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String Unification is Essentially Infinitary

Michael Hoche
Airbus Defense and Space, Claude-Dornier-Strasse, D-88090 Immenstaad

Jörg Siekmann
Saarland University/DFKI, Stuhlsatzenhausweg, D-66123 Saarbrücken

Peter Szabo
Kurt-Schumacher-Str. 13, D-75180 Pforzheim

Abstract
A unifier of two terms s and t is a substitution σ such that sσ “ tσ and

for first-order terms there exists a most general unifier σ in the sense that any
other unifier δ can be composed from σ with some substitution λ, i.e. δ “ σ ˝λ.

For many practical applications it turned out to be useful to generalize this
notion to E-unification, where E is an equational theory, “E is equality under
E and σ is an E-unifier if sσ “E tσ. Depending on the equational theory E,
the set of most general unifiers is always a singleton (as above) or it may have
more than one unifier, either finitely or infinitely many unifiers and for some
theories it may not even exist, in which case we call the theory of type nullary.

String unification (or Löb’s problem, Markov’s problem, unification of word
equations or Makanin’s problem as it is often called in the literature) is the E-
unification problem, where E “ tfpx, fpy, zqq “ fpfpx, yq, zqu, i.e. unification
under associativity or string unification once we drop the fs and the brackets.
It is well known that this problem is infinitary and decidable.

Essential unifiers, as introduced by Hoche and Szabo, generalize the notion
of a most general unifier and have a dramatically pleasant effect in the sense
that the set of essential unifiers is often much smaller than the set of most
general unifiers. Essential unification may even reduce an infinitary theory to

We would like to thank our first reviewer at the unification workshop in 2008 and the interesting
discussion there and afterwards with several participants of the workshop. All of this led to a
complete reformulation of our basic definitions and greatly simplified the proofs and the general
presentation, finally leading to our more general framework based on the encompassment order as
presented here and in [67]. We also acknowledge the very critical and competent later reviews of
this paper. We are also indebted to Artur Jez’ substantial contribution to paragraph 3.1, where he
pointed to a serious flaw in our first version of this paper (the unitary, finitary result)
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Hoche, Siekmann and Szabo

an essentially finitary theory. The most dramatic reduction known so far is
obtained for idempotent semigroups or bands as they are called in computer
science: bands are of type nullary, i.e. there exist two unifiable terms s and t,
for which the complete and minimal set of most general unifiers does not exist.
This is in stark contrast to essential unification: the set of essential unifiers for
bands always exists and is finite.

We show in this paper that string unification in one variable, known to be
infinitary, has a finite number of essential unifiers (i.e. is e-finitary), however
the early hope for a similar reduction of unification under associativity is not
justified: string unification is essentially infinitary. We give an enumeration
algorithm for essential unifiers.

Keywords: E-unification, equational theory, essential unifiers, string unification,
word equations, universal algebra, unification algorithms.

1 Introduction
Unification is a well established concept in artificial intelligence, automated theorem
proving, the semantic web, in computational linguistics and in universal algebra as
well as in theoretical and applied computer science like for example in semantics of
programming languages (see [56, 42, 65] for several application areas). Surveys of
unification theory can be found in [6, 7, 24, 42, 65]. A survey of the related topic
of rewriting systems is presented in [15] and in the “emerging” textbook [41]; a list
of open problems can be found in [1]. A standard textbook is by Franz Baader and
Tobias Nipkow, Term Rewriting and All That [5]. A recent survey on higher order
unification is [34].

Unification is a general mechanism to solve equational problems. It is in particu-
lar embedded in a plurality of deduction and inference mechanisms and for practical
applications it is often crucial to have a finite or at least minimal representation of
all the solutions, i.e. a minimal complete set of unifiers from which all other solu-
tions (unifiers) can be derived. For unification problems in the free algebra of terms
(also known as syntactic unification), there exists always a single unifier for solvable
unification problems from which all other unifiers can be derived by instantiation.
This unique (up to renaming) unifier is called the most general unifier [57]. However
for equational algebras the situation is completely different: the minimal complete
set of unifiers is not always finite and it may not even exist, which was conjectured
by Gordon Plotkin in his seminal paper in 1972 [55]. Since then unification problems
and equational theories have been classified with respect to the cardinality of their
minimal complete set of unifiers. These results led to the development of general ap-
proaches and algorithms, which can be applied to a whole class of theories [19, 9, 22]
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String Unification is Essentially Infinitary

and others. This is the topic of universal unification, see e.g. [69, 64].
More specifically, an E-unification problem s “?

E t for two given terms s and t
over a signature Σ and an equational theory E is the problem to find a minimal and
complete set of unifiers µUΣE for s and t, such that for every σ P µUΣE we have
sσ “E tσ (i.e. correctness) and for any unifier δ there is a σ in µUΣE and some
substitution λ, such that δ “E σ ˝ λ (i.e. completeness). µUΣE is also minimal in
the sense that for every two unifiers σ,τ in µUΣE there is no λ with σ “E τ ˝ λ,
i.e. all unifiers in µUΣE are independent. We say a unification problem is unitary if
µUΣE is always a singleton, it is finitary if µUΣE is finite for every s and t and it is
infinitary if there are terms s and t such that µUΣE is infinite. Unfortunately there
are theories such that two terms are unifiable, but the set µUΣE does not exist. In
this case we call the problem nullary or of type zero. This classification according to
the type naturally leads to a hierarchy of equational theories called the unification
hierarchy.

It turned out that this well established view of unification theory changes dras-
tically, if we redefine the notion of a most general unifier. Recall that a unifier σ
subsumes another unifier τ if:

τ “V
E σ ˝ λ

Hence standard unification theory is based on the subsumption relation. We
generalize this notion and define an encompassment relation on substitutions: a
substitution σ is encompassed by a substitution τ , if there exist substitutions λ1
and λ2 such that

τ “V
E λ1 ˝ σ ˝ λ2

where λ1 has to have certain properties to be defined in the next paragraph below.
The idea is that λ2 is used to establish the known subsumption relation between τ
and σ as in standard unification theory and is composed as usual “from the right”
in the tripartition λ1 ˝ σ ˝ λ2. The substitution λ1 allows us also to compose “from
the left” and this can drastically reduce the cardinality of the set of most general
E-unifiers, which we now call essential E-unifiers: an E-unifier τ is an essential E-
unifier if there is no E-unifier σ with substitutions λ1 and λ2 such that τ “V

E λ1˝σ˝λ2.
We say τ encompasses σ and the set of essential E-unifiers, denoted as eUΣE, is
the set of E-unifiers such that for any unifier τ there is some σ ǫ eUΣE, such that
τ “V

E λ1 ˝ σ ˝ λ2.
The set of essential unifiers - for nonnullary theories - is in particular always

a subset of the set of most general unifiers. So by analogy we say a unification
problem is essentially unitary, i.e. it is e-unitary (it is e-finitary) if the set of
essential unifiers is always a singleton (is always finite). A unification problem is
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e-infinitary (e-nullary) if there are two terms such that the set of essential unifiers
is infinite (does not exist).

These notions were first introduced by Hoche and Szabo in [31] where it was
shown that the unification problem for idempotent semigroups (bands) is e-finitary.
Bands are well known since it was one of the early examples to demonstrate Plotkin’s
conjecture, that there exist nullary equational theories, which was shown one and
a half decades later independently by Gerard Huet [23], Manfred Schmidt-Schauss
[59] and Franz Baader [3], see also [4]. Now the unification problem for bands is
nullary in the traditional sense but it is e-finitary in our sense: this is so far the
most drastic reduction of the cardinality of the set of most general unifiers to a set
of essential unifiers.

The question is: can similar results be obtained for other theories as well. A
natural candidate for this kind of investigation is string unification. Why is that?

In the 1950s A. A. Markov was interested in Hilbert´s 10th problem and tried
to reduce it to the solvability of word equations in free semigroups [32]: he noted
that every word equation over a two constant alphabet can be translated into a set
of diophantine equations [51]. Using this translation he hoped to find a proof for
the unsolvability of Hilbert’s tenth problem by showing that the solvability of word
equations is undecidable [52]. This put the problem firmly on the map and others
joined in: Lentin and Schützenberger [46], J. I. Hmelevskij [27, 28, 29], V. K. Bulitko
[10], A. Lentin [45], V. G. Durnev [21, 20] and many others, see [2] for a survey as
well as the volumes edited by several mathematicians under the pseudonym of M.
Lothaire on Algebraic Combinatorics on Words [48, 49]. The problem was finally
solved in the affirmative in the seminal work by G. S. Makanin [50]. An exposition
of Makanin’s algorithm (with several improvements) is presented inter alia by Klaus
Schulz [61, 60] and by Volker Diekert [16]. An algorithm for the computation of a
minimal and complete set of unifiers is given in [36] and there is a history of improved
algorithms and their complexity bounds, some standard references are e.g. [43], [25]
and an algorithm different to Makanin is [54]. Some articles on special cases (strings
with one or two variables) are [11, 44, 53] and [37, 38] and a recent generalization
with up to date references is [17]. Since then the amount of works and results for
this and related problems has exploded even more.1

Apart from its theoretical and mathematical interest, the problem became more

1Google scholar finds 62.600.000 entries in 0.21 sec for word equations (not all of which is
relevant for our topic of course, but narrowing the query down to “word equations” still leads to
1500 entries in 0,16 sec) and several 100,000 more entries if one is patient enough to continue the
search and to filter gold from garbage. In the year 2008 at the unification workshop, when we first
asked Dr. Google, it found 70.300 entries for word equations in 0.13 sec - so what are we to make
of this fact?
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String Unification is Essentially Infinitary

widely known, because of its relevance in computer science, artificial intelligence and
automated reasoning. Examples are equations over lists with concatenation, data
structures such as strings for pattern invoked languages in AI and building equa-
tional theories such as associativity into a resolution style theorem prover. Gordon
Plotkin [55], Jörg Siekmann [62, 47, 63] and André Lentin [45] independently found
an algorithm to compute the set of most general unifiers for the string unification
problem, which is infinite in general.

As opposed to the above cited works on decidability, which just enumerate all
solutions and make the decidability of the existence of a solution their primary focus,
we are more interested in the latter works, inspired by automated theorem proving,
where the set µUΣ of the most general solutions is the focus of attention.

The most common and simple example to show that string unification in free
semigroups is infinitary is the following, where a is a constant:

p1q xa “ ax

with the set of most general unifiers

µUΣ “ ttx ÞÑ au, tx ÞÑ aau, tx ÞÑ aaau, . . .u.
It is easy to see that indeed this is a solution set and it is not as immediate, but still
not too hard to show that there does not exist any other more general set of unifiers
µUΣ for this problem. Finally µUΣ is minimal, which again is obvious, as an is
always a ground term and thus the unifiers do not yield to instantiation. Hence in
general

string unification is infinitary.

As we have said, this is a well known fact since the mid seventies of the last cen-
tury and it is probably the most often quoted example in any lecture or monograph
on unification theory. A similar example

p2q xa “ bx

is usually chosen to demonstrate that the naive string unification algorithms as for
example in [55, 62, 47, 63] are not decision procedures: although it is obvious that
the above example is not unifiable, the known algorithms would run forever.

In contrast to string unification as it has been understood up to now, problem
(1) has a finite set (in fact an even e-unitary set) of essential unifiers

eUΣ “ ttx ÞÑ auu “ tσ1u
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and any other unifier can be obtained with λn “ tx ÞÑ an´1xu, n ą 0 and λ2 “ ε,
where ε is the identity substitution.

In other words, for any unifier σn “ tx ÞÑ anu, n ą 1:

σn “ λnσ1
“ tx ÞÑ an´1xu ˝ σ1
“ tx ÞÑ an´1xu ˝ tx ÞÑ au
“ tx ÞÑ anu

where λn obeys a certain structural property, to be defined in the next section.
Once this observation had been made many years ago, there was an intense

struggle to find the correct definitions generalizing this observation to the string
unification problem and to prove the conjecture2

string unification is e-finitary.

As we shall show in this paper, this conjecture is false in general, albeit it holds
for certain subclasses of strings.

2 Basic Notions and Notation
Notation and basic definitions in unification theory are well known and have found
their way into many and diverse research areas. In particular the monographs and
textbooks on automated reasoning always contain sections on unification; most re-
cent research results are presented at the Unification Workshop.3

Nevertheless we present the standard notation below - polished for our purpose
to see the analogy - followed in contrast by the definitions for our novel approach to
essential unification.

2.1 Unification theory: common definitions
A signature is a finite set F of function symbols with nonnegative integers, called
arity, such that an integer n is assigned to each member f of F and f is said to

2This paper was first published as a preliminary version at the unification workshop in July
2008 [30]. But for various personal problems we submitted (and resubmitted) an expanded and by
now completely rewritten version only in 2013 and now finally in 2015.

3First workshop in Val d’Ajol in 1987 and since then annually. Since 1997, there is a web-
site UNIF’97, UNIF’98, UNIF’99 up to UNIF’05 in Japan and UNIF’06 at the FLOC conference
in Seattle, UNIF‘07 and finally UNIF08 at the Schloss Hagenberg, Linz, Austria where a prelim-
inary version of this paper was first presented (see [30]). The current UNIF’s can be found at
UNIF‘13,UNIF‘14 and UNIF‘15.

760



String Unification is Essentially Infinitary

be an n-ary function symbol. The subset of n-ary function symbols in F is denoted
by Fn. An algebra of type F is an ordered pair xA,F y, where A is a nonempty set
and F is a family of finitary operations on A indexed by the signature F such that
corresponding to each n-ary function symbol f in Fn there is an n-ary operation fA

on A. The set A is called the universe of the algebra xA,F y.
Let in the following X be a set of variables and let F be a signature. The set

T pF,Xq of (syntactic) terms of F over X is the smallest set

• comprising X and F0 and

• if t1, . . . , tn in T pF,Xq and f in Fn then the fpt1, . . . , tnq in T pF,Xq
The set of variable-free terms are called ground terms. The set of variables occurring
in a term t is denoted by Varptq. The set of subterms of a term fpt1, . . . , tnq contains
the term itself and is closed recursively by containing t1, . . . , tn and the sub terms
of t1, . . . , tn. It is denoted by Subptq.

Given F and X, the term term algebra of type F over X, denoted by xT pF,Xq,
F y, has as its universe the set of terms T pF,Xq and the fundamental operations
satisfying

f xT pF,Xq,F ypt1, . . . , tnq “ fpt1, . . . , tnq
for f in Fn and terms t1, . . . , tn in T pF,Xq.

A substitution is the (unique) homomorphism in the term algebra generated
by a mapping σ : X ÝÑ TF,X ,which maps a finite set of variables to terms. A
substitution σ is represented explicitly as a function by a set of variable bindings
σ “ tx1 ÞÑ s1, . . . , xm ÞÑ smu. Substitutions are generally denoted by small Greek
letters α, β, γ, σ etc. The application of the substitution σ to a term t, denoted tσ,
is defined by induction on the structure of terms

tσ “
$
&
%

si if t “ xi

fpt1σ, . . . , tnσq if t “ fpt1, . . . , tnq
t otherwise

The substitution ε “ tu with tε “ t for all terms t in TF,X is called the identity.
A substitution σ “ tx1 ÞÑ s1, . . . , xm ÞÑ smu has the domain

Dompσq :“ tx|xσ ‰ xu “ tx1, . . . , xmu;

and the range is the set of terms

Ranpσq :“
ď

xPDompσq
txσu “ ts1, . . . , sm´u, m´ ď m.
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The set of variables occurring in the range is VRanpσq :“ VarpRanpσqq and
Varpσq “ Dompσq Y VRanpσq. The restriction of a substitution σ to a set of
variables Y Ď X, denoted by σ|Y , is the substitution which is equal to the identity
everywhere except over Y XDompσq, where it is equal to σ. The composition of two
substitutions σ and θ is written σ˝θ (to emphasis the composition) or just as σθ and
its application is defined by tσθ “ ptσqθ. This is fine if σθ has no contradictory vari-
able bindings, otherwise if xσ ‰ xθ for some variable x, this binding in θ is applied
to σ and eliminated in σθ, (see [7] p 451, for details). A substitution σ is idempo-
tent if σσ “ σ and this is true iff Dompσq X VRanpσq “ ∅. The application of a
substitution to a term can be tricky, if it is not idempotent, e.g. with infinite cycles
or contradictory bindings, and there are several solutions proposed for this problem
in the literature. In the area of automated reasoning there is the convention that
the variables in si are always renamed into new variables and contradictory bindings
are removed. If σ is not idempotent, then the set representation of a substitution
is inadequate, as the application order of the individual bindings matters. In that
case σ “ tx1 ÞÑ s1, x2 ÞÑ s2, ...., x ÞÑ smu, is often rewritten into “triangle form”[7]:

tx1 ÞÑ s1utx2 ÞÑ s2u....txm ÞÑ smu
and then applied sequentially and component wise.

Relations such as “,ě, . . . between substitutions sometimes hold only if they are
restricted to a certain set of variables V . A relation R which is restricted to V is
denoted as RV , and defined as σ RV τ ðñ xσ R xτ for all x in V. Two substitutions
σ and θ are equal, denoted σ “ θ iff xσ “ xθ for every variable x, they are equal
restricted to V, xσ “V xθ, iff xσ “ xθ for all variables x in V. A term t is an instance
of a term s denoted s ď t, if t “ sσ for some substitution σ, i.e.

s ď t ô Dσ : sσ “ t.

We also say s is more general or less specific than t, if t is an instance of s.
An example is: s “ fpx, yq, t “ fpx, gpa, bqq and σ “ ty ÞÑ gpa, bqu with sσ “
fpx, yqty ÞÑ gpa, bqu “ t. There is a little controversy in the literature on wether
we should write sďt or tďs: the latter indicates better that s is more general. We
prefer the former convention as t has usually more symbols than s. The relation
ď is a quasi-ordering on terms called the instantiation ordering, or as we prefer
to call it a subsumption ordering, whose associated equivalence relation and strict
ordering are called instantiation (subsumption) equivalence and strict instantiation
(subsumption), respectively.

The encompassment ordering or containment ordering [33, 14, 15] which is our
central notion to generalize most general unifiers to essential unifiers is defined as

762



String Unification is Essentially Infinitary

the composition of the sub-term ordering with the instantiation ordering, i.e. a
sub-term of t is an instance of s, where Subptq are the sub-terms of t:

s Ď t ðñ Dσ : sσ P Subptq.
Encompassment conveys the notion that s “appears“ in t with a context “above“
and a substitution “below“. We say t encompasses s (s is encompassed by t) or s is
part of t.

An example is: s “ gpx, bq and t “ fpx, gpa, bqq as above and σ “ tx Ñ au,
because sσ “ gpx, bqtx Ñ au “ gpa, bq P Subptq.

A substitution σ is called more general than θ with V=Dom(θ), denoted σ ďV θ,
if there exists a λ such that θ “V σλ, i.e.

σ ďV θ ðñ Dλ : θ “V σλ.

We also say σ subsumes θ. The relation ď, resp. ďV is a quasi-order, called the
subsumption ordering for substitutions.

An equation or identity s “ t in a term algebra TF,X is a pair ps, tq of terms and
an algebra A that satisfies the equation s “ t if for every homomorphism

h : TF,X ÝÑ A,

hpsq “ hptq, that is, only if ps, tq is in the kernel of every homomorphism from TF,X

to A.
An equational theory is defined by a set of identities E Ď TF,X ˆ TF,X . It is the

least congruence on the term algebra which is closed under substitution and contains
E, and will be denoted by “E. If s “E t we say s and t are equal modulo E. The
sets rssE “ tt|t “E su are called congruence classes or equivalence classes (modulo
E).

Definition 1. Sub-term and instance modulo E
1. A sub-term relation for terms s and t is defined as s Ĳ t iff s P Subptq.
2. A sub-term relation modulo E for terms s and t is defined as s ĲE t iff there

is a term t1 with t1 “E t such that s Ĳ t´.
3. A term s is an instance modulo E of a term t iff sσ “E t.

Definition 2. Encompassment modulo E
Term t encompasses term s modulo equational theory E, s ĎE t iff there is a

substitution σ such that sσ ĲE t.
ĎE is the encompassment relation modulo E.
Furthermore we say t strictly encompasses s, s ĂE t iff s ĎE t, s Ę t.
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Let E be an equational theory and Σ be the signature of the underlying term
algebra. An E-unification problem (over Σ) is a finite set of equations

Γ “ ts1 “?
E t1, . . . , sn “?

E tnu

between Σ-terms with variables in a (countably infinite) set of variables, but only a
finite set of constants and function symbols in Σ. Let V “ VarpΓq.

An E-unifier of Γ is a substitution σ, such that

s1σ “E t1σ, . . . , snσ “E tnσ.

The set of all E-unifiers of Γ is denoted by UΣEpΓq or if the signature Σ is known
from the context, we just write UEpΓq or even UpΓq. A substitution θ is an instance
modulo E of a substitution σ, σ ďV

E θ, iff there exists a λ with θ “V
E σ ˝ λ. A

complete set of E-unifiers for Γ is a set C of substitutions, such that

1. C Ď UΣEpΓq, i.e. each element of C is an E-unifier of Γ relative to a signature
Σ and

2. for each θ P UΣEpΓq there exists σ P C with σ ďV
E θ.

The set µUΣEpΓq is called a minimal complete set of E-unifiers for Γ, if it is a
complete set, i.e. µUΣE Ď C, and there are no elements σ, σ´ in µUΣE with σ ăV

E σ´,
i.e. σ ďV

E σ1 implies σ “V
E σ1 for all σ, σ1 P µUΣE. When a minimal complete set of

E-unifiers of a unification problem Γ exists, it is unique up to “V
E .

The empty or unit substitution ε is a unifier for s and t in case s “E t. Minimal
complete sets of unifiers need not always exist, and if they do, they might be singular,
finite, or infinite. Since minimal complete sets of E-unifiers are isomorphic whenever
they exist they can be used to classify theories with respect to their corresponding
unification problem as well.

This leads naturally to the concept of a unification hierarchy which was first in-
troduced in Siekmann’s doctoral thesis in 1976 [63] and further refined and extended
by himself and his later students as well as by many subsequent workers in the field
of unification theory, see [65, 42, 6, 24, 7] for standard surveys.

A unification problem Γ is nullary, if for a solvable unification problem Γ the set
of µUΣEpΓq does not exist. The unification problem Γ is unitary, if it is not nullary
and the minimal complete set of E-unifiers for Γ is of cardinality less or equal to 1.
The unification problem Γ is finitary, if it is not nullary and the minimal complete
set of E-unifiers is of finite cardinality. The unification problem Γ is infinitary, if it
is not nullary and the minimal complete set of E-unifiers is infinite.
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An equational theory E is unitary, if all unification problems for E are unitary.
An equational theory E is finitary, if all unification problems are finitary. An equa-
tional theory E is infinitary, if there is at least an infinitary unification problem and
all unification problems have minimal complete sets of E-unifiers. If there exists
a unification problem Γ not having a minimal complete set of E-unifiers, then the
equational theory E is nullary or of type zero.

2.2 Additional Definitions: Essential E-unifiers
Substitutions form a semigroup with respect to their composition. This fact was
used to define the subsumption order on unifiers from above, namely

σ ďV
E τ ðñ Dλ : τ “V

E σ ˝ λ,
where V “ Dompτq, which led to the notion of a most general unifier.

As argued above this concept does not generalize well on equational theories: the
equational theory of associativity A “ txpyzq “ pxyqzu, i.e. the free semigroup with
the unification problem Γ=tax “?

A xau has the infinite set of most general unifiers
ttx ÞÑ anu|n ě 1u, as discussed in the introduction. However, the essential unifier
in this set intuitively seems to be σ “ tx ÞÑ au, because every most general unifier
contains this unifier in a certain sense, namely let:

τn “ tx ÞÑ anu “ tx ÞÑ an´1xu ˝ σ.

Now having in mind that substitutions form a semigroup, the dual of the in-
stantiation ordering, i.e. left-composition instead of right-composition changes the
infinitary problem into a finitary one, because if we redefine the order ďA into
Dλ : τ “A λσ, where σ “ tx ÞÑ au and for τn “ tx ÞÑ anu we then have
λn “ tx ÞÑ an´1xu. But this is not compatible with the original notion of gen-
erality and it would not quite work in general.

Our solution is therefor based on lifting the encompassment order on terms to
an encompassment order on substitutions (modulo an equational theory E). For
this we use the fact, that any substitution τ can be decomposed into three parts,
τ “E λ1σλ2, the most trivial decomposition would be the one with an identity
substitution on both sides, i.e. τ “E ετε. Viewing the substitution τ that way, we
can say that an instance of σ, namely σλ2 is a “sub-part” of τ and we require also
that Dompτq “ Dompσq. This observation allows the definition of the concept,
that τ encompasses σ (modulo E) in the following way:
We defined in section 2.1 Definition 1 (2) for an equational theory E , that a term s
is encompassed by the term t, s ĎE t, if there exists a substitution σ with sσ ĲE t.
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In analogy we define σ ĎE τ iff Dλ1 and Dλ2 such that Dom(τ) = Dom(σ) =: V
and τ “V

E λ1σλ2, i.e. for all x from Dom(τ): xpτq “E xpλ1σλ2q |V . We say σ is
encompassed by τ modulo E or τ encompasses σmodulo E.

So let us cast all this into formal definitions.

Definition 3. A substitution σ is a sub-substitution of τ iff Dompσq “ Dompτq
and for all x P Dompσq we have xσ P Subpxτq. Let SUB(τ) be the set of all
sub-substitutions of τ .

For example if τ “ tx ÞÑ fpa, zqu, then

SUBpτq “ t tx ÞÑ au,
tx ÞÑ zu,
tx ÞÑ fpa, zqu u

because xtx ÞÑ au “ a P Subpxτq “ Subpfpa, zqq “ tfpa, zq, a, zu and similarly for
the other components.

Definition 4. encompassment order for substitutions
A substitution σ is encompassed modulo E by a substitution τ , or τ encompasses

σmodulo E, σ ĎE τ , iff Dompτq “ Dompσq “ V and there exists a substitution λ
and a substitution τ´ with τ´ “E τ such that pσλq |V P SUBpτ´q, in other words
pσλq restricted to V is a sub-substitution of τ modulo E.

σ ĂE τ denotes strict encompassment modulo E.

In order to see the analogy to the encompassment definition for terms, consider
the following two terms s and t in analogy to the two substitutions σ and τ :

s “ fpx, yq, t “ fpx, gpa, bqq, σ “ ty Ñ gpa, bqu

then s R Subptq, but sσ P Subptq, i.e. s Ă t.
Now consider the substitutions τ and σ with:

τ “ tx ÞÑ fpa, bq, y ÞÑ fpa, gpa, bqqu
σ “ tx ÞÑ a, y ÞÑ gpa, zqu
λ2 “ tz ÞÑ bu

then σ R SUBpτq but pσλ2q |V P SUBpτq, i.e. σ Ă τ and with

λ1 “  
x ÞÑ fpx, bq, y ÞÑ fpa, yq(
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we have a tripartition of τ :

τ “V λ1σλ2 “V
 
x ÞÑ fpx, bq, y ÞÑ fpa, yq( tx ÞÑ a, y ÞÑ gpa, zqutz ÞÑ bu

“V
 
x ÞÑ fpx, bq, y ÞÑ fpa, yq( tx ÞÑ a, y ÞÑ gpa, bqu

“ tx ÞÑ fpa, bq, y ÞÑ fpa, gpa, bqqu
If a substitution is a unifying substitution (for an E-unification problem Γ), we

define:

Definition 5. part unifiers, essential unifiers

1. An E-unifier σ for a unification problem Γ modulo the equational theory E
and the variables V “ VarpΓq, is encompassed by an E-unifier τ for Γ, denoted
as above by σ ĎV

E τ , if there exists a substitution λ, such that pσλq |V is a
sub-substitution of τ .

2. We say τ contains a part unifier σ iff τ encompasses σ and σ is an E-unifier
as well.

3. An E-unifier σ for a unification problem Γ modulo the equational theory E
that does not encompass any other E-unifier for Γ is called an essential E-
unifier. We denote the set of essential E-unifiers as eUΣEpΓq. Two unifiers σ
and τ are encompassment equivalent modulo E , denoted ≈V

E , if σ ĎV
E τ and

τ ĎV
E σ.

4. A complete set of essential E-unifiers for Γ is a set of E-unifiers, such that for
each E-unifier τ there exists σ in the set with σ ĎV

E τ .

5. The set eUΣEpΓq is called a minimal complete set of essential E-unifiers for
Γ, or simply the set of essential E-unifiers for Γ, if it is a complete set and for
all σ and σ1 in eUΣEpΓq σ and σ1 are encompassment equivalent.

Proposition 6. The encompassment order on substitutions is a quasi order, i.e.
reflexive and transitive.

Proof. reflexivity: σ ĎE σ means there are substitutions λ1, λ2 : σ “E λ1σλ2,
setting λ1 and λ2 to the substitution identity ε leads to σ “E εσε “ σ.

transitivity: σ ĎV
E τ and τ ĎV

E ψ implies σ ĎV
E ψ, where by definition we have

Dompσq “ Dompτq “ Dompψq “: V , so

τ “V
E λ1,1σλ2,1

ψ “V
E λ1,2τλ2,2
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which implies
ψ “V

E pλ1,2λ1,1σλ2,2λ2,1q ñ σ ĎV
E ψ

A set of unifiers CpΓq is e-complete for Γ if for every unifier σ there exists a unifier
τ in C which is a part unifier of σ. A complete set of unifiers CpΓq is e-minimal if any
two distinct elements are not part of each other. This set is denoted as eUΣEpΓq and
it is unique up to part equivalence. Because if it would not be unique there would
exist two complete sets of essential unifiers eUΣ1

E and eUΣ2
E with τ in eUΣ1

EzeUΣ2
E

and σ in eUΣ2
EzeUΣ1

E. But since eUΣ1
E is complete, τ ĎE σ and since eUΣ2

E is a
set of essential unifiers there is a σ1 in eUΣ2

EzeUΣ1
E with σ1 ĎE τ . But then σ and

σ1 are part equivalent. Therefore σ ĎE τ , which means σ and τ are part equivalent,
contradicting the assumption.

It can be shown that the set of essential unifiers eUΣEpΓq can be used to generate
all unifiers, just as the set of most general unifiers is used to generate all unifiers.

Lemma 7. Let Γ be a non nullary E-unification problem, then eUΣEpΓq Ď
µUΣEpΓq, i.e. the set of essential unifiers is always a subset of the set of most
general unifiers.

Proof. If σ is an essential E-unifier it has by definition no part unifier, i.e. σ is not
an instance of any other unifier, hence σ is also a most general unifier. Essentials are
usually a proper subset , since there are equational theories, like string unification,
with most general unifiers σ, τ and τ “E λ1σ, so τ is not an essential. For example
tax “?

A xau, σ “ tx ÞÑ au, τ “ tx ÞÑ aau and with λ1 “ tx ÞÑ axu we have
τ “E λ1σ.

Obviously, an essential unifier of a nunnullary problem can not be the instance
of another unifier, therefore it is most general. But a most general unifier could
contain essential unifiers.
The interesting observation is that the above subset of essential E-unifiers can be
lovely, i. e. extremely small in comparison to its superset, as we shall see in the
following.

3 Essential String Unification
We are interested now in A-unification, i.e. unification in a free semigroup, where

A “ tfpx, fpy, zqq “ fpfpx, yq, zqu
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and the set of terms are built up as usual over constants, variables, but only one
function symbol f . In this case, we can just drop the fs and brackets and write
the sequence of symbols as strings (or words) over the alphabet of constants and
variables. The empty string (a string with length 0) will be denoted as ε and it is
the identity element, which turns a semi group into a monoid. In the following we
simply write = for the equational sign =A. A set of string equations will be denoted
as Γ “ tu1 “ v1, . . . , un “ vnu where the ui and the vi are strings (words). V arpΓq
is the set of free variable symbols occurring in ui and vi. Let V “ V arpΓq, then a
(string-)unifier σ : V Ñ pΣzV q˚ is a solution for Γ if uiσ “ viσ, 1 ď i ď n. The set
of all unifiers is denoted as UΣApΓq and we drop the A when it is clear from the
context. A unifier σ is ground if its range contains only constants and no variables.

Now let us look at a few motivating examples, which show that indeed an infinite
set of most general unifiers µUΣ collapses to a finite set of essential unifiers eUΣ,
supporting the earlier hypothesis that the infinitary string unification problem is
essentially finitary.

Our first example is the well known string unification problem mentioned in the
introduction:

ax “? xa with σn “ tx ÞÑ anu, n ą 0
has infinitely many most general unifiers σn, but there is just one e-unifier σ1 “
tx ÞÑ au because of

σn “ tx ÞÑ an´1xu ˝ σ1.

The next example has two variables4

xy “? yx

and it has infinitely many most general unifiers

σi,j “ tx ÞÑ zi, y ÞÑ zju, i, j ą 0,

where i and j are relative prime, i.e. gcdpi, jq “ 1.
But it has only one e-unifier σ1 “ tx ÞÑ z, y ÞÑ zu because of

σi,j “ tx ÞÑ zi´1x, y ÞÑ zj´1yu ˝ σ1

Our next example is taken from J. Karhumäki in Combinatorics of Words [12]
see also [48, 49]. The system

"
xaba “? baby
abax “? ybab

*

4see http://www.math.uwaterloo.ca/~snburris/htdocs/WWW/PDF/e_unif.pdf, example 15
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has infinitely many most general unifiers

σn “ tx ÞÑ bpabqn, y ÞÑ pabqnau, n ě 0

But it has only one e-unifier σ0 “ tx ÞÑ b, y ÞÑ au because of

σn “ tx ÞÑ xpabqn, y ÞÑ pabqnyu ˝ σ0.

Exploiting the analogy between the first and the second example above, we can
easily construct more examples in this spirit.

Our fourth example is taken from J. Karhumäki as well:

axxby “? xaybx

It has infinitely many most general unifiers

σi,j “ tx ÞÑ ai, y ÞÑ paibqjaiu, i ě 1, j ě 0

but it has only one e-unifier σ1,0 “ tx ÞÑ a, y ÞÑ au which is essential because of

σi,j “ tx ÞÑ yai´1, y ÞÑ paibqjxai´1u ˝ σ1,0

i.e. σ1,0 Ă σi,j and σ1,0 has no part unifier. The final example is a bit more
elaborate but still in the same spirit.

zaxzbzy “? yyzbzaz

has infinitely many most general unifiers

σn “ tx ÞÑ b2na, y ÞÑ bnabn, z ÞÑ bnu, n ě 1

but it has only one e-unifier, namely σ1 “ tx ÞÑ bba, y ÞÑ bab, z ÞÑ bu because of

σn “ tx ÞÑ b2n´2x, y ÞÑ bn´1ybn´1, z ÞÑ bn´1zu ˝ σ1

3.1 String Unification with at most one variable is e-finitary
Let us assume that our unification problem

Γ “ tu1 “? v1, . . . , un “? vnu
over the signature Σ “ Con Y X consists of at most one variable from X, but
arbitrary many constants from Con. Without loss of generality, each set of string
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equations can be encoded into a single string equation preserving the solutions,
which is well known (for example see J.I. Hmeleyskij [29]). Volker Diekert in [16]
used the following construction

tu1a . . . unau1b . . . unb “? v1a . . . vnav1b . . . vnbu
where a and b are distinct constants. It can be shown, that the two equational
problems have the same solutions. We shall also use results from [13, 53], which
show in Theorem 3 of [13] that a word equation in at most one variable has either
(i) no solution or (ii) finitely many solutions bounded by Oplog | Γ |q or (iii) one
infinite solution of the form puvq`u for some words u and v. Using these facts we
have that the string unification problem in one variable is of type infinitary, which
was already shown by the first case xa “? ax above and we even have the stronger
result:

Theorem 8. A string unification problem Γ in one variable has either no solution
or the minimal and complete set is µUΣApΓq “ F Y tx Ñ ppqqi`1p, i ě 0u for some
p, q in Σ, where pq is primitive and F is a finite set of unifiers whose number is
bounded by Oplog | Γ |q.
Proof. Follows easily from the proof of theorem 3 in [13]

Note: A word is primitive if it is not the power of another word.

Corollary 9. Let Γ “ tu0xu1...xun “ v0xv1...xvmu, where ui, vi are ground
strings and VarpΓq “ V “ txu.

9.1 The equation in Γ can be reduced to the form Γ’={u0xu1...xun “ xv1...xvm},
where u0 is not the empty string and either un is nonempty and vm is empty or vice
versa. This form implies also that for any unifier σ “ tx ÞÑ wu, with a ground
string w P Con` xσ is a prefix of the string uk

0.
9.2 If m ‰ n there is at most one unifier.
9.3 If m “ n “ 1, i.e. Γ1 “ tu0x “ xv1u, then the unifiers are of the form: 

x ÞÑ ppqqip, i ě 0
(
, where pq is primitive.

9.4 If m “ n ą 1 the unifiers are of the form: tx ÞÑ ppqqi`1p, i ě 0u Y F , as in
Theorem 8 above.

9.5 For a given Γ there exists at most one infinite solution of the form: σi “
tx ÞÑ ppqqi`1pu, i ě 0 see Lemma 1 in [13].

These known results (taken inter alia from [13] and [53], and for a recent result
see also [37]) imply that the string unification problem in one variable is of type
infinitary, as demonstrated by the ax “? xa case above. Using some of their results,
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we will now show that string unification with only one variable is of type e-finitary.
The first step is to prove that all unifiers are ground substitutions. The second step
is to prove that there are at most finitely many essential unifiers.

Proposition 10. Let Γ “ tu0xu1...xun “? xv1...xvnu be a solvable string equation
with different input terms and with at most one variable x. Then all unifiers are
ground substitutions, i.e. @σ P UΣApΓq : xσ P Con˚

Proof. Suppose by contradiction with an arbitrary unifier tx ÞÑ wu P UΣApΓq : w “
w1zw2 where z is a new variable z ‰ x such that w1 is the ground prefix of w.
Applying the unifier x ÞÑ w1zw2 yields

u0wu1 . . . “ wv1 . . . “ u0w1zw2u1 . . . “ w1zw2v1 . . .

Consider the prefixes u0w1 . . . “ w1z . . . Since |u0w1| ě |w1z| and u0 is nonempty,
z must be a symbol in u0w1, which is impossible, since u0 and w1 are ground by
assumption.

Hence Varpwq is empty and UΣApΓq = µUΣApΓq.
Theorem 11. String unification with one variable is e-finitary and the number of
unifiers is bounded by Oplog | Γ |q.
Proof. By Theorem 8 above the nonessential solution set consists of at most finitely
many unifiers (in F) and at most one infinite set of unifiers of the form

tx ÞÝÑ ppqqi`1p, i ě 0u for some p, q where pq is primitive.
So let us look at the infinite set and the proof is carried out by cases.
In case m ‰ n then by proposition 9.2 there is only one unifier, which is hence
in particular essential.
In case m “ n “ 1 then by proposition 9.3, the unifiers are of the form
σi “ tx ÞÑ ppqqipu, i ě 0 where pq is primitive.
Now p is either empty or not.
- If p is empty then σi “ tx ÞÑ qiu, i ě 1. But then σ1 “ tx ÞÑ qu is the single
essential unifier, because with λ “ tx ÞÑ qi´1xu we have
σi “ λσ1 “ tx ÞÑ qi´1xu ˝ tx ÞÑ qu for iě 1.
- If p is nonempty then σi “ tx ÞÑ ppqqipu, i ě 0 and σ0 “ tx ÞÑ pu is the only
essential unifier, since with λ “ tx ÞÑ ppqqixu we have
σi “ tx ÞÑ ppqqixu˝ tx ÞÑ pu “ tx ÞÑ ppqqipu.
Hence either σ1 “ tx ÞÑ qu or σ0 “ tx ÞÑ pu is the single essential unifier.
In case m “ n ą 1 we have by proposition 9.4
σi “  

x ÞÑ ppqqi`1p
(
, i ě 0.

Now again if p is empty we have σ0 “ tx ÞÑ qu as the essential unifier, because
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σi “ tx ÞÑ qi`1u “ tx ÞÑ qixu ˝ tx ÞÑ qu i ě 0.
If p is nonempty then σ0 “ tx ÞÑ pqpu is the only essential unifier since
σi “ tx ÞÑ ppqqi`1pu “ tx ÞÑ ppqqixu ˝ tx ÞÑ pqpu, i ą 0.
Hence either tx ÞÑ pqpu or tx ÞÑ qu are essential unifiers.

So in summary the set of solutions can be represented by just one essential unifier for
the infinite case. Now since there are at most finitely many solutions in F bounded
by Oplog | Γ |q, the set of essential unifiers is finite as well, because eUΣApΓq Ď
µUΣApΓq Ď UΣApΓq.

3.2 String unification in general is e-infinitary
String unification with at most one variable in the signature Σ is e-finitary as we have
seen above and surely there are many more special cases of signature restrictions,
where the set of e-unifiers is always finite or even unitary. Special cases of this nature
have also been investigated extensively in the past for the solvability problem of word
equations in the mathematical community (see for example the IWWERT workshop
series) as well as in the automated reasoning communities for string unification (for
example at the UNIF workshop series).

However the general result for e-string unification is:

Theorem 12. String unification with more than one variable is e-infinitary

Proof. For Γ “ txby “? ayaybu the set of essential unifiers is

eUΣApΓq “ ttx ÞÑ abna, y ÞÑ bnu : n ą 0u
Correctness
Any substitution σn “ tx ÞÑ abna, y ÞÑ bnu is a unifier since pxbyqσn “ abnabbn “
abnabn`1 “ payaybqσn.
Completeness

We show that any unifier is of the form tx ÞÑ abna, y ÞÑ bnu. Consider some
unifier tx ÞÑ u, y ÞÑ vu. Since Γ “ txby “ ayaybu, u “ au1 and v “ v1b. Applying
the unifier in xby “ ayayb yields au1bv1b “ av1bav1bb. Since v1 can not contain any
a, v1 “ bi, and v “ bi`1, i ě 0. Hence we have au1bi`1 “ abi`1abi`1b, which yields
u1 “ bi`1a. Hence u “ abi`1a, v “ bi`1, i ě 0.

Consequently UΣApΓq “ ttx ÞÑ abna, y ÞÑ bnu : n ą 0u
Essential

We show that the set UΣApΓq is e-minimal. So take any pair of different unifiers
tx ÞÑ abma, y ÞÑ bmu and tx ÞÑ abna, y ÞÑ bnu and we show that they are incompa-
rable with respect to the encompassment ordering, i.e. no unifier from UΣApΓq has
a part unifier.
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Suppose from m ă n that σm is a part unifier of σn. From Definition 3 and
Definition 4 it follows, that σm ĎA σn i.e. xσm is a substring of xσn.
But xσm “ abma is substring of xσn “ abna only if m “ n, contradicting m ă n.
Hence for @σ P UΣApΓq σ is an essential unifier and we have UΣApΓq “ µUΣApΓq “
eUΣApΓq.

3.3 A General A-Theorem
Let E be a set of equational axioms containing the associativity axiom of a binary
operator ˚, i.e. A “ tx ˚ py ˚ zq “ px ˚ yq ˚ zu and E “ AYR, where R is some set of
equations. We call the theory modulo E A-separate, if any equation in R can not
be applied to a pure string s1 ˚ s2 ˚ ¨ ¨ ¨ ˚ sn (the brackets are suppressed).

For instance consider distributivity (which is an infinitary unification theory, see
[69, 5]):

D “ tx ˚ py ` zq “ px ˚ yq ` px ˚ zq, px ` yq ˚ z “ px ˚ zq ` py ˚ zqu,
then the theory of E “ A Y D is A-separate. To see this, note that no equation of
D can be applied to a string of x1 ˚ x2 ˚ ¨ ¨ ¨ ˚ xn, simply because there are no sums
involving the plus sign `, but each equation in D has the sum symbol ` on its left
and on its right hand side.

Formally, E “ AYR is A-separate, if for all elements u of the A-theory u “R v
implies u “ v.

Theorem 13. All not e-nullary A-separate E-theories are e-infinitary

Proof. Consider the unification problem of section 3.2 above: In the associative sub-
algebra it has infinitely many e-unifiers. Each of the elements of the range of the
essential unifiers is not affected by the remaining equational axioms in R “ EzA,
since E is A-separate. Hence each A-separate theory is e-infinitary.

As noted above the not e-nullary theory AYD is A-separate and hence:

Theorem 14. The theory AYD is e-infinitary.

Note that the theorem does not imply that D alone is e-infinitary: D is known
to be infinitary [69, 68], but the essential case for D has not yet been examined.

4 Idempotent semigroups are e-finitary
The following theory of idempotent Semigroups or Bands defined by

AI “ tfpx, fpy, zqq “ fpfpx, yq, zq, fpx, xq “ xu
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demonstrates another interesting case for essential unifiers. Note that this theory is
not A-separate. The theory is nullary with respect to the instantiation order, since
there are solvable AI-unification problems which do not posses a minimal complete
set of AI-unifiers with respect to the instantiation ordering, see [3, 59].

However, with respect to the encompassment ordering ĎE this well-known situ-
ation changes completely as this theory is in fact finitary. Associativity and idem-
potency constitute the algebra of idempotent strings and it has been shown in [31]
that:
Proposition 15. The theory AI is not nullary with respect to essential unifiers.

There are AI-unification problems with more than one essential unifier. There-
fore:
Proposition 16. AI is not unitary with respect to essential unifiers.

And finally the most striking result:
Theorem 17. The theory AI is finitary with respect to essential unifiers.

5 A Derivation System for essential A-Unification
An important requirement for any unification algorithm to be built into an auto-
mated reasoning system is that it can incrementally generate the set of most general
(essential) unifiers without backtracking. Can we do this for essential unifiers as well?

Since the property of a unifier to be essential (or not) is decidable, as we will
show in the appendix, we can proceed as follows: we compute incrementally the set
of most general unifiers for the two input strings and eliminate each mgu that is not
essential as we go. Of course more elaborate techniques are possible, in fact there
is a small but active research community of mathematicians concerned with these
problems (see [48, 49]). However our main interest here and in an upcoming sequel
of contributions is to see how far we can go in general - i.e. not just for strings
- with essential unification based on the encompassment relation rather than the
usual instantiation ordering.

Currently there are two basic techniques for standard string unification: the early
algorithms (as for example in [62, 47, 63]) generate a search tree by parsing the two
strings to be unified from left to right taking the property of the leftmost symbol
into account. The second approach (as in [26, 66]) is based on the key insight that
the two finally unified strings/words must have the same length and hence we can
set up a diophantine equation for each variable of the given strings.

We shall use the second approach and show in the appendix how this can be
carried out in detail.
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6 Conclusion

For the theoretically inclined reader our result is likely to be of interest with re-
spect to the unification hierarchy for essentials: there are obviously essentially uni-
tary E-unification problems (theories); there are unexpected essentially finitary E-
unification problems (theories), for example the AI-unification problem, the one
variable string unification case of this paper or the essential unification problem for
commutativity [?] and finally there are essentially infinitary E-unification problems,
which hold some surprises as well, as this paper shows. The question of the existence
of an essential nullary E-unification problem is discussed in [?].

But in any case, the amount of most general unifiers is substantially reduced; in
other words they are not really most general at all when it comes to E-unification.
For example the theory of associativity and commutativity AC has exponentially
many unifiers, in fact for a base B there are B with a tower of exponentials of size
n many unifiers [8, 18, 39, 40]. So the encompassment order may be the order of
choice for E-unification, rather than the standard instantiation ď-order for most
general unifiers.

For the reader who is - like us - more interested in practical automated reasoning
systems, the results reported here come as a disappointment to some extent: while a
finite set of essential unifiers modulo E is considerably smaller than the set of most
general unifiers for a string unification problem, the hypotheses that the infinitary
A-theory collapses into an e-finitary theory did not hold up to scrutiny.

This may not surprise the reader familiar with this problem: in spite of the
simplicity and immediate intuitiveness of the problem formulation (using strings or
words) its solvability as well as the unification problem turned out to be of excep-
tional difficulty and complexity and stayed open in the mathematical community for
several decades (see [60, 16]). It motivated inter alia the large amount of work on
semigroups and words, which hold far more expressivity and complexity as one may
have thought half a century ago (as witnessed for example by the workshop series
IWWERT and others, see [48, 49]).

For practical purposes as a unification component within an automated theorem
proving system, based on resolution or rewriting, there are two problems that still
have to be solved (just as for any other theory):

1. To find a unification algorithm which generates — as efficiently as possible —
the set of essential A-unifiers.

2. To show how the reasoning machinery, for example a theorem prover based on
resolution, can be built upon essential unifiers instead of most general unifiers,
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which is not easy as the standard lifting lemma does not work for essentials
and has to be replaced by some other technique.

There is a solution to (1) as presented in this paper that is essentially based on
enumeration, and we have a solution to (2) based on straight enumeration as well.
However this is far from anything practically useful: the unification algorithm is to
resolution based theorem proving what the addition-and-multiplication unit is in a
general purpose computer and hence deserves the utmost effort in engineering (see
[58] for an early proposal), measured not in MiPs (million instructions per second),
but in LiPs (logical inferences per sec, that is in fact the number of unifications per
sec) which was the hallmark of the fifth generation computer race in the 1980s.

A A derivation system for essential A-Unification
In the following we spell out the details of an e-unification algorithm for strings.
As this procedure is based on more or less well known techniques plus step-by-
step elimination, we present these details here in the appendix, as we feel that
they nevertheless need to be spelled out in painstaking detail, in order to convince
ourselves of its correctness and completeness.

A.1 Linear Diophantine Equations

Let Γ “ tu “?
A vu be an A-unification problem. The first observation is that any

solution maps u and v into words of equal length, i.e for any unifier σ we have
|uσ| “ |vσ|, where |u| gives the number of symbols in word u. As in Makanin’s
algorithm [50] and in the AC-algorithm of Herold, Siekmann [26] as well as Stickel
[66], we intend to map this string (word) unification problem (for the calculation of
the length of possible string-unifiers) into a linear diophantine equation. This is done
by interpreting the variables as diophantine variables and the length of symbols as
integer coefficients using a homomorphism Λ between the strings of the free monoid
pX Y Σq˚ into the integer polynomials P(X), called the linear “length” Λ :

Λ : x ÞÑ
"
x for x P VarpΓq
1 otherwise and Λpuvq “ Λpuq ` Λpvq

whereX is the set of variables and Σ is the signature as above. P(X) are the
polynomials in X with integers as coefficients and natural numbers as solutions.
The equational theory for P(X) could be the set of Peano-axioms, denoted as P.

777



Hoche, Siekmann and Szabo

A unification problem Γ “ tu “?
A vu is then translated into a linear diophantine

equation (the Peano theory P ) with solutions in N:

ΛpΓq “ tΛpuq “?
P Λpvqu.

For instance let Σ be the alphabet ta, bu and let Γ “ txby “?
A ayaybu. Then

ΛpΓq “ tx` 1 ` y “?
P 1 ` y ` 1 ` y ` 1u “ tx´ y “?

P 2u.
One solution for this equation is for example x “ 4 and y “ 2, i.e. x should

substitute just 4 new variable symbols and y should substitute just 2 new vari-
able symbols. This requirement can be captured by substituting four new variables
x1, x2, x3, x4 into x and two new variables y1, y2 into y with the proviso that xi and
yi should only have one symbol as its value.

Let us also translate a substitution σ “ tx1 ÞÑ u1, . . . , xn ÞÑ unu into a “dio-
phantine substitution”:

Λpσq “ tx1 ÞÑ Λpu1q, . . . , xn ÞÑ Λpunqu.
Now for the unifier σ “ tx ÞÑ abba, y ÞÑ bbu we have

Λpσq “ tx ÞÑ 4, y ÞÑ 2u,
which is obviously a solution for ΛpΓq. As mentioned above, any unifier σ for Γ
maps into words of equal length |uσ| “ |vσ|, hence:

Lemma 18. If σ is an A-unifier for Γ, then the linear diophantine equation ΛpΓq
has an integer solution Λpσq “ tx “ Λpxσq, x P Dompσqu.

Proof. Follows from the homomorphism definition.

A.2 Preprocessing
Now we note that a unification problem Γ “ tu “?

A vu can not be solved if u and v
start with different constant symbols (end with different constant symbols). So we
define the following rule

Termination
c1ur “?

A c2vr with c1 ‰ c2 and c1, c2 P Σ
Failure

Termination
ulc1 “?

A vlc2 with c1 ‰ c2 and c1, c2 P Σ
Failure
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Next we can simplify the unification problem by recursively applying the follow-
ing reduction rule:

Cancellation rc1u “?
A c1vs

ru “?
A vs ,

ruc2 “?
A vc2s

ru “?
A vs where c1, c2 P Σ

A.3 Enumeration of e-Unifiers
The enumeration of essential unifiers works as in a string unification algorithm for
most general unifiers, but all unifiers which contain a part unifier will be eliminated
as we go. The important requirement here is that this is decidable.

So the whole process works as follows: Set up the diophantine equation ΛpΓq
for the given unification problem Γ and for each integer solution compute the cor-
responding string unifier in the following way. Define for a solution α : X ÞÑ N of
a linear diophantine equation ΛpΓq, a substitution δα with δαpxq “ x1 . . . xn, where
n “ αpxq, xiR Varpσq. Then apply δα to u and v and solve

tuδα “? vδαu
with a standard unification algorithm for terms (such as [57]) rendered appro-

priately just for strings and the proviso that any variable can only be instantiated
by at most one symbol. For the reader familiar with the early unification algorithms
for strings, the above integer solution of the translated problem represents the re-
quired number of splittings of the variables, in the example above with x “ 4 and
y “ 2 we have x ÞÑ x1x2x3x4, y ÞÑ y1y2. Thus we translate the original A-problem
xby “? ayayb into x1x2x3x4by1y2 “? ay1y2ay1y2b which is then solved such that
each variable represents just one symbol as mentioned above.

Let λ be the unifier obtained this way and hence we have the syntactic equation:

uδαλ “ vδαλ

This enumeration process can be captured in the following generation rule for
string unification:

GenerationS
rΓ, Ss, α solves ΛpΓq and λ solves tuδα “? vδαu

rΓ, S Y tδαλus
where we start with S “ H and recursively apply this rule.
Now let ùñ˚ be the transitive closure of the three rules TCG (Termination,

Cancellation and GenerationS) and correctness and completeness of this standard
string unification procedure for mgu´s can be shown as follows:
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Lemma 19. rΓ,Hs ùñ˚ rΓ, S Y tσus iff σ P UpΓq.
Proof. ñ by definition of GenerationS.

ð σ is a unifier for Γ implies Λpσq is a solution for ΛpΓq. Let Λpσq “: α. Thus
the GenerationS is applicable with σ “ δαλ for a λ.

As a matter of fact the set of unifiers generated by the GenerationS is also
minimal if an appropriate control is imposed on GenerationS. This is also known
in the literature on string unification and not of our concern right now. Now we
observe a special property of essential string unification, namely that a part unifier
of two strings is always shorter than the unifier it is part of. Hence as we will see
below, the encompassment order for strings is decidable.

Technically we define for the solutions of a linear diophantine equation α, β the
ordering α ď β by

ř
xPDompαq αpxq ď ř

xPDompβq βpxq and show:

Lemma 20. Let Γ be a string unification problem and λ, σ two unifiers of Γ , then
λ Ď σ implies Λpλq ď Λpσq.
Proof. λ Ď σ implies that there exists µ and ν such that σ “ pµλνq |Dompσq.

Thus Λpσq “ Λpµq ` Λppλνq |Dompλqq, which means that for each xPDom(σ):
Λpxσq “ Λpxµq ` Λpxpλνqq. But then Λpxpλνqq ď Λpxσq.
Hence Λpλq ď Λpσq
Now we first solve the diophantine equation with some solution α and then we

use α to compute the “splitting” substitution δα.
Let uni(α)= δα be this function in order to show that every unifier obtained this

way is unique:

Lemma 21. Let Γ “ tu “?
A vu be an A-unification problem with α a solution for

ΛpΓq, such that there exists λ : X Ñ Σ Y X with a unifier δαλ for Γ, then λ is
unique.

Proof. Unification of first order terms is unitary. Hence there exists the function
uni that maps every solution α of ΛpΓq to a unique unifier unipαq “ δαλ.

Next we show the length condition for the encompassment order of string unifiers,
i.e. the fact that the part unifier is always shorter than the unifier it is part of.

Lemma 22. Let Γ be an A-unification problem and let α ă β be two solutions of
ΛpΓq. If there exist two unifiers unipαq and unipβq, then unipβq Ę unipαq.
Proof. Suppose by contradiction that unipβq Ď unipαq. Note Λpunipβqq “ β and
Λpunipαqq “ α. That implies with Lemma 21. β ď α, which is a contradiction.
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Finally we observe that the encompassment order for string unifiers is decidable:

Lemma 23. Let σ,τ be two string unifiers for a given unification problem Γ. Then
it is decidable wether σĎA τ or τ ĎA σ.

Proof. Let u Ĳ v denote the substring-property, i.e. a string u is a substring of a
string v iff v “ v1uv2. Now by Definition 2 we have σ Ď τ iff an instance of σ,
e.g. pσλ |Dompτqq is a sub-substitution of τ , i.e. @x P Dompσq : xσλ Ĳ xτ . This
requirement is the known substring-matching problem. More precisely M:= tu Ĳ? vu
is a substring matching problem and a solution to M is a substitution λ, such that
uλ Ĳ v.
It can easily be seen that such a λ exists, because | uλ |ď| v |, hence there are only
finitely many attempts to construct λ. The same arguments apply to τ Ď σ.

Combining the results of lemmata 19, 20, 21, 22 and 23 we can reformulate the
string unification rule GenerationS from above into the following rule Generation,
which can be used to generate all essential string unifiers and only these

rΓ, Ss, α solves ΛpΓq and λ solves tuδα “? vδαu and@ β P S : β ĘA δαλ

rΓ, S Y tδαλus
Now the overall strategy is this: for a given A-unification problem we set up the

linear diophantine equations and generate the integer solutions for these equations in
some (length) order. Each integer solution determines the number of sub variables
(splittings) for each variable in the given unification problem and then we apply
some form of a syntactic unification algorithm to this string unification problem. If
this gives a unifier σ we check if the set S in the generation rule contains a part
unifier of σ: if no we add σ to S, if yes we discard σ and continue.

A controlled algorithm for this kind of enumeration might look like this:

FOR ALL i ě 0 COMPUTE
Spiq “ tα | α solves ΛpΓq,řxPDompαq αpxq “ iu (* diophantine equations *)
Upiq “ tunipαq | α P Spiqu (* real unifiers *)
Epiq “ E Y tλ P Upiq | @σ P E : σ ĘA λu (* essential unifiers *)
END FOR

and we can now state our main result of this paragraph:

Theorem 24. The above algorithm enumerates all essential unifiers for an A-
unification problem Γ.
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Proof. Correctness and Completeness:
follows from Lemma 19.
Essential:
- every generated unifier is unique by Lemma 21.
- A part unifier is always shorter than the unifier it is part of by Lemma 20.

Since we generate the set S by length we now just inspect the finitely many unifiers
in S thus far generated for the encompassment relation.

- this is decidable by Lemma 20.

A.4 A note on termination if the set of essential unifiers is finite

A well known problem with most naive string unification algorithms is that they
may not terminate even if the set of unifiers for the given unification problem hap-
pens to be finite and this is unfortunately also true for our enumeration process for
essentials. But see [36] and others for more recent works with elaborate termination
criteria built upon Makanin’s algorithm, or on Plandowski’s algorithm [23]. These
are important and interesting indeed, but unfortunately all of these - including our
own results in this paper - are not very helpful for a practical reasoning system yet.

The termination criterion for the enumeration algorithm above is as follows:

For an equational problem Γ modulo A and a finite set of unifiers S Ă UΣpΓq is
the predicate P(S,Γ) := Dσ P UΣpΓq : @β P S : β Ę σ decidable?

Within the enumeration algorithm above this can be expressed more directly in
the following way:

after the update of the “collector set” Epiq “ tσ1, σ2, ....., σku decide with
nj “| Dompσjq |, j ő k the solvability of the system:

Ξ “

$
’’’&
’’’%

u “? v

tx11σ1 Ę x11u _ tx12σ1 Ę x12u _ .... _ tx1n1σ1 Ę x1n1u
...............

txk1σk Ę xk1u _ txk2σk Ę xk2u _ .... _ txknk
σk Ę xknk

u

,
///.
///-

If Ξ has no solution, then there is no unifier for Γ, which does not encompass
any of the essential unifiers in Epiq and the enumeration stops, otherwise the process
continues. It is known that the substring relationship is not expressible as a boolean
formula of string equations and -inequations (see e.g. [35]). As a consequence the
encompassment relation is also not expressible and hence it is not known, wether this
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termination criterion can be built into a decidability method, such as in Makanin’s
algorithm.
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This paper provides logical modelling for the results contained in the twelfth
monograph on Talmudic logic entitled Fuzzy Logic and Quantum States in Talmudic
Reasoning [2].1

This paper directly impacts on abstract argumentation theory, temporal and
fuzzy arguments and disjunctive collapse. It deals with attacks on a target set of
arguments which results in the target to be considered in a quantum like superpo-
sition state. The attack is not crisp enough and so cannot be said to be focussed on
any individual member or any clear subset of the target. As a result the target set
needs to be treated like a quantum superposition of its members.

1 Background and orientation
We begin our discussion with several examples.

We thank the referees for most valuable comments
1As we have indicated in our first paper and in our book [1] on Talmudic Logic, the aim of this

series (of possibly 25-30 books) is twofold:
1. Import logical tools to the service of modelling and explaining Talmudic reasoning and de-

bate.
2. Export ideas and logical constructions from Talmudic debate for the application and use in

general logical theory, artificial intelligence and agency and norms.
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Example 1.1 (Disjunctive attacks: Story 1). Mr. Smith is a rich old man who
wants to donate a very rare classic painting to one of two national museums. He
committed the donation in a letter to the two museums and copied and approved
by Charity Commission, so the donation to one of the two museums was legally
done, accepted and in force, except that the choice as to which of the two museums
the painting will be given has not been made yet. Mr. Smith said that he would
inform the Charity Commission and the museums which museum he would choose
in a few days. The donation is in force, however, regardless the status of the choice.
Mr. Smith unfortunately died before he made that choice. We are now left with an
unclear legal situation regarding ownership. Let a, b and x denoted as follows:

b = the painting does belong to museum b

a = the painting does belong to museum a

x = body of laws regarding ownership.
We have, of course, that a and b are mutually exclusive. Therefore we have that

x disjunctively attacks (see [6]) the set {a, b}. The attack says one of {a, b} must be
false. We must be clear here.

Suppose we are dealing with n museums . The options are then

ai = the painting belongs to the i-th museum, i = 1, ...n.

Then we have that x implies that exactly on of ai holds.
Put differently, x implies the set {ai|i = 1, .., n} , where the meaning of imply a

set of formulas is that exactly one of ai is true, or equivalently that exactly one ¬ai

is false.
Then again reformulating we can say that x attacks the set {¬ai|i = 1, ..., n},

where the meaning of attacking a set is that exactly one member ¬ai is false, namely
exactly one ai is true.

In case n = 2, we have a = ¬b and b = ¬a and so we have that x attacks {¬a,¬b}
is the same as x attacks {b, a} = {a, b}. Talmudic logic debate distinguishes several
views on this scenario. The facts on the ground are that the museum’s claim that
there was a legally binding donation and as for the question of who is beneficiary,
a or b, a reasonable deal can be worked out, such as an agreed arrangement of co-
ownership, or sharing, or we can let the estate of Mr. Smith continue and choose
a museum or we can flip a coin, or . . . whatever other symmetrically reasonable
solution.

Talmudic logic debate offers two main views on this:

View 1. Quantum like view. This view is that , since Mr. Smith died before
making a choice of a museum, ownership is superimposed evenly on both museums,
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in the same sense as, nowadays, modern quantum mechanics treats the two slits
experiment [5]. Recall that in the two slit experiment a single electron is sent towards
two slits a and b and the electron passes through both slits as a wave and interferes
with itself. So even though logically in classical mechanics the electron is expected
to pass only through one slit, it is also a wave according to quantum mechanics and
so it passes through both.

The Talmudic debaters holding this view are divided in their verdict:

Option 1. Since a and b are mutually exclusive, there is no longer a donation.
The superposition of ownership cancels the donation. The actual Talmudic debate
is in connection with marriages but we have adapted the story to Mr Smith and his
donation of paintings . See Talmud Bavli, Kidushin, Page 51a and after.

Option 2. The superposition of ownership does not cancel the donation. There
is a donation the superposition holds but the fact is that the superposition causes
lack of clarity of what to do and it should be undone by court order. The museums
should waive their “ownership” back to the estate for otherwise the normal flow of
life would be disrupted. After that, the estate can re-donate the painting if they want
to.

Of course, those options have implications towards estate tax duties, etc.
Note that both options agree that ownership is super-imposed on both {a, b}. They

differ in their verdict.

View 2. Fuzzy probabilistic view. There is no superposition. There was a
donation and we view the scenario as if there was a choice of a museum, except
that we do not know what it was, i.e. we treat the case as if Mr. Smith did choose
a museum, wrote a letter but died and the letter was lost). So we have a case of
purely epistemic uncertainty here and we are expected to provide some mechanism
to divide/allocate the painting. For example:

1. Share ownership 50/50.

2. Make a case for one museum over the other, for example, if the painting was
in the special area of museum a, then we can argue and reasonably claim that
there is high probability that a was chosen.

3. Recommend other arrangements, such as decision by lottery, or time sharing,
etc.
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Note that there are further implications to View 2. For example if the number
of museums involved is very large, we could on probabilistic grounds, agree that the
painting remains with the estate, as the probability for each museum to be the owner
is very low. This is an interesting Talmudic view. We might think that it is possible
for all the museums to form a coalition and ask for the painting. The Talmud will
not allow this. To explain this aspect of this view, think of a different scenarioes.

Scenario 2.1:(Compare with Example 1.2). There is one painting which was
donated to one museum, from among many paintings and we do not know which one
it is. Say both the donator and the museum curator die suddenly. The problem is
whether we forbid the estate owners of these paintings to sell any of their paintings
for fear that it is the one belonging/donated to the museum. The Talmud view in
this case is that since the majority of paintings was not donated we allow the sale.

Compare this scenario with the following variation:

Scenario 2.2. This scenario is the case of donating one painting but not yet de-
ciding which one, and before a decision is made, the owner dies. In this case, the
Talmud says that each of the paintings could have been chosen, and so the museum
is part owner/potential owner in each painting and so none of them can be sold!
This is like modern quantum superposition view.

There are other contexts where this practical probabilistic reasoning makes sense.
If one Ebola infected person passed through an airport around the time when there
were 2000 others present, we can assume about each of the others that he/she is not
infected but cannot treat them as such.

We now conclude our discussion of View 1 and View 2 of the story of Mr. Smith
donation of one painting to one of two museums. The main thrust of the story is
that there is an attack on the set {a, b} without there being any specific attacks on a
or on b. The story can continue as follows:

Suppose each of a and of b, independently attacks c, the details of the attack are
not important (maybe c is an art critic claiming the painting is a forgery). What is
important are the formal options for handling the situation. We have several options
for reasoning here

1. c must be out (i.e. false), since either a or b is in (i.e. true) and both attack c.

2. c must be in, since the disjunctive attack is super-imposed on both a and b, so
neither is safely to be considered in (true).

3. c is undecided since we do not know exactly what is going on with {a, b}.
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4. c joins {a, b} in the status of being a member of the superposition set. In
other words, we have that if x disjunctively attacks {a, b} and a attacks c,
and the attack of x on {a, b} is perceived as a superposition on {a, b}, then
the constellation of [x disjunctively attacks {a, b} and a attacks c, and the
attack of x on {a, b} is perceived as a superposition on {a, b}] is taken to be
equivalent to the constellation [x attacks {a, b, c} and the attack is perceived as
a superposition of {a, b, c}].

Example 1.2 (Disjunctive attack Story 2). Mr. Smith is a rich man owning 2
original masterpieces. He decides to donate one of these paintings to the museum (a
charity). There are several steps to be taken to accomplish this properly. Select the
painting, transfer ownership, put conditions on its use and exhibition, get tax relief
on the donation, etc., etc.

These steps are persistent in time. Once accomplished they remain so. So the
temporal flow is to execute each step properly and then legally end up with the result.
The Talmudic scenario is to study, debate and rule in cases where the steps become
fuzzy. The question is then to determine what final result we have in this case. The
logic behind the Talmudic debate of the various scenarios is the Talmudic fuzzy logic
and Talmudic disjunctive attacks.

Scenario 3. Mr. Smith commits a painting to the museum. The museum sends
Mr. Jones to go with Mr. Smith to the “storage vault” and choose a painting.

Storyline 1. On the way both die (tragic traffic accident).

Question 1. What does the museum get/own? What would the heirs/estate of
Mr. Smith do?

Storyline 2. Mr. Smith and Mr. Jones get to the storage and choose a painting.
On the say out of the storage they both die. So we know a painting was chosen but
we do not know which one and we have no way of knowing.

Question. Same as before.

Storyline 3. Mr. Smith authorises Mr. Jones to go to the storage and choose
a painting. Mr. Jones does that and telephones Mr. Smith and tells him what he
chose. A few minutes later Mr. Smith dies of a heart attack and Mr. Jones dies in
a tragic accident. The museum knows the government was secretly and unlawfully
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recording all telephone conversations of prominent citizens. They could try and
get the recording of which painting was chosen. This is very difficult because the
Government will never admit that it is listening to its citizens. In this scenario,
we could find out what painting was chosen, but for all practical purposes, we find
ourselves in Storyline 2.

We note that once we are in a state of superposition, like when a painting was
donated to one of two museums but not decided which one or one of two paintings
was donated to a single museum but not decided which one, we can collapse the
superposition retrospectively by, for example, flipping a coin. This is parallel to
quantum superposition which can collapse when we do measurements.

Let us now analyse these stories. Let

S = {π, π′}

be the set of paintings and let G(x) be the predicate that x was given by Mr. Smith
to the museum. First we ask: do we know for sure that ∃xG(x) must hold? The
problem is that if no painting was chosen, was there a donation?

If we decide that there was a donation, then which painting? Can the museum
sell something? Can the museum transfer to another legal entity whatever it has?

Storyline 1. This is the case where a painting was donated but none was chosen.
Compare with Example 1.1.

Rava opinion. There is no deal. The museum gets nothing. (Compare with View
1 of Example 1.1.)

Abeyei opinion. There was a valid deal. ∃xG(x) is true but we are in doubt as
to which painting was given to the museum. We have a case of superposition here.

According to this view, we can recommend some options.

A1: The museum is to give up voluntarily the donation. This is what the law
forces them to do.

A2: Alternatively, in practice, they may reach some deal.

1. The estate of Mr. Smith can donate all the paintings to the museum.
2. Choose a paining now.
3. Rotate the donation, rotate every season a different painting.
4. etc.
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This may be OK for paintings and museums, but there are other scenarios which
are less flexible. Mr. Smith may have two beautiful daughters and he has agreed
to give one of his daughters in marriage to Mr. Jones’ son. According to Abayei’s
approach, only option A1 can be taken. No sharing or rotation or anything is pos-
sible, only divorce from each of them. According to the law one cannot be married
to two sisters at the same time. One cannot even choose one later, because the new
choice may not be the correct one and if married to one you cannot have a marital
relationship with her sister. If we look at Storyline 2, here there was a choice of
painting or daughter, but we do not know which one. So we can apply a different
logical machinery to this case. Maybe we can argue that the museum has all the
paintings of Van Gogh except the one which Mr. Smith owns and so it is most likely
that the last van Gogh was chosen or in the case of marriage, one can argue that
perhaps one of the daughters already knows Mr. Jones’ son and the process was
most likely aimed at choosing her?

To sharpen the difference between Storyline 1 Abayei and Storyline 2 Abayei, we
note the following:

Our storyline 1, Abayei, we accept that ∃xG(x) holds but we do not accept for
any x ∈ S that G(x) holds in a clear cut way, as opposed to some fuzzy way. So
Rava says there is no engagement and Abayei says that there is, but it is fuzzy. In
Storyline 2, we also accept that for one of x ∈ S,G(x) holds, but we do not know
which one.

We need a logic which can model such distinctions!

2 Argumentation networks
We need to model the above examples. We shall use a version of disjunctive argu-
mentation networks [6, 3].

Definition 2.1. A finite argumentation network has the form (S,R), where S is a
finite non-empty set of arguments, and R ⊆ S × S is an attack relation. We also
write x� y in diagrams to express xRy, x attacks y.

Example 2.2. Imagine two pairs of parents planning a joint wedding for their
children. They need to compose a list of guests of several types.

1. Relatives from each family

2. Neighbours and friends of parents

3. Friends of the bride and bridegroom
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a� b means aRb

y1 yk. . .

x

. . .

z1 zm

Figure 1

4. Colleagues and co-workers

Inviting family can be a problem!
Auntie Bertha might say “I am not coming if that bastard ex-husband of mine is

invited”. I.e., Bertha � ex-husband.
Grandma Teresa might say “I don’t want these kids inviting too many of these

hippy crazy friends of theirs, espeically not the drummers”. I.e., Teresa � {set of
hippies}.

Figure 1 can describe the problematic map which exists:
x is one possible invitee, say Grandma Teresa. She is 109 years old and y1, . . . , yk

object to inviting her. Possibly because she is too old and they are worried about
her health The reason does not matter. The important fact here is the double arrow
yi � x. This means yi wants x out. So if yi is invited, x cannot be invited. Similarly,
x objects to z1, . . . , zm. So the Figure 1 describes the entire configuration around x.
We want to define a maximal set E of invited guests such that the following holds:

1. x, y ∈ E ⇒ x does not attack y, (i.e., not xRy). I.e., E is conflict free. No
member x of E says “I object” to another member of E.

2. If any x says “why did you invite z ∈ and you did not invite me? How could
you invite this terrible person z”? (i.e., we have z � z), then we can say, “we
had to invite y ∈ E and unfortunately, y was against you x” (i.e. for some
y ∈ E, y � x).

Such a set E which is also maximal, is called in the argumentation community “a
preferred extension”. These always exist.
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h1

x

. . . hk

Figure 2

A disjunctive attack has the form x� H where H ⊆ S. Its meaning is

• if x ∈ E then for some y ∈ H(y 6∈ E).

This means if you invite x then one of H must not be invited. For example x
may be having an affair with both (h1, h2). So it is bad taste to invite both. We
know about it, but h1 and h2 do not know about each other, so it is better not to
have them both, says x. We use the notation of Figure 2

Definition 2.3 (See [6], Definition 3.3).

1. A finite disjunctive argumentation network has the form A = (S, ρ), where
S is a finite set of arguments and ρ ⊆ S × (2S − ∅), i.e. ρ is a relation of
(disjunctive attacks) between elements x ∈ S and non-empty subsets H ⊆ S
denoted as (xρH).
Let (S, ρ) be a network and let E ⊆ S:

(a) We say E is conflict free iff for no x ∈ E and H ⊆ E do we have xρH.
(b) We say that E protects α iff for any zρH ∪ {α} there exists a β ∈ E and

E3 ⊆ E and H3 ⊆ H such that βρH ∪H3 ∪ E3 ∪ {z}.
(c) We say E protects itself if it protects each of its members.
(d) We say E is a complete extension if E is conflict free, protects itself and

contains all the elements it protects.

Talmudic attack xρH wants exactly one y ∈ H to be out. Talmudic logic thinks of
it as a collapse of xρH to xRy.

The next definition, 3.1 will explain what we mean by collapse, and give a more
correct way to obtain the complete extensions according to Talmudic logic.
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b

x y

ca

Figure 3

b

x y

ca

Figure 4

3 Talmudic argumentation systems
Definition 3.1. Let A be a finite disjunctive network and let xρH be one of its
attacks. We say that a set F((x,H)) is a collapse set for (x,H) if it is the set of all
Ay, y ∈ H of the form Ay = (S, ρx

y), where ρx
y = (ρ−{x,H)})∪{(x, {y})}. In other

words, (S, ρx
y) is the network where xρH is replaced by xρ{y}, i.e. xρH collapses to

xρ{y}.
For each xρH, let f(x,H) choose one pair (x, y), y ∈ H. Let Af be the total

collapse of A according to f, defined as (S,Rf ), where Rf = {f(x,H)|xρH}.

Example 3.2.

1. Complete collapse. Consider the network of Figure 3.
Here we have xρ{a, b} and yρ{b, c}. The total collapses are the networks in
Figures 4, 5, 6 and 7.

2. Partial collapse. We may have that say xρ{a, b} collapses while yρ{b, c} does
not collapse. So we have in this case the possible Figures 8 and 9.

Remark 3.3. We have to decide what the Talmud would say about attacks emanating
from non-collapesed nodes. Consider Figure 10
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b

x y

ca

Figure 5

b

x y

ca

Figure 6

b

x y

ca

Figure 7

b

x y

ca

Figure 8
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b

x y

ca

Figure 9

z

x

a b

y

Figure 10

In this figure the attack of x on {a, b} remains uncollapsed. So this is the final
fixed figure. What is our view of {a, b}? Do we consider them as both in/true (since
there is no collapse) for the purpose of the attacks b� y, b� z and a� z? Or do
we regard then as undecided? Do we give them fuzzy values?

The Talmud approach can be modelled by four values {in, out, undecided, wave}.
So we use labelling x ∈ {in, out, und,wave}.

So, in Figure 10 we may have that {a, b} does not collapse, so we give a, b value
“wave” each. This value is passed on to y and z.

If y or z further attack some nodes, they will pass on the value “wave” to their
targets.

Remark 3.4. Compare with the traditional Caminada labellings and other ap-
proaches in [4]. Let us look again at Figure 1 where y1, . . . , yk are all the attackers
of x and let us write the conditions on any λ : S 7→ {in, out, und, wave} to be
a legitimate Talmudic labelling for a traditional network (S,R) without disjunctive
attacks.
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(TC1) λ(x) = out, if for some yi, λ(yi) = in.

(TC2) λ(x) = in, if for all yi, λ(yi) = out.

(TC3) λ(x) = und, if none of yi has value λ(yi) = in and some of λ(yi) = und.

(TC4) λ(x) = wave, if none of λ(yi) = in and none of λ(yi) is und and some of
λ(yi) = wave.

Remark 3.5. We now have to define what is a legitimate λ for a network (S, ρ)
with disjunctive attacks ρ ⊆ S× (2S −∅). We shall reduce this concept by induction
to the traditional case with four values as defined in Remark 3.4. The reduction is
by induction on the number of disjunctive attacks in (S, ρ). We first need a concept
of constraints on λ.

1. Let (S,R) be an argumentation network of any kind (traditional or Talmudic)
with R ⊆ S×S. Let λ1 be a partial function λ1 : Subset E of S 7→ values. We
say λ is a legitimate extension under the constraint λ1 if λ is legitimate and λ
agrees with λ1 on its values.

2. For example in the configuration of Figure 1 we may have the constraint
λ1(y1) = wave. However, if the figure is part of a larger network and y1
is attacked by a node which needs to be in, then λ cannot overrule λ1 on the
value of y1.
When we have a constraint λ1 it may be the case that no legitimate λ exists
with such a constraint.

3. We now define what it means to be a legitimate Talmudic extension for (S, ρ).
This is done by induction on the number of disjunctive attacks in (S, ρ). We
choose a disjunctive attack and do a case analysis of “imaginary" options,
(being option (a), (b,i), (b,ii) and (b,iii) below). With each such option we
associate a family F (option) of networks with a lesser number of disjunctive
attacks. Each member of each family will yield some legitimate λ by the in-
duction hypothesis, and the totality of these λ are the legitimate extensions for
(S, ρ).
So let us begin:

Base Case. There are no disjunctive attacks, but there are constraints λ1,
requiring values from {in, out, und, wave} . Use principles (TC1)–(TC4) of
Remark 3.4 to get the extensions, if possible.
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Inductive Case. There are disjunctive attacks and there are constraints λi.
In this case we choose one disjunctive attack. Define the case analysis below
and define the sets F (case number). Any λ found by the inductive hypothesis
for any element of these sets will do for our (S, ρ).
So let us begin the inductive case: Let xρ{h1, . . . , hk} as in Figure 2.
We distinguish two cases for the Talmudic complete extension λ.

(a) case of collapse In this case the attack of x on {h1, . . . , hk} does collapse
to one of the attacks x� hi, for some i.
Therefore we define the legitimate λ for (S, ρ) as any legitimate λ for
F (case (a)) = {(S, ρi)| where ρi = (ρ−{(x, {h1, . . . , hk}))∪{(x, {hi})}}
respecting the constraints λ1.

(b) case of no collapse In this case we distinguish three cases.
i. x is out. In this case there is no attack and we let the legitimate λ for

(S, ρ) to be any one of the legitimate λ of F (case (b,i)) = {(S, ρi) of
case (a) but with the additional constraint to λ1 being the constraint
x = out}.

ii. x is in or x = wave. In this case there is no collapse and so we
have the additional constraints for λ1 being h1 = h2 = . . . = hk =
wave. So we let the legitimate λ for this case for (S, ρ) to be any
legitimate λ for the network F (case (b,ii)) = {(S, ρ′) where ρ′ =
ρ− {(x, {hi, . . . , hk})} under the constraint λ1 augmented by the ad-
ditional constraints x = in or x = wave ,respectively and hi = wave
for i = 1, . . . , k}.

iii. x is und. In this case we look at (S, ρ′) as in case (ii), with the
additional constraints to λ1 being the constraint x = h1 = . . . = hk =
und.

Example 3.6. Let us see what the Talmud would do with Figure 10.
Here we have only one disjunctive attack xρ{a, b} for which we know x = in

because x is not attacked. So there are two possibilities for this attack.

1. The attack collapses and so x� {a, b} is to be replaced either by x� a or by
x� b, giving rise to Figure 11 or Figure 12.

2. The attack does not collapse, giving rise to Figure 13 with the constraints
shown.
So the possible extensions according to Remark 3.4 are:
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z

x

a b

y

Figure 11

z

x

a b

y

Figure 12

x = in

a = wave b = wave

yz

Figure 13
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d

x

a b

c

Figure 14

λ1 : x = in, a = out, b = in, z = y = out
λ2 : x = in, a = in, b = out, z = out, y = in
λ3 : x = in, a = b = z = y = wave.

Example 3.7. Consider the network of Figure 14.
Let us agree that xρ{a, b} does collapse while bρ{c, d} does not collapse.
The extensions are the following, calculated intuitively.

λ1 : x = in, a = out, b = in, c = d = wave
λ2 : x = in, a = in, b = out, c = d = in

Let us now follow our inductive procedure of Remark 3.5 and let us start induc-
tively from bρ{c, d}. We get four options, as seen in Figures 15, 16, 17 and 18. The
constraints are written in the figures.

For each of the Figures 15–18 we deal with the attack xρ{a, b}. These split into
two figures each. One with the attack of x on a and one with the attack of x on b.

Some of these will not be possible.
Here are the Figures:
We see that the inductive procedure gave us λ1 and λ2 as we expected.
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d

x

a b = out

c

Figure 15

d

x

a b = out

c

Figure 16
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d = wave

x

a b = in or wave

c = wave

Figure 17

d = und

x

a b = und

c = und

Figure 18

4 Using Bochman’s collective argumentation
In his paper [3], Bochman considered conjunctive disjunctive attacks of the form
G� H, where both G and H are subsets of S. The intended meaning of G� H is
that if all embers of G are in, then at least one member of H is out. The treatment of
this notion is straightforward (see [6] and Bochman [3]) using axiomatic properties
on G � H to characterise various types of semantics. For example, he considered
the following axioms:

Montonicity. If G� H then G ∪G′ � H ∪H ′.

Symmetry. If G� H1 ∪H2 then G ∪H1 � H2.
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b = out

x

a

c d

Figure 19: Not possible.

b = out

x

a

c d

Figure 20: Possible, gives λ2.
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b = out

x

a

c d

Figure 21: Not possible.

b = out

x

a

c d

Figure 22: Possible, gives λ2.
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a

x

b = in or wave

c = wave d = wave

Figure 23: Possible only with x = in. Gives λ1.

a

x

b = in or wave

c = wave d = wave

Figure 24: Not possible

a

x

b = und

c = und d = und

Figure 25: Not possible.
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a

x

b = und

c = und d = und

Figure 26: Not possible

Affirmativity. The empty set is not attacked.

Locality. If G� H1 ∪H2 then G� H1 or G� H2.
Using this axiomatic approach, we want to characterise Talmudic disjunctive

attacks. Let us list the properties we need to characterise:

(P1) If G� H then either (a) or (b) holds

(a) For exactly one y ∈ H we have G� {y}. (This is collapse.)
(b) For none of H ′ ( H do we have G� H ′. This is quantum superposition.)

(P2) If G � H is a quantum superposition attack on H and for some H ′ 6= ∅
such that H ′ ⊆ H we have that H ′ � K then H ′ � K is also a quantum
superposition attack and furthermore G � (H − H ′) ∪ K also holds as a
quantum superpsoition attack.

Figure 27 explains the idea in terms of labels. Any attacker with a wave label
propagates this label to its targets.

Note that (P2) can be better understood in positive terms. If G → H and
H ′ → K and H ′ ⊆ H, then G→ (H −H ′) ∪K.

The following Bochman-style axioms can characterise (P1) and (P2).

(AP1) If G� H then H 6= ∅ and
∨

y∈H

{[G� {y}] ∧
∧

z 6=y

¬G� {z}} ∨ (
∧

H′(H

(¬(G� H ′)))
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G

h1 hi h′1 h′n−i

k1 kr. . .

, . . . ,, . . . ,

If the value of h′j is “wave” because of G then the values of k1, . . . , kr is also “wave”.
Figure 27

(AP2) If G � H and ∅ 6= H ′ ( H and H ′ � K then G � (H − H ′) ∪ K and∧
K′(K(¬(H ′ � K ′)) and ∧

K′((H−H′)∪K(¬(G� K ′)).

5 Conclusion and discussion
We saw that Talmudic disjunctive attacks require four values, {in, out, und, wave}
and differs from [6] in two senses:

1. The attack on a target set H can turn the target set into having the value
“wave” for quantum like superposition. This value is then propagated further
by the members of the target set when they attack further targets.

2. When attacking a target set H the attack can collapse to attacking a single
y ∈ H. Note and compare that the disjunctive attacks in general can collapse
to attacking a subset ∅ 6= G ⊆ H.
In our case the options for the attack on a set H is either an attack on a single
member of H or rendering H into a wave quantum superposition state.

3. We note here, that in view of references [6] and [3], one of our referees com-
mented as follows:

“Two things should be distinguished here. First, the quantum su-
perposition idea, taken by itself, is more or less comprehensible and
internally coherent. The only question is whether it is relevant to
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argumentation, and it is here that I have my reservations. An argu-
ment may collectively attack a set of arguments H just because it
disproves one of the joint conclusions of H. This is not a quantum
phenomenon, and different arguments in H can still be separated by
other arguments, and by different attacks they (separately) create
against further arguments. So, if your interpretation insists on exis-
tence of a special ‘superposition’ of a set of arguments, it ought to be
represented as an entirely new connective for combining arguments,
over and above the existing argumentation machinery.”

We comment in return that adding a connective on a set H which turns it into
a quantum state is too strong a move. In our system a set H may turn into a
quantum state only when attacked. It is the nature of the attack that causes
the quantum state. We can certainly investigate a connective, say Q(H), which
turn H into a quantum state but it will be different

(a) A disjunctive attack cannot turn a single point set into a quantum state,
but the connective Q can do that (and make this point propagate the
“wave" value).

(b) Adding Q yields a different logic. (Certainly worthy of investigation.)

4. Another referee brought to our attention the works of Andrew Schumann,
[7, 8], connecting Talmudic Logic to parallel computation. The referee spent
a lot of effort going through our papers commenting how the quantum view
can, and maybe should, be replaced by a parallel computation view. Let us
respond to the referee’s proposal, i.e. comment on the connection between the
phenomena that we describe and parallel computation. Parallel computation
describes computational processes that are carried out in parallel. It focuses
on processes that cannot be done serially. The focus of the logical problems
in our case (a man that marries one of two women) is not connected to the
serial question. If the problem was that one cannot decide the state of the one
without previously knowing the state of the other or vice versa, the question
of serialism would have been relevant. But our problem is totally different.
The state cannot be fully decided, even if we do the computation serially. The
fact that one of the women is married prevents the marriage of the other,
without any connection to the order of computation. It is therefore a problem
of Quantum Logic (intertwining of states) and not Parallel Computation Logic.
Said another way, in our case there is a complex interaction between the two
channels of the problem (like the interaction between distant particles in an
ERP experiment). This is the focus of our investigations, and not just the
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existence of two parallel channels. The logic of the created state is what we
discuss, and this logic is Quantum Logic. We have no interest in how to do the
computation that helps us reach the conclusion that this is indeed the state.
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1 Introduction
In [11], John Kearns develops some semantics without possible worlds for modal
logics T, S4 and S5, based on his negative opinion about possible worlds. For
example, Kearns states that “I do not think there are such things as possible worlds,
or even that they constitute a useful fiction.”([11, p.86])

Our main concern in this paper, however, is purely technical, even though our
interest is philosophical.1 Indeed, if we pay our attention to Kearns’ result under
such a perspective, then, for example, we find that the basic idea of the framework
now known as non-deterministic semantics is actually already used by Kearns. Non-
deterministic semantics was first systematically developed by Arnon Avron and Iddo
Lev in [1], and has been applied to a wide range of systems of nonclassical logic.2
Note that Yuri V. Ivlev also considers non-deterministic semantics for modal logics in
[9], although he is not dealing with normal modal logics but only fragments without
the rule of necessitation.3

Based on these, the aims of this paper are twofold. First, we clarify the original
proof of Kearns, and simplify some of the results. Second, we generalize the result to
cover more modal logics such as K, KD and KTB. We will also deal with semantic
consequences that Kearns did not investigate, provide proof theories, and prove their
soundness and completeness.

The paper is organized as follows. In §2, we present the semantics and proof
theory for the modal logic T, and in §3 we prove the soundness and completeness
regarding the Hilbert-style calculi. These will be followed by §4 in which the sound-
ness and completeness results are extended to the modal logics S4 and S5 following
the strategy of Kearns. Here, we will also show that the semantics for S4 and S5
may be simplified. §5 is devoted to the new results extending the result of Kearns
to modal logics K, KD and KTB which are well-known normal modal logics. We
will then conclude the paper by summarizing the results, and identifying future
directions. We will also briefly remark on the philosophical issues related to the
semantics established by Kearns.

Although Kearns deals with quantifiers as well, we will restrict our attention
to propositional connectives since they already give rise to plenty of interesting
problems.4

1For a follow up paper on the philosophical side of the semantics by Kearns, see [12].
2For a survey on non-deterministic semantics, see [2].
3Ivlev is not referring to Kearns’ result in [9], but he refers to Kearns’ paper in [10].
4Note that Kearns himself notes, in [12, p.299], that there is an error in his completeness proof

for quantified modal logic, i.e. Lemma 3 of [11, p.85], which is corrected in [12]. For a recent work
on quantification in non-deterministic semantics in general, see [7].
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Finally, at the very end of our study, we discovered that there are some similar
attempts in generalizing the result of Kearns by Luis Fariñas del Cerro, Marcelo E.
Coniglio and Newton Peron (cf. [6]). Moreover, after our first submission, we noticed
a paper [5] published by the same authors. Our results were obtained independently
of [6, 5], but since the present paper shares the topic with [5], there will be some
overlap. However, in order to keep the paper self-contained as much as possible, we
decided to keep the repetition of some of the results already reported in [5]. We
only note that the following three results are presented here for the first time and
deserve to be highlighted:

• simplification of the semantics of Kearns for S4 and S5 (cf. §4.4);
• introduction of Kearns’ style semantics for K and a proof of its soundness and

completeness with respect to the standard Hilbert-style calculi (cf. §5.1);
• observation of an error in the results of Ivlev (cf. §3.3).

2 Semantics and proof theory for T
Our language L consists of a finite set {¬,2,3,→} of propositional connectives and
a countable set Prop of propositional parameters. Furthermore, we denote by Form
the set of formulas defined as usual in L. We denote formulas of L by A, B, C, etc.
and sets of formulas of L by Γ, ∆, Σ, etc.

2.1 Semantics

First, we present the semantics by making use of the general framework of non-
deterministic semantics. This will serve as the base of the semantics developed by
Kearns.

Definition 1. A T-Nmatrix for L is a tuple M = 〈V,D,O〉, where:

(a) V = {T, t, f , F},
(b) D = {T, t},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary function
∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 2̃A 3̃A
T F T, t T, t
t f f , F T, t
f t f , F T, t
F T f , F f , F

A→̃B T t f F
T T t f F
t T T, t f f
f T T, t T, t t
F T T T T

817



Omori and Skurt

A legal-T-valuation in a T-Nmatrix M is a function v : Form→V that satisfies the
following condition for every n-ary connective ∗ of L and A1, . . . , An ∈ Form:

v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An))

Remark 2. Note that the four values T, t, f and F intuitively represent necessary
truth, contingent truth, contingent falsity and necessary falsity (or impossibility).
This is reflected in the proof of Lemma 24 which is the key for the completeness.

Definition 3. A is a legal-T-consequence of Γ (Γ |=legal-T A) iff for all legal-T-
valuations v, if v(B) ∈ D for all B ∈ Γ then v(A) ∈ D. In particular, A is a
legal-T-tautology iff v(A) ∈ D for all legal-T-valuations v.

Remark 4. In the original paper of Kearns, the legal-T-consequence relation is
not defined. However, taking into account the recent development of the non-
deterministic semantics, legal-T-consequence should be of interest from a technical
perspective, and thus we will deal with such relations in the following together with
the semantic consequence relation that characterizes the well-known modal logics.

Let us now observe why this legal-T-consequence is not sufficient as a semantics
for the modal logic T through an example.

Example 5. A→A is a legal-T-tautology, but 2(A→A) is not a legal-T-tautology.
Indeed, we obtain the following table. Basically, the calculation goes as in many-
valued semantics, but now there are some cases that will split as follows.

A A→A
T T
t T
t t
f T
f t
F T

This shows that A→A is a legal-T-tautology, since v(A→A) ∈ D for all legal-T-
valuations v. However, 2(A→A) is not a legal-T-tautology since in the third line of
the table, when A is assigned the value t, then A→A takes the value t as well, and
this gives us the result that 2(A→A) will take one of the values f , F which are not
designated.

Since we want formulas such as 2(A→A) to be validated, we need a different
kind of valuations to define the semantic consequence relation. The next definition
introduces those valuations which are the remarkable finding of Kearns.
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Definition 6. Let v be a function v : Form→V. Then,

• v is a 0th-level-T-valuation if v is a legal-T-valuation.
• v is a m + 1st-level-T-valuation iff v is an mth-level-T-valuation and assigns

the value T to every sentence A if v′(A) ∈ D for all mth-level-T-valuations v′.

Based on these, we define v to be a T-valuation iff v is mth-level-T-valuation for
every m ≥ 0.

Definition 7. A is a T-tautology (|=T A) iff v(A) = T for all T-valuations v.

Remark 8. Kearns definedT-tautology by collecting formulas that satisfy v(A) ∈ D
for all T-valuations v, but we can replace the condition by a more strict condition
as above.

Example 9. Let us illustrate how the 1st-level-T-valuations are obtained from the
legal-T-valuation by using the example above. Basically, we need to rule out some
of the legal-T-valuations, and this is done by looking at the legal-T-tautologies. In
the case above, we had six legal-T-valuations, but two of them presented in the third
and the fifth line will not be counted as 1st-level-T-valuations, since they assign the
value t to the legal-T-tautology A→A. And if we focus on 1st-level-T-valuations,
then it is clear that 2(A→A) is a T-tautology, as desired. Note that we cannot
stop at the 1st level since if we consider the formula 22(A→A), then this will not
be true for some of the 1st-level-T-valuations. If we write down the valuations for
22(A→A) up to the 3rd level, then it will look as follows. (For the sake of saving
space, we have adopted another way of writing down the tables in the following.)

0th-level 1st-level 2nd-level 3rd-level
2 2 (A → A) 2 2 (A → A) 2 2 (A → A) 2 2 (A → A)

T, t, f , F T, t T T T T, t, f , F T, t T T T T, t T T T T T T T T T
T, t, f , F T, t t T t T, t, f , F T, t t T t T, t T t T t T T t T t

f , F f , F t t t
T, t, f , F T, t f T f T, t, f , F T, t f T f T, t T f T f T T f T f

f , F f , F f t f
T, t, f , F T, t F T F T, t, f , F T, t F T F T, t T F T F T T F T F

At the 0th level, there are 24 relevant valuations.5 Then, by looking at the formula
A→A and by the definition of the mth-level-T-valuation, we rule out the valuations
of the third and the fifth line which assign t to A→A to obtain the 1st-level-T-
valuation. Now, in order to obtain the 2nd-level-T-valuation, we look at 2(A→A)
which takes the designated values for all 1st-level-T-valuations, and this time we
rule out valuations that assign t to 2(A→A) to obtain the 2nd-level-T-valuation.

5If the value f is assigned to 2(A→A), 22(A→A) can get the values F or f . The same counts
if the value F is assigned to 2(A→A).
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And finally, we look at 22(A→A) which takes the designated values for all 2nd-
level-T-valuations, and this time we rule out 4 valuations that assign t to 22(A→A)
to obtain the 3rd-level-T-valuation. Therefore, taking into account the fact that we
can not reduce iterated modalities in the modal logic T, we will need the whole
hierarchy of valuations. However, one may easily guess that we might not need the
whole hierarchy in modal logics in which modalities are reduced to a certain extent.
For the details, see §4.4.

Remark 10. Although we introduced → as the only binary connective, for the
purpose of saving labor, it is possible to define conjunction and disjunction in terms
of conditional and negation in the usual manner. For example, the truth-table for
conjunction becomes as follows:

A ∧B T t f F
T T t f F
t t t F, f F
f f F, f F, f F
F F F F F

Now, since A ∧B := ¬(A→¬B) one would expect that sentences with and without
∧ behave exactly the same way if they are semantically equivalent. For example,
consider the 1st-level-T-valuations for A∧¬A and ¬(A→A). Then, one might think
that we obtain the following tables:

A A ∧ ¬A
T F
t F
t f
f F
f f
F F

A ¬(A→A)
T F
t F

f F

F F

The tables show the 1st-level-valuations of two equivalent sentences. Note that
A ∧ ¬A has six different valuations, while ¬(A→A) only has four. This is indeed
problematic since if this was the case, then we would have v(3(A ∧ ¬A)) ∈ D for
some 1st-level-valuation v, and thus 3(A ∧ ¬A) would be a satisfiable formula in
the modal logic T which is obviously not the case since we have ¬3(A ∧ ¬A), i.e.
2¬(A ∧ ¬A) is provable in T.

As expected, the above table for A∧¬A is not correct. The key is that in order to
obtain the 1st-level-T-valuation, we need to make sure that all legal-T-tautologies
are assigned the value T. In the above case, if we assume that six valuations for
A∧¬A are 1st-level-T-valuations and consider the T-tautology ¬(A∧¬A), then we

820



Modal Semantics Without Possible Worlds

obtain that ¬(A ∧ ¬A) is assigned the value t in two cases which are ruled out for
the case of ¬(A→A), and this needs to be prevented in view of the definition of the
mth-level-T-valuations. The moral here is in order to obtain the m + 1st-level-T-
valuation of a formula we need to take into account the mth-level-T-valuations for
every sentence A in order to rule out valuations (see Definition 6). This observation
imposes some problems when it comes to effective decision procedures. For a further
discussion, see Remark 42.

2.2 Proof theory
We now present the proof theory. Although Kearns deployed natural deduction, we
will here make use of the Hilbert style system, following [4], which is more standard
in the literature of modal logic.

Definition 11. First, the system T consists of the following axiom schemata and
rules of inference.6

A→(B→A) (Ax1)
(A→(B→C))→((A→B)→(A→C)) (Ax2)
(¬B→¬A)→(A→B) (Ax3)
A A→B

B
(MP)

2(A→B)→(2A→2B) (LK)
2A→A (LT)
3A→¬2¬A (LM1)
¬2¬A→3A (LM2)

A

2A
(RN)

We write `T A if there is a sequence of formulas B1, . . . , Bn, A (n ≥ 0), such that
every formula in the sequence either (i) is an axiom of T; or (ii) is obtained by (MP)
or (RN) from formulas preceding it in the sequence. Moreover, we define Γ `T A iff
for a finite subset Γ′ of Γ, `T C1→(C2→(· · · (Cn→A) · · · )) where Ci ∈ Γ′(1 ≤ i ≤ n).

Second, we define a subsystem of T, referred to as T−, which is obtained by
eliminating (RN) and adding the following schemata:

3¬A→¬2A (LM3)
¬2A→3¬A (LM4)
2(A→B)→(3A→3B) (LK1)
3(A→B)→(2A→3B) (LK2)

2¬(A→B)→2A (LK3)
2¬(A→B)→2¬B (LK4)
3¬(A→B)→3A (LK5)
3¬(A→B)→3¬B (LK6)

6 Note here that (Ax1)–(Ax3) together with (MP) form a well-known axiomatization of classical
propositional logic.
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We define Γ `T− A if there is a sequence of formulas B1, . . . , Bn, A (n ≥ 0), such
that every formula in the sequence either (i) is an element of Γ (ii) is an axiom of
T−; or (iii) is obtained by (MP) from formulas preceding it in the sequence.

Remark 12. Note that the systemT− reflects the relation between proof theory and
the 0th-level-T-valuations, i.e. legal-T-valuations. Also note that there are infinitely
many subsystems of T between T− and T. These subsystems can be obtained by
adding sentences with iterated modalities, e.g. 22A, 222A or 2222A, to T−.

Proposition 13. The deduction theorem holds for both `T and `T− .

Proof. For `T, this is immediate in view of the definition of the consequence relation.
For `T− , the proof runs as in the case for classical logic since we have both (Ax1)
and (Ax2) as axioms and (MP) is the only rule of inference.

3 Soundness and completeness for T− and T
We first prove the soundness, and then turn to the completeness result.

3.1 Soundness
The soundness for the legal consequence relation is rather straightforward.

Proposition 14 (Soundness for T−). If Γ `T− A then Γ |=legal-T A.

Proof. It suffices to check that all axioms are legal-T-tautologies, and that the rule
of inference (MP) preserves the designated value.

For the soundness of T, we need the following lemma.

Lemma 15. Assume that `T A and that the length of the proof for A is m. Then,
for all mth-level-T-valuations v, v(A) ∈ D.
Proof. By induction on the length m of the proof for `T A. For the base, case in
which m = 1, A is one of the axioms. And since axioms are legal-T-tautologies,
as shown above, they are also T-tautologies. (Note that by definition, if a sentence
is true for all mth-level-T-valuations, then it is also true for all m + 1st-level-T-
valuations.) For the induction step, assume that the result holds for proofs of the
length m, and let B1, . . . , Bm, Bm+1(= A) be the proof for A. Then, there are the
following three cases:

• If A is an axiom, then A is true for all legal-T-valuations, and thus for all
m + 1st-level-T-valuations as well.
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• If A is obtained by applying (MP) to Bi and Bj(= Bi→A), then by induction
hypothesis, Bi and Bj are true for all max{i, j}th-level-T-valuations, and thus
for all mth-level-T-valuations. And by the truth table for→, we obtain that A
is also true for all mth-level-T-valuations. Therefore, A is true for all m + 1st-
level-T-valuations as well.
• If A is obtained by applying (RN) to Bi, then by induction hypothesis, Bi is
true for all ith-level-T-valuations. So, for all i + 1st-level-T-valuations, 2Bi,
i.e. A is true. Therefore, A is true for all m + 1st-level-T-valuations as well.

This completes the proof.

Once we have the lemma, soundness follows immediately.

Proposition 16 (Soundness for T). If `T A then |=T A.

Proof. Let the length of the proof for A be m. Then, by the above lemma, A is true
for all mth-level-T-valuations, and thus takes the value T for all m + 1st-level-T-
valuations. Since T-valuations are also m + 1st-level-T-valuations, we obtain that
A takes the value T for all T-valuations, as desired.

3.2 Completeness
We now move to prove completeness. First, we list some provable formulas that will
be used in the following proofs.

Proposition 17. The following formulas are provable in T−:

2A→(¬2B→¬2(A→B)) (1)
2A→(2¬B → 2¬(A→B)) (2)
(A→B)→((¬A→B)→B) (3)

A→(¬B→¬(A→B)) (4)
A→(¬A→B) (5)
2A→2¬¬A (6)

2¬¬A→2A (7)
3A→3¬¬A (8)
3¬¬A→3A (9)

Proof. (6), (7), (8) and (9) are provable in view of the axioms (LM1), (LM2), (LM3)
and (LM4). Others are rather straightforward in view of footnote 6, and we leave
the details to the readers.

Second, we introduce some notions that will be used in the proofs.

Definition 18. We say that a set Σ of formulas is a theory if it is closed under `,
i.e., if Σ ` A then A ∈ Σ for all A. A theory Σ is non-trivial if for some formula A,
A 6∈ Σ. Finally, we say that a theory Σ is consistent if A ∈ Σ or ¬A ∈ Σ, and A 6∈ Σ
or ¬A 6∈ Σ, for all A.
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Definition 19. Let Σ ∪ {B} be a set of formulas. Then Σ is B-saturated iff (i)
Σ 6` B and (ii) for all A, if A 6∈ Σ then Σ∪{A} ` B. Finally, Σ is relatively maximal
iff Σ is B-saturated for some B.

Remark 20. Strictly speaking, we do need to specify the consequence relation in
defining B-saturated sets and relatively maximal sets. However, in the following, we
will generally omit that since it should be clear from the context. When necessary,
we refer to the set as C-relatively maximal set where C is the name of the concerned
consequence relation.

We then obtain the following well-known lemmas. As the proofs are standard,
we will leave them to the reader.

Lemma 21. If Σ is B-saturated for some B, Σ is a consistent theory, and B 6∈ Σ.

Lemma 22. If Σ 6` A, there is a Π ⊇ Σ such that Π is A-saturated.
Definition 23. Let Σ be a relatively maximal set. Then, we define a function vΣ
from Form to V as follows:

vΣ(B) :=





T if Σ ` 2B

t if Σ 6` 2B and Σ ` B

f if Σ 6` 2¬B and Σ ` ¬B

F if Σ ` 2¬B

We need one more lemma which is the key for the completeness result.

Lemma 24. If Σ is a T-relatively maximal set then vΣ is a legal-T-valuation.

Proof. Note first that vΣ is well-defined in view of (LT) and (5). Then the desired
result is proved by induction on the number n of connectives.
(Base): for atomic formulas, just note that Σ is a consistent theory which implies
that Σ ` A or Σ ` ¬A.
(Induction step): We split the cases based on the connectives.
Case 1. If B = ¬C, then we have the following four cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. ¬C
(i) T Σ ` 2C F Σ ` 2¬¬C
(ii) t Σ 6` 2C and Σ ` C f Σ 6` 2¬¬C and Σ ` ¬¬C
(iii) f Σ 6` 2¬C and Σ ` ¬C t Σ 6` 2¬C and Σ ` ¬C
(iv) F Σ ` 2¬C T Σ ` 2¬C

By induction hypothesis, we have the conditions for C, and it is easy to see that the
conditions for B i.e. ¬C are provable. Indeed, (iii) and (iv) are obvious, and the
others are provable (cf. (6), (7), (8) and (9)).
Case 2. If B = 2C, then we have the following four cases.
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cases vΣ(C) condition for C vΣ(B) condition for B i.e. 2C
(i) T Σ ` 2C T, t Σ ` 2C
(ii) t Σ 6` 2C and Σ ` C f , F Σ ` ¬2C
(iii) f Σ 6` 2¬C and Σ ` ¬C f , F Σ ` ¬2C
(iv) F Σ ` 2¬C f , F Σ ` ¬2C

By induction hypothesis, we have the conditions for C, and we can see that the
conditions for B i.e. 2C are provable. Indeed, (i) and (ii) are obvious, and the
others can be proved by (LT).
Case 3. If B = 3C, then we have the following four cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. 3C
(i) T Σ ` 2C T, t Σ ` 3C
(ii) t Σ 6` 2C and Σ ` C T, t Σ ` 3C
(iii) f Σ 6` 2¬C and Σ ` ¬C T, t Σ ` 3C
(iv) F Σ ` 2¬C f , F Σ ` ¬3C

By induction hypothesis, we have the conditions for C, and we can see that the
conditions for B i.e. 3C are provable. Indeed, (i) and (ii) are provable by (LT) and
(LM2), (iii) is provable by (LM3), and (iv) is provable by (LM1).
Case 4. If B = C→D, then we have the following 11 cases.
cases vΣ(C) condition for C vΣ(D) condition for D vΣ(B) condition for B i.e. C→D
(i) F Σ ` 2¬C any — T Σ ` 2(C→D)
(ii) any — T Σ ` 2D T Σ ` 2(C→D)
(iii) T Σ ` 2C t Σ 6` 2D & Σ ` D t Σ 6` 2(C→D) & Σ ` (C→D)
(iv) T Σ ` 2C f Σ 6` 2¬D & Σ ` ¬D f Σ 6` 2¬(C→D) & Σ ` ¬(C→D)
(v) T Σ ` 2C F Σ ` 2¬D F Σ ` 2¬(C→D)
(vi) t Σ 6` 2C & Σ ` C t Σ 6` 2D & Σ ` D T,t Σ ` C→D
(vii) t Σ 6` 2C & Σ ` C f Σ 6` 2¬D & Σ ` ¬D f Σ 6` 2¬(C→D) & Σ ` ¬(C→D)
(viii) t Σ 6` 2C & Σ ` C F Σ ` 2¬D f Σ 6` 2¬(C→D) & Σ ` ¬(C→D)
(ix) f Σ 6` 2¬C & Σ ` ¬C t Σ 6` 2D & Σ ` D T,t Σ ` C→D
(x) f Σ 6` 2¬C & Σ ` ¬C f Σ 6` 2¬D & Σ ` ¬D T,t Σ ` C→D
(xi) f Σ 6` 2¬C & Σ ` ¬C F Σ ` 2¬D t Σ 6` 2(C→D) & Σ ` (C→D)

By induction hypothesis, we have the conditions for C and D, and we can see that
the conditions for B i.e. C→D are provable as follows:

• For (i) and (ii), use (LK5) and (LK6) respectively.
• For (iii), Σ ` C→D follows immediately by Σ ` D and (Ax1). For the other
half, use (LK).
• For (iv), Σ ` ¬(C→D) follows in view of (4). For the other half, by (LK4).
• For (v), just use (2).
• For (vi) and (ix), just use (Ax1).
• For (vii) and (viii), Σ ` ¬(C→D) follows in view of (4). For the other half,
by (LK3).
• For (x), just use (5).
• For (xi), Σ ` C→D follows in view of (Ax1). For the other half, by (LK1).

This completes the proof.
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Remark 25. Note that the above Definition 23 shows us the intuitive reading of the
four truth values. That is, T, t, f and F can be read as necessarily true, contingently
true, contingently false and necessarily false.

Based on these, we are now ready to prove the completeness of T−.
Theorem 1 (Completeness for T−). If Γ |=legal-T A then Γ `T− A.
Proof. We prove the contrapositive. Suppose that Γ 6`T− A. Then by Lemma 22,
we have an A-saturated set Σ0 such that Γ ⊆ Σ0. In view of Lemma 24, we can
define a legal-T-valuation vΣ0 such that vΣ0(B) ∈ D for all B ∈ Γ and vΣ0(A) 6∈ D.
Thus we have Γ 6|=legal-T A, as desired.

Remark 26. Ivlev also formulates a very similar system to T− in [9, p.116] and
[10, p.108] where the system is called Sa+. The main difference lies in his additional
rule that “we can replace any number of occurrences of ¬¬A by A and vice versa.”
([9, p.115], in our notation). Unfortunately, this rule leads to a system which is not
sound with respect to Ivlev’s semantics. See §3.3 for a further discussion.

For the completeness of T, we need one more lemma.
Lemma 27. Let Γ be a T-relatively maximal set. If vΓ is a legal-T-valuation, then
vΓ is also an mth-level-T-valuation for every m ≥ 1, and thus a T-valuation.
Proof. By induction on m. For the base case, we prove that vΓ is 1st-level-T-
valuation. Let A be a sentence that is true for all legal-T-valuations. Assume, for
reductio, that 6` A. Then by Lemma 22, there is an A-saturated set Σ. Now let
vΣ be the legal-T-valuation generated by Σ. By the definition of vΣ, we have that
Σ 6` A, i.e. v(A) 6∈ D. But this contradicts our assumption that A is true for all
legal-T-valuations. Therefore, we have proved that ` A. Then by (RN), we obtain
` 2A. By the definition of vΓ, we obtain that vΓ(A) = T, as desired.

For the induction step, assume that vΓ is an mth-level-T-valuation, and let A
be a sentence that is true for all mth-level-T-valuations. Assume, for contradiction,
that 6` A. Then by Lemma 22, there is an A-saturated set Σ. Now let vΣ be the
legal-T-valuation generated by Σ. By induction hypothesis, we have that vΣ is an
mth-level-T-valuation. Moreover, by the definition of vΣ, we have that Σ 6` A, i.e.
v(A) 6∈ D. But this contradicts our assumption that A is true for all mth-level-T-
valuations. Therefore, we have proved that ` A. Then by (RN), we obtain ` 2A.
By the definition of vΓ, we obtain that vΓ(A) = T, as desired.

Remark 28. Note that this lemma is not relying on anything specific in the modal
logic T, but only needs the rule of necessitation from a proof-theoretical perspec-
tive. Therefore, this lemma can be proved for any normal modal logic if the legal
valuations are defined appropriately.
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And now we are ready to prove completeness for T.

Theorem 2 (Completeness for T). If |=T A then `T A.

Proof. We prove the contrapositive. Suppose that 6`T A. Then by Lemma 22, we
have an A-saturated set Σ0 such that Σ0 6` A. In view of Lemma 24, we can define
a legal valuation vΣ0 , and by Lemma 27, this vΣ0 is also a T-valuation. And since
we have vΣ0(A) 6∈ D, it is also the case that vΣ0(A) 6= T (since vΣ0(A) = T implies
that vΣ0(A) ∈ D) and thus we obtain 6|=T A, as desired.

This completes the proof for the soundness and completeness result for T. The
completeness for S4 and S5 only requires some small changes, as we shall see in the
next section. Before turning to that, we make a brief remark on Ivlev’s system.

3.3 A discussion on the result of Ivlev
In [9], Ivlev introduces a Hilbert style system called Sa+ which is similar to T− and
formulated in the same language as in this paper. The main difference lies in an
additional rule for substituting double negations. Also, the set of axioms is slightly
different, as follows.

Definition 29. The system Sa+ consists of the following axiom schemata and rules
of inference.

A→(B→A) (Ax1)
(A→(B→C))→((A→B)→(A→C)) (Ax2)
(¬B→¬A)→(A→B) (Ax3)
2A→A (AM1)
A→3A (AM2)
¬2¬A→3A (AM3)
3A→¬2¬A (AM4)
A A→B

B
(MP)

¬3A→2(A→B) (AM5)
2B→2(A→B) (AM6)
2(A→B)→(2A→2B) (AM7)
2(A→B)→(3A→3B) (AM8′′)
3(A→B)→(2A→3B) (AM9)
3B→3(A→B) (AM10)
3¬A→3(A→B) (AM11)

B[A]
B[¬¬A]

B[¬¬A]
B[A] (RI)

We write `Sa+ A if there is a sequence of formulas B1, . . . , Bn, A (n ≥ 0), such that
every formula in the sequence either (i) is an axiom of Sa+; or (ii) is obtained by
(MP) or (RI) from formulas preceding it in the sequence.

Note, that Ivlev formulated the rule (RI) as follows: “we can replace any number
of occurrences of ¬¬A by A and vice versa” ([9, p.115]). But, this means (RI) is a
particular substitution rule.
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Now, the semantic consequence relation considered by Ivlev is the legal-T-
consequence introduced in this paper (cf. Definition 3).

Observation 30. `Sa+ 22A→22¬¬A but 6|=legal-T 22A→22¬¬A.

Proof. For the former, by the tautology ‘22A→22A’ and (RI). For the latter,
take a function v0 : Form→V such that v0(A) = T, v0(2A) = T, v0(22A) = T,
v0(2¬¬A) = t and v0(22¬¬A) = F. Then this is a legal-T-valuation by which we
obtain v0(22A→22¬¬A) = F 6∈ D, as desired.

In view of the above observation, we obtain that the system Sa+ is not sound
with respect to the semantics.

4 Extending the results to S4 and S5
As observed by Kearns, we obtain the soundness and completeness results for S4
and S5 by some simple changes. First we revisit them, and then show that some
simplification is possible as well.

4.1 Modifications in semantics and proof theory
Definition 31. An S4- and S5-Nmatrix is obtained by replacing the conditions for
2̃ and 3̃ as in the following tables 1 and 2 respectively:

A 2̃A 3̃A
T T T
t f , F T, t
f f , F T, t
F F F
Table 1 (for S4)

A 2̃A 3̃A
T T T
t F T
f F T
F F F
Table 2 (for S5)

Based on these, legal valuations, legal semantic consequence relations, valuations
and consequence relations are all defined as in the cases for T− and T.

Definition 32. The systems S4 and S5 are obtained by adding (L4) and (M5) to
T and S4 respectively.

2A→22A (L4) 3A→23A (L5)
Moreover, we obtain S4− by adding the following to T−:

2A→22A (L4)
33A→3A (M4)

2A→23A (L4’)
32A→3A (M4’)
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Finally, we obtain S5− by adding the following to S4−:

3A→23A (L5) 32A→2A (M5)
The consequence relations are defined as in Definition 11.

4.2 Soundness
What we need to do is to check the validity of the additional axioms with respect
to the semantics which is rather straightforward.

Proposition 33 (Soundness for S4−, S5−, S4 and S5). We have the following.
• If Γ `S4− A then Γ |=legal-S4 A.
• If Γ `S5− A then Γ |=legal-S5 A.

• If `S4 A then |=S4 A.
• If `S5 A then |=S5 A.

Proof. For S4−, S5−, we only need to check that the axioms we added to obtain
S4− and S5− are legal-S4-tautologies and legal-S5-tautologies respectively. For S4
and S5, just apply the proof for Proposition 16.

4.3 Completeness
We now turn to completeness. Again, the changes we need to make are all something
expected.

Lemma 34. If Σ is a S4-relatively maximal set then vΣ is a legal-S4-valuation.

Proof. We only need to take care of 2 and 3.
Case 1. If B = 2C, then we have the following four cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. 2C
(i) T Σ ` 2C T Σ ` 22C
(ii) t Σ 6` 2C and Σ ` C f , F Σ ` ¬2C
(iii) f Σ 6` 2¬C and Σ ` ¬C f , F Σ ` ¬2C
(iv) F Σ ` 2¬C F Σ ` 2¬2C

By induction hypothesis, we have the conditions for C, and we can prove the condi-
tions for B i.e. 2C as follows. (ii) and (iii) are already covered in T−. For (i) and
(iv), just use (L4) and (M4’) respectively.
Case 2. If B = 3C, then we have the following four cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. 3C
(i) T Σ ` 2C T Σ ` 23C
(ii) t Σ 6` 2C and Σ ` C T, t Σ ` 3C
(iii) f Σ 6` 2¬C and Σ ` ¬C T, t Σ ` 3C
(iv) F Σ ` 2¬C F Σ ` 2¬3C
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By induction hypothesis, we have the conditions for C, and we can prove the condi-
tions for B i.e. 3C as follows. (ii) and (iii) are already covered in T−. For (i) and
(iv), just use (L4’) and (M4) respectively. This completes the proof.

Lemma 35. If Σ is a S5-relatively maximal set then vΣ is a legal-S5-valuation.

Proof. We only need to take care of 2 and 3.
Case 1. If B = 2C, then we have the following four cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. 2C
(i) T Σ ` 2C T Σ ` 22C
(ii) t Σ 6` 2C and Σ ` C F Σ ` 2¬2C
(iii) f Σ 6` 2¬C and Σ ` ¬C F Σ ` 2¬2C
(iv) F Σ ` 2¬C F Σ ` 2¬2C

By induction hypothesis, we have the conditions for C, and we can prove the con-
ditions for B i.e. 3C as follows. Since (i) and (iv) are already covered by S4−, we
only consider (ii) and (iii). For (ii), it is sufficient to prove that Σ 6` 2¬2C implies
Σ ` 2C. Now, Σ 6` 2¬2C implies Σ ` ¬2¬2C, i.e. Σ ` 32C and by (M5) this
implies Σ ` 2C as desired. For (iii), it is sufficient to prove that Σ 6` 2¬2C implies
Σ 6` ¬C. So, assume Σ 6` 2¬2C. Then we have Σ ` ¬2¬2C, and so Σ ` 32C.
This then implies Σ ` C, i.e. Σ 6` ¬C, by (M5) and (LT).
Case 2. If B = 3C, then we have the following four cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. 3C
(i) T Σ ` 2C T Σ ` 23C
(ii) t Σ 6` 2C and Σ ` C T Σ ` 23C
(iii) f Σ 6` 2¬C and Σ ` ¬C T Σ ` 23C
(iv) F Σ ` 2¬C F Σ ` 2¬3C

By induction hypothesis, we have the conditions for C, and we can prove the con-
ditions for B i.e. 3C as follows. Since (i) and (iv) are already covered by S4−,
we only consider (ii) and (iii). For (ii), it is sufficient to prove that Σ ` C implies
Σ ` 23C but this is easy in the light of (LT) and (L5). For (iii), it is sufficient to
prove that Σ 6` 2¬C implies Σ ` 23C. But this is easy again in the light of (LM2)
and (L5). This completes the proof.

Theorem 3 (Completeness for S4−, S5−, S4 and S5). We have the following.
• If Γ |=legal-S4 A then Γ `S4− A.
• If Γ |=legal-S5 A then Γ `S5− A.

• If |=S4 A then `S4 A.
• If |=S5 A then `S5 A.

Proof. Similar to the proofs of Theorems 1 and 2, by making use of Lemmas 34 and
35 instead of Lemma 24. We leave the details to the reader.
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4.4 Remarks on mth-level-valuations
In defining valuations, Kearns introduced a whole hierarchy of mth-level-valuations.
However, it turns out that this is not necessary in the case for S4 and S5. To this
end, we first introduce another semantic consequence relation, and then prove its
completeness with respect to the proof theory presented above. In the following, we
will only deal with S5 since the case for S4 is exactly the same.

Definition 36. Let v be a function v : Form→V. Then, v is an sS5-valuation
(simplified S5-valuation) iff v is mth-level-S5-valuation for every m ∈ {0, 1}.

Definition 37. A is an sS5-tautology (|=sS5 A) iff v(A) = T for all sS5-valuations
v.

Remark 38. Compared to the earlier definition of S5-valuations, we only have two
levels, instead of having the whole infinite hierarchy. Note here that the notion of
an sS5-valuation and the notion of a 1st-level-S5-valuations are exactly the same.7

Now we prove the soundness and completeness. Let’s begin with the soundness.

Proposition 39 (Soundness for sS5). If `S5 A then |=sS5 A.

Proof. It suffices to show that the axioms are sS5-tautologies, and the rules of
inference preserve the truth value T. For the axioms, we have by Proposition 33 that
all axioms are legal-S5-tautologies. So, for all sS5-valuations, axioms are assigned
the value T. Thus it remains to check the validity of the rules.

For (MP), assume that A and A→B are sS5-tautologies. Then we have that
v(A) = v(A→B) = T for all sS5-valuations which is also a legal-S5-valuation, and
by the truth table for →, we obtain that v(B) = T, i.e. B is a sS5-tautology, as
desired. Similarly, for (RN), we assume that A is a sS5-tautology, and it follows
that v(A) = T for all sS5-valuations. Therefore, by the truth table for 2, we obtain
that v(2A) = T for all sS5-valuations, i.e. 2A is a sS5-tautology, as desired. This
completes the proof.

Remark 40. The key here is that once formulas take the value T, then the boxed
formulas also take the value T. This is the feature enjoyed by S4 and S5, but not
by T.

For the completeness, we do not have to add anything new.

Theorem 4 (Completeness for sS5). If |=sS5 A then `S5 A.
7We would like to thank an anonymous referee for the suggestion to clarify this point.
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Proof. We prove the contrapositive. Suppose that 6`S5 A. Then by Lemma 22, we
have an A-saturated set Σ0 such that Σ0 6` A. In view of Lemma 35, vΣ0 is a legal-
S5-valuation, and by Lemma 27, this vΣ0 is also an sS5-valuation. (Here, we only
need a special case of Lemma 27 in which m = 1.) And since we have vΣ0(A) 6∈ D,
it is also the case that vΣ0(A) 6= T (since vΣ0(A) = T implies that vΣ0(A) ∈ D) and
thus we have 6|=sS5 A, as desired.

Remark 41. We have established that we do not need the whole hierarchy of
valuations for S4 and S5. One of the obvious properties of S4 and S5 is that there
are only finitely many iterated modalities, and this is not the case in other modal
logics we handle in this paper. There might be a deeper relation between the iterated
modalities and the ‘height’ of the hierarchy, but we will leave this topic for further
investigation.

Remark 42. Even though we were able to simplify the ‘height’ of the mth-level-
valuations for the normal modal logics S4 and S5 from possibly infinite levels to
only two levels, this does not mean that finding models or giving counter-models
for formulas becomes an easy task. On the contrary, when calculating models (or
counter models) of certain formulas one never uses full valuations but only partial
valuations, i.e., only those valuations which are relevant for a certain sentence.8 In
Remark 10, we dropped a hint that Kearns’ semantics lacks analyticity in languages
with defined operators. But, this is even an issue in the language used in this paper.
Take for instance the following S4-valid formula, 2(p→q)→2(2p→2q). At first
sight, it seems to be the case that this formula is not valid in Kearns’ semantics by
considering the following partial valuation:

2 (p → q) → 2 (2 p → 2 q)
T t T t F F f t t f t

But, as pointed out in Remark 10, we have to take into account the valuations
of all relevant legal-S4-tautologies. Then the problematic valuation in the given
example is ruled out by the mth-level-S4-valuations of the axiom (LK). However,
even though we can prove the existence of mth-level-valuations for every tautology
(cf. Lemma 27 and Theorem 2), it is not obvious that we only need to check finitely
many relevant formulas for any given formula.

This observation imposes a threat to those who want to establish this semantics
as an alternative semantics for normal modal logics and their relatives, such as
intuitionistic logic, in the context of computer science. Nevertheless, we are inclined
to say, at least for the moment, that we are not concerned with decision procedures.

8We would like to thank an anonymous referee for pointing this out.
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Our interest in this semantics, despite this paper being technical, is a philosophical
one, and thus we leave this interesting topic for future investigation.

5 Generalizing the result of Kearns
One natural question regarding Kearns’ result is to ask how we can capture other
normal modal logics such as K with the same style. To the best of the authors’
knowledge, this has not been addressed elsewhere, and so we will here give an answer
to this. First, we deal with K, and then move on to KD and KTB.

5.1 Modal logic K
We first introduce the Nmatrix for the modal logic K which requires eight truth
values.

Definition 43. A K-Nmatrix for L is a tuple M = 〈V,D,O〉, where:

(a) V = {T, t1, t, t2, f2, f , f1, F},
(b) D = {T, t1, t, t2},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary function
∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 2̃A 3̃A
T F D D
t1 f1 D F
t f F D

t2 f2 F F
f2 t2 D D
f t F D
f1 t1 D F
F T F F

A→̃B T t1 t t2 f2 f f1 F
T T t1 t t2 f2 f f1 F
t1 T t1 t t2 f2 f f1 F
t T T T, t T, t f2 f2, f f2 f2, f

t2 T T T, t T, t f2 f2, f f2 f2, f
f2 T t1 t t2 T t t1 t2
f T T T, t T, t T T, t T T, t
f1 T t1 t t2 T t t1 t2
F T T T, t T, t T T, t T T, t

where F = {f2, f , f1, F}.

A legal-K-valuation in a K-Nmatrix M is a function v : Form→V that satisfies
the following condition for every n-ary connective ∗ of L and A1, . . . , An ∈ Form:
v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An)).

Definition 44. A is a legal-K-consequence of Γ (Γ |=legal-K A) iff for all legal
valuations v, if v(B) ∈ D for all B ∈ Γ then v(A) ∈ D. In particular, A is a
legal-K-tautology iff v(A) ∈ D for all legal-K-valuations v.

Definition 45. Let v be a function v : Form→V. Then,

• v is a 0th-level-K-valuation if v is a legal-K-valuation.
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• v is a m+1st-level-K-valuation iff v is an mth-level-K-valuation and for every
sentence A, v(A) ∈ {T, t1} holds if v′(A) ∈ D for all mth-level-K-valuations
v′.

Based on these, we define v to be a K-valuation iff v is mth-level-K-valuation for
every m ≥ 0.

Definition 46. A is a K-tautology (|=K A) iff v(A)∈{T, t1} for all K-valuations v.

Remark 47. Note that we have the condition v(A) ∈ {T, t1} for K-valuations, not
only v(A) = T.

We now turn to the proof theory. Again, we introduce two systems, one being
the well-known system K, and the other is a subsystem of K.

Definition 48. First, the system K is obtained by eliminating the axiom (LT)
from the system T. Second, we define a subsystem of K, referred to as K−, which
is obtained by eliminating (RN) and adding the following formulas:

3¬A→¬2A (LM3)
¬2A→3¬A (LM4)
3(A→B)→(2A→3B) (LK2)

2¬(A→B)→2A (LK3)
2¬(A→B)→2¬B (LK4)
3¬(A→B)→3¬B (LK6)

The consequence relations are defined as in Definition 11.

We now turn to prove the soundness and completeness. First, we deal with the
soundness result.

Proposition 49 (Soundness for K−). If Γ `K− A then Γ |=legal-K A.

Proof. It suffices to check that all axioms are legal-K-tautologies, and that the rule
of inference (MP) preserves the designated value.

The following is the analogue of Lemma 15.

Lemma 50. Assume that `K A and that the length of the proof for A is m. Then,
for all mth-level-K-valuations v, v(A) ∈ D.

Proof. Similar to the proof of Lemma 15. Details are left to the reader.

Once we have the lemma, the soundness follows immediately.

Proposition 51 (Soundness for K). If `K A then |=K A.
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Proof. Let the length of the proof for A be m. Then, by the above lemma, A
is true for every mth-level-K-valuation. Since K-valuations are also mth-level-K-
valuations, we obtain that A is true for all K-valuations, as desired.

Now we turn to prove the completeness.

Lemma 52. Let Σ be a K-relatively maximal set, and define a function vΣ from
Form to V as follows:

vΣ(B) :=





T if Σ ` 2B and Σ ` B and Σ ` 3B

t1 if Σ ` 2B and Σ ` B and Σ 6` 3B

t if Σ 6` 2B and Σ ` B and Σ ` 3B

t2 if Σ 6` 2B and Σ ` B and Σ 6` 3B

f2 if Σ ` 2B and Σ 6` B and Σ ` 3B

f if Σ 6` 2B and Σ 6` B and Σ ` 3B

f1 if Σ ` 2B and Σ 6` B and Σ 6` 3B

F if Σ 6` 2B and Σ 6` B and Σ 6` 3B

Then, vΣ is a well-defined legal-K-valuation.

Proof. The details are spelled out in the appendix.

Remark 53. The reason we need eight values is partially explained in the above
Lemma 52. Indeed, unlike the extensions of the modal logic T, necessity and pos-
sibility behave in an “independent” manner, in the sense that the former does not
necessarily imply the latter, and thus we need more combinations of modalities. Also
note that if we eliminate the values t1, t2, f1 and f2, then we obtain the definition
of the legal-T-valuation (cf. Definition 23).

Theorem 5 (Completeness for K−). If Γ |=legal-K A then Γ `K− A.

Proof. Similar to the proof of Theorem 1, by Lemma 52 instead of Lemma 24. We
leave the details to the reader.

Lemma 54. Let Γ be a K-relatively maximal set. If vΓ is a legal-K-valuation, then
vΓ is also an mth-level-K-valuation for every m ≥ 1, and thus a K-valuation.

Proof. Similar to the proof of Lemma 27. We leave the details to the reader.

Theorem 6 (Completeness for K). If |=K A then `K A.

Proof. Similar to the proof of Theorem 2, by Lemmas 52 and 54 instead of Lem-
mas 24 and 27 respectively. We leave the details to the reader.
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5.2 Modal logic KD
The semantics will be based on a six-valued Nmatrix. More specifically, the truth
values t1, f1 will be eliminated from the K-Nmatrix in order to obtain the Nmatrix
for KD.

Definition 55. A D-Nmatrix for L is a tuple M = 〈V,D,O〉, where:

(a) V = {T, t, t2, f2, f , F},
(b) D = {T, t, t2},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary function
∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 2̃A 3̃A
T F D D
t f F D
t2 f2 F F
f2 t2 D D
f t F D
F T F F

A→̃B T t t2 f2 f F
T T t t2 f2 f F
t T T, t T, t f2 f2, f f2, f
t2 T T, t T, t f2 f2, f f2, f
f2 T t t2 T t t2
f T T, t T, t T T, t T, t
F T T, t T, t T T, t T, t

where F = {f2, f , F}.

A legal-D-valuation in a D-Nmatrix M is a function v : Form→V that satisfies
the following condition for every n-ary connective ∗ of L and A1, . . . , An ∈ Form:
v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An)).

Definition 56. A is a legal-D-consequence of Γ (Γ |=legal-D A) iff for all legal-D-
valuations v, if v(B) ∈ D for all B ∈ Γ then v(A) ∈ D. In particular, A is a
legal-D-tautology iff v(A) ∈ D for all legal-D-valuations v.

Definition 57. Let v be a function v : Form→V. Then,

• v is a 0th-level-D-valuation if v is a legal-D-valuation.
• v is a m + 1st-level-D-valuation iff v is an mth-level-D-valuation and assigns
value the T to every sentence A if v′(A) ∈ D for all mth-level-D-valuations v′.

Based on these, we define v to be a D-valuation iff v is mth-level-D-valuation for
every m ≥ 0.

Definition 58. A is a D-tautology (|=D A) iff v(A) = T for all D-valuations v.

Proof theory is obtained in an expected manner.
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Definition 59. The systemsD andD− are obtained by adding the following formula
to K and K− respectively.

2A→3A (D1)

The consequence relations are defined as in Definition 11.

Remark 60. Note that the above D-Nmatrix can be refined by adding further
axioms toD−. More specifically, we may replace the Nmatrix for→ by the following
Nmatrix, which can be found in [5, p.35], if we add axioms (LK1) and (LK5).

A→̃B T t t2 f2 f F
T T t t2 f2 f F
t T T, t t f2 f2, f f
t2 T T T f2 f2 f2
f2 T t t2 T t t2
f T T, t t T T, t t
F T T T T T T

However, we presented the above Nmatrix as it is obtained straightforwardly from
our Nmatrix for K which is not presented elsewhere to the best of the authors’
knowledge.

Now, we first consider the soundness.

Proposition 61 (Soundness for D− and D). If Γ `D− A then Γ |=legal-D A and if
`D A then |=D A.

Proof. For the former, it suffices to check that all axioms are legal-D-tautologies,
and that the rule of inference (MP) preserves the designated values. For the latter,
exactly as in Proposition 51.

For the completeness proof, we need the following as before.

Lemma 62. Let Σ be a D-relatively maximal set, and define a function vΣ from
Form to V as follows:

v0(B) :=





T if Σ ` 2B and Σ ` B and Σ ` 3B

t if Σ 6` 2B and Σ ` B and Σ ` 3B

t2 if Σ 6` 2B and Σ ` B and Σ 6` 3B

f2 if Σ ` 2B and Σ 6` B and Σ ` 3B

f if Σ 6` 2B and Σ 6` B and Σ ` 3B

F if Σ 6` 2B and Σ 6` B and Σ 6` 3B

Then, vΣ is a well-defined legal-D-valuation.
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Proof. Note first that v0 is well-defined in view of (D1). Then the desired result can
be proved by induction on the number n of connectives.
(Base): For atomic formulas, just note that Σ is consistent which implies that
Σ ` A or Σ ` ¬A.
(Induction step): We split the cases based on the connectives. The details are
exactly the same as in the case for K except that we eliminate the values t1, f1.

Remark 63. The above lemma is easily obtained by eliminating the two values t1
and f1 in Lemma 52. Indeed, the conditions for the two values become not satisfiable
in view of the additional axiom (D1).

Now we can prove the completeness.

Theorem 7 (Completeness for D− and D). If Γ |=legal-D A then Γ `D− A, and if
|=D A then `D A.

Proof. Similar to the proofs of Theorems 1 and 6, by Lemma 62 instead of Lemma 24.
We leave the details to the reader.

5.3 Modal logic KTB
Again, the semantics will be based on a six-valued Nmatrix. Roughly speaking, we
need to split the values t and f into two values respectively.

Definition 64. A B-Nmatrix for L is a tuple M = 〈V,D,O〉, where:

(a) V = {T, t3, t4, f4, f3, F},
(b) D = {T, t3, t4},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary function
∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 2̃A 3̃A
T F D T
t3 f3 f4, f3 T
t4 f4 F T
f4 t4 F T
f3 t3 F t3, t4
F T F F

A→̃B T t3 t4 f4 f3 F
T T t3, t4 t3, t4 f4, f3 f4, f3 F
t3 T D D f3, f4 f4, f3 f4, f3
t4 T D D f3, f4 f4, f3 f4, f3
f4 T D D D D t3, t4
f3 T D D D D t3, t4
F T T T T T T

where F = {f4, f3, F}.

A legal-B-valuation in a B-Nmatrix M is a function v : Form→V that satisfies
the following condition for every n-ary connective ∗ of L and A1, . . . , An ∈ Form:
v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An)).
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Definition 65. A is a legal-B-consequence of Γ (Γ |=legal-B A) iff for all legal-B-
valuations v, if v(B) ∈ D for all B ∈ Γ then v(A) ∈ D. In particular, A is a
legal-B-tautology iff v(A) ∈ D for all legal-B-valuations v.

Definition 66. Let v be a function v : Form→V. Then,

• v is a 0th-level-B-valuation if v is a legal-B-valuation.
• v is a m + 1st-level-B-valuation iff v is an mth-level-B-valuation and assigns

the value T to every sentence A if v′(A) ∈ D for all mth-level-B-valuations v′.

Based on these, we define v to be a B-valuation iff v is an mth-level-B-valuation for
every m ≥ 0.

Definition 67. A is a B-tautology (|=B A) iff v(A) = T for all B-valuations v.

Now we introduce the proof theory.

Definition 68. The system B is obtained by adding (LB) to T. Moreover, the
system B− is obtained by adding the following formulas to T−:

A→23A (LB)
32A→A (MB)
23¬A→¬32A (B1)

¬32A→23¬A (B2)
32¬A→¬23A (B3)
¬23A→32¬A (B4)

The consequence relations are defined as in Definition 11.

We will use the following in the completeness proof.

Proposition 69. The following formulas are provable in B−:

32A→32¬¬A (10) 32¬¬A→32A (11) ¬A→2¬2A (12)

Proof. (10) is provable by (B1) and (B4), and (11) is provable by (B3) and (B2).
Finally, (12) is provable by making use of (MB) and (LM2).

We now turn to prove the soundness and completeness. As expected, soundness
is straightforward.

Proposition 70 (Soundness for B− and B). If Γ `B− A then Γ |=legal-B A and if
`B A then |=B A.

Proof. For the former, it suffices to check that all axioms are legal-B-tautologies,
and that the rule of inference (MP) preserves the designated values. For the latter,
the proof runs exactly as in Proposition 51.

839



Omori and Skurt

For the completeness proof, we need the following as before.

Lemma 71. Let Σ be a B-relatively maximal set, and define a function vΣ from
Form to V as follows:

v0(B) :=





T if Σ ` 2B

t3 if Σ 6` 2B and Σ ` 32B and Σ ` B

t4 if Σ 6` 2B and Σ 6` 32B and Σ ` B

f4 if Σ 6` 2¬B and Σ 6` 32¬B and Σ ` ¬B

f3 if Σ 6` 2¬B and Σ ` 32¬B and Σ ` ¬B

F if Σ ` 2¬B

Then, vΣ is a well-defined legal-B-valuation.

Proof. The details are spelled out in the appendix.

Remark 72. If we take the disjunction of the conditions for t3 and t4 (f3 and f4),
then we obtain the condition for the value t (f).

Now we can prove the completeness.

Theorem 8 (Completeness for B− and B). If Γ |=legal-B A then Γ `B− A, and if
|=B A then `B A.

Proof. Similar to the proofs of Theorems 1 and 6, by Lemma 71 instead of Lemma 24.
We leave the details to the reader.

6 Conclusion
The present paper was focusing on the technical aspects of Kearns’ result. We clar-
ified his original approach and put it in the context of non-deterministic semantics.
Some of the results we presented have been already reported independently in [5].
The results not included in [5] that deserve special attention are as follows. First, we
simplified the semantics of Kearns for S4 and S5 (cf. §4.4). Second, we introduced
Kearns’ style semantics for K and proved its soundness and completeness with re-
spect to the Hilbert-style proof theory (cf. §5.1). Finally, we pointed out an error
in the results of Ivlev (cf. §3.3).

In view of the result that Kripke’s semantics and Kearns’ semantics are equiva-
lent, we now leave it to the reader to decide if the latter is challenging the former
on an ontological level. We understand the point of Kearns in claiming that his
semantics is free of possible worlds, and if one shares the view of Kearns, then his
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semantics certainly has an advantage. However, in order to justify Kearns’ approach
philosophically for a wider audience, a lot of additional work still has to be done.
Kearns himself claimed that his approach is simplier than Kripke’s semantics for
normal modal logics since it has dispensed with possible worlds and, therefore, is
preferable (cf. [11, p.86]). Kearns did not believe in possible worlds. But the story
goes further, since now, e.g. for S5, we have to justify at least three issues, namely
four different truth-values (instead of two truth-values), non-deterministic matrices
for the non-modal connectives (instead of a deterministic matrices) and at least two
levels of valuations (instead of one level). If we compare this to the fact that we only
need to justify possible worlds for Kripkean semantics, the claim of Kearns seems
to be a bit too bold.

We just note in passing by that we can consider a two-valued, deterministic and
non-hierarchic semantics which overcomes all the difficulties of Kearns’ semantics
and also does not involve possible worlds. The resulting system will be something
very close to the proposal of Jean-Yves Béziau in [3], being a strict extension of
modal logic S5. Note that the presentation in [3] deploys four-valued semantics,
but this can be easily turned into a two-valued semantics in the manner of Michael
Dunn’s relational semantics. The point to be emphasized here is that despite the
argument of Josep Maria Font and Petr Hájek in [8] against Jan Łukasiewicz, the
many-valued approach to modality deserves further attention. We shall keep the
details for another occasion.

We finish this paper by pointing out three possible directions for future research.
First, considering the tight connection between non-deterministic semantics and
sequent calculi established by Avron and his collaborators, it is interesting to examine
proof-theoretical implications of Kearns’ semantics. Due to the hierarchical aspect
of Kearns’ semantics, it is not straightforward to obtain a new perspective on the
proof theory of modal logics, but this seems to be an interesting topic.

Second, one of the virtues of Kripkean semantics is the correspondence between
axioms and the accessibility relations of the Kripke frame and it is very natural
to ask if something similar holds in Kearns’ non-deterministic semantics. Note
that many of the non-deterministic semantics given by Avron and his colleagues are
modular. But a glance at the semantics for the systems K, KD, KTB, T, S4 and
S5 introduced here reveals that if there is a correspondence it is not a simple one,
since we need to change not only the truth tables of 2 and 3 but also the ‘height’
of the mth level valuations, the set of truth-values and the set of designated values
as well.

Finally, the usual possible worlds semantics provide decision procedures for
modal logics. However, as pointed out in Remark 42, we cannot guarantee that
this will also be the case for Kearn’s semantics. We will leave this interesting topic
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for future research.
In conclusion, we hope to have shown the richness of Kearns’ semantics which

deserves further attention towards shedding some new light on modal logics.
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Appendix
In this appendix, we spell out the details of the proofs for Lemmas 52 and 71.

Proof for Lemma 52
Note first that v0 is well-defined. The desired result can be proved by induction on
the number n of connectives.
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(Base): For atomic formulas, just note that Σ is consistent which implies that
Σ ` A or Σ ` ¬A.
(Induction step): We split the cases based on the connectives.
Case 1. If B = ¬C, then we have the following eight cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. ¬C

(i) T Σ ` 2C & Σ ` C & Σ ` 3C F Σ 6` 2¬C & Σ 6` ¬C & Σ 6` 3¬C
(ii) t1 Σ ` 2C & Σ ` C & Σ 6` 3C f1 Σ ` 2¬C & Σ 6` ¬C & Σ 6` 3¬C
(iii) t Σ 6` 2C & Σ ` C & Σ ` 3C f Σ 6` 2¬C & Σ 6` ¬C & Σ ` 3¬C
(iv) t2 Σ 6` 2C & Σ ` C & Σ 6` 3C f2 Σ ` 2¬C & Σ 6` ¬C & Σ ` 3¬C
(v) f2 Σ ` 2C & Σ 6` C & Σ ` 3C t2 Σ 6` 2¬C & Σ ` ¬C & Σ 6` 3¬C
(vi) f Σ 6` 2C & Σ 6` C & Σ ` 3C t Σ 6` 2¬C & Σ ` ¬C & Σ ` 3¬C
(vii) f1 Σ ` 2C & Σ 6` C & Σ 6` 3C t1 Σ ` 2¬C & Σ ` ¬C & Σ 6` 3¬C
(viii) F Σ 6` 2C & Σ 6` C & Σ 6` 3C F Σ ` 2¬C & Σ ` ¬C & Σ ` 3¬C

By induction hypothesis, we have the conditions for C, and it is easy to see that the
conditions for B i.e. ¬C are provable.
Case 2. If B = 2C, then we have the following eight cases.
cases vΣ(C) condition for C vΣ(B) condition for B i.e. 2C
(i) T Σ ` 2C and Σ ` C and Σ ` 3C T, t1, t, t2 Σ ` 2C
(ii) t1 Σ ` 2C and Σ ` C and Σ 6` 3C T, t1, t, t2 Σ ` 2C
(iii) t Σ 6` 2C and Σ ` C and Σ ` 3C F, f1, f , f2 Σ 6` 2C
(iv) t2 Σ 6` 2C and Σ ` C and Σ 6` 3C F, f1, f , f2 Σ 6` 2C
(v) f2 Σ ` 2C and Σ 6` C and Σ ` 3C T, t1, t, t2 Σ ` 2C
(vi) f Σ 6` 2C and Σ 6` C and Σ ` 3C F, f1, f , f2 Σ 6` 2C
(vii) f1 Σ ` 2C and Σ 6` C and Σ 6` 3C T, t1, t, t2 Σ ` 2C
(viii) F Σ 6` 2C and Σ 6` C and Σ 6` 3C F, f1, f , f2 Σ 6` 2C

By induction hypothesis, we have the conditions for C, and we can see that the
conditions for B i.e. 2C are provable.
Case 3. If B = 3C, then we have the following eight cases.
cases vΣ(C) condition for C vΣ(B) condition for B i.e. 2C
(i) T Σ ` 2C and Σ ` C and Σ ` 3C T, t1, t, t2 Σ ` 3C
(ii) t1 Σ ` 2C and Σ ` C and Σ 6` 3C F, f1, f , f2 Σ 6` 3C
(iii) t Σ 6` 2C and Σ ` C and Σ ` 3C T, t1, t, t2 Σ ` 3C
(iv) t2 Σ 6` 2C and Σ ` C and Σ 6` 3C F, f1, f , f2 Σ 6` 3C
(v) f2 Σ ` 2C and Σ 6` C and Σ ` 3C T, t1, t, t2 Σ ` 3C
(vi) f Σ 6` 2C and Σ 6` C and Σ ` 3C T, t1, t, t2 Σ ` 3C
(vii) f1 Σ ` 2C and Σ 6` C and Σ 6` 3C F, f1, f , f2 Σ 6` 3C
(viii) F Σ 6` 2C and Σ 6` C and Σ 6` 3C F, f1, f , f2 Σ 6` 3C

By induction hypothesis, we have the conditions for C, and we can see that the
conditions for B i.e. 2C are provable.
Case 4. If B = C→D, then we have the following 21 cases.
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cases vΣ(C) condition for C vΣ(D) condition for D vΣ(B) condition for B i.e. C→D
(1) any — T Σ ` 2D & Σ ` D & Σ ` 3D T Σ ` 2B & Σ ` B & Σ ` 3B
(2) T, t1, f2, f1 Σ ` 2C t1 Σ ` 2D & Σ ` D & Σ 6` 3D t1 Σ ` 2B & Σ ` B & Σ 6` 3B
(3) t, t2, f , F Σ 6` 2C t1 Σ ` 2D & Σ ` D & Σ 6` 3D T Σ ` 2B & Σ ` B & Σ ` 3B
(4) T, t1, f2, f1 Σ ` 2C t Σ 6` 2D & Σ ` D & Σ ` 3D t Σ 6` 2B & Σ ` B & Σ ` 3B
(5) t, t2, f , F Σ 6` 2C t Σ 6` 2D & Σ ` D & Σ ` 3D T, t Σ ` B & Σ ` 3B
(6) T, t1, f2, f1 Σ ` 2C t2 Σ 6` 2D & Σ ` D & Σ 6` 3D t2 Σ 6` 2B & Σ ` B & Σ 6` 3B
(7) t, t2, f , F Σ 6` 2C t2 Σ 6` 2D & Σ ` D & Σ 6` 3D T, t Σ ` B & Σ ` 3B
(8) D Σ ` C f2 Σ ` 2D & Σ 6` D & Σ ` 3D f2 Σ ` 2B & Σ 6` B & Σ ` 3B
(9) Dc Σ 6` C f2 Σ ` 2D & Σ 6` D & Σ ` 3D T Σ ` 2B & Σ ` B & Σ ` 3B
(10) T, t1 Σ ` 2C & Σ ` C f Σ 6` 2D & Σ 6` D & Σ ` 3D f Σ 6` 2B & Σ 6` B & Σ ` 3B
(11) t, t2 Σ 6` 2C & Σ ` C f Σ 6` 2D & Σ 6` D & Σ ` 3D f2, f Σ 6` B & Σ ` 3B
(12) f2, f1 Σ ` 2C & Σ 6` C f Σ 6` 2D & Σ 6` D & Σ ` 3D t Σ 6` 2B & Σ ` B & Σ ` 3B
(13) f , F Σ 6` 2C & Σ 6` C f Σ 6` 2D & Σ 6` D & Σ ` 3D T, t Σ ` B & Σ ` 3B
(14) T, t1 Σ ` 2C & Σ ` C f1 Σ ` 2D & Σ 6` D & Σ 6` 3D f1 Σ ` 2B & Σ 6` B & Σ 6` 3B
(15) t, t2 Σ 6` 2C & Σ ` C f1 Σ ` 2D & Σ 6` D & Σ 6` 3D f2 Σ ` 2B & Σ 6` B & Σ ` 3B
(16) f2, f1 Σ ` 2C & Σ 6` C f1 Σ ` 2D & Σ 6` D & Σ 6` 3D t1 Σ ` 2B & Σ ` B & Σ 6` 3B
(17) f , F Σ 6` 2C & Σ 6` C f1 Σ ` 2D & Σ 6` D & Σ 6` 3D T Σ ` 2B & Σ ` B & Σ ` 3B
(18) T, t1 Σ ` 2C & Σ ` C F Σ 6` 2D & Σ 6` D & Σ 6` 3D F Σ 6` 2B & Σ 6` B & Σ 6` 3B
(19) t, t2 Σ 6` 2C & Σ ` C F Σ 6` 2D & Σ 6` D & Σ 6` 3D f2, f Σ 6` B & Σ ` 3B
(20) f2, f1 Σ ` 2C & Σ 6` C F Σ 6` 2D & Σ 6` D & Σ 6` 3D t2 Σ 6` 2B & Σ ` B & Σ 6` 3B
(21) f , F Σ 6` 2C & Σ 6` C F Σ 6` 2D & Σ 6` D & Σ 6` 3D T, t Σ ` B & Σ ` 3B

By induction hypothesis, we have the conditions for C and D, and we can see that
the conditions for B i.e. C→D are provable as follows:
For (1): (LK6), (Ax1), (LK4). For (8): (LK6), (4), (LK4). For (15): (LK6), (4), (LK3).
For (2): (LK6), (Ax1), (LK2). For (9): (LK6), (5), (LK4). For (16): (LK6), (5), (LK2).
For (3): (LK6), (Ax1), (LK3). For (10): (LK), (4), (LK4). For (17): (LK6), (5), (LK3).
For (4): (LK), (Ax1), (LK4). For (11): (4), (LK4). For (18): (LK), (4), (LK2).
For (5): (Ax1), (LK3). For (12): (LK), (5), (LK4). For (19): (4), (LK3).
For (6): (LK), (Ax1), (LK2). For (13): (5), (LK4). For (20): (LK), (5), (LK2).
For (7): (Ax1), (LK3). For (14): (LK6), (4), (LK2). For (21): (5), (LK3).
This completes the proof.

Proof for Lemma 71

Note first that v0 is well-defined in view of (LT) and (5). Then the desired result
can be proved by induction on the number n of connectives.
(Base): For atomic formulas, just note that Σ is consistent which implies that
Σ ` A or Σ ` ¬A.
(Induction step): We split the cases based on the connectives.
Case 1. If B = ¬C, then we have the following six cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. ¬C
(i) T Σ ` 2C F Σ ` 2¬¬C
(ii) t3 Σ 6` 2C and Σ ` 32C and Σ ` C f3 Σ 6` 2¬¬C and Σ ` 32¬¬C and Σ ` ¬¬C
(iii) t4 Σ 6` 2C and Σ 6` 32C and Σ ` C f4 Σ 6` 2¬¬C and Σ 6` 32¬¬C and Σ ` ¬¬C
(iv) f4 Σ 6` 2¬C and Σ 6` 32¬C and Σ ` ¬C t4 Σ 6` 2¬C and Σ 6` 32¬C and Σ ` ¬C
(v) f3 Σ 6` 2¬C and Σ ` 32¬C and Σ ` ¬C t3 Σ 6` 2¬C and Σ ` 32¬C and Σ ` ¬C
(vi) F Σ ` 2¬C F Σ ` 2¬C

By induction hypothesis, we have the conditions for C, and it is easy to see that the
conditions for B i.e. ¬C are provable. Indeed, (ii) and (iii) are provable in view of
(10) and (11) respectively, and others immediate.
Case 2. If B = 2C, then we have the following six cases.
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cases vΣ(C) condition for C vΣ(B) condition for B i.e. 2C
(i) T Σ ` 2C D Σ ` 2C
(ii) t3 Σ 6` 2C & Σ ` 32C & Σ ` C f4, f3 Σ 6` 2¬2C & Σ ` ¬2C
(iii) t4 Σ 6` 2C & Σ 6` 32C & Σ ` C F Σ ` 2¬2C
(iv) f4 Σ 6` 2¬C & Σ 6` 32¬C & Σ ` ¬C F Σ ` 2¬2C
(v) f3 Σ 6` 2¬C & Σ ` 32¬C & Σ ` ¬C F Σ ` 2¬2C
(vi) F Σ ` 2¬C F Σ ` 2¬2C

By induction hypothesis, we have the conditions for C, and we can see that the
conditions for B i.e. 2C are provable. Indeed, (iii) is proved by (LM2), (iv) and (v)
are immediate by (12), (vi) is provable by combining (LT) and (12), and others are
obvious.
Case 3. If B = 3C, then we have the following six cases.

cases vΣ(C) condition for C vΣ(B) condition for B i.e. 3C
(i) T Σ ` 2C T Σ ` 23C
(ii) t3 Σ 6` 2C & Σ ` 32C & Σ ` C T Σ ` 23C
(iii) t4 Σ 6` 2C & Σ 6` 32C & Σ ` C T Σ ` 23C
(iv) f4 Σ 6` 2¬C & Σ 6` 32¬C & Σ ` ¬C T Σ ` 23C
(v) f3 Σ 6` 2¬C & Σ ` 32¬C & Σ ` ¬C t3, t4 Σ 6` 23C & Σ ` 3C
(vi) F Σ ` 2¬C F Σ ` ¬3C

By induction hypothesis, we have the conditions for C, and we can see that the
conditions for B i.e. 3C are provable. Indeed, (i) is provable by combining (LT)
and (LB), (ii) and (iii) are immediate by (LB), (iv) and (v) are provable by (B4)
and (B3) respectively, and (vi) is provable by (LM1).
Case 4. If B = C→D, then we have the following 11 cases.

cases vΣ(C) condition for C vΣ(D) condition for D vΣ(B) condition for B i.e. C→D
(i) F Σ ` 2¬C any — T Σ ` 2(C→D)
(ii) any — T Σ ` 2D T Σ ` 2(C→D)
(iii) T Σ ` 2C t3, t4 Σ 6` 2D & Σ ` D t3, t4 Σ 6` 2(C→D) & Σ ` (C→D)
(iv) T Σ ` 2C f4, f3 Σ 6` 2¬D & Σ ` ¬D f4, f3 Σ 6` 2¬(C→D) & Σ ` ¬(C→D)
(v) T Σ ` 2C F Σ ` 2¬D F Σ ` 2¬(C→D)
(vi) t3, t4 Σ 6` 2C & Σ ` C t3, t4 Σ 6` 2D & Σ ` D D Σ ` C→D
(vii) t3, t4 Σ 6` 2C & Σ ` C f4, f3 Σ 6` 2¬D & Σ ` ¬D f4, f3 Σ 6` 2¬(C→D) & Σ ` ¬(C→D)
(viii) t3, t4 Σ 6` 2C & Σ ` C F Σ ` 2¬D f4, f3 Σ 6` 2¬(C→D) & Σ ` ¬(C→D)
(ix) f4, f3 Σ 6` 2¬C & Σ ` ¬C t3, t4 Σ 6` 2D & Σ ` D D Σ ` C→D
(x) f4, f3 Σ 6` 2¬C & Σ ` ¬C f4, f3 Σ 6` 2¬D & Σ ` ¬D D Σ ` C→D
(xi) f4, f3 Σ 6` 2¬C & Σ ` ¬C F Σ ` 2¬D t3, t4 Σ 6` 2(C→D) & Σ ` (C→D)

By induction hypothesis, we have the conditions for C and D, and we can see that
the conditions for B i.e. C→D are provable as follows:

• For (i) and (ii), use (LK5) and (LK6) respectively.
• For (iii), Σ ` C→D follows immediately by Σ ` D and (Ax1). For the other
half, assume Σ ` 2C and Σ 6` 2D. Then the latter is equivalent to Σ ` ¬2D,
and so in view of (1), we obtain Σ ` ¬2(C→D) i.e. Σ 6` 2(C→D), as desired.
• For (iv), Σ ` ¬(C→D) follows in view of (4). For the other half, by (LK4).
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• For (v), assume Σ ` 2C and Σ 6` 2¬(C→D). Then by the latter we have
Σ ` 3(C→D). Therefore, in view of (LK2), we obtain Σ ` 3D, i.e. Σ 6` 2¬D,
as desired.
• For (vi) and (ix), just use (Ax1).
• For (vii) and (viii), Σ ` ¬(C→D) follows in view of (4). For the other half,
by (LK3).
• For (x), just use (5).
• For (xi), Σ ` C→1D follows in view of (Ax1). For the other half, by (LK1).

This reuses the proof in the case of the modal logic T, by splitting t and f into t3, t4
and f4, f3 respectively. This completes the proof.
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Three Grades of Agnostic Involvement

Gillman Payette
University of British Columbia

Abstract
In this paper I explore agnosticism from an epistemic logic perspective. The

view of agnosticism I take is that one is agnostic about a proposition when
one believes that proposition to be consistent with what one knows. I look at
how various assumptions about epistemic and doxastic logic interact with ways
that one can formulate agnosticism given the basic intuitive reading. I focus on
agnosticism about certain philosophical and theological positions that can be
formulated in terms of all true propositions being such and such. For example,
God being the cause of all truths. I introduce modal operators to formulate
such claims and then formulate what it is to be agnostic about such claims. I
show that three formulations of agnosticism, one which is the basic formulation
and two which formulate agnosticism as a position of rational fairness, result
in problematic claims on just about all common formulations of epistemic and
doxastic logic. Essentially, what is shown is that one cannot be agnostic about
determinism, for example, while entertaining the hypothesis that particular
propositions are contingently true, e.g., I didn’t have to wear a black t-shirt
today.

1 Introduction
In this paper I will consider agnosticism, in a general sense, from the standpoint of
epistemic logic. I will argue that there is tension when we try to put agnosticism
into wide reflective equilibrium with commitments of ideal rationality as represented
by (classical) epistemic logic. The result, however, is not that one is rationally com-
mitted to belief in philosophical or theological claims, but rather that the agnostic
position about such claims is (conceptually) problematic under those assumptions.

In what follows I will first have a brief discussion about what I mean by ‘agnosti-
cism’, then, in section 2, discuss the assumptions of epistemic and doxastic logic that
The author would like to thank John Woods for reading earlier drafts of this paper, and Travis
Dumsday for some discussions of the nature of God, as well as the anonymous referees for their
comments. The author is also thankful to the Social Sciences and Humanities Research Council of
Canada for funding this research through a Banting Postdoctoral Fellowship.
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the rest of the essay will employ. In section 3, I will move to a formal representation
of the conceptions of agnosticism, and then show how those representations lead
to—perhaps—unwanted results in section 4. In the end, what we can see is that
agnosticism is incompatible with belief or disbelief in certain philosophical/theolog-
ical views under the assumptions of logical omniscience and positive introspection.
My results can be seen more as a commentary on the feasibility of representing
agnosticism in epistemic/doxastic logic than a project in logical philosophy of reli-
gion/metaphysics. I will discuss this in more detail in section 6.

Here I will return to Huxley’s Greek root of the term ‘agnosticism’ in the sense
of ‘not known’. A general explanation of agnosticism is, as Pojman puts it, the
view that “metaphysical ideas cannot be proved or disproved” [12, p. 15]. But
contemporary analytic metaphysics would disagree with such a sweeping skepticism;
we have come a long way since the logical positivism of the 1930s. If we are agnostic
about some metaphysical notion these days, it seems that we are willing to agree
that, at least, propositions about those ideas make sense. We are just unwilling to
say that we know whether they are true. The sweeping conception of agnosticism
is now referred to as ‘strong agnosticism’: one cannot know something (say ϕ).1
The sense of agnosticism that I consider in this paper would be so-called ‘weak,
local agnosticism’. It is weak in that it doesn’t deny the possibility of knowledge of
ϕ, and it is local since it only concerns knowledge of that ϕ, not a whole field of
inquiry—cf. Poidevin [11, Ch. 1].

On this view of agnosticism I am not claiming that agnosticism about ϕ is a
position in a debate about whether ϕ, it is more a position about one’s epistemic
situation relative to ϕ. I claim that being agnostic in this weak local sense is an
attitude, but it is not an attitude toward ϕ.2 Being agnostic is something an agent
does. However, an agnostic needn’t be perpetually upholding that attitude. An
agnostic can be disposed toward agnosticism, and thereby be agnostic. I will explain
this latter position on agnosticism in section 3 in relation to the formulation of
agnosticism I call 3A.

1Rosenkranz [13] refers to two kinds of strong agnosticism as levels of ‘True Agnosticism’(p.
99). The first level means that we will not be in a position to know a proposition (ϕ) which we
do not know whether it is true, given our current understanding of what it is to know something.
Rosenkranz’s idea is that sometimes in order to advance knowledge there must be a radical shift in
how things are known. First level agnosticism doesn’t deny that knowledge on the subject will ever
be had; a radical change in how we know things may be needed, cf. Kuhn [10]. The second level
true agnostic denies that we can ever be in a position to know (given our current way of knowing)
that we could ever know—radical change or not—whether we could know whether ϕ is true. I am
not interpreting agnosticism in either of these ways.

2In claiming this I am setting my position apart from that of Rosenkranz [13] who is concerned
to show that agnosticism can be a “third position” in debates about whether ϕ.
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My final claim is that agnosticism regarding ϕ should be consistent with beliefs in
propositions which would decide whether ϕ. I think that kind of consistency should
be a requirement of theoretical inquiry. We consider propositions, decide whether
they are plausible, and believe them. But in believing a proposition, particularly in
theoretical inquiry, the responsible theorist recognizes a difference between rational
belief and knowledge. There is yet another position that one might take toward ϕ:
subjective certainty. When one is subjectively certain, one may find evidence for ϕ
very compelling, and on that basis claim knowledge of ϕ. But one may be wrong
about that. That is different from belief, and also different from recognizing that
one is rational in a belief. And both are different from actually knowing ϕ. The
logic I will develop below attempts at keeping these three stances separate.

Agnosticism on this view can play another role in inquiry. If one is to take a
philosophical, scientific, theological. . . position seriously, they must not be subjec-
tively certain of propositions which are contrary to that position. This is what I
will call rational fairness. I think that rational fairness is a form of agnosticism.
However, I also think rational fairness could be logically independent from the weak
local agnosticism discussed above. These variations on agnosticism will lead to three
grades of agnosticism which I will present in section 3.

2 Some Formalities
The background logic that I am assuming is classical propositional logic augmented
with propositional quantifiers. Thus, there are the usual boolean connectives & ,∨,∼
,←→,→, and the propositional quantifiers: ∀,∃. The formulas can then be written
as ϕ(p1, . . . , pn) where the pi are propositional variables or atoms in the formula.
The expression ϕ(p1, . . . , θ/pi, . . . pn) then is used to express the formula ϕ with θ
uniformly substituted for pi. Here I am using lowercase Greek letters for formula
meta-variables; the lowercase Latin letters are propositional variables. The rules/ax-
ioms for the quantifiers are the usual ones from classical first-order logic:

ϕ→ ψ(p1, . . . , pi, . . . pn)
ϕ→ (∀pi)ψ(p1, . . . , pi, . . . pn) [∀I] provided that pi doesn’t occur free in ϕ,

(∀pi)ϕ(p1, . . . , pi, . . . pn)→ ϕ(p1, . . . , θ/pi, . . . pn) [∀ E]

ψ(p1, . . . , θ/pi, . . . pn)→ (∃pi)ψ(p1, . . . , pi, . . . pn) [∃ I],

ϕ(p1, . . . , pi, . . . pn)→ ψ(∃pi)ϕ(p1, . . . , pi, . . . pn)ϕ→ ψ
[∃E] provided that pi doesn’t occur free in ψ

Uniform Substitution [US]
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Logics like these can be found in Bull [3] and Antonelli and Thomason [1]. Uni-
form substitution must be put under an important restriction. We do not want
free occurrences of a propositional variable in a formula ϕ to become bound when
substituted into another formula ψ. Thus, we will make sure that doesn’t happen.
It is important to note that complex formulas can only be quantified away in the
case of ∀E and ∃I. In the case of the other two quantifier rules, the formulas must
be propositional variables.

My discussion of agnosticism hinges on the concepts of knowledge and belief.
Thus I will add the operators for those concepts to the language: K and B. Usually
these are agent relative, but for the most part I will leave reference to the agent
implicit. In the following subsections I discuss the logical properties each of these
operators might have. In section 2.3 I summarize the properties of the operators
which I discuss in the next three subsections.3

2.1 Knowledge
Epistemic logic is a tricky subject, and has been since its beginnings in Hintikka [8].
A common modal system for knowledge is S5. This is an assumption made by game
theorists and theoretical computer scientists, cf. Aumann and Brandenburger [2].
According to just about any system of epistemic logic, our knowledge is closed under
logical consequence, and even known implications. There have been reams of paper
used in presenting arguments discussing the feasibility of the principles for epistemic
logic. In this paper I will offer a specific, not novel, reading which may support
the principles I propose. I am not terribly concerned with providing indefeasible
support for the principles since they are commonly assumed and my goal is really
to study the relationship between those principles (which formulate conceptions of
ideal rationality) and the notions of agnosticism. However, they should contain some
plausibility otherwise the arguments offered wouldn’t be of much interest.

The operator that I will use in most of my formulations of agnosticism is the dual
of the knowledge operator: ⟨K⟩ (which is defined as ⟨K⟩ =df∼K ∼). It is often read
as ‘for all I know . . . is the case’. But the way the operator should be interpreted in
epistemic logic is literally: it is not the case that I know that it is not the case that
. . . . That reading, when applied to ⟨K⟩ϕ, says ‘I don’t know ¬ϕ’. But that says
nothing about my epistemic relationship to logical consequences of ϕ.

Some suggest that ⟨K⟩ should be read as: it is consistent with what I know that
ϕ. To say that ϕ is consistent with what I know simply means that ¬ϕ is not a
logical consequence of what I know. But that interpretation gives a different gloss

3Also note that I am using the convention of interpreting the scope of modal operators as being
narrow in the absence of parentheses.
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to Kϕ; the latter should really be read as: it is a logical consequence of what I know
that ϕ. It is this ‘logical consequence’ reading that I rely on since it describes the
situation I am interested in.

Particularly, I am interested in epistemic and doxastic logic as models of ratio-
nal investigation. They are descriptions of the logical connections between what one
might call the ‘conventional’ beliefs and the logical commitments of those beliefs.
Thus, I don’t want to say Kϕ is to mean that the agent actually knows the propo-
sition in the more conventional sense where one is aware of ϕ. But rather that what
the agent does know commits one to ϕ. Having said that, I will have to be careful
not to read conventional renderings of natural language sentences into the formal
language which are not supported by this less intuitive, albeit very popular, reading.

Given my (non-novel) reading of the K operator, the following are rules of the
system:

ϕ→ ψ

Kϕ→Kψ
[RMK]

,

and
ϕ←→ ψ⟨K⟩ϕ←→ ⟨K⟩ψ [REK]

.

REK follows from the monotonicity condition RMK that I have suggested is per-
missible given my reading of K, but I mostly use REK in what follows. Another
rule which follows from my reading of K is that all logical truths are known—which
includes the theorems of the system of course. The reason for this is that logical
truths are logical consequences of every proposition; thus, they will all be logical
consequences of what I know, if I know anything at all. What this amounts to
at the very least is that I will assume that one knows the basic logical truth: ⊺.
Therefore,

K⊺ [NK].
It follows from NK using REK and the definition of ⟨K⟩ that:

�←→ ⟨K⟩� [N ⟨K⟩]
which is what will feature prominently in the proofs to follow.

If ϕ → ψ is “known” and so is ϕ, then ψ is a logical consequence as well. Thus,
the axiom:

K(ϕ→ ψ)→ (Kϕ→Kψ) [RegK]
is valid. We also need some rules that allow the quantifiers and operators to interact.
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I suggest the following:

(∃p)K(ϕ)→K((∃p)ϕ) [∃K]
and

K(∀p)ϕ→ (∀p)Kϕ [∀K].
I think these rules fall out of my interpretation of K since if I know that ϕ, then it
is a logical consequence of ϕ that (∃p)ϕ. That is simply an application of standard
logical rules for quantifiers. In the universal case, if I know that ϕ holds for all p,
then it is a logical consequence of (∀p)ϕ, that ϕ holds for any particular instance of
p. Any instance is just a logical consequence of my knowledge, so it holds for all p.
Finally, I will assume that knowledge is also factive; we cannot know false things.
Thus,

Kϕ→ ϕ [TK].
There are a number of other assumptions that one could make about the knowl-

edge operator, but they are often disputed. I will discuss two of them here: the
so-called ‘positive introspection’ or KK principle, Kϕ → KKϕ, and its negative
cousin. Positive introspection or PI says that if we know, we know that we know.
It is a controversial principle. Hintikka [8] gives an interesting argument for it, but
I want to offer another justification given the ‘logical consequence’ reading. This
is perhaps unnecessary given the wide acceptance of the principle on the ‘available
information’ reading of K which is more or less the same as my ‘logical consequence’
reading. I think that the PI principle can be seen as the expression of the deduction
theorem. Consider what KKϕ says. It says that Kϕ follows from what one knows.
Expanding out further: it follows from what one knows that ϕ follows from what
one knows. If ϕ does follow logically from one’s knowledge (call that collection of
propositions ΓK), then one’s knowledge implies that proposition, i.e., ΓK ⊢ ϕ. By
the deduction theorem, then, ⊢ ⋀ΓK → ϕ. Given the assumption that one knows ⊺,
and that ⋀ΓK → ϕ is equivalent to ⊺, K(⋀ΓK → ϕ) is also a truth of epistemic logic.
But that is to say that it follows logically from what one knows that ϕ follows from
what one knows, which is what KKϕ says. It seems to follow from the assumption
of logical omniscience. Thus, I will make PI part of my basic system.4

4As an anonymous reviewer reminded me, adding a theory like Robinson arithmetic to a modal
logic like the one I have defined is problematic because of Löb’s theorem, cf. Smorynski [17]. Such
logics can translate the sentences of the language via Gödel numberings, but then sentences like
Kϕ→ ϕ generate inconsistencies because of Gödel’s incompleteness theorems. The same effects can
be reproduced in modal languages if one adds fixed point axioms for each formula: ϕ(δϕ) ←→ δϕ

for each formula ϕ. This mimics the result of the diagonalization theorem provable in Robinson
arithmetic. What one can then show, a result due to Montague, is that modal logics that have
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The principle that is usually called ‘negative introspection’ (NI) assumes that if
one doesn’t know something, then one knows that one lacks that knowledge. This
is usually formulated as: ∼Kϕ→K ∼Kϕ.
This axiom is equivalent to the 5 axiom ⟨K⟩ϕ → K ⟨K⟩ϕ, and it is also equivalent
to ⟨K⟩Kϕ → Kϕ. I don’t think that it can be given the same kind of rationale on
my reading of K as PI. Since Kϕ means that ϕ is a logical consequence of one’s
knowledge, ∼ Kϕ means that ϕ isn’t a logical consequence of one’s knowledge. In
the case of positive introspection, one can reflect ΓK ⊢ ϕ into the object language
via the deduction theorem. In the case of ΓK ⊬ ϕ the same reflection isn’t possible.
While the truth of ∼ (∧ΓK → ϕ) would mean that ΓK ⊬ ϕ, and ∼ (∧ΓK → ϕ)
should be a priori true, the logical truth of ∼ (∧ΓK → ϕ) is much stronger than what
ΓK ⊬ ϕ means. This principle was rejected by Hintikka and others, but it can have
interesting consequences, so although I will not make it part of my basic system, I
want to explore those consequences.

2.2 Beliefs
Traditionally, i.e., from Hintikka [8], the logic of belief is almost as strong as that
of knowledge. Factivity (Bϕ → ϕ) is all that is denied to it. Again, I will take the
‘is a logical consequence of what I believe’ or ideally rational agent reading for the
operator B. That means ⟨B⟩ is to be read as ‘is logically consistent with what I
believe’ as well. This reading allows me to use similar rules to those for knowledge
to describe the logical properties of belief. Particularly the following:

�←→ ⟨B⟩� [N⟨B⟩]
ϕ→ ψ

Bϕ→ Bψ
[RMB]

ϕ←→ ψ⟨B⟩ϕ←→ ⟨B⟩ψ [REB]
B(ϕ→ ψ)→ (Bϕ→ Bψ) [RegB]

(∃p)B(ϕ)→ B((∃p)ϕ) [∃B]
necessitation and T are inconsistent, cf. Stern and Fischer [19]. These results indicate that any
modal logic which contains such formulas and rules is problematic. If I were really trying to defend
PI and translate formulas into terms, I would have to use Gödel numberings, but I am really just
trying provide some rationale for PI, rather than mounting a defense of it.
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B(∀p)ϕ→ (∀p)Bϕ [∀B]
and all for the same reasons as in the case of knowledge. The special assumptions
that I will make for belief are as follows. First, we need to connect belief and
knowledge. To know something, one must believe it. Thus, if something follows
from one’s knowledge, then it must also follow from one’s beliefs. Therefore, we can
assume that knowledge implies belief, i.e.,

Kϕ→ Bϕ [KB].
It follows immediately via the definitions of ⟨K⟩ and ⟨B⟩, that ⟨B⟩ϕ→ ⟨K⟩ϕ.

The tricky assumption about belief, which comes for free in the case of knowledge,
is that one’s beliefs are consistent:

Bϕ→ ⟨B⟩ϕ [DB].
This schema is called DB because it is a version of the D axiom for doxastic logic or
the logic of belief. It is acceptable in the circumstances that I think are relevant to
my discussion. These are, after all, idealizing assumptions.

There are other interaction axioms suggested by Stalnaker [18] that should be
considered as well. For example, if one believes something, then one knows that
one does: Bϕ → KBϕ. This is acceptable, if we can assume that we have full
knowledge of our positive doxastic and epistemic states. Of course it can be given a
similar justification as PI above. It follows, then, that belief implies belief of belief:
Bϕ→ BBϕ. I think this BB condition is acceptable for the same reason as positive
introspection as well.

There is a corresponding negative introspection condition which combines the
two operators: ∼ Bϕ→K ∼ Bϕ [BKB]. It says that one has full epistemic access to
one’s doxastic state, but we can still be ignorant of things we do not know. Allowing
that kind of ignorance is important because even the logically perfect might still
have false beliefs. This axiom doesn’t present the same problems as NI, but it is not
sensible on my reading of the operators given what I have said about NI above.

Despite NI being questionable on the reading I have offered, the major problem I
see with NI is that mere belief becomes too powerful; we can come to know things by
lying to ourselves. By assuming NI, believing one knows something implies that one
actually knows that thing, i.e., BKϕ→Kϕ cf. Stalnaker [18, p. 179]. That follows
since BKϕ implies ⟨B⟩Kϕ by DB, and the contrapositive of KB allows ⟨B⟩Kϕ
to imply ⟨K⟩Kϕ. NI finally allows us to conclude Kϕ from BKϕ. Indeed, being
strongly convinced of something would make it true, and that is beyond the pale.
Of course, it is unproblematic to assume that if one believes that one knows, then
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one believes: BKϕ→ Bϕ.
Finally, there is what Stalnaker calls the axiom of strong belief: Bϕ → BKϕ.

This axiom is completely at odds with the agnostic position I am considering; Stal-
naker sees this as an expression of subjective certainty. It doesn’t permit the believer
any humility, epistemically speaking. For the agnostic, they may believe something,
but recognize that they do not know all of the propositions that they believe. On
some readings of belief this may be acceptable, but not on mine. I should be able
to say I believe something, and so take it to be true, but recognize that I shouldn’t
claim it as knowledge since I recognize it as revisable. The reason is that the beliefs
may not be based on very much: Bϕ is a mere belief in ϕ or is the logical conse-
quence of the things I know and merely believe. The important restriction is that
the agent recognizes that its beliefs might be wrong. On a technical note, it will be
inconsistent for an agent to be subjectively certain about ϕ, but also believe that∼ ϕ is consistent with what it knows. Thus, BKϕ→∼ B ⟨K⟩ ∼ ϕ is a consequence of
the system.

An important point to take from these discussions is that axioms which embed
operators don’t need to be interpreted in terms of an agent being aware of the
propositions that follow the operators; the agent doesn’t need to be aware that they
believe ϕ when BBϕ is true. What BBϕ expresses is that the agent’s attitude
of belief can be extended, logically, to Bϕ, and that can happen when the agent’s
beliefs can be extended logically to ϕ. Even if you are inclined to reject all of
my justifications for the axioms, I could construe my results as a test of common
assumptions made in doxastic and epistemic logic when applied to this particular
problem. Whichever of those attitudes you take toward the axioms leaves the results
untouched. Before I return to agnosticism I will summarize the logical system for
knowledge and belief.

2.3 Summary

I will call my basic system for knowledge and belief LKB, and I present a more
compact description of the axioms and rules here than what was elaborated above.
The readings of the K and B operators are: ‘it is a logical consequence of what I
know that . . . ’ and ‘it is a logical consequence of what I believe that. . . ’. In the
next section I will introduce a new operator ∎ to formalize the agnostic positions I
want to discuss. There I will offer two logical principles for it, RM∎ and T∎, which
will complete the system. Given these readings, I believe the following axioms and
rules are defensible for the system:

• Classical propositional logic [PL], and propositional quantifiers:
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ϕ→ ψ(p1, . . . , pi, . . . pn)
ϕ→ (∀pi)ψ(p1, . . . , pi, . . . pn) [∀I] provided that pi doesn’t occur free in ϕ,

(∀pi)ϕ(p1, . . . , pi, . . . pn)→ ϕ(p1, . . . , θ/pi, . . . pn) [∀E]

ψ(p1, . . . , θ/pi, . . . pn)→ (∃pi)ψ(p1, . . . , pi, . . . pn) [∃I],
ϕ(p1, . . . , pi, . . . pn)→ ψ(∃pi)ϕ(p1, . . . , pi, . . . pn)ϕ→ ψ

[∃E] provided that pi doesn’t occur free in ψ

Uniform Substitution [US]

• Pure Knowledge obeys the rules and axioms RMK, TK, PI, NK, RegK, ∀K
and ∃K (the logic is roughly S4 with quantifiers):

ϕ→ ψ

Kϕ→Kψ
[RMK]

Kϕ→ ϕ [TK]

K⊺ [NK]

Kϕ→KKϕ [PI]

K(ϕ→ ψ)→ (Kϕ→Kψ) [RegK]

(∃p)K(ϕ)→K((∃p)ϕ) [∃K]

K(∀p)ϕ→ (∀p)Kϕ [∀K]

• Pure Belief obeys the rules and axioms NecB, RegB, DB, BB, ∀B and ∃B (the
logic is roughly KD4 with quantifiers):

B(ϕ→ ψ)→ (Bϕ→ Bψ) [RegB]

Bϕ→ ⟨B⟩ϕ [DB]

Bϕ→ BBϕ [BB]
ϕ

Bϕ
[NecB]

(∃p)B(ϕ)→ B((∃p)ϕ) [∃B]
B(∀p)ϕ→ (∀p)Bϕ [∀B]

• Interaction Axioms:
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Kϕ→ Bϕ [KB]

Bϕ→KBϕ [BKB]

That is the basic system LKB. There are other axioms which I think are unaccept-
able, but have been accepted in some cases. These axioms are interesting, so should
be used to test the limits of my results below:

∼ Bϕ→K ∼ Bϕ [NIB]

∼Kϕ→K ∼Kϕ [NI]

Bϕ→ BKϕ [SB]

3 Three Grades of Agnosticism
Before coming to a formal account of agnosticism, I will recapitulate what I mean
by that term. Recall that agnosticism, as I am intending it, and as it seems Huxley
intended it, is about knowledge. Thus being agnostic has to do with an epistemic
state of an agent toward a proposition which one is agnostic about. The propositions
I will be interested in for the current paper all have a certain form which I will define
after discussing this general notion of agnosticism.

Agnosticism about a proposition, generally, is being in a position where one
doesn’t know whether that proposition is true. One knows whether p is true iff one
knows that p or one knows that not-p, i.e., Kp ∨K ∼ p. Not knowing whether p,
then, is formalized as: ∼ (K ∼ p ∨Kp), or, equivalently, ∼ K ∼ p & ∼ Kp. This
position can be given another gloss given the formalism of this paper. To say that
one is agnostic about p is to say that it is consistent with what one knows that p,
but also that it is consistent with what one knows that not-p (∼ p). Naturally, then,
one is tempted to formalize agnosticism about p as ⟨K⟩p & ⟨K⟩ ∼ p, but I want to
reflect a moment on the agnostic’s position.

In saying that one is agnostic, one is saying that they do not know which propo-
sition to hold: p or ∼ p, both seem tenable. Agnosticism about a proposition is
an attitude towards that proposition. The sentence ⟨K⟩p & ⟨K⟩ ∼ p expresses the
absence of an attitude toward p, and ∼ p. Hence, a formalization of an agnostic’s
claims should also express some attitude. What ⟨K⟩p & ⟨K⟩ ∼ p does provide for
is the tenability of both options; the agent doesn’t know anything which will rule
one of them out. Indeed, ⟨K⟩p & ⟨K⟩ ∼ p means there is in fact nothing in what
the agent knows that can rule one of the propositions out; it is more than a mere
seeming.
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The way I suggest formalizing agnosticism is to represent the agent as hav-
ing an attitude towards the fact that both propositions are tenable. Thus, there
are two candidates for how to formalize agnosticism: K(⟨K⟩p & ⟨K⟩ ∼ p) and
B(⟨K⟩p & ⟨K⟩ ∼ p). Given LKB, the first implies the second. Since it is more
intuitive to capture ‘seeming’ via belief than knowledge, I suggest using the second
option. Some may still object that agnosticism is about belief, so say that it should
be captured by ⟨B⟩p & ⟨B⟩ ∼ p. But I have three things to say about that. First, by
the contrapositive of KB, ⟨B⟩p & ⟨B⟩ ∼ p implies ⟨K⟩p & ⟨K⟩ ∼ p. So I am just tak-
ing the weakest form of agnosticism that makes sense as my starting point. Second,
as I suggested above, proper philosophical methodology must allow us to take up
beliefs while still remaining open-minded. We should be able to make hypotheses,
and then reject them at a later time given new evidence or argument. If agnosticism
is not believing whether ϕ, then believing ϕ would make one non-agnostic. Third,
the knowledge reading is in line with the literature on this subject, e.g., Poidevin
[11] and Rosenkranz [13].

Thus, an agent is agnostic about p iff B(⟨K⟩p & ⟨K⟩ ∼ p) is true. Agnosticism
is a second order attitude, it is a belief about our epistemic state. On a technical
point B(⟨K⟩p & ⟨K⟩ ∼ p) is equivalent to B ⟨K⟩p & B ⟨K⟩ ∼ p since B is a normal
modal operator. Via DB and the contrapositives of KB and PI it will follow that
B(⟨K⟩p & ⟨K⟩ ∼ p) implies ⟨K⟩p & ⟨K⟩ ∼ p. So even in the case of believing a
proposition and its negation are consistent with what one knows, there is no mere
seeming, at least in LKB.

I am interested in agnosticism about certain kinds of propositions all of which can
be expressed in terms of certain modal formulas. For this purpose I will introduce a
third modal operator ∎. The kinds of principles I will assume are the following two:

ϕ→ ψ∎ϕ→ ∎ψ [RM∎]
and says that ∎ is closed under logical consequence. The following rule, which allows
the substitution of logical equivalents into the ∎ operator, follows from RM∎:

ϕ←→ ψ∎ϕ←→ ∎ψ [RE∎]
,

as does the schema: ∎(ψ & ϕ)→ (∎ψ & ∎ ϕ) [Dist].
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Next we have that ∎ is a factive operator.

∎ϕ→ ϕ [T∎].
I choose T∎ for its name to indicate that it is the T axiom for the ∎ operator. Note
that neither of these principles imply that ∎ϕ is logically true for any ϕ. The logical
system LKB extended with these two rules will be denoted L∎KB. Next, I will take
up the various interpretations that one might give for ∎, but postpone discussion of
whether these interpretations satisfy these principles in section 6.

Turning to the propositions I am interested in, each has the form (∀p)(p→ ∎p).
This is to say that for any proposition, if it is the case, then it is the case that ∎ holds
of that proposition as well. A number of philosophical positions can be expressed
this way. Of the three that I will consider two involve the powers of God and one
involves necessity. The powers of God are God’s omniscience, and what I will call
omnipotence although I am giving it a rather non-standard reading. The sense
that I am giving to ‘omnipotence’ is that God is the truthmaker of all propositions
which obtain. Those who think we have freewill would probably be skeptical of
such a position. If ∎ is necessity, then (∀p)(p → ∎p) is an expression of a kind
of determinism: all true propositions are necessarily so. Other interpretations are
certainly possible, but for the moment I will focus mostly on formal results which
arise from expressing agnosticism about these positions. I will make reference to
these interpretations to understand what the grades of agnosticism might mean.

Agnosticism about (∀p)(p→ ∎p) would be rendered in what I call the first grade
of agnostic involvement, which is the sense I discussed above, as follows:
Definition 1 (First Grade of Agnostic Involvement). An agent a is agnostic (first
grade) iff

(A) Ba ⟨Ka⟩ (∀p)(p→ ∎p) and (Ω) Ba ⟨Ka⟩ (∃p)(p & ∼ ∎p)
Here the subscript ‘a’ indicates that a has the relevant attitude. In the rest of the
paper it is assumed that a is constant and implicit.

This kind of agnosticism commits one to very little, but it commits one to some-
thing. It is a recognition that one’s knowledge is limited in a certain way. It should
leave room for one to believe or disbelieve (∀p)(p → ∎p). If I claimed to know one
of (∀p)(p→ ∎p) or (∃p)(p & ∼ ∎p), then I don’t think one could say I was agnostic,
but it does seem consistent to say that while I am agnostic about (∀p)(p → ∎p), I
believe that—for example—God’s power satisfies (∀p)(p→ ∎p).

If ∎ is necessity, metaphysical or otherwise, then (∀p)(p → ∎p) says all propo-
sitions which are the case, are so necessarily. Agnosticism about that proposition
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means that it is an epistemic possibility that there are contingently true propositions,
but that it is also an epistemic possibility that all true propositions are necessary.
Again, it is an epistemic possibility that some evidence—in a wide sense—might be
found that would sway the agnostic one way or the other, but the agnostic doesn’t
have that evidence.

The agnostic in the next version has an attitude of rational fairness toward∎p and p & ∼ ∎p. Like Jason Decker’s ‘deep agnosticism’, cf. Decker [5], the
agnostic isn’t in a position to know one way or another about what, for example,
God did or didn’t do. In particular, an agnostic realizes that they can’t rule out
the epistemic possibility of God being the cause of something if they are willing to
grant the consistency of God not being the cause of that thing. Or to recognize
that a proposition may be necessarily so when it is epistemically possible that it is
contingently true. If one were to deny that ⟨K⟩ (p & ∼ ∎p), that would mean that
K ∼ (p & ∼ ∎p), i.e., one has conclusive evidence for ∼ (p & ∼ ∎p). Similarly for the
epistemic possibility of ∎p, presuming that p is true. But the agnostic isn’t in that
position. The agnostic should give fair consideration to both ∎p and p & ∼ ∎p, for
any proposition p (save perhaps logical truths).

Definition 2 (Second Grade of Agnostic Involvement). An agent a is agnostic
(second grade) iff

(2A) Ba(∀p)(⟨Ka⟩ (p & ∼ ∎p)←→ ⟨Ka⟩ ∎ p)
The second grade of involvement maintains that the agent has an attitude toward

the absence of knowledge. In this case the agent believes that its knowledge is fair
toward—in the sense that it is consistent with—each instance of ∎p and p & ∼ ∎p.
This form of agnosticism (and the next) is specific to the particular (forms of)
propositions I am considering.

Both the first and second grades may be too strong for some. Some claim that
rationality puts relational requirements on our beliefs rather than stipulating that
there are particular propositions we should believe, cf. Kolodny [9]. Thus, if one is
to be rationally fair in a way that is agnostic towards (∀p)(p → ∎p), one needs a
form of agnosticism that doesn’t require any beliefs. The next form of agnosticism
concerns how the agent approaches the relationships between propositions about the
consistency of certain propositions with one’s epistemic state.

This form of agnostic involvement is weaker than 2A. It can be represented by
saying, for example, that one believes that it is consistent with what one knows that
God isn’t the ultimate cause of some true proposition, if and only if one believes
that it is consistent with what one knows that God is the cause of that fact. This
is the final and third grade of agnostic involvement that I will consider.
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Definition 3 (Third Grade of Agnostic Involvement). An agent a is agnostic (third
grade) iff

(3A) (∀p)(Ba ⟨Ka⟩ (p & ∼ ∎p)←→ Ba ⟨Ka⟩ ∎ p)
This condition doesn’t seem to require that the agent have a particular attitude.

All the agent’s beliefs are conditional on having other beliefs about the consistency
of ∎p and p & ∼ ∎p with what the agent knows. According to my discussion in
the introduction, an agnostic position should express an attitude, and 3A doesn’t
seem to do that. But it does express a conditional attitude, or what one might say
is a disposition toward beliefs. I think such a disposition is sufficient for a form of
agnosticism.

This form of agnosticism might also provide comfort to those who think that S5
really should be the logic of ideal rationality. Since the first grade of agnosticism
isn’t available to an S5 knower, but we might think that such a knower should still
be capable of agnosticism in some cases. The S5 knower has complete command
over all that it knows and doesn’t know, and belief and knowledge collapse. But
still such an agent isn’t omniscient. 3A could provide a form of agnosticism for the
S5 knower where the proposition at issue is of the form (∀p)(p → ∎p). We will see
how inappropriate 3A is for that task.

From the rules and axioms laid down in section 2, 3A follows from 2A imme-
diately by ∀B and RegB. How do 2A and 3A compare to the standard set by the
first grade of agnostic involvement or the intuitive conception? The second grade is
stronger than the first grade. For 3A, in a certain sense it is stronger than the first
grade, but in another sense, it is weaker.

Both 2A and 3A require that the agent treat the, for example, necessity and
contingency of propositions as equal in order for it to describe the state of the
agent’s beliefs and knowledge. But the conditions make intuitive sense. If one is
truly in a state where they do not know a proposition, but they do not know that
it is false—in this logical sense of ‘know’ that I am using—then it makes intuitive
sense that contrary propositions should be consistent with one’s knowledge. Each
of 2A and 3A asks one to put effort into maintaining a fair distribution of beliefs
between p & ∼ ∎p and ∎p for each proposition p, rather than just have an attitude
toward two particular propositions in the case of A and Ω.

The second grade (2A) is, however, a reflective requirement on one’s beliefs.
The 2A agnostic believes that their beliefs are fair in this way. That is a stronger
requirement than that in the first grade since the content of the proposition is more
complex and 2A implies A and Ω as we shall see.

But 3A doesn’t require that we have any particular beliefs. Because of that, it
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would seem to be less taxing than the first grade of agnosticism. It requires that
there be certain relationships between our beliefs. Our beliefs must be responsive
to beliefs about, for example, God’s powers in the way 2A says they should be. I
would still construe it as a fairness condition, like in the cases of the first and second
grades, but what it requires of an agent is more stringent than what is required by
A and Ω. Thus it is both stronger in one sense and less stringent in another than
the first grade of agnosticism.

The real test of these conceptions of agnosticism is whether they can be compati-
ble with beliefs about (∀p)(p→ ∎p); that is, can one hold beliefs about, for example,
powers of God while remaining agnostic in the three grades? What I intend to show
is that agnosticism of any of the kinds about (∀p)(p → ∎p) is at odds with having
beliefs contrary to that proposition. What I will show in each case is that the form
of agnosticism implies some proposition inconsistent with (∃p)B(p & ∼ ∎p). Of
course, all of this will turn on using the logical assumptions of L∎KB. Mostly what I
show is that assumptions which extend L∎KB are problematic. However, even L∎KB

shows inconsistencies where, intuitively, there shouldn’t be. In section 6 I will return
to a discussion of the significance of these results.

4 Consequences
The arguments that I will give relate to that in the knowability paradox. In that
paradox, it is shown that the assumption that every truth is knowable implies that
every truth is known. The sentences used are (∀p)(p → ◊Kp) and (∀p)(p → Kp),
respectively. In the knowability proof, one instantiates the knowability formula with
the sentence p & ∼Kp, i.e., that p is true but unknown, then proceeds to show that
the consequent of the knowability formula implies a contradiction. But that means
the assumption p & ∼Kp is false, and so p→Kp is true. By universal introduction,
then, all truths are known.

The analog of p being true but unknown here is p & ∼ ∎p which can be inter-
preted as either ‘p is the case, but God isn’t its truthmaker’; or ‘p is the case, but
God doesn’t know it’; or ‘p is contingently true’. For simplicity I will just discuss
the consequences in the abstract since I am only using the logical properties for ∎
laid out in the last section.

Essentially the same proof can be given in both the case of 3A and 2A. It relies
on the following two important and connected facts. First,
Lemma 1. ∎(p & ∼ ∎p)←→ � in L∎KB.
Proof. Right to left follows because contradictions imply everything, and left to right
follows from RM∎ and T∎ since RM∎ implies Dist.
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This fact is important because of the role that the formula (p & ∼ ∎p) plays
below. Since it is important, I will give it a special abbreviation: ncg(p) =df (p & ∼∎p) (not caused by God). Using the abbreviation and disregarding the agent sub-
scripts, permits writing 2A and 3A in a slightly more readable form.

(2A) B(∀p)(⟨K⟩ncg(p)←→ ⟨K⟩ ∎ p)
(3A) (∀p)(B ⟨K⟩ncg(p)←→ B ⟨K⟩ ∎ p)

Second, as those familiar with provability logic will know, cf. Verbrugge [21],
ncg(x) has a fixed point property in this logic as a corollary of the first fact. That
is, ncg(p) is a fixed point of ncg(x), i.e.,
Corollary 1. ncg(ncg(p))←→ ncg(p) in L∎KB.

I will leave the proof as an exercise (note you only have to use the rules of ∎). I will
apply these facts to 2A and 3A in a three stage process.

Stage α. Notice that 2A and 3A are each equivalent to conjunctions of two
formulas. 2A is equivalent to

B(∀p)(⟨K⟩ncg(p)→ ⟨K⟩ ∎ p) & B(∀p)(⟨K⟩ ∎ p→ ⟨K⟩ncg(p)),
and 3A is equivalent to

(∀p)(B ⟨K⟩ncg(p)→ B ⟨K⟩ ∎ p) & (∀p)(B ⟨K⟩ ∎ p→ B ⟨K⟩ncg(p)).
These equivalences are simply seen from the rules of the quantifiers and from the
fact that B(ϕ & ψ) ←→ (Bϕ & Bψ) in L∎KB in the case of 2A. Thus, committing
oneself to 2A logically commits one to

(2A′) B(∀p)(⟨K⟩ncg(p)→ ⟨K⟩ ∎ p),
and committing to 3A commits one to

(3A′)(∀p)(B ⟨K⟩ncg(p)→ B ⟨K⟩ ∎ p)
simply by & elimination. It is 2A′ and 3A′ which are of interest in what follows.

Stage β. Now we apply the facts from above. From lemma 1,

∎ncg(p)←→ �
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so using REK, N⟨K⟩ and transitivity, we get

⟨K⟩ ∎ ncg(p)←→ �. (1)
From NecB and DB, it follows that ¬B� is a theorem, so, B� ←→ � is as well.
Further, applying REK, N⟨K⟩ and RMB gives

B ⟨K⟩�←→ �,
hence,

B ⟨K⟩ ∎ ncg(p)←→ � (2)
from (1) and the intervening steps. To apply corollary 1 let’s look at instantiating

(∀p)(⟨K⟩ncg(p)→ ⟨K⟩ ∎ p)
with ncg(p). We get

⟨K⟩ncg(ncg(p))→ ⟨K⟩ ∎ ncg(p).
But corollary 1 and REK allow us to derive the equivalent formula

⟨K⟩ncg(p)→ ⟨K⟩ ∎ ncg(p)
by replacing ncg(ncg(p)) in the antecedent with just ncg(p).

Stage γ. The consequent of ⟨K⟩ncg(p)→ ⟨K⟩∎ncg(p) can be replaced with �
by (1) which gives ⟨K⟩ncg(p)→ �,
so the whole formula is equivalent to: ∼ ⟨K⟩ncg(p). By the duality of ⟨K⟩ and K
we can get K ∼ ncg(p) which is equivalent to K(p → ∎p), after replacing ncg(p)
with what it is an abbreviation for and applying some equivalences of propositional
logic. Applying TK, K(p→ ∎p) implies p→ ∎p. Therefore, we can conclude that

(∀p)(⟨K⟩ncg(p)→ ⟨K⟩ ∎ p)→ (p→ ∎p) (3)
is a theorem of L∎KB. We can then apply ∀I to the consequent of the formula above
(since p isn’t free in the antecedent) and get:

(∀p)(⟨K⟩ncg(p)→ ⟨K⟩ ∎ p)→ (∀p)(p→ ∎p).
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Finally, using RMB we can derive that

B(∀p)(⟨K⟩ncg(p)→ ⟨K⟩ ∎ p)→ B(∀p)(p→ ∎p).
That is to say that 2A implies (since 2A′ follows from 2A) that the putative agnostic
actually believes in the omnipotence of God—or is logically committed to it by a
belief they have about their epistemic state.

What seemed to be a requirement of epistemic fairness or humility forces the
agent to accept something which is much stronger, intuitively. This result, however,
shows that a 2A agnostic satisfies condition A since ϕ → ⟨K⟩ϕ follows from TK,
and so B ⟨K⟩ (∀p)(p → ∎p) follows from 2A by RMB and transitivity of →. So we
are guaranteed that 2A provides part of agnosticism in the first grade sense; in fact
it also satisfies Ω.5

To see this, note the following: since (∀p)(p → ∎p) implies ⊺ → ∎⊺ by ∀E,
and ⊺ is a theorem, (∀p)(p → ∎p) ⊢ ∎⊺ in L∎KB. So by RMK and a couple of
contrapositions, followed by RMB, we get that B ⟨K⟩ (∀p)(p → ∎p) ⊢ B ⟨K⟩ ∎ ⊺.
Instantiating 3A with ⊺ we would get

B ⟨K⟩ (⊺ & ∼ ∎⊺)←→ B ⟨K⟩ ∎ ⊺.
But (⊺ & ∼ ∎⊺) → (∃p)(p & ∼ ∎p) is a theorem by ∃I. Using RMK, contraposition
twice and RMB it follows that B ⟨K⟩ (⊺ & ∼ ∎⊺) → B ⟨K⟩ (∃p)(p & ∼ ∎p) is a
theorem of L∎KB. Therefore, A and 3A together imply Ω. Since 2A implies both of
A and 3A, 2A implies Ω.

Unfortunately similar problems arise for 3A. We start by instantiating the quan-
tifier in 3A′ with ncg(p) as we did above to get:

B ⟨K⟩ncg(ncg(p))→ B ⟨K⟩ ∎ ncg(p).
Following the same reasoning from above, the consequent can be replaced by �
using formula (2) while the antecedent is equivalent to B ⟨K⟩ncg(p), and so the
whole formula is equivalent to: B ⟨K⟩ncg(p) → �. This last formula is equivalent
to ∼ B ⟨K⟩ (p & ∼ ∎p), so by a series of dualities we can push the ∼ through the
operators to achieve the equivalent formula: ⟨B⟩K(p→ ∎p). Therefore,

(∀p)(B ⟨K⟩ncg(p)←→ B ⟨K⟩ ∎ p)→ ⟨B⟩K(p→ ∎p).
From here there are a few possible directions of investigation.

First, we can see the logical strength that comes from assuming negative intro-
5I thank an anonymous referee for pointing this out.
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spection. Let’s consider the case of NIB. NIB is equivalent to ⟨K⟩Bϕ → Bϕ, from
this and KB it follows that ⟨B⟩Bϕ → Bϕ. Since by KB after using RMB and con-
traposition a couple of times, we can get ⟨B⟩Kϕ → ⟨B⟩Bϕ, therefore we get the
corollary that ⟨B⟩Kϕ→ Bϕ. And so from ⟨B⟩K(p→ ∎p), applying NIB’s corollary
and then ∀I, we get (∀p)B(p → ∎p). An agnostic of the third type would be com-
mitted to believing that each true proposition is ultimately God’s doing. This is not
quite the same as the case of A2, but it is almost as bad and certainly in conflict
with suspicions about freewill, if any there be.

Second, there is NI. Note that by the contrapositive of KB, we can derive ⟨K⟩ϕ
from ⟨B⟩ϕ. So applying this result of KB to ⟨B⟩K(p→ ∎p), we get ⟨K⟩K(p→ ∎p).
But again, negative introspection is equivalent to: ⟨K⟩Kϕ → Kϕ. Therefore, we
can derive K(p → ∎p), and by factivity, i.e., TK, and ∀I, (∀p)(p → ∎p) follows.
Thus, negative introspection is incredibly powerful for the third grade agnostic: 3A
agnosticism would imply that, for example, all true propositions are necessary—not
merely that one must believe it (or that it is a logical consequence of the agent’s
beliefs).

But both of these facts rely on principles that properly extend L∎KB. What can
be said, however, is that 3A′ is actually inconsistent with (∃p)B(p & ∼ ∎p). That
allows us to see that NIB and NI are not necessary to establish that the agnostic
cannot harbor beliefs about freewill or non-determinism. Since Kϕ→ ϕ is a theorem
schema, K(p → ∎p) → (p → ∎p) is a theorem, thus ⟨B⟩K(p → ∎p) → ⟨B⟩ (p → ∎p)
is also a theorem. Therefore, 3A′ (and so 3A) implies ⟨B⟩ (p → ∎p). By ∀I, then,
3A′ implies (∀p)(⟨B⟩ (p→ ∎p)). But the negation of the latter formula is equivalent
to (∃p)B(p & ∼ ∎p). Thus, (∃p)B(p & ∼ ∎p) is inconsistent with 3A′ (and 3A).6
Mere justified belief can overturn an agnostic of either the 3A or 2A persuasion.

5 What About A?
There is still the first grade of agnosticism to fall back on. It was also the most
obvious and intuitive formalization of the position. But it isn’t completely innocent
either. First let’s notice the following:

B ⟨K⟩ (∀p)(p→ ∎p) ⊢ (∀p)(Kp→ ⟨K⟩ ∎ p) (∗).
We can see this as follows. From the (A) condition B ⟨K⟩ (∀p)(p → ∎p) we can

derive, by an application of the contrapositive of ∃K followed by ∀B, (∀p)B ⟨K⟩ (p→∎p), and instantiating we get B ⟨K⟩ (q → ∎q). By DB and the contrapositive of KB

6Thank you to an anonymous referee for pointing out this shorter path to inconsistency.
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we can derive ⟨K⟩ ⟨K⟩ (q → ∎q). By the contrapositive of PI we get ⟨K⟩ (q → ∎q).
For any normal modal operator: ⟨K⟩ (ϕ→ ψ)←→ (Kϕ→ ⟨K⟩ψ), so (Kq → ⟨K⟩∎q)
follows, and finally by ∀I, (∀p)(Kp→ ⟨K⟩ ∎ p).

Next, I will consider another principle of a kind I haven’t discussed yet since it
is an interaction between between ∎ and K. It is as follows:

(∀p)(∎ ⟨K⟩p→ ⟨K⟩ ∎ p) [∎K].
I will discuss this principle further in section 6.2. In L∎KB we can show that the
combination of BK(∎K), i.e., belief that one knows ∎K, with A implies 3A′. For
that, we need a lemma.

Lemma 2. B ⟨K⟩ϕ→ BK ⟨K⟩ϕ is a valid schema of L∎KB.

Proof. 1. ⟨B⟩ ⟨K⟩ϕ→ ⟨K⟩ ⟨K⟩ϕ Converse of KB

2. ⟨K⟩ ⟨K⟩ϕ→ ⟨K⟩ϕ Converse of PI

3. ⟨B⟩ ⟨K⟩ϕ→ ⟨K⟩ϕ By transitivity from 1 and 2

4. B ⟨B⟩ ⟨K⟩ϕ→ ⟨B⟩ ⟨B⟩ ⟨K⟩ϕ Instance of DB

5. ⟨B⟩ ⟨B⟩ ⟨K⟩ϕ→ ⟨B⟩ ⟨K⟩ϕ Instance of the converse of BB

6. B ⟨B⟩ ⟨K⟩ϕ→ ⟨B⟩ ⟨K⟩ϕ Transitivity from 4 and 5

7. B ⟨B⟩ ⟨K⟩ϕ→ ⟨K⟩ϕ Transitivity from 6 and 3

8. KB ⟨B⟩ ⟨K⟩ϕ→K ⟨K⟩ϕ RMK on 7

9. B ⟨B⟩ ⟨K⟩ϕ→KB ⟨B⟩ ⟨K⟩ϕ Instance of BKB

10. B ⟨B⟩ ⟨K⟩ϕ→K ⟨K⟩ϕ Transitivity from 8 and 9

11. B ⟨K⟩ϕ→ BB ⟨K⟩ϕ Instance of BB

12. B ⟨K⟩ϕ→ ⟨B⟩ ⟨K⟩ϕ Instance of DB

13. BB ⟨K⟩ϕ→ B ⟨B⟩ ⟨K⟩ϕ RMB on 12

14. B ⟨K⟩ϕ→ B ⟨B⟩ ⟨K⟩ϕ Transitivity from 11 and 13

15. B ⟨K⟩ϕ→K ⟨K⟩ϕ Transitivity from 10 and 14

16. BB ⟨K⟩ϕ→ BK ⟨K⟩ϕ RMB on 15
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17. B ⟨K⟩ϕ→ BK ⟨K⟩ϕ Transitivity from 11 and 16

The deduction then proceeds in the following manner:

1. ⊢ (∀p)(∎ ⟨K⟩p→ ⟨K⟩∎p)→ (∎ ⟨K⟩ (ncg(t))→ ⟨K⟩∎(ncg(t))) by [∀E] (sub
ncg(t) for p)

2. ⊢ K(∀p)(∎ ⟨K⟩p → ⟨K⟩ ∎ p) → K(∎ ⟨K⟩ (ncg(t)) → ⟨K⟩ ∎ (ncg(t))) by
[RMK] on 1

3. ⊢K(ϕ→ ψ)→ (⟨K⟩ϕ→ ⟨K⟩ψ) for any normal modal operator, so an instance
of 3 is

4. ⊢ K(∎ ⟨K⟩ (ncg(t)) → ⟨K⟩ ∎ (ncg(t))) → (⟨K⟩ ∎ ⟨K⟩ (ncg(t)) → ⟨K⟩ ⟨K⟩ ∎(ncg(t))), and then

5. ⊢ K(∀p)(∎ ⟨K⟩p → ⟨K⟩ ∎ p) → (⟨K⟩ ∎ ⟨K⟩ (ncg(t)) → ⟨K⟩ ⟨K⟩ ∎ (ncg(t)))
from 2 and 4 by transitivity

6. ⊢ ⟨K⟩ ∎ (ncg(t))←→ � as we have seen above, and

7. ⊢ ⟨K⟩�←→ � by N⟨K⟩, so
8. ⊢ ⟨K⟩ ⟨K⟩ ∎ (ncg(t))←→ � by REK a few times, and with

9. ⊢ �→ ⟨K⟩ ∎ t, we can derive that

10. ⊢ (⟨K⟩∎⟨K⟩ (ncg(t))→ ⟨K⟩ ⟨K⟩∎(ncg(t)))→ (⟨K⟩∎⟨K⟩ (ncg(t))→ ⟨K⟩∎t)
by PL from 6-9, so

11. ⊢K(∀p)(∎ ⟨K⟩p→ ⟨K⟩∎ p)→ (⟨K⟩∎ ⟨K⟩ (ncg(t))→ ⟨K⟩∎ t) by transitivity
from 5 and 10

12. ⊢ B ⟨K⟩ (∀p)(p → ∎p) → (K ⟨K⟩ncg(t) → ⟨K⟩ ∎ ⟨K⟩ncg(t)) by (*) above
and [∀ E], so

13. ⊢ (B ⟨K⟩ (∀p)(p → ∎p) & K(∀p)(∎ ⟨K⟩p → ⟨K⟩ ∎ p)) → (K ⟨K⟩ (ncg(t)) →⟨K⟩ ∎ t) by PL from 11 and 12, hence

14. ⊢ B(B ⟨K⟩ (∀p)(p→ ∎p) & K(∀p)(∎ ⟨K⟩p→⟨K⟩ ∎ p))→ B(K ⟨K⟩ (ncg(t))→ ⟨K⟩ ∎ t) by [RMB] on 13.

15. By the normality of B and [BB], (Bϕ & Bψ)→ B(Bϕ & ψ), thus
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16. ⊢ (B ⟨K⟩ (∀p)(p→ ∎p) & BK(∀p)(∎ ⟨K⟩p→⟨K⟩ ∎ p))→ B(K ⟨K⟩ (ncg(t))→ ⟨K⟩ ∎ t).
17. ⊢ B(⟨K⟩ncg(t) → ⟨K⟩ ∎ t) → (BK ⟨K⟩ (ncg(t)) → B ⟨K⟩ ∎ t), also because

B is normal.

18. By lemma 2, B ⟨K⟩ncg(t)→ BK ⟨K⟩ncg(t) is a theorem so,

19. ⊢ B(⟨K⟩ (ncg(t))→ ⟨K⟩∎ t)→ (B ⟨K⟩ (ncg(t))→ B ⟨K⟩∎ t), by transitivity
from 17 and 18. Hence,

20. ⊢ (B ⟨K⟩ (∀p)(p → ∎p) & BK(∀p)(∎ ⟨K⟩p → ⟨K⟩ ∎ p)) → (B ⟨K⟩ (ncg(t)) →
B ⟨K⟩ ∎ t) by PL from 17 and 19. Finally,

21. ⊢ (B ⟨K⟩ (∀p)(p→ ∎p) & BK(∀p)(∎ ⟨K⟩p→ ⟨K⟩ ∎ p))→(∀p)(B ⟨K⟩ (ncg(p))→ B ⟨K⟩ ∎ p) by [∀I] on 20.

What this proof shows is that condition A combined with the subjective certainty
of ∎K implies 3A′ in L∎KB. As I will argue in section 6.2 believing that one knows∎K isn’t perhaps a stretch for some on some interpretations of ∎. Thus, I have
made good on my promise to show that each form of agnosticism is incompatible
with (∃p)B(p & ∼ ∎p); although there is some augmentation in the case of A. But
it is an extra assumption rather than an extra postulate of epistemic/doxastic logic.

6 Significance
In the following sections I will discuss the interpretations of the ∎ operator and
whether those interpretations support the logical properties. I will also discuss the
acceptability of ∎K on those interpretations. Finally, I will end with comments
about what I think should be learned from these results.

6.1 The Interpretations of ∎
On the ‘God’ interpretations of the the ∎ operator, the particular propositions I
have considered in this paper are whether one can be agnostic about God being the
cause of all things (omnipotence), and also God knowing all things (omniscience).
The way I could have formalized these claims to make them distinct is as follows:

(OP) (∀p)(p→ ∎Pp) (omnipotence), and

(OS) (∀p)(p→ ∎Kp) (omniscience).
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In order to represent what is being said when someone says ‘God is the cause of
all things’ I have used an operator ∎P. It stands for ‘God is the ultimate reason that
. . . ’ or ‘God is the truthmaker of the proposition that . . . ’ or ‘God is the ultimate
explanation for the proposition that . . . ’. Very important caveat: I am not trying
to prove the existence of God here. The agnostic in this case is willing to grant
some being, but is wondering whether God has any of the powers usually ascribed
to God. One may look at Avicenna’s argument for the existence of God and say,
‘that seems right’, but, as many have, been unconvinced by his further derivations of
the attributes of God from his definition. What is key is that these readings permit
treating this “God” operator as a modal. Thus its attaches to propositions.

The ∎K operator is simply read as ‘God knows that . . . ’. Thus it is a standard,
agent relative knowledge operator. The agent just happens to be God.

The intuitive understanding of Dist is that if God is the ultimate cause for A
and B, then God is the ultimate cause of A and similarly for B. For RE∎, if A is
logically equivalent to B, then God is the ultimate cause of A iff God is the ultimate
cause of B. Here I am being a bit loose with my terminology since A and B might
be considered to be events, but in the logical system ϕ and ψ must be propositions.
However, I don’t think there is much to dispute in the principles I have offered so
far. In the case of God’s knowledge, what this amounts to saying is that God’s
knowledge in closed under logical consequence. If there was ever a being who was
logically omniscient, it is God. Thus, I think we can attribute these properties to∎K, at least. For the T∎ principle, I would argue that for any creature, if it makes
it the case that ϕ, then it is the case that ϕ. So ∎Pϕ→ ϕ should hold. Similarly for
the factivity of God’s knowledge: ∎Kϕ→ ϕ.

On the necessity reading of ∎, it is usually assumed to be closed under logical
consequence. Also, if ϕ is necessarily true, it is true. Thus, ∎ would conform to
RM∎ and T∎. There are many other possible interpretations that one could give to
the ∎ operator which might be interesting; van Inwagen’s N operator ‘. . . is true and
no one ever had any influence whether . . . ’ might be of interest, cf. van Inwagen
[20]. But I will content myself with just the three above.

Before moving on, I want to consider the case of necessity in more detail. One
of the assumptions for modal logics of necessity is that ∎⊺ is a theorem; let’s call
that rule Nec∎. That is the standard assumption that logical truths are necessary
truths. It follows from that that B ⟨K⟩∎⊺ would be a theorem of L∎KB+Nec∎. But
consider what that means for 3A and 2A. Since B ⟨⊺ & ∼ ∎⊺⟩←→ B ⟨K⟩∎ ⊺ follows
from 3A, 3A alone will imply that B ⟨K⟩ (⊺ & ∼ ∎⊺). But that is equivalent to
B ⟨K⟩ (⊺ & �), which is equivalent to �. Thus, in the case of necessity, 3A and 2A
are inconsistent assumptions. They cannot be formulations of agnosticism about
determinism in the presence of Nec∎. An acceptable revision, is to formulate the
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second and third grades of agnosticism in terms of 2A′ and 3A′. In those terms, 2A′
will imply 3A′, and 2A′ will imply A, but it does not seem to imply Ω. Nonetheless,
it will still hold that {BK(∎K),A, (∃p)B(p & ∼ ∎p) }, as shown in section 5, is an
inconsistent set in L∎KB+Nec∎.
6.2 Should One Accept ∎K?
The answer depends on the interpretation of ∎. I think that ∎K could be accepted
on each of the interpretations, but whether it is more sensible to accept it than reject
it is another matter. So what does the principle ∎K say? (∀p)(∎ ⟨K⟩p → ⟨K⟩ ∎ p),
on the omnipotence reading, says that if God made it so that p is consistent with
what I know, then it is consistent with what I know that God made it so that p,
for all p. What is the alternative to accepting this principle? Moreover, could I
claim to believe to know that it was false? That would require a p such that ∎ ⟨K⟩p
and K ∼ ∎p. If I were to claim that, I would have to believe that I knew that
God didn’t bring about p. That is intuitively at odds with being agnostic about
God’s omnipotence—in my non-standard sense of that term. At best, however, this
would be an argument that ∎K is consistent with what I know. Unfortunately the
argument above requires that one believe that one knows ∎K.

If one believes that God is benevolent, then they might have a reason to reject∎K.7 If e represents some evil fact, then they would be wont to claim that while God
could make it the case that e is consistent with what they know while they would
be subjectively certain that God didn’t bring about e. It is, they would say, part of
the definition of their God that God be all good and so wouldn’t bring about that
evil. But that kind of person would not be agnostic about God’s omnipotence—in
the non-standard sense. An agnostic about (∀p)(p → ∎Pp) wouldn’t hold a view
incompatible with ∎K.

Turning from reasons to accept ∎K, what do we have to accept in accepting∎K? We must accept that God did not make it the case that one doesn’t know(p → ∎p), or more formally (∀p) ∼ ∎ ∼ K(p → ∎p). That follows by a similar
argument as above, i.e., sub ncg(p) into ∎K: ∎ ⟨K⟩ncg(p) → ⟨K⟩ ∎ ncg(p). So if
it is the case that p & ∼ ∎p is consistent with what I know, then God can’t be the
cause of that. But all one needs to do to maintain consistency is believe it knows(∀p) ∼ ∎ ∼K(p→ ∎p); an agent must believe it knows that God didn’t make it the
case that it doesn’t know (p→ ∎p). While odd, it isn’t inconsistent.

My previous discussion has focused on the ‘God as cause’ operator, and I would
like to say a few things about the ‘God knows’ operator. The arguments above

7Thank you to an anonymous referee for reminding me of what the benevolence of God would
mean.
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are all completely formal, so whether their conclusions are acceptable turns on the
acceptability of the principles involved. Given the usual presumption of the logical
omniscience of God, I would say the principles laid down for ∎ are acceptable on the
‘knows’ reading. Thus, all of the proofs go through. But the question of whether∎K is acceptable is another matter.

Recall ∎K, (∀p)(∎ ⟨K⟩p → ⟨K⟩ ∎ p). ∎K says that if God knows that p is
consistent with what you know, then it is consistent with what you know that God
knows that p. For it to be false, there would need to be a p such that God knows
that it is consistent with what you know that p, but you know that God doesn’t
know that p. I ask again: What proposition might be like that? It would seem to
be something like p & ∼ ∎p. Indeed, K ∼ ∎(p & ∼ ∎p) is true in the system, but
again it is not clear that ∎ ⟨K⟩ (p & ∼ ∎p) would be true. The atheist is again in a
position where it wouldn’t believe ∎ ⟨K⟩ (p & ∼ ∎p) for any proposition. But even
so, the argument of section 5 doesn’t need ∎K to be true, just that the agnostic
(theist or atheist) believe that they know ∎K.

For the necessity reading of ∎, I think ∎K has a better defense. If it is the case
that ∎ ⟨K⟩p, then, by definition, it is necessary that p is consistent with what I
know. But that means it cannot be that I can have evidence sufficient to know that∼ p. If that is true, then it should be at least consistent with what I know that p
is necessary. After all, I can’t have evidence against p. Indeed, I could not be in
a position where I had evidence against p. For ∎K to be false, there would be a
proposition p such that ∎ ⟨K⟩p and ∼ ⟨K⟩ ∎ p. Equivalently, ∼ ⧫K ∼ p and K ∼ ∎p:
it is impossible for me to know not-p, while I do know that p is not necessarily
true. On what basis would I be claiming knowledge that p could be false? While
not contradictory in L∎KB, it sounds conceptually problematic. Somebody reasoning
about necessity should claim to believe that they know this principle on conceptual
grounds.

6.3 Final Implications and Interpretation

What we can see from the results of sections 4 and 5 is that any of these forms of
agnosticism will result in 3A′ (augmented with the BK(∎K) in the case of the first
grade). But one can show that (∃p)B(p & ∼ ∎p) is inconsistent with 3A′. In fact,
one can show that without using even PI as follows.

Let’s suppose that t is a witness for (∃p)B(p & ∼ Gp), i.e., B(t & ∼ Gt)—or
using the abbreviation: Bncg(t). Since ϕ → ⟨K⟩ϕ is a theorem, we get ncg(t) →⟨K⟩ncg(t), and by the normality of B, we can conclude that Bncg(t) →
B ⟨K⟩ncg(t) is a theorem of L∎KB.

From corollary 1, Bncg(t) → B ⟨K⟩ncg(ncg(t)) is also a theorem. Since
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B ⟨K⟩Gncg(t)←→ � is a theorem, ∼ B ⟨K⟩Gncg(t)←→ ⊺, and so:

(B ⟨K⟩ncg(ncg(t)) & ∼ B ⟨K⟩Gncg(t))←→ (B ⟨K⟩ncg(ncg(t)) & ⊺),
but

B ⟨K⟩ncg(ncg(t))←→ (B ⟨K⟩ncg(ncg(t)) & ⊺),
so Bncg(t)→ (B ⟨K⟩ncg(ncg(t)) & ∼ B ⟨K⟩Gncg(t)) is a theorem. By ∃I,

B(t & ∼ Gt)→ (∃p)(B ⟨K⟩ncg(p) & ∼ B ⟨K⟩Gp)
is a theorem, and by ∃E, since t is not free in the consequent,

(∃p)B(p & ∼ Gp)→ (∃p)(B ⟨K⟩ncg(p) & ∼ B ⟨K⟩Gp)
is a theorem. But the consequent is equivalent to the negation of 3A′. So 3A, which
implies 3A′ and is implied by 2A, is suspect in a system weaker than L∎KB.

What does all of this mean? Let me offer a recapitulation. My position is that
agnosticism should be conceptually compatible with even ideal (theoretical) ratio-
nality. But the ability of entertaining hypotheses should also be compatible with
theoretical rationality. Perhaps extreme forms of theoretical rationality would re-
quire that one suspend belief about any proposition for which one lacked conclusive
evidence. On the other end of the spectrum, practical or liberal theoretical ratio-
nality might demand belief in propositions so that the agent can have motivations
to act in important situations. But philosophical investigation seems to be between
the two extremes.

A way to model this middle ground between conservative and liberal theoretical
rationality is to accept that there is a distinction between Bϕ and BKϕ. An agent
may have the former without the latter. But there should also be the possibility of
having BKϕ without Kϕ; subjective certainty and knowledge should come apart.
Even Stalnaker recognizes the latter distinction. He does not, however, recognize
the former. We could say, using the metaphor of entrenchment from belief revision
Rott [14], that propositions such that BKϕ is true are more entrenched than those
for which Bϕ. Of course when Kϕ is true, ϕ is among the most entrenched beliefs.
Indeed, they are the irrevocable parts of our cognitive commitments since giving
them up or changing their status would be a mistake, cf. Segerberg [15].

But what we have seen is that 3A and 2A (or 3A′ and 2A′) are incompatible
with maintaining certain hypotheses which are contrary to (∀p)(p → ∎p). But
those hypotheses are compatible with the first grade of agnosticism when it is un-
augmented. Thus, the obvious conclusion to draw is that 3A and 2A are simply not
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forms of agnosticism. However, 2A definitely implies the first grade of agnosticism,
so it is a stronger form of agnosticism. It must be agnosticism plus something else. It
is tempting to think that the something else would be a belief in one’s own rational
fairness. This is supported by the following fact. First, 2A implies 3A, and then
A + 3A proves Ω. Adding 3A to A implies that the negation of (∀p)(p → ∎p) is
consistent with one’s knowledge. So 3A should be the fairness condition. But it
isn’t clear that 3A + Ω implies A, nor is it clear that 2A is equivalent to A + 3A.

The third grade of agnosticism is a deeper commitment to agnosticism than the
first grade, in a certain sense. It doesn’t require a commitment to any position.
The agent needn’t even have beliefs about the consistency of (∀p)(p → ∎p), only
dispositions to believe certain consistency claims. That is the point of using a
(bi)conditional to state the condition. The 3A agnostic is, however, more agnostic
than the first grade agnostic. A 3A agnostic can’t have beliefs contrary to (∀p)(p→∎p). For that reason it might seem that 3A agnosticism is a form of agnosticism that
an S5 ideally rational agent could take. But we can see that that too is unsatisfactory
since such an agnostic could prove that (∀p)(p→ ∎p) was, in fact, true. Thus, in the
end, if I have properly captured rational fairness (for (∀p)(p → ∎p)) with 3A, then
an individual that can take (∀p)(p → ∎p) seriously cannot even have good reason
to believe that (∀p)(p→ ∎p) is false.

Are there ways to avoid these conclusions? Of course. One obvious way is
to disallow doxastic/epistemic modalities to fall within the scope of other similar
modalities. That would block all of the proofs in sections 4 and 5. It would also
force rejection of axioms like PI. But part of epistemic game theory, for example,
is the ability to reason about what I know that you believe that I know. The
ability to iterate modalities of these kinds has become essential. In so far as we
want to put our theories of ideal rationality into reflective equilibrium, iteration
should be acceptable. But what we could be seeing is a deeper problem having to
do with treating epistemic and doxastic logic as logic at all. Perhaps what the real
solution should be is to remove assumptions about closure under logical consequence
all together (i.e., do away with rules of the RMK and NK form). Those rules
force logical relations to hold between propositions whose primary operators are
not usually considered logical. Since Etchemendy [6, 7], we have recognized that
what counts as a logical operator is something that is more a matter of choice than
handed down from on high. Various model-theoretic accounts of what operators
are logical have been offered, starting with Corcoran and Tarski [4] and extended
by others, e.g., Sher [16], but it isn’t clear that these programs are unproblematic.
What one could suggest is that the operators are not logical precisely because these
unwelcome connections hold. There are certain relationships of consistency and
consequence that are sacrosanct; if a modal logic runs afoul of those, its operators
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should be suspect. Then again, maybe that kind of idea is simply an expression of
logical dogma.

Dogma aside, it is difficult to say what the solution to problems like the paradox
of the knower, the Church-Fitch Paradox, and that of the above should be. Exclud-
ing modal logical formulas from being logical axioms may be too strong an approach.
Perhaps only a piecemeal, case by case approach to these kinds of problems is called
for. The guiding principle in epistemic logic seems to be that we do not want it to
tell us what philosophical views we can and cannot hold. As long as a logic doesn’t
show a philosophical bias, then the logic will be acceptable.
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Abstract
The logic of proofs of Heyting arithmetic includes explicit justifications for

all admissible rules of intuitionistic logic in order to satisfy completeness with
respect to provability semantics. We study the justification logic iJT4, which
does not have these additional justification terms. We establish that iJT4 is
complete with respect to modular models, which provide a Kripke-style seman-
tics, and that there is a realization of intuitionistic S4 into iJT4. Hence iJT4
can be seen as an explicit version of intuitionistic S4.

1 Introduction
Justification logics are explicit modal logics in the sense that they unfold the 2-
modality in families of so-called justification terms. Instead of formulas 2A, meaning
that A is known, justification logics include formulas t : A, meaning that A is known
for reason t.

The original semantics for the first justification logic, the Logic of Proofs LP,
was Artemov’s provability semantics that interpreted t : A roughly as t represents a
proof of A in the sense of a formal proof predicate in Peano Arithmetic [1, 2, 21].

Later Fitting [15] interpreted justifications as evidence in a more general sense
and introduced epistemic, i.e., possible world, models for justification logics. These
models have been further developed to modular models as we use them in this
paper [6, 19]. This general reading of justification led to many applications in
epistemic logic [4, 5, 8, 9, 10, 11, 12, 16, 18, 20].
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Given the interpretation of LP in Peano Arithmetic, it was a natural question
to find an intuitionistic version iLP of LP that is the logic of proofs of Heyting
Arithmetic. The work by Artemov and Iemhoff [7] and later by Dashkov [13] provides
such an iLP. It turned out that iLP is not only LP with the underlying logic changed
to intuitionistic propositional logic. In order to get a complete axiomatization with
respect to provability semantics, one also has to include certain admissible rules of
Heyting Arithmetic as axioms in iLP so that they are represented by novel proof
terms.

The main question of this paper is what is the justification counterpart of intu-
itionistic S4. We find that the additional axioms of iLP are not needed if we are
interested in completeness with respect to possible world models. We study the
intuitionistic justification logic iJT4, which is simply LP over an intuitionistic base
instead of a classical one but without any additional axioms. We introduce modular
models for iJT4 that are inspired by the Kripke-style semantics for intuitionistic S4
and establish completeness of iJT4 with respect to these models.

Artemov [3] already considerend iJT4, under the name ILP, to provide a prov-
ability interpretation of modal λ-terms. In order to achieve this, he established that
there is a realization of iS4 into iJT4. We will restate that result as it shows that
the justification logic iJT4 indeed is the explicit version of the intuitionistic modal
logic iS4.

2 Intuitionistic Modal Logic
We present the intuitionistic modal logic iS4. We will start with introducing the
language LI of iS4. For our purpose, we will only consider the 2-modality but not
the 3-modality.

Definition 2.1 (Intuitionistic modal language). We assume a countable set Prop of
atomic propositions. The set of formulas LI is inductively defined by:

1. every atomic proposition is a formula;

2. the constant symbol ⊥ is a formula;

3. If A and B are formulas, then (A ∧B), (A ∨B) and (A→ B) are formulas;

4. if A is a formula, then 2A is a formula.

There are various semantics available for intuitionistic modal logic. The intu-
itionistic Kripke models that we introduce in this section are the same as Ono’s [22]
I-models of type 0. Moreover, these models are equivalent to the models used by
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Fischer Servi [14], Plotkin and Stirling [23], and Simpson [24]. Jäger and Marti [17]
provide a detailed discussion and comparison of these different approaches.

The semantics for iS4 is given by Kripke models that use two accessibility rela-
tions: ≤ to model the intuitionistic base logic and R to interpret the 2-modality.

Definition 2.2. An intuitionistic Kripke model for iS4 is a tuple

M = (W,≤, R, V )

such that

(i) W 6= ∅

(ii) R is a reflexive and transitive binary relation on W

(iii) ≤ is a partial order (reflexive and transitive) on W

(iv) V : Prop→ P(W ), and for any atomic proposition p, the set V (p) is upwards
closed, i.e., : w ≤ v, w ∈ V (p) =⇒ v ∈ V (p)

(v) w ≤ v =⇒ R[v] ⊆ R[w]

where R[v] := {w ∈W | (v, w) ∈ R}.

Usually, the definition of intuitionistic Kripke models does not include Condi-
tion (ii). Since we exclusively work with Kripke models for intuitionistic S4, we
make it part of our definition in order to have a simpler terminology.

Definition 2.3 (Satisfaction in Kripke models). We define the satisfaction relation
(M, w) � A by induction on the LI-formula A.

• (M, w) 2 ⊥;

• (M, w) � p iff w ∈ V (p);

• (M, w) � A ∧B iff (M, w) � A and (M, w) � B;

• (M, w) � A ∨B iff (M, w) � A or (M, w) � B;

• (M, w) � A→ B iff (M, v) � B for all v ≥ w with (M, v) � A;

• (M, w) � 2A iff (M, v) � A for all v ∈ R[w].

An LI-formula A is valid with respect to Kripke models if for all Kripke models
M = (W,≤, R, V ) and all w ∈W we have (M, w) � A.
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Intuitionistic modal logic has the following monotonicity property.

Lemma 2.4 (Monotonicity).

(M, w) � A and w ≤ v =⇒ (M, v) � A.

We will need two different deductive systems for iS4. The system HiS4 is a
Hilbert-style calculus whereas the system GiS4 is a Gentzen-style sequent calculus
for the intuitionistic modal logic iS4.

Definition 2.5 (The proof system HiS4). The system HiS4 consists of the following
axioms:

• All axioms for intuitionistic propositional logic

• 2(A→ B)→ (2A→ 2B) (K)

• 2A→ A (T)

• 2A→ 22A (4)

The rules of HiS4 are modus ponens and necessitation:

A→ B A (MP)
B

A (nec)
2A

Theorem 2.6. HiS4 is sound and complete with respect to intuitionistic Kripke
models.

Proof. Soundness and completeness follow from [22, Theorem 3.2 on p. 696] and the
observation that that Ono’s I-models of type 0 are the same as our intuitionistic
Kripke models.

Definition 2.7 (The proof system GiS4). A sequent is an expression of the form
Γ ⊃ A, where Γ is a finite multiset of formulas and A is a formula. The Gentzen-style
system GiS4 derives sequents and consists of the following axioms and rules:

Γ ⊃ A if A ∈ Γ or ⊥ ∈ Γ

Γ, A ⊃ C Γ, B ⊃ C (∨ ⊃)Γ, A ∨B ⊃ C

Γ ⊃ A (⊃ ∨)1Γ ⊃ A ∨B
Γ ⊃ B (⊃ ∨)2Γ ⊃ A ∨B
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Γ, A,B ⊃ C (∧ ⊃)Γ, A ∧B ⊃ C
Γ ⊃ A Γ ⊃ B (⊃ ∧)Γ ⊃ A ∧B

Γ ⊃ A Γ, B ⊃ C (→⊃)Γ, A→ B ⊃ C
Γ, A ⊃ B (⊃→)Γ ⊃ A→ B

A,Γ ⊃ B (2 ⊃)
2A,Γ ⊃ B

2Γ ⊃ A (⊃ 2)
2Γ ⊃ 2A

Γ ⊃ A (weakening)Γ,∆ ⊃ A
Γ, A,A ⊃ B (contraction)Γ, A ⊃ B

In the rule (⊃ 2), the expression 2Γ denotes the multiset {2A | A ∈ Γ}. As
usual, we say that a formula A is provable in GiS4, in symbols `GiS4 A, if the sequent
⊃ A is provable.

Theorem 2.8. GiS4 is sound and complete with respect to intuitionistic Kripke
models.

Proof. In this proof, theorems and systems refer to [22]. By Theorem 3.2 the Hilbert
system L0 is complete with respect to I-models of type 0, which are the same as our
intuitionistic Kripke models. By Theorem 2.1, the sequent system G0 is equivalent
to the Hilbert system L0. The sequent systems G0 and K0 are equivalent, and
by Theorem 3.3, we have cut-elimination for K0. Therefore, the cut-free version
of K0 is complete with respect to intuitionistic Kripke models. Finally observe that
cut-free K0 is the same as our GiS4.

3 Intuitionistic Justification Logic
In this section, we introduce the syntax for the justification logic iJT4CS, which is
the explicit analogue of the intuitionistic modal logic iS4.

Definition 3.1 (Justification terms). We assume a countable set of justification
constants and a countable set of justification variables. The set of justification
terms Tm is inductively defined by:

1. each justification constant and each justification variable is a justification term;

2. if s and t are justification terms, then so are

881



Marti and Studer

• (s · t), read s dot t,
• (s+ t), read s plus t,
• !s, read bang s.

Definition 3.2 (Formulas). We start with the same set Prop of atomic propositions
as in LI. The set of formulas LJ is inductively defined by:

1. every atomic proposition is a formula;

2. the constant symbol ⊥ is a formula;

3. If A and B are formulas, then (A ∧B), (A ∨B) and (A→ B) are formulas;

4. if A is a formula and t a term, then t : A is a formula.

Definition 3.3. The axioms of iJT4 consist of the following axioms:

1. all axioms for intuitionistic propositional logic

2. t : (A→ B)→ (s : A→ t · s : B)

3. t : A→ t+ s : A and s : A→ t+ s : A

4. t : A→ A

5. t : A→ !t : t : A

A constant specification CS is any subset

CS ⊆ {(c, A) | c is a constant and A is an axiom of iJT4}.

A constant specification CS is called:

• axiomatically appropriate if for each axiom A of iJT4, there is a constant c
such that (c, A) ∈ CS.

• schematic if for each constant c, the set of axioms {A | (c, A) ∈ CS} consists
of all instances of several (possibly zero) axiom schemes of iJT4.

For a constant specification CS the deductive system iJT4CS is the Hilbert system
given by the axioms above and by the rules modus ponens and axiom necessitation:

A→ B A (MP)
B

(c, A) ∈ CS (AN)
c : A
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Remark 3.4. Although axiom necessitation is a rule without premises, it is important
to consider it as a rule and not as an axiom schema. If we said that c : A is an axiom
for each (c, A) ∈ CS, then the notion of an axiom would depend on the constant
specification, which in turn would depend on the notion of an axiom. Since we want
to avoid this circularity, axiom necessitation is introduced as a rule.
Remark 3.5. Let Tot be the total constant specification, i.e.

Tot := {(c, A) | c is a constant and A is an axiom of iJT4}.

Artemov’s [3] intuitionistic logic of proofs ILP is then the same as our iJT4Tot.
As usual in justification logic, we can establish the Deduction Theorem and the

Lifting Lemma.

Theorem 3.6 (Deduction Theorem). For every set of formulas M and all formulas
A,B we have that

M ∪ {A} `iJT4CS B ⇐⇒ M `iJT4CS A→ B.

Lemma 3.7 (Lifting Lemma). Let CS be an axiomatically appropriate constant
specification. For arbitrary formulas A,B1, . . . , Bm, C1, . . . , Cn and arbitrary justi-
fication terms r1, . . . , rm, s1, . . . , sn, if

r1 : B1, . . . , rm : Bm, C1, . . . , Cn `iJT4CS A,

then there is a justification term t such that

r1 : B1, . . . , rm : Bm, s1 : C1, . . . , sn : Cn `iJT4CS t : A.

Definition 3.8 (Substitution). A substitution is a mapping from justification vari-
ables to justification terms. Given a substitution σ and an LJ-formula A, the for-
mula Aσ is obtained from A by simultaneously replacing all occurrences of x with
σ(x) in A for all justification variables x.

As usual in justification logic, we have the following substitution property for
schematic constant specifications.

Lemma 3.9 (Substitution Property). Let CS be a schematic constant specification.
We have for any LJ-formula A and any substitution σ

B1, . . . , Bn `iJT4CS A implies B1σ, . . . , Bnσ `iJT4CS Aσ.

We find that iJT4CS is a conservative extension of intuitionistic propositional
logic. Hence iJT4CS is consistent.
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Lemma 3.10 (Conservativity). iJT4CS is a conservative extension of intuitionistic
propositional logic Int, i.e., for any formula A of intuitionistic propositional logic,

`iJT4CS A iff `Int A.

Proof. The implication from right to left is trivial. For the other direction consider
the mapping (·)s from LJ to formulas of intuitionistic propositional logic given by:

⊥s := ⊥ ps := p

(A ∧B)s := As ∧Bs (A ∨B)s := As ∨Bs

(A→ B)s := As → Bs (t : B)s := Bs

For any formula C of LJ, we can show

`iJT4CS C implies `Int C
s

by induction on the length of the iJT4CS-derivation. Thus the claim immediately
follows from As = A.

Lemma 3.11 (Consistency of iJT4CS). For any constant specification CS, the logic
iJT4CS is consistent.

Proof. Assume towards a contradiction that iJT4CS were not consistent, that means
`iJT4CS ⊥. By the conservativity of iJT4CS over propositional intuitionistic logic Int
(previous lemma), it would then follow that `Int ⊥, which is not the case.

4 Basic Modular Models

Basic modular models are syntactic models for justification logic. Yet, our basic
modular models will include possible worlds in order to deal with the intuitionistic
base logic. After defining basic modular models for intuitionistic justification logic,
we will prove soundness and completeness.

In this and the next section, derivability always refers to derivability in iJT4CS.
Accordingly we use ` to mean `iJT4CS .

For two sets of formulas S, T and a term s we write

S · T := {F | G→ F ∈ S and G ∈ T for some formula G}
s : S := {s : F | F ∈ S}
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Definition 4.1 (Basic evaluation). A basic evaluation is a tuple (W,≤, ∗) where

W 6= ∅ and ≤ is a partial order on W,

∗ : Prop×W → {0, 1} ∗ : Tm×W → P(LJ)

(where we often write t∗w for ∗(t, w) and p∗w for ∗(p, w)), such that for arbitrary
s, t ∈ Tm, any formula A, and every w ∈W ,

(1) s∗w · t∗w ⊆ (s · t)∗w;

(2) s∗w ∪ t∗w ⊆ (s+ t)∗w;

(3) (t, A) ∈ CS =⇒ A ∈ t∗w;

(4) s : s∗w ⊆ (!s)∗w.

Furthermore, it has to satisfy the following monotonicity conditions:

(M1) p∗w = 1 and w ≤ v =⇒ p∗v = 1;

(M2) w ≤ v =⇒ t∗w ⊆ t∗v.

Strictly speaking we should use the notion of a CS basic evaluation because
condition (3) depends on a given CS. However, the constant specification will always
be clear from the context and we can safely omit it. The same also holds for modular
models (to be introduced later).

Definition 4.2 (Truth under basic evaluation). Let M = (W,≤, ∗) be a basic
evaluation. For w ∈ W , we define (M, w) � A by induction on the formula A as
follows:

• (M, w) 2 ⊥;

• (M, w) � p iff p∗w = 1;

• (M, w) � A ∧B iff (M, w) � A and (M, w) � B;

• (M, w) � A ∨B iff (M, w) � A or (M, w) � B;

• (M, w) � A→ B iff (M, v) � B for all v ≥ w with (M, v) � A;

• (M, w) � t : A iff A ∈ t∗w.

We immediately obtain the monotonicity property for intuitionistic justification
logic.
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Lemma 4.3 (Monotonicity). For any basic evaluationM = (W,≤, ∗), any w, v ∈W ,
and any formula A:

(M, w) � A and w ≤ v =⇒ (M, v) � A.

Definition 4.4 (Factive evaluation). A basic evaluation M = (W,≤, ∗) is called
factive iff

A ∈ t∗w =⇒ (M, w) � A
for all formulas A, all justification terms t and all states w ∈W .

Definition 4.5 (Basic modular model). A basic modular model is a basic evaluation
(W,≤, ∗) that is factive.

We say that a formula A is valid with respect to basic modular models if for all
basic modular models M = (W,≤, ∗) and all w ∈W we have (M, w) � A.

Lemma 4.6 (Soundness of iJT4CS with respect to basic modular models). For every
formula A:

` A implies A is valid with respect to basic modular models.

In order to show completeness, we need some auxiliary definitions and lemmas.

Definition 4.7. We call a set of formulas ∆ prime iff it satisfies the following
conditions:

(i) ∆ has the disjunction property, i.e., A ∨B ∈ ∆ =⇒ A ∈ ∆ or B ∈ ∆;

(ii) ∆ is deductively closed, i.e., for any formula A, if ∆ ` A, then A ∈ ∆;

(iii) ∆ is consistent, i.e., ⊥ /∈ ∆.

From now on, we will use Σ,∆,Γ for prime sets of formulas.

Lemma 4.8. Let N be an arbitrary set of formulas and let A,B and C be formulas.
If

N ∪ {A ∨B} 0 C, then N ∪ {A} 0 C or N ∪ {B} 0 C.

Proof. By contraposition. Assume that

N ∪ {A} ` C and N ∪ {B} ` C

Then there are finite subsets N1 ⊆ N ∪ {A} and N2 ⊆ N ∪ {B} such that

N1 ` C and N2 ` C
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Now let N ′1 := N1 \ {A} and N ′2 := N2 \ {B}. Then N ′1, N ′2 are finite subsets of N ,
and

(N ′1 ∪ {A}) ` C and (N ′2 ∪ {B}) ` C
So by the Deduction Theorem,

N ′1 ` A→ C and N ′2 ` B → C

So
N ′1 ` (A→ C) and N ′2 ` (B → C).

Strengthening the antecedent, we get

(N ′1 ∪N ′2) ` (A→ C) and (N ′1 ∪N ′2) ` (B → C)

and, therefore,
(N ′1 ∪N ′2) ` ((A→ C) ∧ (B → C)).

By propositional reasoning we get

(N ′1 ∪N ′2) ` ((A ∨B)→ C),
By the Deduction Theorem it follows that

(N ′1 ∪N ′2 ∪ {A ∨B}) ` C.

Since N ′1 and N ′2 are finite subsets of N , N ′1 ∪ N ′2 ∪ {A ∨ B} is a finite subset of
N ∪ {A ∨B}, so by definition

N ∪ {A ∨B} ` C.

Theorem 4.9 (Prime Lemma). Let B be a formula and let N be a set of formulas
such that N 0 B. Then there exists a prime set Π with N ⊆ Π and Π 0 B.

Proof. Let (An)n∈N be an enumeration of all formulas.
Now we define N0 := N ,

Ni+1 :=
{
Ni ∪ {Ai}, if Ni ∪ {Ai} 0 B
Ni, otherwise

and finally
N? :=

⋃

i∈N
Ni

By induction in i, one can easily show that for all i ∈ N : Ni 0 B and, therefore,
N? 0 B.

It remains to show that N? is prime. We have the following:
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• ⊥ /∈ N?: We have N? 0 B, hence ⊥ /∈ N?.

• N? is deductively closed: Assume it is not, i.e., there is a formula A with

N? ` A but A /∈ N?

Since N? ` A but N? 0 B, we know that

N? ∪ {A} 0 B
Otherwise, by the Deduction Theorem 3.6

N? ` A→ B and N? ` A

so by propositional reasoning,

N? ` B, which contradicts our observation above.

Since (An)n∈N is an enumeration of all formulas, there is some i such that
A = Ai. But then

Ni ∪ {Ai} 0 B.
So by construction

Ni+1 = Ni ∪ {Ai}
and, therefore,

A = Ai ∈ Ni+1 ⊆ N?,

which contradicts our assumption.

• N? has the disjunction property: Assume that C ∨ D ∈ N?. Then there is
some i such that C ∨D = Ai and there are i1, i2 such that

C = Ai1 and D = Ai2

Now we have
N? = N? ∪ {C ∨D} 0 B

By the lemma above it follows that

N? ∪ {C} 0 B or N? ∪ {D} 0 B
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In the first case, we have that

Ni1 ∪ {Ai1} 0 B

so by the definition of Ni1+1,

Ni1+1 = Ni1 ∪ {Ai1} = Ni1 ∪ {C}

which means that C ∈ Ni1+1 and therefore C ∈ N?. The second case is
analogous.

Lemma 4.10. Let ∆ be a prime set and t be a justification term. Then

t−1∆ := {A | t : A ∈ ∆} ⊆ ∆.

Proof. Let A ∈ t−1∆. Then t : A ∈ ∆. Since ∆ is deductively closed, it contains
all axioms, thus t : A → A ∈ ∆. Again, since ∆ is deductively closed, it follows by
(MP) that A ∈ ∆.

Definition 4.11 (Canonical basic modular model). The canonical basic modular
model is

Bcan := (W can,≤can, ∗can)
where

(i) W can := {∆ ⊆ LJ | ∆ is prime}

(ii) ≤can := ⊆

(iii) ∗can(p,∆) = 1 iff p ∈ ∆

(iv) ∗can(t,∆) := t−1∆

Lemma 4.12. Bcan is a basic evaluation.

Proof. W 6= ∅: By the consistency of iJT4CS we have that ∅ 0 ⊥, it follows by the
Prime Lemma 4.9 that there exists a prime set, so W can 6= ∅.

Next, we check the conditions on the sets of formulas t∗can

∆ .

(1) s∗can

∆ · t∗can

∆ ⊆ (s · t)∗can

∆ . Let A ∈ s∗can

∆ · t∗can

∆ . Then there is a formula B ∈ t∗can

∆
such that B → A ∈ s∗can

∆ . So s : B → A ∈ ∆ and t : B ∈ ∆. Since ∆ is a
prime set, it is deductively closed, so it contains the axiom

s : (B → A)→ (t : B → s · t : A).

Again since ∆ is deductively closed, it follows by (MP) that s · t : A ∈ ∆, so
A ∈ (s · t)−1∆ = (s · t)∗can

∆ .
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(2) s∗can

∆ ∪ t∗can

∆ ⊆ (s + t)∗can

∆ . Let A ∈ s∗can

∆ ∪ t∗can

∆ . Case 1: A ∈ s∗can

∆ = s−1∆.
Then s : A ∈ ∆. Since ∆ is deductively closed, it contains the axiom

s : A→ (s+ t) : A.

Thus by (MP) we find (s+ t) : A ∈ ∆, i.e., A ∈ (s+ t)−1∆ = (s+ t)∗can

∆ . The
second case is analogous.

(3) (t, A) ∈ CS =⇒ A ∈ t∗can

∆ . By axiom necessitation we find that ` t : A,
so ∆ ` t : A. Since ∆ is deductively closed, it follows that t : A ∈ ∆, so
A ∈ t−1∆ = t∗

can

∆ .

(4) s : s∗can

∆ ⊆ (!s)∗can

∆ . Let A ∈ s : s∗can

∆ . Then A is of the form s : B for
some formula B ∈ s∗

can

∆ = s−1∆, i.e., s : B ∈ ∆. We find that the axiom
(s : B)→ !s : (s : B) ∈ ∆, so !s : (s : B) ∈ ∆, which means s : B ∈ (!s)−1∆ =
(!s)∗can

∆ .

Now we check the monotonicity conditions.

(M1) Assume that p∗can

Γ = 1 and Γ ⊆ ∆. By the definition of ∗can we have that
p ∈ Γ, so p ∈ ∆ hence p∗can

∆ = 1.

(M2) Now assume that Γ ⊆ ∆. Then t−1Γ ⊆ t−1∆, which is t∗can

Γ ⊆ t∗can

∆ .

Lemma 4.13 (Truth Lemma). For any formula A and any prime set ∆ :

A ∈ ∆ ⇐⇒ (Bcan,∆) � A.

Proof. By induction on the formula A. We distinguish the following cases.

1. A = p or A = ⊥. By definition.

2. A = B ∧ C. Assume that B ∧ C ∈ ∆. Since ∆ is deductively closed, we have
B ∈ ∆ and C ∈ ∆, so it follows by the induction hypothesis that (Bcan,∆) � B
and (Bcan,∆) � C.
For the other direction assume that (Bcan,∆) � B ∧ C, so (Bcan,∆) � B and
(Bcan,∆) � C. By the induction hypothesis, we get that B ∈ ∆ and C ∈ ∆.
Since ∆ is deductively closed, it follows that B ∧ C ∈ ∆.

3. A = B ∨C. Assume that B ∨C ∈ ∆. Since ∆ has the disjunction property, it
follows that B ∈ ∆ or C ∈ ∆, so by the induction hypothesis, (Bcan,∆) � B
or (Bcan,∆) � C, so (Bcan,∆) � B ∨ C.
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For the other direction assume that (Bcan,∆) � B ∨ C. Then

(Bcan,∆) � B or (Bcan,∆) � C,

so by the induction hypothesis, B ∈ ∆ or C ∈ ∆. Since ∆ is deductively
closed, it follows that B ∨ C ∈ ∆.

4. A = B → C. Assume that B → C ∈ ∆. We have to show (Bcan,∆) � B → C,
so let Γ be a prime set such that ∆ ⊆ Γ and (Bcan,Γ) � B. It follows by the
induction hypothesis that B ∈ Γ, and since B → C ∈ Γ and Γ is deductively
closed, we have that C ∈ Γ. Applying the induction hypothesis again, we get
that (Bcan,Γ) � C.
For the other direction assume that (Bcan,∆) � B → C. We have to show
that B → C ∈ ∆. Assume for a contradiction that B → C /∈ ∆. Since ∆ is
deductively closed, it follows that ∆ 0 B → C. It follows by the Deduction
Theorem 3.6 that ∆∪{B} 0 C. By the Prime Lemma 4.9, there is a prime set Γ
such that ∆ ∪ {B} ⊆ Γ and Γ 0 C, so in particular, C /∈ Γ. By the induction
hypothesis it follows that (Bcan,Γ) � B and (Bcan,Γ) 2 C, contradicting our
assumption that (Bcan,∆) � B → C.

5. A = t : B. We have

t : B ∈ ∆ ⇐⇒ B ∈ t−1∆ = ∗can(t,∆) ⇐⇒ (Bcan,∆) � t : B.

Lemma 4.14. Bcan is a basic modular model.

Proof. We only have to show factivity, for which we use the Truth Lemma. Assume
that

A ∈ ∗can(t,∆) = t−1∆.

By Lemma 4.10 we know that t−1∆ ⊆ ∆, so we have A ∈ ∆. By the Truth Lemma
for the canonical basic modular model, we can conclude that (Bcan,∆) � A. So
factivity is shown.

Theorem 4.15 (Completeness of iJT4CS with respect to basic modular models).
For any formula A:

A is valid with respect to basic modular models implies ` A.
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Proof. By contraposition. Assume that 0 A. By the Prime Lemma 4.9, there exists
a prime set ∆ such that ∆ 0 A. In particular, A /∈ ∆. By the Truth Lemma 4.13,
it follows that

(Bcan,∆) 2 A

since this structure is a basic modular model, it follows that A is not valid with
respect to basic modular models.

5 Modular Models
In this section, we introduce modular models for intuitionistic justification logic.
Modular models are epistemic models in the sense that they feature possible worlds
to model the notion of knowledge. The main principle of these logics is called
justification yields belief, which means that if there is a justification for a formula A,
then that formula must hold in all accessible worlds.

Modular models may seem too expressive as our language does not include a
2-operator. However, these models explain the connection between implicit and
explicit notions of belief. The main feature of modular models is that they provide
a clear ontological separation of justification and truth, see, e.g., [6, 19].

In the second part of this section, we study so-called fully explanatory modular
models. These models additionally require that if a formula holds in all accessible
worlds, then there must be a justification for that formula. This principle can be
seen as the reverse direction of justification yields belief.

Definition 5.1 (Quasimodels). A quasimodel is a tuple

M = (W,≤, R, ∗),

such that (W,≤, ∗) is a basic evaluation, and R is a binary relation on W .

Definition 5.2 (Truth in quasimodels). We define what it means for a formula A
to hold at a world w ∈ W of a quasimodel M = (W,≤ R, ∗), written (M, w) � A,
inductively as follows:

• (M, w) 2 ⊥;

• (M, w) � p iff p∗w = 1;

• (M, w) � A ∧B iff (M, w) � A and (M, w) � B;

• (M, w) � A ∨B iff (M, w) � A or (M, w) � B;
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• (M, w) � A→ B iff (M, v) � B for all v ≥ w with (M, v) � A;

• (M, w) � t : A iff A ∈ t∗w.

Further we define 2w := {A ∈ LJ | (M, v) � A for all v ∈ R[w]}.

Lemma 5.3 (Locality of truth in quasimodels). Let B = (W,≤, ∗) be a basic
evaluation and M = (W,≤, R, ∗) be a quasimodel. We find that for each w ∈ W
and each formula A,

(M, w) � A ⇐⇒ (B, w) � A.

Definition 5.4 (Factive quasimodel). A quasimodel M = (W,≤, R, ∗) is called
factive if A ∈ t∗w implies (M, w) � A for all w ∈W, t ∈ Tm, and formulas A.

Definition 5.5 (Modular models). A quasimodel M = (W,≤ R, ∗) is called a
modular model if it meets the following conditions:

(1) t∗w ⊆ 2w for all t ∈ Tm and w ∈W (JYB);

(2) R is reflexive;

(3) R is transitive;

(4) w ≤ v =⇒ R[v] ⊆ R[w] (Compatibility of ≤ with R).

We say that a formula A is valid with respect to modular models if for each modular
model M = (W,≤, ∗) and all w ∈W we have (M, w) � A.

The abbreviation JYB stands for justification yields belief, which is the main
principle of modular models. This notion goes back to Artemov [6].

Lemma 5.6 (Modular models are factive). All modular models are factive.

Proof. Whenever A ∈ t∗w for some formula A, some t ∈ Tm, and some w ∈ W , we
have A ∈ 2w by JYB. Since R(w,w) by the reflexivity of R, we obtain (M, w) � A
from the definition of 2w.

Corollary 5.7 (Factivity of basic evaluations used in modular models). For any
modular model M = (W,≤, R, ∗) we have that the basic evaluation B := (W,≤, ∗)
is factive and, hence, a basic modular model.

Proof. Assume that for the basic evaluation (W,≤, ∗) , we have A ∈ t∗w for some
formula A, some point w ∈W and some term t ∈ Tm. Then A ∈ t∗w in the modular
model notation. By the previous lemma, we get (M, w) � A, from which we conclude
(B, w) � A by Lemma 5.3.
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Lemma 5.8 (Justifications remain relevant). Let M = (W,≤, R, ∗) be a modular
model. Then for any t ∈ Tm and for arbitrary w, v ∈ W , if R(w, v), then t∗w ⊆ t∗v ,
i.e., justifications remain relevant in accessible worlds.

Proof. Assume R(w, v) and A ∈ t∗w for some formula A. Then we have t : A ∈ (!t)∗w
because (W,≤, ∗) is a basic evaluation. Therefore, t : A ∈ 2w by JYB and, in
particular, (M, v) � t : A by the definition of 2w, which means that A ∈ t∗v .

Theorem 5.9 (Soundness and completeness: modular models). For any constant
specification CS and any formula A we have

` A ⇐⇒ A is valid with respect to modular models.

Proof. Soundness. Let M = (W,≤, R, ∗) be a modular model. We need to show
that any formula A such that ` A holds at any world w ∈W . By Corollary 5.7, we
know that B := (W,≤, ∗) is a basic modular model. By soundness of iJT4CS with
respect to basic modular models, we get (B, w) � A. Hence, (M, w) � A by the
locality of truth in quasimodels (Lemma 5.3).

Completeness. For the opposite direction, suppose 0 A . By completeness of
iJT4CS with respect to basic modular models, there exists a basic modular model
B = (W,≤, ∗) and a world w ∈ W such that (B, w) 2 A. We define a quasimodel
M := (W,≤, R, ∗) with R :=≤. By locality of truth for quasimodels (Lemma 5.3),
we have that (M, w) 2 A, and it only remains to show that M is a modular iJT4CS-
model, i.e., that all the restrictions on R and the condition JYB are met. The
reflexivity and transitivity of R are trivial. We check condition (4) (Compatibility
of ≤ with R), i.e., w ≤ v =⇒ R[v] ⊆ R[w]. Assume w ≤ v and u ∈ R[v].
This means that v ≤ u, so by transitivity of ≤ we have w ≤ u which means that
u ∈ R[w]. Let us finish the proof by demonstrating JYB. Assume that A ∈ t∗w and
R(w, v). From this we get that (B, w) � t : A and w ≤ v. By monotonicity for basic
modular models, it follows that (B, v) � t : A, so A ∈ t∗v. By the factivity of basic
modular models, we get that (B, v) � A, and by the locality of truth in quasimodels,
(M, v) � A. Since v was arbitrary, we conclude that A ∈ 2w.

Definition 5.10 (Fully explanatory modular models). Amodular modelM = (W,≤
, R, ∗) is fully explanatory if for any w ∈W ,

2w ⊆
⋃

t∈Tm
t∗w,

i.e., A ∈ 2w implies A ∈ t∗w for some t ∈ Tm.

We need the following auxiliary definition.
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Definition 5.11. Γ/] := {A ∈ LJ | t : A ∈ Γ for some t ∈ Tm}.

Lemma 5.12.
Γ ⊆ ∆ =⇒ Γ/] ⊆ ∆/]

Proof. Assume that Γ ⊆ ∆ and let A ∈ Γ/]. By definition, there exists a term t,
such that t : A ∈ Γ, so t : A ∈ ∆ and A ∈ ∆/].

Lemma 5.13 (Soundness and completeness: fully explanatory modular models).
Let CS be an axiomatically appropriate constant specification. Then iJT4CS is sound
and complete with respect to fully explanatory modular models.

Proof. Soundness immediately follows from soundness with respect to all modular
models (and holds independently of whether CS is axiomatically appropriate).

We define the canonical model as

Mcan := (W can,≤can, Rcan, ∗can)

where

(i) W can := {∆ ⊆ LJ | ∆ is prime}

(ii) ≤can :=⊆

(iii) ∗can(p,∆) = 1 iff p ∈ ∆

(iv) ∗can(t,∆) := t−1∆

(v) Rcan(Γ,∆) iff Γ/] ⊆ ∆

To show that Mcan is a modular iJT4CS-model, it remains to establish that the
set W can is non-empty, that Rcan is reflexive and transitive, that ≤can is compatible
with Rcan and that the condition JYB is satisfied. We start with showingW can 6= ∅.
We have already shown that the empty set is iJT4CS-consistent, so by the Prime
Lemma 4.9, there exists a prime set extending ∅, which is an element of W can.

To show that ≤can is compatible with Rcan, assume that Γ ⊆ ∆. We need to
show that Rcan[∆] ⊆ Rcan[Γ], so we pick Π ∈ Rcan[∆] and show that Π ∈ Rcan[Γ].
Π ∈ Rcan[∆] means that ∆/] ⊆ Π. By the lemma above, we have that Γ/] ⊆ ∆/],
and therefore Γ/] ⊆ Π, i.e., Π ∈ Rcan[Γ].

To show JYB, assume A ∈ t∗can

Γ for some formula A , some t ∈ Tm, and some
Γ ∈ W can . We need to show that A ∈ 2Γ , i.e., that (Mcan,∆) � A whenever
Rcan(Γ,∆). Consider any such ∆ ∈ W can. We have t : A ∈ Γ by the definition of
t∗

can

Γ and A ∈ ∆ by the definition of Rcan . By the truth lemma for basic evaluations,
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it follows that (Bcan,∆) � A where Bcan = (W can,≤can, ∗can). By the locality of
truth in quasimodels, we have (Mcan,∆) � A.

To show that Rcan is reflexive, consider any Γ ∈ W can. Assume that A ∈ Γ/],
i.e., that t : A ∈ Γ for some t ∈ Tm. Since Γ is prime, it is deductively closed.
t : A → A is an axiom, so t : A → A ∈ Γ. Again, since Γ is deductively closed, it
follows by (MP) that A ∈ Γ. Therefore, Γ/] ⊆ Γ, which means that Rcan(Γ,Γ).

To show that Rcan is transitive, consider arbitrary Γ,∆,Π ∈ W can such that
Rcan(Γ,∆) and Rcan(∆,Π). Assume that A ∈ Γ/], i.e., that t : A ∈ Γ for some
t ∈ Tm. Since Γ is prime, it is deductively closed, and since t : A → !t : t : A
is an axiom of iJT4CS, we conclude !t : t : A ∈ Γ. Hence t : A ∈ Γ/] ⊆ ∆ and
A ∈ ∆/] ⊆ Π. Therefore, Γ/] ⊆ Π, which means Rcan(Γ,Π).

Finally, we show that Mcan is fully explanatory. Assume that A ∈ 2Γ for some
formula A and prime set Γ. Then

Γ/] ` A (1)

Indeed, assume for a contradiction that Γ/] 0 A. By the Prime Lemma, there exists
a prime set ∆ such that Γ/] ⊆ ∆ and ∆ 0 A. By the definition of Rcan, we have
Rcan(Γ,∆), and from ∆ 0 A we get that A /∈ ∆. By the Truth Lemma for basic
evaluations, it follows that (Bcan,∆) 2 A. By the locality of truth in quasimodels,
we have (Mcan,∆) 2 A, contradicting our assumption that A ∈ 2Γ. By (1), it
follows that there are a finite set G1, . . . , Gn ∈ Γ/], such that

G1, . . . , Gn ` A.

Since each Gi ∈ Γ/] , there must exist terms si ∈ Tm such that si : Gi ∈ Γ for each
1 ≤ i ≤ n.

By Lemma 3.7, given the axiomatic appropriateness of CS, there exists a term t
such that

s1 : G1, . . . , sn : Gn ` t : A

By the Deduction Theorem

` s1 : G1 → (s2 : G2 → · · · → (sn : Gn → t : A) . . . ).

Γ is prime, so it is deductively closed, and therefore t : A ∈ Γ and finally

A ∈ t−1Γ = t∗
can

Γ .

So Mcan is fully explanatory.
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6 Realization
We establish in this section that the justification logic iJT4 is the explicit counterpart
of the intuitionistic modal logic iS4. This is simply a reformulation of [3, Section 3]
using axiomatically appropriate and schematic constant specifications.

First we show that iS4 is the forgetful projection of iJT4. We need the following
definition: if A is a formula of LJ, then A◦ is the formula of LI that is the result
of replacing all occurrences of t : in A with 2. We immediately get the following
theorem.

Theorem 6.1 (Forgetful projection). Let CS be an arbitrary constant specification.
For each LJ-formula A,

`iJT4CS A implies `HiS4 A
◦.

Proof. By induction on the length of the iJT4CS derivation.
It is easy to see that for each axiom A of iJT4CS, we have `HiS4 A◦.
If A is the conclusion of an application of modus ponens from premises B

and B → A, then by induction hypothesis and the definition of ·◦ we get

`HiS4 B
◦ and `HiS4 B

◦ → A◦

and thus `HiS4 A◦ by modus ponens.
If A is the conclusion of an instance of axiom necessitation, then A has the

form c : B for some axiom B of iJT4CS. Therefore, as shown above, `HiS4 B◦. An
application of necessitation yields `HiS4 2B◦, which is `HiS4 A◦.

Now we show the converse direction, namely that iJT4 realizes iS4. For this, we
need the following definition: a realization r is a mapping from LI to LJ such that
for each LI-formula A we have that

(r(A))◦ = A.

A realization is normal if all negative occurrences of 2 are realized by justification
variables.

Theorem 6.2 (Realization). Let CS be an axiomatically appropriate and schematic
constant specification. Then there exists a realization r such that for each LI-
formula A we have

`GiS4 A implies `iJT4CS r(A).
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Proof. It turns out that Artemov’s original realization proof for LP [2] also works in
the intuitionistic case. We will only give a proof sketch here.

We start with defining positive and negative occurrences of 2 in a sequent as
usual. Observe that the rules of GiS4 respect these polarities so that (⊃ 2) in-
troduces positive occurrences of 2 and (2 ⊃) introduces negative occurrences of
2. Occurrences of 2 are related if they occur in related formulas of premises and
conclusions of rules; we close this relationship of related occurrences under transi-
tivity. All occurrences of 2 in a GiS4-derivation naturally split into disjoint families
of related occurrences. We call a family essential if at least one of its members is
introduced by a (⊃ 2) rule. Note that an essential family is positive (i.e. contains
only positive occurrences).

Now let D be the GiS4 derivation that proves A. The desired LJ-formula r(A)
is constructed by the following three steps. We reserve a large enough set of justifi-
cation variables as provisional variables.

1. For each negative family and each non-essential positive family, replace all
2 occurrences by x : where we choose a fresh justification variable for each
family.

2. Pick an essential family f . Enumerate all occurrences of (⊃ 2) rules that
introduce a 2-operator to this family. Replace each 2 with a justification
term

v1 + · · ·+ vnf

where each vi is a fresh provisional variable. Do this for each essential family.
The resulting tree D′ is labelled by LJ-formulas.

3. Replace the provisional variables starting with the leaves and working toward
the root. By induction on the depth of a node in D′ we establish that after
the process passes a node, the sequent assigned to this node becomes derivable
in iJT4CS where derivability of Γ ⊃ A means Γ `iJT4CS A. We distinguish the
following cases.

(a) The axioms Γ ⊃ A with A ∈ Γ or ⊥ ∈ Γ are derivable in iJT4CS.
(b) For every rule other than (⊃ 2) we do not change the term assignment

and establish that the conclusion of the rule is derivable in iJT4CS if the
premises are.

(c) Let an occurrence of a (⊃ 2) rule have number i in the enumeration of all
(⊃ 2) rules in a given family f . The corresponding node in D′ is labelled
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by
y1 : B1, . . . , yk : Bk ⊃ A

y1 : B1, . . . , yk : Bk ⊃ u1 + · · ·+ unf
: A

where the y’s are justification variables, the u’s are justification terms,
and ui is a provisional variable. By the induction hypothesis

y1 : B1, . . . , yk : Bk ⊃ A

is derivable in iJT4CS. Using the Lifting Lemma, we construct a term t
such that

y1 : B1, . . . , yk : Bk `iJT4CS t : A.

Thus

y1 : B1, . . . , yk : Bk `iJT4CS u1 + · · ·+ ui−1 + t+ ui+1 + · · ·+ unf
: A.

Substitute t for ui everywhere in D′. By Lemma 3.9, this does not affect
the already established derivability results.

Eventually, all provisional variables are replaced with terms of non-provisional
variables in D′ and we have established that its root sequent r(A) is derivable
in iJT4CS. The realization r built by this construction is normal.

7 Conclusion
We have established that if we take the classical Logic of Proofs and change the
underlying classical propositional logic to intuitionistic propositional logic, then we
obtain an explicit counterpart of the intuitionistic modal logic iS4. This is an in-
teresting result since the logic of proofs of Heyting arithmetic includes additional
axioms that introduce special justification terms for all admissible rules of intuition-
istic logic. This seems necessary to obtain completeness with respect to provability
semantics where the justification relation is interpreted by formal provability in
Heyting Arithmetic.

Our results now show that these additional axioms and justification terms are
not needed if we are interested in the explicit counterpart of intuitionistic modal
logic and the corresponding possible world semantics for justification logic.

Moreover, we believe that intuitionistic justification logics will help to understand
intuitionistic modal logics better. In particular, they will help to clarify the role of
additional principles for the 2-modality and the corresponding conditions on the
accessibility relation. However, this is left for future research.
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Abstract

We investigate the status within Unary Pure Inductive Logic of a family
of analogy principles suggested by the so called Indian Schema from Gotama’s
Nyāyasūtra showing that they all follow from the symmetry principle of Atom
Exchangeability. Their status under the weaker assumptions of Constant and
Predicate Exchangeability and Strong Negation are also investigated.

Keywords: Indian Schema, Nyāyasūtra, Analogy, Pure Inductive Logic, Logical
Probability, Rationality, Uncertain Reasoning.

Introduction
In the Nyāyasūtra of Gotama1, the founding Indian logic text from c.200BCE-
150CE, the author aims to delineate in five terse aphorisms (Sūtras 3.1.32,3.1.34-37)
a scheme for right reasoning. Subsequently numerous commentators, most notably
Vātsyāyana (c.375CE-450CE), Uddyotakara (6th century CE), Gaṅgeśa (12th cen-
tury CE), added their own explanations and developments, as well as incorporating
revisions from other Indian Schools of Philosophy. When H.T.Colebrooke first in-
troduced this Nyāya system of philosophy to the Victorian public at a meeting of
the Royal Asiatic Society in London in 1824 the pattern of reasoning he called the
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Vol. 3 No. 5 2016
IFCoLog Journal of Logics and their Applications



Paris and Vencovská

Hindu Syllogism, subsequently dubbed the Indian Schema, was exemplified by a
handful of examples,2 most prominently the Smoke-Fire example:3

(a) Where there is smoke there is fire, like in the kitchen.
(b) There is smoke on the hill.
(c) Therefore there is fire on the hill.

How exactly such examples should be understood, in their classical Sanskrit con-
text or within the framework of contemporary notions of reasoning (e.g. deductive,
default, case based, etc.) has been the subject of much debate, see [3] for a sample.
In particular it is a moot point why the instance ‘like in the kitchen’ is present at
all since the earlier ‘Where there is smoke there is fire’ would seem to render it re-
dundant. Certainly its featuring there was taken by some Victorians to dismiss the
Indian Schema as simply invalid analogical reasoning, from particular to particular.

In a previous paper, [11], we mentioned possible grounds for supposing that
Gotama’s original intention for line (a) (the udāharan. a) was just to cite an instance
of smoke in a kitchen being the result of a fire and that the later explicit introduction
of the universal by the Buddhist logician Dharmak̄ırti, see Oetke’s [10], or possibly
his predecessor Dignāga (c.480CE-540CE), see Ganeri’s [5, page 38],4 represented a
shift from analogical to deductive reasoning. Viewed in this way then the Indian
Schema becomes:

(a) When there was smoke in the kitchen there was fire.
(b) There is smoke on the hill.
(c) Therefore there is fire on the hill. (?)

Whether or not this was Gotama’s original intention, we continued in [11] to
argue that nevertheless, and not withstanding the Victorians’ rebuke, the ‘reasoning’
in this version can be justified as rational within the context of Pure Inductive Logic
(hereafter PIL) – see [12]. Our interest in this paper is to investigate more fully some
of the analogical principles of probability assignment resulting from various possible
formalisations of (?). Before doing so we need to briefly recall the framework of PIL
as presented, for example, in [12].

2For a quick introduction see J.Ganeri’s [4].
3This is the (last) three line form meant for reasoning for oneself, see [13].
4Ganeri also points out in this paper that Vātsyāyana (c.375CE-450CE) had already made a

significant step in this direction.
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The Pure Inductive Logic Context
Pure Inductive Logic as described in [12] is conventionally set within a predicate
language L with a finite set of relation symbols and countably many constant sym-
bols a1, a2, a3, . . . and no function symbols nor equality. Let SL denote the set of
sentences of Lq and let QFSL denote the quantifier free sentences in L.

A probability function on L is a function w : SL→ [0, 1] such that for θ, φ,
∃xψ(x) ∈ SL,

(i) If |= θ then w(θ) = 1.
(ii) If θ |= ¬φ then w(θ ∨ φ) = w(θ) + w(φ).

(iii) w(∃xψ(x)) = lim
n→∞w

(
n∨

i=1
ψ(ai)

)
.

From these all the expected properties of probability follow (see [12, Proposition
3.1]), in particular if θ |= φ then w(θ) ≤ w(φ).

Given such a w we set the conditional probability function w(· | ·) : SL× SL→
[0, 1] to be a function such that for θ, φ ∈ SL with w(φ) > 0,

w(θ |φ) = w(θ ∧ φ)
w(φ) .

In practice it will be convenient to identify

w(θ |φ) = c with w(θ ∧ φ) = cw(φ)

since this avoids separating the cases when w(φ) is zero and non-zero.

In PIL we are, at this stage of its development, primarily interested in eluci-
dating ‘rationality constraints’ on w in the case when the symbols of L are entirely
uninterpreted. So if w is to represent a ‘rational’ assignment of probabilities to the
sentences of L in the absence of any particular meaning of, and information about,
the constants and the predicates what properties in addition to (i)-(iii) should w
satisfy?

Numerous such constraints, usually in the form of principles that w should ar-
guably obey, have been proposed based on various intuitions of what ‘rational’ might
mean but the most forceful, going back to Johnson [7] and Carnap [1] (or see Car-
nap’s Axioms for Inductive Logic at [14, p973]), are those based on symmetry, the
idea being that it would be irrational of w to break existing symmetries in the lan-
guage. At its simplest level this has been understood as saying that if we have
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an isomorphism of the symbols of a language then the probability assigned to a
sentence should be the same as that assigned to its symbol-wise image under that
isomorphism, because the isomorphism provides, or witnesses, a symmetry between
sentences and their images.

The most obvious example of such a symmetry is when the isomorphism simply
permutes the constant symbols and leaves the relation symbols fixed. In this case
the requirement of preserving symmetries, that is of assigning the same probability
to a sentence as to its isomorphic image, amounts to5 :

The Constant Exchangeability Principle, Ex
For θ ∈ SL and constant symbols ai, aj of L, w(θ) = w(θ′) where θ′ is the result

of transposing ai and aj in θ.

Analogous to Constant Exchangeability but this time permuting relation symbols
of the same arity gives:

The Predicate Exchangeability Principle, Px
For θ ∈ SL and relation symbols Pi, Pj of L of the same arity, w(θ) = w(θ′)

where θ′ is the result of transposing Pi and Pj in θ.

Satisfying these two principles is frequently viewed as necessary for w to be
considered rational. A third symmetry condition is based on the idea that since the
context is supposed to be entirely uninterpreted there is symmetry between R and
¬R,6 just in the same way as there is between heads and tails when we toss a coin.
This yields:

The Strong Negation Principle, SN
w(θ) = w(θ′) where θ′ is the result of replacing each occurrence of the relation

symbol R in θ by ¬R.
Until fairly recently Inductive Logic has been almost entirely concerned with

unary languages, that is where all the relation (or predicate) symbols have a single
argument. In this case there is a further widely accepted7 symmetry principle, Atom
Exchangeability. To wit let Lq be the language whose only relation (i.e. predicate)
symbols are the unary P1, P2, . . . , Pq and let α1(x), α2(x), . . . , α2q(x) be the atoms

5We remark that each of the constant symbols ai, aj in the formulation of Ex may but does not
need to, feature in θ, and similarly for Px.

6Since ¬¬R ≡ R. Again there is an underlying, albeit more complicated, isomorphism.
7Since it holds for the members of Carnap’s Continuum of Inductive methods

906



The Indian Schema Analogy Principles

of Lq, that is the formulae of the form

P ε11 (x) ∧ P ε22 (x) ∧ . . . ∧ P εqq (x)

where ε1, ε2, . . . , εq ∈ {0, 1} and P εi = Pi if ε = 1, ¬Pi if ε = 0.

The Atom Exchangeability Principle, Ax

If σ is a permutation of {1, 2, . . . , 2q} then

w

(
n∧

i=1
αhi(ai)

)
= w

(
n∧

i=1
ασ(hi)(ai)

)
(1)

In the case of Ax then the ‘symmetry’ is between possible complete descriptions
of constants – knowing which atom a particular ai satisfies tells us everything there
is to know about ai as such. [For more on the purported ‘rationality’ of this principle
see [12, p87].] Notice that both Px and SN follow from Ax.

In the case of this purely unary language Lq Constant Exchangeability, Ex,
has two consequences which we shall be needing later. The first is de Finetti’s
Representation Theorem (in the context of this paper). To explain this let

D2q = {〈x1, x2, . . . , x2q〉 |xi ≥ 0,
∑

i

xi = 1}

and for ~x ∈ D2q let

w~x

(
n∧

i=1
αhi(ai)

)
=

n∏

i=1
xhi .

As shown in [12] w~x extends to a probability function on Lq which satisfies Ex.
Indeed every probability function on Lq satisfying Ex is a convex combination of
these w~x:

de Finetti’s Representation Theorem

If w is a probability function on Lq satisfying Ex then there is a countably additive
normalized measure µ on D2q such that for any θ(a1, a2, . . . , an) ∈ SLq,

w(θ(a1, a2, . . . , an)) =
∫

D2q
w~x(θ(a1, a2, . . . , an)) dµ,

and conversely.
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We refer to µ as the de Finetti prior of w. If w additionally satisfies Ax then it
may be assumed that the measure µ is invariant under permutations of the coordi-
nates, see [12, Chapter 14].

A consequence of this theorem, due to Gaifman, [2] or see [12, p71], which we
shall also need later is:

The Extended Principle of Instantial Relevance, EPIR
For θ(a1, a2, . . . , an), φ(a1) ∈ SLq,
w(φ(an+2) |φ(an+1) ∧ θ(a1, a2, . . . , an)) ≥ w(φ(an+2) | θ(a1, a2, . . . , an)). (2)

Two particular probability functions, cLq∞ and c
Lq
0 , will figure in some of the

results which follow.
Carnap’s cLq∞ (aka m∗) equals w~x when

~x = 〈2−q, 2−q, . . . , 2−q〉 ∈ D2q .

This probability function has the property that for any sentence θ(a1) ∈ SLq and
n ≥ 0,

cLq∞ (θ(an+1) | θ(a1) ∧ θ(a2) ∧ . . . ∧ θ(an)) = cLq∞ (θ(an+1)). (3)

That is, cLq∞ denies any inductive support, the probability it gives to θ(an+1) is
unaffected by the evidence that θ(ai) held for i = 1, 2, . . . , n no matter how large n
may be.

Carnap’s cLq0 equals

2−q
2q∑

i=1
w~ei

where ~ei ∈ D2q is the vector with 1 in the ith coordinate and 0’s elsewhere. This
probability function has the property that for any sentence θ(a1) and n > 0,

c
Lq
0 (θ(an+1) | θ(a1) ∧ θ(a2) ∧ . . . ∧ θ(an)) = c

Lq
0 (θ(an+1) | θ(a1)) = 1.8 (4)

In this case then cLq0 derives the maximal possible inductive support for θ(an+1) on
the basis of a single given θ(a1). So as the notation already hints it is at the other
end of the ‘inductive scale’ from c

Lq∞ .
On account of the above properties neither cLq∞ nor cLq0 are particularly favoured

choices for blank slate probability assignments in the absence of any intended inter-
pretation.

8Recall the convention regarding zero divisors in conditional probabilities.

908



The Indian Schema Analogy Principles

Unary Formalisations
To make the forthcoming results more immediate we will write S, F, h, k for P1,P2,a1,
a2.9

As argued in [11] for w a probability function on L210 we might formalise (?) in
one of the forms11,12

w(F (h) | (S(k)→ F (k)) ∧ S(h)) > 1/2, (5)

w(F (h) | (S(k)←→ F (k)) ∧ S(h)) > 1/2, (6)

w(F (h) | S(k) ∧ F (k) ∧ S(h)) > 1/2, (7)

since a probability of more than 1/2 could, in the uninterpreted, ceteris paribus,
context of PIL, be taken as a justification for opting for F (h) in the sense that it
must be more probable than ¬F (h). In [11] we showed that with the exception of
w = cL2∞ , any w satisfying Ex+Px+SN must also satisfy each of (5), (6) and (7); for
w = cL2∞ the inequality in each of (5), (6) and (7) becomes equality.13 So excluding
w = cL2∞ , each of (5), (6) and (7) is at least as rational as Ex+Px+SN.

Hence the only way one could argue that while accepting Ex+Px+SN, (?) as
formalised by (5), (6) or (7) was not justified in PIL, would be if one held that cL2∞
was an acceptable choice. But then since, from (3),

cL2∞ (F (an+1) |F (a1) ∧ F (a2) ∧ . . . ,∧F (an)) = cL2∞ (F (an+1)) = 1/2

one would also have to argue that even under the evidence of F (a1), F (a2), . . . , F (an)
the conclusion that F (an+1) was not justified, no matter how large n was.

Buoyed by the apparent success that (5), (6) and (7) follow from Ex+Px+SN
(unless w = cL2∞ ) one might naturally raise the question whether the belief that there
is fire on the hill should not be greater the more kitchen fires one has experienced.

9Since we will always have Ex+Px the choices of suffices here are not important.
10We could equally take Lq (q ≥ 2) here in place of L2.
11We shall consider other possibilities later.
12In [11] we employed ≥ rather than > but the strict inequality obviously carries more weight.

Since the equality occurs only in very special cases, as discussed below, we prefer to adopt the strict
inequality here.

13If instead we had taken Lq in place of L2 the exceptions would have been those w which equal
cL2∞ when restricted to SL2.
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In other words should not (5), (6) and (7) for w a probability function on L2 be
enhanced to

w(F (h) |
n+1∧

i=1
(S(ki)→ F (ki)) ∧ S(h)) > w(F (h) |

n∧

i=1
(S(ki)→ F (ki)) ∧ S(h)), (8)

w(F (h) |
n+1∧

i=1
(S(ki)←→ F (ki)) ∧ S(h)) > w(F (h) |

n∧

i=1
(S(ki)←→ F (ki)) ∧ S(h)), (9)

w(F (h) |
n+1∧

i=1
(S(ki) ∧ F (ki)) ∧ S(h)) > w(F (h) |

n∧

i=1
(S(ki) ∧ F (ki)) ∧ S(h)), (10)

for n ≥ 0 ? (Under the assumption of Ex+Px+SN, these are indeed enhancements
since these principles imply w(F (h) |S(h)) = 1/2.)

Our plan now is to relate these particular ‘Indian Schema Principles’ (8), (9)
and (10) to the established symmetry principles stated in the previous section. We
start with Atom Exchangeability Ax.

Assuming Atom Exchangeability
It turns out that (8), (9) and (10) all essentially follow from Ex+Ax. Indeed the
following stronger result holds:

Theorem 1. For w a probability function on Lq satisfying Ex+Ax, θ(a1), φ(a1) ∈
QFSLq,

w(θ(an+2) |φ(an+2) ∧
n+1∧

i=1
θ(ai)) ≥ w(θ(an+1) |φ(an+1) ∧

n∧

i=1
θ(ai)),

with equality just if θ(ai) ∧ φ(ai) is inconsistent or ¬θ(ai) ∧ φ(ai) is inconsistent or
w = c

Lq∞ or w = c
Lq
0 and n > 0.

Proof. It is straightforward to check that if θ(ai) ∧ φ(ai) is inconsistent or ¬θ(ai) ∧
φ(ai) is inconsistent then the result holds with equality so assume that neither of
these hold. Let the de Finetti representation of w satisfying Ax be

w =
∫
w~x dµ
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where µ is invariant under permutations of the coordinates.
Without loss of generality let

θ(a1) ≡
r∨

i=1
αi(a1), φ(a1) ≡

m∨

i=1
αi(a1) ∨

k∨

i=r+1
αi(a1)

where m ≤ r and by our earlier assumption 0 < m, r < k. Then the required
inequality becomes

∫
(∑m

i=1 xi)(
∑r
i=1 xi)n+1 dµ∫

(∑m
i=1 xi)(

∑r
i=1 xi)n dµ

≥
∫

(∑m
i=1 xi +∑k

i=r+1 xi)(
∑r
i=1 xi)n+1 dµ

∫
(∑m

i=1 xi +∑k
i=r+1 xi)(

∑r
i=1 xi)n dµ

,

equivalently
∫

(∑m
i=1 xi)(

∑r
i=1 xi)n+1 dµ∫

(∑m
i=1 xi)(

∑r
i=1 xi)n dµ

≥
∫

(∑k
i=r+1 xi)(

∑r
i=1 xi)n+1 dµ

∫
(∑k

i=r+1 xi)(
∑r
i=1 xi)n dµ

.

By Ax, for 1 ≤ j ≤ r and s ∈ N,

m

∫
xj

(
r∑

i=1
xi

)s
dµ =

∫ ( m∑

i=1
xi

)(
r∑

i=1
xi

)s
dµ

and for r + 1 ≤ j ≤ 2q

(k − r)
∫
xj

(
r∑

i=1
xi

)s
dµ =

∫ 


k∑

i=r+1
xi



(

r∑

i=1
xi

)s
dµ.

Hence it suffices to show that
∫

(∑r
i=1 xi)(

∑r
i=1 xi)n+1 dµ∫

(∑r
i=1 xi)(

∑r
i=1 xi)n dµ

≥
∫

(∑2q
i=r+1 xi)(

∑r
i=1 xi)n+1 dµ

∫
(∑2q

i=r+1 xi)(
∑r
i=1 xi)n dµ

,

equivalently
∫

(∑r
i=1 xi)n+2 dµ∫

(∑r
i=1 xi)n+1 dµ

≥
∫

(∑r
i=1 xi)n+1 dµ− ∫ (∑r

i=1 xi)n+2 dµ∫
(∑r

i=1 xi)n dµ−
∫

(∑r
i=1 xi)n+1 dµ

.

This amounts to ∫
(∑r

i=1 xi)n+2 dµ∫
(∑r

i=1 xi)n+1 dµ
≥
∫

(∑r
i=1 xi)n+1 dµ∫

(∑r
i=1 xi)n dµ

(11)

which holds by EPIR.
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Finally if equality held in the theorem for some n then we would have equality
in (11) for some n, equivalently

∫ (( r∑

i=1
xi
)−

∫
(∑r

i=1 xi)n+1 dµ∫
(∑r

i=1 xi)n dµ

)2 ( r∑

i=1
xi
)n
dµ = 0. (12)

Let
a =

∫
(∑r

i=1 xi)n+1 dµ∫
(∑r

i=1 xi)n dµ
.

First consider n = 0. For (12) to hold, ∑r
i=1 xi must be equal to a for µ-almost all

~x. Since µ is invariant under permutations of coordinates, the same must be true
for the sum of any r of the xi. Consequently, for µ-almost all ~x, the sum of any r
of the xi must be a. Any two coordinates of such an ~x must be equal so µ is the
discrete measure giving all the weight to ~x = 〈2−q, 2−q, . . . , 2−q〉 and hence w = c

Lq∞ .
When n 6= 0, for (12) to hold ∑r

i=1 xi must be equal to a or to 0 for µ-almost
all ~x. Again, since µ is invariant under permutations of coordinates, the same must
be true for the sum of any r of the xi. Consequently, for µ-almost all ~x, the sum
of any r of the xi must be a or 0. Any two coordinates of such an ~x must be
either equal or differ by a. This is only possible when as before, a = r2−q and
~x = 〈2−q, 2−q, . . . , 2−q〉, or when a = 1 and ~x = 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉. Since w
satisfies Ax, it follows that w = cL∞ or w = c

Lq
0 .

We remark that the theorem does imply that with the exception of cL∞ and cLq0 ,
any w satisfying Ax+Ex also satisfies all of (8), (9) and (10): we take S(x) for φ(x)
in both cases and S(x)→ F (x), S(x)←→ F (x) or F (x) ∧ S(x) respectively for θ(x)
and note that θ(x) ∧ φ(x) is logically equivalent to F (x) ∧ S(x).

Again any argument against the evidence in (8), (9) and (10) providing a justi-
fication for F (h) would seem to require one to hold the view that cL2∞ or cL2

0 was an
acceptable choice. With cL2∞ there is the same counter as there was with Theorem 2
and using (4) a similar one can clearly be formulated for cL2

0 .

Assuming Ex+Px+SN
Despite Johnson and Carnap’s acceptance of Ax it seems that this is quite a step
beyond Ex+Px+SN as far as being self evidently rational. For this reason it would
be good if (8), (9) and (10) followed from just Ex+Px+SN since it would strengthen
any claim as to their ‘rationality’.
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Treating (8) first:

Theorem 2. Let w satisfy Ex+Px+SN. Then (8) holds for n = 0, 1, indeed

w(F (h) |
2∧

i=1
(S(ki)→ F (ki)) ∧ S(h)) ≥ w(F (h) | (S(k1)→ F (k1)) ∧ S(h)) (13)

≥ w(F (h) |S(h)) = 1/2 (14)

with equality in (13) just if w = cL2∞ or w = cL2
0 and equality in (14) just if w = cL2∞ .

Proof. The second inequality above is (5), and the result was proved in [11].
Turning to (13), α1(x) = S(x) ∧ F (x), α2(x) = S(x) ∧ ¬F (x), α3(x) = ¬S(x) ∧

F (x), α4(x) = ¬S(x) ∧ ¬F (x). We need to show that

w(α1(h) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)) ∧ (α1(k2) ∨ α3(k2) ∨ α4(k2))
w((α1(h) ∨ α2(h)) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)) ∧ (α1(k2) ∨ α3(k2) ∨ α4(k2))

is greater or equal to

w(α1(h) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)))
w((α1(h) ∨ α2(h)) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1))) .

We can record this economically as

w(α1(α1 + α3 + α4)2)
w((α1 + α2)(α1 + α3 + α4)2) ≥

w(α1(α1 + α3 + α4))
w((α1 + α2)(α1 + α3 + α4)) ;

an equivalent inequality is

w(α1(α1 + α3 + α4)2)
w(α2(α1 + α3 + α4)2) ≥

w(α1(α1 + α3 + α4))
w(α2(α1 + α3 + α4)) .

Noting that by Ex, for distinct constants ai1 , ai2 , ai3 and s, v, r ∈ {1, 2, 3, 4}

w(αs(ai1) ∧ αv(ai2) ∧ αr(ai3))

depends only on s, v, r, we record this value as w(αsαvαr) or, when for example
s = r as w(α2

sαv) etc. Let p = w(α3
1), y = w(α2

1α2), t = w(α2
1α4), z = w(α1α2α3).

By Px+SN we have furthermore

p = w(α3
2) = w(α3

3) = w(α3
4),

y = w(α2
1α3) = w(α2

4α2) = w(α2
4α3) = w(α2

2α1) = w(α2
2α4) = w(α2

3α1) = w(α2
3α4),
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t = w(α2
4α1) = w(α2

2α3) = w(α2
3α2),

z = w(α1α2α4) = w(α1α3α4) = w(α2α3α4)
so any w(αiαjαk) is given by one of p, y, t, z.

Consequently for example

w(α1α2) = w(α1α2(α1 + α2 + α3 + α4)) = 2y + 2z,

and
w(α1α4) = 2t+ 2z, w(α2

1) = p+ t+ 2y,

so since we also have w(α1α3) = w(α1α2) = w(α2α4) and w(α1α4) = w(α2α3) the
required inequality becomes

p+ 3t+ 3y + 2z
t+ 2y + 6z ≥ p+ 3t+ 4y + 4z

2t+ 4y + 6z ,

which simplifies to

pt+ 2py + 4y2 + 3t2 + 8yt ≥ 12z2 + 6yz. (15)

We now make two claims which will be proved later:
Claim 1: p ≥ y with equality just when w = cL2∞ .

Claim 2: y + t ≥ 2z.
Returning to the inequality (15), from Claim 2 we have 3(y + t)2 ≥ 12z2 and

y(y + t) ≥ 2yz so

pt+ 2py + 4y2 + 3t2 + 8yt ≥ pt+ 2py + 12z2 + 2yz + yt.

But by Claims 1 and 2 we also have

pt+ 2py + yt ≥ yt+ 2y2 + yt = 2y(y + t) ≥ 4yz, (16)

so (15) follows.

It remains to show the Claims 1 and 2 and to consider when equality occurs
in (15). Fortunately as the Claims are purely linear we can use the representation
theorem which tells us that any probability function on the language {S, F} satis-
fying Ex+Px+SN can be expressed as an integral (see [6, Lemma 6], dropping the
redundant AP) using the probability functions

8−1(w〈x1,x2,x3,x4〉 + w〈x1,x3,x2,x4〉 + w〈x4,x2,x3,x1〉 + w〈x4,x3,x2,x1〉
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+ w〈x2,x1,x4,x3〉 + w〈x2,x4,x1,x3〉 + w〈x3,x1,x4,x2〉 + w〈x3,x4,x1,x2〉), (17)

where the xi are nonnegative real numbers summing to 1 and

w〈xi,xj ,xk,xr〉(α
m1
1 αm2

2 αm3
3 αm4

4 ) = xm1
i xm2

j xm3
k xm4

r

Hence it is enough to show that p ≥ y and y + t ≥ 2z hold for this probability
function. But these amount, respectively, to

2(x3
1 + x3

2 + x3
3 + x3

4) ≥ x2
1x2 + x2

1x3 + x2
2x1 + x2

2x4 + x2
3x1 + x2

3x4 + x2
4x2 + x2

4x3,

⇐⇒
(x1 − x2)2(x1 + x2) + (x1 − x3)2(x1 + x3)
+ (x4 − x2)2(x4 + x2) + (x4 − x3)2(x4 + x3)

}
≥ 0,

with equality just when x1 = x2 = x3 = x4, and

x2
1(x2 +x3 +2x4)+x2

2(x1 +x4 +2x3)+ x2
3(x1 +x4 +2x2)+x2

4(x2 +x3 +2x1)
≥ 2(2x1x2x3 + 2x2x1x4 + 2x3x1x4 + 2x4x2x3)

⇐⇒

x2(x1 − x3)2 + x2(x4 − x3)2 + x3(x1 − x2)2 + x3(x4 − x2)2

+ x1(x2 − x4)2 + x1(x3 − x4)2 + x4(x2 − x1)2 + x4(x3 − x1)2

}
≥ 0.

with equality just when x1 = x2 = x3 = x4 or one of the xi is 1.
Hence both claims hold and equality in Claim 1 can occur only when w = cL2∞

whilst in Claim 2 equality occurs just when the mixing measure featuring in the
above mentioned representation of w gives measure 1 to the set of functions (17)
with x1 = x2 = x3 = x4 or with one of the xi equal to 1.

It follows that the first inequality in (16) is strict unless t = y = 0 or w = cL2∞ .
The former happens just when w = cL2

0 and hence equality in (15) occurs just when
w is one of Carnap’s cL2

0 and cL2∞ .14

14see e.g. [12].
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Contrary to expectations however (8) can fail under Ex+Px+SN for n > 2. A
counter-example is provided by a function of the form (17), with suitable x1,x2,x3,x4.
For given x1,x2,x3,x4 (to be specified later) let w̃ be

8−1(w〈x1,x2,x3,x4〉 + w〈x1,x3,x2,x4〉 + w〈x4,x2,x3,x1〉 + w〈x4,x3,x2,x1〉

+ w〈x2,x1,x4,x3〉 + w〈x2,x4,x1,x3〉 + w〈x3,x1,x4,x2〉 + w〈x3,x4,x1,x2〉)

and define

R(n) = w̃(α1(α1 + α3 + α4)n)
(w̃(α1 + α2)(α1 + α3 + α4)n)

= w̃ (F (h) |
n∧

i=1
(S(ki)→ F (ki)) ∧ S(h)) . (18)

Write A = x1 + x4 and B = x2 + x3. We have

w〈x1,x2,x3,x4〉(α1(α1 + α3 + α4)n) = x1(A+ x3)n,

w〈x1,x2,x3,x4〉((α1 + α2)(α1 + α3 + α4)n) = (x1 + x2)(A+ x3)n

etc. so collecting terms, R(n) is

A(A+ x3)n +A(A+ x2)n +B(B + x1)n +B(B + x4)n
(A+ 2x2)(A+ x3)n + (A+ 2x3)(A+ x2)n + (B + 2x4)(B + x1)n + (B + 2x1)(B + x4)n .

Multiplying R(n + 1) ≥ R(n) by the denominators and subtracting the RHS from
the LHS shows it equivalent to C −D ≥ 0 where C is the sum of products of terms
from these two columns:

A(A+ x3)n+1 (A+ 2x2)(A+ x3)n
A(A+ x2)n+1 (A+ 2x3)(A+ x2)n
B(B + x1)n+1 (B + 2x4)(B + x1)n
B(B + x4)n+1 (B + 2x1)(B + x4)n

and D is the sum of products in these two columns:

A(A+ x3)n (A+ 2x2)(A+ x3)n+1

A(A+ x2)n (A+ 2x3)(A+ x2)n+1

B(B + x1)n (B + 2x4)(B + x1)n+1

B(B + x4)n (B + 2x1)(B + x4)n+1

This amounts to the sum of the following 12 terms being non-negative:
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(A+ x3)n (A+ x2)n A (A+ 2x3) (x3 − x2)
(A+ x3)n (B + x4)n A (B + 2x1) (A+ x3 −B − x4)
(A+ x3)n (B + x1)n A (B + 2x4) (A+ x3 −B − x1)
(A+ x2)n (A+ x3)n A (A+ 2x2) (x2 − x3)
(A+ x2)n (B + x1)n A (B + 2x4) (A+ x2 −B − x1)
(A+ x2)n (B + x4)n A (B + 2x1) (A+ x2 −B − x4)
(B + x4)n (A+ x3)n B (A+ 2x2) (B + x4 −A− x3)
(B + x4)n (A+ x2)n B (A+ 2x3) (B + x4 −A− x2)
(B + x4)n (B + x1)n B (B + 2x4) (x4 − x1)
(B + x1)n (A+ x3)n B (A+ 2x2) (B + x1 −A− x3)
(B + x1)n (A+ x2)n B (A+ 2x3) (B + x1 −A− x2)
(B + x1)n (B + x4)n B (B + 2x1) (x1 − x4)

Combining the obvious pairs yields the sum of the following six terms

(A+ x3)n (A+ x2)n A 2(x3 − x2)2

(A+ x3)n (B + x4)n 2(Ax1 −Bx2) (A+ x3 −B − x4)
(A+ x3)n (B + x1)n 2(Ax4 −Bx2) (A+ x3 −B − x1)
(A+ x2)n (B + x1)n 2(Ax4 −Bx3) (A+ x2 −B − x1)
(A+ x2)n (B + x4)n 2(Ax1 −Bx3) (A+ x2 −B − x4)
(B + x4)n (B + x1)n B 2(x4 − x1)2

Rewriting A and B back in terms of the xi, this is the sum of

(1− x2)n (1− x3)n (x1 + x4) 2(x3 − x2)2

(1− x2)n (1− x1)n 2(x2
1 − x2

2 + x1x4 − x2x3) (x1 − x2)
(1− x2)n (1− x4)n 2(x2

4 − x2
2 + x1x4 − x2x3) (x4 − x2)

(1− x3)n (1− x4)n 2(x2
4 − x2

3 + x1x4 − x2x3) (x4 − x3)
(1− x3)n (1− x1)n 2(x2

1 − x2
3 + x1x4 − x2x3) (x1 − x3)

(1− x1)n (1− x4)n (x2 + x3) 2(x4 − x1)2

Let ε > 0 and

x1 = 1− 6ε, x2 = 3ε, x3 = 2ε, x4 = ε .

Then 1− x1 and x2, x3, x4 are of order ε, so the second, fifth and sixth products are
of order εn whilst the first, third and fourth are respectively

(1− 3ε)n (1− 2ε)n (1− 5ε) 2ε2

(1− 3ε)n (1− ε)n 2(ε− 20ε2) (−2ε)
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(1− 2ε)n (1− ε)n 2(ε− 15ε2) (−ε)
so their sum is negative of order ε2. Hence for n > 2 and a sufficiently small ε this
is a counterexample to R(n+ 1) ≥ R(n).

We remark that the very same approach as above does not work with n = 2 (3
kitchens) because with these x1, . . . , x4 all but the last product are of the order ε2
(the last one being of order ε3) and their sum for small ε is positive.

According to the natural requirement then that more examples should provide
an ever greater enhancement of the probability of F (s) this argues against the im-
plication formalisation, at least if one wants to limit the assumptions to Ex+Px+SN
rather than the stronger Ex+Ax. (As we shall see shortly this same criticism applies
to the conjunction formalization, but not to the bi-implication formalisation.)

It is worth noting at this point that for probability functions of the form (17), if
x4 is the strictly smallest of the xi then

lim
n→∞w(F (h) |

n∧

i=1
(S(ki)→ F (ki)) ∧ S(h)) = x2 + x3

x2 + x3 + 2x4
, (19)

so not 1 but greater than 1/2.

The status of the one remaining case, when n = 2, the ‘3 kitchens problem’,
is open. Given these counter-examples one might wonder if it was possible that
Ex+Px+SN was not enough to even justify jumping to the conclusion F (h) on the
basis of more than 2 kitchen fires. Fortunately that recommendation is still good:

Theorem 3. For w satisfying Ex+Px+SN, and any n ≥ 1

w(F (an+1) |S(an+1) ∧
n∧

i=1
(S(ai)→ F (ai))) ≥ 1/2 = w(F (an+1) |S(an+1)),

with equality just if w = cL2∞ .

Proof. Using the usual de Finetti Representation Theorem for w a probability func-
tion on L2 satisfying Ex, the required inequality becomes

∫
x1(x1 + x3 + x4)n dµ(~x)∫

(x1 + x2)(x1 + x3 + x4)n dµ(~x) ≥
1
2 .

Simplifying gives
∫
x1(x1 + x3 + x4)n dµ(~x) ≥

∫
x2(x1 + x3 + x4)n dµ(~x),
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equivalently ∫
(x1 − x2)(1− x2)n dµ(~x) ≥ 0.

By the trick in [12, page 90] we can assume that the measure µ is invariant under
those permutations of coordinates which are ’licensed’ by SN+Px, in particular the
permutation transposing x1, x2 (and x3, x4). Hence

∫
(x1 − x2)(1− x2)n dµ(~x) =

∫
(x2 − x1)(1− x1)n dµ(~x)

and it is enough to show that
∫

(x1 − x2)(1− x2)n + (x2 − x1)(1− x1)n dµ(~x) ≥ 0.

But the polynomial being integrated here is just

(x1 − x2)((1− x2)n − (1− x1)n)

which equals

(x1 − x2)2
n−1∑

i=0
(1− x1)n−1−i(1− x2)i ≥ 0 (20)

so the result clearly holds.
Finally we can only have equality in (20) for all support points of µ if x1 = x2

(and perforce x1 = x3 = x4 by the assumed invariance of µ under permutations
licensed by Px+SN) for all support points so the only possible support point is
〈4−1, 4−1, 4−1, 4−1〉 and w on this sublanguage must be cL2∞ .

On a more positive note however we can fully answer this question when it comes
to (9):

Theorem 4. For w a probability function on L2 satisfying Ex+Px+SN and n ≥ 0,

w(F (h) |
n+1∧

i=1
(S(ki)←→ F (ki))∧S(h)) ≥ w(F (h) |

n∧

i=1
(S(ki)←→ F (ki))∧S(h)). (21)

We remark that equality does hold for some special probability functions but
they can be dismissed on similar grounds as cL2∞ and cL2

0 , see below.
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Proof. Using the same notation as above, we need to show that for a probability
function w satisfying Ex+Px+SN and n ≥ 0,

w(α1(α1 + α4)n+1)
w((α1 + α2)(α1 + α4)n+1) ≥

w(α1(α1 + α4)n)
w((α1 + α2)(α1 + α4)n) , (22)

equivalently that
w(α1(α1 + α4)n)
w(α2(α1 + α4)n)

is non-decreasing. To this end, it suffices to show that

w(α1(α1 + α4)n)
w((α1 + α4)n)

is non decreasing and
w(α2(α1 + α4)n)
w((α1 + α4)n)

is non-increasing. This follows by EPIR since by SN+Px

w(α1(α1 + α4)n) = 2−1w((α1 + α4)(α1 + α4)n)

and

w(α2(α1 + α4)n) = 2−1w((α2 + α3)(α1 + α4)n)
= 2−1(w((α1 + α4)n)− w((α1 + α4)(α1 + α4)n)).

As in the corresponding proof15 of Theorem 1 if we have equality in (22) for
some n and n+ 1 then either every point in the support of µ must be of one of the
form 〈x1, x2, (1/2) − x2, (1/2) − x1〉 or every point in the support of µ must be of
the form 〈0, x2, 1− x2, 0〉 or 〈x1, 0, 0, 1− x1〉 and n > 0.

These conditions are not enough to force w to be one of cL2∞ or cL2
0 . However a

similar argument can be made to rebuke the probability functions w which do give
equality here. Namely they would have to satisfy

w((α1 + α4) | (α1 + α4)n) = w((α1 + α4) | (α1 + α4))

for all n > 0.
15Arguing about the probability function for the language with one predicate R which we obtain

from w upon replacing α1 ∨ α4 by R and α2 ∨ α3 by ¬R.
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Turning now to the formalisation as a conjunction, as we shall see shortly from
Theorem 5 we do have that (10) holds for n = 0 when w satisfies Ex+Px+SN.
However that is not generally the case for n ≥ 2: The probability function (1 −
ε)ω1 + εω2 satisfies Ex+Px+SN but not (10) when ε > 0 is small, ω1 is of the
form (17) with x1 = x4 = 1/2, x2 = 0 = x3 and ω2 is also of this form but with
x1 = 3/4, x2 = 1/4, x3 = x4 = 0. As with implication (but not bi-implication) these
counter-examples furnish a criticism of the conjunction formalisation.

To our knowledge the current status of (10) for n = 1 is an open problem.
Fortunately we do, as with implication, have:

Theorem 5. For w a probability function on L2 satisfying Ex+Px+SN, and n ≥ 1

w(F (an+1) |S(an+1) ∧
n∧

i=1
(S(ai) ∧ F (ai))) ≥ 1/2 = w(F (an+1) |S(an+1)),

with equality just if w = cL2∞ .
Proof. Proceeding as in the proof of Theorem 3, we use the usual de Finetti Repre-
sentation Theorem for w a probability function on L2 satisfying Ex. The required
inequality becomes ∫

xn+1
1 dµ(~x)∫

(x1 + x2)xn1 dµ(~x) ≥
1
2 ,

equivalently ∫
xn+1

1 dµ(~x) ≥
∫
x2 x

n
1 dµ(~x),

that is, ∫
(x1 − x2)xn1 dµ(~x) ≥ 0.

Again since w satisfies also Px we can assume that the measure µ is invariant under
the permutation transposing x1, x2 and x3, x4. Hence∫

(x1 − x2)xn1 dµ(~x) =
∫

(x2 − x1)xn2 dµ(~x)

and it is enough to show that
∫

( (x1 − x2)xn1 + (x2 − x1)xn2 ) dµ(~x) ≥ 0.

But the polynomial being integrated here is just

(x1 − x2)(xn1 − xn2 )

which is clearly nonnegative, so the result follows. The last part about cL2∞ follows
as in Theorem 3.
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Mill’s Property

In [9, Vol.7,p186] the Scotish philosopher J.S.Mill suggested (as others have since)
that when we use for example

All men are mortal

to conclude that the Duke of Wellington is mortal it is not that we already know
all instances of this universal but that we know a sufficient number of them to feel
justified in saving mental storage space by rounding up our knowledge to ‘All men
are mortal’. In other words we are transforming an argument by induction into a
fully deductive argument. From this viewpoint then the reality of the Indian Schema
for one reasoning to oneself might be read as:

(a) In the many cases I have experienced of smoke there has invariably been fire.

(b) There is smoke on the hill.

(c) Therefore there is fire on the hill.

If such reasoning can be taken to be in some sense ‘rational’ then it suggests we
should investigate the status within PIL of probability functions w on Lq satisfying
the somewhat more general principle:

Mill’s Property, MP

For θ(a1), φ(a1) ∈ QFSLq with w(θ(a1) ∧ φ(a1)) > 0,

limn→∞w

(
θ(an+1) |φ(an+1) ∧

n∧

i=1
θ(ai)

)
= 1

Theorem 6. Let w be a probability function on Lq satisfying Ax and with de Finetti
prior µ. Then w satisfies MP just if all the points 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉 are in
the support of µ.

Proof. First suppose that ~x = 〈1, 0, 0, . . . , 0〉 is not in the support of µ, say that
µ(Aδ) = 0 where δ > 0 and

Aδ = {~y ∈ D2q | |~y − ~x| < δ}.
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Then

w(α1(an+1) |
n∧

i=1
α1(ai)) =

∫
D2q

xn+1
1 dµ

∫
D2q

xn1 dµ

=
∫
D2q−Aδ x

n+1
1 dµ

∫
D2q−Aδ x

n
1 dµ

≤
∫
D2q−Aδ(1− δ)x

n
1 dµ∫

D2q−Aδ x
n
1 dµ

< 1,

so MP fails for this θ and φ = >, where > stands for a tautology.

In the other direction suppose that each of these points 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉
is in the support of µ and let

θ(a1) ≡
r∨

i=1
αi(a1), φ(a1) ≡

m∨

i=1
αi(a1) ∨

k∨

i=r+1
αi(a1)

where 0 < m ≤ r. We may assume that k ≥ r+ 1 otherwise the result is immediate.
We need to show that

∫
(∑k

i=r+1 xi)(
∑r
i=1 xi)n dµ∫

(∑m
i=1 xi)(

∑r
i=1 xi)n dµ

.

tends to zero as n → ∞. Using Ax as in the proof of Theorem 1 it is enough to
show that

∫
(∑2q

i=r+1 xi)(
∑r
i=1 xi)n dµ∫

(∑r
i=1 xi)n+1 dµ

(23)

tends to zero as n→∞.
Let 0 < δ < ν and

Bδ = {~x ∈ D2q |
r∑

i=1
xi ≥ 1− δ}

and similarly for ν. By the assumption of MP in the theorem µ(Bδ) > 0.
We can write (23) as

∫
Bν

(∑2q
i=r+1 xi)(

∑r
i=1 xi)n dµ+

∫
D2q−Bν (∑2q

i=r+1 xi)(
∑r
i=1 xi)n dµ∫

Bδ
(∑r

i=1 xi)n+1 dµ+
∫
Bν−Bδ(

∑r
i=1 xi)n+1 dµ+

∫
D2q−Bν (∑r

i=1 xi)n+1 dµ
. (24)
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Since
∫
Bν

(∑2q
i=r+1 xi)(

∑r
i=1 xi)n dµ∫

Bδ
(∑r

i=1 xi)n+1 dµ+
∫
Bν−Bδ(

∑r
i=1 xi)n+1 dµ

≤ ν

1− ν ,

and ∫
D2q−Bν (∑2q

i=r+1 xi)(
∑r
i=1 xi)n dµ∫

Bδ
(∑r

i=1 xi)n+1 dµ
≤ (1− ν)n(1− µ(Bν))

(1− δ)n+1µ(Bδ)

it follows that by choosing δ, ν sufficiently small and then n sufficiently large we can
make (24) arbitrarily small, as required.

This proof has assumed Ax. If we only assume Ex+Px+SN then Mill’s Property
may not hold as is apparent from (19).

We remark that a corollary of Theorem 6 is that, assuming Ax and regularity
(i.e. w(θ) > 0 whenever θ ∈ QFSLq is consistent), Reichenbach’s Axiom, see
[12] for a formulation in the notation of this paper, implies Mill’s Property since
by Theorem 15.1 of that monograph that axiom is equivalent to every point in D2q

being a support point of µ.

The Lake
The version of the Indian Schema which we have considered here is based on Sūtra
36 which is commonly referred to as a ‘homogeneous example’. We have variously
formalised this as

S(k)→ F (k), S(k)←→ F (k) (25)

or
S(k) ∧ F (k). (26)

However in Sūtra 3716 Gotama describes another sort of example, a heterogeneous
example. According to S.C.Vidyabhusana’s rendering of the Sūtra, [15, p12]:

A heterogeneous (or negative) example is a familiar instance which is
known to be devoid of the property to be established and which implies that

16tad-viparyayād vā vipar̄ıtam.
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the absence of this property is invariably rejected in the reason given.17

In our smoke-fire scenario a commonly stated such example is that of the lake
[which is both fire and smoke free] which is combined with the homogeneous example
of the kitchen to give the schema:

(a) Where there is smoke there is fire, like in the kitchen and (un)like on the
lake.

(b) There is smoke on the hill.
(c) Therefore there is fire on the hill.

Exactly how we should formalise the lake (denoted l) example is not clear (to
us) but it would seem that given the formalisations in (25) it could arguably be,
respectively:

¬F (l)→ ¬S(l), ¬S(l)←→ ¬F (l),

which are simply covered by the two kitchen version. For (26) it could arguably be

¬F (l) ∧ ¬S(l).

However there are probability functions satisfying Ex+Ax for which the inequality

w(F (h) |S(h) ∧ S(k) ∧ F (k) ∧ ¬S(l) ∧ ¬F (l))

≥ w(F (h) |S(h) ∧ S(k) ∧ F (k)) (27)

does not hold.18 On this evidence again then it seems that the appropriateness of
capturing the example by a conjunction rather than an implication or bi-implication
is questionable.

17Translations here from the original Sanskrit are considered notoriously difficult. We are grateful
to Eberhard Guhe for suggesting the more literal

Or in the case opposite to that [i.e. the above-mentioned positive example] it [the
udāharan. a] is contrary [to the case at issue].

where the parenthetic comments have been added by him for clarification and are not part of the
Sanskrit original.

18For w satisfying Ax (27) reduces to 2y2 ≥ xz + yz where x = w(α3
1), y = w(α2

1α2) and
z = w(α1α2α3). This fails in the case of the probability function

4−1(w〈1−3ε,ε,ε,ε〉 + w〈ε,1−3ε,ε,ε〉 + w〈ε,ε,1−3ε,ε〉 + w〈ε,ε,ε,1−3ε〉)

with ε > 0 very small since it does satisfy Ax but gives, up to lowest powers of ε, x = 1/4, y = ε/4,
z = 3ε2/4 so 2y2 < xz.
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Conclusion

In this paper we have limited ourselves to perhaps the most natural present day
formulations of the Indian Schema, namely treating ‘smoke’, or ‘smoky’, as a pred-
icate and ‘hill’ as a constant, etc. and have shown how most of these can claim to
be justified as rational, at least if cLq0 , c

Lq∞ are excluded, on the basis of following
from various symmetry principles in PIL. On this count taking the example to be
a bi-implication seems to come out best if we assume only Ex+Px+SN but once
we move up to Ex+Ax all three, implication, bi-implication and conjunction, fare
satisfactorily.

Given the arcane complexities of Sanskrit however it is certainly not clear, even
unlikely, that the formalisation presented here was how Gotama and the subsequent
commentators on the Nyāyasūtra would have seen it. For example it has been sug-
gested that ‘hill’ might have been thought of as a predicate and smoke, or smokiness,
as a constant etc. or that they are both constants and the connection between them
is via a binary relation A of ‘happens at’, see [8]. We plan to investigate these alter-
natives in a future paper but for the present we should emphasize that our primary
purpose in this paper, and the earlier paper [11] which it extends, has not been to
argue about what Gotama et al could have meant but rather to justify the ratio-
nality of the version of the schema as it seemed many Victorian (and later) readers
dismissively understood it.
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