same logic as that used
for the object language, specialised to that logic which applies to formal systems.
Following on from Section 3.2, in the classical account, the meta-logic would be
classical as it is pre-determined by the nature of propositions, regardless of whether
they apply in the object theory or its meta-theory. This carries over to the Kripke
semantics for classical modal logics as well. For the Routley–Meyer semantics, even
though negation can be non-classical, the use of the Routley ∗ enables the meta-
theory to be two-valued in that each valuation in the semantics can only take the
values T and F. So, for such semantics as these, classical meta-logic is universally
used. Part of the reason for this too is that formalized logic is taken to be an object
of mathematical study and that mathematics uses classical logic, having done so for
at least a century. Whilst this is hard to shift, one should consider logic seriously,
for its own sake, and hence apply it in accordance with its own principles to meta-
theory and to mathematics generally, despite the fact that more work is needed in
this process.

We now consider the case where logic is about proof. Here, decidability is im-
portant for a classical meta-logic as any undecided formula would clearly amount to
a proof-gap, which would then become a truth-value-gap for the meta-logic. This
would make the meta-logic three-valued with respect to proof, given the formal sys-
tem is not contradictory regarding proofs. Such a contradiction would require a
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formula to be both provable and not provable, and we would assume this to be not
so, on the grounds that a formal system is a conceivable concept, with ‘not provable’
at least lying within the classical fall-back position of ‘non-proof’.

A decidable logical system would then have a classical two-valued meta-logic, as
each formula could be either proved or its non-proof be established as not provable.
However, a problem here is that some strong relevant logics such as R, E and T
are undecidable even at the sentential level (see Urquhart [48]). Nevertheless, the
logic DJd, which is of some related interest, is decidable at the sentential level (see
Fine [26] and Brady [15] and [16]). And, the logic MC is decidable using normalised
natural deduction, as sketched in Section 4.3, whilst its quantified logic MCQ has
good prospects for being decidable. However, this latter result is still work to be
completed.

3.4 The Deception of Completeness

Semantic completeness is deceptive in that it fails for many applied logics and holds
mainly for pure logics and, as argued in Section 2.1 above, logics need to be applied
to be worthwhile. Soundness, however, is not a problem and so we do focus on
completeness. If one considers the classical semantics for predicate logic, for example,
completeness is proved in Henkin [30]. In the application to Peano arithmetic,
assuming consistency, completeness will fail, due to Gödel’s first theorem. In order
to make such a Henkin-style completeness proof work for standard truth-theoretic
semantics for a quantified logic, one would need an infinite supply of existential
witnesses, which may not be available if one is focussed on a specific domain as
one often is for applications, where a standard model is invoked. Consider Peano
arithmetic with its standard domain of natural numbers, where one cannot add an
infinite number of witnesses that may be needed over and above the natural numbers.
That is, one cannot guarantee that a given domain is adequate for all the witnesses
needed in a completeness proof. Even for disjunctive witnesses, one may need to
add disjuncts that may be too specific for the concepts that are being captured in
some other applications. A case here would be a concept based on an unwitnessed
disjunctive property. So, logics need to be applied and completeness can quite often
fail for such applications.

To clarify this, the difference between pure and applied logics is that standard
models are used in applications that have domains specific to the application. Pure
logics, on the other hand, use all models that are appropriate for the generality of the
connectives and quantifiers. This then provides sufficient generality for completeness
to be proved using disjunctive and existential witnesses. Further, as we saw in
Section 2.1, there are difficulties even for the pure quantified relevant logics to be
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complete with respect to constant-domain semantics, due to this need for existential
witnesses, and constant-domain semantics is appropriate for applications generally.
This would then reduce the main completeness results to the sentential level for
such logics, which reduces their usage even further. As seen from Section 3.3 above,
decidability is important for all logics, so that they can have a classical meta-logic
and indeed this is more important than completeness that can easily fail above the
sentential level.

In operating applied systems such as arithmetic, one needs to go back to the
mathematical-style of proof, which consists of a Hilbert-style axiomatization, with
some use of natural deduction to make deductions easier and more perspicuous.
Semantical methods, such as truth-trees, are not of much value here. So, the use of
completeness is largely limited to pure logics and of major value for sentential logics
at that.

Completeness, together with soundness, enables one to say that proof theory
and semantics are different representations of the logic involved. However, logic is
about capturing concepts, and proof theory and semantics do differ conceptually
in their interpretation of disjunction and existential quantification, as argued above
in Section 3.1. Further, we favoured proof theory in Section 3.2, as truth-theoretic
semantics does not capture the connectives and quantifiers precisely, and proof-
theoretic semantics, as studied for example by Schroeder-Heister in [44] and [45],
could offer a better capture of these concepts.

4 Concluding Directions
In conclusion, we examine two alternatives to standard semantics, followed by dis-
cussion of some proof-theoretic systems.

4.1 Content Semantics
Content semantics, as set out in Brady [12] and [18], offers a good capture of logical
concepts. The contents used are logical contents that are best understood as analytic
closures. One considers a sentence, engages in repeated meaning analysis of concepts
from the sentence until such a process closes, and the set of sentences thus obtained
is the analytic closure of that initial sentence. This analytic closure of the sentence
is then its logical content, which is a deductively closed set. We can then quite
reasonably use this to capture an entailment A→ B, based on meaning containment
by simply taking its content as that of the set-theoretic containment statement of
the content of the consequent B in the content of the antecedent A. However,
more recently after dropping distribution in Brady and Meinander [5], we have had
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to modify this set-theoretic containment to reflect the absence of distribution, as
argued in Section 2.3. Now, we use the term ‘intensional set-theoretic containment’
instead, in order to represent set-theoretic containment but narrowed down to reflect
the intensional meanings of conjunction, disjunction and the two quantifiers, in
particular.

We now consider the contents of the connectives and quantifiers. The content
of a conjunction of two sentences is the closure of the set-theoretic union of the two
contents. The reason the closure is needed is that the two sentences may interact
in producing conclusions that are not provable from either of the two sentences
individually. The content of a disjunction is simply the set-theoretic intersection of
their respective contents, whilst the content of an entailment is as described above.
Negations can be dealt with using the dual concept of range, related to contents
via De Morgan properties, but below we use the simpler ∗-function on contents.
(Note that in Brady [18], it was seen that this ∗-function relates ranges and contents
through its definition, but in the final analysis the ranges can be dropped in favour
of the ∗.) The contents of the two quantifiers are similar unions and intersections
to those of conjunction and disjunction, but are set unions and intersections where
the set is controlled by the individual predicates used to generate them. We also
have to take bound variables into account. With apologies, the quantificational
extension of the content semantics is omitted which, though understandable in its
interpretation, does add quite some complexity, due to the predicates and the bound
variables. However, as discussed below and also in Section 4.3, being a semantics of
meaning rather than truth, it is not so clear cut in its determinations and hence not
so able to act as a vehicle for wide-ranging technical results.

The content semantics for the logic MC is set out as follows, as in Brady [18],
but taking into account the tweaking of the logic occurring in Brady and Meinander
[5] and the adopting of Mares’ treatment of the closed union as a content of the
set-theoretic union of two contents in his [32].3

A content model structure (c.m.s) consists of the following 4 concepts: T,C, ∗, c,
where C is a set of sets (called contents), T 6= ∅, T ⊆ C (the non-empty set of all true
contents), ∗ is a 1-place function on C (the ∗-function on contents), and c is a 1-place
function from containment sentences, c1 ⊇ c2, and also unions c1 ∪ c2, concerning
contents c1 and c2 of C, to members of C, subject to the semantic postulates p1–
p15, below. The concepts ∩, ∪, = and ⊇, are taken from the background set theory,
∪ and ∩ being a 2-place functions on C (the union and intersection of contents,

3Mares in his [32, on p. 202], expresses this union as c(c1 ∪ c2), where c is the same content
operator as used for c1 ⊇ c2 but applied to the set-theoretic union c1 ∪ c2. This is preferable to
the author’s treatment in [12] and [18], as it reinforces the use of standard set-theoretic concepts
within the content semantics.
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respectively), = being a 2-place relation on C (identity), and ⊇ being a 2-place
relation on C (content containment).

The semantic postulates are:

p1. c(c1 ∪ c2) ⊇ c1, c(c1 ∪ c2) ⊇ c2

p2. If c1 ⊇ c2 and c1 ⊇ c3, then c1 ⊇ c(c2 ∪ c3).

p3. c1 ⊇ c1 ∩ c2, c2 ⊇ c1 ∩ c2

p4. If c1 ⊇ c3 and c2 ⊇ c3, then c1 ∩ c2 ⊇ c3.

p5. c∗∗1 = c1

p6. If c1 ⊇ c2, then c∗2 ⊇ c∗1.

p7. If c1 ⊇ c2 and c1 ∈ T , then c2 ∈ T .

p8. If c1 ∈ T and c2 ∈ T , then c(c1 ∪ c2) ∈ T .

p9. If c1 ∩ c2 ∈ T , then c1 ∈ T or c2 ∈ T .

p10. c(c(c1 ⊇ c2) ∪ c(c2 ⊇ c3)) ⊇ c(c1 ⊇ c3)

p11. c(c(c1 ⊇ c2) ∪ c(c1 ⊇ c3)) ⊇ c(c1 ⊇ c(c2 ∪ c3))

p12. c(c(c1 ⊇ c3) ∪ c(c2 ⊇ c3)) ⊇ c(c1 ∩ c2 ⊇ c3)

p13. c(c1 ⊇ c2) ⊇ c(c∗2 ⊇ c∗1)

p14. c(c1 ⊇ c2) ∈ T iff c1 ⊇ c2.

p15. If c1 ⊇ c2, then c(c3 ⊇ c1) ⊇ c(c3 ⊇ c2) and c(c2 ⊇ c3) ⊇ c(c1 ⊇ c3).

An interpretation I on a c.m.s. is an assignment, to each sentential variable, of an
element of C. An interpretation I is extended to all formulae, inductively as follows:

(i) I(∼A) = I(A)∗

(ii) I(A&B) = c(I(A) ∪ I(B))

(iii) I(A ∨B) = I(A) ∩ I(B)

(iv) I(A→ B) = c(I(A) ⊇ I(B))
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A formula A is true under an interpretation I on a c.m.s. M iff I(A) ∈ T .
A formula A is valid in a c.m.s. M iff A is true under all interpretations I on M .
A formula A is valid in the content semantics iff A is valid in all c.m.s.

Soundness (if A is a theorem of MC then A is valid in the content semantics)
follows readily and completeness (if A is valid in the content semantics then A
is a theorem of MC) follows by the usual Lindenbaum method for algebraic-style
semantics, but here there is a slight difference. In constructing the canonical models,
instead of taking equivalence classes of formulae as the contents, we put the content
[A] of A as {C : A→ C ∈ T ′ }, where T ′ is constructed as a prime extension of the
set of theorems which does not include a non-theorem B. This essentially means that
these canonical contents are closed under entailment, i.e., they are analytic closures
of the sentence (or sentences) involved, since the set T of theorems is already prime,
due to the logic MC being metacomplete (see Section 4.2). Since entailments here
are understood as meaning containments, closure under entailment is closure under
meaning containment and hence closure under the analysis of the meanings of words.

Thus, this semantics captures the meaning of the logical concepts in that it
has transparency of concepts, shown by using the real set theoretic concepts of
union, intersection, identity and containment in setting up the semantics. With
the use of ranges to capture negation, this semantics is a “real” semantics, this
being quite different from the use of semantic primitives with postulates, which
have completely general interpretations restricted only by the postulates themselves,
as occurs in the algebraic-style of content semantics in Brady [8] and [9]. Unlike
truth-theoretic semantics, this semantics requires some understanding of content
containment to work the semantics in showing invalidity (as was pointed out by
Restall in discussion). As such, it would reject the axiom-form of distribution, for
example. Further, this content semantics represents the logics MC and MCQ alone,
unlike the author’s earlier contents semantics of [8] and [9], which were quite wide-
ranging, generally applying to logics in the range from BB right through to classical
logic.

4.2 Metavaluations

Metavaluations combine features of proof theory and semantics to yield a technique
that can produce results that would be hard or impossible for a truth-theoretic
semantics to emulate. In particular, it can be used to prove the simple consistency of
Peano arithmetic using finitary methods, for a quantified version of the logic MC (see
Brady [21]). Though metavaluations are set up using truth-functions, it is essentially
a proof theory, using formula-induction without worlds to capture that part of proof
that behaves in a formula-inductive fashion. This inductive part of proof focuses on
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that part of a formula that sits between maximal entailment sub-formulae and the
whole formula in a formula tree, i.e., the technique does not enable one to access
any sub-formula inside a maximal entailment sub-formula. However, there is an
exception for negated entailments where, for the so-called M2-metavaluations (see
below), the metavaluation is essentially expressed in terms of its antecedent and its
negated consequent.

Meyer introduced metavaluations in his [34] where he showed that the metaval-
uation technique can be very generally applied to positive logics, both sentential
and quantified. However, the technique only works for certain logics once negation
is added, as shown by Slaney in [46] and [47]. Once soundness and completeness
is derived, with or without negation, such a logic is called a metacomplete logic.
Slaney in [47] introduced two types of metavaluation, M1 and M2, depending re-
spectively on whether there are no negated entailment theorems in the logic or
whether a negated entailment is a theorem if and only if its antecedent and its
negated consequent are both theorems. Indeed, the corresponding M2-logics have
A,∼B ⇒ ∼(A → B) as a derived rule, with the converse as an admissible rule,
where for corresponding M1-logics this derived rule is absent from the logic. MC
and MCQ are M1-metacomplete logics, and as such contain no negated entailment
theorems. Thus, they are entailment-focussed logics.

Slaney’s metavaluations v and v∗ are as follows, with my symbolism and a slightly
simplified layout:

(i) v(p) = F ; v∗(p) = T , for sentential variables p.

(ii) v(A&B) = T iff v(A) = T and v(B) = T ;
v∗(A&B) = T iff v∗(A) = T and v∗(B) = T .

(iii) v(A ∨B) = T iff v(A) = T or v(B) = T ;
v∗(A ∨B) = T iff v∗(A) = T or v∗(B) = T .

(iv) v(∼A) = T iff v∗(A) = F ; v∗(∼A) = T iff v(A) = F .

(v) v(A → B) = T iff ` A → B, if v(A) = T then v(B) = T , and if v∗(A) = T
then v∗(B) = T .
v∗(A→ B) = T , for M1-logics.
v∗(A→ B) = T iff, if v(A) = T then v∗(B) = T , for M2-logics.

We add the quantificational metavaluations, as follows:

(vi) v(∀xA) = T iff v(At/x) = T , for all terms t.
v∗(∀xA) = T iff v∗(At/x) = T , for all terms t.
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(vii) v(∃xA) = T iff v(At/x) = T , for some term t.
v∗(∃xA) = T iff v∗(At/x) = T , for some term t.

The following key properties are then derivable (see Meyer [34] and Slaney [46]
and [47]):

Completeness: If v(A) = T then ` A, for all formulae A, and hence if v∗(A) = F
then ` ∼A.
Consistency: If v(A) = T then v∗(A) = T .
Soundness: If ` A then v(A) = T , and hence if ` ∼A then v∗(A) = F .
Metacompleteness: ` A iff v(A) = T , and hence ` ∼A iff v∗(A) = F .
Priming Property: If ` A ∨B then ` A or ` B.
Negated Entailment Property: Not-` ∼(A→ B) (for M1-logics);
` ∼(A→ B) iff ` A and ` ∼B (for M2-logics).
Existential Property: If ` ∃xA then ` At/x, for some term t.

The metavaluational technique can reject some non-theorems of the stronger
metacomplete logics for which the technique applies. In particular, it can be used to
reject the LEM, A ∨ ∼A, and the Modus Ponens Axiom, A& (A→ B)→ B in the
logic MC. Still to be researched is the good prospect of further metavaluations af-
fecting negated entailments in different ways, which would reject other non-theorems
in particular metacomplete logics. (This possibility is flagged in Slaney [46].) As
stated above, Peano arithmetic can be shown to be simply consistent using finitary
methods using metavalutions and this proof relies heavily on specific properties of
metavaluations that cannot be duplicated using standard truth-theoretic semantics.
(Here, in accordance with finitary methodology, mathematical induction is incorpo-
rated into the formulation of the metavaluations for the quantifiers, so as to ensure
that all universal formulae can be proved through use of mathematical induction.)
The specific properties of metacomplete logics can also be used to establish the
simple consistency of naive set theory, the proof of which uses a single transfinite
sequence of metavaluations (see Brady [22] for details).

4.3 Proof-Theoretic Methods
More familiar proof-theoretic methods include cut-free Gentzen systems and nor-
malized natural deduction systems. Both of these can take advantage of the lack of
distribution to make simplifications.

Of the three cut-free Gentzen systems set out in Brady [18, pp. 93–140], the best
one for our purposes would be the left-handed cut-free Gentzen system for the logic
DJ, which is MC + A&(B∨C)→ (A&B)∨ (A&C) − MR1, i.e., essentially adding
back the distribution axiom. Such a Gentzen system just consists of structures,
to which an initial axiom together with rules apply. As it stands, the system has
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four structural connectives, and one would expect to delete the extensional and the
corresponding k-intensional ones, with the removal of distribution as required for
MC. That would leave us with what are called the i-intensional and j-intensional
structural connectives, the i-intensional one ‘:’ being interpreted as cotenability ⊕,
defined as A ⊕ B =df ∼(A → ∼B), and the j-intensional one ‘;’ being interpreted
as fusion ‘◦’, axiomatically introduced by the two-way rule, A ◦ B → C ⇔ A →
. B → C. The j-intensional connective can be inverted around the standard i-
intensional connective, much as Belnap did in his [4] paper on Display Logics, with
each derivable structure having an i-intensional connective as its main structural
connective, which serves in lieu of a turnstile. To illustrate, these inversion rules,
for structures α, β and γ, are as follows (see Brady [18, p. 133]):

(Ii) α : (β : γ) / (α ; β) : γ (Ij) α : (β ; γ) / (γ : α) : β

Further, as stated in Brady [16, pp. 350–351], quantifiers can be added to this
Gentzen system in a fairly standard way.

However, there is a problem with proving decidability of DJ with this system in
that the rule, (CSij) (α ; β) : (α ; δ) / α : (β : δ), representing conjunctive syllogism,
is a form of contraction for the structure α, with the structures β and δ as parametric.
Though decidability of DJ has been proved in Fine [26], and in Brady [15] and [16]
by a semantic method, it remains to be proved in this setting. It should be noted
that this semantic method as it stands, cannot be used once the distribution axiom
is removed from DJ to form the logic MC.

In any case, Gentzen systems are rather stylized and are good if suitable systems
are available for the logics of interest. This leads us to our preferred proof-theoretic
method of representing the logics MC and MCQ or indeed other similar logics, that
is, by normalized natural deduction systems. This is because they would capture
reasoning most closely, roughly as it would occur in practice in closely reasoned
contexts and, due to normalisation, in a way that proceeds straight to the point of
the conclusion without detouring in and out of connectives and quantifiers. In Brady
[19], there is such a system for DW, which is DJ − (A→ B) & (B → C)→ .A→ C.
This would need further work to make it suitable for MC in not only removing
the distribution axiom but also adding conjunctive syllogism. Another version of
normalized natural deduction, called ‘Free Semantics’, appears in Brady [20], where,
in the process of establishing a semantics based on natural deduction, a normalized
version of that is given for the logic LDW, which is DW without the distribution
axiom. Here, we would need to add to the restrictions on the T → E rule to embrace
conjunctive syllogism, i.e., we add case (iii) to T → E (i) and (ii) below. So, in Brady
[20], the logic MC is covered as well as LDW, giving a normalised natural deduction
system for MC in the process of establishing such a “free semantics.”
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We set up the following natural deduction system MMC for the logic MC. The
system MMC is a modified natural deduction system that is set up as a preliminary
system so that normalization can then take place. MMC is somewhat simpler, but
we will subsequently indicate what is needed for this normalisation process. MMC
is taken from Brady [19], which contains a normalized natural deduction system for
the logic DW, but we make a slight simplification to remove distribution and we
also extend it to include conjunctive syllogism, yielding a system for MC. Reference
to this normalised natural deduction system is made in Brady [20], but there the
principle focus was on tableau and reductio systems for the logic LDW rather than
that for MC.

We now present the rules of MMC, which is a Fitch-style natural deduction
system, set out in the manner of Anderson and Belnap [2], but with modifications
to help pin down the structure of it to suit the logic in hand. As part of this
process, we use signed formulae TA and FA instead of a formula A, and structure
them inductively as follows.

(1) If S is a sign T or F , and A is a formula then SA is a structure.

(2) If α and β are structures then (α, β) is a structure.

Each whole structure has a single index set, which is of one of the two types: ∅ or
a complete set of natural numbers { j, . . . , k }, which is a finite set of natural numbers
in order with no numerical gaps. Structures are to be understood disjunctively and
threads of proof within a subproof are obtained by following the signed formulae
through in a particular position within a structure, just like a subproof within the
subproof. (These threads of proof are defined in detail on [19, pp. 40–42], except, to
remove distribution, one needs to remove the concept of a thread of proof extending
another thread of proof, but the linkage between the previous thread of proof and the
its continuation after the removal of these extended threads of proof remains. See
[20, p. 522] for details of this.) That is, threads act as mini-subproofs, but without
introducing a new index in the process as occurs in Anderson and Belnap [2].
Hyp. A signed formula of the form TH may be introduced as the hypothesis of a
new subproof, with a subscript { k }, where k is the depth of this new subproof in the
main proof. (Depth is defined as on p. 70 of Anderson and Belnap [2], but is called
‘rank’. Also, see Brady [7] for ‘depth relevance’.) Any hypothesis thus introduced
must subsequently be eliminated by an application of the rule T → I below.
T → I. From a subproof with conclusion TBa on a hypothesis TA{ k }, infer TA→
Ba−{ k } in its immediate superproof, where a = { j, . . . , k } and either:

(i) a− { k } = ∅ with j = k = 1, or
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(ii) a− { k } = { j, . . . , k − 1 } with k ≥ 2, 1 ≤ j ≤ k − 1.

The conclusion and hypothesis need not be distinct in (i). In both cases, TA → B
can also occur inside a structure, within a thread of proof.
T → E. From TAa and TA → Bb, infer TBa∪b. (Direct version) From FBa

and TA → Bb, infer FAa∪b. (Contraposed version) Whilst TAa (or FBa) and its
conclusion TBa∪b (or FAa∪b) are located in a proof P , either TA → Bb is in the
main proof or it is located in P ’s immediate superproof, in accordance with the
proviso below. T → E carries the proviso that either:

(i) b = ∅, in which case a ∪ b = a, or

(ii) a = { k }, k ≥ 2, b = { j, . . . , k − 1 }, 1 ≤ j ≤ k − 1, in which case
a ∪ b = { j, . . . , k }, or

(iii) a = { j, . . . , k }, k ≥ 2, b = { j, . . . , k − 1 }, 1 ≤ j ≤ k − 1, and hence
a ∪ b = { j, . . . , k }.

We say that T → E is applied to a proof containing TA→ B into a proof containing
TA (or FB) and TB (or FA). Such applications of T → E (ii) must be made en bloc
(into a proof) to all the signed formulae of a (whole) structure, thereby, maintaining
its common index set. However, T → E (iii) can be subsequently applied singly, i.e.,
to a single thread of proof, with the following exception.

For T → E (iii) to be applied for the first time into a thread of proof, it must
also be applied to its adjacent thread(s) of proof. (See F & E and T ∨ E below for
adjacent threads of proof. Also, F &E and T ∨E can initiate further adjunct pairs
to which T → E (iii) would also be applied in this case.) Subsequent applications
of T → E (iii) into these threads of proof can then be made singly.

T∼I. From FAa, infer T∼Aa.

T∼E. From T∼Aa, infer FAa.

F∼I. From TAa, infer F∼Aa.

F∼E. From F∼Aa, infer TAa.

T & I. From TAa and TBa, infer TA&Ba. (all applied within the same thread)

T & E. From TA&Ba, infer TAa. From TA&Ba, infer TBa.

F & I. From FAa, infer FA&Ba. From FBa, infer FA&Ba.

F & E. From FA&Ba, infer (FAa, FBa). (introducing an adjacent pair of threads)
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T ∨ I. From TAa, infer TA ∨Ba. From TBa, infer TA ∨Ba.

T ∨ E. From TA ∨Ba, infer (TAa, TBa). (introducing an adjacent pair of threads)

F ∨ I. From FAa and FBa, infer FA ∨Ba. (all applied within the same thread)

F ∨ E. From FA ∨Ba, infer FAa. From FA ∨Ba, infer FBa.

, E. From SAa, SAa, infer SAa. (eliminating an adjacent pair of threads)

A formula A is a theorem of MMC iff TA∅ is provable in the main proof (with a null
index set).

To convert MMC into the normalized natural deduction system NMC, we need to
be able to contrapose an entire subproof in the process, and to do this we distinguish
T - and F -subproofs, introduce two new rules, F → I and F → E, which are
contraposed versions of the corresponding T → E and T → I rules, interchange the
signs T and F , and also interchange each thread with a corresponding strand. These
strands are introduced in a similar way to that of threads but through T & E and
F ∨E and eliminated through T&I and F ∨I. Thus, these strands are conjunctively
separated, in a similar way to the separation of threads by disjunction. (See Brady
[19] for further details about how all this is done.)

As in Brady [19], any formula instance B occurring in a normalized proof of
a formula A is a subformula of A, and the index set a of such a formula instance
B lies in a subproof whose depth, max(a), is equal to the depth of B in A. (We
take max(∅) to be 0 and the depth of the main proof to be 0, to make this identity
work.) Thus, using these properties, decidability can be shown for MC, as it is for
DJ in Brady [17], for DW in Brady [19] and for LDW in Brady [20]. However, the
quantificational logic MCQ still needs a normalised natural deduction system, and
this still needs to be researched.

4.4 In Conclusion

In reference to the differing interpretations of proof theory and semantics, as pre-
sented in Section 3.1, we conclude the discussion by considering two related pairs of
concepts that need separating: truth and meaning, on one hand, and semantics and
technical systems used for proving results, on the other.

The content semantics shows us that meaning does not need to be expressed
using truth-conditions, and this real semantics expressing the meanings of the logical
words is not necessarily ideal for the proof of results, as it may not have the sharpness
required to produce good technical results.
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Truth and meaning drive different inferences: deductive inference and meaning
containment. Deductive inference preserves truth, but is represented by a rule ‘⇒’,
as it concerns deduction within the formal system as a whole, whilst meaning con-
tainment is represented by a connective ‘→’, relating two sentences. (See Brady [23]
for discussion on this.) It is instructive in this regard to examine negated inferences.
Truth-preservation can be easily falsified when the antecedent or premise is true and
the consequent or conclusion is false. It is not so easy to falsify meaning contain-
ment and there are different positions one can take on this. This can be clearly
seen by considering the M1- and M2-metavaluations, where the corresponding M1-
logics have no negated entailment theorems whilst for the corresponding M2-logics
∼(A→ B) is a theorem iff A and ∼B are theorems. And, as predicted in Slaney [46],
there are likely to be other metavaluations where negated entailment theorems have
different properties again. This illustrates the difficulty in pinning down meaning
containment.

The true-false dichotomy provides a sharpness which is needed for proofs of
technical results and so truth-theoretic semantics is ideal for such purposes. On
the other hand, meaning is not so clear-cut and thus real semantics is less suitable
for these technical purposes. This adds an interesting twist to the direction of this
paper, giving some value to the truth-theoretic approach to semantics.
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Abstract

A common way to tame an apparent inconsistency is to re-interpret the
conflicting commitments. While {α,¬α } is obviously inconsistent, if α is am-
biguous, the inconsistency may be merely apparent. This essay presents two
distinct but closely related ways of formalizing this obvious point, one already
proposed and the other a variant. Both are closely related to the well-known
paraconsistent logics LP and FDE. The paper concludes by suggesting ways to
extend the application of formal ambiguity to interpret Routley’s “star worlds”
and suggest an alternative approach to relevant conditionals.

Keywords: aggregation, ambiguity, ambiguity measures, paraconsistency, preser-
vationism, property tables, relevance

1 Introduction: Inconsistency or Ambiguity?
Preservationism is a distinctive approach to non-classical logic. Rather than propose
heterodox treatments of truth values, preservationists have sought new properties
of sentences and ensembles of sentences which are worth preserving, and developed
logics that preserve them. The first such value to be investigated is called the level
of a premise set, defined as the minimum number of cells in a consistent covering of
a premise set, that is, a set of sets whose union is the premise set and each member
of which is consistent. Level preservation weakens logical aggregation, the way in
which premises are “gathered together” to arrive at consequences that follow from
a set of premises but from no individual premise in the set alone. In particular,
repeated application of the classical rule ∧-intro produces single sentences that are
consistent only so long the finite collection of sentences “conjoined” is collectively
consistent. Consequently, ∧-intro allows us to “gather together” any finite set of
inconsistent but non-contradictory premises to produce a contradiction. However,
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this violates level-preservation, since the maximum level of any such finite set is the
cardinality of the set, while any set including a contradiction has no level, not even
the countably infinite level. (As an example of the latter, take the level of the set
of all atoms together with their negations.1 See [7].)

One result that has had an important influence on preservationist thinking goes
back to Dana Scott. In [8], Dana Scott proves that any reflexive, monotonic and
transitive (RMT) relation on a set can be given a 1/0 semantics. That is, such
relations are determined by a set of “allowed” 1/0 valuations on the members of the
set. A preservationist take on Scott’s result grows out of a simple observation: it
follows from Scott’s result that there is some property of items in the domain which
is preserved by any RMT relation. This observation leaves it open to philosophers
and logicians to explore just what property it is that a given such relation preserves,
and to find new consequence relations by seeking new properties of our premises and
our conclusions that are worth preserving.

The motive for seeking such new properties is particularly clear when we consider
classically inconsistent premise sets and classically trivial conclusion sets (such as
sets all of whose members cannot be consistently denied). Such sets are classically
trivial, because they lack the only properties classical logic seeks to preserve (from
left to right in the case of premise sets, and right to left in the case of conclusion sets).
But we can be a little more precise about how we express this. Logic in general,
and classical logic in particular, preserves consistency in a very conservative way.
For example, the closure of a premise set Γ under the classical ` is the set of all
sentences that are classically consistent extensions of every consistent extension of
Γ. Inversely, the “closure” of a conclusion set ∆ under the classical ` is the set of
all sentences that are consistently deniable extensions of every consistently deniable
extension of ∆.

The preservationist project has been summed up in a pair of slogans.

Hippocrates: Don’t make things worse. (P. K. Schotch)
Making do: Find something you like about your premises, and preserve it.

(R. E. Jennings)

The two slogans fit together nicely — following the second prescription is a good
way of obeying the first. There are many properties we might value in a set of
premises Γ, some of which aren’t, or aren’t always, preserved when we close Γ under
the classical ` . Preserving such properties ensures we don’t make things worse
when we reason with those premises.

1To provide a label for the (non-)level of sets including contradictions, Schotch and Jennings
simply defined ∞ as the “level” of such sets.
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For instance, closure under ` includes closure under conjunction. However,
one valuable property of a set of sentences, considered as reasonable grounds of
action, is having only members with a probability higher than some threshold of
“minimal acceptability.” Closure of a consistent set under conjunction is consistency
preserving, but probability degrading, as Henry Kyburg famously observed in [5].

Keeping these broader observations in mind, we begin our voyage here by fo-
cusing on ambiguity measures, which measure properties of sets of sentences in a
classical propositional language, whose preservation gives us the consequence rela-
tions of LP , K3 and FDE. Afterwards, we turn to some more speculative points
about preservation and relevance.

2 Ambiguity and Ambiguity Measures

Ambiguity is a wonderful device for rhetoricians and other tricksters, but it turns
out that we can also perform some useful logical tricks with the help of ambiguity.
Beginning with sentential logic, we can simply treat different instances of some
atom(s) as having different truth values. Semantically, this allows us to freely assign
different truth values to different instances of those atoms, treating some as true
and others as false. I call this unconstrained form of ambiguity “chaotic,” because
it treats instances of the ambiguous atoms as if they were just independent atoms.
Each different instance of such atoms within a wff (i.e., a formula) and even in
different instances of the very same wff can have different values. The results, as far
as which instances of wffs including these atoms are assigned the value 1 and which
are assigned the value 0 goes, can be “captured” by appealing to a single pair of
new independent atoms, one assigned the value 1 and the other assigned the value
0, with different instances (including those appearing in different inscriptions of the
very same wff) semantically “disambiguated” by assigning, in whatever way we like,
0 to some and 1 to others.

However, this extreme form of ambiguity is described here only to provide a
kind of limit case against which more constrained applications of ambiguity and
ambiguity measures can be contrasted. From a logical perspective, it is much more
interesting to exploit ambiguity in systematic ways. For example, we can exploit
the hypothetical ambiguity of some atoms with the aim of assigning (we might say
imposing) either the value 1 or the value 0 to the wffs that include those ambiguous
atoms.

Consider the first approach. Instances of an ambiguous atom φ as a stand-alone
wff will be assigned the value 1, while instances of φ in the wff p¬φq are assigned
the value 0. More generally, instances of φ in wffs of the form p¬ · · · ¬φq would be
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assigned 1 if the number of ‘¬’s is even, and 0 if the number of ‘¬’s is odd, while
instances in p(φ ∨ ψ)q and p(φ ∧ ψ)q would be assigned the value 1. In the first of
these last two cases, this is enough to ensure that the wff as a whole gets the value
1, but (of course) in the second the value of the wff as a whole still hangs on the
value of ψ, with the complete wff p(φ∧ψ)q being assigned the value 1 iff ψ also gets
the value 1.

If every atom in our propositional language L is treated ambiguously in this way,
then every sentence in L is assigned the value 1, while when no atoms are treated
ambiguously, we get only the familiar classical valuations. To see what happens in
between these extremes, we need to examine how the ambiguous atoms contribute
to the values assigned to various wffs systematically. But the resulting valuations on
our propositional language L turn out to be quite familiar. Consider an LP valuation
assigning one of the values T , F or B (“both”) to each atom. The unambiguous
atoms are assigned the fixed values 1 and 0, respectively, in our ambiguous valuation,
while B is reserved for the ambiguous atoms. It turns out that the initial agreement
between our ambiguous valuation and the corresponding LP valuation, concerning
which atoms receive a designated value, extends to all the sentences in the language.
(See [1].)

To see why this is so, we need only reflect on how the values we assign to instances
of the atoms affect the values assigned to wffs including connectives. Of course, if an
atom φ is unambiguous, then either all instances of φ are assigned the value 1 or all
are assigned the value 0. Now suppose the atom φ is ambiguous. Then both φ and
p¬φq will receive the value 1 in our valuation, because disambiguating explicitly,
we treat φ by itself as an instance of the “true” atom φ+, while the instance of φ
appearing in p¬φq is treated as an instance of the “false atom” φ−. We thereby
impose the value 1 on both wffs, and similarly, for all wffs of the forms p¬ · · · ¬φq.
p(φ ∧ ψ)q is assigned the value 1 if and only φ and ψ are both assigned the value
1, whether ambiguously or unambiguously. p(φ ∨ ψ)q is assigned the value 1 if and
only if at least one of φ and ψ is assigned the value 1, whether ambiguously or
unambiguously.

The only complexity we need to worry about here is how the property of being
“ambiguous” in this way propagates through the language. It’s obvious that LP
and the corresponding ambiguity valuation match in the case of ‘¬’, that is, on
which wffs in the set of atoms closed under the operation of prefixing a ‘¬’ are
assigned a designated value. But what about ‘∧’ and ‘∨’? Given an ambiguous
assignment assigning one of the fixed values 1 and 0 to some atoms and treating the
rest as ambiguous, we will say that an arbitrary wff in our ambiguous assignment
has the property B (which we no longer think of as a “truth value”), when it has
the property that all and only the ambiguous atoms have. That is, if the wff, its
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negations, the negations of those negations and so on are all assigned the value 1.
Similarly, an arbitrary wff ψ will be said to have the property T iff V (ψ) = 1 and
V (p¬ψq) = 0, and it will have the property F iff V (ψ) = 0 and V (p¬ψq) = 1. We
can then construct property tables as a simple generalization of truth tables, using
our three properties, denoted by T , F and B. As indicated above, the ambiguity
of the wildcard atoms is exploited to assign the value 1 to the wffs including them
whenever possible. We thus arrive at the following familiar tables for these properties
of wffs:

φ ¬φ
T F

B B

F T

∧ T B F

T T B F

B B B F

F F F F

∨ T B F

T T T T

B T B B

F T B F

The truth functions here are just classical. Since every wff with the property
T (F ) gets the value 1 (0) in all instances, the lines in the tables for T and F are
purely classical. The table for negation is obvious, given how ambiguity is applied
here. For the rest, a wff φ is assigned the property B if and only if (given the
stable “background” assignment of 1 or 0 to each “normal” atom) instances of the
ambiguous atoms can be assigned the values 1 or 0 in ways that impose 1 on both
φ and p¬φq. Other wffs receive 1 or 0 as a fixed value, so they all have one of the
properties T and F . Tracing this through for ‘∧’, it’s easy to see (by putting in
values for wffs) why p(B ∧ T )q, p(T ∧ B)q and p(B ∧ B)q all have the property B:
the negations of p(B ∧ T )q, p(T ∧ B)q and p(B ∧ B)q all get the value 1, because
we can impose 0 as the value of the instance of the sub-wff(s) with the property
B, thereby, imposing the value 1 on p¬(B ∧ T )q, p¬(T ∧ B)q and p¬(B ∧ B)q.
Similarly, it’s obvious why whenever either φ or ψ has the property F , p(φ ∧ ψ)q
also has the property F . Finally, since the connectives here are just the classical
two-valued connectives, p(φ ∨ ψ)q can simply be defined as p¬(¬φ ∧ ¬ψ)q. The
upshot is that in any ambiguous valuation the property B is coextensive with the
LP truth value ‘both’ in the three-valued LP valuation satisfying all the sentences
assigned the value 1.

Given the symmetries between LP andK3, it follows immediately that exploiting
ambiguity in the opposite way, i.e., using it to allow us to assign 0 to both φ and
p¬φq and more generally to assign the value 0 to any wff including some ambiguous
atoms whenever that can be done given the “background” of a fixed assignment to
the rest of the atoms, gives us an ambiguity semantics for K3.

Finally, combining both uses of ambiguity (applying them to a pair of disjoint
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ambiguity sets, one used to impose the value 1 whenever possible while the other
is similarly used to impose the value 0) produces an ambiguity semantics for first
degree entailment (FDE). A wff φ is assigned the property T , B, N (“none”) and
F , respectively, when φ has the value 1 while p¬φq has the value 0, when φ has the
value 1 while p¬φq also has the value 1, when φ has the value 0 while p¬φq also has
the value 0 and when φ has the value 0 while p¬φq has the value 1.

At this point, some explanation of the motives that lurk behind this approach to
LP and FDE is due. First, drawing a line between the truth values 1 and 0 and the
“properties” T , B, N and F focuses attention on the preservationist suggestion that
a consequence relation can preserve properties other than truth values. This point
is also connected to Scott’s result, noted above: broadly speaking, any property
whose domain is the set of sentences of some language L can be used as the basis
for a consequence relation that preserves that property. Of course, it’s much easier
to determine what pairs of subsets of L the consequence relation �L holds for when
we are given rules for assigning the property to some proper subset of the sentences
(we can call these the “atoms”) and recursive rules for extending such assignments
to all of L. More practically, we often explicitly specify a class of valuations based
on an assignment to some finite subset of the atoms, and the values of the sentences
of L all of whose atoms are assigned a determinate value in every member of that
class, i.e., the sentences whose construction requires only those atoms.

What these ambiguity semantics are meant to show here is that we can give very
different accounts of what the properties preserved by a given consequence relation
really are. In the ambiguity semantics for FDE sketched above, the properties T
and F involve a stable relation between a wff and the truth values 1 and 0 (that is
to say, the relation is fixed regardless of whether the wff appears on its own or as a
sub-wff in any other wff), while the properties B and N do not.

A nearby observation goes a step further. There is not just an abstract symmetry
but a rich similarity between the properties B and N : both reflect the ambiguity
of the truth-value assigned to instances of some atom(s). Though this ambiguity
is applied quite differently in generating a particular evaluation on L, the same
semantic resource of ambiguous atoms could be used to generate a range of different
evaluations, based on different choices of how to use the ambiguity of each atom. For
instance, whether it is used positively, in an effort to impose the value 1 whenever
possible, or it is used negatively, to impose the value 0.

This gives us a very different picture of what is going on with FDE than the
picture we gather from either Dunn’s four-valued semantics in [4] or his semantics
where the valuation function is weakened to a relation, e.g., in [3]. Our ambiguity
approach is based solely on the familiar truth values and classical truth-functional
semantics for the connectives, and simply proposes a new way for atoms and sen-
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tences to be “connected” to truth values, that is, systematically but (in general)
ambiguously, rather than univocally. As we’ve seen, on this approach the difference
between the properties B and N is just a matter of how the ambiguity of individual
ambiguous atoms is exploited.

Given a list of atoms to be treated ambiguously, we can consider separately
just how the ambiguity of each is to be used when it comes to producing a 1/0
assignment for the sentences of L. This perspective makes the connection between
a world w and its Routley ∗-world much closer than it looks to be in Dunn’s se-
mantics. Rather than involving two distinct valuations, in which the values B and
N “trade places,” ambiguity semantics produces ∗-worlds or ∗-interpretations by
changing how we apply (or exploit) the ambiguity of certain atoms. More broadly
speaking, from this perspective it is also natural to consider the full range of valua-
tions that result from all the ways of combining our two different uses of ambiguity
to each ambiguous atom, producing every 1/0 valuation that results from treating
some of our ambiguous atoms as having the property B and the rest as having the
property N .

3 Ternary Remarks

Here we turn to some more speculative remarks about how this preservationist per-
spective on FDE might contribute to the interpretation of relevance logics. Since
the ternary semantics for relevance logics were first proposed, the question of how to
interpret the ternary relation has been a hard nut to crack. In the usual treatment,
we have a modal frame in which every world combines an FDE valuation with a
modal accessibility relation to deal with the semantics of ‘→’. However, while a sub-
set of the worlds (the normal worlds) have a binary accessibility relation, the rest
(the non-normal worlds) have a ternary accessibility relation and a modified truth
condition for ‘→’. Namely, at a non-normal world w, pφ → ψq gets the value 1 iff
every pair of worlds w′, w′′ such that Rww′w′′ is such that, if �w′ φ, then �w′′ ψ.
Finally, the theorems of these logics are the sentences that hold in all normal worlds
in all models, not in all the worlds.

Since the underlying “truth-functional” logic is FDE there are no theorems at
all in the sub-language of the atoms and wffs formed from them using ‘¬’, ‘∧’, and
‘∨’. On the heterodox version of the semantics for FDE above, any such wff can
have the property N at some world, ensuring that it gets the value 0. However,
there are still theorems, all involving ‘→’.

So the starting point for us here is a “space” of worlds at which the sentences
of L are assigned FDE valuations, produced according to our ambiguity semantics.
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But before we begin to think about semantics for ‘→’, we need to consider the place
of ∗-worlds in our proposal. The inclusion of these worlds in the set of valuations
on L making up the “frames” of a modal conditional logic is standard practice in
the semantics of relevance logic, and their presence in a modal frame for the ‘→’
makes a difference to the truth and falsity of conditionals, even though the star
world semantics for negation actually gives us the same possible valuations as the 4-
valued Dunn semantics and our ambiguity semantics. This is because the star world
semantics for negation ensures the presence, in every modal frame, of a “mirror
image” world w∗ for each world w, at which the properties B and N “trade places.”

As we’ve noted, however, this sort of “switch” or reversal of B and N is a natural
fit from the ambiguity perspective. We capture it by allowing the roles of the two
ambiguity sets to be ambiguous in their own right, that is, for every world (i.e., for
every valuation in the frame) with left and right ambiguity sets L and R there is an
otherwise indistinguishable world where the set of atoms L is the right ambiguity
set and the set R is the left ambiguity set. (A broader approach would begin with a
single set of ambiguous atoms and generate valuations for every possible allocation
of those ambiguous atoms to the properties B and N ; adopting this perspective
would constrain the allowed frames even further.)

As in the usual semantics, the “normal” worlds have a binary accessibility rela-
tion, but there is also a set of “abnormal” worlds, which have a ternary accessibility
relation. The theorems of the resulting logic are determined by the sentences true
at all normal worlds. However, since a normal world can have access to an abnormal
world, the accessibility relation determining values for wffs of the form p(φ → ψ)q
is, like that for Lewis’s ‘→’, binary at the first step, but unlike Lewis’s ‘→’, becomes
ternary thereafter.

A difficult (and persistent) interpretive question for this semantics has been the
following: How should we understand the ternary accessibility relation? An answer
suggested by the role of ambiguity in the proposed semantics for FDE is that it
reflects an ambiguity of the accessibility relation at remote worlds that are greater
than one step away. This provides a different gloss on the semantics, by introducing
a new kind of constrained semantic ambiguity, which is ambiguity of the accessibility
relation when “looking” more than one step along the relation. On such an account,
every world unambiguously picks out the worlds it has access to, but the worlds
those worlds have access to are “seen through a glass dimly,” with the result that
when we evaluate a conditional pφ → ψq at a world accessible to w, the worlds at
which we evaluate φ differ, in general, from the worlds at which we evaluate ψ. We
can think of this as analogous to a quantum measurement, where in general, making
a measurement changes the state of the system measured. Similarly here, when φ is
evaluated at a world w2 two steps away from w0, the “path” along the frame relation
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that led from w to w2 is altered at its second step, so that when ψ is evaluated, the
path now leads to a different world, w2′ .

The upshot, in logical terms, is the same as the usual semantics for B. The
evaluation of pφ → ψq at a world w′, one “step” along the frame relation from
a world w, is based on evaluating φ and ψ at related pairs of worlds, each pair
consisting of a first world w2 accessed along that path, at which φ is evaluated,
and a second world accessed along (what we regard as) the same path, w2′ , at
which ψ is evaluated. This ambiguity in the accessibility relation allows failure of
pφ → (ψ → ψ)q at a world w for the same reason that this wff can be false in the
usual semantics for B. In the latter, there can be an accessible world w′ at which,
due to the ambiguity of its accessibility relation as “seen” from the starting point
of w, when we check for the value of ψ as antecedent we get the value 1, but when
we check again for the value of ψ as consequent, we access a different world where
ψ gets the value 0.

This approach fits nicely with Priest’s tableau method, as presented in [6, 190f],
where we only need one normal world in a counter-model, since after that all worlds
introduced are assumed to be non-normal (i.e., to have ternary accessibility rela-
tions). But here, interestingly, we get the same effect by starting with any world
w in the frame; any accessible world w′ will have an ambiguous accessibility rela-
tion from the point of view of w. The advantage of this reading is subtle, because
we can say that it merely imposes the same oddity in a different way, however, it
does it without needing to distinguish between normal and abnormal worlds. All
worlds are normal on this account, and the ambiguity of the frame relation (which,
in general, picks out different valuations when testing the antecedent’s value at an
accessible world than when testing the consequent’s value at that same accessible
world) arises due to the ambiguity of what world we “encounter” along the frame
relation, whenever we look two or more steps along the frame away from the starting
point of our evaluation.

The upshot is just a minor variation or gloss on the standard semantics for B, and
by itself, is obviously not very significant. It might well be argued that adopting such
an ambiguous or unstable frame relation is a stranger and more radical change to our
understanding of the semantics of conditionals than the ternary relation. However,
a further step takes us closer to the familiar realm of binary modal frames and
“relative possibility.” We can set aside ambiguity of the frame relation, in favour
of a kind of “instability” in the valuations we find at points of the frame, with
the advantage of dropping the distinction between normal and non-normal worlds
altogether. We’ve already identified a very close link between the property B and
the property N , by grounding both in ambiguity. The only difference between these
properties lies in how the ambiguity is exploited to generate 1/0 valuations on L. The
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fundamental character that underlies the properties B and N here is the ambiguity
of certain atoms. On this proposal, all that changes between the pairs of worlds
accessible to a given world w in the ternary case is a switch (or, more generally,
an alteration or instability) of which ambiguous atoms are treated as having the
property B and which are treated as having the property N . Allowing such changes
in the valuations we encounter at worlds two or more steps along the accessibility
relation, when testing for the truth values of the antecedent and the consequent of
a conditional, would have the same effect as the standard ternary relation, under
the condition that the two worlds related to our w be such that (partly or fully)
exchanging the values B andN in the standard semantics for FDE in each of the two
worlds transforms each into the other. If we restrict our consideration to exchanging
the property B for the property N and vice versa for every wff, the effect on our 1/0
valuations would be equivalent to requiring any two worlds accessed via the ternary
relation to be a pair of worlds that bear the ∗-world relation to each other.

In either case, the resulting conditionals pass the first test for relevance. This
is easy to see, since the sentence pφ → (ψ → ψ)q is invalidated at a world w such
that, at some accessible ambiguous world w′, ψ gets the property B (so that �w′ ψ)
as antecedent and the property N (so that 2w′ ψ) as consequent. The upshot of
this approach seems likely to be close to B, but I suspect there may be different
interactions between negations and conditionals here, since this approach effectively
grounds both in ∗-worlds.

4 Conclusions

Preservationist logic arose from the recognition that the preservation of properties
other than consistency and satisfiability can be used to constrain the consequences
of classically trivial premise sets (see [7]). The preservation of ambiguity measures
(as described in [1, 2]) provided a link between the preservationist approach and
the multi-valued paraconsistent logics LP and FDE. Here we have presented a
new treatment of ambiguity logic that makes the link to these logics more direct by
defining the properties preserved by the K3, LP and FDE consequence relations
— by appeal to ambiguity measures. We have also suggested a preservationist,
ambiguity-based reading of “star-worlds” and the ternary semantics for relevance
logics. How far this approach can be extended remains an open, and, I hope, an
interesting question.
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Abstract
The American Plan semantics for relevant logic attempts to avoid using the

star world operator of the Australian Plan semantics for relevant logic because
of the philosophical issues surrounding star worlds. However, on one natural
approach to creating an adequate four-valued semantics, the American Plan
semantics requires dual worlds that behave in ways similar to star worlds [11].
Because of the differences between dual and star worlds, I claim that informal
reasoning with non-classical truth values motivates the existence and nature of
dual worlds. Moreover, I show that this account of informal reasoning can be
formally modeled in such a way as to be compatible with a variety of meta-
physical views.

Keywords: American Plan semantics, four-valued, negation, relevant logic, se-
mantics

1 Introduction
The Australian Plan for the semantics of relevant logics is a possible worlds structure
in which each world is two-valued [9, 10]. That is, every sentence receives either
the truth value True or the truth value False. While the Australian Plan might
be appealing for this reason, the set of worlds of every model is closed under the
Routley star operator. There are philosophical difficulties with the star operator,
some of which may be found in [4]. The American Plan semantics, as found in
[12, 11, 7], seemingly avoids these philosophical concerns by not including a star
operator in its formal semantics. In the American Plan, the possible worlds are
four-valued; every sentence receives one of the truth values True, False, Both and
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Neither. Unfortunately, allowing the two extra, non-classical truth values into the
picture did not fully solve the problem of the Routley star. As pointed out by
Restall, the American plan semantics, on one natural construction, must be closed
under duality [11, p. 148]. That is, for every world in a model, its dual world is also
in the model. Here, dual is meant something like a maximally compatible world such
that for every sentence A, if a world makes A true (false), its dual does not make A
false (true). The requirement that the models are closed under duality raises its own
interesting set of philosophical issues, but these issues are different from those raised
by the star operator of the Australian Plan. I offer a solution to the philosophical
problems posed by the dual worlds.

The formal properties of dual worlds will be explained by an account of informal
reasoning. I shall write w � A to denote that A is true at w, and w � ¬A to denote
that A is false at w (with the modelM being implied). We say that a wff A receives
the truth value True if and only if A is true and not false. The wff receives the
truth value Both if it is both true and false. The cases for the truth values False
and Neither are similar. The formal properties of dual worlds, where the dual of w
is written as w∗, are defined as follows:

w � α and w 2 ¬α iff w∗ � α and w∗ 2 ¬α
w 2 α and w � ¬α iff w∗ 2 α and w∗ � ¬α
w � α and w � ¬α iff w∗ 2 α and w∗ 2 ¬α
w 2 α and w 2 ¬α iff w∗ � α and w∗ � ¬α

What is in need of explanation is (1) the formal properties as defined and (2) the
requirement that the four-valued models are closed under duality. I will show that
both (1) and (2) can be explained by starting with an informal account of reasoning.
The explanandum (2) can be refined, as the dual worlds are only required in a single
valuation condition in the models. I will show that the informal reasoning supports
this somewhat puzzling fact.

I have extended the ambiguity-measure preservation semantics of Bryson Brown,
which he defined for FDE, to a possible worlds semantics for the relevant logic B
and its extensions, in [5]. In Brown’s semantics for FDE, sentences receiving either
the truth value Both or the truth value Neither are considered ambiguous, and
disambiguating these sentences produces classical models. The worlds in the models
I have defined are given an interpretation which I believe captures informal reasoning
about non-classical truth values, or, in this case, a specific kind of ambiguity. The
informal reasoning will show that our intentions concerning the truth value of a
conditional sentence can change depending on whether we are trying to determine
if the conditional is true or if it is false. This fact will explain the required existence
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of dual worlds in the models. The nature of dual worlds will be determined by how
we reason given these differing intentions.

In Section 2, I will focus on the role of ambiguity in my models. My quite
idiosyncratic use of the term ‘ambiguity’ will be explained, for I use the term to
describe an attitude towards sentences. While what could be called ‘disambigua-
tions’ in my account are similar to David Lewis’ disambiguations in his “Logic for
Equivocators” [6], I will distance myself from Lewis by highlighting the differences
in motivation and in what is called ambiguous on each account. I will, however,
wait until my semantic models are explicated before fully discussing the differences
between my account and Lewis’ “Logic of Equivocators.” That being said, the pri-
mary difference between the accounts is found in what is called ‘ambiguous’ by each
account. On Lewis’ account ambiguity is more or less the typical ambiguity in nat-
ural language, and an ambiguous sentence is only true or false after disambiguation.
In contrast, I call a sentence ambiguous when we treat it as having one of the non-
classical truth values of the four-valued semantics. That is, when we have reason to
assert (or deny) both a sentence and its negation. In Section 2, I will also illustrate
how my use of the term differs from Brown’s by demonstrating how his models for
FDE work. In Section 3, I will make the further distinction between three kinds of
ambiguity (as I use the term). My models for B and its extensions will be repro-
duced in Section 4. Finally, in Sections 5 and 6, I will offer an account of informal
reasoning and demonstrate that the models in Section 4 capture the essence of the
account. By showing that the models capture the informal reasoning, I will explain
the nature and existence of dual worlds.

While I will use the terms ‘world’ and ‘possible world’, I believe that the account
given here is compatible with a use of other terms in the literature. As the particular
term used has little bearing on my arguments here, I will not discuss the potential
differences between using each term.

2 Ambiguity
Sentences receiving either of the non-classical truth values (Both and Neither) will be
called ambiguous. I stress that this term is meant epistemically and not metaphysi-
cally. J. Michael Dunn noted that the use of the word ‘ambiguity’ might suggest that
the interpretation of relevant logic which I propose would eliminate the possibility
that a sentence is, say, both true and false, and that calling something both true and
false is a mistake.1 However, I only wish to call sentences ambiguous when we have
cause to believe that they have non-classical truth values. We might have a cause

1Dunn suggested the phrase “the logic of politeness” for this reason.
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to believe a sentence is both true and false, because it is both truth and false. Other
times our epistemic limits might warrant the assignment of non-classical truth val-
ues. In this way, I aim to remain metaphysically neutral. Thus, the term ‘ambiguity’
is perhaps not well suited to my aims. While I will continue to use the term as is,
my intention is to use the term to describe sentences that we have cause to assign
one of the non-classical truth values Both and Neither. Nevertheless, I believe my
argument works whether or not we call some sentences ambiguous. The argument
relies only on what it means to treat a sentence as having the truth value Both or
Neither.

The models I have defined for B extend Brown’s ambiguity-measure preservation
semantics for FDE by creating FDE-like possible worlds and relating them with
the usual ternary relation. (It was my original hope that the formal properties of
ambiguous sentences could help explain the ternary relation, but I have so far been
unable to use ambiguity in this way.)

Brown’s models work as follows. A consequence relation that preserves levels
of ambiguity is defined. Here ambiguity is used to describe sentences which must
undergo a formal disambiguation in order to be treated classically. That is, an
ambiguous sentence P , e.g., one that is treated in FDE as both true and false,
must be disambiguated by splitting its instances into two sentences, Pt and Pf , such
that the former is assigned the truth value True and the latter is assigned the value
False. In this way, we are able to consistently (and in some sense classically) model
sentences such as A ∧ ¬A. For example, if A is a propositional variable, then we
may model A∧¬A by treating the first instance of A as true and the second as false
by splitting the instances of A into instances of At and Af . Doing so produces the
new sentence At ∧ ¬Af . This sentence has a classical model.

Given any set of sentences Γ, Brown considers the possible ways of producing a
consistent image (or consistently deniable image) of Γ. Brown defined a three place
relation:

A set of formulae, Γ′, is a consistent image of Γ based on A (which we
write ConIm(Γ′,Γ, A)) iff A is a set of atoms, Γ′ is consistent, and Γ′
results from the substitution, for each occurrence of each member α of
A in Γ, of one of a pair of new atoms, αf and αt. [3, p. 176]

For example, if Γ is already consistent, then ConIm(Γ,Γ, ∅) states that by treating
no sentences as ambiguous we produce a consistent image of the already consistent Γ.
However, we also have ConIm(Γ,Γ, A), if Γ is already consistent, for treating addi-
tional sentences as ambiguous does not produce inconsistency. We should, therefore,
confine our interest to the smallest A’s that produce consistent images of a set of
sentences. Brown defines an ambiguity set:
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[t]he ambiguity set of Γ, Amb(Γ) [is]
{A | ∃Γ′: ConIm(Γ′,Γ, A) ∧ ∀A′, A′ ⊆ A,¬∃Γ′: ConIm(Γ′,Γ, A′) }

This is the set of smallest sets, A1, . . . , An, where for each Ai there is
some Γ′ such that ConIm(Γ′,Γ, Ai). [3, p. 176]

The level of ambiguity of a set of sentences, then, is the smallest number of atomic
propositions which must be treated as ambiguous in order to make the set of sen-
tences classically consistent.

Brown then defines a notion of an acceptable extension that preserves the level
of ambiguity by ensuring that no acceptable extension requires treating additional
atomic sentences as ambiguous in order to create a consistent image. For any set
Γ, the ambiguity sets of its extensions will be subsets of its own ambiguity sets.
Formally, this is symbolized as follows.

Accept(∆,Γ) ⇔ Γ ⊆ ∆ & Amb(Γ ∪∆) ⊆ Amb(Γ). [3, p. 177]

The notion of an acceptable extension plays a key role in Brown’s construction.
Brown shows that we can create a consequence relation by quantifying over all
acceptable extensions of a set. That is, Γ `amb α if and only if, for every extension Γ′
of Γ, adding α to Γ′ produces an acceptable extension of Γ′, i.e., Accept(Γ′∪{α },Γ′).
It turns out that this consequence relation is the same as the consequence relation
of LP [3, p. 177].

From here, Brown shows how we can dualize the notion of a consistent image to
that of a consistently deniable image. Treating some atomic sentences as ambiguous,
by treating some instances of the atomic sentences as new, true sentences and the
rest as new, false sentences, enables us to project a consistently deniable image of a
set of wffs. Doing this ensures that inferences to tautologies are not trivially valid.
Brown defines the dual notion as:

Let Amb∗(∆) be the set of minimal sets of sentence letters whose am-
biguity is sufficient to project a consistently deniable image of ∆. We
require that any sentence from which ∆ follows be an acceptable ex-
tension of every acceptable extension of ∆, where acceptability is now
consistent deniability. [3, p. 181]

We write the dual notion of an acceptable extension as Accept∗(Γ,∆). With this
notion of acceptable extension in place, we can again define a consequence relation.
Γ `amb∗ ∆ if and only if every acceptable extension of ∆ is such that adding Γ
produces an acceptable extension.

The trick to producing a consequence relation equivalent to that of FDE using
these two defined consequence relations is quite simple.
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Then Γ `F DE ∆ if and only if every such consistent image of Γ can be
consistently extended by some member of each non-trivial image of ∆
based on a disjoint set of sentences letters. [3, p. 182]

In other words, an argument is FDE-valid if and only if every way of disambiguating
the premise set to produce a consistent image classically implies every consistently
deniable image of the conclusion set.

An atomic sentence is ambiguous on Brown’s account when we have to treat some
of its instances as true and others as false in order to consistently assert or deny
a set of sentences. With his notion of ambiguity, the logics FDE, LP, and others
can be adopted by someone who denies that any sentence can have non-classical
truth values. One of Brown’s intentions was to show that paraconsistent logics
can be adopted by non-dialetheists (cf. [2]). Brown’s ambiguity-based approach is,
therefore, metaphysically light, as it is compatible with many different metaphysical
views. This fact was what motivated me to extend the ambiguity approach to
relevant logics that extendB, which contains FDE as its non-implicational fragment.

3 Further Distinctions
In contrast to Brown, I call a sentence ambiguous if and only if we have reason to
assign one of the two non-classical truth values of FDE. I have thereby introduced a
particular technical definition of ambiguity that departs in some ways from Brown’s.
The non-technical definition includes some sentence which is not ambiguous in the
technical sense that I require. For example, the sentence “I will turn right here” could
mean that I am turning to the right direction at this location or that I am turning
at this moment in time. When the sentence is uttered when I am turning right,
it would be considered true no matter which way the sentence was disambiguated.
Thus, this example shows that the definition of ambiguity I am using is distinct from
the usual conception of ambiguity and, as will be shown, is therefore, distinct from
the use of ambiguity found in Lewis’ [6]. My use of the term ambiguity comes from
the use of the term in Brown’s models; however, I take the term to describe merely
an attitude towards sentences.

We can make a further distinction between those sentences we have reason to
assign the truth value Both and those we have reason to assign the truth value
Neither. We shall call a sentence ambiguously both when we have reason to assign to
it the truth value Both, and ambiguously neither when we have reason to assign to
it the truth value Neither. Additionally, we shall call a sentence generally ambiguous
when we have reason to assign one of the truth values Both and Neither. Ambiguity,
then, is meant to be an epistemological notion rather than a metaphysical one.
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Sentences are generally ambiguous for one of two reasons. The first is that the
sentence is ambiguously both (neither) — i.e., we have reason to assign to it the
value Both (Neither). The second is that we have reason to treat the sentence as
either ambiguously both or ambiguously neither, but our reasons do not warrant a
choice between the two.

I can now further explicate one of the claims of this paper using this distinction.
I claim that logical implication with respect to generally ambiguous sentences (i.e.,
those receiving non-classical FDE truth values) depends on both (1) how the ideal
agent reasons with sentences that are ambiguously both and (2) how the ideal agent
reasons with sentences that are ambiguously neither. That is, when reasoning with
an implicational sentence, with a generally ambiguous antecedent or consequent,
one must consider both possible ways of treating the generally ambiguous sentence.
In particular, when a generally ambiguous sentence occurs as a subsentence of an
implication, the role of the implication in our reasoning is determined by considering
the case wherein the subsentence is considered both true and false and the case
wherein it is considered neither true nor false.

4 Models for B (and its Extensions)
The models I construct here are similar to the models already available in the liter-
ature, but differ on one semantically significant detail. Namely, these models have
2 levels of analysis or description. This difference enables one to interpret the non-
classical FDE truth values in a way similar to Brown’s models for FDE. The first
level of description is a set of atomic sentences which behave like the atomic sen-
tences of the American Plan semantics. The second level of description is a set of
what I will call sub-atomic sentences, the behavior of which will account for the
behavior of the atomic sentences.

While the syntax of the language contains only the atomic sentences, the rela-
tional semantics will additionally require sub-atomic sentences. The denumerable
set of sub-atomic propositions, for notational simplicity, will be written as

P1,P−1,P2,P−2, . . . ,Pn,P−n, . . . .

The atomic propositions, also denumerable in size, will be denoted by

α1, α2, . . . , αn, . . . .

Definition 4.1. A model M is a structure 〈W,N,R, P, f〉 whereW is a set of worlds
closed under duality, N is a set of non-normal worlds, and R is a ternary relation
between worlds. The function f assigns a pair of distinct sub-atomic sentences to
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each atomic sentence such that (1) every sub-atomic sentence occurs in some pair
and (2) no sub-atomic sentences occurs in more than one pair. A convenient choice
is to use the enumeration provided above such that:

f(α1) = 〈P1,P−1〉
f(α2) = 〈P2,P−2〉

...
f(αn) = 〈Pn,P−n〉

...

Finally, P is a function from the non-zero integers to subsets of W . That is, P
assigns sets of worlds (or propositions) to the sub-atomic sentences.

We will use the notation Pn to denote the subset of ℘(W ) which is assigned
by P when applied to n. That is, Pn will represent the set of worlds at which the
sub-atomic sentence Pn is true.

To denote that A is true at the world w in the model M , I shall write w �M A.
(For simplicity, I shall henceforth drop theM unless doing so would cause confusion.)
A wff is valid in a model if it is true at every normal world, and valid in a class of
models if it is valid in every model belonging to the class.

Definition 4.2. Let w be a world in a model.

(1) w � Pn iff w ∈ Pn

(2) w � αn iff f(αn) = 〈Pn,P−n〉 and w � Pn

(3) w � ¬αn iff f(αn) = 〈Pn,P−n〉 and w 2 P−n

We can see that the sub-atomic sentences receive classical truth values such that
every sub-atomic sentence is either just true or just false. There are four possible
combinations of truth values for any pair of sub-atomic sentences. Given that the f
function assigns pairs of sub-atomics to each atomic, and given how truth at a world
is defined for atomic sentences, each atomic sentence receives one of the four FDE
truth values at each world. If a pair of sub-atomic sentences agree on a truth value,
then the atomic sentence corresponding to the pair also receives that truth value.
If we take the sub-atomic sentences to represent possible disambiguations of the
instances of the corresponding atomic sentence, as in Brown, then the non-classical
truth values are explained by the fact that some instances are true and others false.

Where A and B are wffs built up from the atomic sentences in the usual way,
the valuation is extended to the extensional connectives as follows:
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(4) w � (A ∧B) iff w � A and w � B

(5) w � ¬(A ∧B) iff w � ¬A or w � ¬B

(6) w � (A ∨B) iff w � A or w � B

(7) w � ¬(A ∨B) iff w � ¬A and w � ¬B

The valuation of a conditional can be given as follows with no reference to dual
worlds:

(8) w � (A→ B) iff for every x, y such that Rwxy: if x � A, then y � B.

We are only required to invoke the dual worlds to evaluate the negations of
conditionals. The valuation is as follows.

(9) w � ¬(A→ B) iff w∗ 2 (A→ B)

However, note that this is equivalent to the following:

(9’) For some x, y, such that Rw∗xy both x � A and y 2 B.

In Section 5, I will demonstrate that an explanation of (9′) naturally follows from
how one should reason with non-classical truth values.

In [5], I was able to show that these models are equivalent to the extant models
for the relevant logic B and its extensions given in Graham Priest’s Introduction to
Non-classical Logic [8].

The semantics I have defined in this section are not too surprisingly different
from other American Plan semantics. The only difference is one of explanation:
the sub-atomic sentences, which are absent in the usual American Plan semantics,
combined with the account of ambiguity in the previous section, explain the non-
classical behavior of the atomic sentences. By removing the sub-atomic sentences
and giving a new valuation condition for the atomics, we can construct the usual
American Plan semantics with dual worlds.

The formal nature of the dual worlds is illuminated by these models. A sentence
is treated as ambiguously both (neither) at a world when it receives the FDE truth
value Both (Neither). A world’s dual is a world which makes the same set of sen-
tences generally ambiguous. Furthermore, anything ambiguously both at a world
is ambiguously neither at its dual, and anything ambiguously neither is ambigu-
ously both at its dual. That is, a world and its dual have the same set of generally
ambiguous sentences, but they differ maximally on how such sentences are treated.
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5 Reasoning with Generally Ambiguous Sentences
I will show that how we ought to reason with generally ambiguous sentences mo-
tivates and explains the truth and falsity conditions in the models of the previous
section. To this end, I will first consider the case of conjunction, then the case of
implicational sentences. I will illustrate, by means of informal reasoning, when an
ideal epistemic agent should assert and deny sentences with generally ambiguous
sub-sentences. In each case, I will show that the formal conditions capture our
intuitions with respect to the informal reasoning.

Let us first consider the simple case of conjunction. A wff A∧B is true if and only
if both A is true and B is true. So suppose that the wff A is generally ambiguous.
That is, suppose that we are analyzing the truth and falsity of a conjunction with
a conjunct that we have reason to treat as either ambiguously both or ambiguously
neither. It follows that this conjunction, A ∧ B, is true if and only if (1) B is true
and (2) we treat A as ambiguously both. This is because the only way to treat a
generally ambiguous sentence as true is to treat it as both true and false. On the
other hand, the conjunction is false (i.e., ¬(A ∧ B) is the case) if and only if either
B is false or we treat A as ambiguously both (i.e., both true and false). This bit of
informal reasoning merely relies on the definition of generally ambiguous sentences
and a basic semantic definition of conjunction.

This informal analysis supports the truth and falsity conditions of the above
section. That is, it supports the truth and falsity conditions that do not involve the
dual worlds. However, the conditions are equivalent to ones which do involve dual
worlds.

w � ¬(A ∧B) iff w � ¬A or w � ¬B
iff w∗ 2 A or w∗ 2 B
iff w∗ 2 (A ∧B)

The informal reasoning nonetheless does not require dual worlds, and this is reflected
in the truth conditions in the previous section. It follows, in a quite straightforward
manner, that the formal conditions are explained by the informal reasoning, which
I hope to have shown is correct.

Now let us consider the arrow, for which the dual worlds will be shown to play an
indispensable and explanatory role. The arrow of relevant logics is used to capture
relevant implication, entailment, and other implication relations. In a relational
semantics, the properties and strength of the arrow is determined for the most part
by the ternary relation. Here, I will not assume any particular interpretation of
the ternary relation, nor will I assume that any conditions have been placed on it,
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for I aim to explain the role of dual worlds in every relevant logic that extends B
(captured by relational semantics) in a single stroke. I require only the basic idea
that an arrow statement is true if the antecedent really implies (entails, etc.) the
consequent. Unlike the case of conjunction, I will require an additional assumption in
the informal reasoning that will follow. I require that, in the process of determining
whether an implicational statement is true of false, we create or pick out situations
or worlds which make some sentences true or false.

I believe that the informal reasoning I present will motivate one particular in-
terpretation of the ternary relation more than it will motivate other interpretations.
On this interpretation, a conditional B → C is true at a world w if and only if for
every world w′ such that RBww

′, w′ � C, where “RAxy could, given some assump-
tions, be defined as y is one of the A-satisfying worlds closest to x” [1, p. 605]. It
will be shown that switching between a world and its dual (potentially) changes the
set of closest A-satisfying worlds, for any A. Moreover, this fact will be shown to
mirror our intentions when reasoning with non-classical truth values.

Once again I will split up my argument into two parts. First, I’ll argue that rea-
soning about conditionals (and their negations) with generally ambiguous, proper
sub-sentences requires us to consider the cases in which the sub-sentences are am-
biguously both and the cases in which they are ambiguously neither. Then, I will
argue that the truth and falsity conditions in the models of the previous section and
the American Plan semantics naturally captures this informal reasoning.

Suppose that A is a generally ambiguous sentence. Consider a wff of the form
A → B, which contains the generally ambiguous wff A as a sub-sentence. I will
consider how we should determine whether or not the conditional is true and whether
or not it is false. At least, that is, whether or not we should treat it as true or false.

First, how do we determine whether A→ B is true at a world? Instead of picking
out every (normal) situation or world in which A is true and determining whether
or not B is also true (i.e., determining whether something like A � B holds), we pick
out a restricted set of (closest) situations or worlds in which A is true and determine
whether or not B is true in those worlds. To do this, we first pick out a set of
worlds at which A is true. If A is generally ambiguous in our own world, then this
piece of information restricts the set of A-worlds we pick. That is, the information
in our own world restricts which set of worlds are the closest A-worlds with respect
to the implication sentence. Picking out A-worlds from a world in which we treat A
as generally ambiguous focuses our attention on the possible worlds in which A is
ambiguously both. That is, using what we currently know (including that we treat
A as generally ambiguous) we pick out certain worlds — we pick out the worlds at
which A is ambiguously both.

We say that A → B is true if and only if, when we picked out the closest
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worlds at which A is true (by being both true and false), we find that B is also
true at every one of these worlds. This shows that reasoning about arrow sentences
with generally ambiguous antecedents requires us to treat the generally ambiguous
antecedent as ambiguously both. In addition, the formal truth condition is explained
by this informal reasoning, for the formal condition states formally what the informal
reasoning asserts. However, we go about making the generally ambiguous antecedent
true, the result is a world in which the consequent is true (if the conditional is true).

The case for generally ambiguous consequents is similar, but for that we must
consider the dual, modus-tollens-like behavior of the conditional. The conditional
is true if (and only if) every one of the closest worlds picked out in which the
consequent is false (by making it ambiguously both) also makes the antecedent
false, after relevant combination. This is captured in the formal condition by the
presence of set-theoretic, or material, implication.

On the other hand, we say that A → B is false, i.e., ¬(A → B) is the case,
if and only if the truth of A is in some sense compatible with the falsity of B.
When A is generally ambiguous, we ought to consider the case where the accidental
properties of our own world (say, making the antecedent both true and false) do not
over-determine the truth value of the negated implication. We want to try to pick
out a situation or world that, when combined with ours under certain restrictions,
produces a world in which the antecedent is true and the consequent is false. If we
currently treat A as both true and false, then we are limited as to which worlds can
be combined with our own to produce the desired world. Thus, we must consider
the case where we treat the antecedent as being neither true nor false.

If we currently treat A as ambiguously both, then when considering the non-
negated conditional we pick out the closest worlds in which the antecedent is at
least true, and we look for the consequent. Similarly, when considering the negated
conditional we pick out a potentially different set of closest worlds at which the
antecedent holds and, after a similar construction, look for the consequent at the
resulting world. However, in each case the closest worlds might be different. This
difference comes from a difference in our attitudes towards the conditional and its
negation. When considering the bare conditional, we are trying to pick out worlds
where the antecedent holds. In contrast, when we consider the negation we attempt
to pick out worlds at which the antecedent holds and the consequent does not.

When we already consider the antecedent to be ambiguously both, looking for
worlds where the antecedent holds produces worlds restricted by our belief that the
antecedent is both true and false. However, in a world where we believe the an-
tecedent is ambiguously both, we look for different kinds of worlds when considering
the negated conditional. Often, it seems, the closest worlds ought to be similar
when considering a conditional and its negation; however, it is not necessary that
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the closest worlds when considering the conditional are the exact same worlds picked
out when considering the negated conditional.

So the question remains as to why we want to use the peculiarities of our current
world when considering a conditional, but not when considering the negation of a
conditional. I believe that this is explained by the difference in our intentions when
picking out worlds. Contrast this with the case of conjunction. When considering
a non-negated conjunction, we look only at a subpart of our world; we focus our
attention only on the truth/non-truth of the conjuncts. When considering a negated
conjunction we look at the falsity/non-falsity of the conjuncts. In each case, different
information is pertinent to our aims. When considering the negated conditionals,
the information about our own world is less pertinent than it is for non-negated
conditionals. This is so because our focus is on the compatibility of the truth of
the antecedent with the non-truth of the consequent, when we consider the negated
conditionals. We care less about the closest worlds at which the antecedent holds
(or the consequent fails).

Therefore, it is the case that, when we are reasoning with negated conditionals
whose antecedent is ambiguously both, we must consider what follows when we treat
the antecedent as ambiguously neither. It follows that, when we have conditionals
with generally ambiguous sub-sentences, we have to consider both ways of treating
each generally ambiguous sentence in order to fully analyze the truth and falsity of
the conditional.

The falsity condition for the conditional in the models presented in the previous
section captures this informal reasoning. The condition, w � ¬(A → B) iff for
some x, y such that Rw∗xy both x � A and y 2 B, states formally what is given
informally, with the interpretation of the ternary relation given above. That is, the
falsity condition for implicational statements formalizes what we do when we try
to construct worlds with the intention of producing the compatibility between the
truth of the antecedent and the non-truth of the consequent. It also captures the
fact that we must look to the dual world in order to pick out a different set of closest
worlds. The informal reasoning, therefore, offers an explanation as to why the dual
worlds can be related via the ternary relation to different sets of worlds.

The formal conditions are, therefore, motivated by the informal reasoning. This
shows that the purpose or existence of the dual worlds in the models can be motivated
prior to the construction of the relational semantics. In Section 6, I will expand upon
this and justify the further claim that the nature of dual worlds is also explained by
the content of this section.
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5.1 Lewis’ Logic of Equivocators
With my relational semantics and its informal reasoning explicated, I can now com-
pare my account with Lewis’ “Logic of Equivocators” before concluding that the
nature and existence of dual worlds are explained by my account. I will show that
(1) the role of disambiguations in my account is similar to the role of disambiguations
in Lewis’ [6] and, on the other hand, that (2) ambiguity is used to describe entirely
different phenomena in my account. It will be shown that the role of ambiguity,
and not the role of disambiguations, is required to create the metaphysically light
interpretations of relevant logic which are acceptable to those who deny non-classical
truth values.

For Lewis, the term ambiguity is used much as it is used to describe the phe-
nomenon in natural languages.

Strictly speaking, an ambiguous sentence is not true and not false, still
less is it both. Its various disambiguations are true or false simpliciter,
however. So we can say that the ambiguous sentence is true or is false on
one or another of its disambiguations. The closest it can come to being
simply true is to be true on some disambiguation (henceforth abbreviated
to “osd”). [6, p. 438]

In direct contrast, my account treats a sentence as ambiguous when we have reason
to assert (deny) both a sentence and its negation. The typical natural language
phenomenon of ambiguity is irrelevant to my account, and, as I have shown above,
treats some sentences as ambiguous when my account would not treat them so.

The informal reasoning I have presented makes no essential use of ambiguity
(as I use the term). Instead, what is important to the informal reasoning is that
we are in a position to treat certain sentences as both true and false by, say, being
justified in asserting both a sentence and its negation. The informal reasoning,
then, supports both the usual four-valued semantics and the formal semantics I
have given in Section 4. Furthermore, both non-classical truth values are motivated
on my account by the same kinds of reasoning. That is, there are situations in which
we are justified in asserting (denying) a sentence and its negation.

On the other hand, Lewis’ use of ambiguity motivates the FDE truth value
Both, for a sentence can be disambiguated into true or false sentences. However,
Lewis runs into trouble while attempting to motivate the FDE truth value Neither.
He considers allowing gappy sentences which are “neither true-osd nor false-osd” [6,
p. 438]. Unfortunately, Lewis found no philosophically satisfying justification for
rejecting ambiguous sentences that are gappy-osd as well as true-osd or false-osd.
Allowing these kinds of disambiguations of ambiguous sentences gives us seven truth
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values instead of four [6, p. 438]. Lewis’ ambiguity-based account, therefore, provides
poor motivation for the four-valued semantics, while my account gives the four values
a unified motivation.

For Lewis, the ambiguity-based approach is needed only by those whom he calls
“pessimists,” who believe that we cannot fully disambiguate anything (or most
things) [6, p. 439]. Again, this ties Lewis to the natural language phenomenon
of ambiguity. I, here, use the term merely to describe sentences such that we are
justified in asserting (denying) the sentence and its negation.

The account I have given above shares with Lewis the act of disambiguation
in order to produce classically true and false instances of “ambiguous” sentences.
However, what I mean by ‘ambiguous’ is by no means the same as what Lewis
means by this term. The benefits of my account, including the motivation for the
non-classical truth values and justification of dual-worlds, come from my account
of ambiguity, which is merely a description of the non-classical FDE truth values.
The disambiguations on my account enable the “classical metaphysician” to accept
the relevant logics motivated by my idiosyncratic use of the term ‘ambiguity’.

6 Dual Worlds Explained

Given that the truth and falsity conditions mirror informal reasoning with generally
ambiguous sentences, there is more than mere formal reasons for including dual
worlds in the semantics. Furthermore, I have shown that the informal reasoning
gives dual worlds a particular purpose and that this purpose is reflected in the fact
that dual worlds are only required for one of the falsity conditions, i.e., the falsity
condition for implicational sentences. Having shown this, I make the further claim
that the nature of the dual worlds is explained by their purpose, which is itself
explained by the informal reasoning.

In the informal reasoning, we constructed a function that took our current epis-
temic stance (ambiguously both or neither) towards a sentence and produced a world
wherein our stance dualized in order to prevent the features of our current stance
from over-determining our implicational judgments. That is, the dual worlds are
those created by a function that eliminates certain accidental features of our own
world from our considerations. A world and its dual are those which completely
agree on which sentences are generally ambiguous, but disagree maximally on how
such sentences are treated. All of the accidental features of how we treat generally
ambiguous sentences are ignored in order to pick out a different set of closest worlds.

It is through this lens that the dual worlds are not merely formal tools, but exist
to capture the informal account. They are explained because the informal account
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requires that we consider such a function. Reasoning within a particular conceptual
frame is not reasoning about any particular world, but about a pair of worlds. We
consider the pair at once, even though we might treat any generally ambiguous
sentences as ambiguously both or ambiguously neither. I thus make the claim that
a world and its dual are the fundamental units in the four-valued semantics, and
that it is wrong to think of an individual world without its dual as fundamental.
Thus, it is not a world that is fundamental in this account, but pairs of worlds.

A pair of worlds could, say, be determined by a particular conceptual framework
under which some sentences are under- or over-determined. Reasoning within a
particular conceptual frame, then, is reasoning about a particular pair of worlds.
We cannot ignore either of the worlds when determining the value of implicational
statements. If we did, as we have seen, the way any world accidentally treats a
generally ambiguous sentence is too restrictive. We must be able to pick out a
different set of worlds. In short, both ways of treating generally ambiguous sentences
are relevant to the truth value of implicational statements.

The models I have reproduced here show how this informal reasoning supports
an interpretation of the relevant logics that is metaphysically light; there is no prior
metaphysical commitment required when it comes to the non-classical truth values.
However, it seems that the informal reasoning supports the four-valued semantics
in general, for it shows that reasoning with the American Plan’s non-classical truth
values leads to the four-valued models.

If the account of informal reasoning I offered in Section 5 is taken seriously, one
can explain the formal properties of the four-valued relational semantics for relevant
logic prior to the construction of the formal semantics.
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