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Editorial

Hannes Leitgeb, Iosif Petrakis, Peter Schuster, and
Helmut Schwichtenberg

Munich and Verona

This special issue contains selected papers from the summer school "Proof, Truth,
Computation (PTC)" which was held from 21st to 25th July 2014 in Frauenwörth,
Chiemsee, Germany, within the Volkswagen Foundation’s programme Symposia and
Summer Schools. With its focus on the interactions between modern foundations of
mathematics and contemporary philosophy, the topics of the summer school included
truth theories, predicativity, constructivity, proof theory, formal epistemology and
set-theoretic truth.

Mathematical methods are about to shape some branches of contemporary phi-
losophy just as they have formed most of the natural and many of the social sciences.
The thread of the school was to mirror this development, known as mathematical
philosophy or formal epistemology; to highlight the challenges that arise from it; and
in particular to display its repercussions in mathematics. As for theoretical com-
puter science, a quite comparable spin-off of mathematics, the principal counterpart
within mathematics is mathematical logic.

Since many of the objects of study lie beyond the typical commitment of contem-
porary mathematics, it is decisive to include non-classical issues such as predicativity
and constructivity. Proof theory does indeed play a pivotal role: as the area of math-
ematical logic that is closest to the understanding of logic as the science of formal
languages and reasoning, it is predestined for interaction both with philosophical
and computer science logic.

A hot topic that crossed over wide ranges of the school is whether axiomatic
theories of truth and of related notions, such as provability and knowledge, are
possible at all in the stress field between syntax and semantics. Rational belief and
rational choice, epistemic issues of principal philosophical relevance, are currently
put under mathematical scrutiny by applying probabilism: that is, the thesis that a
rational agent’s degrees of belief should conform to the axioms of probability theory.

The summer school was thought to help to bridge the gap between two of the
most fundamental faculties of human intellect, mathematics and philosophy, right
at their natural point of contact: that is, logic. The gap, which would have been
inconceivable for Leibniz, say, has opened when mathematics went abstract in the
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19th century; and has widened considerably with the resulting crisis in the founda-
tions of mathematics. Allowing this divide to remain would prevent the wealth of
knowledge obtained since from being transferred across.

Times have changed, however: new generations have arrived with fresh mindsets;
and challenges emerging from scientific and technological progress can now only be
met by joining forces over the borders of the disciplines. Closing the divide between
mathematics and philosophy has thus become both possible and necessary. More-
over, it will contribute to bridging the general split between sciences and humanities,
which has been a drawback for too long.

Among other things, the advent of the computer, and the predominant role it
plays in the modern world, have made it indispensable to take much more seriously
than ever before the foundations of mathematics at large, and logic in particular.
In computer science, for example, the need for secure computer software prompted
the use of formal methods for program verification, or even for extracting programs
directly from mathematical proofs; in any case, logic is heavily employed, and the
need for appropriate foundations of mathematics is manifest.

The increasing complexity of proofs almost beyond the reach of a human mathe-
matician (e.g. Wiles’s proof of Fermat’s Last Theorem) has further suggested to use
computers also for proving theorems in mathematical practice. In fact a computer-
assisted formalisation of mathematics has been started fairly successfully, and more
and more man-made proofs have already been checked by machine; examples include
the Four-Colour Theorem and the Feit-Thompson Theorem. A widely used proof
assistant is Coq, named after Coquand.

For formalising mathematics proof theory is indispensable. For example, the
formalisation in Coq of ever more abstract mathematics has turned out to require
a deep revision of the concept of identity in Martin-Löf type theory. As a way out
Voevodsky has put forward the Univalence Axiom. It is not by coincidence that
identity has ever constituted one of the most puzzling issues in the foundations of
mathematics and the exact sciences.
This special issue features the following five articles:
Jacob Cook and Michael Rathjen, "A classification of the provably total set functions
of KP".
Sy Friedman, "Evidence for set-theoretic truth and the hyperuniverse programme".
Maria Emilia Maietti and Samuele Maschio, "A predicative realizability tripos for
the minimalist foundation".
Graham E. Leigh, "Reflecting on truth".
Joan Rand Moschovakis, "A translation theorem for restricted R-formulas".
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Evidence for Set-Theoretic Truth and the
Hyperuniverse Programme

Sy-David Friedman
Kurt Gödel Research Center, University of Vienna

sdf@logic.univie.ac.at

I discuss three potential sources of evidence for truth in set theory, coming from
set theory’s roles as a branch of mathematics and as a foundation for mathematics
as well as from the intrinsic maximality feature of the set concept. I predict that
new non first-order axioms will be discovered for which there is evidence of all three
types, and that these axioms will have significant first-order consequences which will
be regarded as true statements of set theory. The bulk of the paper is concerned with
the Hyperuniverse Programme, whose aim is to discover an optimal mathematical
principle for expressing the maximality of the set-theoretic universe in height and
width.

1 Introduction
The truth of the axioms of ZFC is commonly accepted for at least two reasons.
One reason is foundational, as they endow set theory with the ability to serve as a
remarkably good foundation for mathematics as a whole, and another is intrinsic,
as (with the possible exception of AC, the axiom of choice) they can be seen to be
derivable from the concept of set as embodied by the maximal iterative conception.

In fact a little bit more than ZFC is justifiable on intrinsic and perhaps also foun-
dational grounds. I refer here to reflection principles and their related small large
cardinals, which are also derivable from the maximal iterative conception through
height (ordinal) maximality and, at least in the case of inaccessible cardinals, are
occasionally useful for the development of certain kinds of highly abstract mathe-
matics (such as Grothendieck universes). These extensions of ZFC are mild in the
sense that they are compatible with the powerset-minimality principle V = L.

But finding strong evidence for the truth of axioms that contradict V = L has
been exceedingly difficult. There are a number of reasons for this. One is the
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fact that mild extensions of ZFC have been in a sense too good, in that they alone
have until recently been sufficient to serve the needs of set theory as a foundation
for mathematics. Another is the difficulty of squeezing more out of the maximal
iterative conception through a width (powerset) maximality analogue of the height
maximality principles that give rise to reflection. And the development of set theory
as a branch of mathematics has been so dramatic, diverse and ever-changing that
it has been impossible to select those perspectives on the subject whose choices of
new axioms can be regarded as “the most true”.

My aim in this article is to provide evidence for the following three predictions.

The Richness of Set-Theoretic Practice. The development of set theory as a branch
of mathematics is so rich that there will never be a consensus about which first-order
axioms (beyond ZFC plus small large cardinals) best serve this development.

A Foundational Need. Just as AC is now accepted due to its essential role for math-
ematical practice, a systematic study of independence results across mathematics
will uncover first-order statements contradicting CH (and hence also V = L) which
are best for resolving such independence.

An Optimal Maximality Criterion. Through the Hyperuniverse Programme it will
be possible to arrive at an optimal non first-order axiom expressing the maximality
of the set-theoretic universe in height and width; this axiom will have first-order
consequences contradicting CH (and hence also V = L).

And as a synthesis of these three predictions I propose the following optimistic
scenario for making progress in the study of set-theoretic truth.

Thesis of Set-Theoretic Truth. There will be first-order statements of set theory that
well serve the needs of set-theoretic practice and of resolving independence across
mathematics, and which are derivable1 from the maximality of the set-theoretic
universe in height and width. Such statements will come to be regarded as true
statements of set theory.

This Thesis has a converse: In order for a first-order statement contradicting
V = L to be regarded as true, in my view it must well serve the needs of set-
theoretic practice and of resolving independence in mathematics, and it must at
least be compatible with the maximality of the set-theoretic universe as expressed

1For a discussion of this notion of derivability see the final Subsection 4.12.
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by the optimal maximality criterion. Indeed the strength of the evidence for such
a statement’s truth is in my view measured by the extent to which it fulfills these
three requirements.

An important consequence of the Thesis is the failure of CH. Thus part of my
prediction is that CH will be regarded as false.

Note that in the Thesis I do not refer to true first-order axioms but only to true
first-order statements. The reason is the following additional claim.

Beyond First-Order. There will never be a consensus about the truth of proposed
first-order axioms that contradict V = L; instead true first-order statements will
arise solely as consequences of true non first-order axioms.

One reason for this claim is the inadequancy of first-order statements to capture
the maximality of the set-theoretic universe.

The plan of this paper is as follows. First I’ll review some of the popular first-
order axioms that well serve the needs of set-theoretic practice and argue for the
Richness prediction above. Second I’ll discuss what little is known about indepen-
dence across mathematics, discussing the role of forcing axioms as evidence for the
Foundational prediction above. And by far the bulk and central aim of the paper
is the third part, in which I present the Hyperuniverse Programme, including its
philosophical foundation and most recent mathematical developments.

2 Set-Theoretic Practice
Set theory is a burgeoning subject, rife with new ideas and new developments,
constantly leading to new perspectives. Naturally certain of these perspectives stand
out among the chaotic mass of new results being proved, and it is worth focusing on
a few of these to expose the difficulty of settling on particular new axioms as being
“the true ones”.

I have emphasized the need to find evidence for the truth of axioms that con-
tradict V = L, but purely in terms of the value of an axiom for the development of
good set theory, what I will refer to as Type 1 evidence, this is not possible. Jensen’s
deep work unlocking the power of this axiom reveals the power of V = L, indeed it
appears to give us, when combined with small large cardinals, a theory that is com-
plete for all natural set-theoretic statements! That is a remarkable achievement and
speaks volumes in favour of declaring V = L to be true based on Type 1 evidence.
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A natural Type 1 objection to V = L is that it doesn’t take forcing into account,
a fundamental method for building new models of set theory. Admittedly, even in L
one has forcing extensions of countable models, but it is more natural to force over
the full L and not just over some small piece of it. So now we contradict V = L in
favour of ”V contains many generic extensions of L” or something similar.

Having lots of forcing extensions of L sounds good, but then what is our canonical
universe now? Shouldn’t we also have a sentence that is true only in V , and not
in any of its proper inner models, while at the same time having many generic
extensions of L? Indeed this is possible with class forcing (see [11]). So now we
have a nice Type 1 axiom: V is a canonical universe which is class-generic over L,
containing many set-generic extensions of L. This is an excellent context for doing
set theory, as the forcing method is now available.

In fact we can do even better and take V to be L[0#]. Not only does this model
contain many generic extensions of L, it is also a canonical universe and we recover
all of the powerful methods that Jensen developed under V = L, relativised now to
the real 0#. So our Type 1 evidence leads us to the superb axiom V = L[0#].

Objection! What about measurable cardinals? Recall the important hierarchy
of consistency strengths: Natural theories are wellordered (up to bi-interpretability)
by their consistency strengths and the consistency strengths of large cardinal axioms
provide a nice collection of consistency strengths which is cofinal in a large initial
segment of (if not all of) this hierarchy. This does not mean that large cardinals
must exist but at the very least there should be inner models having them. So now
based on Type 1 evidence we get some version of “There are inner models with large
cardinals”, an attractive environment in which to do good set theory.

Moreover, notice that if we have inner models for large cardinals we haven’t lost
the option of looking at L or its generic extensions, they are still available as inner
models. So we seem to have reached the best Type 1 axiom yet.

But we could ask for even more. Recall that L has a nice internal structure, very
powerful for deriving consequences of V = L. Can V not only have inner models
for large cardinals but also an L-like internal structure? Of course the answer is
positive, as we can adopt the axiom “There are inner models with large cardinals
and V = L[x] for some real x”. A better answer is provided in [14], where it is shown
that V can be L-like together with arbitrary large cardinals, not only in inner models
but in V itself. However, as attractive as this may sound, it fails to address a key
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problem, and this is where we see the multiple perspectives of set theory, with no
single perspective having a claim to being “the best”.

Even if we produce a nice axiom2 of the form “There are large cardinals and V
is a canonical generalisation of L”, doing so commits us to an L-like environment in
which to do set theory. Indeed there are other compelling perspectives on set theory
which lead us to non L-like environments and correspondingly to entirely different
Type 1 axioms. I will mention two of them. (Further information about the notions
mentioned below is available in [22]).

Forcing axioms have a long history, dating back to Martin’s axiom (MA), a
special case of which asserts the existence of generics for ccc partial orders (i.e.
partial orders with only countable antichains) over models of size ℵ1. This simple
axiom can be used to establish in one blow the relative consistency of a huge range
of set-theoretic statements. Naturally there has been interest in strengthenings of
MA, and a popular one is the Proper Forcing Axiom (PFA), which strengthens this3

to the wider class of proper partial orders.

Now with regard to Type 1 evidence the point is that PFA has even more striking
consequences than MA, qualifying it as a central and important tool for solving
combinatorial problems in set theory. A powerful case can be made for its truth
based on Type 1 evidence. But of course PFA conflicts with any axiom which
asserts that V is L-like, as it implies the negation of CH. In fact PFA implies that
the size of the continuum is ℵ2.

The diversity of Type 1 evidence goes beyond just L-likeness and forcing axioms;
there are also cardinal characteristics. These are natural and heavily-investigated
cardinal numbers that arise when studying definability-theoretic and combinatorial
properties of sets of real numbers. Each of these cardinal characteristics is an un-
countable cardinal number of size at most the continuum. Now given the variety of
such characteristics together with the fact that they can consistently differ from each
other, isn’t it compelling to adopt the axiom that cardinal characteristics provide
a large spectrum of distinct uncountable cardinals below the size of the continuum
and therefore the continuum is indeed quite large, in contradiction to both L-likeness
and forcing axioms?4

2Woodin has in fact proposed such an axiom which he calls Ultimate L.
3For the experts, to get PFA one must allow non-transitive models of size ℵ1.
4As a specific example, let a denote the least size of an infinite almost disjoint family of subsets

of ω, and b (d) the least size of an unbounded (dominating) family of functions from ω to ω ordered
by eventual domination. Then b < a < d is consistent; shouldn’t it in fact be true?
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Thus we have three distinct types of axioms with excellent Type 1 evidence:
L-likeness with large cardinals, forcing axioms and cardinal characteristic axioms.
They contradict each other yet each is consistent with the existence of inner models
for the others. In my view, this makes a clear case that Type 1 evidence is insufficient
to establish the truth of axioms of set theory; it is also insufficient to decide whether
or not CH is true.

3 Set Theory as a Foundation for Mathematics
Of course axiomatic set theory can be heartily congratulated for its success in pro-
viding a foundation for mathematics. An overwhelming case can be made that
when theorems are proved in mathematics they can be regarded as theorems of a
mild extension of ZFC (compatible with V = L). In particular, we routinely expect
questions in mathematics to be answerable (perhaps with great difficulty!) in a mild
extension of ZFC.

A consequence is that an independence result for such mild extensions is indeed
an independence result for mathematics as a whole. This is of course of minor
importance if the independence result in question is a statement of set theory, as set
theory is just a small part of mathematics. But this is of considerable importance
when independence arises with questions of mathematics outside of set theory, as
is the case with the the Borel, Kaplansky and Whitehead Conjectures of measure
theory, functional analysis and group theory, respectively. Let us not forget the
great mathematician David Hilbert’s thesis that the questions of mathematics can
be resolved using the powerful tools of the subject. An understanding of how to deal
with independence is needed to restore the status of mathematics as the complete
and definitive field of study that Hilbert envisaged.

The time is ripe for set-theorists to focus on this problem. The central question
is:

Foundational or Type 2 Evidence: Are there particular axioms of set theory which
best serve the needs of resolving independence in other areas of mathematics?

Recently there are signs that a positive answer to this question is emerging, as
new applications of set theory to functional analysis, topology, abstract algebra and
model theory (a field of logic, but still outside of set theory) are being found. The
Foundational Need that I expressed earlier is precisely the prediction that a pattern
will emerge from these applications to reveal that particular axioms of set theory
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are best for bringing set theory closer to the complete foundation that Hilbert was
hoping for.

Now where are these foundationally advantageous axioms of set theory to be
found? Consider the following list of candidates with good Type 1 evidence:

V = L
V is a canonical and rich class-generic extension of L
Large Cardinal Axioms (like supercompacts)
Forcing Axioms like MA, PFA
Determinacy Axioms like AD in L(R)
Cardinal Characteristic Axioms like b < a < d

As already said, each of these axioms is important for the development of set
theory, providing a unique perspective on the subject. But perhaps it is surprising to
discover that only two of them, V = L and Forcing Axioms, have had any significant
impact on mathematics outside of set theory! The impact of Large Cardinal Axioms
(like supercompacts) and Cardinal Characteristic Axioms has been minimal and that
of Determinacy Axioms non-existent so far.

To give a bit more detail, both V = L and Forcing Axioms can be used to answer
the following questions (in different ways):

Functional Analysis: Must every homomorphism from C(X), X compact Hausdorff,
into another Banach algebra be continuous (the Kaplansky Problem)? Is the ideal of
compact operators on a separable Hilbert space in the ring of all bounded operators
the sum of two smaller ideals?; Are all automorphisms of the Calkin Algebra inner?

Topology and Measure Theory: Is every normal Moore Space metrizable? Are
there S-spaces (regular, hereditarily separable spaces where some open cover has no
countable subcover)? Is every strong measure 0 set of reals countable (the Borel
conjecture)?

Abstract Algebra: Is every Whitehead group free (the Whitehead Problem)? What
is the homological dimension of R(x, y, z) as an R[x, y, z]-module where R is the
field of real numbers? Does the direct product of countably many fields have global
dimension 2?

One could also mention the field of Model Theory (part of Logic, but not part
of Set Theory), where new axioms of Set Theory may play an important role in the
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study of Morley’s theorem for Abstract Elementary Classes or perhaps even in the
resolution of Vaught’s Conjecture.

My prediction is that V = L and Forcing Axioms will be the definite winners
among choices of axioms of Set Theory that resolve independence across mathematics
as a whole. But as V = L is in conflict with the maximality of the set-theoretic
universe in width, it is not suitable as a realization of the Thesis of Set-Theoretic
Truth, leaving Forcing Axioms as the current leading candidate for that.

4 The Maximality of the Set-Theoretic Universe and
the HP

The letters HP stand for the Hyperuniverse Programme, which I now discuss in
detail.

4.1 The Iterative Conception of Set
As Gödel put it, the iterative conception of set expresses the idea that a set is some-
thing obtainable from well-defined objects by iterated application of the powerset
operation. In more detail (following Boolos [7]; also see [27]): Sets are formed in
stages, where only the empty set is formed at stage 0 and at any stage greater
than 0, one forms collections of sets formed at earlier stages. (Said this way,
a set is re-formed at every stage past where it is first formed, but that is OK.)
Any set is formed at some least stage, after its elements have been formed. This
conception excludes anomalies: We can’t have x ∈ x, there is no set of all sets,
there are no cycles x0 ∈ x1 ∈ · · · ∈ xn ∈ x0 and there are no infinite sequences
· · · ∈ xn ∈ xn−1 ∈ xn−2 ∈ · · · ∈ x1 ∈ x0, as there must be a least stage at which
one of the xn’s is formed. We’ll assume that there are infinite sets5, so the iteration
process leads to a limit stage ω, which is not 0 and is not a successor stage.

The iterative conception yields that the universe of sets is a model of the axioms
of Zermelo Set Theory, i.e. ZFC without Replacement and without the Axiom of
Choice. The standard model for this theory is Vω+ω.

Nevertheless, Replacement and AC (the Axiom of Choice) are included as part
of the standard axioms of Set Theory, for very different reasons. The case for AC
is typically made on extrinsic grounds, citing its fruitfulness for the development

5This is derivable once we add maximality to the iterative conception, but is convenient to
assume already as part of the iterative conception.
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of mathematics and its corresponding necessity for Set Theory as a foundation for
mathematics (a case of what I have called Type 2 evidence). It is not clear to me
that Choice is derivable from the iterative conception, nor from its necessity for
doing good Set Theory (Type 1 evidence).

Replacement, on the other hand, is derivable from the concept of set. To see
this, we need to extend the iterative conception to the stronger maximal iterative
conception, also implicit in the set-concept.

4.2 Maximality and the Iterative Conception

The term maximal is used in many different senses in Set Theory, what I have in
mind here is a very specific use associated to the iterative conception (IC). Recall
that according to the IC, sets appear inside levels indexed by the ordinal numbers,
where each successor level Vα+1 is the powerset of the previous. As Boolos explained,
the IC alone takes no stand on how many levels there are (the height of the universe
V ) or on how fat the individual levels are (the width of V ). However it is generally
regarded as implicit in the set-concept that both of these should be maximal:

Height (or Ordinal) maximality: The universe V is as tall as possible, i.e., the
sequence of ordinals is as long as possible.

Width (or Powerset) maximality: The universe V is as wide (or thick) as possible,
i.e., the powerset of each set is as large as possible.

If we conjunct the IC with maximality we arrive at the MIC, the maximal itera-
tive conception, also part of the set-concept but more of a challenge to explain than
the simple IC.

It is natural to see a comparative aspect to maximality, as to be as large as
possible suggests as large as possible within the realm of possibilities. Thus a natural
way to explain height and width maximality would be to compare V to other possible
universes.

But now we face a serious problem. If V is the fixed universe of all sets, then
there are no universes other than those already included in V . In other words V is
maximal by default, as no other universe can threaten its maximality, and therefore
we are limited in what we can say about this concept.
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I will postpone this problem for now, and instead discuss an easier one: Let M
denote a countable transitive model of ZFC (ctm). What could it mean to say that
M is maximal?

Now we have a different problem. The natural way to express the maximality
of M is to say that M cannot be expanded to a larger universe. Let us call this
structural maximality. But under a very mild assumption (there is a set-model of
ZFC containing all of the reals) this is impossible: Any ctm M is an element (and
therefore proper subset) of a larger ctm.

So instead we move to a milder form of maximality, called syntactic maximality,
expressed as follows.

In the case of (syntactic-) height maximality, we consider lengthenings of M , i.e.
ctm’s M∗ of which M is a rank-initial segment (the ordinals of M form an initial
segment of the ordinals of M∗ and the powerset operations of these two universes
agree on the sets in M).

In the case of width maximality, we consider thickenings of M , i.e. ctm’s M∗ of
which M is an inner model (M and M∗ have the same ordinals and M is included
in M∗).

In this way we can produce forms of height maximality and width maximality for
ctm’s as follows.

If M is height maximal then a property of M also holds of some rank-initial
segment of M . This is the typical formulation of reflection. (However we will see
that height maximality is stronger than reflection.) Of course specific realizations of
height maximality must specify which properties are to be taken into account.

If M is width maximal then a property of a thickening of M also holds of some
inner model of M . In the case of first-order properties this is called the Inner Model
Hypothesis, or IMH (introduced in [12]).

The above discussion of maximality for ctm’s, although brief, will suffice for
establishing the strategy of the HP.

We return now to the problem of maximality for V . Can the above discussion
for ctm’s also be applied to V ? Does it make sense to talk about lengthenings and
thickenings of V in the way we talk about them for ctm’s? There are differences of
opinion about this, which I’ll take up next.
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4.3 Actualism and Potentialism
Recall that in the IC we describe V , the universe of sets, via a process of iteration
of the powerset operation. Does this process come to an end, or is it indefinite,
always extendible further to a longer iteration? The former possibility, that there
is a “limit” to the iteration process is referred to as height actualism and the latter
view is called height potentialism. Analogously there is a question of the definiteness
of the powerset operation: For a given set, is its powerset determined or is it always
possible to extend it further by adding more subsets? The former is called width
actualism and latter width potentialism.

There is a vast literature on this topic ([4, 19, 20, 21, 23, 24, 25, 26, 29, 31, 32]).
However as the Hyperuniverse Programme is very flexible on the choice of ontology,
we will not engage here in a lengthy discussion of the actualism/potentialism debate,
but only mention some points in favour of a Zermelian view, combining height po-
tentialism with width actualism, the view which we choose to adopt for our analysis
of maximality via the HP.

We can summarize the situation as follows. Without difficulty, height poten-
tialism facilitates an analysis of height maximality. Surprisingly, we will show that
even with width actualism, it also facilitates an analysis of width maximality, us-
ing the method of V -logic. A further benefit of height potentialism is that we can
reduce the study of maximality for V to the study of maximality for ctm’s6. Our
arguments also show that height actualism is viable for our analysis of width maxi-
mality, provided it is enhanced with a strong enough fragment of MK (Morse-Kelley
class theory; one only needs Σ1

1 comprehension). Thus the only problematic ontol-
ogy for the HP is height actualism supported by only a weak class theory; otherwise
the choice of ontology is not critical for the HP (although the programme develops
slightly differently with width potentialism than it does with width actualism) 7.

I will now present some arguments due to Geoffrey Hellman ([33]8) in favour of
6The set of ctm’s is called the Hyperuniverse; hence we arrive at the Hyperuniverse Programme.
7Height actualism with just GB (Gödel-Bernays) appears inadequate for a fruitful analysis of

maximality. A referee has informed us about agnostic Platonism, the view that there is a well-
determined universe V of all sets but without taking a position on whether ZFC holds in it. But
as this perspective allows for the possibility of height actualism with just GB, it is problematic for
the HP.

8These comments were made during a lively e-mail exchange among numerous set-theorists and
philosophers of set theory from August until November 2014, triggered by my response to Sol Fefer-
man’s preprint The Continuum Hypothesis is neither a definite mathematical problem nor a definite
logical problem. Some of this discussion is documented at <http://logic.harvard.edu/blog/?cat=2>,
but regrettably Hellman’s comments do not appear there.
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height potentialism and width actualism, the Zermelian view. Hellman says:

“The idea that any universe of sets can be properly extended (in height, not
width) is extremely natural, endorsed by many mathematicians (e.g. MacLane,
seemingly by Gödel, et. al.) ... As Maddy and others say, if it’s possible that
sets beyond some (putatively maximal) level exist, then they do exist ... Thus,
if ‘imaginable’ (end) extensions of V are not incoherent, then they are possible,
and then, on an actualist, platonist reading, they are actual, and V wasn’t really
maximal after all. ... such extensions are always possible, so that the notion of a
single fixed, absolutely maximal universe V of sets is really an incoherent notion.”

And again:

“I have no earthly or heavenly idea what ‘as high as possible’ could mean, since
the notion of a set domain that absolutely could not in logic be extended seems to
me incoherent (or at any rate empty). As Putnam put it in his controversial paper,
‘Mathematics without Foundations’ (1967), ‘Even God couldn’t make a universe for
Zermelo set theory that it would be impossible to extend.’ And I agree, theology
aside.”

Regarding width potentialism, Hellman says ([33]):

“I have a good idea, I think, about ‘as thick as possible’, since the notion of
full power set of a given set makes perfect sense to me ... Granted that forcing
extensions can be viewed as ‘thickenings’ of the cumulative hierarchy, as usually
described, when we assert the standard Power Sets axiom, we implicitly build in
bivalence, i.e. that either x belongs to y or it doesn’t, i.e. we are in effect ruling
forcing extensions or Boolean-valued generalizations as non-standard [my italics],
i.e. ‘full power set’ is to be understood only in the standard way.”

And further:

“Thus, to my way of thinking, there is an important disanalogy between ‘all
ordinals’ ... and ‘all subsets of a given set’. The latter is ‘already relativized’; there
is nothing implicit in the notion of ‘subset’ that allows for indefinite extensions, so
long as we are speaking of ‘subsets of a fixed, given set’ ... In contrast, ‘all ordinals’
cries out for relativization (a point I find in Zermelo’s [1930]); without it, it does
allow for indefinite extensibility, by the very operations that we use to describe
ordinals”
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I do appreciate Hellman’s point here, and indeed will (for the most part) adopt
the Zermelian perspective, height potentialism with width actualism, in this paper.
Another strong point in favour of this view is that although we have a clear and
coherent way of generating the ordinals through a process of iteration, there is
currently no analogous iteration process for generating increasingly rich power sets9.

In light of this adoption of potentialism in height, I will now use the symbol V
ambiguously, not to denote the fixed universe of all sets (which does not exist) but
as a variable to range over universes within the Zermelian multiverse in which each
universe is a rank initial segment of the next.

Despite my adoption of the Zermelian view, I will for expository purposes also
consider a form of potentialism in both height and width which I will call radi-
cal potentialism. The HP can be run with either point of view. Although it is
simpler with radical potentialism, there are interesting issues (both mathematical
and philosophical) which arise when employing the Zermelian view which are worth
exploring.

To describe radical potentialism, let me begin with something less radical, width
potentialism. First as motivation, consider a Platonist view, so that V is the fixed
universe of all sets, and consider the method of forcing for producing generic sets. If
M is a ctm we can easily build a generic extension M [G] of M using the countability
of M . But of course generic extensions V [G] of V do not exist, as our “real V ” has
all the sets. Despite this we can talk definably in V about what can be true in such
a generic extension without actually having such extensions in V , by constructing
the Boolean universe V B within V and taking true in a generic extension of V to
just mean of nonzero Boolean truth value in V B. Thus the Platonist view is in fact
dualistic: It allows for the possibility of making sense of truth in universes (generic
extensions) without allowing these universes to actually exist.

Width potentialism is a view in which any universe can be thickened, keeping the
same ordinals, even to the extent of making ordinals countable. Thus for example
it allows for the existence of the generic extensions of V (now a variable ranging
over the multiverse of all possible universes) that are prohibited by the Platonist.
So for any ordinal α of V we can thicken V to a universe where α is countable;
i.e., any ordinal is potentially countable. But that does not mean that every ordinal
of V is countable in V , it is only countable in a larger universe. So this potential
countability does not threaten the truth of the powerset axiom in V .

9But I am not 100% sure that there could not be such an analogous iteration process, perhaps
provided by a wildly successful theory of inner models for large cardinals.
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Now radical potentialism is in effect a unification of width and height potential-
ism. It entails that any V (in the multiverse of possible universes) looks countable
inside a larger universe: We allow V to be lengthened and thickened simultaneously.
Note that even just width potentialism (allowing universes to be thickened) forces
us also into height potentialism: If we were to keep thickening to make every ordinal
of V countable then after Ord(V ) steps we are forced to also lengthen to reach a
universe that satisfies the powerset axiom. In that universe, the original V looks
countable. But then we could repeat the process with this new universe until it too
is seen to be countable. The height potentialist aspect is that we cannot end this
process by taking the union of all of our universes, as this would not be a model of
ZFC (the powerset axiom will fail) and therefore would have to be lengthened. Note
that once again, the potential countability of V does not threaten the truth of the
axioms of ZFC in V .

4.4 Maximality in Height and #-Generation
The analysis of height maximality is the first major success of the HP. The pro-
gramme has produced a robust principle expressing the maximality of V in height
which appears to encompass all prior height maximality principles, including reflec-
tion, and to constitute the definitive expression of the height maximality of V in
mathematical terms.

For our discussion of height maximality, height potentialism will suffice (radical
potentialism is not needed). Thus we allow ourselves the option of lengthening V to
universes V ∗ which have V as a rank-initial segment. Of course we can also consider
shortenings of V , replacing V by one of its own rank-initial segments. Let us now
make use of lengthenings and shortenings to formulate a height maximality principle
for V , expressing the idea that the sequence of ordinals is as long as possible.

But before embarking on our analysis of height maximality we should take note
of the following: No first-order statement ϕ can be adequate to fully capture height
maximality. This is simply because a first-order statement true in V will reflect
to one of its rank initial segments and we are then naturally led from ϕ to the
stronger first-order statement “ϕ holds both in V and in some transitive set model
of ZFC”. We will also see that no first-order statement is adequate to capture width
maximality. This is an instance of the Beyond First-Order claim of the introduction:
True first-order statements contradicting V = L only arise as consequences of true
non first-order axioms.

But how do we capture height maximality with a non first-order axiom? We do
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this via a detailed analysis of the relationship between V and its lengthenings and
shortenings.

Standard Lévy reflection tells us that a single first-order property of V with
parameters will hold in some Vκ which contains those parameters. It is natural to
strengthen this to the simultaneous reflection of all first-order properties of V to
some Vκ, allowing arbitrary parameters from Vκ. Thus we have reflected V to a Vκ

which is an elementary submodel of V .

Repeating this process leads us to an increasing, continuous sequence of ordinals
(κi | i < ∞), whee ∞ denotes the ordinal height of V , such that the models (Vκi |
i < ∞) form a continuous chain Vκ0 ≺ Vκ1 ≺ · · · of elementary submodels of V
whose union is all of V .

Let C be the proper class consisting of the κi’s. We can apply reflection to
V with C as an additional predicate to infer that properties of (V, C) also hold of
some (Vκ, C ∩ κ). But the unboundedness of C is a property of (V, C) so we get
some (Vκ, C ∩ κ) where C ∩ κ is unbounded in κ and therefore κ belongs to C. As
a corollary, properties of V in fact hold in some Vκ where κ belongs to C. It is
convenient to formulate this in its contrapositive form: If a property holds of Vκ for
all κ in C then it also holds of V .

Now note that for all κ in C, Vκ can be lengthened to an elementary extension
(namely V ) of which it is a rank-initial segment. By the contrapositive form of
reflection of the previous paragraph, V itself also has such a lengthening V ∗.

But this is clearly not the end of the story. For the same reason we can also
infer that there is a continuous increasing sequence of such lengthenings V = Vκ∞ ≺
V ∗

κ∞+1 ≺ V ∗
κ∞+2 ≺ · · · of length the ordinals. For ease of notation, let us drop the

∗’s and write Wκi instead of V ∗
κi

for ∞ < i and instead of Vκi for i ≤ ∞. Thus V
equals W∞.

But which tower V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of lengthenings of V
should we consider? Can we make the choice of this tower canonical?

Consider the entire sequence Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺
Wκ∞+2 ≺ · · · . The intuition is that all of these models resemble each other in
the sense that they share the same first-order properties. Indeed by virtue of the
fact that they form an elementary chain, these models all satisfy the same first-
order sentences. But again in the spirit of “resemblance”, the following should hold:
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For i0 < i1 regard (Wκi1
, Wκi0

) as the structure (Wκi1
, ∈) together with Wκi0

as a
unary predicate. Then it should be the case that any two such pairs (Wκi1

, Wκi0
),

(Wκj1
, Wκj0

) (with i0 < i1 and j0 < j1) satisfy the same first-order sentences, even
allowing parameters which belong to both Wκi0

and Wκj0
. Generalising this to

triples, quadruples and n-tuples in general we arrive at the following situation:

(∗) V occurs in a continuous elementary chain Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺
Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of length ∞ + ∞, where the models Wκi form a strongly-
indiscernible chain in the sense that for any n and any two increasing n-tuples
~i = i0 < i1 < · · · < in−1, ~j = j0 < j1 < · · · < jn−1, the structures W~i =
(Wκin−1

, Wκin−2
, · · · , Wκi0

) and W~j (defined analagously) satisfy the same first-order
sentences, allowing parameters from Wκi0

∩ Wκj0
.

We are getting closer to the desired axiom of #-generation. Surely we can impose
higher-order indiscernibility on our chain of models. For example, consider the pair
of models Wκ0 = Vκ0, Wκ1 = Vκ1. We can require that these models satisfy the same
second-order sentences; equivalently, we require that H(κ+

0 )V and H(κ+
1 )V satisfy

the same first-order sentences. But as with the pair H(κ0)V , H(κ1)V we would
want H(κ+

0 )V , H(κ+
1 )V to satisfy the same first-order sentences with parameters.

How can we formulate this? For example, consider κ0, a parameter in H(κ+
0 )V

that is second-order with respect to H(κ0)V ; we cannot simply require H(κ+
0 )V �

ϕ(κ0) iff H(κ+
1 )V � ϕ(κ0), as κ0 is the largest cardinal in H(κ+

0 )V but not in
H(κ+

1 )V . Instead we need to replace the occurence of κ0 on the left side with
a “corresponding” parameter on the right side, namely κ1, resulting in the natural
requirement H(κ+

0 )V � ϕ(κ0) iff H(κ+
1 )V � ϕ(κ1). More generally, we should be able

to replace each parameter in H(κ+
0 )V by a “corresponding” element of H(κ+

1 )V . It
is natural to solve this parameter problem using embeddings.

Definition 1. (See [10])
A structure N = (N, U) is called a # with critical point κ, or just a #, if the

following hold:
(a) N is a model of ZFC− (ZFC minus powerset) in which κ is both the largest
cardinal and strongly inaccessible.
(b) (N, U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N).
(c) U is a normal measure on κ in (N, U).
(d) N is iterable, i.e., all of the successive iterated ultrapowers starting with (N, U)
are well-founded, yielding iterates (Ni, Ui) and Σ1 elementary iteration maps πij :
Ni → Nj where (N, U) = (N0, U0).

We let κi denote the largest cardinal of the i-th iterate Ni.
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If N is a # and λ is a limit ordinal then LP(Nλ) denotes the union of the (Vκi)Ni ’s
for i < λ. (LP stands for lower part.) LP(N∞) is a model of ZFC.

Definition 2. We say that a transitive model V of ZFC is #-generated iff there is
N = (N, U), a # with iteration N = N0 → N1 → · · · , such that V equals LP(N∞)
where ∞ denotes the ordinal height of V .

#-generation fulfills our requirements for vertical maximality, with powerful con-
sequences for reflection. L is #-generated iff 0# exists, so this principle is compatible
with V = L. If V is #-generated via (N, U) then there are elementary embeddings
from V to V which are canonically-definable through iteration of (N, U): In the
above notation, any order-preserving map from the κi’s to the κi’s extends to such
an elementary embedding. If π : V → V is any such embedding then we obtain not
only the indiscernibility of the structures H(κ+

i ), for all i but also of the structures
H(κ+α

i ) for any α < κ0 and more. Moreover, #-generation evidently provides the
maximum amount of vertical reflection: If V is generated by (N, U) as LP(N∞)
where ∞ is the ordinal height of V , and x is any parameter in a further iterate
V ∗ = N∞∗ of (N, U), then any first-order property ϕ(V, x) that holds in V ∗ reflects
to ϕ(Vκi , x̄) in Nj for all sufficiently large i < j < ∞, where πj,∞∗(x̄) = x. This im-
plies any known form of vertical reflection and summarizes the amount of reflection
one has in L under the assumption that 0# exists, the maximum amount of reflection
in L. This is reinforced by a Jensen’s #-generated coding theorem (Theorem 9.1. of
[6]) which states that if V is #-generated then V can be coded into a #-generated
model L[x] for a real x where the given # which generates V extends to the natural
generator x# for the model L[x].

From this we can conclude that #-generated models have the same large cardinal
and reflection properties as does L when 0# exists.

#-generation also answers our question about which canonical tower of length-
enings of V to look at in reflection, namely the further lower parts of iterates of
any # that generates V . This tower of lengthenings is independent of the choice
of generating # for V and is therefore entirely canonical. And #-generation fully
realizes the idea that V should look exactly like closed unboundedly many of its rank
initial segments as well as its canonical lengthenings of arbitrary ordinal height.

In summary, #-generation stands out as the correct formalization of the princi-
ple of height maximality, and we shall refer to #-generated models as being maximal
in height. It is not first-order (we have argued that no optimal height maximality
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principle can be), however it is second-order in a very restricted way: For a count-
able V , the property of being a # that generates V is expressible by quantifying
universally over the models Lα(V ) as α ranges over the countable ordinals.

4.5 Maximality in Width and the IMH
Whereas in the case of maximality in height we can use height potentialism (i.e., the
option of lengthening V to taller universes) to arrive at an optimal principle, the
case of maximality in width is of a very different nature. Unlike in the case of height
maximality, we will see that there are many distinct criteria for width maximality
and will not easily arrive at an optimal criterion. Moreover, to get a fair picture of
maximality in both height and width, it is necessary to synthesise or unify width
maximality criteria with #-generation, the optimal height maximality criterion.

A thorough analysis of the different possible width maximality criteria and their
synthesis with #-generation, with an aim towards arriving at an optimal criterion,
is the principal aim of the Hyperuniverse Programme.

I’ll begin with a discussion of width maximality in the context of radical poten-
tialism, as this offers a simpler theory than that provided by the Zermelian view.
Thus we use the symbol V to be a variable ranging not over the Zermelian multi-
verse (in which universes are ordered by the relation of rank-initial segment) but
over elements of the rich multiverse provided by radical potentialism, in which each
universe is potentially countable. We begin with the fundamental:

Inner Model Hypothesis (IMH, [12]) If a first-order sentence holds in some outer
model of V then it holds in some inner model of V .

For the current presentation, we may take outer model to mean a transitive set
V ∗ containing V , with the same ordinals as V , which satisfies ZFC. An inner model
in this presentation is a V -definable subclass of V with the same ordinals as V which
satisfies ZFC. By radical potentialism, any transitive model of ZFC is countable in
a larger such model and from this we can infer the existence of a rich collection of
outer models of V .

The consistency of #-generation follows from the existence of 0#. But the con-
sistency of the IMH, i.e. the assertion that there are universes V satisfying the IMH,
requires more.

Consistency of the IMH
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Theorem 3. ([18]) Assuming large cardinals there exists a countable transitive
model M of ZFC such that if a first-order sentence ϕ holds in an outer model N of
M then it also holds in an inner model of M .

Proof. For any real R let M(R) denote the least transitive model of ZFC containing
R. We are assuming large cardinals so indeed such an M(R) exists (the existence
of just an inaccessible is sufficient for this). We will need the following consequence
of large cardinals:

(∗) There is a real R such that for any real S in which R is recursive, the (first-order)
theory of M(R) is the same as the theory of M(S).

One can derive (∗) from large cardinals as follows. Large cardinals yield Projec-
tive Determinacy (PD). A theorem of Martin is that PD implies the following Cone
Theorem: If X is a projective set of reals closed under Turing-equivalence then for
some real R, either S belongs to X for all reals S in which R is recursive or S belongs
to the complement of X for all reals S in which R is recursive.

Now for each sentence ϕ consider the set X(ϕ) consisting of those reals R such
that M(R) satisfies ϕ. This set is projective and closed under Turing-equivalence.
By the cone theorem we can choose a real R(ϕ) so that either ϕ is true in M(S) for
all reals S in which R(ϕ) is recursive or this holds for ∼ ϕ. Now let R be any real in
which every R(ϕ) is recursive; as there are only countably-many ϕ’s this is possible.
Then R witnesses the property (∗).

We claim that if N is an outer model of M(R) satisfying ZFC and ϕ is a sentence
true in N then ϕ is true in an inner model of M(R). For this we need the following
deep theorem of Jensen.

Coding Theorem (see [6]) Let α be the ordinal height of N . Then N has an outer
model of the form Lα[S] for some real S which satisfies ZFC and in which N is
∆2-definable with parameters.

As R belongs to M(R) it also belongs to N and hence to Lα[S] where S codes N as
above. Also note that since α is least so that M(R) = Lα[R] models ZFC, it is also
least so that Lα[S] satisfies ZFC and therefore Lα[S] equals M(S).

Clearly we can choose S to be Turing above R (simply replace S by its join with
R). But now by the special property of R, the theories of M(R) and M(S) are the
same. As N is a definable inner model of M(S), part of the theory of M(S) is the
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statement “There is an inner model of ϕ which is ∆2-definable with parameters”
and therefore there is an inner model of M(R) satisfying ϕ, as desired. ✷

Note that the model that we produce above for the IMH, M(R) for some real
R, is the minimal model containing the real R and therefore satisfies “there are no
inaccessible cardinals”. This is no accident:

Theorem 4. [12] Suppose that M satisfies the IMH. Then in M : There are no
inaccessible cardinals and in fact there is a real R such that there is no transitive
model of ZFC containing R.

Proof. A theorem of Beller and David (also in [6]) extends Jensen’s Coding Theorem
to say that any model M has an outer model of the form M(R) for some real R,
where as above M(R) is the minimal transitive model of ZFC containing R. Now
suppose that M satisfies the IMH and consider the sentence “There is no inaccessible
cardinal”. This is true in an outer model M(R) of M and therefore in an inner model
of M . It follows that there are no inaccessibles in M . The same argument with the
sentence “There is a real R such that there is no transitive model of ZFC containing
R” gives an inner model M0 of M with this property for some real R; but then also
M has this property as any transitive model of ZFC containing R in M would also
give such a model in the L[R] of M and therefore in M0, as M0 contains the L[R]
of M . ✷

It follows that if M satisfies the IMH then some real in M has no # and there-
fore boldface Π1

1 determinacy fails in M (although 0# does exist and lightface Π1
1

determinacy does hold).

Width actualism

So far I have presented the IMH in the context of radical potentialism, which
allows us to talk freely about outer models (thickenings) of the universe V . This is
of course unacceptable to the width actualist, who sees a fixed meaning to Vα for
each ordinal α (although possibly an unfixed, potentialist view of what the ordinals
are). Is it possible to nevertheless talk about the maximality of V in width from a
width actualist perspective (where V is now a variable ranging over the Zermelian
multiverse)? Can we express the idea that V is as thick as possible without actually
comparing V to thicker universes (which do not exist)?

A positive answer to the latter question emerges through a study of V -logic, to
which I turn next. A useful reference for this material is Barwise’s book [5].
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V -Logic

Let’s start with something simpler, Vω-logic. In Vω-logic we have constant sym-
bols ā for a ∈ Vω as well as a constant symbol V̄ω for Vω itself (in addition to ∈ and
the other symbols of first-order logic). Then to the usual logical axioms and the rule
of Modus Ponens we add the rules:

For a ∈ Vω: From ϕ(b̄) for each b ∈ a infer ∀x ∈ āϕ(x).

From ϕ(ā) for each a ∈ Vω infer ∀x ∈ V̄ω ϕ(x).

Introducing the second of these rules generates new provable statements via proofs
which are now infinite. The idea of Vω-logic is to capture the idea of a model in which
Vω is standard. By the ω-completeness theorem, the logically provable sentences of
Vω-logic are exactly those which hold in every model in which ā is interpreted as
a for a ∈ Vω and V̄ω is interpreted as the (real, standard) Vω. Thus a theory T in
Vω-logic is consistent in Vω-logic iff it has a model in which Vω is the real, standard
Vω.

Now the set of logically-provable formulas (i.e. validities) in Vω-logic, unlike
in first-order logic, is not arithmetical, i.e. it is not definable over the model Vω.
Instead it is definable over a larger structure, a lengthening of Vω. Let me explain.

As proofs in Vω-logic are no longer finite, they do not naturally belong to Vω.
Instead they belong to the least admissible set (Vω)+ containing Vω as an element,
this is known to higher recursion-theorists as Lωck

1
, where ωck

1 is the least non-
recursive ordinal. Something very nice happens: Whereas proofs in first-order logic
belong to Vω and therefore provability is Σ1 definable over Vω (there exists a proof
is Σ1), proofs in Vω-logic belong to (Vω)+ and provability is Σ1 definable over (Vω)+.

For our present purposes the point is that (Vω)+ is a lengthening, not a thickening
of Vω and in this lengthening we can formulate theories which describle arbitrary
models in which Vω is standard. For example the existence of a real R such that
(Vω, R) satisfies a first-order property can be formulated as the consistency of a
theory in Vω-logic. As the structure (Vω, R) can be regarded as a “thickening”
of Vω, we have described what can happen in “thickenings” of Vω by a theory in
(Vω)+, a lengthening of Vω. This is even more dramatic if we start not with Vω but
with (Vω)+ = Lωck

1
and introduce Lωck

1
-logic, a logic for ensuring that the recursive

ordinals are standard. Then in the lengthening (Lωck
1

)+ of Lωck
1

, the least admissible
set containing Lωck

1
as an element, we can express the existence of a thickening of
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Lωck
1

in which a first-order statement holds, and such thickenings can contain new
reals and more as elements.

V -logic is analogous to the above. It has the following constant symbols:

1. A constant symbol ā for each set a in V .
2. A constant symbol V̄ to denote the universe V .

Formulas are formed in the usual way, as in any first-order logic. To the usual
axioms and rules of first-order logic we add the new rules:

(∗) From ϕ(b̄) for all b ∈ a infer ∀x ∈ āϕ(x).

(∗∗) From ϕ(ā) for all a ∈ V infer ∀x ∈ V̄ ϕ(x).

This is the logic to describe models in which V is standard. The proofs of this logic
appear in V +, the least admissible set containing V as an element; this structure V +

is a special lengthening of V of the form Lα(V ), the α-th level of Gödel’s L-hierarchy
built over V . We refer to such lengthenings as Gödel lengthenings. Recall that with
our height potentialist perspective, we can lengthen V to models V ∗ with V as a
rank-initial segment, and therefore surely lengthen V to the Gödel lengthening V +.
(This is also the case with a height actualist perspective, provided we allow our
classes to satisfy MK (Morse-Kelley), as in MK we can construct a class coding
V +.)

The Inner Model Hypothesis for a Width Actualist

As width actualists we cannot talk directly about outer models or even about sets
that do not belong to V . However using V -logic we can talk about them indirectly,
as I’ll now illustrate. Consider the theory in V -logic where we not only have constant
symbols ā for the elements of V and a constant symbol V̄ for V itself, but also a
constant symbol W̄ to denote an “outer model” of V . We add the new axioms:

1. The universe is a model of ZFC (or at least the weaker KP, admissibility theory).
2. W̄ is a transitive model of ZFC containing V̄ as a subset and with the same
ordinals as V .

So now when we take a model of our axioms which obeys the rules of V -logic, we get
a universe modelling ZFC (or at least KP) in which V̄ is interpreted correctly as V
and W̄ is interpreted as an outer model of V . Note that this theory in V -logic has
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been formulated without “thickening” V , indeed it is defined inside V +, the least
admissible set containing V , a Gödel lengthening of V . Again the latter makes sense
thanks to our adoption of height (not width) potentialism.

So what does the IMH really say for a width actualist? It says the following:

IMH: Suppose that ϕ is a first-order sentence and the above theory, together the
axiom “W̄ satisfies ϕ” is consistent in V -logic. Then ϕ holds in an inner model of
V .

In other words, instead of talking directly about “thickenings” of V (i.e. “outer
models”) we instead talk about the consistency of a theory formulated in V -logic
and defined in V +, a (mild) Gödel lengthening of V .

Note that this also provides a powerful extension of the Definability Lemma
for set-forcing. The latter says that definably in V we can express the fact that a
sentence with parameters holds in a “set-generic extension” (for sentences of bounded
complexity, such as Σn sentences for a fixed n). The above shows that we can do
the same for arbitrary “thickenings” of V , but where the definability takes place
not in V but in V +. (In the case of omniscient universes V , we can in fact obtain
definability in V , and under mild large cardinal assumptions, V will be omniscient.
See Subsection 4.11 for a discussion of this.)

So far we have worked with V , its lengthenings and its “thickenings” (via theories
expressed in its lengthenings). We next come to an important step, which is to reduce
this discussion to the study of certain properties of countable transitive models of
ZFC, i.e., to the Hyperuniverse (the set of countable transitive models of ZFC).
The net effect of this reduction is to show that our width actualist discussion of
maximality is in fact equivalent to a radical potentialist discussion in which all
models under consideration belong to the Hyperuniverse.

4.6 The Reduction to the Hyperuniverse

Of course it would be much more comfortable to remove the quotes in “thickenings”
of V , as we could then dispense with the need to reformulate our intuitions about
outer models via theories in V -logic. Indeed, if we were to have this discussion
not about V but about a countable transitive ZFC model little-V , then our worries
evaporate, as genuine thickenings become available. For example, if P is a forcing
notion in little-V then we can surely build a P -generic extension to get a little-V [G].
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Of course we can’t do this for V itself as in general we cannot construct generic sets
for partial orders with uncountably many maximal antichains.

But the way we have analysed things with V -logic allows us to reduce our study of
maximality criteria for V to a study of countable transitive models. As the collection
of countable transitive models carries the name Hyperuniverse, we are then led to
what is known as the Hyperuniverse Programme.

I’ll illustrate the reduction to the Hyperuniverse with the specific example of
the IMH. Suppose that we formulate the IMH as above, using V -logic, and want to
know what first-order consequences it has.

Lemma 5. Suppose that a first-order sentence ϕ holds in all countable models of
the IMH. Then it holds in all models of the IMH.

Proof. Suppose that ϕ fails in some model V of the IMH, where V may be uncount-
able. Now notice that the IMH is first-order expressible in V +, a lengthening of V .
But then apply the downward Löwenheim-Skolem theorem to obtain a countable
little-V which satisfies the IMH, as verified in its associated little-V +, yet fails to
satisfy ϕ. But this is a contradiction, as by hypothesis ϕ must hold in all countable
models of the IMH. ✷

So without loss of generality, when looking at first-order consequences of maxi-
mality criteria as formulated in V -logic, we can restrict ourselves to countable little-
V ’s. The advantage of this is then we can dispense with the little-V -logic and the
quotes in “thickenings” altogether, as by the Completeness Theorem for little-V -
logic, consistent theories in little-V -logic do have models, thanks to the countability
of little-V . Thus for a countable little-V , we can simply say:

IMH for little-V ’s: Suppose that a first-order sentence holds in an outer model of
little-V . Then it holds in an inner model of little-V .

This is exactly the radical potentialist version of the IMH with which we began.
Thus the width actualist and radical potentialist versions of the IMH coincide on
countable models.

#-Generation Revisited

The reduction of maximality principles to the Hyperuniverse is however not
always so obvious, as we will now see in the case of #-generation. This reveals
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a difference in the development of the HP form a Zermelian perspective versus a
radical potentialist perspective.

First consider the following encouraging analogue for #-generation of our earlier
reduction claim for the IMH.

Lemma 6. Suppose that a first-order sentence ϕ holds in all countable models which
are #-generated. Then it holds in all models which are #-generated.

Proof. Suppose that ϕ fails in some #-generated model V , where V may be un-
countable. Let (N, U) be a generating # for V and place both V and (N, U) inside
some transitive model of ZFC minus powerset T . Now apply Löwenhiem-Skolem to
T to produce a countable transitive T̄ in which there is a V̄ which T̄ believes to be
generated by (N̄ , Ū ) with an elementary embdding of T̄ into T , sending V̄ to V and
(N̄ , Ū) to (N, U). But the fact that (N, U) is iterable and (N̄ , Ū) is embedded into
(N, U) is enough to conclude that also (N̄ , Ū ) is iterable. So we now have a count-
able V̄ which is #-generated (via (N̄ , Ū)) in which ϕ fails, contrary to hypothesis.
✷

However the difficulty is this: How do we express #-generation from a width
actualist perspective? Recall that to produce a generating # for V we have to
produce a set of rank less than Ord(V ) which does not belong to V , in violation of
width actualism.

And recall that a # is a structure (N, U) meeting certain first-order conditions
which is in addition iterable: For any ordinal α if we iterate (N, U) for α steps then
it remains wellfounded. V is #-generated if there is a # which generates it. But
notice that to express the iterability of a generating # for V we are forced to consider
theories Tα formulated in Lα(V )-logic for arbitrary Gödel lengthenings Lα(V ) of V :
Tα asserts that V is generated by a pre-# (i.e. by a structure that looks like a #
but may not be fully iterable) which is α-iterable, i.e. iterable for α-steps. Thus
we have no fixed theory that captures #-generation but only a tower of theories
Tα (as α ranges over ordinals past the height of V ) which capture closer and closer
approximations to it.

Definition 7. V is weakly #-generated if for each ordinal α past the height of V ,
the theory Tα which expresses the existence of an α-iterable pre-# which generates
V is consistent.

Weak #-generation is meaningful for a width actualist (who accepts enough
height potentialism to obtain Gödel lengthenings) as it is expressed entirely in terms
of theories internal to Gödel lengthenings of V .
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For a countable little-V , weak #-generation can be expressed semantically. First
a useful definition:

Definition 8. Let little-V be a countable transitive model of ZFC and α an ordinal.
Then little-V is α-generated if there is an α-iterable pre-# which generates little-V
(as the union of the lower parts of its first γ iterates, where γ is the ordinal height
of little-V ).

Then a countable little-V is weakly #-generated if it is α-generated for each
countable ordinal α (where the witness to this may depend on α). Little-V is #-
generated iff it is α-generated when α = ω1 iff it is α-generated for all ordinals
α.

Just as a syntactic approach is needed for a width actualist fomulation of #-
generation, the reduction of this weakened form of #-generation to the Hyperuni-
verse takes a syntactic form:

Lemma 9. Suppose that a first-order sentence ϕ holds in all countable little-V
which are weakly #-generated, and this is provable in ZFC. Then ϕ holds in all
models which are weakly #-generated.

Proof. Let W be a weakly #-generated model (which may be uncountable). Thus
for each ordinal α above the height of W , the theory Tα+ ∼ ϕ expressing that ϕ
fails in W and W is generated by an α-iterable pre-# is consistent. If we choose α so
that Lα(W ) is a model of ZFC (or enough of ZFC where the truth of ϕ in countable
#-generated models provable) then Lα(W ) is a model of (enough of) ZFC in which
W is weakly #-generated. Apply Löwenheim-Skolem to obtain a countable W̄ and
ᾱ such that Lᾱ(W̄ ) embeds elementarily into Lα(W ) and therefore satisfies (enough
of) ZFC plus “W̄ is weakly #-generated”. Now let g be generic over Lᾱ(W̄ ) for
the Lévy collapse of (the height of) W̄ to ω; then Lᾱ(W̄ )[g] is a model of (enough
of) ZFC in which W̄ is both countable and weakly #-generated. By hypothesis
Lᾱ(W )[g] satisfies “W̄ satisfies ϕ” and therefore W̄ really does satisfy ϕ. Finally,
by elementarity W satisfies ϕ as well, as desired. ✷

To summarise: As radical potentialists we can comfortably work with full #-
generation as our principle of height maximality. But as width actualists we instead
work with weak #-generation, expressed in terms of theories inside Gödel lengthen-
ings Lα(V ) of V . Weak #-generation is sufficient to maximise the height of the uni-
verse. And properly formulated, the reduction to the Hyperuniverse applies to weak
#-generation: To infer that a first-order statement follows from weak #-generation
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it suffices to show that in ZFC one can prove that it holds in all weakly #-generated
countable models.

Weak #-generation is indeed strictly weaker than #-generation for countable
models: Suppose that 0# exists and choose α to be least so that α is the α-th Silver
indiscernible (α is countable). Now let g be generic over L for Lévy collapsing α to
ω. Then by Lévy absoluteness, Lα is weakly #-generated in L[g], but it cannot be
#-generated in L[g] as 0# does not belong to a generic extension of L.

In what follows I will primarily work with #-generation, as at present the math-
ematics of weak #-generation is poorly understood. Indeed, as we’ll see in the next
section, a synthesis of #-generation with the IMH is consistent, but this remains an
open problem for weak #-generation.

4.7 Synthesis
We introduced the IMH as a criterion for width maximality and #-generation as a
criterion for height maximality. It is natural to see how these can be combined into
a single criterion which recognises both forms of maximality. We achieve this in this
section through synthesis. Note that the IMH implies that there are no inaccessibles
yet #-generation implies that there are. So we cannot simply take the conjunction
of these two criteria.

A #-generated model M satisfies the IMH# iff whenever a sentence holds in a
#-generated outer model of M it also holds in an inner model of M .

Note that IMH# differs from the IMH by demanding that both M and M∗,
the outer model, are #-generated (while the outer models considered in IMH are
arbitrary). The motivation behind this requirement is to impose width maximality
only with respect to those models which are height maximal.

Theorem 10. [15] Assuming that every real has a # there is a real R such that any
#-generated model containing R satisfies the IMH#.

Proof. (Woodin) Let R be a real with the following property: Whenever X is a
lightface and nonempty Π1

2 set of reals, then X has an element recursive in R. We
claim that any #-generated model M containing R as an element satisfies the IMH#.

Suppose that ϕ holds in M∗, a #-generated outer model of M . Let (m∗, U∗) be a
generating # for M∗. Then the set X of reals S such that S codes such an (m∗, U∗)
(generating a model of ϕ) is a lightface Π1

2 set. So there is such a real recursive in
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R and therefore in M . But then M has an inner model satisfying ϕ, namely any
model generated by a # coded by an element of X in M . ✷

The argument of the previous theorem is special to the weakest form of IMH#.
The original argument from [15], used #-generated Jensen coding to prove the con-
sistency of a stronger principle, SIMH#(ω1); see Theorem 15.

Corollary 11. Suppose that ϕ is a sentence that holds in some Vκ with κ measurable.
Then there is a transitive model which satisfies both the IMH# and the sentence ϕ.

Proof. Let R be as in the proof of Theorem 10 and let U be a normal measure on κ.
The structure N = (H(κ+), U) is a #; iterate N through a large enough ordinal ∞
so that M = LP (N∞), the lower part model generated by N , has ordinal height ∞.
Then M is #-generated and contains the real R. It follows that M is a model of the
IMH#. Moreover, as M is the union of an elementary chain Vκ = V N

κ ≺ V N1
κ1 ≺ · · ·

where ϕ is true in Vκ, it follows that ϕ is also true in M . ✷

Note that in Corollary 11, if we take ϕ to be any large cardinal property which
holds in some Vκ with κ measurable, then we obtain models of the IMH# which
also satisfy this large cardinal property. This implies the compatibility of the IMH#
with arbitrarily strong large cardinal properties.

Question 12. Reformulate IMH# using weak #-generation, as follows: V is weakly
#-generated and for each sentence ϕ, if the theories expressing that V has an outer
model satisfying ϕ with an α-iterable generating pre-# are consistent for each α,
then ϕ holds in an inner model of V . Is this consistent?

The above formulation of IMH# for weak #-generation takes the following form
for a countable V : V is α-generated for each countable α and for all ϕ, if ϕ holds
in an α-generated outer model of V for each countable α then ϕ holds in an inner
model of V . It is not known if this is consistent.

Remark. An even weaker form of #-generation asserts that V is just Ord(V ) +
Ord(V )-generated, a sufficient amount of iterability to obtain ordinal maximality.
However a synthesis of the IMH with this very weak #-generation yields a consistent
principle that contradicts large cardinals (indeed the existence of #’s for arbitrary
reals). These different forms of #-generation, and of their synthesis with the IMH,
are in need of further philosophical discussion.

We have now laid the foundations for the HP and discussed the two most basic
maximality principles, #-generation and the IMH. Most of the mathematical work
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in the HP remains to be done. Therefore what I will do in the remainder of this
article is simply present a range of maximality criteria which are yet to be fully
analysed and which give the flavour of how the HP is intended to proceed. These
criteria are also referred to as H-axioms, formulated as properties of elements of the
Hyperuniverse H, expressible as maximality properties within H.

4.8 The Strong IMH
Our discussion of the IMH has been always with regard to sentences, without pa-
rameters. Stronger forms result if we introduce parameters.

First note the difficulties with introducing parameters into the IMH. For example
the statement

“If a sentence with parameter ωV
1 holds in an outer model of V then it holds in an

inner model”

is inconsistent, as the parameter ωV
1 could become countable in an outer model and

therefore the above cannot hold for the sentence “ωV
1 is countable”. If we however

require that ω1 is preserved then we get a consistent principle.

Theorem 13. Let SIMH(ω1) be the following principle: If a sentence with parameter
ω1 holds in an ω1-preserving outer model then it holds in an inner model. Then the
SIMH(ω1) is consistent (assuming large cardinals).

Proof. Again use PD to get a real R such that the theory of M(S), the least transitive
ZFC model containing S, is fixed for all S Turing above R. Now suppose that ϕ(ω1)
is a sentence true in an ω1-preserving outer model N of M(R), where ω1 denotes the
ω1 of M(R). Then as in the proof of consistency of the IMH, we can code N into
M(S) for some real S Turing above R, and moreover this coding is ω1-preserving.
As ϕ(ω1) holds in a definable inner model of M(S) and ω1 is the same in M(R) and
M(S), it follows that M(R) also has an inner model satisfying ϕ(ω1). ✷

The above argument uses the fact that Jensen-coding is ω1-preserving. It is
however not ω2-preserving unless CH holds, and therefore we have the following
open question:

Question 14. Let SIMH(ω1, ω2) be the following principle: If a sentence with pa-
rameters ω1, ω2 holds in an ω1-preserving and ω2-preserving outer model then it holds
in an inner model. Then is the SIMH(ω1, ω2) consistent (assuming large cardinals)?
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The SIMH(ω1, ω2) implies that CH fails, as any model has a cardinal-preserving
outer model in which there is an injection from ω2 into the reals. Is there an analogue
M∗(R) of the minimal model M(R) which does not satisfy CH? Is there a coding
theorem which says that any outer model of M∗(R) which preserves ω1 and ω2 has
a further outer model of the form M∗(S), also with the same ω1 and ω2? If so, then
one could establish the consistency of the SIMH(ω1, ω2).

The most general from of the SIMH makes use of absolute parameters. A pa-
rameter p is absolute if some formula defines it in all outer models which preserve
cardinals up to and including the hereditary cardinality of p, i.e. the cardinality of
the transitive closure of p. Then SIMH(p) for an absolute parameter p states that if
a sentence with parameter p holds in an outer model which preserves cardinals up
to the hereditary cardinality of p then it holds in an inner model. The full SIMH
(Strong Inner Model Hypothesis) states that this holds for every absolute parameter
p.

The SIMH is closely related to strengthenings of Lévy absoluteness. For example,
define Lévy(ω1) to be the statement that Σ1 formulas with parameter ω1 are absolute
for ω1-preserving outer models; this follows from the SIMH(ω1) and is therefore
consistent. But the consistency of Lévy(ω1, ω2), i.e. Σ1 absoluteness with parameters
ω1, ω2 for outer models which preserve these cardinals, is open.

The SIMH#

A synthesis of the SIMH with #-generation can be formulated as follows: V
satisfies the SIMH# if V is #-generated and whenever a sentence ϕ with absolute
parameters holds in a #-generated outer model having the same cardinals as V up
to the hereditary cardinality of those parameters, ϕ also holds in an inner model of
V . A special case is SIMH#(ω1), where the only parameter involved is ω1 and we
are concerned only with ω1-preserving outer models.

Theorem 15. [15] Assuming large cardinals, the SIMH#(ω1) is consistent.

Proof. Assume there is a Woodin cardinal with an inaccessible above. For each real
R let M#(R) be Lα[R] where α is least so that Lα[R] is #-generated. The Woodin
cardinal with an inaccessible above implies enough projective determinacy to enable
us to use Martin’s Lemma to find a real R such that the theory of M#(S) is constant
for S Turing-above R. We claim that M#(R) satisfies SIMH#(ω1): Indeed, let M be
a #-generated ω1-preserving outer model of M#(R) satisfying some sentence ϕ(ω1).
Let α be the ordinal height of M#(R) (= the ordinal height of M). By the result
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of Jensen quoted before (Theorem 9.1 of [6]), M has a #-generated ω1-preserving
outer model W of the form Lα[S] for some real S with R ≤T S. Of course α is least
so that Lα[S] is #-generated. So W equals M#(S) and the ω1 of W equals the ω1
of M#(R). By the choice of R, M#(R) also has a definable inner model satisfying
ϕ(ω1). ✷

However as with the SIMH(ω1, ω2), the consistency of SIMH#(ω1, ω2) is open.

4.9 A Maximality Protocol

This protocol aims to organise the study of height and width maximality into three
stages.

Stage 1. Maximise the ordinals (height maximality).

Stage 2. Having maximised the ordinals, maximise the cardinals.

Stage 3. Having maximised the ordinals and cardinals, maximise powerset (width
maximality).

Stage 1 is taken care of by #-generation. So we focus now on Stage 2, cardinal-
maximisation.

In light of Stage 1, we assume now that V is #-generated and when discussing
outer models of V we only consider those which are also #-generated.

We would like a criterion which says that for each cardinal κ, κ+ is as large
as possible. To get started let’s consider the case κ = ω, so we want to maximise
ω1. The basic problem of course is the following. As set-generic extensions of #-
generated models are also #-generated:

Fact. V has a #-generated outer model in which ωV
1 is countable.

But surely we would want something like: ω
L[x]
1 is countable for each real x. The

reason for this is that ω
L[x]
1 , unlike ωV

1 in general, is absolute between V and all of
its outer models.

Definition 16. Let p be a parameter in V and P a set of parameters in V . Then
p is strongly absolute relative to P if there is a formula ϕ with parameters from P
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that defines p in V and all #-generated outer models of V which preserve cardinals
up to and including the hereditary cardinality of the parameters mentioned in ϕ10.

Typically we will take P to consist of all subsets of some infinite cardinal κ, in
which case the cardinal-preservation in the above definition refers to cardinals up to
and including κ.

CardMax(κ+) (for κ an infinite cardinal). Suppose that the ordinal α is strongly
absolute relative to subsets of κ. Then α has cardinality at most κ.

It is possible to show that if κ is regular then there is a set-forcing extension in
which CardMax(κ+) holds.

Question 17. Is CardMax consistent, where CardMax denotes CardMax(κ+) for
all infinite cardinals κ, both regular and singular?

Internal Cardinal Maximality

Another approach to cardinal maximality is to relate the cardinals of V to those
of its inner models. Two large inner models are HOD, the class of hereditarily
ordinal-definable sets, and the smaller inner model S, the Stable Core of [13]. V is
class-generic over each of these models.

Let M denote an inner model.

M -cardinal Violation. For each infinite cardinal κ, κ+ is greater than the κ+ of M .

In [9] it is shown that HOD-cardinal violation is consistent. Can we strengthen
this?

Question 18. Is it consistent that for each infinite cardinal κ, κ+ is inaccessible,
measurable or even supercompact in HOD? Is this consistent with HOD replaced by
the Stable Core S?

A result of Shelah states that all subsets of κ belong to HODx for some fixed
subset x of κ when κ is a singular strong limit cardinal of uncountable cofinality.
By [8] this need not be true at countable cofinalities.

Question 19. Is it consistent that for each infinite cardinal κ, κ+ is greater than
κ+ of Sx (the Stable Core relativised to x) for each subset x of κ?

10We thank one of the referees for pointing out that an earlier version of cardinal-maximality with
a weaker parameter-absoluteness assumption is inconsistent. A similar phenomenon with weakly
absolute parameters occurs in Theorem 10 of [18].
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A major difference between HOD and S is that while any set is set-generic over
HOD, this is not the case for S.

Question 20. Is it consistent that for each infinite cardinal κ, some subset of κ+

is not set-generic over Sx for any subset x of κ?

A positive answer to any of these three questions would yield a strong internal
cardinal-maximality principle for V .

Stage 3: Having maximised the ordinals and cardinals, maximise powerset.

This is where we revisit the SIMH, but only in the context of #-generation and
cardinal-preservation. Again assume that V is #-generated.

A parameter p in V is cardinal-absolute if there is a parameter-free formula which
defines p in all #-generated outer models of V which have the same cardinals as V .

SIMH#(CP) (Cardinal-preserving SIMH#). Suppose that p is a cardinal-absolute
parameter, V ∗ is a #-generated outer model of V with the same cardinals as V and
ϕ is a sentence with parameter p which holds in V ∗. Then ϕ holds in an inner model
of V .

Question 21. Is the SIMH#(CP) consistent?

Note that SIMH#(CP) implies a strong failure of CH.

4.10 Width Indiscernibility
An alternative to the Maximality Protocol (which ideally should be synthesised with
it) is Width Indiscernibility. The motivation is to provide a description of V in width
analogous to its description in height provided by #-generation.

Recall that with #-generation we arrive at the following:

V0 ≺ V1 ≺ · · · ≺ V = V∞ ≺ V∞+1 ≺ · · ·

where for i < j, Vi is a rank-initial segment of Vj. Moreover the models Vi form a
collection of indiscernible models in a strong sense. This picture was the result of
an analysis which began with height reflection, starting with the idea that V must
have unboundedly many rank-initial segments Vi which are elementary in V .

Analogously, we introduce width reflection. We would like to say that V has
proper inner models which are “elementary in V ”. Of course this cannot literally be
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true, as if V0 is an elementary submodel of V with the same ordinals as V then it is
easy to see that V0 equals V . Instead, we use elementary embeddings.

Width Reflection. For each ordinal α, there is a proper elementary submodel H of
V such that Vα ⊆ H and H is amenable, i.e. H ∩ Vβ belongs to V for each ordinal
β.

Equivalently:

Width Reflection. For each ordinal α, there is a nontrivial elementary embedding
j : V0 → V with critical point at least α such that j is amenable, i.e. j ↾ (Vβ)V0

belongs to V for each ordinal β.

Let’s write V0 < V if there is a nontrivial amenable j : V0 → V , as in the second
formulation of width reflection. This relation is transitive.

Proposition 22. (a) If V0 < V then V0 is a proper inner model of V .
(b) Width Reflection is consistent relative to the existence of a Ramsey cardinal.

Proof. (a) This follows from Kunen’s Theorem that there can be no nontrivial
elementary embedding from V to V .
(b) Suppose that κ is Ramsey. Then it follows that any structure of the form
M = (Vκ, ∈, . . .) has an unbounded set of indiscernibles, i.e. an unbounded subset
I of κ such that for each n, any two increasing n-tuples from I satisfy the same
formulas in M. Now apply this to M = (Vκ, ∈, <) where < is a wellorder of Vκ of
length κ. Let J be any unbounded subset of I such that I \ J is unbounded and for
any α < κ, let H(J ∪ α) denote the Skolem hull of J ∪ α in M. Then H(J ∪ α) is
an elementary submodel of Vκ and is not equal to Vκ because no element of I \ J
greater than α belongs to it. As Vκ contains all bounded subsets of κ it follows that
H(J ∪ α) is amenable. ✷

A variant of the argument in (b) above yields the consistency of arbitrarily long
finite chains V0 < V1 < · · · < Vn. But obtaining infinite such chains seems more
difficult, and even more ambitiously we can ask:

Question 23. Is it consistent to have V0 < V1 < · · · < V of length Ord + 1 such
that the union of the Vi’s equals V ?

The latter would be a good start on the formulation of a consistent criterion of
Width Indiscernibility, as an analogue for maximality in width to the criterion of
maximality in height provided by #-generation.
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4.11 Omniscience
By OMT(V ), the outer model theory of V , we mean the class of sentences with
arbitrary parameters from V which hold in all outer models of V . We have seen
using V -logic that OMT(V ) is definable over V +. However for many universes V ,
OMT(V ) is in fact first-order definable over V . These universes are said to be
omniscient.

Recall the following version of Tarski’s result on the undefinability of truth:

Proposition 24. The set of sentences with parameters from V which hold in V is
not (first-order) definable in V with parameters.

Surprisingly, Mack Stanley showed however that OMT(V ) can indeed be V -
definable.

Theorem 25. (M.Stanley [30]) Suppose that in V there is a proper class of mea-
surable cardinals, and indeed this class is V +-stationary, i.e. Ord(V ) is regular
with respect to V +-definable functions and this class intersects every club in Ord(V )
which is V +-definable. Then OMT(V ) is V -definable.

Proof. Using V -logic we can translate the statement that a first-order sentence ϕ
(with parameters from V ) holds in all outer models of V to the validity of a sentence
ϕ∗ in V -logic, a fact expressible over V + by a Σ1 sentence. Using this we show that
the set of ϕ which hold in all outer models of V is V -definable.

As Ord(V ) is regular with respect to V +-definable functions we can form a club
C in Ord(V ) such that for κ in C there is a Σ1-elementary embedding from Hyp(Vκ)
into V + (with critical point κ, sending κ to Ord(V )). Indeed C can be chosen to be
V +-definable.

For any κ in C let ϕ∗
κ be the sentence of Vκ-logic such that ϕ holds in all outer

models of Vκ iff ϕ∗
κ is valid (a Σ1 property of Hyp(Vκ)). By elementarity, ϕ∗

κ is valid
iff ϕ∗ is valid.

Now suppose that ϕ holds in all outer models of V , i.e. ϕ∗ is valid. Then ϕ∗
κ is

valid for all κ in C and since the measurables form a V +-stationary class, there is a
measurable κ such that ϕ∗

κ is valid.

Conversely, suppose that ϕ∗
κ is valid for some measurable κ. Now choose a normal

measure U on κ and iterate (H(κ+), U) for Ord(V ) steps to obtain a wellfounded
structure (H∗, U∗). (This structure is wellfounded, as for any admissible set A, any
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measure in A can be iterated without losing wellfoundedness for α steps, for any
ordinal α in A.) Then H∗ equals Hyp(V ∗) for some V ∗ ⊆ V . By elementarity, the
sentence ϕ∗

V ∗ which asserts that ϕ holds in all outer models of V ∗ is valid. But as
V ∗ is an inner model of V , ϕ also holds in all outer models of V .

Thus ϕ belongs to OMT(V ) exactly if it belongs to OMT(Vκ) for some measur-
able κ, and this is first-order expressible. ✷

Are measurable cardinals needed for omniscience? Actually, Stanley was able to
use just Ramsey cardinals, but as far as the consistency of omniscience we have the
following:

Theorem 26. ([16]) Suppose that κ is inaccessible and GCH holds. Then there is
an omniscient model of the form Vκ[G] where G is generic over V . Moreover, Vκ[G]
carries a definable wellorder.

Omniscience demonstrates that it is possible to treat truth in arbitrary outer
models internally in a way similar to how truth in set-generic extensions can be
handled using the standard definability and truth lemmas of set-forcing. In fact, the
situation is even better in that the entire outer model theory is first-order definable,
not just the restriction of this theory to sentences of bounded complexity, as is the
case for set-forcing. (The key difference is that in the case of set-forcing, the ground
model V is uniformly definable in its set-generic extensions and therefore the full
OMT(V ) cannot be first-order definable in V by Proposition 24. An omniscient V
cannot be uniformaly definable in its arbitrary outer models for the same reason.)

Note also that by Theorem 25, omniscience synthesises well with #-generation:
We need only work with models that have sufficiently many measurable cardinals.

4.12 The Future of the HP
We have discussed evidence of Type 1, coming from set theory’s role as a branch of
mathematics, and evidence of Type 2, coming from set theory’s role as a foundation
for mathematics. In the first case, evidence is judged by its value for the mathe-
matical development of set theory and in the second case it is judged by its value
for resolving independence in (and providing tools for) other areas of mathematics.
In both cases the weight of the evidence is measured by a consensus of researchers
working in the field.

Type 3 evidence is also measured by a consensus of researchers working in set
theory (and its philosophy) but emanates instead from an analysis of the intrinsic
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maximality feature of the set concept as expressed by the maximal iterative concep-
tion. The Hyperuniverse Programme provides a strategy for deriving mathematical
consequences from this conception.

To illustrate more clearly how the HP derives consequences of the maximality
of V I’ll discuss the case of #-generation and the search for an optimal maximality
criterion.

#-generation is a major success of the HP. It provides a powerful mathemati-
cal criterion for height maximality which implies all prior known height maximality
principles and provides an elegant description of how the height of V is maximised in
a way analogous to the way L is maximised in height by the existence of large cardi-
nals (or equivalently, by the existence of 0#). There are good reasons to beleive that
#-generation will be accepted by the community of set-theorists and philosophers
of set theory as the definitive expression of height maximality.

Width maximality is of course much more difficult than height maximality and
the formulation, analysis and synthesis of the various possible width maximality
criteria is at its early stages. The basic IMH is a good start, but must be synthesised
with #-generation. The biggest challenge at the moment is dealing with formulations
of width maximality which make use of parameters. The maximality protocol is
a promising approach. But it is important to emphasize that the mathematical
analysis of width maximality principles is challenging and there are sure to be some
false turns in the development of the programme, leading to inconsistnet principles
(this has already happened several times). Such false turns are not damaging to
the programme, but rather provide valuable further understanding of the nature of
maximality.

The aim of the HP is to arrive after extensive mathematical work at an optimal
criterion of maximality for the height and width of the universe of sets, providing
a full mathematical analysis of the maximal iterative conception. As already said,
the validation of such a criterion as optimal depends on a consensus of researchers
working in set theory and its philosophy. Derivability from the maximal iterative
conceptions refers to formal derivability form this sought-after optimal criterion. Of
greatest interest are the first-order statements derivable from maximality, but it is
already clear that the criteria being developed in the programme, such as the ones
mentioned in this paper, are almost exclusively non first-order. My prediction is
that the optimal criterion will include some form of the SIMH and therefore imply
the (first-order) failure of CH.
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I remain optimistic that when the discoveries of this programme are combined
with further work in set theory and its application to resolving problems of inde-
pendence in other areas of mathematics, the prediction expressed by the Thesis of
Set-Theoretic Truth will be satisfyingly realized. But there is first a lot of work to
be done.
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Abstract
What is implicit in the acceptance of the Tarskian truth biconditionals?

In this article we expand and generalise results by Horsten and Leigh [14] to
characterise the proof- and truth-theoretic content of iterated reflection over
disquotational theories of truth. In particular, we confirm the conjecture that,
modulo reflection, all there is to typed and Kripke–Feferman truth is captured
by simple and natural collections of truth (and in the latter case falsity) bicon-
ditionals.

1 Introduction
Consider the theory of typed truth over arithmetic, that is the first-order theory
of arithmetic expanded to the language LT = L0 ∪ {T } featuring a fresh unary
predicate symbol T whose intended interpretation is the Gödel numbers of true
sentences in the base language L0. The theory has an obvious standard model,
given by expanding the standard model of arithmetic N to an LT structure by
interpreting the new predicate T as

ThN := {#A | A is an L0-sentence and N |= A},

where #: LT → ω is some fixed injective Gödel numbering for LT formulæ.
Axiomatically, this expansion of the standard model can be characterised by

a collection of truth biconditionals. As is usual, it is necessary to assume the
Gödel numbering fulfils certain ‘definability’ assumptions (cf. section 2 below). Let
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[·] : LT → Terms be a Gödel coding that maps each LT formula A to a closed
L0-term [A] whose value (in N) is #A; henceforth we identify [A] and #A, writing
only the former. The typed Tarskian truth biconditionals, TB, is the collection of
sentences

A ↔ T [A]

for A an L0-sentence.

Proposition 1.1. Let X ⊆ domN be a set of natural numbers and let 〈N, X〉 denote
the expansion of the standard model of arithmetic to an LT -structure in which the
predicate T is interpreted as X. The following are equivalent.

1. X ∩ SentL0 = ThN,

2. 〈N, X〉 |= TB,

3. 〈N, X〉 |= CT, the theory extending PA by the compositional axioms for typed
truth (see Definition 3.1).

Proof. 2 ⇒ 1 ⇒ 3 is obvious. Since the equivalences A ↔ T [A] for A in L0 are
derivable from the CT-axioms, also 3 ⇒ 2.

Unlike in the case of typed truth there is no obvious standard model for typed-
free truth. On the one hand, the collection of all truth biconditionals {A ↔ T [A] |
A ∈ SentLT

} has no model. On the other, McGee’s trick [22, Theorem 1] shows every
consistent LT -theory extending a weak theory of arithmetic can be characterised by
some consistent collection of biconditionals.

There are, however, some ‘natural’ theories of self-applicable truth that stand
out. One such is Kripkean truth, introduced by Kripke in [18].1 The theory is
formulated in a language LT,F extending L0 by two predicates, a truth predicate
T and a falsity predicate F . T (respectively F ) is interpreted as the set of LT,F

sentences whose truth (resp. falsehood) is grounded in ThN. Formally this is given
by an inductive definition. Let Γ be the function on Pow(ω) × Pow(ω) defined by
Γ(X0, X1) = (Γ0(X0, X1), Γ1(X0, X1)) where

for each i < 2, [A] ∈ Γi(X0, X1) iff one of the following conditions hold.

• A is an atomic L0-formula and i = 0 iff N |= A,

1Other popular theories of type-free truth include the revision theory, or stable truth, and super-
valuationist truth, though Kripkean truth is by far the most commonly considered theory (besides
naïve truth).
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• A = (B ∨ C) and |{[B], [C]} ∩ Xi| > i,

• A = (B ∧ C) and |{[B], [C]} ∩ Xi| > (1 − i),

• A = ∀xB and i = 0, or A = ∃xB and i = 1, and for every term s, [B(s)] ∈ Xi,

• A = ∀xB and i = 1, or A = ∃xB and i = 0, and for some term s, [B(s)] ∈ Xi,

• A = ¬B and [B] ∈ X1−i,

• A = T (s) and sN ∈ Xi,

• A = F (s) and sN ∈ X1−i.

If X ⊆ X ′ and Y ⊆ Y ′ then Γi(X, Y ) ⊆ Γi(X ′, Y ′), so Γ is a monotone function
and has (2ℵ0) fixed points and, in particular, a least fixed point, which can also be
defined by iterating Γ through the transfinite on (∅, ∅).

In the same vein as typed truth, Γ-fixed points over the standard model are
characterised by collections of truth (and falsity) biconditionals and compositional
axioms. Let L+

T,F be the set of LT,F -formulæ in which predicates T and F appear
strictly positively, that is not within the scope of negation symbols. For a formula
A, define A to be the dual of A, given by exchanging each logical connective for its
logical dual (with ¬A = A), T for F and vice versa, and negating L0 atoms (see
Section 5). Let TFB comprise the axioms

A ↔ T [A] A ↔ F [A]

for A ranging over L+
T,F -sentences.

Proposition 1.2 (Kripke [18] and Feferman [9]). Let X, Y ⊆ {[A] | A ∈ SentL+
T,F

}
be sets of natural numbers, and let 〈N, X, Y 〉 denote the expansion of N to an LT,F

structure with X interpreting the predicate T and Y the predicate F . The following
statements are equivalent.

1. X = Γ0(X, Y ) and Y = Γ1(X, Y ),

2. 〈N, X, Y 〉 |= TFB,

3. 〈N, X, Y 〉 |= KF, the Kripke–Feferman theory of positive, or strongly compos-
itional, truth (see Definition 5.1).

Proof. 3 ⇒ 2 is on account of the truth and falsity biconditionals for L+
T,F -formulæ

being derivable from the KF-axioms. 1 ⇒ 3 is easily verified and 2 ⇒ 1 results
from combining the inductive definition of satisfaction with the truth and falsity
biconditionals of TFB.

559



Graham E. Leigh

1.1 Disquotational vs. compositional
The basic disquotational theories considered above are given by local truth (and
falsity) biconditionals, collections A ↔ T [A] for appropriate A. A natural general-
isation of the local biconditionals is the inclusion of parameters. If A is a formula
with free variable x the uniform truth biconditional for A is the axiom

∀x(A ↔ T [Aẋ]) (1)

where [Aẋ] (unlike [A]) is an open term with exactly x free (with the dot above x
marking it as a variable of the term). Whereas the local biconditionals axiomatise
expressions ‘A’ is true iff A, the uniform version formalises for every y, ‘λxA’ is
true of y iff A(y). Notice that in the presence of a background theory of sequences
(such as in Elementary Arithmetic) the uniform biconditionals naturally expand to
formulæ with more free variables and the single variable form presented above is
equivalent to the multi-variable version:

∀x1 · · · ∀xk(Bx1 · · · xk ↔ T [Bẋ1 · · · ẋk])

for formulæ B with at most x1, . . . , xk free. Let TB0 and UTB0 be the theories
extending Elementary Arithmetic, EA (see Definition 2.1 below), by respectively the
local and uniform truth biconditionals for L0 formulæ, and TFB0 and UTFB0 the
extension of EA by the local and uniform truth and falsity biconditionals for the
language L+

T,F .
Propositions 1.1 and 1.2 suggest an implicit link exists between collections of

truth biconditionals and compositional theories, at least over the standard model.
This link has not escaped attention and is clearly voiced (for example by Horwich [15]
and Quine [23]) in the defense of disquotationalism, the general theory of truth that
holds that the only functions of the concept of truth are semantic ascent (A → T [A])
and disquotation (T [A] → A).

When it comes to provability, however, disquotational theories are left want-
ing: they typically cannot derive even the most basic compositional axioms such as
∀x∀y(SentL0(x∧. y) → (T (x∧. y) ↔ T x ∧ T y)) (the conjunction of two L0 sentences
is true iff each conjunct is true), let alone reflection principles like all theorems of
Peano Arithmetic are true, ∀x(BewPA(x) ∧ SentL0(x) → T x) (see, e.g. [12, Theorem
7.6]). Indeed, the standard disquotational theories are proof-theoretically trivial:
UTFB0 and UTB0 conservatively extends Elementary Arithmetic (so if UTFB0 ⊢ A
and A is an L0 formula, already EA ⊢ A) and the extension of TFB0 by induction
for all L∗-formulæ conservatively extends Peano arithmetic (this result is a corol-
lary of [4, Theorem 2.2] and a direct proof is presented in [14, Theorem 13]). On
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the contrary, theories such as CT and KF are proof-theoretically strong, equivalent
to the extension of PA by transfinite induction (up to the ordinals εε0 and ϕε00
respectively).

The truth-theoretic connection between disquotational and compositional the-
ories, however, is a different matter and was examined in [14] building on earlier
results of Halbach. In particular, the following was shown.

Theorem 1.3 (Halbach [11]; Horsten and Leigh [14]). For a theory S, let R(S) de-
note the extension of EA by the uniform reflection principle for S (see Definition 2.11
below). Then

1. CT is identical to the theory R(UTB0) and a sub-theory of R(R(TB0));

2. KF is identical to R(UTFB0) and a sub-theory of R(R(TFB0)).

According to Feferman [9], acceptance of a theory implicitly commits one to
accept a reflection principle of that theory. Modulo implicit commitment, therefore,
Theorem 1.3 implies compositional truth à la CT and KF is captured by simple
collections of truth (and falsity) biconditionals (see [14] for more on the discussion
of implicit commitment in this context).

In the present paper we generalise Theorem 1.3 to iterations of the uniform
reflection principle and thus characterise the principles implicit in our acceptance
of disquotational theories (at least with respect to reflection hierarchies). Thus we
are concerned not as much with the effect of reflection on the L0 consequences (i.e.
its proof-theoretic strength) but rather with what new principles of truth are made
available through reflection (its truth-theoretic content).

It might be expected that further acts of reflection permit the derivation of new
truth-theoretic principles independent of CT or KF. This turns out not to be the
case and iterations of the reflection principle (even into the transfinite) add no more
theorems beyond (the unavoidable) transfinite induction. If transfinite induction is
regarded as non-truth-theoretic then CT and KF can be said to be truth-theoretically
complete. That is we obtain the following theorem.

Theorem 1.4. For a theory S and (elementary) ordinal κ, let Sκ denote the ex-
tension of S by the schema of transfinite induction for ordinals below κ (for all
formulæ), and Rκ(S) the theory EA + ‘κ-times iterated uniform reflection over S’.
For all κ we have

1. CTεκ = R1+κ(UTB0) and for κ > 0 also CTεκ = R1+κ(TB0);

2. KFεκ = R1+κ(UTFB0) and for κ > 0 also KFεκ = R1+κ(TFB0).
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Theorem 1.4 is quite striking. Focusing on the theories of typed truth, observe
that acceptance of CT boils down to accepting one act of (uniform) reflection over
UTB0 or two acts of reflection over the weaker theory TB0. The compositional ax-
ioms of typed truth are not derivable in UTB0 (nor, indeed, in UTBα for any α in a
natural ordinal notation system2), but are equivalent to the reflection principle for
the theory. Furthermore, the case κ > 1 demonstrates that the entire reflection hier-
archy above UTB0 is captured by the compositional axioms and sufficient transfinite
induction. In other words, modulo induction, the compositional axioms are the only
truth principles revealed through reflection.

From Theorem 1.4 it becomes simple to also realise the proof-theoretic strength
of the systems.

Theorem 1.5. For each κ > 0, the theories R1+κ(TB0), R1+κ(UTB0) and CTεκ

derive the same L0 consequences as PA + TI(<εεκ), and the theories R1+κ(TFB0),
R1+κ(UTFB0) and KFεκ derive the same L0 consequences as PA + TI(<ϕεκ0).

1.2 Outline of paper
The paper is organised as follows. In Section 2 we fix the technical details required
in later sections, including our assumptions on coding, background theory and the
representation of transfinite induction and reflection hierarchies. Sections 3 to 5
explore the relation between compositional and disquotational truth theories case-
by-case, considering typed truth (CT), ramified truth (RT), and Kripke–Feferman
truth (KF). Section 6 concerns the technically challenging part of the main the-
orems, namely establishing that iterated reflection over disquotational theories is
derivable in compositional theories extended by sufficient transfinite induction. The
section introduces two infinitary calculi for theories of truth, establishes (partial)
cut elimination for them and derives the desired result from an ordinal analysis of
the calculi.

The proof of Theorem 1.4 is thus split into four parts. Theorem 3.10 establishes
the inclusions CTεκ ⊆ R1+κ(UTB0) ⊆ R1+κ(TB0) (the latter holding if κ > 0), and
Theorem 5.6 proves the KF version. The converse inclusions, namely R1+κ(UTB0) ⊆
CTεκ and R1+κ(UTFB0) ⊆ KFεκ rely on an ordinal analysis of reflection hierarchies
and are consequences of Theorems 6.22 (for CT) and 6.23 (for KF). Regarding
Theorem 1.5, the first part is established by Lemma 3.11 and Theorem 6.24, and
the second part by Theorems 5.7 and 6.24.

2Needless to say, naturality of notation systems for ordinals is a problematic concept; cf. Rathjen
[24] and Feferman [6].
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2 Syntax, ordinals and reflection
It is technically convenient to assume all theories (including the truth-free ones) are
formulated in a single ‘all encompassing’ language L∗ which includes, in addition
to the standard logical symbols, the language L0 of elementary arithmetic (defined
below), unary predicates F , T and also Ti for each i < ω. If X ⊆ {T, F} ∪ {Ti | i <
ω}, we write LX for the sub-language of L∗ extending L0 by only the predicate(s)
in X. LT is shorthand for L{T }.

Definition 2.1 (Elementary arithmetic). The language of elementary arithmetic,
L0, comprises a constant symbol 0, successor function s, binary relations =, < and
exp(·, ·, ), and ternary relations add(·, ·, ·), mult(·, ·, ·). The three additional predic-
ates represent, respectively, binary exponentiation, addition and multiplication as
relations. The class of ∆0

0, or elementary, formulæ contains the L0 formulæ for which
every quantified sub-formulæ takes one of the forms: ∀z(z < t → A′), ∃z(z < t∧A′),
∀z(exp(s, z) → A′), ∃z(exp(s, z)∧A′), ∀z(P(s, t, z) → A′) or ∃z(P(s, t, z)∧A′), where
P ∈ {add , mult} and s, t are terms not containing z.

The theory Elementary Arithmetic, denoted EA, is the L∗ theory with the fol-
lowing axioms.

EA1 Successor: ¬(sx = 0) ∧ (sx = sy → x = y);

EA2 Addition: (add(x, 0, z) ↔ z = x)∧(add(x, sy, z) ↔ ∃z′(z = sz′∧add(x, y, z′)));

EA3 Multiplication: (mult(x, 0, z) ↔ z = 0) ∧ (mult(x, sy, z) ↔ ∃z′(mult(x, y, z′) ∧
add(z′, x, z)));

EA4 Binary exponentiation: (exp(0, z) ↔ z = s0) ∧ (exp(sx, z) ↔ ∃z′(exp(x, z′) ∧
add(z′, z′, z)));

EA5 Ordering: ¬(x < 0) ∧ (x < sy ↔ x = y ∨ x < y);

EA6 ∆0
0-induction: A(0) ∧ ∀x(A(x) → A(sx)) → A(x) for each ∆0

0 formula A.

Lemma 2.2. EA proves the that relations add, mult and exp define (total) functions.

Proof. Consider, for example, add(x, y, z), and let A(x, y) be the elementary formula

∃z add(x, y, z) ∧ ∀w(add(x, y, w) ∧ ∀z(add(x, y, z) → w = z)).

We have EA ⊢ A(x, 0) and EA ⊢ A(x, y) → A(x, sy) so by ∆0
0-induction we deduce

EA ⊢ ∀x∀yA(x, y). Similarly for mult and exp.
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By definition the only L0-terms are numerals. However, as the previous lemma
shows, functions defined from successor, addition, multiplication and binary expo-
nentiation (the so-called elementary functions) can be represented and proved total
in EA. For this reason we allow ourselves informal use of elementary terms built
from these operations, such as the syntactic functions given below.

Peano Arithmetic, PA, is taken to be the extension of EA by induction for all
L0 formulæ, and PA∗ is the extension by induction for all L∗ formulæ. Let Ind(L)
denote the schema of induction for all L-formulæ. Thus PA = EA + Ind(L0) and
PA∗ = EA + Ind(L∗).

We fix a Gödel coding e 7→ [e] of L∗-expressions as closed L0-terms such that
if A is a subformula of B then EA ⊢ [A] < [B] and, moreover, the usual syntactic
manipulations on formulæ, given by the functions

∧. : [A], [B] 7→ [A ∧ B] ∀. : [x], [A] 7→ [∀xA] =. : m, n 7→ [m̄ = n̄]
∨. : [A], [B] 7→ [A ∨ B] ∃. : [x], [A] 7→ [∃xA] ¬. : [A] 7→ [¬A]

sub : [A(x)], [x], m 7→ [A(m̄)]
are representable in EA by elementary formulæ, where A and B range over L∗
formulæ, x is a variable symbol and m̄ denotes the m-th numeral, that is, 0̄ = 0 and
m + 1 = sm̄. For example, the function sub is represented in EA by an elementary
formula Sub(w, x, y, z) such that
EA ⊢ ∀w∀x∀y(∃z Sub(w, x, y, z) ∧ ∀z∀z′(Sub(w, x, y, z) ∧ Sub(w, x, y, z′) → z = z′))

EA ⊢ Sub(k̄, l̄, m̄, n̄) iff sub(k, l, m) = n

EA ⊢ ¬Sub(k̄, l̄, m̄, n̄) iff sub(k, l, m) 6= n.

The open terms featured in the formulation of the uniform biconditionals in (1)
are defined via the substitution function: for a formula A(x) with at most x free,
we set [Aẋ] = sub([A], [x], x) and this naturally extends to multiple free variables
by iteration, for k > 1 set [Aẋ1 · · · ẋk] = sub([Aẋ1 · · · ẋk−1], [xk], xk). The formula
T [Aẋ] is formally represented by ∀y(Sub([A], [x], x, y) → T y), and similarly for the
other syntactic functions above.

In addition to the above functions, for a (∆0
0-definable) collection L of L∗-

formulæ let SentL(x) be a ∆0
0 formulæ of L0 expressing that x is the code of an

L-sentence, and for a L∗-theory S with an elementary set of axioms fix a Σ0
1 formula

BewS(x) expressing that x is the code of an S-theorem.

2.1 Ordinals and notation systems
In this paper we will be concerned only with so-called predicative ordinals. These are
the ordinals that can be constructed from 0 by repeated application of two ordinal
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functions, addition α, β 7→ α + β and the binary Veblen function α, β 7→ ϕαβ, the
latter of which we define starting from binary exponentiation:

• ϕ0α = 2α = sup({1} ∪ {ϕ0β + ϕ0β | β < α});

• for β > 0, ϕβα is the α-th element of the set {δ | ∀γ < β(ϕγδ = δ)}.

Let ǫα = ϕ1α. The function α 7→ ǫα enumerates the fixed points of α 7→ 2α so
in particular we have ω = ǫ0. A limit ordinal is any ordinal β = sup{δ | δ < β}.
Γ0 is the first non-zero ordinal closed under the binary Veblen function, that is,
Γ0 = inf{δ | δ = ϕδ0} = ϕΓ00. The operation of ω-exponentiation (α 7→ ωα) and
the standard ε-function (α 7→ εα) that enumerates its fixed points can be defined by
ωα = 2ω.α and εα = ǫ1+α = ϕ1(1 + α).

Lemma 2.3. For all ordinals α < Γ0,

1. α = 2α iff α = ω or α = ωα;

2. εα = ωεα;

3. α = ǫα iff α = εα.

Proof. 1. Since α ≤ 2α ≤ ωα the ‘if’ direction follows directly from the definition.
For the other direction assume ω < α = 2α. Then α must be a limit ordinal and it
suffices to prove that ω ≤ β < α implies ωβ < α. But if ω ≤ β < α then

ωβ = 2ω.β ≤ 22β .2β ≤ 222β+1
< 222α

= α

and we are done. Cases 2 and 3 are straightforward.

Recall Cantor’s normal form theorem.

Lemma 2.4. Every non-zero ordinal α has a unique decomposition of the form
ωα0 .n0 + ωα1 .n1 + · · · + ωαk .nk where 0 < ni < ω for each i ≤ k and α ≥ α0 > α1 >
· · · > αk.

For our purposes a normal form based on binary exponentiation is more useful.

Lemma 2.5. Every non-zero ordinal α has a unique decomposition of the form
2α0 + 2α1 + · · · + 2αk where α ≥ α0 > α1 > · · · > αk.
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Proof. Let 0 < α = ωα0 .n0 + ωα1 .n1 + · · · + ωαk .nk be the unique decomposition
given by Lemma 2.4. For each i ≤ k, let 0 ≤ mi,li < · · · < mi,0 < ω be such that
ni = 2mi,0 + · · · + 2mi,li . Using Lemma 2.3(2) we thus have

α =
k∑

i=0

li∑

j=0
2ω.αi+mi,j ,

and ω.α0 + m0,0 > · · · > ω.α0 + m0,l0 > · · · > ω.αk + mk,0 > · · · > ω.αk + mk,lk .
Moreover, this decomposition must be unique.

An ordinal presented in the form of Lemma 2.5 is considered to be in normal
form. Using this presentation it is possible to define a commutative version of
addition on ordinals, known as the natural sum that will prove useful in Section 6.

Definition 2.6. Let α = 2α1 + 2α2 + · · · + 2αk and β = 2β1 + 2β2 + · · · + 2βl

be in normal form. The natural sum of α and β, written α # β is the ordinal
γ = 2γ1 + 2γ2 + · · · + 2γm where m = k + l and γ1 ≥ γ2 ≥ · · · ≥ γm enumerates the
ordinals α1, . . . , αk, β1, . . . , βl (with repetitions).

Lemma 2.7. For all α and β, α # β = β # α, and α # β = β iff α = 0.

Fixed points of the function x 7→ 2x below Γ0 also have a unique decomposition
based on the Veblen function.

Lemma 2.8. If α = 2α < Γ0 then there exist unique ordinals β, γ < α such that
α = ϕβγ.

Proof. As α < Γ0 we have α < ϕα0 so β = sup{η < Γ0 | ∃γ(α = ϕηγ)} exists,
β < α and indeed α = ϕβγ for some γ. It follows that γ < α as otherwise α = ϕβα
which contradicts the definition of β. Since ϕαη < ϕαζ whenever η < ζ, it follows
that β and γ are uniquely determined.

2.1.1 Representation

In order to define transfinite iterations of reflection principles it is necessary to
provide a representation of ordinal numbers within arithmetic. For the purposes of
this paper, it suffices to consider a fixed representation of ordinals below Γ0, which
can be presented as an elementary ordinal notation system as defined, for example,
in [24].

Such a representation system O is given by a set O ⊆ ω and elementary definable
operations +̂: O2 → O, ϕ̂ : O2 → O and relation ≺ ⊆ O2 such that O = 〈O, +̂, ϕ̂, ≺〉
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is isomorphic to the structure 〈{γ | γ < Γ0}, +, ϕ, <〉. Fix a pairing function
〈·, ·〉 : ω2 → ω \ {0, 1} representable in Elementary Arithmetic by a ∆0

0 formulæ.
Define O = {#α | α < Γ0} where #α is defined by transfinite recursion:

• If α ≤ 1, #α = α;

• If α = 2α0 + · · · + 2αn is in normal form, and

– n > 0 then #α = 〈0, #α0, . . . , #αn〉;
– n = 0 then #α = 〈1, #β, #γ〉 where β, γ < α are given by Lemma 2.8(4).

For α < Γ0, we write ᾱ for the #α-th numeral, that is the term #α.

Lemma 2.9. The operation +̂ and the relation ≺ are definable by ∆0
0 formulæ.

Moreover, the analogues of Lemmas 2.3 to 2.8 for the notation system O are all
provable in EA.

In addition to the above functions we introduce the abbreviations 2̂x = ϕ̂0̄x,
ǫ̂x = ϕ̂1̄x and ω̂x = 2̂ω̄.x, where ω̄.0 = 0 and ω̄.(2̂x +̂ y) = 2̂ω̄+̂x +̂ ω̄.y.

2.2 Transfinite induction and reflection hierarchies
Using the ordinal notation system O described above, the schema of transfinite
induction for ordinals α < Γ0 and the theories of α-times iterated reflection can be
defined.

Definition 2.10 (Transfinite induction). Let A(x) be a formula of L∗ and x < ω.
Transfinite induction for A up to x, TI(A, x) is the formula

Prog λxA → A(x),

where ProgλxA states that A is progressive along ≺, namely

∀x ∈ O(∀y ≺ xA(y) → A).

For a language L and ordinal α < Γ0, the schema of transfinite induction up to α
is the collection of formulæ

TIL(<α) = {TI(A, β̄) | A ∈ L ∧ β < α}.

Given a theory S and ordinal κ < Γ0, we define by Sκ = S + TIL∗(<κ). Thus,
for instance, PA∗ = EAω+1. Notice that this notation does not conflict with the
convention that CT0, KF0, etc. are theories with restricted induction.
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Definition 2.11 (Reflection hierarchy). Let S be a theory with an elementary ax-
iomatisation. The reflection principle for S, denoted Ref(S), is the collection of
formulæ

∀x(BewS[Aẋ] → A)

for A ∈ L∗ with at most x free. This schema induces an operation on theories
R : S 7→ EA + Ref(S) which can be iterated through the transfinite (below Γ0):

R0(S) = S, Rα(S) =
⋃

β<α

R(Rβ(S)), (α > 0).

Notice that these theories can be represented within EA using the notation system
O and that the provability predicates, BewRβ(S)(x) for β < Γ0, are all Σ0

1.

3 Typed truth
With the syntactic machinery described above, it is possible to define the composi-
tional truth theory CT and relate it to the theories of typed biconditionals.

Definition 3.1. The compositional theory of typed truth, CT0 is the extension of
EA by the following axioms.

CT1 ∀x∀y(T (x=. y) ↔ x = y),

CT2 ∀x∀y(SentL0(x∧. y) → (T (x◦.y) ↔ T x ◦ T y)) for ◦ ∈ {∧, ∨},

CT3 ∀x(SentL0x → (T ¬. x ↔ ¬T x)),

CT4 ∀x∀y(SentL0(∀.yx) → (T Q. yx ↔ Qz T (sub(x, y, z))) for Q ∈ {∀, ∃}.

CT is the theory extending PA∗ by the above axioms or, equivalently, the extension
of CT0 by induction for all L∗ formulæ.

The above axioms cover all the connectives, quantifiers and atomic relations of
L0 so the typed disquotational axioms are all derivable in CT:

Lemma 3.2. UTB0 is a sub-theory of CT0.

As remarked earlier, the compositional axioms CT2–CT4 are not even derivable
in UTB [12, Theorem 7.6]. Nevertheless, without induction for formulæ containing
the truth predicate the compositional axioms remain proof-theoretically weak as
CT0 is a conservative extension of EA [1, 16] (a purely proof-theoretic argument is
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provided by [20]). When augmented by induction, however, they easily outstrip the
truth biconditionals. For example, we have the following lemma which immediately
implies that the formalised consistency statement for PA (and thus also UTB) is
derivable in CT.

Lemma 3.3. CT ⊢ ∀x(BewPAx ∧ SentL0x → T x).

Proof. We sketch the proof. For further details see, for example, Halbach [12, The-
orem 8.39]. The proof necessarily utilises induction for the truth predicate, first
showing

CT ⊢ ∀x(AxPAx → T (ucl x)) (2)

where AxPAx expresses that x is (a code of) an axiom of PA or a valid first order
formula, and ucl x is the function that maps a formula to its universal closure, i.e.
if x1, . . . , xn enumerates the free variables of A then EA ⊢ ucl[A] = [∀x1 · · · ∀xnA].

In order to establish (2) it is necessary to show CT can derive the truth of i)
all axioms of first-order classical logic (in L0), and ii) all instances of induction for
L0 formulæ. The first group is straightforward and follows from the compositional
axioms alone. For the second group of axioms it suffices to prove

CT ⊢ ∀y(SentL0(∀. vy) → T (∀.v(ind y)))

where ind[A(x)] = [A(0) ∧ ∀x(A(x) → A(x + 1)) → A(x)]. This is proved by
induction. Let B(x, y) be the formula T (sub(ind y, v, x)) which states the truth
of induction for the formula y (on the variable named by v) up to x. Using the
compositional axioms one can easily establish

CT0 ⊢ ∀y(SentL0(∀.vy) → (B(0, y) ∧ ∀x(B(x, y) → B(sx, y))))

whence induction implies CT ⊢ ∀y(SentL0(∀. vy) → ∀xB(x, y)). The compositional
axioms thereby yield (ii), establishing (2).

The lemma can now be derived by induction on the length of the formalised
PA-proof witnessing BewPAx.

We now proceed with the results that yield Theorem 1.3.

Lemma 3.4. UTB0 is a sub-theory of R(TB0).

Proof. Let A(x) be a formula of L0 with at most x free. For every n < ω we have

TB0 ⊢ T [A(n̄)] ↔ A(n̄).
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Let B = (T [Aẋ] ↔ A). Since EA ⊢ [B(n̄)] = [B ˙̄n], the above implies

EA ⊢ ∀x BewTB0 [Bẋ],

and thus R(TB0) ⊢ ∀x (T [Aẋ] ↔ A).

It is trivial to generalise the above proof to the uniform disquotation axioms for
any given set of formulæ closed under term substitution.

Lemma 3.5. Let L be a set of formulæ such that for all A(x) ∈ L and every
n < ω, A(n̄) ∈ L. Also, let TB0[L] and UTB0[L] denote the theories derived from
the local and uniform truth biconditionals for L-formulæ. Then R(TB0[L]) proves
the uniform disquotation sentences for L, that is UTB0[L] ⊆ R(TB0[L]).

Reflecting on the local disquotation axioms not only derives the uniform in-
stances. For instance, TB0 ⊢ T [A ∧ B] ↔ T [A] ∧ T [B] for all L0-sentence A and B,
so the compositional axiom for conjunction is also derivable in R(TB0). However,
two acts of reflection over TB proves necessary to derive the compositional axioms
for either quantifier, though only one act of reflection over the uniform biconditionals
is needed:

Lemma 3.6 (Halbach [11, Lemma 4.2]). CT ⊆ R(UTB0).

Proof. By the uniform biconditionals for L0 we have

UTB0 ⊢ ∀x T [Aẋ] ↔ T [∀xA]

for every A ∈ L0 with at most x free. Since this is verifiable in EA, reflection implies
the compositional axiom for the universal quantifier. The remaining compositional
axioms are trivial. Finally, the induction schema is derivable in R(UTB0) (indeed in
R(EA)) since for each formula A,

EA ⊢ ∀xBewEA[A(0̄) ∧ ∀x(A(x) → A(x + 1)) → A(ẋ)].

The question naturally arises as to what truth-theoretic principles beyond the
CT axioms are derivable in R(UTB0). The answer is, as reported earlier, none:

Theorem 3.7 (Halbach [11, Theorem 4.3]3). CT and R(UTB0) are identical theories.

3Although Theorem 4.3 in [11] states only a much weaker result, namely that CT (therein named
PA(S)) and R(UTB0) (named AT) have the same arithmetic consequences, the proof, however,
clearly establishes R(UTB0) as a sub-theory of CT.
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One direction of Theorem 3.7 is given by Lemma 3.6 above. The converse dir-
ection requires a delicate proof-theoretic argument and is presented in detail in
Section 6.

As described in the introduction, Theorem 3.7 generalises to iterations of reflec-
tion principles. In the present section we prove the corresponding generalisation of
Lemma 3.6. As with the above theorem, the converse direction is more technically
involved and is presented separately in Section 6; see Theorems 6.22 and 6.24.

We begin with the following observation which establishes a lower bound on the
strength of the reflection hierarchy built directly over CT.

Lemma 3.8. Let S be an L∗-theory. For every κ, Sǫκ+1 ⊆ R(Sǫκ). Moreover, this
fact is verifiable in EA.

Proof. The proof is a simple generalisation of the result that transfinite induction
up to ε0 (i.e. ǫ1) is derivable in PA.

Fix a formula A(x) in L∗ and let A′(x) = ∀y ∈ O(A(y) → A(y +̂ 2̂x)). Notice

EA ⊢ ProgλxA → ProgλxA′(x).

Since EA ⊢ A′(x) → A(2̂x) we deduce

EA ⊢ ∀x ∈ O(TI(A′, x) → TI(A, 2̂x)). (3)

Define 2α
0 = α and 2α

n+1 = 22α

n . Iterating (3) we find, for each n < ω, an L∗ formula
An such that

EA ⊢ ∀x ∈ O(TI(An, x) → TI(A, 2̂x
n)). (4)

The remainder of the argument is now straightforward. Fix A(x) ∈ L∗ and
γ < ǫκ+1. Recall ǫκ+1 = sup{2ǫκ+1

n | n < ω} so there exists n < ω such that
γ < 2ǫκ+1

n . Thus (4) reduces the argument to proving R(Sǫκ) ⊢ TI(An, ǫ̂κ̄) which
immediately follows by reflection.

As the proof uses no arguments that cannot be directly formalised within EA
the second part of the lemma naturally holds.

Lemma 3.9. For every κ, CTεκ = CTǫ1+κ ⊆ Rκ(CT).

Proof. Iterating Lemma 3.8 through the transfinite.

Combining the results obtained so far we may complete part of Theorem 1.4.

Theorem 3.10. For all κ > 0, CTǫκ ⊆ Rκ(UTB0) and for all κ > 1, CTǫκ ⊆
Rκ(TB0).
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Proof. By Lemma 3.4 we know CT ⊆ R2(TB0). Iterating Lemma 3.8 for S = TB0
also reveals TBǫκ ⊆ Rκ(TB0). Since CTǫκ = CT + TBǫκ we deduce CTǫκ ⊆ Rκ(TB0)
for κ ≥ 2. Similarly for UTB0.

The lower bound on the proof-theoretic strength of CT is also easy to verify.

Lemma 3.11. For every κ, CTκ derives transfinite induction up to ǫκ for L0 for-
mulæ.

Proof. This result is well-known and is derivable from, for instance, Feferman’s
analysis of KF [9] and Fujimoto [10]. Here we give a more direct argument which
borrows techniques from the ordinal analysis of truth theories presented in [21].

Let ti(y, x) be given by ti([A], x) = [TI(A, x̄)] and let I0(x) denote the formula
∀y(SentL0(∀. v̄y) → T (ti(y, x))). The proof of Lemma 3.8 shows that for every L0
formula A there exists an L0-formula A′ such that PA ⊢ TI(A′, x) → TI(A, 2̂x). By
Lemma 3.3 and the compositional axioms we may deduce

CT ⊢ ∀x(I0(x) → I0(2̂x)), (5)
CT ⊢ ∀x(I0(x) → I0(x +̂ 1)), (6)
CT ⊢ Prog λxI0(x). (7)

Combining (5) and (6) with induction within CT implies CT ⊢ ∀x(I0(ǫ̂x) → ∀y ≺
ǫ̂x+̂1 I0(y)), and hence, by (7), also

CT ⊢ ∀x(I0(ǫ̂x) → I0(ǫ̂x+̂1)).

Thus we have

CT ⊢ ProgλxI0(ǫ̂x). (8)

But then CTκ ⊢ I0(ǫ̂γ̄) for every γ < κ, and CT ⊢ TI(A, δ̄) for every L0 formula A
and δ < ǫκ.

4 Ramified truth
There are two ways in which the typed biconditionals can be generalised. One
either searches for sub-languages of L∗ for which the disquotational axioms remain
consistent or one sees the introduction of a truth predicate for L0 as the first step in
an iteratable process. Following the latter approach, on top of EA one adds a truth
predicate T0 for L0 truth and sentences T0[A] ↔ A for A ∈ L0 (yielding TB0). This
is followed by a second truth predicate T1 and the sentences T1[A] ↔ A for A from
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LT0 = L ∪ {T0}, then a third predicate T2 with T2[A] ↔ A for A from L{T0,T1},
and so on. Transfinite levels can be added by including a predicate symbol Tω and
biconditionals Tω[A] ↔ A for each A ∈ L{Ti|i<ω}.

To expand the hierarchy to κ levels we need, for each ordinal α < κ, a truth
predicate Tα and biconditionals Tα[A] ↔ A for every sentence A from the language
L{Tβ |β<α}. Using the ordinal notation system O the truth predicates and bicondi-
tionals can be already represented in L{Ti|i<ω} by reading Tα as Tᾱ.

Definition 4.1 (Ramified biconditionals). For each i < ω, set Li = L{Tj |j≺i}. Let
κ < Γ0. The theory of local truth biconditionals up to κ, TBκ

0 , is the theory extending
EA by the axiom

Tᾱ[A] ↔ A (9)

for every α < κ and every A ∈ Lᾱ. The uniform truth biconditionals up to κ, UTBκ
0 ,

is the extension of EA by the uniform form of (9) for each α < κ.

For the compositional theory of κ truth predicates we follow the definition given
by Halbach [12].

Definition 4.2 (Ramified truth). Let κ < Γ0. The theory of ramified truth up to
κ, RTκ extends PA∗ by the following six axiom for each i ≺ j ≺ κ̄:

RT1 ∀x∀y(Tj(x=. y) ↔ x = y),

RT2 ∀x(SentLj
x → (Tj(¬. x) ↔ ¬Tjx))m

RT3 ∀x∀y(SentLj
(x∧. y) → (Tj(x◦.y) ↔ Tjx ◦ Tjy)) for ◦ ∈ {∧, ∨},

RT4 ∀x∀y(SentLj
(∀.yx) → (Tj(Q. yx) ↔ Qz Tj(sub(x, y, z))) for Q ∈ {∀, ∃},

RT5 ∀x(SentLi
x → (Tj [Ti(ẋ)] ↔ Tix)),

RT6 ∀x∀y ≺ (SentLy x → (Tj [Tẏ(ẋ)]) ↔ Tjx)),

where the term [Tẏ(ẋ)] represents the function m, α 7→ [Tᾱ(m̄)].

Continuing the analogy between the disquotational and compositional theories
we have:

Theorem 4.3. For every κ < Γ0, RTκ = R(UTBκ
0).

573



Graham E. Leigh

Proof. For the direction RTκ ⊆ R(UTBκ), the only non-trivial case is axiom RT6
which follows from the observation that UTBκ

0 ⊢ Tj[Ti[A]] ↔ Tj [A] for each i < j < κ̄
and each sentence A of Li.

The converse direction is a straightforward generalisation of the argument that
R(UTB0) ⊆ CT which is proved in Section 6.

As a consequence we can immediately deduce the proof-theoretic power of re-
flection hierarchy over UTBκ.
Theorem 4.4. Suppose κ = ωλ ≥ ω. The theory R(UTBκ

0) proves the same L0
formulæ as PA + TI(<ϕ(1 + λ)0).
Proof. The theory of ramified truth with κ truth predicates, RTκ, is known to be
inter-translatable with the second-order system of ramified analysis for κ levels (of-
ten labelled RA<κ) [9], one of the central systems of proof-theory. These theories
were examined by Feferman [7] and Schütte [25] and shown to prove the same L0
statements as PA +TI(<ϕ(1+λ)0) where κ = ωλ. Combined with Theorem 4.3 this
yields the desired result.

Alternatively, a direct argument generalising the proof of Lemma 3.11 is also
possible though we will not present all the details here as it bears little difference to
the proof-theoretic analysis of ramified analysis presented in, for instance, [25]. The
upper bound, namely that all L0 theorems of RTκ are derivable in PA + TI(<ϕ(1 +
λ)0) is obtained by expanding the cut-elimination argument for CT (Corollary 6.16)
to the analogous system for RTκ. The lower bound, RTκ ⊢ TIL0(<ϕ(1 + λ)0), can
be proved by expanding Lemma 3.11 to multiple truth predicates. Let Iα(x) be the
formula ∀y(SentLα(∀. v̄y) → Tᾱ(ti(y, x)))where ti is the function defined in the proof
of Lemma 3.11. In analogy to (8) we have, for example,

RTω ⊢ ProgλxIn(ǫ̂x)
for each n < ω and in particular

RTω ⊢ ∀y(In+1(y) → In(ǫ̂y)).
So RTω ⊢ TIL0(<ϕ20). It is not difficult to see, moreover, that

RTω+1 ⊢ ∀nTω[∀y(In+1(y) → In(ǫ̂y))],

i.e. RTω+1 ⊢ ProgλxIω(ϕ̂2̄x). Iterating the argument through the transfinite yields,
more generally,

RTωλ ⊢ ᾱ ≺ ω̂λ̄ ∧ β̄ ≺ λ̄ → ∀z(Iα+ωβ (z) → Iα(ϕ̂(1 + β)z)),

RTωλ ⊢ ∀x∀y(x ≺ ωλ ∧ y ≺ λ̄ → Tλ[∀z(Ix+̂ω̂y (z) → Ix(ϕ̂(1̄ +̂ ẏ)z))]),
which suffices to derive the required result.
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5 Positive self-applicable truth
CT is a theory of typed truth, wherein the truth predicate only (meaningfully) ap-
plies to sentences not themselves featuring the truth predicate. This restriction can
be relaxed somewhat and many ‘self-referential’ axioms can be consistently added.
One way to achieve this is given by the Kripke–Feferman theory KF, introduced by
Feferman in [9] as part of his analysis on the limits of predicativity. KF axiomatises
a self-referential version of truth that avoids the inconsistency of the liar paradox
by separating truth from its dual, falsity, which are axiomatised independently but
symmetrically.

Recall the language LT,F that extends L0 by two fresh unary predicate symbols,
T and F . The positive fragment of LT,F , labelled L+

T,F , comprises the LT,F -formulæ
in which the negation symbol only occurs in front of atomic formulæ from L0.

Definition 5.1. The Kripke–Feferman theory of truth KF extends PA∗ by the com-
positional axioms for the language L+

T,F :

KF1 ∀x∀y((T (x=. y) ↔ x = y) ∧ (T (¬. (x=. y)) ↔ ¬x = y)),

KF2 ∀x∀y((F (x=. y) ↔ ¬x = y) ∧ (F (¬. (x=. y)) ↔ x = y)),

KF3 ∀x∀y(SentL+
T,F

(x∧. y) → (T (x◦.y) ↔ T x ◦ T y)) for ◦ ∈ {∧, ∨},

KF4 ∀x∀y(SentL+
T,F

(x∧. y) → (F (x◦.y) ↔ Fx ◦̄ Fy)) for ◦ ∈ {∧, ∨},

KF5 ∀x∀y(SentL+
T,F

(∀.yx) → (T Q. yx ↔ Qz T (sub(x, y, z)))) for Q ∈ {∀, ∃},

KF6 ∀x∀y(SentL+
T,F

(∀.yx) → (FQ. yx ↔ Q̄z F (sub(x, y, z)))) for Q ∈ {∀, ∃},

KF7 ∀x((T [T ẋ] ↔ T x) ∧ (T [Fẋ] ↔ Fx)),

KF8 ∀x((F [T ẋ] ↔ Fx) ∧ (F [Fẋ] ↔ T x)),

where ∧̄ = ∨, ∨̄ = ∧, ∀̄ = ∃ and ∃̄ = ∀. KF0 is the sub-theory of KF with EA as the
base theory.

The above axiomatisation does not force truth and falsity to be disjoint concepts.
Indeed, Proposition 1.2 shows there are models of KF in which truth and falsity
coincide, namely the greatest fixed point of Γ in which the liar sentence L ↔ ¬T [L]
is denoted both true and false.

The proof theory of KF has been thoroughly studied (see, e.g., Cantini [2] and
Feferman [9]) and the system is significantly stronger than CT. Nevertheless, as we
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shall see, KF bears the same relation to UTFB0 and TFB0 as CT bears to UTB0 and
TB0. Since these theories were not precisely defined in the introduction we begin
with their definition.

Given a formula A ∈ LT,F we define the dual of A, denoted A, by recursion:

A ∧ B = A ∨ B ∀xA = ∃xA A = ¬A if A ∈ L0 is atomic
A ∨ B = A ∧ B ∃xA = ∀xA ¬A = A

T s = Fs Fs = T s

TFB0 and UTFB0 are the theories extending EA by, respectively, the local and uni-
form truth and falsity biconditionals for L+

T,F :

TFB0 = EA + {T [A] ↔ A, F [A] ↔ A | A ∈ SentL+
T,F

},

UTFB0 = EA + {∀x(T [Aẋ] ↔ A), ∀x(F [Aẋ] ↔ A) | (∀xA) ∈ SentL+
T,F

}.

Arguing by (meta-)induction on the complexity of L+
T,F formulæ we see that the

uniform truth biconditionals are derivable in KF [2, Lemma 3.2 (ii)], whence:

Lemma 5.2. UTFB0 is a sub-theory of KF0.

UTFB0 and TFB0 are extensions of the theories PTB0 and PUTB0 of positive
disquotation over EA, axiomatised by the local and uniform version of the bicondi-
tionals T [A] ↔ A for A in L+

T = L+
T,F ∩ LT (positive formulæ not containing the

predicate F ). These two theories have been extensively studied (see, e.g. [4, 5, 12]),
particularly in relation to subsystems of KF, and it is here that the hitherto in-
nocuous distinction between the local and uniform biconditionals becomes relevant.
Lemma 5.3 below is a simple generalisation of Cieśliński’s result that PTB0+Ind(LT )
conservatively extends PA [4, Theorem 2.2];4 Lemma 5.4 was proved by Halbach [11,
Theorem 5.2] utilising Cantini’s interpretation of the theory ÎD1 of fixed points for
arithmetical operators in PUTB0 + Ind(LT ) [2, Corollary 3.11].

Lemma 5.3. TFB0 + Ind(LT,F ) conservatively extends PA.

Lemma 5.4. KF is interpretable in PUTB0 + Ind(LT ) and hence interpretable in
UTFB0 + Ind(LT,F ).

Lemma 5.4 does not mean KF is implicit in PUTB0. Even considering a formula-
tion of KF with only one predicate (in which falsity is defined, say by F (x) ↔ T (¬̇x))

4Cieśliński’s proof in fact establishes a stronger result than stated in Lemma 5.3. For a direct
proof see [14, Theorem 13].
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none of the compositional axioms of KF are derivable in PUTB0 [12, Lemma 19.20],
and R(PUTB0) also fails to derive analogues of F [T ẋ] ↔ Fx.

It turns out that the falsity biconditionals suffice to ‘derive’ the remaining com-
positional axioms of KF, so the theory is implicit in the acceptance of both truth
and falsity biconditionals:

Lemma 5.5. KF ⊆ R(UTFB0) ⊆ R2(TFB0).

Proof. The proof follows the same argument as Lemma 3.6, noticing that the self-
referential axioms (KF7) and (KF8) of KF are instances of the uniform positive
disquotation axioms.

Halbach [11, Lemma 6.5] observes that, in analogy to CT, uniform reflection over
the positive truth biconditionals is derivable in KF (see also Theorem 6.24 below).
It is not difficult to see that this also extends to reflection over UTFB0. In fact, the
analogy goes much further, as the following theorem shows.

Theorem 5.6. For every ordinal κ, KFǫκ ⊆ Rκ(KF) ⊆ R1+κ(UTFB0).

Proof. Apply Lemma 3.8.

The proof-theoretic strength of the theories can also be easily computed by
generalising Feferman’s analysis of KF in [9].

Theorem 5.7. For each ordinal κ, KFεκ derives transfinite induction for L0 for-
mulæ up to ϕεκ0.

Proof. Utilising the type-free truth predicate of KF, it is possible to define not only
the typed predicate of CT, but also the typed truth predicates of RTε0 [12, Theorem
15.25]. In fact, it follows that KFα defines all the truth predicates of RTα, so KFεκ

derives all L0 theorems of RTεκ , which, by Theorem 4.4 includes the schema of
transfinite induction up to ϕεκ0 for all L0 formulæ.

6 Proofs of upper bounds
In this section we present the ‘upper bound’ proofs of Theorem 1.4, showing that
R1+κ(UTB0) and R1+κ(UTFB0) are sub-theories of, respectively, CT + TI(<ǫκ) and
KF + TI(<ǫκ). The proofs can be seen as a generalisation of Kreisel and Lévy’s
argument that EA + Ref(EA) is a sub-theory of PA, which we begin by sketching.

Theorem 6.1 (Kreisel and Lévy [17]). PA ⊢ Ref(EA).
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Proof (sketch). It is well-known (see, for example, [13, Theorem 1.75]) that for each
non-zero l < ω there exists a formula Trl(x) such that for every Π0

l formula B(x)
(with at most x free),

PA ⊢ ∀x(Trl[Bẋ] ↔ B).

Let U be the conjunction of the non-induction axioms of EA (EA1–5) and the
sentence

∀z(Sent∆0
0
(∀. vz) → Tr2(∀. v(ind z)))

where ind[A(v)] = [A(0) ∧ ∀x(A(x) → A(sx)) → A]. Suppose U is a Π0
k formula.

Fix l < ω and a Π0
l formula A(x). We prove PA ⊢ ∀x(BewEA[Aẋ] → A). Arguing

within PA, suppose n < ω and EA ⊢ A(n̄). The derivation can be easily transformed
(uniformly in n) into a derivation of ⊢ U → A(n̄) in Gentzen’s sequent calculus
for first-order logic (for example in the form of Definition 6.2 below), and by cut-
elimination (provable in PA) into a finite cut-free derivation of ⊢ U → A(n̄), again
uniformly in n. By PA-induction we can conclude ∀x Trm[U → A(ẋ)] where m =
max{l, k + 1}, from which we deduce A(x) as required.

6.1 Sequent calculi for compositional truth
To generalise the above argument to acts of reflection over truth theories we must
first introduce a sequent calculus for theories of truth. In this section we will focus
on the reflection hierarchies over CT and KF, though RTκ can also be treated in this
way.

We will define two sequent calculi, named T∞ and T+
∞, corresponding to the

theories CT and KF respectively. Both calculi permit infinitary derivations utilising
the ω-rule (if ⊢ A(n̄) for every n then ⊢ ∀xA) and the elimination of all non-atomic
cuts (see Lemma 6.14 below). Formally, we implement T∞ and T+

∞ as Gentzen-style
sequent calculi that derive expressions of the form T(+)

∞ ⊢α
κ Γ ⇒ ∆ (henceforth called

sequents) where α and κ are predicative ordinals and Γ ∪ ∆ is a finite set of LT,F

sentences.5 Numerous infinitary proof systems have been constructed for theories of
truth (e.g. [21, 19, 3, 2]); the present work most closely corresponds to [21, 2].

The rank of a formula A of LT,F , denoted |A|, is defined as follows: |A| = 0
if A an atomic formula of L0; |A| = ω if A = T (s) or A = F (s) for some term s;
|A∧B| = |A∨B| = max{|A|, |B|}+1; |∀xA| = |∃xA| = |¬A| = |A|+1. The reduced

5To simplify presentation we assume both calculi may derive LT,F formulæ but in T∞ the
falsity predicate F has no special meaning.
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rank of A, |A|−, is given by the same recursive rules but with |A|− = 0 if A is any
atomic formula. Thus either |A| = |A|− or ω ≤ |A| ≤ ω + |A|−.

For the remainder of this section, unless otherwise stated, upper-case Roman
letters, A, B, etc., range over sentences from L∗ and upper-case Greek letters Γ, ∆,
etc., range over finite sets of L∗ sentences. Commas in sequents are shorthand for
set union: Γ, ∆ = Γ ∪ ∆ and Γ, A = Γ ∪ {A}.

6.1.1 The calculi T∞ and T+
∞

Definition 6.2 (Sequent calculi for typed and type-free truth). Let α, κ < Γ0 be
ordinals and Γ, ∆ finite sets of L∗ sentences. The relations T∞ ⊢α

κ Γ ⇒ ∆ and
T+

∞ ⊢α
κ Γ ⇒ ∆ are defined by transfinite induction on α according to the following

rules.

1. Axioms. For S ∈ {T∞, T+
∞} and any α, κ < Γ0,

i) If Γ contains a false L0-atom or ∆ contains a true L0-atom then S ⊢α
κ

Γ ⇒ ∆;
ii) S ⊢α

κ Γ, A ⇒ ∆, A if A is an atomic formula L∗;
iii) S ⊢α

κ Γ ⇒ ∆, ∀xA if A is an instance of ∆0
0 induction for an L0 formula

with at most x free;

2. Logical rules. For S ∈ {T∞, T+
∞}, α < β < Γ0 and κ < Γ0,

iv) S ⊢α
κ Γ ⇒ ∆, A0, S ⊢α

κ Γ ⇒ ∆, A1 implies S ⊢β
κ Γ ⇒ ∆, A0 ∧ A1;

v) S ⊢α
κ Γ, Ai ⇒ ∆ and i ∈ {0, 1} implies S ⊢β

κ Γ, A0 ∧ A1 ⇒ ∆;
vi) S ⊢α

κ Γ, A ⇒ ∆ implies S ⊢β
κ Γ ⇒ ∆, ¬A;

vii) S ⊢α
κ Γ ⇒ ∆, A implies S ⊢β

κ Γ, ¬A ⇒ ∆;
viii) S ⊢α

κ Γ, A(n̄) ⇒ ∆ implies S ⊢β
κ Γ, ∀xA(x) ⇒ ∆;

ix) S ⊢α
κ Γ ⇒ ∆, A(n̄) for every n < ω implies S ⊢β

κ Γ ⇒ ∆, ∀xA(x);
x) S ⊢α

κ Γ ⇒ ∆, A and S ⊢α
κ Γ, A ⇒ ∆ implies S ⊢β

κ Γ ⇒ ∆ whenever
|A| < κ.

3. Typed truth rules. T∞ is additionally closed under the following rules for
α < β < Γ0 and κ < Γ0.

xi) T∞ ⊢α
κ Γ ⇒ ∆, A and A ∈ L0 implies T∞ ⊢β

κ Γ ⇒ ∆, T [A];
xii) T∞ ⊢α

κ Γ, A ⇒ ∆ and A ∈ L0 implies T∞ ⊢β
κ Γ, T [A] ⇒ ∆.
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4. Type-free truth rules. T+
∞ is additionally closed under the following rules for

α < β < Γ0 and κ < Γ0.

xiii) T+
∞ ⊢α

κ Γ ⇒ ∆, A and A ∈ L+
T,F implies T+

∞ ⊢β
κ Γ ⇒ ∆, T [A] and

T+
∞ ⊢β

κ Γ, F [Ā] ⇒ ∆;
xiv) T+

∞ ⊢α
κ Γ, A ⇒ ∆ and A ∈ L+

T,F implies T+
∞ ⊢β

κ Γ, T [A] ⇒ ∆ and
T+

∞ ⊢β
κ Γ ⇒ ∆, F [Ā].

Sequents in group 1 are collectively called axioms and the rules under 2 are logical
rules. Rule x is referred to as the cut rule and the distinguished formula A therein
is the cut-formula. Rule ix is the ω-rule. The rules in 3 and 4 are collectively called
truth rules. In each rule except cut the distinguished formula in the derived sequent
is called the principal formula.

In a sequent S ⊢α
κ Γ ⇒ ∆, α is called the height of the derivation and κ the cut

rank.

We begin by observing two important lemmas that are proved by transfinite
induction.

Lemma 6.3 (Consistency). If T(+)
∞ ⊢α

0 Γ ⇒ ∆ then Γ ∪ ∆ 6= ∅.

Lemma 6.4. If T(+)
∞ ⊢α

κ Γ ⇒ ∆ then every cut rule used in the derivation of this
sequent has cut formula with rank strictly less than κ. If, moreover, |A| < κ for
every A ∈ Γ∪∆ then the sequent has a derivation using only sequents from formulæ
with rank < κ.

The next two lemmas list further simple properties of the calculi T∞ and T+
∞

that we will utilise later.

Lemma 6.5.

1. If T∞ ⊢α
κ Γ ⇒ ∆ then T+

∞ ⊢α
κ Γ ⇒ ∆.

2. T∞ ⊢2|A|−
0 A ⇒ A.

3. If A is a true elementary sentence then T∞ ⊢n
0 ∅ ⇒ A for some n.

Proof. 1 is proved by transfinite induction on α, noticing that the truth rules for
T∞ are are all instances of truth rules for T+

∞.
For 2, we argue by induction on n = |A|−. If n = 0 then A is an atom and

the sequent is an instance of axiom ii. The other cases are equally simple. If
A = ∀xB(x) for instance, |A|− = m + 1 and |B(k̄)|− = m for every k < ω whereby
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the induction hypothesis and rule viii imply T∞ ⊢2m+1
0 A ⇒ B(k̄) for every k and

so also T∞ ⊢2n
0 A ⇒ A.

3 is proved by induction on |A|.

Lemma 6.6. Suppose S ∈ {T∞, T+
∞}.

1. For all finite sets Γ ⊆ Θ, ∆ ⊆ Λ and ordinals β ≤ α, κ ≤ λ, if S ⊢β
κ Γ ⇒ ∆

then S ⊢α
λ Θ ⇒ Λ.

2. S ⊢n
κ Γ ⇒ ∆ for some n < ω implies S ⊢n

ω+m Γ ⇒ ∆ for some m < ω.

Proof. Both cases are proved by transfinite induction on the height of the sequent.
We show 2. Suppose S ⊢n

κ Γ ⇒ ∆. If n = 0 the sequent is an axiom and thus
S ⊢n

0 Γ ⇒ ∆ follows. Otherwise n > 0 and we need only consider the case that
the sequent S ⊢n

κ Γ ⇒ ∆ arises through an application of the cut rule, say from
S ⊢k

κ Γ, A ⇒ ∆ and S ⊢k
κ Γ ⇒ ∆, A, where |A| < κ and k < n. By the induction

hypothesis there are m0, m1 < ω such that S ⊢k
ω+m0 Γ, A ⇒ ∆ and S ⊢k

ω+m1 Γ ⇒
∆, A, whence choosing m = max{m0, m1, |A|− + 1} and applying part 1, we deduce
S ⊢n

ω+m Γ ⇒ ∆ by cut.

The following lemma will be important in Section 6.2 when we analyse the cut
rule further.

Lemma 6.7. Let S ∈ {T∞, T+
∞}. For every α, κ < Γ0 and every Γ and ∆,

1. If S ⊢α
κ Γ ⇒ ∆, A and A is a false atomic formula from L0 then S ⊢α

κ Γ ⇒ ∆,

2. If S ⊢α
κ Γ, A ⇒ ∆ and A is a true atomic formula from L0 then S ⊢α

κ Γ ⇒ ∆,

3. S ⊢α
κ Γ ⇒ ∆, A0 ∧ A1 implies for each i ∈ {0, 1}, S ⊢α

κ Γ ⇒ ∆, Ai,

4. S ⊢α
κ Γ, A0 ∧ A1 ⇒ ∆ implies S ⊢α

κ Γ, A0, A1 ⇒ ∆,

5. S ⊢α
κ Γ ⇒ ∆, ¬A implies S ⊢α

κ Γ, A ⇒ ∆,

6. S ⊢α
κ Γ, ¬A ⇒ ∆ implies S ⊢α

κ Γ ⇒ ∆, A,

7. S ⊢α
κ Γ ⇒ ∆, ∀xA and |A| ≥ ω implies S ⊢α

κ Γ ⇒ ∆, A(n̄) for every n < ω.

Proof. Each case is proved by transfinite induction on α. We show, for example, 7.
Suppose

S ⊢α
κ Γ ⇒ ∆, ∀xA (10)
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and argue by a case distinction on the last rule applied to deduce this sequent. If the
sequent is an axiom then this is not an instance of ∆0

0 induction since |∀xA| ≥ ω,
so the sequent S ⊢α

κ Γ ⇒ ∆, A(n̄) is also an axiom for every n. Also, if ∀xA is
not principal in the rule used to deduce (10) then result follows from the induction
hypothesis. We may assume, therefore, that (10) derives by ω-rule from the sequents

S ⊢β
κ Γ ⇒ ∆′, A(n̄)

for β < α. If ∆′ = ∆ apply Lemma 6.6(1) and we are done. The only other
possibility is ∆′ = ∆ ∪ {∀xA}, whence an application of the induction hypothesis
and Lemma 6.6 yields S ⊢α

κ Γ ⇒ ∆, A(n̄) for every n.

6.1.2 Embedding

Lemma 6.8. For every formula A(x) with at most x free there exists n < ω such
that

1. if A ∈ L0 then T∞ ⊢n
ω ∅ ⇒ ∀x(A ↔ T [Aẋ]),

2. if A ∈ L+
T,F then T+

∞ ⊢n
ω ∅ ⇒ ∀x(A ↔ T [Aẋ]) and T+

∞ ⊢n
0 ∅ ⇒ ∀x(A ↔

F [Aẋ]).

Proof. Both cases follow similar arguments so we present only 1. Fix A ∈ L0 with
at most x free and let m = |A|−. Formally, the formula T [Aẋ] is shorthand for
∀y(Sub([A], [x], x, y) → T y) where Sub is the elementary formula representing the
syntactic function sub. Thus to show 1, we need to derive

T∞ ⊢n
ω ∅ ⇒ ∀x(A ↔ ∀y(Sub([A], [x], x, y) → T y))

for some n. By Lemma 6.5(2) we have

T∞ ⊢2m
0 A(k̄) ⇒ A(k̄) (11)

for every k < ω. By Lemma 6.5(3) there also exists m′ < ω such that for every
k < ω and l 6= sub([A], [x], k),

T∞ ⊢m′
0 Sub([A], [x], k̄, l̄) ⇒ ∅.

Combining this with (11) and Lemma 6.6 we conclude

T∞ ⊢n
ω ∅ ⇒ ∀x(A ↔ T [Aẋ])

for some n depending only on |A|.
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Given Lemma 6.8 we can readily transfer derivations in the truth theories UTB0
and UTFB0 into derivations in T∞ or T+

∞.

Lemma 6.9 (First embedding lemma).

1. If UTB0 ⊢ A(x0, . . . , xk) then there exists n < ω s.t. for all m0, . . . , mk < ω,
T∞ ⊢n

ω+n ∅ ⇒ A(m̄0, . . . , m̄k).

2. If UTFB0 ⊢ A(x0, . . . , xk) then there exists n < ω s.t. for all m0, . . . , mk < ω,
T+

∞ ⊢n
ω+n ∅ ⇒ A(m̄0, . . . , m̄k).

Proof. By induction on the length of the UTB0 or UTFB0. Lemmas 6.5(3) and 6.8
cover the axioms and applications of modus ponens are replaced by the cut rule.

By making use of infinite derivations it is possible to derive not only instances
of transfinite induction, but also the compositional axioms for truth.

Lemma 6.10 (Second embedding lemma). Let ω < κ < Γ0.

1. If CTκ ⊢ A then there exists γ < κ and n < ω such that T∞ ⊢γ.n
ω+n ∅ ⇒ A.

2. If KFκ ⊢ A then there exists γ < κ and n < ω such that T+
∞ ⊢γ.n

ω+n ∅ ⇒ A.

Proof. Recall Sκ = S + TIL∗(<κ). We begin by showing that transfinite induction
up to κ is derivable in T∞. Fix A(x) ∈ L∗ and an ordinal α < κ. We prove

T∞ ⊢ω+α.8+3
0 ProgλxA ⇒ Aᾱ (12)

by transfinite induction on α, so in particular

T(+)
∞ ⊢max{ω, α}.9

0 ProgλxA ⇒ Aᾱ.

If α = 0 (12) this is trivial. Suppose β > 0 and (12) holds for all α < β. We have

T∞ ⊢ω+α.8+4
0 ProgλxA ⇒ ᾱ ≺ β̄ → Aᾱ (13)

for every α < β. Combining (13) with Lemma 6.5(3) we deduce

T∞ ⊢ω+δ
0 ProgλxA ⇒ ∀x(x ≺ β̄ → A),

where δ = sup{α.8 + 5 | α < β}. Further applications of the logical rules combined
with Lemma 6.5(2) yields

T∞ ⊢ω+δ+2
0 ProgλxA, ∀x(x ≺ β̄ → A) → Aβ̄ ⇒ Aβ̄,
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from which we deduce T∞ ⊢ω+δ+3
0 ProgλxA ⇒ Aβ̄. Notice that δ ≤ β.8.

The second part consists in deriving the compositional axioms for the two truth
theories within the infinitary calculus. These all follow similar arguments so we
present only one case, the compositional axiom for the universal quantifier over
L+

T,F formulæ. Fix n < ω. Suppose n = #A for some formula A(x) ∈ L+
T,F . From

the proof of Lemma 6.8 there therefore exists kn < ω such that for every m < ω

T∞ ⊢kn
0 T sub(n̄, [x], m̄) ⇒ A(m̄).

Thus we may successively deduce

T∞ ⊢kn+1
0 Sent(∀. xn̄), ∀xT sub(n̄, [x], x) ⇒ Am̄

T∞ ⊢kn+2
0 Sent(∀. xn̄), ∀xT sub(n̄, [x], x) ⇒ ∀xA

T∞ ⊢kn+3
0 Sent(∀. xn̄), ∀xT sub(n̄, [x], x) ⇒ T (∀.xn̄)

T∞ ⊢kn+5
0 Sent(∀. xn̄) ⇒ ∀xT sub(n̄, [x], x) → T (∀.xn̄).

Likewise we may also deduce

T∞ ⊢kn+5
0 Sent(∀. xn̄) ⇒ T (∀. xn̄) → ∀xT sub(n̄, [x], x),

and so

T∞ ⊢ω
0 ∅ ⇒ Sent(∀. xn̄) → (T (∀.xn̄) ↔ ∀xT sub(n̄, [x], x)). (14)

For any n 6∈ {[A] | A(x) ∈ L+
T,F } we can also derive (14) on account of Sent(∀.xn̄)

being a false ∆0
0 statement (and so T∞ ⊢ω

0 Sent(∀. xn̄) ⇒ ∅ is derivable). Thus we
have

T∞ ⊢ω+1
0 ∅ ⇒ ∀z(Sent(∀.xz) → (T (∀. xz) ↔ ∀xT sub(z, [x], x))).

The remainder of the proof proceeds by (finite) induction on the length of the
CTκ or KFκ derivation following the proof of the first embedding lemma.

6.2 Cut elimination
In this section we prove that it is possible to reduce the cut rank of certain sequents
at the expense of an increase in the ordinal height.

Theorem 6.11 (Partial cut elimination).

1. T∞ ⊢α
ω+m Γ ⇒ ∆ implies T∞ ⊢2α

m
ω Γ ⇒ ∆,

584



Reflecting on Truth

2. T+
∞ ⊢α

ω+m Γ ⇒ ∆ implies T+
∞ ⊢2α

m
ω+1 Γ ⇒ ∆.

The key ingredient for this result is the following lemma which shows how to
avoid the ‘border-line’ cuts in deriving a sequent. Iterating this process permits the
elimination of the most complex cuts involving the truth predicate throughout a
derivation (Lemma 6.14 below) from which Theorem 6.11 follows.

Lemma 6.12 (Reduction lemma). If |A| ≤ ω + k + 1, T(+)
∞ ⊢α

ω+k+1 Γ ⇒ ∆, A and
T(+)

∞ ⊢β
ω+k+1 Γ, A ⇒ ∆ then T(+)

∞ ⊢α#β
ω+k+1 Γ ⇒ ∆, where α # β is the natural sum

of α and β (see Definition 2.6).

Proof. Let S be either T∞ or T+
∞. Fix k < ω and suppose |A| = ω + k + 1 (if

|A| ≤ ω + k the result is immediate). The proof proceeds by a case distinction on
the form of A.

We consider the case A = ∀xB(x) for which we argue by induction on β; the
other cases are similar. Suppose

S ⊢β
ω+k+1 Γ, ∀xB ⇒ ∆. (15)

If the sequent is an axiom then so is S ⊢β
ω+k+1 Γ ⇒ ∆ and we are done. Otherwise

(15) derives from a sequent

S ⊢β0
ω+k+1 Γ′ ⇒ ∆′

for some β0 < β. If ∀xB is not principal in this rule the desired sequent can be
derived via the induction hypothesis and reapplying the rule. If, however, A is
principal then we may assume ∆′ = ∆ and Γ′ = Γ ∪ {A, B(s)} for some term s. The
induction hypothesis therefore implies

S ⊢α#β0
ω+k+1 Γ, B(s) ⇒ ∆.

By Lemma 6.7 we have also S ⊢α
ω+k+1 Γ ⇒ ∆, B(s), whence S ⊢α#β0+1

ω+k+1 Γ ⇒ ∆.
Since α # β0 + 1 ≤ α # β we are done.

If we focus attention on derivations in T∞ only it is possible to also remove cuts
on the truth predicate:

Lemma 6.13 (Truth reduction lemma). If |A| = ω, T∞ ⊢α
ω Γ ⇒ ∆, A and T∞ ⊢β

ω

Γ, A ⇒ ∆ then T∞ ⊢α#β
ω Γ ⇒ ∆.
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Proof. The proof proceeds by induction on α#β. We consider only the case A = T n̄
and A is principal in the derivation of the two assumed sequents, so n = #B for
some B ∈ L0 and we have

T∞ ⊢α0
ω Γ ⇒ ∆, T n̄, B T∞ ⊢β0

ω Γ, T n̄, B ⇒ ∆

for some α0 < α and β0 < β. Notice α0 # β < α # β > α # β0, so the induction
hypothesis may be applied, yielding

T∞ ⊢α0#β
ω Γ ⇒ ∆, B T∞ ⊢α#β0

ω Γ, B ⇒ ∆.

Since |B| < ω, we conclude T∞ ⊢α#β
ω Γ ⇒ ∆ by cut.

Lemma 6.14. For every k < ω, T∞ ⊢α
ω+k+1 Γ ⇒ ∆ implies T∞ ⊢2α

ω+k Γ ⇒ ∆, and
for every k > 0, T+

∞ ⊢α
ω+k+1 Γ ⇒ ∆ implies T+

∞ ⊢2α

ω+k Γ ⇒ ∆.

Proof. By induction on α. Suppose

T(+)
∞ ⊢α

ω+k+1 Γ ⇒ ∆. (16)

If this sequent is an axiom then T(+)
∞ ⊢2α

ω+k Γ ⇒ ∆ is immediate. Suppose, therefore,
(16) follows by the cut rule from

T(+)
∞ ⊢α0

ω+k+1 Γ, A ⇒ ∆ T(+)
∞ ⊢α1

ω+k+1 Γ ⇒ ∆, A

where α0, α1 < α and |A| ≤ ω + k. Applying the induction hypothesis yields

T(+)
∞ ⊢2α0

ω+k Γ, A ⇒ ∆ T(+)
∞ ⊢2α1

ω+k Γ ⇒ ∆, A.

Since 2α0 #2α1 ≤ 2α, Lemma 6.12 (or Lemma 6.13 if k = 0) yields T(+)
∞ ⊢2α

ω+k Γ ⇒ ∆
as required. The remaining cases are simple.

Combining partial cut elimination with the results of the previous section we
obtain

Theorem 6.15. Suppose κ > 0.

1. If CTǫκ ⊢ A then there exists γ < ǫκ such that T∞ ⊢γ
ω ∅ ⇒ A.

2. If KFǫκ ⊢ A then there exists γ < ǫκ such that T+
∞ ⊢γ

ω+1 ∅ ⇒ A.

Proof. To show 1, suppose CTǫκ ⊢ A. By Lemma 6.10 there exists γ < ǫκ and n < ω
such that T∞ ⊢γ.n

ω+n ∅ ⇒ A. Theorem 6.11 implies T∞ ⊢2γ.n
n

ω ∅ ⇒ A, but 2γ.n
n < ǫκ

so we are done. The other case is analogous.
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Before proceeding with the embedding of T(+)
∞ derivations in CT (KF) we observe

that part 1 of Theorem 6.11 (and so part 1 from Theorem 6.15) can be expanded to
eliminate all cuts:

Corollary 6.16. If CTεκ ⊢ A then T∞ ⊢εγ

0 ∅ ⇒ A for some γ < εκ .

Proof. We prove, by induction on α ≥ ωω, that T∞ ⊢α
ω Γ ⇒ ∆ implies T∞ ⊢ǫα

0 Γ ⇒
∆, which combined with the previous theorem yields the result.

The only non-trivial case is if T∞ ⊢α
ω Γ ⇒ ∆ arises from a cut on

T∞ ⊢α0
ω Γ ⇒ ∆, A T∞ ⊢α1

ω Γ, A ⇒ ∆

with |A| < ω. Then the induction hypothesis implies

T∞ ⊢ǫα0
0 Γ ⇒ ∆, A T∞ ⊢ǫα1

0 Γ, A ⇒ ∆

and so

T∞ ⊢max{ǫα0 , ǫα1}+1
|A| Γ ⇒ ∆. (17)

We claim T∞ ⊢ǫα
0 Γ ⇒ ∆.

Let T−
∞ denote the subsystem of T∞ without the induction axiom (axiom iii). If

B(x) is an instance of elementary induction we have T−
∞ ⊢ω+1

0 ∅ ⇒ ∀xB by the ω-rule
and the argument in Lemma 6.10. Thus T∞ ⊢β

κ Γ ⇒ ∆ implies T−
∞ ⊢ω+1+β

κ Γ ⇒ ∆
for all β, κ, Γ and ∆. Since the principal formulæ of the T−

∞-axioms are all atomic,
the reduction lemma and partial cut elimination theorem for T−

∞ can be generalised
to derivations with both finite and transfinite cut rank:

1. For all α and β, T−
∞ ⊢α

|A| Γ, A ⇒ ∆ and T−
∞ ⊢β

|A| Γ ⇒ ∆, A imply T−
∞ ⊢α#β

|A|
Γ ⇒ ∆;

2. For all κ, if T−
∞ ⊢α

κ+1 Γ ⇒ ∆ then T−
∞ ⊢2α

κ Γ ⇒ ∆.

Only the proof of 1 in the case |A| = 0 is not already covered by the earlier argument.
In this case, however, one may assume both sequents T−

∞ ⊢α
|A| Γ, A ⇒ ∆ and T−

∞ ⊢β
|A|

Γ ⇒ ∆, A are instances of either axiom i or ii and so the desired sequent is either an
axiom or derivable from Lemma 6.7(1/2). Combining these observations with (17)
yields the desired result.
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6.3 Deriving reflection
The aim is to prove that reflection for T∞ sequents of height ǫκ is derivable in CTǫκ+1

since this, when combined with Theorem 6.15, implies CTǫκ+1 ⊢ Ref(CTǫκ). Inform-
ally speaking, this will achieved by defining a predicate Bew′

∞(a, y) that expresses
‘a encodes an ordinal α, y is a formula A of L∗ and T∞ ⊢α

ω ∅ ⇒ A’ and proving

CTǫκ+1 ⊢ BewCTǫκ
(x) ∧ SentLT

(x) → ∃a ≺ ǫ̂κ̄ Bew′
∞(a, x), (18)

which formalises Theorem 6.15, and

CTǫκ+1 ⊢ Bew′
∞(ᾱ, [A]) → A (19)

for each α < ǫκ and A ∈ LT . It is not possible to completely formalise T∞ deriv-
ations within arithmetic due to the infinitary nature of the ω-rule: a witness to a
sequent T∞ ⊢α

κ Γ ⇒ ∆ is essentially a well-founded tree (with order-type α) labelled
by sequents locally satisfying the rules in Definition 6.1. It is well-known, however,
that for showing (18) and (19) it suffices to consider a recursive counterpart of the
ω-rule which can be given a purely finitary representation:

• a witness of T∞ ⊢α
κ Γ ⇒ ∆, ∀xA is (the code of) a recursive function f : ω →

ω × ω × ω such that for every n < ω, f(n) has the form (p, #β, #λ) where p

is a witness of T∞ ⊢β
λ Γ ⇒ ∆, A(n̄).

Let Bew(+)
∞ (a, k, x, y) be the formula that expresses ‘a and k encode ordinals α and

κ, x and y are finite sets Γ and ∆ of LT formulæ and there exists p witnessing
T(+)

∞ ⊢α
κ Γ ⇒ ∆.’

Using the formalisation above we can prove the following.

Lemma 6.17. For each α < κ, we have

PAκ ⊢ ∀x(BewCTᾱx ∧ SentL0x → ∃b ≺ ᾱ∃kBew∞(b.k, ω̄ +̂ k, ∅̄, {x})),
PAκ ⊢ ∀x(BewKFᾱx ∧ SentL0x → ∃b ≺ ᾱ∃kBew+

∞(b.k, ω̄ +̂ k, ∅̄, {x})),
PAκ ⊢ ∀x∀b ≺ ᾱ∀g, d ⊂ LT,F (Bew(+)

∞ (b, ω̂ +̂ x, g, d) → Bew(+)
∞ (2̂b

x, ω̄, g, d)),

where ∅̄ represents the code of the empty set and {x} the singleton set containing
the formula represented by x.

To derive (19) we formalise the obvious soundness argument for derivations in
T(+)

∞ , proving an arithmetical approximation to the statement ‘T(+)
∞ ⊢α

κ Γ ⇒ ∆
implies the formula ∧ Γ → ∨ ∆ is true’. Focusing on CT, if κ > ω, or Γ ∪ ∆ * L0
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the derivation of this sequent may utilise formulæ outside L0, and the phrase ‘A is
true’ cannot be formalised simply as T [A]. To overcome this we use a combination
of the cut elimination theorem and partial truth predicates for LT,F formulæ. For
n > 0, let Trn(x, P ) (where P is a free predicate symbol) be a partial truth predicate
for LT,F -formulæ over P given by

Trn+1(x, P ) ↔ P (x) ∨ ∃yz < x
(
(x = [T ẏ] ∧ T y) ∨ (x = [F ẏ] ∧ Fy)
∨ (x = y∧. z ∧ Trn(y, P ) ∧ Trn(z, P ))
∨ (x = ¬. y ∧ ¬Trn(y, P ))
∨ (x = ∀. yz ∧ ∀vTrn(sub(z, y, v)))

)
.

Using the predicates Trk we can define partial truth predicate of arithmetic as well
as truth predicates over the theories CT and KF:

TrPA
0 (x) ↔ x 6= x TrPA

n+1(x) ↔ Trn+1(x, TrPA
0 )

TrCT
0 (x) ↔ SentL0(x) ∧ T (x) TrCT

n+1(x) ↔ Trn+1(x, TrCT
0 )

TrKF
0 (x) ↔ SentL+

T,F
(x) ∧ T (x) TrKF

n+1(x) ↔ Trn+1(x, TrKF
0 )

Lemma 6.18. For each choice of S ∈ {PA, CT, KF}, The formula TrS
2n is ∆0

1(LT,F )
if n = 0, and equivalent to a Σ0

2n(LT,F ) formula otherwise, while TrS
2n+1 is equivalent

to a Π0
2n(LT,F ) formula for every n.

Proof. Since SentL(x) is a ∆0
1 formula, TrCT

0 (x) and TrKF
0 are ∆0

1(LT,F ). Therefore
TrS

1(x) is equivalent to a Π0
1(LT,F ) formula, TrS

2(x) to a Σ0
2(LT,F ) formula, and so

on.

In addition to the rank functions |·| and |·|−, define |·|+ according to the same
recursive rules but with |A|+ = ω whenever A ∈ L+

T,F and A is not arithmetical.

Lemma 6.19. For each formula A ∈ LT,F with only x free and each k < ω,

|A|− < k implies PA ⊢ ∀x(TrPA
k [Aẋ] ↔ A),

|A| < ω + k implies CT ⊢ ∀x(TrCT
k [Aẋ] ↔ A),

|A|+ < ω + k implies KF ⊢ ∀x(TrKF
k [Aẋ] ↔ A).

Proof. All cases proceed by induction on k. If k > 1 (or in the PA case for any k),
the result is deduced directly from the definition of the respective truth predicate
and, if applicable, the induction hypothesis. The remaining cases are |A| ≤ ω for
CT and |A|+ ≤ ω for KF. We show only the former.
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If |A| < ω then A ∈ L0, so

CT ⊢ TrCT
0 [Aẋ] ↔ T [Aẋ] ↔ A.

If |A| = ω then either A = T t or A = Ft for some term t. In the former case we
observe

CT ⊢ TrCT
1 [Aẋ] ↔ TrCT

1 (sub([T (t)], [x], x))
↔ TrCT

1 (sub([T (x)], [x], t))
↔ TrCT

1 [T (ṫ)]
↔ T (t)

and similarly for the latter case.

We can now formalise the soundness argument for CT. We first introduce a new
quantifier ∀g ⊂ L abbreviating quantification over codes for finite subsets of L, so
∀g ⊆ LT,F A(g) expresses ‘for all g, if g is the code of a finite set of LT,F formulæ
then A(g),’ a formula x ∈ g expressing that g encodes a finite set of which x is a
member, and terms g ∪ d and |g|(±) denoting, respectively, the union of two finite
sets and maximal rank among formulæ in the set g.

Lemma 6.20. For each β < α and each n we have,

PAα ⊢ ∀γ < β̄∀g,d ⊂ LT,F (|g ∪ d|− < n̄ ∧
Bew∞(γ, n̄, g, d) → (∀x ∈ g TrPA

n (x) → ∃y ∈ dTrPA
n (y))),

CTα ⊢ ∀γ < β̄∀g,d ⊂ LT,F (|g ∪ d| < ω̄ +̂ n̄ ∧
Bew∞(γ, ω̄ +̂ n̄, g, d) → (∀x ∈ g TrCT

n (x) → ∃y ∈ dTrCT
n (y))),

KFα ⊢ ∀γ < β̄∀g,d ⊂ LT,F (|g ∪ d|+ < ω̄ +̂ n̄ ∧
Bew+

∞(γ, ω̄ +̂ n̄, g, d) → (∀x ∈ g TrKF
n (x) → ∃y ∈ dTrKF

n (y))).

Proof. Fix n, α and β, and let ∀γ < β̄ A−(γ), ∀γ < β̄ A(γ) and ∀γ < β̄ A+(γ) denote
respectively the three formulæ listed above. It suffices to prove PA ⊢ Prog≺λxA−,
CT ⊢ Prog≺λxA and KF ⊢ Prog≺λxA+, but these follow directly from the definition
of the calculi T∞ and T+

∞.

Combining Lemma 6.20 with the first embedding lemma and the cut reduction
lemma for T∞ we naturally obtain

Lemma 6.21. CT ⊢ Ref(UTB0).
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Proof. Let A be a formula with free variable x. We argue informally within CT. Fix
a and suppose UTB0 ⊢ A(ā). By Lemma 6.9 there exists n < ω such that T∞ ⊢n

ω+n

∅ ⇒ A(ā). Cut elimination therefore yields an m < ω for which T∞ ⊢m
ω ∅ ⇒ A(ā)

holds, whence Lemma 6.20 implies TrCT
|A|[A ˙̄a] and Lemma 6.19 implies A(a).

As a consequence we may deduce the remaining half of Theorem 1.4.

Theorem 6.22. For all κ < Γ0,

1. R(CTǫκ) ⊆ CTǫκ+1,

2. Rκ(UTB) ⊆ CTǫκ.

Moreover, these are verifiable in PAκ+1.

Proof. We begin with 1. Let α be such that α = 2α. Observe that α is a limit
ordinal and additive principal. We will show that reflection for CTα is derivable in
CTα+1. Let A be a formula in LT with x free. Arguing within CTα+1, fix a < ω
and suppose CTα ⊢ Aā. By the second embedding lemma there exists γ < α and n
such that T∞ ⊢γ.n

ω+n ∅ ⇒ Aā and so T∞ ⊢δ
ω ∅ ⇒ Aā where δ = 2γ.n

n < α. By Lemma
6.20 we obtain TrCT

|A|[Aā] and we are done.
2 is proved by transfinite induction on κ. The base case, κ = 0, is a consequence

of Lemma 6.21. If κ = η + 1 then the induction hypothesis implies Rη(UTB) ⊆ CTǫη

and, in particular,

PAκ ⊢ ∀x(BewRη(UTB)x → BewCTǫη
x),

whence R(Rη(UTB)) ⊆ R(CTǫη ). By 1, therefore, Rκ(UTB) ⊆ CTǫη+1 = CTǫκ . In
the case κ is a limit ordinal Rκ(UTB) = ⋃

η<κ Rη(UTB) ⊆ ⋃
η<κ CTǫη = CTǫκ which

is all verifiable in PAκ+1.

Applying the same reasoning to KF we have

Theorem 6.23.

1. KF ⊢ Ref(UTFB0).

2. If 2κ = κ then KFκ+1 ⊢ Ref(KFκ).

3. For each κ, Rκ(UTFB) ⊆ KFǫκ.

We finish this section by determining the proof-theoretic ordinal of the systems
CTκ and KFκ, thereby also the strength of Rκ(UTB) and Rκ(UTB). It is also worth
noting that this is the only result for which the proofs for the CT and KF statements
differ significantly.
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Theorem 6.24.

1. If A is an L0 theorem of either Rκ(UTB), Rκ(CT) or CTεκ then
EA + TI(<εεκ) ⊢ A.

2. If A is an L0 theorem of either Rκ(UTFB), Rκ(KF) or KFεκ then
EA + TI(<ϕεκ0) ⊢ A.

Proof. The first part can be deduced directly from the proof-theoretic analysis
presented above. By Theorem 6.22 it suffices to assume CTεκ ⊢ A and A is arith-
metical. By Corollary 6.16 T∞ ⊢γ

0 ∅ ⇒ A for some γ < εεκ . Since A is arithmetical,
the first part of Lemma 6.20 can be applied to deduce PAεεκ

⊢ A.
We do not have the resources present to establish 2 via an analogous argument.

Nevertheless, the result can be readily obtained from Feferman’s original analysis of
KF. Theorem 4.1.2 of [9] establishes the proof-theoretic equivalence of KF (therein
denoted Ref(PA)) and the second-order system (Π0

1-CA)<ε0 formalising ε0-times it-
erated Π0

1-comprehension. The proof trivially extends to show that the theories
KFεκ and (Π0

1-CA)<εκ also prove the same L0-theorems, the latter of which is proof-
theoretically equivalent to PAϕεκ0 [8].
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Abstract

Here we present a predicative variant of a realizability tripos validating the
intensional level of the Minimalist Foundation extended with Formal Church
thesis, for short CT.

The original concept of tripos was introduced in the 80s by J.M.E.Hyland,
P.T. Johnstone and A.M.Pitts in order to build various kinds of toposes includ-
ing realizability ones.

Our categorical structure provides the key ingredient to build a predicative
variant of a realizability topos satisfying CT, like Hyland’s Effective topos,
where to validate the extensional level of the Minimalist Foundation.

The adjective predicative refers to the fact that our categorical structure is
formalized in Feferman’s theory of inductive definitions ÎD1.

1 Introduction
Constructive mathematics is mathematics developed with constructive proofs, that
is proofs enjoying a computational method to construct witnesses of their existential
statements. As a consequence constructively definable number theoretic functions
are all computable. It is indeed often said that constructive mathematics is abstract
mathematics which is implicitly computable.
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To give evidence of such a claim it is convenient to call “constructive” those
proofs that can be formalized in a foundation enjoying a so called “realizability model”
where one may extract the computational contents of its proofs by interpreting its
sets as data types and its functions as programs. The most basic example of such a
constructive foundation, at least for constructive arithmetics, is Intuitionistic Arith-
metic HA in [40]. Its realizability semantics is the well-known Kleene realizability
interpretation (see for example [40]) which makes HA consistent with the so called
Formal Church thesis, for short CT, expressing that from a total number-theoretic
relation we can extract a computable function. Actually, most constructive foun-
dations in the literature are consistent with CT and this is the case also for the
Minimalist Foundation.

The Minimalist Foundation, for short MF, was conceived by the first author
in joint work with G. Sambin in [28] as a common core among the most relevant
constructive and classical foundations, introduced both in type theory, in category
theory and in axiomatic set theory. In [28] MF is also required to be a two-level
system equipped with an intensional level suitable for extraction of computational
contents from its proofs, an extensional level formulated in a language as close as
possible to that of ordinary mathematics and an interpretation of the latter in the
former showing that the extensional level has been obtained by abstraction from the
intensional one according to Sambin’s forget-restore principle in [35].

A two-level formal system of this kind for MF was completed in [23]. Both
intensional and extensional levels of MF consist of type systems based on versions
of Martin-Löf’s type theory with the addition of a primitive notion of propositions
and some related constructors: the intensional one, called mTT, is based on [31]
and the extensional one, called emTT, on [30]. Actually, mTT can be considered a
predicative version of Coquand’s Calculus of Constructions [13].

The two-level structure of MF has various kinds of benefits.
First of all it provides a framework for computer-aided formalization of its

constructive proofs. Indeed the intensional level of MF has enough decidable
properties to be a base for a proof-assistant in which to formalize the constructive
proofs done at the extensional level via the interpretation provided in [23].

Moreover, the presence of two levels is crucial to easily show the compatibility of
MF with the other foundations at the “right” level: the intensional level of MF can
be easily interpreted in intensional theories such as those formulated in type theory,
for example Martin-Löf’s type theory [31] or Coquand’s Calculus of Constructions,
while its extensional level can be easily interpreted in extensional theories such
as those formulated in axiomatic set theory, for example Aczel’s constructive set
theory [4], or those formulated in category theory, for example the internal languages
of topoi or pretopoi [21, 22].
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Finally, the two levels of MF and their link resemble a well-known construction
in category theory, namely the tripos-to-topos construction of a realizability topos
in [18]. This is because the interpretation of the extensional level of MF in [23] is
done in a quotient completion built on the intensional level of MF. Such a quotient
completion had been studied categorically in [26], [25] under the name of “elementary
quotient completion” and related to the well known notion of exact completion on a
lex or regular category in [27]. Then, an analogy between MF and the tripos-to-topos
construction of a realizability topos can be described as follows: the categorical
structure of the intensional level of MF plays the role of a tripos, its elementary
quotient completion plays the role of the realizability topos construction, while the
extensional level of MF plays the role of the internal language of a generic elementary
topos.

In this paper we strengthen this analogy by building a realizability categorical
structure for the intensional level mTT of MF in Feferman’s classical predicative
theory of inductive definitions ÎD1 (see e. g. [15]). This is obtained by extracting the
categorical structure behind the realizability interpretation in [24] for mTT in ÎD1.
As an advantage we get an easier proof of validity for mTT by defining a partial
typed interpretation as in [38].

Our categorical semantics for mTT is called “effective” since it validates the
formal Church thesis and constitutes the key ingredient to build a predicative variant
of Hyland’s “Effective Topos” [17] in ÎD1, where to interpret the extensional level of
MF extended with CT.

A predicative study of the Effective Topos, and more generally of realizability
toposes, had been already developed in the context of algebraic set theory by B.
van den Berg and I. Moerdijk, in particular in [41], by taking Aczel’s Constructive
Zermelo-Fraenkel set theory (for short CZF) in [4] as the predicative constructive set
theory to be realized in their categorical structure.

A precise comparison between our work and that in [41] is expected to mirror
the relationship between MF and CZF described in [23] and it is left to future work.
We just recall that mTT, and the whole MF, is a much weaker theory than CZF
concerning the proof-theoretic strength, because it can be interpreted in a strictly
predicative theory as Feferman’s ÎD1 as [24] shows, while CZF is known not to be a
predicative theory in Feferman’s sense (see [16], [1], [11]).

2 The Minimalist Foundation

A peculiarity of constructive mathematics with respect to classical mathematics is
the absence of a commonly accepted standard foundation as Zermelo-Fraenkel set
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theory for classical mathematics.
Various logical systems are available in the literature to formalize constructive

mathematics: they range from axiomatic set theories à la Zermelo-Fraenkel, such as
Aczel’s CZF [4, 1, 2, 3] or Friedman’s IZF [8], to the internal set theory of categorical
universes such as topoi or pretopoi [21, 19, 22], to type theories such as Martin-Löf’s
type theory [31] or Coquand’s Calculus of Inductive Constructions [13, 14]. No
existing constructive foundation has yet superseded the others as the standard one.

The Minimalist Foundation, for short MF, was conceived in [28] to serve as a
common core among the most relevant constructive and classical foundations. A
key novelty of MF required in [28] is to be a two-level formal system equipped
with an intensional level suitable for extraction of computational contents from its
proofs, an extensional level formulated in a language as close as possible to that of
ordinary mathematics and an interpretation of the latter in the former showing that
the extensional level is obtained by abstraction from the intensional one according
to Sambin’s forget-restore principle in [35].

The two-level formal system of MF was completed in [23] with an interpretation
of the extensional level into a quotient model of the intensional level analyzed
categorically in [26, 25, 27].

The two-level structure of MF has at least two main advantages. On one
hand the compatibility of MF with the most relevant constructive and classical
foundations can be done at the most suitable level, namely the intensional level
with intensional foundations, mostly designed as type theories, and the extensional
one with usual extensional foundations, mostly designed as axiomatic set theories.
On the other hand the two-level structure of MF has the advantage to meet the
usual practice of developing mathematics in an extensional set theory, represented by
the extensional level of MF, whose equalities are undecidable, with the practice of
formalizing mathematical proofs in a computer-aided way by means of an interactive
proof-assistant based on intensional type theory with decidable properties, including
decidable type-checking of proofs and equalities, such as for example Agda [10] (on
Martin-Löf’s type theory [31]), or Coq [12, 9] or Matita [6, 5] (on the Calculus of
Inductive Constructions).

2.1 Distinct features of MF

Here we present the main distinct conceptual features of both levels of MF. Their
design is certainly influenced by the need of building a foundation for constructive
mathematics which is compatible with the most relevant constructive and classical
foundations at the appropriate level. An immediate consequence is that both levels
of MF must be predicative theories to be compatible with well-known predicative
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theories, such as Martin-Löf’s type theory or Aczel’s CZF.
To meet this goal one could think of using Heyting arithmetic, possibly extended

with finite types, as the extensional level for MF. However, in order to formalize
most of constructive mathematics, and in particular constructive topology, in an
extensional language close to that used in common practice, it would be good to
have a theory with a more expressive language including quotient sets and the power
of any set. On the other hand, it is worth noting that the power of a non-empty
set inherits an impredicative nature as soon as it is considered a set and hence in
a predicative set theory it must be considered an entity greater than a set, like a
collection or a class. This fact led to introduce the notion of collection beside that of
set at both levels of MF.

Concerning the intensional level of MF, the authors in [28] thought of designing
it as an intensional dependent type theory à la Martin-Löf like that in [31]. Then,
to make the extensional level interpretable in the intensional one easily and in a
modular way, in [23] also the extensional level was designed as a dependent theory à
la Martin-Löf like that in [30].

The final outcome in [23] was to design the intensional level of MF, called mTT,
as a predicative version of Coquand’s Calculus of Constructions in [13], for short
CoC, which is essentially the basic system behind the proof-assistants Coq [12, 9]
and Matita [6, 5].

The main features of CoC and of its extension in Coq that are strictly connected
with the design of mTT are the following:

- sets include sets in first-order intensional Martin-Löf’s type theory (i.e. the
fragment of Martin-Löf’s type theory in [31] corresponding to first-order logic
with list types but without universes or well-founded sets) and there is a
primitive notion of propositions, closed under intuitionistic connectives and
quantifiers and equipped with proof-terms; hence propositions are though of as
sets of their proofs;

- there is a universe of propositions, which is a set in CoC.

It is worth noting that only the second feature makes CoC impredicative. This
feature allows one to represent the power of a set in a suitable model of quotients,
called the setoid model (see [7]).

It is also important to recall that the CoC-universe of propositions is inconsistent
with an identification of sets as propositions typical of Martin-Löf’s type theory (see
[13]), for short MLtt. As a consequence, the existential quantifier of CoC can not be
that in MLtt and it does not yield choice principles, like the axiom of choice (see
[31, 30]), as shown in [39].
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In particular, a relevant consequence of the above features of CoC, which is
a peculiar feature of MF discussed in [29, 34], is the possibility of distinguishing
between the notion of a type theoretic function between sets A,B

f ∈ A→ B

called operation in MF (see [29]), and the notion of functional relation determined
by a relation R(x, y) prop [ x ∈ A, y ∈ B ] for which we can prove

∀x ∈ A ∃! y ∈ B R(x, y)

Indeed in CoC, as well as in MF, the so called axiom of unique choice

( AC! ) ∀x ∈ A ∃! y ∈ B R(x, y) −→ ∃f ∈ A→ B ∀x ∈ A R(x, f(x))

which allows one to extract a type theoretic function from a functional relation, is
not valid (see [39] for a proof). This distinction between type-theoretic functions and
functional relations, beside the non-validity of AC!, is also a property of Feferman’s
theories in [15].

The design of mTT in [23] proposes a way to turn the mentioned features of
CoC in a predicative form by extending first-order Martin-Löf’s intensional type
theory in [31] with

- a notion of collection beside that of set: collections include sets but also certain
types that can not be considered sets predicatively;

- a primitive notion of proposition closed under intuitionistic connectives and
quantifiers over both sets and collections;

- a notion of small proposition denoting propositions closed under intuitionistic
connectives and quantifiers restricted to sets;

- proof-terms for all propositions: small propositions are defined as sets of their
proofs, while generic propositions are defined as collections of their proofs;

- a collection of small propositions and a collection of propositional functions on
any set;

The last feature is what in the quotient model in [23] allows to define a power-
collection of a set A as a suitable quotient on the collection of propositional functions
on A.

Accordingly, the extensional level of MF in [23], called emTT, is an extension
of the extensional version of first-order Martin-Löf’s type theory in [30] with the
following distinct features:
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- a notion of collection beside that of set as in the intensional level of MF;

- a primitive notion of proposition, closed under intuitionistic connectives and
quantifiers over collections and a notion of small proposition denoting propo-
sitions closed under intuitionistic connectives and quantifiers restricted to
sets;

- proof-irrelevance of all propositions, namely all propositions are equipped with
at most a canonical proof-term to denote when they are true;

- a power-collection for each set where subsets are equivalence classes of small
propositions depending on the set and quotiented under equiprovability;

- effective quotient sets of equivalence relations defined by small propositions.

An important consequence of MF-design is the compatibility of MF with classical
predicative theories as Feferman’s predicative theories [15]. Indeed it is well known
that the addition of the principle of excluded middle can turn a predicative theory
where functional relations between sets form a set, as Aczel’s CZF or Martin-Löf’s
type theory, into an impredicative one where power-collections become sets.

In the next section we are going to describe in more details the type theory mTT
of the intensional level and we refer to [23] for the description of the type theory
emTT of the extensional level and of its interpretation in mTT.

2.2 The intensional level of the Minimalist Foundation
Here we describe the type theory mTT representing the intensional level of MF in
[23], which extends that presented in [28]. mTT is a dependent type theory written
in the style of Martin-Löf’s type theory [31] by means of the following four kinds of
judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the type judgement (expressing that something is a specific type), the type
equality judgement (expressing that two types are equal), the term judgement
(expressing that something is a term of a certain type) and the term equality
judgement (expressing the definitional equality between terms of the same type),
respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of entities:
collections, sets, propositions and small propositions, namely

type ∈ {col, set, prop, props }
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Therefore, in mTT types are actually formed by using the following judgements:

A set [Γ] B col [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that B is a collection, that φ is a proposition and that ψ is a
small proposition.

Here as in [24], and contrary to [23] where we use only capital latin letters as
meta-variables for types, we use greek letters ψ, φ as meta-variables for propositions
and capital latin letters A,B as meta-variables for sets or collections.

As in the intensional version of Martin-Löf’s type theory, in mTT there are two
kinds of equality concerning terms: one is the definitional equality of terms of the
same type given by the judgement

a = b ∈ A [Γ]

which is decidable, and the other is the propositional equality written

Id(A, a, b) prop [Γ]

which is not necessarily decidable.
We now proceed by briefly describing the various kinds of types in mTT, start-

ing from small propositions and propositions and then passing to sets and finally
collections.

Small propositions in mTT include all the logical constructors of intuitionistic
predicate logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | (∀x ∈ A)φ | (∃x ∈ A)φ | Id(A, a, b)

provided that A is a set.
Then, propositions in mTT include all the logical constructors of intuitionistic

predicate logic with equality and quantifications on all kinds of types, i. e. sets and
collections. Of course, small propositions are also propositions. Propositions can be
generated as follows:

φ prop ≡ φ props | φ ∧ ψ | φ ∨ ψ | φ→ ψ | (∀x ∈ D)φ | (∃x ∈ D)φ | Id(D, d, b)

In order to close sets under comprehension, for example to include the set of
positive natural numbers {x ∈ N | x ≥ 1}, and to define operations on such sets, we
need to think of propositions as types of their proofs: small propositions are seen as

602



sets of their proofs while generic propositions are seen as collections of their proofs.
That is, we add to mTT the following rules

props-into-set)
φ props
φ set

prop-into-col) φ prop

φ col

Before explaining the differences between the notion of set and that of collection we
describe their constructors in mTT.

Sets in mTT are characterized as inductively generated types and they include
the following:

A set ≡ φ props | N0 | N1 | N | List(A) | (Σx ∈ A)B | A+B | (Πx ∈ A)B

where the notation N0 stands for the empty set, N1 for the singleton set, N for
the set of natural numbers, List(A) for the set of lists on the set A, (Σx ∈ A)B
for the strong indexed sum, called here also dependent sum, of the family of sets
B set [x ∈ A] indexed on the set A, A+B for the disjoint sum of the set A with the
set B, (Πx ∈ A)B for the dependent product set of the family of sets B set [x ∈ A]
indexed on the set A.

It is worth noting that the set N of natural numbers is not present in a primitive
way in mTT since its rules can be derived by putting N ≡ List(N1). Here, as in [24],
we add it to the syntax of mTT because it plays a prominent role in the realizability
interpretation in ÎD1 and we want to avoid complications due to list encodings.

Finally, collections in mTT include the following types:

D col ≡ A set | φ prop | props | A→ props | (Σx ∈ D)E

where props stands for the collection of small propositions and A → props for the
collection of propositional functions of the set A, while (Σx ∈ D)E stands for the
dependent sum of the collection family E col [x ∈ D] indexed on the collection D.
Collection constructors here are kept to a minimum in order to interpret power-
collections of sets and contexts with dependent types which will be present in the
extensional level of MF.
All sets are collections thanks to the following rule:

set-into-col) A set

A col

We end by mentioning the following relevant technical peculiarities of mTT:
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- elimination rules of propositions act only toward propositions, as in CoC, to
avoid the validity of choice principles contrary to what happens in Martin-Löf’s
type theory 1.

- in mTT we add explicitly substitution term equality rules of the form

sub)

c ∈ C [ x1 ∈ A1, . . . , xn ∈ An ]
a1 = b1 ∈ A1 . . . an = bn ∈ An[a1/x1, . . . , an−1/xn−1]

c[a1/x1, . . . , an/xn] = c[b1/x1, . . . , bn/xn] ∈ C[a1/x1, . . . , an/xn]

in place of the usual term equality rules preserving term constructions typical
of Martin-Löf’s type theory MLtt in [31]. This choice yields a restriction of the
valid equality rules in mTT with respect to those valid in MLtt. In particular
in mTT the so called ξ-rule of lambda-terms

ξ
c = c′ ∈ C [x ∈ B]

(λx)c = (λx)c′ ∈ (Πx ∈ B)C

is not derivable.

It is worth recalling from [23] that the term equality rules of mTT are enough to
interpret an extensional level including extensional equality of functions, as that
represented by emTT, by means of the quotient model described in [23] and studied
abstractly in [26, 25, 27].

mTT can be essentially viewed as a fragment of CoC by identifying collections
with sets.

Moreover, mTT can be easily interpreted in intensional Martin-Löf’s type theory
MLtt in [31] by interpreting sets as MLtt-sets in the first universe and collections
simply as MLtt-sets, propositions as sets according to the well-known isomorphism
in [30] and the universe of small propositions as the first universe of MLtt.

2.3 The auxiliary type theory mTTa

Here we describe an auxiliary type theory, called mTTa, which is essentially an
extension of mTT which we will validate in our categorical structure. The reason
for interpreting mTTa, instead of simply mTT, is that the rules of mTTa enjoy an
easier proof of validity in our predicative variant of a realizability tripos.

1If you allow an elimination of existential quantifiers towards any type, you could build a function
mapping a proof of an existential quantification p ∈ (∃x ∈ A)φ towards the corresponding indexed
sums (Σx ∈ A)φ and by means of the first indexed sum projection you can extract a choice function
whose value f(p) ∈ A is a witness of the existential quantification.
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First of all, in mTTa, as well as in the version of mTT interpreted in [24], the
collection of small propositions props is defined with codes à la Tarski as in [31],
contrary to the version in [23], to make the interpretation easier to understand. Its
rules are the following.
Elements of the collection of small propositions are generated as follows:

Pr1) ⊥̂ ∈ props Pr2)
p ∈ props q ∈ props

p ∨̂ q ∈ props

Pr3)
p ∈ props q ∈ props

p →̂ q ∈ props
Pr4)

p ∈ props q ∈ props
p ∧̂ q ∈ props

Pr5)
A set a ∈ A b ∈ A
Êq(A, a, b) ∈ props

Pr6)
p ∈ props [x ∈ A] A set

̂(∃x ∈ A) p ∈ props

Pr7)
p ∈ props [x ∈ A] A set

̂(∀x ∈ A) p ∈ props

Elements of the collection of small propositions can be decoded as small proposi-
tions via an operator as follows

τ -Pr) p ∈ props
τ(p) props

and this operator satisfies the following definitional equalities:

eq-Pr1) τ(⊥̂) = ⊥ props eq-Pr2)
p ∈ props q ∈ props

τ(p ∨̂ q) = τ(p) ∨ τ(q) props

eq-Pr3)
p ∈ props q ∈ props

τ(p →̂ q) = τ(p)→ τ(q) props
eq-Pr4)

p ∈ props q ∈ props
τ(p ∧̂ q) = τ(p) ∧ τ(q) props

eq-Pr5)
A set a ∈ A b ∈ A

τ( Êq(A, a, b) ) = Eq(A, a, b) props

eq-Pr6)
p ∈ props [x ∈ A] A set

τ( ̂(∃x ∈ A) p) = (∃x ∈ A) τ(p) props

eq-Pr7)
p ∈ props [x ∈ A] A set

τ( ̂(∀x ∈ A) p) = (∀x ∈ A) τ(p) props
Moreover, for the same reasons explained in [24] and essentially due to the need

of interpreting the universe of small propositions in a clear way, even in mTTa we
add the collection Set of set codes whose related rules are the following. We do not
add corresponding elimination and conversion rules as those of universes à la Tarski
in [31] since they are not needed to prove the validity of mTT-rules.
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Collection of sets
F-Se) Set col

Elements of the collection of sets are generated as follows:

sp-i-p) p ∈ props
σ(p) ∈ Set See) N̂0 ∈ Set

Ses) N̂1 ∈ Set Sen) N̂ ∈ Set

Sel)
a ∈ Set

L̂ist(a) ∈ Set
Seu)

a ∈ Set b ∈ Set
a +̂ b ∈ Set

SeΣ)
b ∈ Set [x ∈ A] A set

̂(Σx ∈ A) b ∈ Set
SeΠ)

b ∈ Set [x ∈ A] A set

̂(Πx ∈ A) b ∈ Set
Set codes will be used to easily interpret the code of quantified small propositions.
Finally to further simplify the definition of the realizability interpretation, in

mTTa the elimination rules of some types, including disjoint sums, lists and natural
numbers, are restricted to act toward non-dependent types and they are equipped
with an extra equality rule expressing the uniqueness of the eliminator constructor
as follows

2.3.1 Rules of disjoint sum

+-f)
Aset B set

A+B set

+-i1)
a ∈ A Aset B set

inl(a) ∈ A+B
+-i2)

b ∈ B Aset B set

inr(b) ∈ A+B

+-e)
c ∈ A+B C col d ∈ C [x ∈ A] e ∈ C [y ∈ B]

El+(c, (x) d, (y) e) ∈ C

+-c1)
a ∈ A C col d ∈ C [x ∈ A] e ∈ C [y ∈ B]

El+(inl(a), (x) d, (y) e) = d[a/x] ∈ C

+-c2)
b ∈ B C col d ∈ C [x ∈ A] e ∈ C [y ∈ B]

El+(inr(b), (x) d, (y) e) = e[b/y] ∈ C

+-η)
p ∈ C +D t ∈ A [z ∈ C +D]

El+( p, (x) t[inl(x)/z] , (y) t[inr(y)/z] ) = t[p/z] ∈ A
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2.3.2 Rules of lists

List-f)
Aset

List(A) set

List-i1)
Aset

ε ∈ List(A) List-i2)
Aset b ∈ List(A) a ∈ A

cons(b, a) ∈ List(A)

List-e)
c ∈ List(A) B col d ∈ B e ∈ B [x ∈ B, y ∈ A]

ElList(c, d, (x, y) e) ∈ C

List-c1)
B col d ∈ B e ∈ B [x ∈ B, y ∈ A]

ElList(ε, d, (x, y) e) = d ∈ C

List-c2)
b ∈ List(A) a ∈ A B col d ∈ B e ∈ B [x ∈ B, y ∈ A]

ElList(cons(b, a), d, (x, y) e) = e[ElList(b, d, (x, y) e)/x, a/y] ∈ C

List-η)

B col d ∈ B e ∈ B [x ∈ B, y ∈ A] t ∈ B [z ∈ List(A)]
c ∈ List(A) t[ε/z] = a ∈ B
t[cons(u, y)/z] = e[t[u/z]/x] ∈ B [u ∈ List(A), y ∈ A]

ElList(c, d, (x, y)e) = t[c/z] ∈ L

2.3.3 Rules of natural numbers set

N-f) N set N-i1) 0 ∈ N N-i2)
a ∈ N

succ(a) ∈ N

N-e)
a ∈ N Acol d ∈ A e ∈ A [x ∈ A]

ElN(a, d, (x) e) ∈ A N-c1)
Acol d ∈ A e ∈ A [x ∈ A]

ElN(0, d, (x) e) = d ∈ A

N-c2)
a ∈ N Acol d ∈ A e ∈ A [x ∈ A]

ElN(succ(a), d, (x) e) = e[ElN(a, d, (x) e)/x] ∈ A

N-η)

c ∈ N Acol t ∈ A [z ∈ N] d ∈ A e ∈ A [x ∈ A]
t[0/z] = d ∈ A t[succ(y)/z] = e[t[y/z]/x] ∈ A [y ∈ N]

ElN(c, d, (x)e) = t[c/z] ∈ A
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These rules do not change the expressive power of disjoint sums, lists and natural
numbers. The reason is that, as first shown in [22], the above kinds of elimination
rules with related equality rules are equivalent to the original ones of mTT provided
that we add to mTTa the following rules of extensional propositional equality of
Martin-Löf’s type theory in [30], which we also adopt in the extensional level of MF
instead of those of the propositional identity Id:

Eq-f)
Acol a ∈ A b ∈ A

Eq(A, a, b) prop Eq-fs)
Aset a ∈ A b ∈ A

Eq(A, a, b) props

Eq-i)
a ∈ A

eq(a) ∈ Eq(A, a, a) Eq-e)
p ∈ Eq(A, a, b)
a = b ∈ A Eq-η)

d ∈ Eq(A, a, b)
d = eq(a) ∈ Eq(A, a, b)

and we add the usual equality rules preserving each type constructor as in [31, 30]
or as those present in the extensional level of MF in [23].

Then we can equivalently define (see [31]) the strong indexed sums with the
following rules

2.3.4 Rules of strong indexed sums

Σ-f)
Aset B set [x ∈ A]

(Σx ∈ A)B set Σ-fcol)
Acol B col [x ∈ A]

(Σx ∈ A)B col

Σ-i)
B col [x ∈ A] a ∈ A b ∈ B[a/x]

〈a, b〉 ∈ (Σx ∈ A)B

Σ-e1)
c ∈ (Σx ∈ A)B
π1(c) ∈ A Σ-e2)

c ∈ (Σx ∈ A)B
π2(c) ∈ B[π1(c)/x]

Σ-c1)
B col [x ∈ A] a ∈ A b ∈ B[a/x]

π1(〈a, b〉) = a ∈ A ;

Σ-c2)
B col [x ∈ A] a ∈ A b ∈ B[a/x]

π2(〈a, b〉) = b ∈ B[a/x]

Σ-η)
c ∈ (Σx ∈ A)B

〈π1(c), π2(c)〉 = c ∈ (Σx ∈ A)B

Therefore we can easily show:
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Proposition 2.1. We can interpret mTT into mTTa as the identity on all con-
structors except for those of the propositional equality Id which are interpreted as
those of the extensional one Eq, and except for the strong indexed sum elimination
constructor which is interpreted via projections.

Proof. We briefly describe how to interpret the rules of mTT-strong indexed sums.
Given d ∈ (Σx ∈ B)C, M col [ z ∈ (Σx ∈ B)C ] and m ∈M [〈x, y〉/z] [ x ∈ B, y ∈ C ]
then

ElΣ(d,m) ≡def m[π1(d)/x, π2(d)/y]

is of type M [〈π1(d), π2(d)〉/z] by definition. But by the substitution rules and the
rule conv) 2 (see the rules of mTT in [23]) and the above Σ-η of mTTa we conclude
that it is of type M(d) as well, as required.

Concerning the propositional equality: the constructor idA(a) of mTT is inter-
preted as eq(a) of mTTa and the elimination constructor El Id(p, (x)c) as c[a/x],
given that its type C(a, a, eq(a)) happens to be equal to C(a, b, p) by the rules
subT) and conv) in [23] since from p ∈ Eq(A, a, b) we get a = b ∈ A and also
p = eq(a) ∈ Eq(A, a, b) by the rules of Eq.

3 Feferman’s theory of inductive definitions ÎD1

The system ÎD1 is a predicative fragment of second-order arithmetic, more precisely
it is the predicative fragment of second-order arithmetic extending Peano arithmetic
with some (not necessarily least) fixpoints for each positive arithmetical operator.
Its number terms are number variables (or simply variables) ξ1, ..., ξn..., the constant
0 and the terms built by applying the unary successor functional symbol succ and
the binary sum and product functional symbols + and ∗ to number terms. Set terms
are only set variables X,Y, Z.... The arithmetical formulas are obtained starting
from t = s and t εX with t, s number terms and X a set variable, by applying the
connectives ∧ , ∨ ,¬,→ and the number quantifiers ∀x, ∃x. Moreover let us give the
following two definitions.

Definition 3.1. An occurrence of a set variable X in an arithmetical formula ϕ is
positive or negative according to the following conditions.

1. the occurrence of X in t εX, where t is a number term, is positive;

2. a positive (negative) occurrence of X in ψ, is positive (negative) in ψ∧φ, φ∧ψ,
φ ∨ ψ, ψ ∨ φ, φ→ ψ, ∃xψ and ∀xψ;

2We just recall that this rule says that from a ∈ A and A = B type we get a ∈ B.
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3. a positive (negative) occurrence of X in ψ, is negative (positive) in ψ → φ and
¬ψ.

Definition 3.2. An arithmetical formula ϕ with exactly one free number variable
x and one free set variable X which occurs only positively is called an admissible
formula.

In order to define the system ÎD1 we add to the language of second-order
arithmetic a unary predicate symbol Pϕ for every admissible formula ϕ . The atomic
formulas of ÎD1 are

1. t = s with t and s number terms;

2. t εX with t a number term and X a set variable;

3. Pϕ(t) with t a number term and ϕ an admissible formula.

All formulas of ÎD1 are obtained from atomic formulas by applying connectives,
number quantifiers and set quantifiers.

The axioms of ÎD1 are the axioms of Peano Arithmetic plus the following three
axiom schemata:

1. Comprehension schema: for all formulas ϕ(x) of ÎD1 without set quantifiers

∃X ∀x (x εX ↔ ϕ(x))

provided that X is not free in ϕ(x)

2. Induction schema: for all formulas ϕ(x) of ÎD1 without set quantifiers

(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(succ(x))))→ ∀xϕ(x)

3. Fixpoint schema: for all admissible formulas ϕ with x and X free

ϕ[Pϕ/X]↔ Pϕ(x)

where ϕ[Pϕ/X] is the result of substituting in ϕ every atomic subformula t εX
with Pϕ(t).

The system ÎD1 allows us to define predicates as fixpoints, by using axiom schema
3, if they are presented in an appropriate way (i. e. using admissible formulas).
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3.1 Notations of recursive functions in ÎD1

A numeral is a term of the form succ(succ...succ(0)). As usual we denote numerals
with boldface lower case letters n.

In ÎD1 one can certainly represent a Gödelian coding of recursive functions by
means of the Kleene predicate T (x, y, z) and the primitive recursive (meta)function
U . First of all we define applicative terms as follows (notice that these terms are not
part of the syntax of ÎD1, but are auxiliary terms):

1. every number variable is an applicative term;

2. every numeral is an applicative term;

3. if t and s are applicative terms, then {t}(s) is an applicative term.

We use the abbreviation {s}(t1, ..., tn) for applicative terms s, t1, ..., tn, ... as follows

1. {s}() is s;

2. {s}(t1, ..., tn+1) is {{s}(t1, ..., tn)}(tn+1).

If ϕ(x, x) is a formula of ÎD1 and t is an applicative term, then we define ϕ(x, t) by
induction on the definition of applicative terms t for all formulas as follows:

1. ϕ(x, y) is itself;

2. if n is a numeral, ϕ(x,n) is itself;

3. ϕ(x, {t}(s)) is ∃x(T (t, s, x) ∧ ϕ(x, U(x))).

Notice that if {t}(s) is an applicative term, the formula {t}(s) = {t}(s) turns out
to be equivalent to what is usually denoted with {t}(s) ↓ i. e. the formula ∃xT (t, s, x).
In particular, for a generic applicative term t it can be proved that the formula t = t
is provable when the applicative term t converges. Hence it makes sense to introduce
the formula t ' s as an abbreviation for t = t ∨ s = s → t = s for every pair of
generic applicative terms t and s.

If t is an applicative term with all variables among x1, ..., xn, then there is a
numeral Λx1...Λxn.t for which

ÎD1 ` ∀x1...∀xn({Λx1...Λxn.t}(x1, ..., xn) ' t)

For 1 ≤ j ≤ n we define a numeral πnj as Λx1....Λxn.xj . These numerals obviously
satisfy the following

ÎD1 ` {πnj }(x1, ..., xn) = xj
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Any n-ary primitive recursive (meta)function f can be represented by a numeral
f through the Gödelian coding in such a way that

ÎD1 ` {f}(x1, ..., xn) = f(x1, ..., xn)

In particular there exist numerals p,p1,p2 and s representing a primitive recursive
pairing function p with primitive recursive projections p1, p2 and the successor
function.

We define for 1 ≤ j ≤ n, numerals pn and pnj , representing the encoding of
n-tuples of natural numbers and the relative jth projections as follows:

1. p1 and p1
1 are both π1

1;

2. pn+1 is Λx1...Λxn+1.{p}({pn}(x1, ..., xn), xn+1);

3. pn+1
j is Λx.{pnj }({p1}(x)) if 1 ≤ j ≤ n;

4. pn+1
n+1 is p2.

We have that for n ≥ 1

1. ÎD1 ` {pn}({pn1}(x), ..., {pnn}(x)) = x

2. ÎD1 ` {pnj }({pn}(x1, ..., xn)) = xj for every 1 ≤ j ≤ n.

We can bijectively encode finite lists of natural numbers [n0, ..., nk] with natural
numbers in such a way that the component functions ( )j , the length function
lh( ) and the concatenation function cnc of lists with natural numbers are primitive
recursive and that the empty list is coded by 0. In particular there exists a numeral
cnc for which ÎD1 ` {cnc}(x, y) = cnc(x, y).

Moreover there exists a list recursor, i.e. a numeral listrec for which

1. ÎD1 ` {listrec}(0, y, z) ' y

2. ÎD1 ` {listrec}({cnc}(x, x′), y, z) ' {z}({listrec}(x, y, z), x′)

4 The effective pretripos for mTT
In this section we are going to define in ÎD1 a predicative categorical structure, called
effective pretripos for mTT, which represents a predicative variant of a realizability
tripos validating mTT. In a broad sense it can be considered a predicative variant
of the effective tripos giving rise to Hyland’s effective topos Eff in [17]. Indeed,
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our ultimate goal is to use our effective pretripos to build a predicative variant of a
realizability topos like Eff .

Recall from [18, 33] that a tripos is an indexed category

P : Cop −→ Cat

which is a Lawvere-first order hyperdoctrine in the category of Heyting algebras
enriched with a weak subobject classifier, called a generic predicate in [18], capable
of producing power-sets in the category obtained by applying the so called tripos-to-
topos construction. This weak classifier is of an impredicative nature and it must be
necessarily so.

Here we are going to define a predicative variant of a tripos with the idea of getting
just power-collections and not power-sets in the corresponding predicative variant
of the tripos-to-topos construction. These will be structured in a fully analogous
way to the two-level structure of MF where the universes of small propositions and
of propositional functions on any set at the intensional level of MF are enough to
model power-collections of sets at the extensional level of MF by means of a quotient
model (see [23]).

We now briefly outline the categorical structure of our predicative variant of a
realizability tripos by describing what we are going to include in it:

- We define an indexed category of “realized” propositions

Prop : Contop → Cat

on a category Cont of “realized contexts” and realized morphisms between
them, equipped with the structure of a Lawvere’s first order hyperdoctrine
but in the category of Heyting prealgebras 3. The category Cont will host a
realizability interpretation of mTTa-contexts as that in [24]. This category
is also equivalent to its full subcategory C of realized collections, which are
defined as subsets of natural numbers in ÎD1 equipped with an equivalence
relation, whose morphisms turn out to be suitable recursive operations. Each
fibre of Prop represents the category of realized propositions defined in a
proof-irrelevant way as subsets of a singleton.
We use the category of contexts Cont instead of C as the base of our categorical
structure, because the realizability interpretation ofmTTa-contexts and generic
mTTa-judgements becomes simpler.

3A Heyting prealgebra is a preorder whose posetal reflection is a Heyting algebra.
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It is worth noting that the category Cont has also an indexed structure of
families of realized collections

Col : Contop → Cat

whose fibre on the empty context [ ] is equivalent to Cont. Moreover, it contains
Prop as a sub-indexed category

Prop � � // Col

- We define a realized collection US via a fixpoint formula of ÎD1, which will
host the realizability interpretation of the collection of mTTa-sets. This is
defined as in [24] following a technique due to Beeson [8].
US is crucial to define the (indexed) category of families of realized sets

Set : Contop → Cat

which is a sub-indexed structure of Col

Set � � // Col

Namely families of realized sets are families of realized collections classified by
the non-dependent realized collection US, in the sense that US represents the
indexed functor Set via a natural bijection

Set(Γ) ' Cont(Γ,US)

for objects Γ in Cont.

- We define a realized collection USP as a sub-collection of US, which will host
the realizability interpretation of the collection of mTTa-small propositions.
This is also defined as in [24].
The construction of USP is crucial to define the first-order hyperdoctrine of
realized small propositions

Props : Contop → Cat

which is a subindexed category both of Prop and of Set

Set � � // Col

Props
� � //?�

OO

Prop
?�

OO
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and is classified by USP in the sense that USP represents the indexed functor
Props via a natural bijection for objects Γ in Cont

Props(Γ) ' Cont(Γ,USP)

This classification property provides an intensional predicative version of the
original weak subobject classifier property of a tripos.

In the next sections we will often include lemmas and theorems without proofs
because their proofs just involve straightforward verifications.

4.1 The category of realized collections in ÎD1

Here we are going to define the category of realized collections. We will denote such
a category as C.

A realized collection will denote a quotient of a subset of natural numbers acting
as realizers. It is represented in ÎD1 by a first-order formula defining the realizers
together with an equivalence relation x ∼ y. Morphisms between realized collections
will be defined as recursive functions between them preserving the corresponding
equivalence relations and called recursive operations.

We start by giving the notion of dependent realized collection, namely a family
of realized collections depending on a finite number of variables. From this notion
we will deduce that of realized collection.

Definition 4.1. Let x be a (possibly empty) list of distinct variables of the language
of ÎD1. A realized collection of ÎD1 depending on x (or simply a dependent realized
collection) is a pair A(x) := (|A(x)|, x ∼A(x) y) where

1. |A(x)| is a first-order definable class of ÎD1, i. e. it is a formal expression

{x |φA(x, x)}
where x is a variable different from those in x and φA(x, x) is a first-order
formula of ÎD1, namely a formula without set variables and set quantifiers, but
possibly with fixpoint predicates Pϕ, with all free variables among those in x
and x. We will write x εA(x) as an abbreviation for φA(x, x), since we may
think of A(x) as a subset |A(x)| of natural numbers, called realizers, equipped
with a relation ∼A(x).

2. x ∼A(x) y is a first-order definable equivalence relation on |A(x)|, i. e. it is a
first-order formula of ÎD1, where x and y are distinct variables and they are
different from those in x, with all free variables among those in x, x or y for
which:
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(a) x ∼A(x) y `ÎD1
x εA(x) ∧ y εA(x)

(b) x εA(x) `
ÎD1

x ∼A(x) x

(c) x ∼A(x) y `ÎD1
y ∼A(x) x

(d) x ∼A(x) y ∧ y ∼A(x) z `ÎD1
x ∼A(x) z

We identify dependent realized collections A(x) and B(x) for which

ÎD1 ` x ∼A(x) y ↔ x ∼B(x) y

(this automatically ensures that ÎD1 ` x εA(x) ↔ x εB(x), namely the validity of
subset extensional equality).

Definition 4.2. A realized collection of ÎD1 is a realized collection depending on
the empty list.

Definition 4.3. Given two realized collections A and B, a recursive operation (or
simply an operation) from A to B is an equivalence class [n]≈A,B of numerals for
which

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

with respect to the equivalence relation given by

n ≈A,B m if and only if x εA `
ÎD1

{n}(x) ∼B {m}(x)

Definition 4.4. We call C the category of realized collections of ÎD1 and recursive
operations between them where the composition of morphisms and identities are
defined as follows.

If [n]≈A,B is an operation from a realized collection A to a realized collection B
and [m]≈B,C is an operation from a realized collection B to a realized collection C,
then their composition is the operation

[m]≈B,C ◦ [n]≈A,B := [ Λx.{m}({n}(x)) ]≈A,C

If A is a realized collection, then its identity idA is defined as [π1
1]≈A,A.
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4.2 The category of realized contexts in ÎD1

Here we are going to define the category Cont of realized contexts and realized
morphisms between them. This category will be used to interpret the telescopic
contexts of dependent types of mTTa. We will deduce the categorical properties
which are necessary to validatemTTa from those of the category of realized collections
C, being Cont equivalent to C. Indeed the categorical structure of C will be easier
to describe.

We start by giving some abbreviations on list of variables.
Fix two countable sequences of variables x1, ..., xn... and y1, ..., yn... in such a way

that all these variables are distinct. We denote by x|j the empty list if j = 0 or the
list x1, ..., xj otherwise. Similarly we define y|j .

We use the abbreviation Λx|j for Λx1...Λxj if j > 0, while Λx|0 means no
Λ-quantification. In case of an empty list of variables A( ) means A.

If k is a finite list of numerals with length n, then for j ≤ n, we use the abbreviation
{k|j}(t) for the empty list if j = 0, while {k|j}(t) is the list {k1}(t), ..., {kj}(t)
otherwise; we write {k}(t) as an abbreviation for {k|n}(t).

Definition 4.5. A realized context (or simply a context) of ÎD1 is a (possibly empty)
finite list

Γ = [A1, ..., Aj(x|j−1), ..., An(x|n−1)]

where Aj(x|j−1) is a collection of ÎD1 depending on x|j−1 for 1 ≤ j ≤ n, which
satisfies the following conditions:

1. xj+1 ∼Aj+1(x|j ) yj+1 `ÎD1
x1 εA1 ∧ ... ∧ xj εAj(x|j−1)

2. x1 ∼A1 y1 ∧ ... ∧ xj ∼Aj(x|j−1 ) yj `ÎD1

xj+1 ∼Aj+1(x|j ) yj+1 ↔ xj+1 ∼Aj+1(y|j ) yj+1

for every 1 ≤ j ≤ n− 1.
Moreover, for a realized context Γ of ÎD1, the length `(Γ) of Γ is the length of Γ

as a list.
Finally, if Γ = [A1, ..., An(x|n−1)] is a realized context of ÎD1 with positive length

n, then

1. x|n εΓ is an abbreviation for x1 εA1 ∧ ... ∧ xn εAn(x|n−1)

2. x|n ∼Γ y|n is an abbreviation for x1 ∼A1 y1 ∧ ... ∧ xn ∼An(x|n−1 ) yn
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If Γ is the empty list, then x|0 εΓ and y|0 ∼Γ y|0 are both the true constant >.

Definition 4.6. If Γ and Γ′ are contexts of ÎD1, then a realized morphism from
Γ to Γ′ is an equivalence class [k]≈Γ,Γ′ of lists of numerals with length equal to the
length of Γ′ satisfying the following requirements: if Γ′ = [B1, ..., Bn(x|n−1)] with
n > 0, then for all 1 ≤ j ≤ n:

x|`(Γ) ∼Γ y|`(Γ)
`
ÎD1

{kj}(x|`(Γ)) ∼Bj({k|j−1}(x|`(Γ) )) {kj}(y|`(Γ)
)

with respect to the equivalence relation ≈Γ,Γ′ defined by k ≈Γ,Γ′ k′ if and only if

x|`(Γ) εΓ `
ÎD1

{kj}(x|`(Γ)) ∼Bj({k|j−1}(x|`(Γ) )) {k′j}(x|`(Γ))

for every 1 ≤ j ≤ n.
In the case in which Γ′ = [ ], then the unique realized morphism is the class

!Γ,[ ] := [ ]≈Γ,[ ] containing only the empty list.

Definition 4.7. If k and h are lists of numerals and n is a natural (meta)number,
then

h ◦n k := [ Λx|n .{h1}({k}(x|n)), ...,Λx|n .{h`(h)}({k}(x|n)) ]

Definition 4.8. If [k]≈Γ,Γ′ : Γ→ Γ′ and [h]≈Γ′,Γ′′ : Γ′ → Γ′′ are realized morphisms
between contexts of ÎD1, then we define their composition as the realized morphism

[h]≈Γ′,Γ′′ ◦ [k]≈Γ,Γ′ := [ h ◦`(Γ) k ]≈Γ,Γ′′ : Γ→ Γ′′

If Γ is a context of ÎD1, then its identity is defined as the realized morphism

[ π`(Γ)
1 , ..., π

`(Γ)
`(Γ) ]≈Γ,Γ : Γ→ Γ

if `(Γ) > 0, while it is the realized morphism

[ ]≈[ ],[ ] : [ ]→ [ ]

if Γ = [ ].

Theorem 4.9. Realized contexts of ÎD1 and realized morphisms between them with
their compositions and identities form a category denoted by Cont.

As it happens in dependent type theory contexts can be equivalently represented
as the indexed sums of their components. To this purpose we define the following
realized morphisms which will act as projections to extract the components of a
context:
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Definition 4.10. If Γ is a context of ÎD1 and n is a natural (meta)number, we
define the realized morphisms prΓ and pr(n)

Γ in Cont as follows:

• pr[ ] is id[ ] and pr[A] is [ ]≈ : [A]→ [ ];4

pr[Γ,A] is [π`(Γ)+1
1 , ..., π

`(Γ)+1
`(Γ) ]≈ : [Γ, A]→ Γ if `(Γ) > 0;

• pr0
Γ is idΓ and pr(i+1)

Γ is prcod(pr(i)Γ ) ◦ pr(i)
Γ

where cod(pr(i)
Γ ) denotes the codomain of pr(i)

Γ .

Now we define the indexed sum of the last two components of a context:

Definition 4.11. Suppose [Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is a realized context of ÎD1. We
define the indexed sum collection

ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) )

as a collection depending on x|`(Γ) determined by the following conditions:5

x εΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) ) ≡def p1(x) εA(x|`(Γ)) ∧ p2(x) εB(x|`(Γ) , p1(x))

x ∼ΣΓ(A(x|`(Γ) ), B(x|`(Γ)+1 ) ) y ≡def p1(x) ∼A(x|`(Γ) ) p1(y) ∧ p2(x) ∼B(x|`(Γ) , p1(x)) p2(y)

Clearly, the indexed sum collection allows to represent a context in an equivalent
way as follows:

Lemma 4.12. Suppose [Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is a realized context of ÎD1. Then,
[Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is isomorphic to [Γ,ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1))] in Cont.

Proof. If Γ is not empty, just take the realized morphism from [Γ, A(x|`(Γ)), B(x|`(Γ)+1)]
to [Γ,ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) )] determined by the list

[ π`(Γ)+2
1 , ..., π

`(Γ)+2
`(Γ) ,Λx|`(Γ) .Λx.Λy.{p}(x, y) ]

Its inverse from [Γ,ΣΓ(A(x|`(Γ)), B(x|`(Γ)+1) )] to [Γ, A(x|`(Γ)), B(x|`(Γ)+1)] is the real-
ized morphism determined by the list

[ π`(Γ)+1
1 , ..., π

`(Γ)+1
`(Γ) ,Λx|`(Γ) .Λx.{p1}(x),Λx|`(Γ) .Λx.{p2}(x) ]

Instead, if Γ is empty, we can consider the realized isomorphism determined by [p]
and [p1,p2].

4The subscripts on ≈ will be omitted when they will be clear from the context
5Here as usual x and y are fresh distinct variables
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Theorem 4.13. Cont is equivalent to C.

Proof. From C to Cont take the functor F sending any collection A of C to [A] and
every realized morphism [n]≈A,B to [n]≈[A],[B] . Then, define a functor E from Cont
to C as follows:

1. E([ ]) is ( {x |x = 0} , x = y ∧ x = 0 ),

E([A]) is A,

E([Γ, A]) is Σ[ ]( E(Γ) , A({p`(Γ)
1 }(x1), ..., {p`(Γ)

`(Γ)}(x1)) );

2. if `(Γ) > 0 and `(Γ′) > 0, then [k]≈Γ,Γ′ : Γ→ Γ′ is sent to
[

Λx.{p`(Γ′)}({k}({p`(Γ)
1 }(x), ..., {p`(Γ)

`(Γ)}(x)))
]
≈E(Γ),E(Γ′)

if Γ = [ ] and `(Γ′) > 0, then [k]≈[ ],Γ′ : [ ]→ Γ′ is sent to

[ Λx.{p`(Γ′)}(k) ]≈E([ ]),E(Γ′)

and !Γ,[ ] : Γ→ [ ] is sent to [ Λx.0 ]≈E(Γ),E([ ]) .

4.3 Families of realized collections as an indexed category
Here we are going to define an indexed category on the category of realized contexts

Col : Contop → Cat

whose fibre on a context Γ will be defined as a presentation of the slice category
Cont/Γ in terms of families of realized collections depending on the context Γ.

Definition 4.14. If Γ is a context of ÎD1 (i. e. an object of Cont), then A is a
family of realized collections on Γ (or a realized collection depending on Γ) if and
only if [Γ, A] is a context of ÎD1.

Definition 4.15. Let Col(Γ) be the category whose objects are families of realized
collections on Γ and a morphism from a family of realized collections A to another
family B is a realized morphism from pr[Γ,A] to pr[Γ,B] in the slice category Cont/Γ.
Composition and identities are inherited from those of Cont/Γ.
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Lemma 4.16. Let Γ be an object of Cont with `(Γ) > 0 and A, B be objects of
Col(Γ). If n is a numeral for which

x|`(Γ)+1 ∼[Γ,A] y|`(Γ)+1
`
ÎD1

{n}(x|`(Γ)+1) ∼B {n}(y|`(Γ)+1
)

then
γA,Bn,Γ := [ π`(Γ)+1

1 , ..., π
`(Γ)+1
`(Γ) ,n ]≈[Γ,A],[Γ,B]

is a well defined realized morphism from A to B in Col(Γ).
Conversely, for every f : A→ B in Col(Γ) there exists a numeral n for which

f = γA,Bn,Γ , and in this case we say that f is represented by n.

If [n]≈ is an arrow from A to B in Col([ ]), then we will denote it also by γA,Bn,[ ] .
We will omit A,B and Γ in the notation γA,Bn,Γ , when they will be clear from the

context.

Lemma 4.17. Suppose f = [k]≈Γ′,Γ : Γ′ → Γ in Cont.

1. If A(x|`(Γ)) is an object of Col(Γ), then the conditions

(a) x εColf (A(x|`(Γ))) ≡def x|`(Γ′) εΓ′ ∧ x εA({k}(x|`(Γ′)))
(b) x ∼Colf (A(x|`(Γ) )) y ≡def x|`(Γ′) εΓ′ ∧ x ∼A({k}(x|`(Γ′) )) y

determine an object Colf (A(x|`(Γ))) of Col(Γ′).

2. If g = γn is an arrow in Col(Γ) from A to B, then the numeral

n′ := Λx|`(Γ′)+1
.{n}({k}(x|`(Γ′)), x`(Γ′)+1)

determines an arrow Colf (g) := γn′ in Col(Γ′) from Colf (A) to Colf (B).

Moreover, Colf (h ◦ g) = Colf (h) ◦ Colf (g) if g : A → B and h : B → C are
arrows in Col(Γ) and Colf (idA) = idColf (A) if A is an object of Col(Γ), i. e. Colf
is a functor from Col(Γ) to Col(Γ′).

Moreover we have the following property.

Lemma 4.18. If f : Γ′ → Γ′′ and g : Γ′′ → Γ′′′ are arrows in Cont and Γ is an
object of Cont, then

1. Colg◦f = Colf ◦Colg
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2. ColidΓ = idColf (Γ)

Now we are ready to define the indexed category of families of realized collections
as follows:

Definition 4.19. Let Col : Contop → Cat be the functor defined by the pair of
assignment Γ 7→ Col(Γ), f 7→ Colf .

Colf is called the substitution functor along f .

In the following lemma we introduce the notation of pullback projections which
will be used later to characterize the interpretation of the substitution of terms in
types and the interpretation of the context operation of weakening:

Lemma 4.20. If Γ and Γ′ are objects of Cont, f : Γ′ → Γ in Cont and A is an
object in Col(Γ), then Colf (A) fits into a pullback in Cont as follows

[Γ′,Colf (A)] q(f,[Γ,A]) //

pr
��

[Γ, A]
pr
��

Γ′ f // Γ

where, if f is represented by the list [k1, ...,k`(Γ)], then q(f, [Γ, A]) is represented by
the list

[ Λx|`(Γ′)+1
.{k1}(x|`(Γ′)), ...,Λx|`(Γ′)+1

.{k`(Γ)}(x|`(Γ′)), π
`(Γ′)+1
`(Γ′)+1 ]

Now, we are going to describe the categorical structure of each fibre Col(Γ) for a
fixed context Γ.

Hence, in all the following lemmas Γ is an object of Cont with `(Γ) = n.
We start by showing that each fibre Col(Γ) is closed under finite products.

Lemma 4.21. The object

1Γ := ( {x|x|n εΓ ∧ x = 0}, x|n εΓ ∧ x = 0 ∧ x = y )

is a terminal object in Col(Γ), i. e. for every A in Col(Γ), there exists a unique
arrow !A,1Γ : A→ 1Γ in Col(Γ).

Lemma 4.22. If A and B are objects of Col(Γ), then the object A×Γ B defined by
the following conditions:

1. x εA×Γ B ≡def p1(x) εA ∧ p2(x) εB

2. x ∼A×ΓB y ≡def p1(x) ∼A p1(y) ∧ p2(x) ∼B p2(y)
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with pΓ
i := Λx|n+1 .{pi}(xn+1) for i = 1, 2 yields the following binary product diagram

in Col(Γ)
A A×Γ B

πA,B1 := γpΓ
1

oo
πA,B2 := γpΓ

2

// B

i. e. for every f : C → A and g : C → B in Col(Γ), there exists a unique arrow
〈f, g〉 : C → A×Γ B in Col(Γ) for which the following diagram commutes

A A×Γ B
πA,B1oo

πA,B2 // B

C

f

gg

〈f,g〉
OO

g

77

Now we are going to show how to form equalizers in Col(Γ).

Lemma 4.23. If A is an object of Col(Γ) and f, g : 1Γ → A are arrows in Col(Γ)
represented by numerals nf and ng respectively, then EqΓ(A, f, g) given by the
following conditions

1. x εEqΓ(A, f, g) ≡def {nf}(x|n , 0) ∼A {ng}(x|n , 0)

2. x ∼EqΓ(A,f,g) y ≡def x εEqΓ(A, f, g) ∧ y εEqΓ(A, f, g)

is a well defined object of Col(Γ).

Lemma 4.24. Suppose f1, f2 : A → B in Col(Γ) and fi = γni for i = 1, 2. If
for i = 1, 2 we define f ′i to be γn′i : 1[Γ,A] → Colpr[Γ,A](B) in Col([Γ, A]) with
n′i := Λx|n+2 .{ni}(x|n+1), then

E(f1, f2) := ΣΓ(A, Eq[Γ,A](Colpr[Γ,A](B), f ′1, f ′2) )

e(f1, f2) := γpΓ
1

: E(f1, f2)→ A

define an equalizer for f1 and f2 in Col(Γ), i. e. for every e′ : E′ → A for which
f1 ◦ e′ = f2 ◦ e′, there exists a unique arrow g : E′ → E(f1, f2) in Col(Γ) for which
the following diagram commutes.

E(f1, f2)e(f1,f2)// A

E′

e′

OO

g

dd
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Here we are going to show that each fibre Col(Γ) is closed under finite coproducts.

Lemma 4.25. The object 0Γ := ( {x| ⊥}, ⊥ ) is an initial object of Col(Γ), i. e. for
every A in Col(Γ) there exists a unique arrow !0Γ,A : 0Γ → A in Col(Γ).

Lemma 4.26. If A and B are objects of Col(Γ), then the object A+Γ B of Col(Γ)
defined by the following conditions:

1. x εA+Γ B ≡def ( p1(x) = 0 ∧ p2(x) εA ) ∨ ( p1(x) = 1 ∧ p2(x) εB )

2. x ∼A+ΓB y ≡def p1(x) = p1(y)∧

( ( p1(x) = 0 ∧ p2(x) ∼A p2(y) ) ∨ ( p1(x) = 1 ∧ p2(x) ∼B p2(y) ) )

with jΓ
1 := Λx|n+1 .{p}(0, xn+1) and jΓ

2 := Λx|n+1 .{p}(1, xn+1) yields the following
binary coproduct diagram in Col(Γ)

A
jA,B1 := γjΓ1 // A+Γ B B

jA,B2 := γjΓ2oo

i. e. for every object C of Col(Γ) and every pair of arrows f : A→ C and g : B → C,
there is a unique arrow case(f, g) : A+Γ B → C in Col(Γ) for which the following
diagram commutes

A
jA,B1 //

f
''

A+Γ B

case(f,g)
��

B
jA,B2oo

g
ww

C

Now we are going to show how Col(Γ) is closed under exponential objects, namely
under function spaces:

Lemma 4.27. If A and B are objects of Col(Γ), then the object A⇒Γ B defined by

1. x εA⇒Γ B ≡def x|n εΓ ∧ ∀t∀s ( t ∼A s → {x}(t) ∼B {x}(s) )

2. x ∼A⇒ΓB y ≡def x εA⇒Γ B ∧ y εA⇒Γ B ∧ ∀t ( t εA→ {x}(t) ∼B {y}(t) )

together with the arrow

evA,B := γevΓ : (A⇒Γ B)×Γ A→ B

where evΓ is Λx|n+1 .{{p1}(xn+1)}({p2}(xn+1)) defines an exponential of A and B
in Col(Γ) i. e. for every object C of Col(Γ) and every arrow f : C ×Γ A → B in
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Col(Γ), there exists a unique arrow Cur(f) : C → A⇒Γ B for which the following
diagram commutes in Col(Γ)6

C ×Γ A
f //

Cur(f)×ΓidA
��

B

(A⇒Γ B)×Γ A

evA,B

88

Col(Γ) has also list objects (see for instance [22] for a categorical definition)

Lemma 4.28. If A is an object of Col(Γ), then the object ListΓ(A) defined by

1. x εListΓ(A) ≡def x|n εΓ ∧ ∀j ( j < lh(x) → (x)j εA )

2. x ∼ListΓ(A) y ≡def x|n εΓ ∧ lh(x) = lh(y) ∧ ∀j ( j < lh(x) → (x)j ∼A (y)j )

together with the arrows

εA := γΛx|n+1 .0 : 1Γ → ListΓ(A)

consA := γcncΓ : ListΓ(A)×Γ A→ ListΓ(A)

where cncΓ is Λx|n+1 .{cnc}({p1}(xn+1), {p2}(xn+1)), defines a list object on A in
Col(Γ), i. e. for every object B of Col(Γ) and every pair of arrows f : 1Γ → B and
g : B ×Γ A→ B in Col(Γ), there exists a unique arrow

listrec(f, g) : ListΓ(A)→ B

for which the following diagram commutes in Col(Γ)

1Γ εA //

f
##

ListΓ(A)

listrec(f,g)
��

ListΓ(A)×Γ A

listrec(f,g)×ΓidA
��

consAoo

B B ×Γ Ag
oo

Theorem 4.29. For every Γ in Cont, Col(Γ) is a finitely complete cartesian closed
category with finite coproducts and list objects and for every morphism f in Cont
the functors Colf preserve this structure.

6For f : A → C and g : B → D in Col(Γ), we use the notation f ×Γ g for the arrow
〈f ◦ πA,B1 , g ◦ πA,B2 〉 : A×Γ B → C ×Γ D.
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Proof. This is a consequence of the previous lemmas (see [20]) and it is an immediate
verification to see that all these structures are preserved by the functors Colf .

Remark 4.30. The object NΓ of Col(Γ) defined by the following:

1. x εNΓ ≡def x|`(Γ) εΓ ∧ x = x

2. x ∼NΓ y ≡def x|`(Γ) εΓ ∧ x = y

together with the arrows

zΓ := γΛx|`(Γ)+1 .0
: 1Γ → NΓ sΓ := γΛx|`(Γ)+1 .{s}(x`(Γ)+1) : NΓ → NΓ.

defines a natural numbers object in Col(Γ), i. e. for every A in Col(Γ) and for every
pair of arrows f : 1Γ → A and g : A → A in Col(Γ), there exists a unique arrow
rec(f, g) : NΓ → A for which the following diagram commutes.

1Γ

f !!

zΓ
// NΓ sΓ

//

rec(f,g)
��

NΓ

rec(f,g)
��

A g
// A

It is immediate to see that this natural numbers object is preserved by the sub-
stitution functors Colf . A natural numbers object can be defined also as ListΓ(1Γ),
but it is convenient to consider the representation NΓ to simplify the realizability
interpretation of mTTa.

Corollary 4.31. Cont is a finitely complete cartesian closed category with finite
coproducts and list objects.

Proof. This is an immediate consequence of theorem 4.29 and 4.13 as C is clearly
isomorphic to Col([ ]).

Definition 4.32. If f : [Γ,1Γ] → [Γ, A] is an arrow in Cont, then we define
f̃ : Γ→ [Γ, A] as f ◦ j where j : Γ→ [Γ,1Γ] is the isomorphism in Cont defined by
the list

[ π`(Γ)
1 , ..., π

`(Γ)
`(Γ),Λx|`(Γ) .0 ]

Now, we are going to show that, for any realized collection A in Col(Γ) there
are left adjoints to substitution functors of the kind Colpr[Γ,A] which will be used to
interpret the operation of weakening the context Γ to [Γ, A]. These left adjoints will
be used to interpret the strong indexed sum collections of mTTa.
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Lemma 4.33. Suppose Γ is an object in Cont and A is an object in Col(Γ). Then
the functor sending each B in Col([Γ, A]) to ΣΓ(A,B) and each arrow
f := γn : B → C in Col([Γ, A]) to the arrow ΣΓ(A, f) from ΣΓ(A,B) to ΣΓ(A,C) in
Col([Γ]) represented by Λx|`(Γ) .Λx.{p}({p1}(x), {n}(x|`(Γ) , {p1}(x), {p2}(x))), in the
sense of lemma 4.16, is left adjoint to the functor Colpr[Γ,A] , i. e. there is a bijection
(see [20])

HomCol(Γ)(ΣΓ(A,B), D) ∼= HomCol([Γ,A])(B,Colpr[Γ,A](D))

natural in every B in Col([Γ, A]) and D in Col(Γ).

We also give the following lemma which will be useful for the interpretation.

Lemma 4.34. For every Γ in Cont and for every A in Col(Γ) and B in Col([Γ, A]),
the object ΣΓ(A,B) satisfies the following properties. If pΣ

1 := γpΓ
1

: ΣΓ(A,B)→ A

(see lemma 4.22) in Col(Γ), for every f : 1 → A in Col(Γ) and g : 1 → Col
f̃
(B)

in Col(Γ), there is a unique arrow 〈f, g〉Σ : 1→ ΣΓ(A,B) in Col(Γ) for which the
following diagrams commute (the first in Col(Γ), the second in Cont)

1 〈f,g〉Σ //

f

��

ΣΓ(A,B)

pΣ
1{{

[Γ,1] 〈f,g〉Σ //

g

��

[Γ,ΣΓ(A,B)]

'
��

A [Γ,Col
f̃
(B)] q( f̃ , [Γ,A,B]) // [Γ, A,B]

where ' is the isomorphism from [Γ,ΣΓ(A,B)] to [Γ, A,B] defined in lemma 4.12.
Conversely, for every h : 1→ ΣΓ(A,B) in Col(Γ), there is a unique arrow

pΣ
2 (h) : 1→ Col

p̃Σ
1 ◦h

(B)

in Col(Γ) for which the following diagram commutes in Cont

[Γ,1] h //

pΣ
2 (h)
��

[Γ,ΣΓ(A,B)]

'
��

[Γ,Col
p̃Σ

1 ◦h
(B)]

q(p̃Σ
1 ◦h, [Γ,A,B])

// [Γ, A,B]

where f̃ and p̃Σ
1 ◦ h are as in definition 4.32.
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Now, we are going to show that, for any realized collection A in Col(Γ) there
are right adjoints to substitution functors of the kind Colpr[Γ,A] . These right adjoints
will be used to interpret the dependent product sets of mTTa.

Definition 4.35. Let Γ be an object of Cont with `(Γ) = n, A(x|n) an object of
Col(Γ) and B(x|n+1) an object of Col([Γ, A(x|n)]). We define ΠΓ(A(x|n), B(x|n+1))
as follows:

1. x εΠΓ(A(x|n), B(x|n+1)) ≡def

x|n εΓ ∧ ∀t∀s (t ∼A(x|n ) s→ {x}(t) ∼B(x|n ,t) {x}(s));

2. x ∼ΠΓ(A(x|n ),B(x|n+1)) y ≡def x εΠΓ(A(x|n), B(x|n+1))∧

y εΠΓ(A(x|n), B(x|n+1)) ∧ ∀t (t εA(x|n)→ {x}(t) ∼B(x|n ,t) {y}(t)).

Lemma 4.36. Suppose Γ is an object in Cont and A is an object in Col(Γ).
Then the functor sending each object B in Col([Γ, A]) to ΠΓ(A,B) and each arrow
f := γn : B → C in Col([Γ, A]) to the arrow ΠΓ(A, f) from ΠΓ(A,B) to ΠΓ(A,C)
in Col([Γ]) represented by Λx|`(Γ) .Λx.Λy.{n}(x|`(Γ) , y, {x}(y)), in the sense of lemma
4.16, is right adjoint to the functor Colpr[Γ,A], i. e. there is a bijection (see [20])

HomCol(Γ)(D,ΠΓ(A,B)) ∼= HomCol([Γ,A])(Colpr[Γ,A](D), B)

natural in every B in Col([Γ, A]) and D in Col(Γ).

Corollary 4.37. For every Γ in Cont, for every A and C in Col(Γ) and for
every B in Col([Γ, A]), the object ΠΓ(A,B) satisfies the following universal prop-
erty: there is an arrow evΓ

Π from Colpr[Γ,A](ΠΓ(A,B)) to B in Col([Γ, A]) such
that for every f : Colpr[Γ,A](C) → B in Col([Γ, A]), there exists a unique arrow
CurΠ(f) : C → ΠΓ(A,B) in Col(Γ) for which the following diagram commutes in
Col([Γ, A]):

Colpr[Γ,A](C) f //

Colpr[Γ,A] (CurΠ(f))
��

B

Colpr[Γ,A](Π
Γ(A,B))

evΓ
Π

88

Observe that the substitution functor Colf along any morphism f of Cont
preserves left and right adjoints described above as follows:
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Lemma 4.38. Suppose f : Γ′ → Γ in Cont, A is an object of Col(Γ),
f ′ := q(f, [Γ, A]) and B is an object of Col([Γ, A]). Then

1. Colf (ΣΓ(A,B)) = ΣΓ′(Colf (A),Colf ′(B))

2. Colf (ΠΓ(A,B)) = ΠΓ′(Colf (A),Colf ′(B))

Note here that left adjoints and right adjoints to substitution functors of the kind
Colpr[Γ,A] provide respectively binary products and exponentials as follows:

Lemma 4.39. If Γ is an object of Cont and A,B are objects of Col(Γ), then

ΣΓ(A,Colpr[Γ,A](B))) = A×Γ B ΠΓ(A,Colpr[Γ,A](B))) = A⇒Γ B

The following lemma will be useful in the interpretation of mTTa-eliminators
for disjoint sums, natural numbers and lists.

Lemma 4.40. If Γ is an object of Cont, A1, ..., An, B are objects of Col(Γ) and

1. Ã1 := A1

2. Ãi+1 := Colpr(i)
[Γ,Ã1,...,Ãi]

(Ai+1) for i = 1, .., n− 1

3. B̃ := Colpr(n)
[Γ,Ã1,...,Ãn]

(B)

and f := γn : 1→ B̃ in Col([Γ, Ã1, ..., Ãn]), then

fΓ
\ := γn′ : ((A1 ×Γ A2)× ....×Γ An)→ B

where n′ is defined as

Λx|`(Γ) .Λx.{n}(x|`(Γ) , {p
n
1}(x), ..., {pnn}(x), 0)

is a well defined morphism in Col(Γ).

The left and right adjoints to the substitution functors of the kind Colpr[Γ,A] are
enough to provide left and right adjoints to substitution functors along any arrow in
Cont (see for example [26] and loc.cit. for a proof):

Corollary 4.41. For any arrow f in Cont, the substitution functor Colf enjoys
left and right adjoints satisfying Beck-Chevalley conditions.

Moreover, the category Cont is locally cartesian closed (see for instance [36] for
a definition).
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4.4 Families of realized propositions as an indexed category
Here we are going to define an indexed category of realized propositions equipped
with the structure of a first-order Lawvere hyperdoctrine

Prop : Contop → Cat

on the category of realized contexts. This will be used to interpret generic propositions
of mTTa.

We start by giving a lemma characterizing a proof-irrelevant dependent realized
collection, namely a realized collection with at most one element:

Lemma 4.42. Let Γ be an object of Cont and let P be an object of Col(Γ). Then
the following conditions are equivalent:

1. for every object A in Col(Γ), if f, g : A→ P are arrows in Col(Γ), then f = g;

2. πP,P1 = πP,P2 : P ×Γ P → P ;

3. P is proof-irrelevant, i.e. x εP ∧ y εP `
ÎD1

x ∼P y.

Now we define the notion of a family of realized propositions as a proof-irrelevant
dependent realized collection:

Definition 4.43. Let Γ be an object of Cont. A family of realized propositions on
Γ (or a realized proposition depending on Γ) is a proof-irrelevant object of Col(Γ)
as in lemma 4.42.

Definition 4.44. Let Prop(Γ) be the full subcategory of Col(Γ) whose objects are
families of realized propositions on Γ.

Observe that Prop(Γ) is a preorder, as a consequence of point 1. in lemma 4.42.
Hence we put:

Definition 4.45. If Γ is an object of Cont and P and Q are in Prop(Γ), we write

P vΓ Q

if there is an arrow in Prop(Γ) from P to Q. Moreover, if the existing arrow is
called f then we may write

f : P vΓ Q

Moreover, observe also that, contrary to what happens in mTT, in our indexed
category of dependent realized collections it is possible to transform any dependent
realized collection into a dependent realized proposition by quotienting it under the
trivial relation:
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Definition 4.46. If Γ is an object of Cont and A is an object of Col(Γ), then
the proof-irrelevant quotient Pir(A) of A is the object of Prop(Γ) defined by the
following conditions:

1. x εPir(A) ≡def x εA

2. x ∼Pir(A) y ≡def x εA ∧ y εA

Actually, the above operation defines a reflector (see [20] for a definition) from
realized collections to propositions:

Lemma 4.47. For every object Γ of Cont

Pir : Col(Γ) −→ Prop(Γ)

defined as Pir(A) for any object A of Col(Γ) and as γn : Pir(A)→ Pir(B) for every
f := γn : A→ B in Col(Γ), is a reflector of the embedding functor of Prop(Γ) into
Col(Γ). This means that there is a bijection

HomProp(Γ)(Pir(A), P ) ∼= HomCol(Γ)(A,P )

natural in every object A in Col(Γ) and object P in Prop(Γ).

As a consequence, we get that each category of dependent propositions is an
Heyting prealgebra:

Corollary 4.48. Prop(Γ) is an Heyting prealgebra, i. e. it is a preorder with all
binary infima and suprema, bottom and top elements and all Heyting implications
i. e. it is a cartesian closed preorder category with finite coproducts.

Proof. In order to show that Prop(Γ) is an Heyting prealgebra it is sufficient to
show that it has binary infima and suprema, a bottom element, a top element and
Heyting implications. A bottom element is given by ⊥Γ := 0Γ, a top element is
given by >Γ := 1Γ, a binary supremum, a binary infimum and a Heyting implication
for P and Q in Prop(Γ) are P uΓ Q := P ×Γ Q, P tΓ Q := Pir(P +Γ Q) and
P →Γ Q := P ⇒Γ Q respectively.

Observe that a substitution functor Propf along any arrow f in Cont is inherited
from that of Col:

Lemma 4.49. Suppose f : Γ → Γ′ in Cont and suppose P is in Prop(Γ′), then
Colf (P ) is in Prop(Γ). Moreover, Colf |Prop(Γ′) is a morphism of Heyting prealge-
bras, i. e. it preserves ⊥, >, u, t and →.
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Hence we are ready to define Prop as a sub-indexed category of Col:

Definition 4.50. We call Prop : Contop → Cat the indexed category defined by
the assignments A 7→ Prop(A) and f 7→ Propf := Colf |Prop(cod(f)) where cod(f)
denotes the codomain of f .

Now we describe left and right adjoints to substitution functors which are necessary
to interpret existential and universal quantifiers of mTTa respectively:

Definition 4.51. Suppose Γ is an object of Cont, A is an object of Col(Γ) and P
is an object of Prop([Γ, A]), then

1. ∃Γ(A,P ) := Pir(ΣΓ(A,P ))

2. ∀Γ(A,P ) := Pir(ΠΓ(A,P ))

Observe that in Prop(Γ) there are also the propositional equalities of Col(Γ)
and these are preserved by substitution functors:

Lemma 4.52. If Γ is an object of Cont and f, g : 1Γ → A in Col(Γ), then
EqΓ(A, f, g) is an object of Prop(Γ). Morerover, if >Γ vΓ EqΓ(A, f, g), then f is
equal to g in Col(Γ).

Lemma 4.53. Suppose f : Γ′ → Γ is an arrow of Cont, A is an object of Col(Γ)
and g, g′ : 1Γ → A in Col(Γ). Then

Colf (EqΓ(A, g, g′)) = EqΓ′(Colf (A),Colf (g),Colf (g′))

Finally, observe that there exist left and right adjoints to substitution functors
and that Beck-Chevalley conditions hold for them:

Lemma 4.54. For every f : Γ → Γ′ in Cont, Propf : Prop(Γ′) → Prop(Γ) has
a left and right adjoint ∃f : Prop(Γ) → Prop(Γ′) and ∀f : Prop(Γ) → Prop(Γ′)
respectively, i. e. ∃f and ∀f are preorder morphims for which for every P ∈ Prop(Γ′)
and Q ∈ Prop(Γ):

1. Q vΓ Propf (P ) if and only if ∃f (Q) vΓ′ P ,

2. Propf (P ) vΓ Q if and only if P vΓ′ ∀f (Q).

Moreover these adjoints satisfy the Beck-Chevalley condition: for every pullback
square in Cont

Γ′ f ′ //

g′

��

∆′

g

��
Γ f // ∆
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and for every P in Prop(∆′) the following conditions hold7:

1. ∃g′(Propf ′(P )) vΓ Propf (∃g(P )) and Propf (∃g(P )) vΓ ∃g′(Propf ′(P ));

2. ∀g′(Propf ′(P )) vΓ Propf (∀g(P )) and Propf (∀g(P )) vΓ ∀g′(Propf ′(P ));

Proof. Note that if A is an object of Col(Γ) and P is an object of Prop([Γ, A]),
then we can define ∃pr[Γ,A](P ) and ∀pr[Γ,A](P ) as the objects ∃Γ(A,P ) and ∀Γ(A,P )
defined in 4.51 respectively.

From lemmas 4.47, 4.49 and 4.54 we conclude

Corollary 4.55. Prop is a hyperdoctrine in the sense of [37] and its posetal reflection
is a first-order hyperdoctrine in the sense of [32].

4.5 Realized sets and small realized propositions
Here we are going to define a notion of realized set and of small realized proposition
in order to define a sub-indexed category Set of Col

Set : Contop → Cat

and a sub-indexed category of Prop

Props : Contop → Cat

which will be used to interpretmTTa-sets andmTTa-small propositions respectively.
In order to interpret the mTTa-collection of small propositions and that of sets of
section 2.3 following the interpretation in [24], both indexed categories will need
to enjoy a classifier: the fibres of Set will need to be classified by an object US of
Col([ ]) via a natural bijection in Γ

Set(Γ) ' Cont(Γ,US)

and the fibres of Props will need to be classified by an object USP of Col([ ]) via a
natural bijection in Γ

Props(Γ) ' Cont(Γ,USP)

Actually, we will define both indexed categories by using their classifiers: a realized
set depending on Γ will be defined as the dependent realized collection made of
elements of a code in US over Γ and, analogously, a small realized proposition will

7It is sufficient that one of the two conditions holds as the other follows by adjunction.
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be defined as the proof-irrelevant dependent realized collection of elements of a code
in USP over Γ. In turn the objects US and USP will be defined as those used in [24]
to interpret the collection of sets and the collection of small propositions respectively.
Both objects are realized collections according to the terminology used here.

We describe now the construction of US and USP which will make use of fixpoint
formulas of ÎD1 as in [24]. To this purpose, we start by recalling the definition of
Kleene realizability for Heyting Arithmetic since it will be used to define the notion
of element both of a set and of a proposition.

Definition 4.56. For every formula ϕ of HA the formula x k ϕ (x realizes ϕ) is
defined according to the following clauses by external induction on the formation of
formulas (x is a variable which is not free in ϕ).

1. x k t = s is t = s

2. x k (ϕ ∧ ϕ′) is p1(x) k ϕ ∧ p2(x) k ϕ′

3. x k (ϕ ∨ ϕ′) is (p1(x) = 0 ∧ p2(x) k ϕ) ∨ (p1(x) = 1 ∧ p2(x) k ϕ′)

4. x k (ϕ→ ϕ′) is ∀t (t k ϕ→ {x}(t) k ϕ′)

5. x k ∀y ϕ is ∀y ({x}(y) k ϕ)

6. x k ∃y ϕ is p2(x) k ϕ[p1(x)/y]

Then, we define the following formulas in ÎD1 as fixpoints:

1. Set(x) intended to state that x is a code for a set of mTTa;

2. x ε y intended to state that x is an element of the set of mTTa coded by y;

3. x 6 ε y intended to state that x is not an element of the set of mTTa coded by y;

4. x ≡z y intended to state that x and y are equal elements in the set of mTTa

coded by z;

5. x 6≡z y intended to state that x and y are not equal elements of the set of
mTTa coded by z.

We will use such formulas to encode with natural numbers a realizability interpretation
of mTTa-sets in ÎD1: we use natural numbers to represent both realizers and (codes
for) sets and we introduce a membership relation x ε z between natural numbers
(which extends the notion of Kleene realizability) and an equivalence relation x ≡z y
between numbers (realizers) of a (code of a) set z, which will represent the equality
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between its elements. These clauses are similar to those presented in Beeson’s
book ([8]) for the first-order fragment of Martin-Löf type theory with one universe,
except that here we need to deal with mTTa-sets which include an extra notion
of proposition, that of small proposition, defined primitively. As in Beeson’s book
we define also the formal negations x 6 ε z and x 6≡z y in order to give admissible
clauses defining the properties of our new formulas. Then, we will encode the set
constructors N0, N1, N, Σ, Π, +, List, ⊥, ∧, ∨, →, ∃, ∀, Eq. In order to mimic the
dependency, we define a family of sets on a given set as (a code for) a recursive
function defined on the elements of a (code for a) set and producing codes for sets
as outputs provided that some coherence requirements are fulfilled. Formally, we
introduce the formula Fam(y, x) (y is a family of sets on the set x) in order to
capture this idea:

Fam(y, x) ≡def Set(x)∧∀t (t 6 ε x∨Set({y}(t)))∧∀t∀s (t 6≡x s∨{y}(t) =ext# {y}(s))

where x =ext# y is defined as

∀t ((t ε x ∨ t 6 ε y) ∧ (t ε y ∨ t 6 ε x)) ∧ ∀t∀s ((t ≡x s ∨ t 6≡y s) ∧ (t ≡y s ∨ t 6≡x s))

We then declare that y is a family of small propositions with the abbreviation
Famp(y, x) defined formally as

Fam(y, x) ∧ ∀t (t 6 ε x ∨ p1({y}(t)) > 5)

where the last condition means that {y}(t) is a small proposition (see later explana-
tions).

For every constructor κ the clauses for the definitions of the fixpoint formulas
are described by using extra new formulas as follows

1. Set(κ#) if Cond(κ)

2. x ε κ# if Cond(κ) ∧ P κε (x)

3. x 6 ε κ# if Cond(κ) ∧ P κε (x)

4. x ≡κ# y if Cond(κ) ∧ P κε (x) ∧ P κε (y) ∧ P κ≡(x, y)

5. x 6≡κ# y if Cond(κ) ∧ (P κε (x) ∨ P κε (y) ∨ P κ≡(x, y))

where for formulas ϕ in the language of Peano arithmetic enriched with predicate
symbols ε, 6 ε, ≡ and 6≡ and without any occurrence of →, the formula ϕ represents
the negation of φ and is defined according to the following clauses:
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1. for primitive formulas ψ of Peano arithmetic ψ := ¬ψ

2. t ε u is t 6 ε u, t 6 ε u is t ε u, t ≡u s is t 6≡u s and t 6≡u s is t ≡u s

3. ϕ ∧ ϕ′ is ϕ ∨ ϕ′ and ϕ ∨ ϕ′ is ϕ ∧ ϕ′

4. ∃xϕ is ∀xϕ and ∀xϕ is ∃xϕ

Finally, the extra formulas κ#, Cond(κ), P κε and P κ≡ are defined in the following
tables. κ# makes explicit the encoding of sets built using the constructor κ. Cond(κ)
is intended to give the constraints which must be respected to define a set through
the constructor κ and finally P κε and P κ≡ give the clauses for membership and equality
in a set obtained through the constructor κ, respectively.

κ κ# Cond(κ) Pκε (x)

N0 p(1, 0) > ⊥
⊥ p(6, 0)

N1 p(1, 1) > x = 0

N p(1, 2) > x = x

List p(5, a) Set(a) ∀i (i ≥ lh(x) ∨ (x)i ε a)

∧ p(7, p(a, b)) Set(a) ∧ Set(b)∧ p1(x) ε a ∧ p2(x) ε b
p1(a) > 5 ∧ p1(b) > 5

Σ p(2, p(a, b)) Fam(b, a) p1(x) ε a ∧ p2(x) ε {b}(p1(x))
∃ p(10, p(a, b)) Famp(b, a)
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κ κ# Cond(κ) Pκε (x)

→ p(9,p(a,b)) Set(a) ∧ Set(b)∧ ∀t (t 6 ε a ∨ {x}(t) ε b)
p1(a) > 5 ∧ p1(b) > 5

Π p(3, p(a, b)) Fam(b, a) ∀t (t 6 ε a ∨ {x}(t) ε {b}(t))∧
∀ p(11, p(a, b)) Famp(b, a) ∀t∀s(t 6≡a s ∨ {x}(t) ≡{b}(t) {x}(s))

+ p(4, p(a, b)) Set(a) ∧ Set(b) (p1(x) = 0 ∧ p2(x) ε a)∨
∨ p(8, p(a, b)) Set(a) ∧ Set(b)∧ (p1(x) = 1 ∧ p2(x) ε b)

p1(a) > 5 ∧ p1(b) > 5

Eq p(12, p(a, p(b, c))) Set(a) ∧ b ε a ∧ c ε a b ≡a c

κ Pκ≡(x)

N0 ⊥

N1, N x = y

List lh(x) = lh(y) ∧ ∀i (i ≥ lh(x) ∨ (x)i ≡a (y)i)

Σ p1(x) ≡a p1(y) ∧ p2(x) ≡{b}(p1(x)) p2(y)

Π ∀t (t 6 ε a ∨ {x}(t) ≡{b}(t) {y}(t))

+ p1(x) = p1(y)∧
((p1(x) = 0 ∧ p2(x) ≡a p2(y)) ∨ (p1(x) = 1 ∧ p2(x) ≡b p2(y)))

⊥,∧,
∨,→, >
∃,∀,Eq
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Note that, as already anticipated, families x of small propositions are characterized
as those families of sets satisfying the condition p1(x) > 5.

To be more precise, first we define an admissible formula ϕ(x,X) as follows

ϕ(x,X) ≡def ∨
κ ∃a ∃b∃c (

(x = p(20, κ) ∧Cond(κ))∨
∃y (x = p(21, p(y, κ#)) ∧Cond(κ) ∧Pκ

ε (y))∨
∃y (x = p(22, p(y, κ#)) ∧Cond(κ) ∧Pκ

ε (y))∨
∃y ∃z (x = p(23, p(κ#, p(y, z))) ∧Cond(κ) ∧Pκ

ε (y) ∧Pκ
ε (z) ∧Pκ

≡(y, z))∨
∃y ∃z (x = p(24, p(κ#, p(y, z)))∧Cond(κ)∧ (Pκ

ε (y)∨Pκ
ε (z)∨Pκ≡(y, z))))

where the disjunction ∨
κ is the finite disjunction indexed by the constructors κ in

the previous tables and where the boldface versions of Cond(κ), P κε (x) and P κ≡(y, z)
are obtained by substituting Set(u), t ε u, t 6 ε u, s ≡u t and s 6≡u t with p(20, u) εX,
p(21, p(t, u)) εX, p(22, p(t, u)) εX, p(23, p(u, p(s, t))) εX and p(24, p(u, p(s, t))) εX
respectively in the original formulas.

For the sake of example let us show what is the subformula of ϕ(x,X) corre-
sponding to κ equal to N:

∃a ∃b∃c ((x = p(20, p(1, 2)) ∧ >)∨

∃y (x = p(21, p(y, p(1, 2))) ∧ > ∧ y = y)∨

∃y (x = p(22, p(y, p(1, 2))) ∧ > ∧ ¬ y = y)∨

∃y ∃z (x = p(23, p(p(1, 2), p(y, z))) ∧ > ∧ y = y ∧ z = z ∧ y = z)∨

∃y ∃z (x = p(24, p(p(1, 2), p(y, z))) ∧ > ∧ (¬ y = y ∨ ¬ z = z ∨ ¬ y = z)))

Then we consider the fixpoint formula Pϕ(x) corresponding to ϕ(x,X) and we
define

1. Set(x) ≡def Pϕ(p(20, x))

2. x ε y ≡def Pϕ(p(21, p(x, y)))

3. x 6 ε y ≡def Pϕ(p(22, p(x, y)))

4. x ≡z y ≡def Pϕ(p(23, p(z, p(x, y))))

5. x 6≡z y ≡def Pϕ(p(24, p(z, p(x, y))))
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In this framework we can define the following formulas:

• Coh(x) ≡def ∀t (t ε x ↔ ¬(t 6 ε x)) ∧ ∀t ∀s (t ≡x s ↔ ¬(t 6≡x s)) stating that
the formulas t 6 ε x and t 6≡x s defined by fixpoint behave really like negations
of t ε x and t ≡x s respectively;

• Wd(x) ≡def ∀t∀s (t ≡x s → t ε x ∧ s ε x) stating that the relation t ≡x s is
well defined on x;

• Ref(x) ≡def ∀t (t ε x↔ t ≡x t) stating that the relation t ≡x s is reflexive on
x;

• Sym(x) ≡def ∀t∀s (t ≡x s → s ≡x t) stating that the relation t ≡x s is
symmetric;

• Tra(x) ≡def ∀t∀s∀u (t ≡x s ∧ s ≡x u → t ≡x u) stating that the relation
t ≡x s is transitive;

• EqR(x) ≡def Ref(x) ∧ Sym(x) ∧ Tra(x) stating that the relation t ≡x s is
an equivalence relation on x;

• PrIrr(x) ≡def ∀t∀s (t ε x ∧ s ε x↔ t ≡x s) stating that the relation t ≡x s is
trivial on x (i. e. x is proof-irrelevant);

• x =ext y ≡def ∀t∀s (t ≡x s ↔ t ≡y s) stating that two sets are defined
extensionally equal if they share the same equivalent (equal) elements.

Notice that the following hold:

• ÎD1 ` Ref(x) ∧ Ref(y) ∧ x =ext y → ∀t (t ε x↔ t ε y) namely, two reflexive
sets are extensionally equal if and only if they share the same elements;

• ÎD1 ` PrIrr(x)→ EqR(x)

• ÎD1 ` EqR(x)→Wd(x)

4.5.1 The classifier of realized sets and that of small realized proposi-
tions

Definition 4.57. We define the collection US as the universe of codes for sets with
extensional equality:

• |US| := {x |Set(x) ∧ Coh(x) ∧ EqR(x)}
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• x ∼US y is x εUS ∧ y εUS ∧ x =ext y

Definition 4.58. We define the collection USP as the universe of codes for small
propositions:

• |USP| := {x |Set(x) ∧ p1(x) > 5 ∧ Coh(x) ∧ PrIrr(x)}

• x ∼USP y is x εUSP ∧ y εUSP ∧ x =ext y

Definition 4.59. For every object Γ in Cont we define the following families of
collections in Col(Γ):

USΓ := Col!Γ,[ ](US) USPΓ := Col!Γ,[ ](USP)

Definition 4.60. For any object Γ of Cont we define τΓ as the collection depending
on x`(Γ)+1 determined by the following conditions:

• x ε τΓ is x ε x`(Γ)+1 ∧ x|`(Γ) εΓ ∧ x`(Γ)+1 εUS

• x ∼τΓ y is x ≡x`(Γ)+1 y ∧ x|`(Γ) εΓ ∧ x`(Γ)+1 εUS

Lemma 4.61. Suppose Γ is an object of Cont. Then τΓ is an object of Col([Γ,USΓ])
and the following are well defined arrows in Col(Γ):

• N̂0
Γ := γΛx|`(Γ) .Λx.{p}(1,0) and N̂1

Γ := γΛx|`(Γ) .Λx.{p}(1,1) and

N̂Γ := γΛx|`(Γ) .Λx.{p}(1,2) from 1Γ to USΓ

• Σ̂Γ := γΛx|`(Γ) .Λx.{p}(2,x) and Π̂Γ := γΛx|`(Γ) .Λx.{p}(3,x)

from ΣΓ(USΓ, τΓ ⇒[Γ,USΓ] US[Γ,USΓ]) to USΓ

• +̂Γ := γΛx|`(Γ) .Λx.{p}(4,x) from USΓ ×Γ USΓ to USΓ

• L̂istΓ := γΛx|`(Γ) .Λx.{p}(5,x) from USΓ to USΓ

• ⊥̂Γ := γΛx|`(Γ) .Λx.{p}(6,0) : 1Γ → USPΓ

• ∧̂ Γ := γΛx|`(Γ) .Λx.{p}(7,x) and ∨̂ Γ := γΛx|`(Γ) .Λx.{p}(8,x)

and →̂Γ := γΛx|`(Γ) .Λx.{p}(9,x) from USPΓ ×Γ USPΓ to USPΓ
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• ∃̂Γ := γΛx|`(Γ) .Λx.{p}(10,x) and ∀̂Γ := γΛx|`(Γ) .Λx.{p}(11,x)

from ΣΓ(USΓ, τΓ ⇒[Γ,USΓ] USP[Γ,USΓ]) to USPΓ

• ÊqΓ := γΛx|`(Γ) .Λx.{p}(12,x)

from ΣΓ(USΓ, τΓ ×[Γ,USΓ] τΓ) to USPΓ

• σΓ := γΛx|`(Γ) .Λx.x
from USPΓ to USΓ

4.6 Dependent realized sets and small realized propositions and
their indexed categories

Here we finally give the definitions of realized sets and of small realized propositions
by using their classifiers.

Note that, for any context Γ, any generalized element of US over Γ (i. e. an arrow
from Γ to US) in Cont, or equivalently any global element of USΓ in Col(Γ) gives
rise to a realized collection in Col(Γ):

Lemma 4.62. Let Γ be an object of Cont with `(Γ) = n.
Suppose f = γnf : 1Γ → USΓ (recall the notation in lemma 4.16) in Col(Γ).

Then the collection τΓ
s (f) of ÎD1 depending on x|n defined by

1. x ε τΓ
s (f) ≡def x|n εΓ ∧ x ε {nf}(x|n , 0)

2. x ∼τΓ
s (f) y ≡def x|n εΓ ∧ x ≡{nf}(x|n ,0) y

is a well defined object of Col(Γ). Moreover, for arrows f, g : 1Γ → USΓ in Col(Γ),
if τΓ

s (f) is equal to τΓ
s (g), then f and g are equal arrows in Col(Γ).

Note that any global element of USPΓ in Col(Γ), or equivalently any generalized
element of USP over Γ in Cont, gives rise to a realized proposition in Prop(Γ):

Lemma 4.63. Let Γ be an object of Cont with `(Γ) = n.
Suppose f = γnf : 1Γ → USPΓ, then the collection τΓ

sp(f) of ÎD1 depending on
x|n defined by

1. x ε τΓ
sp(f) ≡def x|n εΓ ∧ x ε {nf}(x|n , 0)

2. x ∼τΓ
sp(f) y ≡def x|n εΓ ∧ x ≡{nf}(x|n ,0) y

is a well defined object of Prop(Γ). Moreover, for arrows f, g : 1Γ → USPΓ in
Col(Γ), if τΓ

sp(f) is equal to τΓ
sp(g), then f and g are equal arrows in Col(Γ).
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Finally, we define a realized set depending on a context Γ as the collection of
elements of a global element of USΓ in Col(Γ) or, equivalently, of a generalized
element of US over Γ in Cont:
Definition 4.64. If Γ is an object of Cont, a realized set depending on Γ (or a
family of realized sets on Γ) is a realized collection of the form τΓ

s (f) for an arrow
f : 1Γ → USΓ in Col(Γ).

Analogously, we define a small realized proposition depending on a context Γ as
the collection of elements of a global element of USPΓ in Col(Γ) or, equivalently, of
a generalized element of USP over Γ in Cont:
Definition 4.65. If Γ is an object of Cont, a small realized proposition depending
on Γ (or a family of realized small propositions on Γ) is a realized collection of the
form τΓ

sp(f) for an arrow f : 1Γ → USPΓ in Col(Γ).
Now we are ready to define the indexed category of realized sets and that of small

realized propositions. We start by defining their fibres as follows:
Definition 4.66. If Γ is an object of Cont, we define Set(Γ) as the full subcategory
of Col(Γ) whose objects are realized sets depending on Γ.

Moreover, if A is an object of Set(Γ), we write enΓ
s (A) for the arrow satisfying

A = τΓ
s (enΓ

s (A)).
Definition 4.67. If Γ is an object of Cont, we define Props(Γ) as the full subcate-
gory of Col(Γ) whose objects are small realized propositions depending on Γ.

The substitution functors for Set and Props will be both inherited from those
of Col:
Lemma 4.68. If f : Γ′ → Γ in Cont and A is an object of Set(Γ) (resp. of
Props(Γ)), then Colf (A) is an object of Set(Γ′) (resp. of Props(Γ′)).
Definition 4.69. The pair of assignments

Γ 7→ Set(Γ) f 7→ Setf := Colf |Set(cod(f))

where cod(f) is the codomain of f , defines an indexed category,

Set : Contop → Cat

Definition 4.70. The pair of assignments

Γ 7→ Props(Γ) f 7→ Props,f := Colf |Props(cod(f))

where cod(f) is the codomain of f , defines an indexed category

Props : Contop → Cat
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The indexed category of small realized propositions is a sub-indexed category of
that of realized sets:

Lemma 4.71. If Γ is an object of Cont, every object in Props(Γ) is also in Set(Γ).

The following lemma is instrumental to show that the fibres of Set and of Props
are closed under finite limits, finite coproducts, function spaces and under left and
right adjoints to substitution functors along morphisms of the kind pr[Γ,A] for any A
in Set(Γ) (they are not closed under left and right adjoints to substitution functors
along any morphism of Cont for predicativity reasons!). Moreover, from this lemma
it also follows that each fibre of Set is closed under list objects and contains the
natural numbers object of the corresponding fibre of Col.

Lemma 4.72. Let Γ be an object of Cont. Then

1. ⊥Γ is in Props(Γ);

2. 0Γ, 1Γ and NΓ are in Set(Γ);

3. if A and B are in Set(Γ), then A×Γ B, A+Γ B and A⇒Γ B are in Set(Γ);

4. if A is in Set(Γ), then ListΓ(A) is in Set(Γ);

5. if A is in Set(Γ) and B is in Set([Γ, A]), then ΠΓ(A,B) and ΣΓ(A,B) are in
Set(Γ);

6. if P and Q are in Props(Γ), then P tΓ Q, P uΓ Q and P →Γ Q are in
Props(Γ);

7. if A is in Set(Γ) and P is in Props([Γ, A]), then ∀Γ(A,P ) and ∃Γ(A,P ) are
in Props(Γ);

8. if A is in Set(Γ), for arrows f, g : 1Γ → A in Col(Γ), then EqΓ(A, f, g) is in
Props(Γ).

The following lemma will be useful to validate the equality rules of the collection
of small propositions in mTTa.

Lemma 4.73. Let Γ be an object of Cont, let f : 1→ USΓ, p, p′ : 1→ USPΓ and
g, g′ : 1 → τΓ

s (f) be arrows in Col(Γ) and let h : 1 → USP[Γ,τΓ
s (f)] be an arrow in

Col([Γ, τΓ
s (f)]). Then in Props(Γ) (recall the notation in lemma 4.40):

1. τΓ
sp(⊥̂Γ) coincides with ⊥Γ;
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2. τΓ
sp( ∧̂

Γ ◦ 〈p, p′〉) coincides with τΓ
sp(p) uΓ τΓ

sp(p′);

3. τΓ
sp( ∨̂

Γ ◦ 〈p, p′〉) coincides with τΓ
sp(p) tΓ τΓ

sp(p′);

4. τΓ
sp(→̂Γ ◦ 〈p, p′〉) coincides with τΓ

sp(p)→Γ τΓ
sp(p′);

5. τΓ
sp(∃̂Γ ◦ 〈f,Cur(hΓ

\ ◦ π
1,τΓ

s (f)
2 )〉Σ) coincides with ∃Γ(τΓ

s (f), τ [Γ,τΓ
s (f)]

sp (h));

6. τΓ
sp(∀̂Γ ◦ 〈f,Cur(hΓ

\ ◦ π
1,τΓ

s (f)
2 )〉Σ) coincides with ∀Γ(τΓ

s (f), τ [Γ,τΓ
s (f)]

sp (h));

7. τΓ
sp(ÊqΓ ◦ 〈f, 〈g, g′〉〉Σ) coincides with Eq(τΓ

s (f), g, g′);

4.7 Structure of the effective pretripos
What shown so far, together with well known results in categorical logic (see [32],
[37], [26]), allows to prove the following:

Theorem 4.74. The functor

Col : Contop → Cat

is an indexed category whose fibres Col(Γ) for any Γ in Cont are finitely complete
cartesian closed categories with finite coproducts and list objects. Moreover, for any
morphism f in Cont the substitution functor Colf preserves the mentioned fibre
structure and it has both left and right adjoints satisfying Beck-Chevalley conditions.
Finally, the fibre on the terminal object Col([ ]) is equivalent to Cont itself making
it a locally cartesian closed category.

The functor
Prop : Contop → Cat

is an indexed full subcategory of Col which is also a hyperdoctrine according to the
notion defined in [37], and its posetal reflection it is a first order hyperdoctrine in
the sense of [32].

The functor
Set : Contop → Cat

is an indexed full subcategory of Col whose fibres are also finitely complete cartesian
closed categories with finite coproducts and list objects. Moreover, for any morphism
f in Cont, the substitution functor Setf preserves the mentioned fibre structure and,
for any f = pr[Γ,A] with A in Set(Γ), it has both left and right adjoints satisfying
Beck-Chevalley conditions.
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The functor
Props : Contop → Cat

is an indexed full subcategory both of Prop and of Set whose fibres are Heyting pre-
algebras. Moreover, for any morphism f in Cont, the substitution functor (Props)f
preserves the mentioned fibre structure and for any f = pr[Γ,A] with A in Set(Γ) it
has both left and right adjoints satisfying Beck-Chevalley conditions.

Furthermore, for every object Γ in Cont the object US allows to represent the
functor Set in the sense that there is a bijection

Cont(Γ,US) ' Set(Γ)

natural in Γ and the object USP allows to represent Props in the sense that there is
a bijection

Cont(Γ,USP) ' Props(Γ)

natural in Γ.
Finally all the embeddings in the below diagram preserve the relevant mentioned

structures of each indexed category:

Set � � // Col

Props
� � //?�

OO

Prop
?�

OO

Definition 4.75. The 5-tuple (Cont,Col,Set,Prop,Props) is called the effective
pretripos for mTT.

We will see later that the principle of formal Church thesis will be validated in
the effective pretripos for mTT.

5 The interpretation of the Minimalist Foundation

Here we give a partial interpretation I of precontexts and of types and terms in
precontext of the fully annotated syntax of mTTa in our effective pretripos for mTT
following Streicher’s technique in [38]. We call the resulting model R.

Definition 5.1. The validity of judgements in the model (R � J) is defined as
follows:
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R � if
Γ context I(Γ) is well defined and is an object of Cont
B col [Γ] R � Γ context

and I(B [Γ]) is a well defined object of Col(I(Γ))
Aset [Γ] R � Acol [Γ]

and I(A [Γ]) is an object of Set(I(Γ))
φ prop [Γ] R � φ col [Γ]

and I(φ [Γ]) is an object of Prop(I(Γ))
φ props [Γ] R � φ col [Γ]

and I(φ [Γ]) is an object of Props(I(Γ))
A = B type [Γ] R � A type and R � B type

type ∈ and I(A[Γ]) and I(B[Γ])
{col, set, prop, props} are equal objects of Col(I(Γ))

a ∈ A [Γ] R � Acol [Γ] and I(a[Γ]) is well defined
and I(a[Γ]) : 1I(Γ) → I(A[Γ]) is in Col(I(Γ))

a = b ∈ A [Γ] R � a ∈ A and R � b ∈ A
and I(a[Γ]) and I(b[Γ]) are equal arrows of Col(I(Γ))

Definition 5.2. If mTTa ` φ prop [Γ] we will say that R validates φ in context Γ,
also written R � φ [Γ], if we have that R � φ prop [Γ] and >I(Γ) vI(Γ) I(φ[Γ]) in
Prop(I(Γ)).

In the next subsections we will omit superscripts and subscripts in the categorical
notation when they will be clear from the context.

5.1 Precontexts

We interpret precontexts as objects of Cont as follows:

I([ ]) := [ ] ∈ Ob(Cont);

I([Γ, x ∈ A]) := [I(Γ), I(A[Γ])] provided that I(Γ) is a well defined object of
Cont and I(A[Γ]) is a well defined object of Col(Γ).

5.2 Variables
If Γ := [x1 ∈ A1, ..., xn ∈ An], then variables in context are defined as arrows in
Col(Γ) as follows
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1
I(x1∈A1[Γ]):=γ

π
n+1
1 // Colpr(n)

I(Γ)
(I(A1[ ]))

1
I(xi+1∈Ai+1[Γ]):=γ

π
n+1
i+1 // Colpr(n−i)I(Γ)

(I(Ai+1[x1 ∈ A1, ..., xi ∈ Ai]))
if 1 ≤ i ≤ n− 1.

provided that I(Γ) is a well defined object of Cont.

5.3 Basic sets
We interpret the emptyset, the singleton and the natural numbers type as follows:

I(N0[Γ]) := 0I(Γ) I(N1[Γ]) := 1I(Γ) I(N[Γ]) := NI(Γ)

provided that I(Γ) is a well defined object of Cont.
The interpretation of the emptyset eliminator empA0 (a)[Γ] is defined as the com-

posed arrow in the following commuting diagram in Col(I(Γ))

1 I(a[Γ]) //

I(empA0 (a)[Γ]) ##

0
!0,I(A[Γ])
��

I(A[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to 0 in Col(I(Γ)).

The interpretation of the singleton constant ?[Γ] is I(?[Γ]) := id1 : 1 → 1 in
Col(I(Γ)), provided that I(Γ) is a well defined object of Cont.

The interpretation of the singleton eliminator ElAN1(b, a)[Γ] is defined as the
composed arrow in the following commuting diagram in Col(I(Γ))

1 I(b[Γ]) //

I(ElAN1
(b,a)[Γ]) ##

1
I(a[Γ])
��

I(A[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)), I(b[Γ]) is a well defined arrow from 1 to 1 in Col(I(Γ)) and I(a[Γ])
is a well defined arrow from 1 to I(A[Γ]) in Col(I(Γ)).

The interpretation of the constant 0[Γ] is defined as I(0[Γ]) := z : 1 → N in
Col(I(Γ)), provided that I(Γ) is a well defined object of Cont.
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The interpretation of the successor constructor succ(a)[Γ] is defined as
I(succ(a)[Γ]) := s ◦ I(a[Γ]) : 1→ N

in Col(I(Γ)) according with the notation in remark 4.30, provided that I(Γ) is a well
defined object of Cont and I(a[Γ]) is a well defined arrow from 1 to N in Col(I(Γ)).

The interpretation of the natural numbers eliminator ElAN(a, b, (x) c)[Γ] is defined
as
I(ElAN(a, b, (x) c)[Γ]) := rec( I(b[Γ]), I(c[Γ, x ∈ A])I(Γ)

\ ) ◦ I(a[Γ]) : 1→ I(A[Γ])
in Col(I(Γ)) according with the notation in remark 4.30 and lemma 4.40, provided
that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object of
Col(I(Γ)), I(a[Γ]) is a well defined arrow from 1 to N in Col(I([Γ])), I(b[Γ]) is
a well defined arrow from 1 to I(A[Γ]) in Col(I([Γ])) and I(c[Γ, x ∈ A]) is a well
defined arrow from 1 to Colpr(I(A[Γ])) in Col(I([Γ, x ∈ A])).

5.4 Dependent sums
We interpret the dependent sum as follows:

I((Σx ∈ A)B[Γ]) := ΣI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))
provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Col(I([Γ, x ∈ A])). The
interpretation of the pairing of the dependent sum 〈a, b〉A,(x)B[Γ] is defined as
I(〈a, b〉A,(x)B[Γ]) := 〈I(a[Γ]), I(b[Γ])〉Σ : 1→ ΣI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

with reference to lemma 4.34 provided that I(Γ) is a well defined object of Cont,
I(A[Γ]) is a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined
object of Col(I([Γ, x ∈ A])), I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]) in
Col(I([Γ])) and I(b[Γ]) is a well defined arrow from 1 to ColĨ(a[Γ])

( I(B[Γ, x ∈ A]) )
in Col(I([Γ])).

The interpretations of the projections of the dependent sum π
A,(x)B
1 (c)[Γ] and

π
A,(x)B
2 (c)[Γ] are defined as follows

I(πA,(x)B
1 (c)[Γ]) := pΣ

1 ◦ I(c[Γ]) : 1→ I(A[Γ])

I(πA,(x)B
2 (c)[Γ]) := pΣ

2 (I(c[Γ])) : 1→ Col ˜pΣ
1 ◦I(c[Γ])

(I(B[Γ]))

with reference to lemma 4.34 provided that I(Γ) is a well defined object of Cont,
I(A[Γ]) is a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object
of Col(I([Γ, x ∈ A])) and I(c[Γ]) is a well defined arrow in Col(I(Γ)) from 1 to
ΣI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A])).
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5.5 Dependent products
We interpret the dependent product as follows:

I((Πx ∈ A)B[Γ]) := ΠI(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Col(I([Γ, x ∈ A])).

The interpretation of the lambda-abstraction (λx)A,Bb[Γ] is defined as

I((λx)A,Bb[Γ]) := CurΠ(I(b[Γ, x ∈ A])) : 1→ ΠI(Γ)(I(A), I(B[Γ, x ∈ A]))

in Col(I(Γ)) where CurΠ(I(b[Γ, x ∈ A])) is the arrow (see corollary 4.37) making
the following diagram commute in Col([I(Γ), I(A[Γ])])

1
I(b[Γ,x∈A]) //

Colpr(CurΠ(I(b[Γ,x∈A])))
��

I(B[Γ, x ∈ A])

Colpr(ΠI(Γ)(I(A), I(B[Γ, x ∈ A])))
evΓ

Π

44

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object of Col(I([Γ, x ∈ A])) and
I(b[Γ, x ∈ A]) is a well defined arrow from 1 to I(B[Γ, x ∈ A]) in Col(I([Γ, x ∈ A])).

The interpretation of the application ApA,(x)B(c, a)[Γ] is defined as the unique
arrow directed towards the pullback of Ĩ(a[Γ]) along pr[I(Γ), I(A[Γ]), I(B[Γ,x∈A])] (which
is the middle rectangle in the following diagram defined as in lemma 4.20) making
the following diagram in Cont commute (with the notation of lemma 4.40)

[I(Γ), 1]

id

��

I(ApA,(x)B(c,a)[Γ])

**

I(a[Γ])×I(c[Γ])//
[I(Γ), I(A[Γ])× Π(I(A[Γ]), I(B[Γ, x ∈ A]))]

evΠ◦'1

++
[I(Γ),ColĨ(a[Γ])

(I(B[Γ, x ∈ A]))] //

pr

��

[I(Γ), I(A[Γ]), I(B[Γ, x ∈ A])]

pr

��
I(Γ)

Ĩ(a[Γ]) //

'2

��

[I(Γ), I(A[Γ])]

[I(Γ), 1]

I(a[Γ])

33

where '1 is the isomorphism from [I(Γ), I(A[Γ]) × Π(I(A[Γ]), I(B[Γ, x ∈ A]))]
to [I(Γ), I(A[Γ]),Colpr[Γ,I(A[Γ])]Π(I(A[Γ]), I(B[Γ, x ∈ A]))] in Cont defined as in
lemma 4.12 thanks to lemma 4.39 and '2 is the inverse of the isomorphism pr[Γ,1].
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This arrow exists thanks to corollary 4.37, provided that I(Γ) is a well defined
object of Cont, I(A[Γ]) is a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is
a well defined object of Col(I([Γ, x ∈ A])), I(a[Γ]) is a well defined arrow from
1 to I(A[Γ]) in Col(I([Γ])) and, finally, I(c[Γ]) is a well defined arrow from 1 to
Π(I(A[Γ]), I(B[Γ, x ∈ A])) in Col(I([Γ])).

5.6 Disjoint sums

We interpret the disjoint sum as follows:

I(A+B[Γ]) := I(A[Γ]) +I(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Col(I(Γ)).

The interpretation of the first injection of the disjoint sum inlA,B(a)[Γ] is defined
as the composed arrow making the following diagram commute in Col(I(Γ))

1 I(a[Γ]) //

I(inlA,B(a)[Γ]) &&

I(A[Γ])

j1
��

I(A[Γ]) + I(B[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and I(B[Γ]) are well
defined objects of Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to I(A[Γ])
in Col(I(Γ)).

The interpretation of the second injection of the disjoint sum inrA,B(b)[Γ] is
defined as the composed arrow making the following diagram commute in Col(I(Γ))

1 I(b[Γ]) //

I(inrA,B(b)[Γ]) &&

I(B[Γ])

j2
��

I(A[Γ]) + I(B[Γ])

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and I(B[Γ]) are well
defined objects of Col(I(Γ)) and I(b[Γ]) is a well defined arrow from 1 to I(B[Γ])
in Col(I(Γ)).

The interpretation of the eliminator of the disjoint sum ElA,B,C+ (c, (x) d, (y) e)[Γ]
is defined as f ◦ I(c[Γ]) in the following commuting diagram in Col(I(Γ)) (with the
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notation of lemma 4.40)

1

I(c[Γ])

��

I(ElA,B,C+ (c,(x) d,(y) e)[Γ])

��

I(A[Γ]) j1 //

I(d[Γ, x∈A])I(Γ)
\ **

I(A[Γ]) + I(B[Γ])

f

��

I(B[Γ])j2oo

I(e[Γ, y∈B])I(Γ)
\tt

I(C[Γ])

where the existence and uniqueness of f is guaranteed by lemma 4.26, provided that
I(Γ) is a well defined object of Cont, I(A[Γ]), I(B[Γ]) and I(C[Γ]) are well defined
objects of Col(I(Γ)), I(c[Γ]) is a well defined arrow from 1 to I(A[Γ]) + I(B[Γ])
in Col(I(Γ)), I(d[Γ, x ∈ A]) is a well defined arrow from 1 to Colpr(I(C[Γ])) in
Col(I([Γ, x ∈ A])) and, finally, I(e[Γ, y ∈ B]) is a well defined arrow from 1 to
Colpr(I(C[Γ])) in Col(I([Γ, y ∈ B])).

5.7 Lists
We interpret the type of lists on a type as follows:

I(List(A)[Γ]) := ListI(Γ)(I(A[Γ]))

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a well defined
object of Col(I(Γ)).

The interpretation of the empty list εA[Γ] is defined as

I(εA[Γ]) := ε : 1→ List(I(A[Γ]))

in Col(I(Γ)) provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a
well defined object of Col(I(Γ)).

The interpretation of the list constructor consA(b, a)[Γ] is defined as the composed
arrow making the following diagram commute in Col(I(Γ))

1
〈I(b[Γ]), I(a[Γ])〉 //

I(consA(b,a)[Γ]) ++

List(I(A[Γ]))× I(A[Γ])

cons
��

List(I(A[Γ]))
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provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a well defined
object of Col(I(Γ)) and I(b[Γ]) is a well defined arrow from 1 to List(I(A[Γ])) in
Col(I(Γ)) while I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]).

The interpretation of the list eliminator ElA,BList (a, b, (x, y) c)[Γ] is defined as the
composed arrow f ◦ I(a[Γ]) making the following diagram commute in Col(I(Γ))
(with notation as in lemma 4.40)

1

I(a[Γ])

��

I(ElA,BList (a,b,(x,y) c)[Γ])

��

1
ε
//

I(b[Γ]) %%

List(I(A[Γ]))

f

��

List(I(A[Γ]))× I(A[Γ])cons
oo

f×id
��

I(B[Γ]) I(B[Γ])× I(A[Γ])
I(c[Γ,x∈B,y∈A])I(Γ)

\

oo

where the existence and uniqueness of f is guaranteed by lemma 4.28, provided
that I(Γ) is a well defined object of Cont, I(A[Γ]) and I(B[Γ]) are well defined
objects of Col(I(Γ)), I(a[Γ]) is a well defined arrow from 1 to List(I(A[Γ])) in
Col(I(Γ)) and I(b[Γ]) is a well defined arrow from 1 to I(B[Γ]) in Col(I(Γ))
and I(c[Γ, x ∈ B, y ∈ A]) is a well defined arrow from 1 to Colpr(2)(I(B[Γ])) in
Col([I(Γ), I(B[Γ]),Colpr(I(A[Γ]))]).

5.8 Collection of small propositions
The collection of small propositions is interpreted as follows:

I(Props[Γ]) := USPI(Γ)

provided that I(Γ) is a well defined object of Cont.
Recalling lemma 4.61, we define the interpretation of terms as follows.
The interpretation of the falsum code ⊥̂[Γ] is defined as

I(⊥̂[Γ]) := ⊥̂ : 1→ USPI(Γ)

provided that I(Γ) is a well defined object of Cont.
The interpretations of the conjunction code a ∧̂ b [Γ], the disjunction code a ∨̂ b [Γ]

and the implication code a→̂b [Γ] are defined as the composed arrows making the
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following diagrams commute in Col(I(Γ))

USPI(Γ) × USPI(Γ) ∧̂ // USPI(Γ) USPI(Γ) × USPI(Γ) ∨̂ // USPI(Γ)

1
I(a ∧̂ b[Γ])

66

〈I(a[Γ]), I(b[Γ])〉
OO

1
I(a ∨̂ b[Γ])

66

〈I(a[Γ]), I(b[Γ])〉
OO

USPI(Γ) × USPI(Γ) →̂ // USPI(Γ)

1
I(a→̂b[Γ])

66

〈I(a[Γ]), I(b[Γ])〉
OO

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) and I(b[Γ]) are well
defined arrows from 1 to USPI(Γ) in Col(I(Γ)).

The interpretations of the existential quantification code ̂(∃x ∈ A)b[Γ] and the
universal quantification code ̂(∀x ∈ A)b[Γ] are defined as the composed arrows making
the following diagrams commute in Col(I(Γ))

1

I( ̂(∃x∈A)b[Γ])
--

famp(I(b[Γ, x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ USP[I(Γ),USI(Γ)])

∃̂
��

USP

1

I( ̂(∀x∈A)b[Γ])
--

famp(I(b[Γ, x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ USP[I(Γ),USI(Γ)])

∀̂
��

USP

where famp(I(b[Γ, x ∈ A])) is defined using the notation in definition 4.66 and
lemma 4.40 as

〈enI(Γ)
s (I(A[Γ])),Cur(I(b[Γ, x ∈ A])I(Γ)

\ ◦ π1,I(A[Γ])
2 )〉Σ

provided that I(Γ) is a well defined object in Cont, I(A[Γ]) is a well defined object
of Set(I(Γ)) and I(b[Γ, x ∈ A]) is a well defined arrow from 1 to USPI([Γ,x∈A]) in
Col(I([Γ, x ∈ A])).
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The interpretations of the propositional equality code Êq(A, a, b)[Γ] is defined as
the composed arrow making the following diagram commute in Col(I(Γ))

1

I(Êq(A,a,b)[Γ])
,,

〈 enI(Γ)
s (I(A[Γ])) , 〈I(a[Γ]), I(b[Γ])〉 〉Σ // Σ(USI(Γ), τI(Γ) × τI(Γ))

Êq
��

USPI(Γ)

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is well defined object
of Set(I(Γ)) and I(a[Γ]) and I(b[Γ]) are well defined arrows from 1 to I(A[Γ]) in
Col(I(Γ)).

5.9 Collection of sets
We interpret the collection of sets as follows

I(Set[Γ]) := USI(Γ)

provided that I(Γ) is a well defined object of Cont.
Recalling lemma 4.61, we define the interpretation of terms as follows.
The interpretation of the empty set code N̂0, the singleton code N̂1 and the

natural numbers set code N̂ are defined as follows: I(N̂0[Γ]) := N̂0 : 1 → USI(Γ),
I(N̂1[Γ]) := N̂1 : 1 → USI(Γ) and I(N̂[Γ]) := N̂ : 1 → USI(Γ) in Col(I(Γ)), all
provided that I(Γ) is a well defined object of Cont.

The interpretation of the disjoint sum code a +̂ b[Γ] is defined as the composed
arrow making the following diagram commute in Col(I(Γ))

USI(Γ) × USI(Γ) +̂ // USI(Γ)

1
I(a +̂ b[Γ])

77

〈I(a[Γ]), I(b[Γ])〉
OO

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) and I(b[Γ]) are well
defined arrows from 1 to USI(Γ) in Col(I(Γ)).

The interpretation of the list set code L̂ist(a)[Γ] is defined as the composed arrow
making the following diagram commute in Col(I(Γ))

USI(Γ) L̂ist // USI(Γ)

1
I(L̂ist(a)[Γ])

99

I(a[Γ])

OO
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provided that I(Γ) is a well defined object of Cont and I(a[Γ]) is a well defined
arrow from 1 to USI(Γ) in Col(I(Γ)).

The interpretation of the dependent sum code ̂(Σx ∈ A)b[Γ] and the dependent
product code ̂(Πx ∈ A)b[Γ] are defined as the composed arrows making the following
diagrams commute in Col(I(Γ))

1

I( ̂(Σx∈A)b[Γ])
,,

fam(I(b[Γ,x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ US[I(Γ),USI(Γ)])

Σ̂
��

USI(Γ)

1

I( ̂(Πx∈A)b[Γ])
,,

fam(I(b[Γ,x∈A])) // Σ(USI(Γ), τI(Γ) ⇒ US[I(Γ),USI(Γ)])

Π̂
��

USI(Γ)

where fam(I(b[Γ, x ∈ A])) is defined using the notation in definition 4.66 and
lemma 4.40 as

〈enI(Γ)
s (I(A[Γ])),Cur(I(b[Γ, x ∈ A])I(Γ)

\ ◦ π1,I(A[Γ])
2 )〉Σ

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is well defined object
of Set(I(Γ)) and I(b[Γ, x ∈ A]) is a well defined arrow from 1 to USI([Γ,x∈A]) in
Col(I([Γ, x ∈ A])).

The interpretation of the small proposition code σ(a)[Γ] is defined as the composed
arrow making the following diagram commute in Col(I(Γ))

1

I(σ(a)[Γ])
,,

I(a[Γ]) // USPI(Γ)

σ

��
USI(Γ)

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) is a well defined
arrow from 1 to USPI(Γ) in Col(I(Γ)).

5.10 Collection of propositional functions
We interpret the collection of propositional functions as follows:

I(A⇒ Props[Γ]) := I(A[Γ])⇒I(Γ) USPI(Γ)
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provided that I(Γ) is a well defined object of Cont and I(A[Γ]) is a well defined
object of Col(I(Γ)).

The interpretation of the propositional function lambda-abstraction (λx)A⇒b[Γ] is
defined as the unique arrow (see lemma 4.27) making the following diagram commute
in Col(I(Γ)) (with notation in lemma 4.40)

I(A[Γ])

〈!,id〉
��

I(b[Γ,x∈A])I(Γ)
\ // USPI(Γ)

1× I(A[Γ]) I((λx)A⇒b[Γ])×id // (I(A[Γ])⇒ USPI(Γ))× I(A[Γ])

ev

OO

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(b[Γ, x ∈ A]) is a well defined arrow from 1 to USPI([Γ,x∈A]) in
Col(I([Γ, x ∈ A])).

The interpretation of the propositional function application ApA⇒(c, a)[Γ] is defined
as the composed arrow making the following diagram commute in Col(I(Γ))

1 〈I(c[Γ]), I(a[Γ])〉 //

I(ApA⇒(c,a)[Γ])
++

(I(A[Γ])⇒ USPI(Γ))× I(A[Γ])
ev
��

USPI(Γ)

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(c[Γ]) is a well defined arrow from 1 to I(A[Γ]) ⇒ USPI(Γ) in
Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]) in Col(I(Γ)).

5.11 Falsum
We interpret falsum as follows:

I(⊥[Γ]) := ⊥I(Γ)

provided that I(Γ) is a well defined object of Cont.
The interpretation of the falsum eliminator rA0 (a)[Γ] is given by

I(rA0 (a)[Γ]) : > v I(A[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object in Cont, I(A[Γ]) is a well
defined object of Prop(I(Γ)) and I(a[Γ]) : > v ⊥ is well defined in Prop(I(Γ)).
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5.12 Conjunction
We interpret the conjunction as follows:

I(A ∧ B[Γ]) := I(A[Γ]) uI(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Prop(I(Γ)).

The interpretation of the conjunction pairing 〈a, b〉A,B∧ [Γ] is defined as

I(〈a, b〉A,B∧ [Γ]) : > v I(A[Γ]) u I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont and I(A[Γ])
and I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(a[Γ]) : > v I(A[Γ]) and
I(b[Γ]) : > v I(B[Γ]) are well defined in Prop(I(Γ)).

The interpretations of the conjunction projections πA,B∧ ,1 (c)[Γ] and πA,B∧ ,2 (c)[Γ] are
defined as

I(πA,B∧ ,1 (c)[Γ]) : > v I(A[Γ]) I(πA,B∧ ,2 (c)[Γ]) : > v I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(c[Γ]) : > v I(A[Γ]) u I(B[Γ])
is well defined in Prop(I(Γ)).

5.13 Disjunction
We interpret the disjunction as follows:

I(A ∨ B[Γ]) := I(A[Γ]) tI(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Prop(I(Γ)).

The interpretations of disjunction injections inlA,B∨ (a)[Γ] and inrA,B∨ (b)[Γ] are
defined as

I(inlA,B∨ (a)[Γ]) : > v I(A[Γ]) t I(B[Γ]) I(inrA,B∨ (b)[Γ]) : > v I(A[Γ]) t I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and
I(B[Γ]) are both well defined objects of Prop(I(Γ)) and finally, when interpreting the
first injection I(a[Γ]) : > v I(A[Γ]) is also assumed to be well defined in Prop(I(Γ)),
and when interpreting the second injection I(b[Γ]) : > v I(B[Γ]) is also assumed to
be well defined in Prop(I(Γ)).
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The interpretation of the disjunction eliminator ElA,B,C∨ (c, (x) d, (y) e)[Γ] is defined
as

I(ElA,B,C∨ (c, (x) d, (y) e)[Γ]) : > v I(C[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(c[Γ]) : > v I(A[Γ]) t I(B[Γ])
is well defined in Prop(I(Γ)) and I(d[Γ, x ∈ A]) : > v Proppr(I(C[Γ])) is well
defined in Prop(I([Γ, x ∈ A])) and I(e[Γ, y ∈ B]) : > v Proppr(I(C[Γ])) is well
defined in Prop(I([Γ, y ∈ B])).

5.14 Implication
We interpret implication as follows:

I(A→ B[Γ]) := I(A[Γ])→I(Γ) I(B[Γ])

provided that I(Γ) is a well defined object of Cont and I(A[Γ]) and I(B[Γ]) are
well defined objects of Prop(I(Γ)).

The interpretation of the implication lambda-abstraction (λx)A,B→ (b)[Γ] is defined
as

I((λx)A,B→ (b)[Γ]) : > v I(A[Γ])→ I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and

I(b[Γ, x ∈ A]) : > v Proppr(I(B[Γ]))

is well defined in Prop(I([Γ, x ∈ A])).
The interpretation of the implication application ApA,B→ (c, a)[Γ] is defined as

I(ApA,B→ (c, a)[Γ]) : > v I(B[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) and
I(B[Γ]) are well defined objects of Prop(I(Γ)) and I(c[Γ]) : > v I(A[Γ])→ I(B[Γ])
and I(a[Γ]) : > v I(A[Γ]) are well defined in Prop(I([Γ])).

5.15 Existential quantifier
We interpret the existential quantifier as follows:

I((∃x ∈ A)B[Γ]) := ∃I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))
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provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])).

The interpretation of the existential quantifier pairing 〈a, b〉A,(x)B
∃ [Γ] is defined as

I(〈a, b〉A,(x)B
∃ [Γ]) : >I(Γ) vI(Γ) ∃I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is
a well defined objects of Col(Γ) and I(B[Γ, x ∈ A]) is a well defined object of
Prop(I([Γ, x ∈ A])) and furthermore, I(a[Γ]) is a well defined arrow from 1 to
I(A[Γ]) in Col(I([Γ])) and I(b[Γ]) : > v PropĨ(a[Γ])

(I(B[Γ, x ∈ A])) is well defined
in Prop(I([Γ])) (see 4.32 for notation).

The interpretation of the existential quantifier eliminator ElA,(x)B,C
∃ (a, (x, y) b)[Γ]

is defined as
I(ElA,(x)B,C

∃ (a, (x, y) b)[Γ]) : >I(Γ) vI(Γ) I(C[Γ])

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a
well defined object of Col(Γ), I(C[Γ]) is a well defined object of Prop(Γ) and
I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])) and furthermore

I(a[Γ]) : > v ∃(I(A[Γ]), I(B[Γ, x ∈ A]))

is well defined in Prop(I([Γ])) and

I(b[Γ, x ∈ A, y ∈ B]) : > v Proppr(2)(I(C[Γ]))

is well defined in Prop(I([Γ, x ∈ A, y ∈ B])).

5.16 Universal quantifier
We interpret the universal quantifier as follows:

I((∀x ∈ A)B[Γ]) := ∀I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])).

The interpretation of the universal quantifier lambda-abstraction (λx)A,B∀ b[Γ] is
defined as

I((λx)A,B∀ b[Γ]) : >I(Γ) vI(Γ) ∀I(Γ)(I(A[Γ]), I(B[Γ, x ∈ A]))

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is
a well defined object of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object of
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Prop(I([Γ, x ∈ A])) and I(b[Γ, x ∈ A]) : > v I(B[Γ, x ∈ A]) is well defined in
Prop(I([Γ, x ∈ A])).

The interpretation of the universal quantifier application ApA,(x)B
∀ (c, a)[Γ] is

defined in Prop(I(Γ)) with the notation in 4.32 as

I(ApA,(x)B
∀ (c, a)[Γ]) : >I(Γ) vI(Γ) PropĨ(a[Γ])

(I(B[Γ, x ∈ A]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)), I(B[Γ, x ∈ A]) is a well defined object of Prop(I([Γ, x ∈ A])) and,
furthermore,

I(c[Γ]) : > v ∀(I(A[Γ]), I(B[Γ, x ∈ A]))

is well defined in Prop(I(Γ)) and I(a[Γ]) : 1→ I(A[Γ]) is well defined in Col(I([Γ])).

5.17 Equality proposition

We interpret the propositional equality as follows:

I(Eq(A, a, b)[Γ]) := EqI(Γ)(I(A[Γ]), I(a[Γ]), I(b[Γ]))

provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well defined object
of Col(I(Γ)) and both I(a[Γ]) and I(b[Γ]) are well defined arrows from 1 to I(A[Γ])
in Col(I(Γ)).

The interpretation of the propositional equality term eqA(a)[Γ] is defined as

I(eqA(a)[Γ]) : >I(Γ) vI(Γ) EqI(Γ)(I(A[Γ]), I(a[Γ]), I(a[Γ]))

in Prop(I(Γ)) provided that I(Γ) is a well defined object of Cont, I(A[Γ]) is a well
defined object of Col(I(Γ)) and I(a[Γ]) is a well defined arrow from 1 to I(A[Γ]) in
Col(I(Γ)).

5.18 Decoding

I(τ(a)[Γ]) := τI(Γ)
sp (I(a[Γ]))

provided that I(Γ) is a well defined object of Cont and I(a[Γ]) is a well defined
arrow from 1 to USPI(Γ) in Col(I(Γ)).
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6 Validity theorem
We start with defining a list of arrows useful to interpret telescopic substitutions of
dependent type theory in realized contexts Γ of ÎD1.

Definition 6.1. Suppose Γ and Γ′ are objects of Cont. We define simultaneously
by induction on the length of the realized context Γ

1. a list of arrows a = [a1, ..., a`(Γ)] in Col(Γ′) with domain 1Γ′ called instance of
substitution for Γ in context Γ′

2. an arrow sub(a, Γ′, Γ) : Γ′ → Γ for every instance of substitution a

as follows:

1. the empty list [ ] is an instance of substitution for [ ] in context Γ′ and
sub([ ], Γ′, [ ]) :=!Γ′,[ ] : Γ′ → [ ]

2. if [Γ, B] is an object of Cont, then [a, b] is an instance of substitution for [Γ, B]
in context Γ′ if and only if a is an instance of substitution for Γ in context Γ′
and b is an arrow from 1 to Colsub(a,Γ′,Γ)(B) in Col(Γ′).

In this case sub([a, b], Γ′, [Γ, B]) is defined as q(sub(a, Γ′, Γ), [Γ, B]) ◦ b̃ with
the notation in 4.32:

Γ′

b̃
��

sub([a,b],Γ′, [Γ,B])

++[Γ′,Colsub(a,Γ′,Γ)(B)]
q(sub(a,Γ′,Γ), [Γ,B])

//

pr
��

[Γ, B]
pr
��

Γ′
sub(a,Γ′ Γ)

// Γ

Remark 6.2. Notice that there is a bijection between lists of arrows which are
instances of substitution for Γ in context Γ′ and arrows in Cont from Γ′ to Γ.

The following lemma, which can be proved by induction on the definition of the
syntax in precontext, shows that weakening is interpreted as one could expect.

Lemma 6.3 (weakening). Suppose [Γ,Γ′,Γ′′] is a precontext such that both [Γ,Γ′]
and [Γ,Γ′′] are precontexts. Suppose that the length of Γ, Γ′ and Γ′′ are n, n′, n′′
respectively and that I([Γ,Γ′]) and I([Γ,Γ′′]) are well defined. Then I([Γ,Γ′,Γ′′]) is
well defined and if [Γ,Γ′,Γ′′] is [y1 ∈ A1, ..., yn+n′+n′′ ∈ An+n′+n′′ ], then
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1. the list weak defined by
[I(y1[Γ,Γ′,Γ′′]), ..., I(yn[Γ,Γ′,Γ′′]), I(yn+n′+1[Γ,Γ′,Γ′′]), ..., I(yn+n′+n′′ [Γ,Γ′,Γ′′])]

is an instance of substitution for I([Γ,Γ′′]) in context I([Γ,Γ′,Γ′′])

2. if I(A[Γ,Γ′′]) is well defined, then I(A[Γ,Γ′,Γ′′]) is well defined and it coincides
with

Colsub(weak, I([Γ,Γ′,Γ′′]), I([Γ,Γ′′]))(I(A[Γ,Γ′′]))

3. if I(a[Γ,Γ′′]) is well defined, then I(a[Γ,Γ′,Γ′′]) is well defined and it coincides
with

Colsub(weak, I([Γ,Γ′,Γ′′]), I([Γ,Γ′′]))(I(a[Γ,Γ′′]))

The next lemma can be proved by induction on the definition of the syntax in
precontext and it shows that substitution commutes with the interpretation I, i. e.
that one can first perform a substitution in mTTa and then interpret the resulting
type or term or, equivalently, first interpret terms and types of mTTa and then
perform the substitution of the interpreted terms.
Lemma 6.4 (Substitution Lemma). Let Γ = [x1 ∈ A1, ..., xn ∈ An] be a precontext
with n > 0 and let Γ′ be a precontext. Let I(Γ) and I(Γ′) be well defined and suppose
that I(a1[Γ′]),...., I(an[Γ′]) are well defined and constitute an instance of subtitution
for I(Γ) in context I(Γ′). Then

1. if I(B[Γ]) is well defined in Col(I(Γ)), then I(B[a1/x1, ..., an/xn][Γ′]) is well
defined and it coincides with

Colsub(I(a[Γ′]), I(Γ′), I(Γ))(I(B[Γ]))

2. if I(b[Γ]) is well defined in Col(I(Γ)), then I(b[a1/x1, ..., an/xn][Γ′]) is well
defined and it coincides with

Colsub(I(a[Γ′]), I(Γ′), I(Γ))(I(b[Γ]))

where we denote by I(a[Γ′]) the list of the interpretations I(ai[Γ′]).
What shown so far helps to prove our main theorem:

Theorem 6.5. The effective pretripos (Cont,Col,Set,Prop,Props) validates all
judgements of mTTa in the sense that:

for every judgement J of mTTa, if mTTa ` J , then R � J .
Thanks to proposition 2.1 we also deduce

Corollary 6.6. The effective pretripos (Cont,Col,Set,Prop,Props) validates all
judgements of mTT in the sense that:

for every judgement J of mTT, if mTT ` J , then R � J .
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6.1 The validity of CT
Proposition 6.7. The effective pretripos validates CT, i.e. R � CT, where CT is
the formula

(∀x ∈ N) (∃y ∈ N)R(x, y)→ (∃e ∈ N) (∀x ∈ N) (∃z ∈ N) (T (e, x, z) ∧R(x, U(z)))

where T and U are respectively the Kleene predicate and the primitive recursive
function representing Kleene application in mTTa respectively.

Proof. The validity in R of CT can be obtained as a consequence of the validity in
R of the following principles:
Formal Church thesis for type-theoretic functions CTλ defined as:

(∀f ∈ (Πx ∈ N)N) (∃e ∈ N) (∀x ∈ N) (∃y ∈ N)
(T (e, x, y) ∧ Eq(N, U(y),Ap(f, x)))

and the axiom of countable choice ACN,N defined for mTTa ` Rprop [x ∈ N, y ∈ N]
as

(∀x ∈ N) (∃y ∈ N)R(x, y)→ (∃f ∈ (Πx ∈ N) N) (∀x ∈ N)R(x,Ap(f, x))

One can easily show that in Prop([ ]):

1 v I(CTλ[ ]).

In fact we know by general results on Kleene realizability that there exists a numeral
r for which

HA ` ∃uT (f, x, u)→ ({r}(f, x) k ∃uT (f, x, u))

Using this remark and proof irrelevance we can show that the interpretation of CTλ[ ]
has a global element determined by the numeral

Λz.Λf. {p} (f, Λx. {p} ({p1} ({r}(f, x)), {p}({p2} ({r} (f, x)), 0)))

where the first variable z belongs to 1. Moreover R � ACN,N as equality in N is
interpreted as numerical equality.

It is worth noting that theorem 6.6 shows that ÎD1 is an upper bound of the
proof-theoretic strength of mTT. Actually, this is a direct proof of it because in
[23] it was observed that mTT can be interpreted in first-order Martin-Löf’s type
theory with one universe, for short MLtt1, whose proof-theoretic strength is known
to be equal to that of ÎD1(see [8]). Even more our interpretation of mTT in ÎD1 is
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a modification of that in [8] used to establish that ÎD1 is an upper bound of MLtt1.
The main difference between our proof and that for MLtt1 is that ours validates CT
while that in [8] falsifies CT.

It is left to future work to establish whether the proof-theoretic strength of mTT
and hence of MF coincides with that of ÎD1 as it happens to MLtt1.

7 Conclusions

We have built here an effective predicative categorical structure, called effective
pretripos for the intensional level mTT of MF extended with the formal Church
thesis CT, in Feferman’s predicative classical theory ÎD1.

This is intended to be a basic categorical structure of realizers for mTT useful
to build a predicative variant of Hyland’s Effective Topos. A predicative effective
topos will be obtained by completing our effective pretripos with quotients by means
of the elementary quotient completion introduced and studied in [26, 25, 27]. Indeed,
such an elementary quotient completion axiomatizes the quotient model used in [23]
to interpret the extensional level of MF into mTT and generalizes the notion of
the exact completion on a lex category. Therefore, it appears to be a starting point
to generalize the tripos-to-topos construction in [18] predicatively and to validate
the extensional level emTT of MF extended with CT when applied to our effective
pretripos.

Another goal of our future work will be to make a precise comparison between our
categorical structures of realizers for MF and the categorical approach to predicative
effective models for Aczel’s CZF in [41].
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Abstract

The three-sorted formal system RLS described in [5] is like RLS(≺) in [4]
but without the ≺. IRLS is a strictly intuitionistic subsystem of RLS. This
note gives a natural, syntactically defined translation ϕ mapping each restricted
formula E with only number and lawlike sequence variables free, to a formula
ϕ(E) containing only number and lawlike sequence variables, such that IRLS
proves E ↔ ϕ(E). If E contains no choice sequence variables then ϕ(E) is E.

1 The systems RLS, IRLS, R, IR and C
1.1 A three-sorted language L
The language, extending the two-sorted language of [2] and [1], contains three sorts
of variables with or without subscripts, also used as metavariables:

i, j, k, l,m, n, w, x, y, z over natural numbers,

a, b, c, d, e, g, h over lawlike sequences,

α, β, γ, . . . over arbitrary choice sequences;

finitely many constants f0 (= 0), f1 (= ′) (successor), f2 (= +), f3 (= ·), f4
(= exp), f5, . . . , fp for primitive recursive functions and functionals; the binary
predicate constant = (between terms); Church’s λ denoting function abstraction;
parentheses (,) denoting function application; and the logical symbols & ,∨,→,¬
and quantifiers ∀,∃ over each sort of variable.

I thank Sean Walsh and Kai Wehmeyer of UC Irvine, and the organizers of the 2014 Chiemsee
Summer School, for giving me new opportunities to talk about this subject, resulting in this theorem.
I am also very grateful to an anonymous referee whose careful reading led to many improvements.
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Terms (of type 0) and functors (of type 1) are defined inductively. Number
variables and 0 are terms. Sequence variables of both sorts, and unary function
constants, are functors. If fi is a ki,mi-ary function constant, u1, . . . , uki

are functors
and t1, . . . , tmi are terms, then fi(u1, . . . , uki

, t1, . . . , tmi) is a term. If u is a functor
and t is a term then (u)(t) (also written u(t)) is a term. If t is a term and x is a
number variable then λx(t) (also written λx.t) is a functor.

Prime formulas are of the form s = t where s, t are terms. If u, v are functors
then u = v abbreviates ∀x (u(x) = v(x)). Composite formulas are formed as usual,
with parentheses determining scopes.

Terms and functors with no occurrences of arbitrary choice sequence variables are
R-terms and R-functors respectively. Formulas with no free occurrences of arbitrary
choice sequence variables are R-formulas.

1.2 The logical axioms and rules
The logical basis is intuitionistic three-sorted predicate logic, extending the rules
and axiom schemas in [2] to formulas, terms and functors of L as defined above,
with new rules and axiom schemas for lawlike sequence variables and R-functors:

9R. C → A(b) / C → ∀bA(b) if b is not free in C.

10R. ∀bA(b)→ A(u) if u is an R-functor free for b in A(b).

11R. A(u)→ ∃bA(b) if u is an R-functor free for b in A(b).

12R. A(b)→ C / ∃bA(b)→ C if b is not free in C.

1.3 Axioms for 3-sorted intuitionistic number theory
Equality axioms assert that = is an equivalence relation and x = y → α(x) = α(y),
so ∀x(a(x) = a(x)) is provable (since lawlike sequence variables are functors), so
∀a∃β∀x(a(x) = β(x)) follows by the instance ∀x(a(x) = γ(x))→ ∃β∀x(a(x) = β(x))
of axiom schema 11F from [2]. Just as Brouwer’s infinitely proceeding sequences
include all the sharp arrows, every lawlike sequence is (equal to) a choice sequence.

By a similar argument, if u is an R-functor in which the variable b does not occur
then ∃b∀x(b(x) = u(x)) is provable, so every R-functor denotes a lawlike sequence.

For terms r(x), t with t free for x in r(x), the λ-reduction axiom schema is

(λx.r(x))(t) = r(t),

where r(t) is the result of substituting t for all free occurrences of x in r(x).
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The mathematical axioms include the assertions that 0 (= f0) is not a succes-
sor and the successor function (= f1) is one-to-one, the defining equations for the
primitive recursive function and functional constants f2, . . . , fp ([2], [1]) and the
mathematical induction schema extended to L. For the countable axiom of choice

AC01. ∀x∃αA(x, α)→ ∃α∀xA(x, λy.α(2x · 3y))

the x must be distinct from y, and free for α in A(x, α).
Finite sequences are coded primitive recursively as in [2], so 〈x0, . . . , xk〉 = Πk

0p
k
i

where pi is the ith prime with p0 = 2, and (y)i is the exponent of pi in the prime
factorization of y. Let Seq(y) abbreviate ∀i < lh(y)((y)i > 0) where lh(y) is the
number of nonzero exponents in the prime factorization of y. The empty sequence
is coded by 〈 〉 = 1, and if k ≥ 0 then 〈x0 + 1, . . . , xk + 1〉 codes the finite sequence
(x0, . . . , xk). If Seq(y) and Seq(z) then y∗z codes the concatenation of the sequences
coded by y and z.

The finite initial segment of length n of a choice sequence α is coded by α(n),
where α(0) = 1 and α(n+ 1) = 〈α(0) + 1, . . . , α(n) + 1〉. Other useful abbreviations
are α ∈ w for α(lh(w)) = w, w v y for Seq(y) & ∀i < lh(w)((w)i = (y)i), and
w < y for w v y & lh(y) > lh(w). If Seq(w) then w ∗ α = β where β ∈ w and
β(lh(w) + n) = α(n); if ¬Seq(w) then w ∗ α = α. Note that w ∗ α is a functor and
w ∗ a is an R-functor.

1.4 Bar induction
Kleene formulated Brouwer’s “bar theorem” as an axiom schema, in four versions
which are all equivalent using AC01 (or even AC00!), and included it in his basic
system B. The version we assume (now for the three-sorted language) is1

BI! ∀α∃!xR(α(x)) & ∀w(Seq(w) & R(w)→ A(w))
& ∀w(Seq(w) & ∀nA(w ∗ 〈n〉)→ A(w))→ A(1).

This schema (for the two-sorted language without lawlike sequence variables) com-
pleted Kleene’s basic system B, which is neutral in the sense that it is correct both
intuitionistically and classically.

1.5 R-lawless sequences, restricted quantification and lawlike com-
prehension

Intuitively, a lawless sequence should not be predictable by any lawlike process,
but this negative condition is not enough to satisfy Kreisel’s axioms. Instead, call

1In general, ∃!xA(x) abbreviates ∃xA(x) & ∀x∀y(A(x) & A(y) → x = y).
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a choice sequence β a predictor if β maps finite sequence codes to finite sequence
codes, and call a choice sequence α R-lawless if every lawlike predictor correctly
predicts α somewhere. Formally, RLS(α) abbreviates

∀b[Pred(b)→ ∃x α ∈ α(x) ∗ b(α(x))],

where Pred(b) abbreviates ∀w(Seq(w)→ Seq(b(w))).
Since each prediction affects only finitely many values, this positive condition

leaves room for (indeed, insures) plenty of chaotic behavior if there are only countably
many lawlike predictors. The usual diagonal argument guarantees that there is no
lawlike enumeration of the lawlike sequences, but a classical model with countably
many lawlike sequences is described in [4].

Troelstra’s extension principle, which claims that every continuous partial func-
tion defined on all lawless sequences has a continuous total extension, fails for R-
lawless sequences, since ∀α[RLS(α) → ∃nα(n) = 1] but the function assigning to
each R-lawless α the least n such that α(n) = 1 cannot be extended continuously to
all choice sequences. And while Kreisel and Troelstra considered any two distinct
lawless sequences to be independent, a stronger condition for independence is needed
here.

Two R-lawless sequences α, β will be called independent if their fair merge [α, β]
is lawless, and similarly for α0, . . . , αk where [α0, . . . , αk]((k + 1)n + i) = αi(n) for
0 ≤ i ≤ k and all n. This natural notion of independence for lawless sequences was
proposed by M. Fourman at the Brouwer Centenary Conference in 1981.

The class of restricted formulas is defined inductively: Each formula E with no
arbitrary choice sequence quantifiers is restricted. If A is restricted and contains free
no arbitrary choice sequence variables other than α, then ∀α[RLS(α) → A] and
∃α[RLS(α) & A] are restricted. If k > 0 and A is restricted with no arbitrary choice
sequence variables other than α0, . . . , αk occurring free, then for i = 0, . . . , k the
formulas ∀αi[RLS([α0, . . . , αk])→ A] and ∃αi[RLS([α0, . . . , αk]) & A] are restricted.
No other formulas are restricted.

There is a lawlike function-comprehension schema

ACR
00! ∀x∃!yA(x, y)→ ∃b∀xA(x, b(x))

where A(x, y) is any restricted R-formula and b is free for y in A(x, y). By this
axiom, the lawlike sequences are closed under “recursive in.”2

2While a restricted formula can have free occurrences of arbitrary choice sequence variables, a re-
stricted R-formula cannot. If A(x, y) is a restricted R-formula, the informal abbreviation µyA(x, y)
may be allowed under either of the assumptions ∃!yA(x, y) or ∃y(A(x, y) & ∀z < y¬A(x, z)).
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For restricted R-formulas A(x, a) the lawlike comprehension schema entails

ACR
01! ∀x∃!aA(x, a)→ ∃b∀xA(x, λy.b(2x · 3y)),

with the obvious conditions on the variables.

1.6 Axioms for R-lawless sequences
These are Kreisel’s and Troelstra’s axioms from [3] and [7], adapted to Kleene’s
convention for coding continuous functions, with inequality of lawless sequences
replaced by independence. There are two density axioms:

∀w(Seq(w)→ ∃α[RLS(α) & α ∈ w]),RLS1.
∀w(Seq(w)→ ∀α[RLS(α)→ ∃β[RLS([α, β]) & β ∈ w]]).RLS2.

Kreisel’s principle of open data is stated as follows, on condition that A(α) is re-
stricted and has no other arbitrary choice sequence variables free, and β is free for
α in A(α):

RLS3. ∀α[RLS(α)→
(A(α)→ ∃w(Seq(w) & α ∈ w & ∀β[RLS(β)→ (β ∈ w → A(β))]))].

Effective continuous choice for lawless sequences is the schema

RLS4. ∀α[RLS(α)→ ∃bA(α, b)]→ ∃e∃b∀α[RLS(α)→
∃!ye(α(y)) > 0 & ∀y(e(α(y)) > 0→ A(α, λx. b(〈e(α(y))−̇1, x〉)))]

where A(α, b) is restricted with no arbitrary choice sequence variables but α free,
and e, y, α are free for b in A(α, b).3

1.7 The restricted law of excluded middle
For A(α) restricted, with no choice sequence variables free except possibly α, RLS
also has the axiom schema

RLEM. ∀α[RLS(α)→ A(α) ∨ ¬A(α)].

By an easy argument, RLS3 and the restricted LEM entail the following principle
of closed data with the same restrictions on A(α) as for RLS3:

RLS5. ∀α[RLS(α)→ (∀w(α ∈ w → ∃β[RLS(β) & β ∈ w & A(β)])→ A(α))].
3In general, e(α) ' n abbreviates ∃x(e(α(x)) = n+ 1 & ∀y < xe(α(y)) = 0).
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In a strictly intuitionistic system without RLEM, RLS5 may or may not be taken as
an additional axiom schema. With RLS1, RLEM entails the law of excluded middle
for all formulas with only lawlike and number variables. Observe that RLS1, RLS2,
and all instances of RLS3, RLS4, RLEM and RLS5 are restricted R-formulas.

1.8 Five axiomatic systems
In addition to Kleene’s basic formal system B for neutral analysis we consider five
other formal systems. All but one are consistent with full intuitionistic analysis
FIM as formalized in [2].4

IRLS extends B to the three-sorted language and adds axioms RLS1,2 and
axiom schemas ACR

00! and RLS3,4. IRLS expresses a strictly intuitionistic theory of
lawlike and relatively lawless sequences in the context of full intuitionistic analysis.

RLS is the three-sorted semi-intuitionistic system IRLS + RLEM.5
Lawlike classical analysis R is the two-sorted subsystem of RLS obtained by

restricting the language to number and lawlike sequence variables, omitting RLS1-
4 and BI!, replacing RLEM by A ∨ ¬A for formulas of the two-sorted language,
replacing AC01 and ACR

00! by ACR
01 (like ACR

01! but without the !) for formulas of
the two-sorted language, and restating the equality axioms and primitive recursive
definitions of function constants using lawlike instead of arbitrary choice sequence
variables.

Constructive analysis IR is the two-sorted intuitionistic subsystem of R obtained
by omitting A ∨ ¬A. Note that IR has no version of bar induction.

Classical analysis C is the two-sorted system obtained from Kleene’s B by
strengthening the logic to classical logic. A lawlike version BI!R of BI!, with lawlike
sequence variables replacing arbitrary choice sequence variables, is provable in R.
Thus C and R are notational variants, as are B and IR + BI!R.

1.9 Closure properties of RLS: Lemma
The three-sorted subsystem IRS of IRLS obtained by omitting RLS1-4, but retaining
ACR

00!, proves

(i) ∀α[RLS(α)↔ ∀w(Seq(w)→ RLS(w ∗ α))].

4The relative consistency of a common extension of RLS and FIM is established in [4] under
the assumption that a definably well-ordered subset of ωω is countable.

5The translation theorem will show that RLS can also be axiomatized by IRLS plus the law
of excluded middle for strictly lawlike formulas, so RLS is indeed semi-intuitionistic.
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(ii) ∀b(∀x∀y(b(x) = b(y)→ x = y) & ∀y(∃x b(x) = y ∨ ¬∃x b(x) = y)→
∀α[RLS(α)→ RLS(α ◦ b)]).

(iii) ∀b(Pred(b)→ ∀n∀α[RLS(α)→ ∃m(m ≥ n & α ∈ α(m) ∗ b(α(m)))]).

Proofs. This is a formal version of Lemma 2 of [4]. For (i →) assume Seq(w) and
Pred(b). Then ∀x∃!y((Seq(x)→ y = b(w ∗ x)) & (¬Seq(x)→ y = 0)), so by ACR

00!
there is a c such that Pred(c) and ∀x(Seq(x)→ c(x) = b(w ∗x)), so if RLS(α) then
∃z α ∈ α(z) ∗ c(α(z)) and hence ∃z(w ∗ α ∈ w ∗ α(lh(w) + z) ∗ b(w ∗ α(lh(w) + z))).
For (i ←) take w = 1 = 〈 〉, so w ∗ α = α. The proofs of (ii), (iii) similarly formalize
the proofs of (ii), (iii) of Lemma 2 of [4]. 2

1.10 Axioms RLS1-3 reconsidered
Lemma 1.9 guarantees that the following schemas RLS1′, RLS2′ and RLS3′ are
equivalent over IRS to RLS1, RLS2 and RLS3 respectively.

∃αRLS(α)RLS1′.
∀α[RLS(α)↔ ∃βRLS([α, β])]RLS2′.

∀α[RLS(α)→ (A(α)↔ ∃w(Seq(w) &α ∈ w&∀β[RLS(β)→ A(w ∗ β)]))]RLS3′.

under the same conditions on A(α) as for RLS3. The next section suggests a way
to simplify RLS4 as well.

2 The translation theorem
2.1 Theorem
Every restricted formula E of the three-sorted language with no arbitrary choice se-
quence variables free is equivalent in IRLS to a formula ϕ(E) of the two-sorted
language with only number and lawlike sequence variables. The mapping ϕ is syn-
tactically defined. If E contains no choice sequence variables then ϕ(E) is E.

The proof is similar to Troelstra’s proof of the translation theorem for LS into
the language without lawless sequence variables (cf. [8], 663ff), with a significant
difference. Instead of the constant K0 Troelstra used to represent the class of lawlike
codes of continuous total functions, we can define the condition for e to be a lawlike
code of a continuous partial function defined on all the R-lawless sequences:

J0(e) ≡ ∀w(Seq(w) & ∀n < lh(w)(e(w(n)) = 0)→ ∃y(Seq(y) & e(w ∗ y) > 0)),
J1(e) ≡ J0(e) & ∀w[e(w) > 0→ Seq(w) & ∀y(Seq(y)→ e(w ∗ y) = e(w))].
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By Lemma 1.9(i) and the next lemma, the conclusion of effective continuous choice
for R-lawless sequences can be rewritten

∃e∃b(J1(e) & ∀n∀w(e(w) = n+ 1→ ∀α[RLS(α)→ A(w ∗ α, λx.b(〈n, x〉))])).

2.2 Lemma
(i) IRS + RLS1 proves ∀e(J0(e)↔ ∀α[RLS(α)→ e(α) ↓]), and

(ii) IRS proves ∀α[RLS(α)↔ ∀e(Jj(e)→ e(α) ↓)] for j = 0, 1,

where e(α) ↓ abbreviates ∃m (e(α(m)) > 0).
Proofs. (i) →: Assume J0(e). Using ACR

00! define a lawlike predictor g by

g(w) =
{
〈 〉 if ∃y v w(e(y) > 0) ∨ ¬Seq(w),
µy(Seq(y) & e(w ∗ y) > 0) otherwise.

If RLS(α) then α ∈ α(n) ∗ g(α(n)) for some n, so e(α) ↓.
(i) ←: Assume ∀α[RLS(α) → e(α) ↓] and Seq(w). By RLS1 there is an α ∈ w

with RLS(α), so for some y = α(m): e(y) > 0 & ∀n < m(e(α(n)) = 0). If also
∀n < lh(w)(e(w(n)) = 0) then w v y, so y = w ∗ z where e(w ∗ z) > 0.

(ii) → follows immediately from (i) → (with the fact that ∀e(J1(e) → J0(e))).
For (ii) ←: Assume ∀e(J1(e)→ e(α) ↓) and let g be a lawlike predictor. Define e as
follows:

e(w) =
{

1 if Seq(w) & ∃y v w(y ∗ g(y) v w),
0 otherwise.

Then J1(e) holds, so e(α) ↓, so g correctly predicts α somewhere. 2

The proof of the translation theorem depends on Lemmas 1.9, 2.2, and the
following sequence of lemmas removing restricted existential quantifiers and reducing
restricted R-formulas of the form ∀α[RLS(α)→ A] and ∀αi[RLS([α0, . . . , αk])→ A]
to simpler formulas of the same kind. For the case that A is prime the reduction is
complete in one step, even in IRS + RLS1.

2.3 Lemma
If s(α), t(α) are terms with no arbitrary choice variables but α free, and a is free for
α in both, then IRS + RLS1 proves

(i) ∀α[RLS(α)→ s(α) = t(α)]↔ ∀a[s(a) = t(a)] and
(ii) ∃α[RLS(α) & s(α) = t(α)]↔ ∃a[s(a) = t(a)].
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Proof. By induction on the complexity of the term s(α) (expressing the value of
a primitive recursive function of α and the other free variables) IRS proves

∀α∃x∃y∀β(β(x) = α(x)→ s(β) = y).

Only the argument for (i) is completed here since the proof of (ii) is similar.
(i)←: Assume ∀a[s(a) = t(a)] andRLS(α). Let x, y, z satisfy ∀β(β(x) = α(x)→

s(β) = y & t(β) = z] and let w = α(x). Then ∀a[a(x) = w → s(a) = y & t(a) = z],
so y = z since w∗λn.0 is lawlike by ACR

00!, so s(α) = t(α) since s(α) = y & t(α) = z.
So IRS proves ∀a[s(a) = t(a)]→ ∀α[RLS(α)→ s(α) = t(α)].

(i)→: Assume ∀α[RLS(α)→ s(α) = t(α)]. Let x, y, z satisfy ∀β[β(x) = a(x)→
s(β) = y & t(β) = z], so s(a) = y & t(a) = z. By RLS1 there is a β such that
RLS(β) & β(x) = a(x), so s(β) = t(β) and y = z, so s(a) = t(a). So IRS + RLS1
proves ∀α[RLS(α)→ s(α) = t(α)]→ ∀a[s(a) = t(a)]. 2

2.4 Lemma
IRLS proves

(i) ∀α[RLS(α)→ A(α) & B(α)]↔ ∀α[RLS(α)→ A(α)] & ∀α[RLS(α)→ B(α)],

(ii) ∀α[RLS(α)→ A(α) ∨B(α)]↔ ∃e[J1(e) &
∀w(e(w) > 0→ ∀α[RLS(α)→ A(w ∗ α)] ∨ ∀α[RLS(α)→ B(w ∗ α)])],

(iii) ∀α[RLS(α)→ (A(α)→ B(α))]↔ ∀w(Seq(w)→
(∀α[RLS(α)→ A(w ∗ α)]→ ∀α[RLS(α)→ B(w ∗ α)])),

(iv) ∀α[RLS(α)→ ¬A(α)]↔ ∀w(Seq(w)→ ¬∀α[RLS(α)→ A(w ∗ α)]),
for A(α), B(α) restricted, with no arbitrary choice sequence variables other than α
occurring free.

Proofs. (ii) follows from RLS4 using Lemmas 1.9 and 2.2 with the observation

∀e(J0(e)→ ∃g[J1(g) &
∀x∀w(g(w) = x+ 1↔ ∃y v w (e(y) = x+ 1 & ∀z < y e(z) = 0))].

Using Lemma 1.9 again: (iii) follows from RLS3, (iv) → follows from RLS1, and
(iv) ← is an easy consequence of RLS3. 2
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2.5 Lemma
IRLS proves

∃α[RLS(α) & A(α)]↔ ∃w(Seq(w) & ∀α[RLS(α)→ A(w ∗ α)])

if A(α) is restricted and contains free no arbitrary choice sequence variable but α.
Proof. Immediate from RLS3. 2

2.6 Lemma
For restricted formulas A(α, x), A(α, b) containing free no arbitrary choice sequence
variables other than α, IRLS proves

(i) ∀α[RLS(α)→ ∃xA(α, x)]↔ ∃e[J1(e) &
∀w(e(w) > 0→ ∃x∀α[RLS(α)→ A(w ∗ α, x)])],

(ii) ∀α[RLS(α)→ ∃bA(α, b)]↔ ∃e[J1(e) &
∀w(e(w) > 0→ ∃b∀α[RLS(α)→ A(w ∗ α, b)])],

(iii) ∀α[RLS(α)→ ∀xA(α, x)]↔ ∀x∀α[RLS(α)→ A(α, x)],

(iv) ∀α[RLS(α)→ ∀bA(α, b)]↔ ∀b∀α[RLS(α)→ A(α, b)].
Proofs. (i) and (ii) are by RLS4; (iii) and (iv) are by predicate logic. 2

2.7 Lemma
For A(α, β) restricted with no arbitrary choice sequence variables free except the
distinct variables α, β, IRLS proves

(i) ∀α[RLS(α)→ ∀β[RLS([α, β])→ A(α, β)]]↔ ∀γ[RLS(γ)→ A([γ]0, [γ]1)],

(ii) ∀α[RLS(α)→ ∃β[RLS([α, β]) & A(α, β)]]↔
∃e[J1(e) & ∀y(e(y) > 0→ ∃w(Seq(w) & ∀γ[RLS(γ)→ A(y ∗ [γ]0, w ∗ [γ]1)]))],

where in general [γ]0(n) = γ(2n) and [γ]1(n) = γ(2n+ 1).
Proofs. (i) is immediate from the definitions (note that γ = [ [γ]0, [γ]1 ]) and the

fact that RLS([α, β]) → RLS(α) by Lemma 1.9(ii). (ii) follows from RLS2, RLS3
and the closure properties in Lemma 1.9. 2
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2.8 Proof of the translation theorem
Definition. The index of a restricted formula E of L is I(E) = 2i+ j + 2k where

1. i is the number of restricted existential sequence quantifiers occurring in E,

2. j is the number of restricted universal sequence quantifiers occurring in E and

3. k is the maximum number of logical symbols (&,∨,→,¬, ∀, ∃) occurring in
any part F of a subformula of E of any of the forms ∀α[RLS(α) → F ],
∃α[RLS(α) & F ], ∀αi[RLS([α0, . . . , αk])→ F ] or ∃αi[RLS([α0, . . . , αk]) & F ].

If C ↔ D denotes any restricted R-formula of a type displayed in the statement
of any of the Lemmas 2.3, 2.4, 2.5, 2.6 or 2.7, inspection shows that I(C) > I(D).

The lemmas permit the reduction of a given restricted R-formula E to a formula
F of the two-sorted language, with only number and lawlike sequence variables,
such that IRLS proves E ↔ F . For a uniform translation, the sequence in which
the lemmas are to be applied can be determined uniquely (modulo the renaming
of variables) by the logical form of E, beginning with the leftmost occurrence of a
restricted quantifier. The successive reductions produce a sequence E0, . . . , Eq of
restricted R-formulas with I(Ei) > I(Ei+1), where E0 is E and I(Eq) = 0, so we
can define ϕ(E) = Eq.

There are two wrinkles which are best illustrated by an example. Suppose Ei

is a restricted R-formula of the form ∃α[RLS(α) & ∀β[RLS([α, β]) → A(α, β)]].
Lemma 2.5 reduces this to ∃w[Seq(w) & ∀α[RLS(α)→ ∀β[RLS([w∗α, β])→ A(w∗
α, β)]]], which is not restricted but can be simplified to ∃w[Seq(w) & ∀α[RLS(α)→
∀β[RLS([α, β]) → A(w ∗ α, β)]]] using Lemma 1.9 once. If needed, repeated uses
of Lemma 1.9 reduce A(w ∗ α, β) to a restricted formula A′(w,α, β). Then Ei+1 is
∃w[Seq(w) & ∀α[RLS(α)→ ∀β[RLS([α, β])→ A′(w,α, β)]]], a restricted R-formula
with I(Ei+1) < I(Ei) since A(α, β) and A′(w,α, β) have the same number of logical
symbols.

By Lemma 2.7(i), in the next step ∀α[RLS(α)→ ∀β[RLS([α, β])→ A′(w,α, β)]]
is reduced to ∀γ[RLS(γ) → A′(w, [γ]0, [γ]1)], which may not be restricted. But if
for example A′(w,α, β) is ∀δ[RLS([α, β, δ]) → B(w,α, β, δ)], Lemma 1.9 reduces
A′(w, [γ]0, [γ]1) to ∀δ[RLS([γ, δ])→ B(w, [γ]0, [γ]1, δ)] and eventually to a restricted
formula ∀δ[RLS([γ, δ]) → B′(w, γ, δ)]. Then Ei+2 is ∃w[Seq(w) & ∀γ[RLS(γ) →
∀δ[RLS([γ, δ])→ B′(w, γ, δ)]]], a restricted R-formula with I(Ei+2) < I(Ei+1). 2

2.9 Final remarks
Evidently the translation will be unique only up to congruence (renaming of bound
variables). While technically RLS1′ is not restricted, it is equivalent over IRS to
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∃α[RLS(α) & 0 = 0], which reduces over IRS + RLS1 to ∃w∀α[RLS(α) → 0 = 0]
and then to ∃w∀a(0 = 0), which is equivalent in IR to 0 = 0. RLS2′ permits a
similar analysis over IRS + RLS2.

Note that the intuitionistic system IRLS proves ACR
01; and if ACR

01 replaces
ACR

00! then RLS4 becomes provable from the other axioms of the semi-classical
system RLS. It follows that if IRS′ comes from IRS by strengthening ACR

00! to
ACR

01, then
RLS = IRS′ + RLS′ 1-3 + RLEM.

Evidently IRLS is not a conservative extension of IRS or even IRS′, since
∃α∀a¬∀x(α(x) = a(x)) is provable in IRLS but not in IRS′. Similarly, RLS is
not a conservative extension of IRS′ + RLEM. However, IRS′ is a conservative
extension of its two-sorted subsystem B. I am indebted to A. S. Troelstra (cf. [6])
for the hint that prompted these observations.

Two questions remain. Is IRLS a conservative extension of (two-sorted) con-
structive analysis IR? Is the semi-classical system RLS a conservative extension of
two-sorted classical analysis R? Since R proves lawlike countable choice ACR

01 and
a lawlike version BI!R of the bar induction schema, the translation lemma suggests
that RLS may be a conservative extension of R, but this is only a conjecture.
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Abstract

This article is concerned with classifying the provably total set-functions of
Kripke-Platek set theory, KP, and Power Kripke-Platek set theory, KP(P), as
well as proving several (partial) conservativity results. The main technical tool
used in this paper is a relativisation technique where ordinal analysis is carried
out relative to an arbitrary but fixed set x.

A classic result from ordinal analysis is the characterisation of the provably
recursive functions of Peano Arithmetic, PA, by means of the fast growing
hierarchy [10]. Whilst it is possible to formulate the natural numbers within
KP, the theory speaks primarily about sets. For this reason it is desirable
to obtain a characterisation of its provably total set functions. We will show
that KP proves the totality of a set function precisely when it falls within
a hierarchy of set functions based upon a relativised constructible hierarchy
stretching up in length to any ordinal below the Bachmann-Howard ordinal.
As a consequence of this result we obtain that IKP + ∀x∀y (x ∈ y ∨ x /∈ y)
is conservative over KP for Π2-formulae, where IKP stands for intuitionistic
Kripke-Platek set theory.
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In a similar vein, utilising [56], it is shown that KP(P) proves the totality
of a set function precisely when it falls within a hierarchy of set functions
based upon a relativised von Neumann hierarchy of the same length. The
relativisation technique applied to KP(P) with the global axiom of choice,
ACglobal, also yields a parameterised extension of a result in [58], showing that
KP(P) + ACglobal is conservative over KP(P) + AC and CZF + AC for ΠP

2
statements. Here AC stands for the ordinary axiom of choice and CZF refers
to constructive Zermelo-Fraenkel set theory.

1 Introduction

A major application of the techniques of ordinal analysis has been the classification
of the provably total recursive functions of a theory. Usually the theories to which
this methodology has been applied have been arithmetic theories, in that context it
makes most sense to speak about arithmetic functions. The concept of a recursive
function on natural numbers can be extended to a more general recursion theory on
arbitrary sets. For more details see [38], [39] and [59]. Since KP speaks primarily
about sets, it is perhaps desirable to obtain a classification of its provably total re-
cursive set functions.

To provide some context we first state a classic result from proof theory, the classifi-
cation of the provably total recursive functions of PA. A classification can be gleaned
from Gentzen’s 1938 [25] and 1943 [26] papers. The first explicit characterization of
these functions as those definable by recursions on ordinals less than ε0 was given
by Kreisel [31, 32] in the early 1950s. Many people re-proved or provided variants
of this classification result (see [64, Chap. 4] for the history). As to techniques
for extracting numerical bounds from infinite proofs, Schwichtenberg’s [63] and the
considerably more elegant approach by Buchholz and Wainer in [10] and its gen-
eralization and simplification by Weiermann in [66] are worth mentioning. For the
following definitions, suppose we have an ordinal representation system for ordinals
below ε0, together with an assignment of fundamental sequences to the limit ordinal
terms. For an ordinal term α, let αn denote the n-th element of the fundamental
sequence for α, ie. αn+1 < αn and supn<ω(αn) = α. There are certain technical
properties that such an assignment must satisfy, these will not be gone into here,
for a detailed presentation see [10].

Definition 1.1. For each α < ε0 we define the function Fα : ω → ω by transfinite
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recursion as follows

F0(n) := n+ 1

Fα+1(n) := Fn+1
α (n) (:=

n+1︷ ︸︸ ︷
Fα ◦ . . . ◦ Fα(n))

Fα(n) := Fαn(n) if α is a limit.

This hierarchy is known as the fast growing hierarchy. Given unary functions on the
natural numbers f and g, we say that f majorises g if there is some n such that
(∀m > n)(g(m) < f(m)). For a recursive function f let Af (n,m) be the Σ formula
expressing that on input n the Turing machine for computing f outputs m, to avoid
frustrating counter examples let us suppose Af does this in some ‘natural’ way.

Theorem 1.2. Suppose f : ω → ω is a recursive function. Then

i) If PA ` ∀x∃!yAf (x, y) then f is majorised by Fα for some α < ε0.

ii) PA ` ∀x∃!yAFα(x, y) for every α < ε0.

Proof. This classic result is proved in full in [10]. ut

This chapter will be focused on obtaining a similar result for the provably total set
functions of KP.1 A similar role to the fast growing hierarchy in Theorem 1.2 will
be played by the relativised constructible hierarchy.

Definition 1.3. Let X be any set. We may relativise the constructible hierarchy
to X as follows:

L0(X) := TC({X}) the transitive closure of {X}
Lα+1(X) := {B ⊆ Lα(X) : B is definable over 〈Lα(X),∈〉}
Lθ(X) :=

⋃

ξ<θ

Lξ(X) when θ is a limit.

1There are many papers concerned with the provably recursive number-theoretic functions
of KP and much stronger theories. The basic idea consists in adding another layer of control to
the ordinal analysis that allows one to extract bounds for numerical witnesses. These techniques
were initially engineered by Buchholz, Wainer [10] and Weiermann [66] and then got extended by
Blankertz, Weiermann [5, 6, 7], Michelbrink [37], Pohlers and Stegert [42] to ever stronger theories.
Another route for obtaining classifications of provably numerical functions proceeds as follows. The
ordinal analysis of a set theory T shows that the arithmetic part of T can be reduced to PA
plus transfinite induction for every ordinal below the proof-theoretic ordinal of T . Thus it suffices
to characterize the provably numerical functions of the latter system. This leads to the descent
recursive functions in the sense of [23]. That this method is perfectly general was first sketched in
[23] and then proved rigorously in [12]. The latter approach has the advantage that the ordinal
analysis of T needn’t be burdened with the extra task of controlling numerical witnesses.
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In section 2 we build an ordinal notation system relativised to an arbitrary set X,
this will be used for the rest of the article. In section 3 we define the infinitary
system RSΩ(X), based on the relativised constructible hierarchy and show that we
can eliminate cuts for derivations of Σ formulae. In section 4 we embed KP into
RSΩ(X), allowing us to obtain cut free infinitary derivations of KP provable Σ
formulae. Technically we use Buchholz’ operator controlled derivations (see [11])
which are also used in [41]. In section 5 we give a well ordering proof in KP for the
ordinal notation system given in section 2. Finally we combine the results of this
chapter to give a classification of the provably total set functions of KP in section
6. This result, whilst perhaps known to those who have thought hard about these
things, has not appeared in the literature to date. Section 7 contains applications
to semi-intuitionistic Kripke-Platek set theory. Section 8 carries out a relativised
ordinal analysis of Power Kripke-Platek set theory, KP(P), from which ensues a
classification of its provable set functions. This closely follows the treatment in [56].
In section 9, a further ingredient is added to the infinitary system by incorporating a
global choice relation. Due to the relativisation one gets partial conservativity results
for KP(P)+ACglobal over KP(P)+AC and CZF+AC that provide improvements
on [58, Theorem 3.3] and [58, Corollary 5.2]. These theories can also be added to
the list of theories [57, Theorem 15.1] with the same proof-theoretic strength.

2 A relativised ordinal notation system

The aim of this section is to relativise the construction of the Bachmann-Howard
ordinal to contain an arbitrary set X or rather its rank θ. We will construct an
ordinal representation system that will be set primitive recursive given access to an
oracle for X. Here the notion of recursive and primitive recursive is extended to
arbitrary sets, see [39] or [59] for more detail. The construction of an ordinal repre-
sentation system for the Bachmann-Howard ordinal is now fairly standard in proof
theory, carried out for example in [9]. Intuitively our system will appear similar,
only the ordering W will be inserted as an initial segment before new ordinals start
being ‘named’ via the collapsing function.

Before defining the formal terms and the procedure for computing their ordering,
it is informative to give definitions for the corresponding ordinals and ordinal func-
tions themselves. To this end we will begin working in ZFC, later it will become
clear that the necessary ordinals can be expressed as formal terms and comparisons
between these terms can be made primitive recursively relative to W.
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In what follows ON will denote the class of all ordinals. First we require some
information about the ϕ function on ordinals. These definitions and results are well
known, see [62].

Definition 2.1. For each α ∈ ON we define a class of ordinals Cr(α) ⊆ ON and a
class function

ϕα : ON→ ON
by transfinite recursion.

i) Cr(0) := {ωβ | β ∈ ON} and ϕ0(β) := ωβ.

ii) For α > 0 Cr(α) := {β | (∀γ < α)(ϕγ(β) = β)}.

iii) For each α ∈ ON ϕα(·) is the function enumerating Cr(α).

The convention is to write ϕαβ instead of ϕα(β). An ordinal β ∈ Cr(0) is often
referred to as additive principal, since for all β1, β2 < β we have β1 + β2 < β.

Theorem 2.2.

i) ϕα1β1 = ϕα2β2 if and only if





α1 < α2 and β1 = ϕα2β2
or α1 = α2 and β1 = β2
or α2 < α1 and ϕα1β1 = β2.

ii) ϕα1β1 < ϕα2β2 if and only if





α1 < α2 and β1 < ϕα2β2
or α1 = α2 and β1 < β2
or α2 < α1 and ϕα1β1 < β2.

iii) For any additive principal β there are unique ordinals β1 ≤ β and β2 < β such
that β = ϕβ1β2.

Proof. This result is proved in full in [62]. ut

Definition 2.3. We define Γ(·) : ON → ON to be the class function enumerating
the ordinals β > 0 such that for all β1, β2 < β we have ϕβ1β2 < β. Ordinals of the
form Γβ will be referred to as strongly critical.

Now let θ ∈ ON be the unique ordinal that is the set-theoretic rank of X.

Definition 2.4. Let Ω be the least uncountable cardinal greater than θ. The sets
Bθ(α) ⊆ ON and ordinals ψθ(α) are defined by transfinite recursion on α as follows:

Bθ(α) := Closure of {0,Ω} ∪ {Γβ : β ≤ θ} under +, ϕ and ψθ|α
ψθ(α) := min{β : β /∈ Bθ(α)}
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For the remainder of this section, since θ remains fixed, the subscripts will be
dropped from Bθ and ψθ to improve readability. At first glance it may appear
strange having the elements from θ inserted into the Γ-numbers. Ultimately we aim
to have + and ϕ as primitive symbols in our notation system, simply having θ as
an initial segment here would cause problems with unique representation. Some
ordinals could get a name directly from θ and other names by applying + and ϕ to
smaller elements.

Lemma 2.5. For each α ∈ ON:

i) The cardinality of B(α) is max{ℵ0, |θ|}, where |θ| denotes the cardinality of θ.

ii) ψα < Ω.

Proof. i) Let

B0(α) :={0,Ω} ∪ {Γβ : β ≤ θ}
Bn+1(α) :=Bn(α) ∪ {ξ + η : ξ, η ∈ Bn(α)}

∪ {ϕξη : ξ, η ∈ Bn(α)}
∪ {ψξ : ξ ∈ Bn(α) ∩ α}.

Observe that B(α) =
⋃

n<ω

Bn(α), this can be proved by a straightforward induction
on n.

If θ is finite then, again by induction on n, we can show that each Bn(α) is also
finite. Since B(α) is a countable union of finite sets and ω ⊆ B(α) it follows that it
must have cardinality ℵ0.

Now suppose θ is infinite, so B(α) is the countable union of sets of cardinality |θ|
and thus also has cardinality |θ|.

ii) If ψα ≥ Ω then Ω ⊂ B(α) contradicting i). ut

Lemma 2.6.

i) If γ ≤ δ then B(γ) ⊆ B(δ) and ψγ ≤ ψδ.

ii) If γ ∈ B(δ) ∩ δ then ψγ < ψδ.

iii) If γ ≤ δ and [γ, δ) ∩B(γ) = ∅ then B(γ) = B(δ).
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iv) If ξ is a limit then B(ξ) = ⋃
η<ξ B(η).

v) ψγ is a strongly critical and ψγ ≥ Γθ+1.

vi) B(γ) ∩ Ω = ψγ.

vii) If ξ is a limit then ψξ = supη<ξψη.

viii) ψ(γ+1) ≤ (ψγ)Γ, where δΓ denotes the smallest strongly critical ordinal above
δ.

ix) If α ∈ B(α) then ψ(α+ 1) = (ψα)Γ.

x) If α /∈ B(α) then ψ(α+ 1) = ψα and B(α+ 1) = B(α).

xi) If γ ∈ B(γ) and δ ∈ B(δ) then [γ < δ if and only if ψγ < ψδ].

Proof. i) Suppose γ ≤ δ, now note that B(δ) is closed under ψ|δ which includes ψ|γ
so B(γ) ⊆ B(δ). From this it immediately follows from the definition that ψγ ≤ ψδ.

ii) From γ ∈ B(δ) ∩ δ we get ψγ ∈ B(δ), thus ψγ < ψδ b the definition of ψδ.

iii) It is enough to show that B(γ) is closed under ψ|δ. Let β ∈ B(γ) and β < δ,
then by assumption β < γ, thus ψβ ∈ B(γ).

iv) By i) we have ⋃
η<ξ B(η) ⊆ B(ξ). It remains to verify that Y := ⋃

η<ξ B(η) is
closed under ψ|ξ. So let δ ∈ Y ∩ ξ, since ξ is a limit there is some ξ0 < ξ such that
δ ∈ Y ∩ ξ0 and there is some ξ1 < ξ such that δ ∈ B(ξ1). Therefore δ ∈ B(ξ∗) ∩ ξ?
where ξ∗ = max{ξ0, ξ1}, thus ψδ ∈ B(ξ∗) ⊆ Y .

v) We may write the ordinal ψα in Cantor normal form, so that ψα = ωα1 +. . .+ωαn
with α1 ≥ . . . ≥ αn. If n > 1 then α1, . . . , αn < ψα which implies by the defini-
tion of ψα that α1, . . . , αn ∈ B(α). But by closure of B(α) under + and ϕ we get
ϕ0α1+. . .+ϕ0αn = ωα1 +. . .+ωαn ∈ B(α) contradicting ψα /∈ B(α). Thus ψα is ad-
ditive principal and it follows from Theorem 2.2iii) that we may find ordinals γ ≤ ψα
and δ < ψα such that ψα = ϕγδ. If δ > 0 then γ < ψα since γ ≤ ϕγ0 < ϕγδ,
but if δ, γ < ψα then we have δ, γ ∈ B(α) and hence ϕγδ ∈ B(α) contradicting
ψα /∈ B(α). Thus ψα = ϕγ0, but if γ < ψα then again we get ϕγ0 ∈ B(α); a
contradiction. So it must be the case that ψα = γ, ie. ψα is strongly critical.
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For the second part note that ψα 6= Γβ for any β ≤ θ since by definition each such
Γβ ∈ B(α).

vi) By 2.5ii) and the definition of ψ it is clear that ψα ⊆ B(α) ∩ Ω. Now let

Y := ψα ∪ {δ ≥ Ω | δ ∈ B(α)}.

By v) Y contains 0,Ω and Γβ for β ≤ θ, moreover it is closed under + and ϕ. It
remains to show that Y is closed under ψ|α, this follows immediately from ii).

vii) Let ξ be a limit ordinal. Using parts vi), iv) and i) we have

ψξ = B(ξ) ∩ Ω = (
⋃

η<ξ

B(η)) ∩ Ω =
⋃

η<ξ

(B(η) ∩ Ω) =
⋃

η<ξ

ψη = supη<ξψη.

viii) Let
Y := (ψα)Γ ∪ {δ ≥ Ω | δ ∈ B(α)}.

Y is closed under + and ϕ, also it contans Γβ for any β ≤ θ by v). Moreover it
contains ψγ for any γ ≤ α by i), so it is closed under ψ|(α+1). Therefore Y must
contain B(α+ 1), and so ψ(α+ 1) ≤ (ψα)Γ.

ix) From α ∈ B(α) we get α ∈ B(α+1), it then follows from ii) that ψα < ψ(α+1).
Thus ψ(α + 1) ≤ (ψα)Γ by viii) and ψ(α + 1) ≥ (ψα)Γ from v), so it must be the
case that ψ(α+ 1) = (ψα)Γ.

x) Suppose α /∈ B(α), then [α, α + 1) ∩ B(α) = ∅ so we may apply iii) to give
B(α+ 1) = B(α) from which ψ(α+ 1) = ψα follows immediately.

xi) Suppose γ ∈ B(γ) and δ ∈ B(δ). If γ < δ then from ix) we get ψ(γ + 1) =
(ψγ)Γ > ψγ, but by i) ψ(γ + 1) ≤ ψδ.

Now if ψγ < ψδ then from the contraposition of i) we get γ < δ. ut

Definition 2.7. We write

i) α =NF α1 + . . .+αn if α = α1 + . . .+αn, n > 1, α1, . . . , αn are additive principal
numbers and α1 ≥ . . . ≥ αn.

ii) α =NF ϕγδ if α = ϕγδ and γ, δ < ϕγδ.

iii) α =NF ψγ if α = ψγ and γ ∈ B(γ)

688



Classifying KP and KP(P)

Lemma 2.8.

i) If α =NF α1 + . . .+ αn then for any η ∈ ON

α ∈ B(η) if and only if α1, . . . , αn ∈ B(η).

ii) If α =NF ϕγδ then for any η ∈ ON

α ∈ B(η) if and only if γ, δ ∈ B(η).

iii) If α =NF ψγ then for any η ∈ ON

α ∈ B(η) if and only if γ ∈ B(η) ∩ η.

Proof. i) Suppose α =NF α1 + . . .+αn, the ⇐ direction is clear from the closure of
B(η) under +. For the other direction let

AP (α) :=





∅ if α = 0
{α} if α is additive principal
{α1, . . . , αn} if α =NF α1 + . . .+ αn.

AP (α) stands for the additive predecessors of α. Now let

Y := {γ ∈ B(η) |AP (γ) ⊆ B(η)}.

Observe that 0,Ω ∈ Y and {Γβ | β ≤ θ} ⊆ Y . Now choose any γ, δ ∈ Y , we
have AP (γ + δ) ⊆ AP (γ) ∪ AP (δ) ⊆ B(η), thus Y is closed under +. Now
AP (ϕγδ) = {ϕγδ} since the range of ϕ is the additive principal numbers thus Y is
closed under ϕ. Finally AP (ψγ) = {ψγ} for any γ ∈ Y ∩ η so Y is closed under ψ|η.
It follows that B(η) ⊆ Y and thus the other direction is proved.

ii) Again the⇐ direction follows immediately from the closure of B(η) under ϕ. For
the other direction we let

PP (α) :=





∅ if α = 0
{α} if α is strongly critical
{γ, δ} if α =NF ϕγδ

{α1, . . . , αn} if α =NF α1 + . . .+ αn.

For want of a better phrase PP (α) stands for the predicative predecessors of α. Now
set

Y := {γ ∈ B(η) | PP (γ) ⊆ B(η)}
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It is easily seen that Y contains 0,Ω and Γβ for any β ≤ θ. PP (γ + δ) ⊆ PP (γ) ∪
PP (δ) so Y is closed under +. PP (ϕγδ) ⊆ {γ, δ} so Y is closed under ϕ. Finally
PP (ψγ) = {ψγ} for any γ < η by 2.6v). It follows that Y must contain B(η), which
proves the ⇒ direction.

iii) Suppose α =NF ψγ, the ⇐ direction is clear by the closure of B(η) under ψ|η.
For the other direction suppose α ∈ B(η), from this we get ψγ < ψη which gives us
γ < η. Now by assumption γ ∈ B(γ), and B(γ) ⊆ B(η) so γ ∈ B(η) ∩ η. ut

In order to create an ordinal notation system from the ordinal functions described
above, we single out a set R(θ) of ordinals which have a unique canonical description.

Definition 2.9. We give an inductive definition of the set R(θ), and the complexity
Gα < ω for every α ∈ R(θ).

(R1) 0,Ω ∈ R(θ) and G0 := GΩ := 0.

(R2) For each β ≤ θ, Γβ ∈ R(θ) and GΓβ := 0.

(R3) If α =NF α1 + . . . + αn and α1, . . . , αn ∈ R(θ) then α ∈ R(θ) and Gα :=
max{Gα1, . . . , Gαn}+ 1.

(R4) If γ, δ < Ω, α =NF ϕγδ and γ, δ ∈ R(θ) then α ∈ R(θ) and Gα :=
max{Gγ,Gδ}+ 1.

(R5) If γ ≥ Ω, α =NF ϕ0γ and γ ∈ R(θ) then α ∈ R(θ) and Gα := Gγ + 1.

(R6) If α =NF ψγ and γ ∈ R(θ) then α ∈ R(θ) and Gα := Gγ + 1.

Lemma 2.10. Every element α ∈ R(θ) is included due to precisely one of the rules
(R1)-(R6) and thus the complexity Gα is uniquely defined.

Proof. This follows immediately from 2.8. ut

Our goal is to turn R(θ) into a formal representation system, the main obstacle to
this is that it is not immediately clear how to deal with the constraint γ ∈ B(γ) in
a computable way. This problem leads to the following definition.

Definition 2.11. To each α ∈ R(θ) we assign a setKα of ordinal terms by induction
on the complexity Gα:

(K1) K0 := KΩ := KΓβ := ∅ for all β ≤ θ.
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(K2) If α =NF α1 + . . .+ αn then Kα := Kα1 ∪ . . . ∪Kαn.

(K3) If α =NF ϕγδ then Kα := Kγ ∪Kδ.

(K4) If α =NF ψγ then Kα := {γ} ∪Kγ.

Kα consists of the ordinals that occur as arguments of the ψ function in the normal
form representation of α. Note that each ordinal in Kα belongs to R(θ) itself and
has complexity lower than Gα.

Lemma 2.12. For any α, η ∈ R(θ)

α ∈ B(η) if and only if (∀ξ ∈ Kα)(ξ < η).

Proof. The proof is by induction on Gα. If Gα = 0 then α ∈ B(η) for any η, and
Kα = ∅ by (K1) so the result holds.

Case 1. If α =NF α1 + . . . + αn then α ∈ B(η) iff α1, . . . , αn ∈ B(η) by 2.8i).
Now inductively α1, . . . , αn ∈ B(η) iff (∀ξ ∈ Kα1 ∪ . . . ∪Kαn)(ξ < η), but by (K2)
Kα = Kα1 ∪ . . . ∪Kαn.

Case 2. If α =NF ϕγδ we may argue in a similar fashion to Case 1, using 2.8ii) and
(K3) instead.

Case 3. If α =NF ψγ then α ∈ B(η) iff γ ∈ B(η) ∩ η by 2.8iii). Now by induction
hypothesis γ ∈ B(η) ∩ η iff (∀ξ ∈ Kγ)(ξ < η) and γ < η, and by (K4) this occurs
precisely when (∀ξ ∈ Kα)(ξ < η). ut

Recall that θ is the rank of X. Let

Lθ : = {0,Ω,+, ϕ, ψ} ∪ {Γξ : ξ ≤ θ} and
L∗θ : = {s | s is a finite string of symbols from Lθ}.

Now let T (θ) ⊆ L∗θ be the set of strings that correspond to ordinals in R(θ) expressed
in normal form. Owing to Lemma 2.10 there is a one to one correspondence between
T (θ) and R(θ). The ordering on T (θ) induced from the ordering of the ordinals in
R(θ) will be denoted ≺. To differentiate between elements of the two sets, Greek
letters α, β, γ, η, ξ, . . . range over ordinals and Roman letters a, b, c, d, e, . . . range
over finite strings from L∗θ.

Theorem 2.13. The set T (θ) and the relation ≺ on T (θ) are set primitive recursive
in θ.
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Proof. Below a θ-primitive recursive procedure means a procedure that is primitive
recursive in the two parameters θ and the ordering <θ on the ordinals ξ ≤ θ. We
need to provide the following two procedures:

A) A θ-primitive recursive procedure which decides for a ∈ L∗θ whether a ∈ T (θ).

B) A θ-primitive recursive procedure which decides for non-identical a, b ∈ T (θ)
whether a ≺ b or b ≺ a.

We define A) and B) simultaneously by induction on the term complexity Ga.

For the base stage of A) we have 0,Ω ∈ T (θ) and Γξ ∈ T (θ) for all ξ ≤ θ.

For the base stage of B) we have 0 ≺ Γξ ≺ Ω for all ξ ≤ θ and the terms Γξ inherit
the ordering from θ, for which we have access to an oracle.

For the inductive stage of A) we require the following 3 things:

A1) A θ-primitive recursive procedure that on input a1, . . . , an ∈ T (θ) decides
whether a1 + . . .+ an ∈ T (θ).

A2) A θ-primitive recursive procedure that on input a1, a2 ∈ T (θ) decides whether
ϕa1a2 ∈ T (θ).

A3) A θ-primitive recursive procedure that on input a ∈ T (θ) decides whether
ψa ∈ T (θ).

For A1) we need to decide if n > 1 and if a1 � . . . � an, which we can do by the
induction hypothesis. We also need to decide if a1, . . . , an are additive principal; all
terms other than those of the form b1 + . . .+bm (m > 1) and 0 are additive principal.

For A2), first let ORDθ denote the set of Lθ strings which represent an ordinal (not
necessarily in normal form), ie. each function symbol has the correct arity. Next we
define the set of strings which correspond to the strongly critical ordinals, where ≡
signifies identity of strings.

SCθ := {Ω} ∪ {Γξ : ξ ≤ θ} ∪ {a ∈ ORDθ : a ≡ ψb}.

We may decide membership of SCθ in a θ-primitive recursive fashion. For the
decision procedure we split into cases based upon the form of a2:
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i) If a2 ≡ 0 then ϕa1a2 ∈ T (θ) whenever a1 /∈ SCθ.

ii) If a2 ∈ SCθ then ϕa1a2 ∈ T (θ) whenever a1 � a2 and a2 6= Ω.

iii) If a2 � Ω then ϕa1a2 ∈ T (θ) exactly when a1 = 0.

iv) If a2 ≡ b1 + . . .+ bn ≺ Ω, with n > 1 then ϕa1a2 ∈ T (θ) regardless of the form
of a1.

iv) If a2 ≡ ϕb1b2 ≺ Ω then ϕa1a2 ∈ T (θ) whenever a1 � b1.

For a rigorous treatment of the ϕ function see [62].

The function K from Definition 2.11 lifts to a θ-primitive recursive function on
T (θ). Moreover every b ∈ Ka is a member of T (θ) of lower complexity than a.
Owing to Lemma 2.12, for the decision procedure A3) we may first compute Ka,
then check whether (∀b ∈ Ka)(b ≺ a), which we may do by the induction hypothesis.

Finally for the inductive stage of B), given two elements of T (θ) we may decide
their ordering using the following procedure.

B1) 0 ≺ a for every a 6= 0.

B2) Γξ ≺ Ω for every ξ ≤ θ.

B3) The elements Γξ inherit the ordering from θ.

B4) If a ∈ SCθ or a ≡ ϕbc then a1 + . . .+ an ≺ a if a1 ≺ a.

B5) If a ∈ SCθ then ϕbc ≺ a if b, c ≺ a.

B6) ψb ≺ Ω for all b.

B7) ψa � Γξ for all ξ ≤ θ.

B8) a1+. . .+an ≺ b1+. . .+bm if n < m and (∀i ≤ n)[ai ≡ bi]
or ∃i ≤ min(n,m)[∀j < i(aj = bj) and ai ≺ bi].

B9) ϕa1b1 ≺ ϕa2b2 if a1 ≺ a2 ∧ b1 ≺ ϕa2b2
or a1 = a2 ∧ b1 ≺ b2
or a2 ≺ a1 ∧ ϕa1b1 ≺ b2.

B10) ψa ≺ ψb if a ≺ b.
ut
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3 The proof theory of RSΩ(X)
3.1 A Tait-style sequent calculus formulation of KP
Definition 3.1. The language of KP consists of free variables a0, a1, . . ., bound vari-
ables x0, x1, . . ., the binary predicate symbols ∈, /∈ and the logical symbols ∨,∧, ∀, ∃
as well as parentheses ), (.

The atomic formulas are those of the form

(a ∈ b) , (a /∈ b).

The formulas of KP are defined inductively by:

i) Atomic formulas are formulas.

ii) If A and B are formulas then so are A ∨B and A ∧B.

iii) If A(b) is a formula in which the bound variable x does not occur, then ∀xA(x),
∃xA(x), (∀x ∈ a)A(x) and (∃x ∈ a)A(x) are all formulas.

Quantifiers of the form ∃x and ∀x will be called unbounded and those of the form
(∃x ∈ a) and (∀x ∈ a) will be referred to as bounded quantifiers.

A formula is said to be ∆0 if it contains no unbounded quantifiers. A formula is
said to be Σ (Π) if it contains no unbounded universal (existential) quantifiers.

The negation ¬A of a formula A is obtained from A by undergoing the following
operations:

i) Replacing every occurrence of ∈,/∈ with /∈,∈ respectively.

ii) Replacing any occurrence of ∧,∨,∀x,∃x, (∀x ∈ a), (∃x ∈ a) with ∨,∧, ∃x, ∀x,
(∃x ∈ a), (∀x ∈ a) respectively.

Thus the negation of a formula A is in negation normal form. The expression A→ B
will be considered shorthand for ¬A ∨B.

The expression a = b is to be treated as an abbreviation for (∀x ∈ a)(x ∈ b)∧ (∀x ∈
b)(x ∈ a).

The derivations of KP take place in a Tait-style sequent calculus, finite sets of for-
mulae denoted by Greek capital letters are derived. Intuitively the sequent Γ may
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be read as the disjunction of formulae occuring in Γ.

The axioms of KP are:

Logical axioms: Γ, A,¬A for any formula A.
Extensionality: Γ, a = b ∧B(a)→ B(b) for any formula B(a).
Pair: Γ,∃z(a ∈ z ∧ b ∈ z).
Union: Γ,∃z(∀y ∈ a)(∀x ∈ y)(x ∈ z).
∆0-Separation: Γ,∃y[(∀x ∈ y)(x ∈ a ∧B(x)) ∧ (∀x ∈ a)(B(x)→ x ∈ y)]

for any ∆0-formula B(a).
Set Induction: Γ,∀x[(∀y ∈ xF (y)→ F (x)]→ ∀xF (x) for any formula F (a).
Infinity: Γ,∃x[(∃z ∈ x)(z ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)].
∆0-Collection: Γ, (∀x ∈ a)∃yG(x, y)→ ∃z(∀x ∈ a)(∃y ∈ z)G(x, y)

for any ∆0-formula G.
The rules of inference are

Γ, A Γ, B(∧) Γ, A ∧B

Γ, A(∨) Γ, A ∨B
Γ, B

Γ, A ∨B

Γ, a ∈ b ∧ F (a)(b∃) Γ, (∃x ∈ b)F (x)
Γ, F (a)(∃) Γ,∃xF (x)

Γ, a ∈ b→ F (a)(b∀) Γ, (∀x ∈ b)F (x)
Γ, F (a)(∀) Γ, ∀xF (x)

Γ, A Γ,¬A(Cut) Γ

In both (b∀) and (∀), the variable a must not be present in the conclusion, such a
variable is referred to as the eigenvariable of the inference.

The minor formulae of an inference are those rendered prominently in the premises,
the other formulae in the premises will be referred to as side formulae. The principal
formula of an inference is the one rendered prominently in the conclusion. Note that
the principal formula can also be a side formula of that inference, when this happens
we say that there has been a contraction. The rule (Cut) has no principal formula.
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Formally, bounded and unbounded quantifiers are treated as logically separate op-
erations. However, it is important to know and ensure that they interact with one
another as expected.
Lemma 3.2. The following are derivable within KP:
i) (∀x ∈ b)F (x)↔ ∀x(x ∈ b→ F (x)).

ii) (∃x ∈ b)F (x)↔ ∃x(x ∈ b ∧ F (x)).
Proof. We verify only i) as the proof of ii) is very similar. First note that a ∈
b ∧ ¬F (a), a ∈ b→ F (a) is a logical axiom of KP, we have the following derivation
in KP.

a ∈ b ∧ ¬F (a), a ∈ b→ F (a)(b∃) (∃x ∈ b)¬F (x), a ∈ b→ F (a)(∀) (∃x ∈ b)¬F (x), ∀x(x ∈ b→ F (x))(∨) twice (∀x ∈ b)F (x)→ ∀x(x ∈ b→ F (x))

a ∈ b ∧ ¬F (a), a ∈ b→ F (a)(∃) ∃x(x ∈ b ∧ ¬F (x)), a ∈ b→ F (a)(b∀) ∃x(x ∈ b ∧ ¬F (x)), (∀x ∈ b)F (x)(∨) twice ∀x(x ∈ b→ F (x))→ (∀x ∈ b)F (x)(∧) (∀x ∈ b)F (x)↔ ∀x(x ∈ b→ F (x))

ut

3.2 The infinitary system RSΩ(X)
Let X be an arbitrary (well founded) set and let θ be the set-theoretic rank of X
(hereby referred to as the ∈-rank). Henceforth all ordinals are assumed to belong
to the ordinal notation system T (θ) developed in the previous section. The sys-
tem RSΩ(X) will be an infinitary proof system based on LΩ(X); the relativised
constructible hierarchy up to Ω.
Definition 3.3. We give an inductive definition of the set T of RSΩ(X) terms, to
each term t ∈ T we assign an ordinal level | t |
i) For every u ∈ TC({X}), ū ∈ T and | ū | := Γrank(u) [here rank(u) is the ∈-rank

of u and TC denotes the transitive closure operator.] Note that rank(u) ≤ θ.
ii) For every α < Ω, Lα(X) ∈ T and |Lα(X) | := Γθ+1 + α.

iii) If α < Ω, A(a, b1, . . . , bn) is a formula of KP with all free variables displayed
and s1, . . . , sn are terms with levels less than Γθ+1 + α then

[x ∈ Lα(X)|A(x, s1, . . . , sn)Lα(X)]

is a term of level Γθ+1 + α. Here the superscript Lα(X) indicates that all
unbounded quantifiers occuring in A are replaced by quantifiers bounded by
Lα(X).
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The terms of RSΩ(X) are to be viewed as purely formal, syntactic objects. However
their names are highly suggestive of the intended interpretation in the relativised
constructible hierarchy up to Ω.

Definition 3.4. The formulae of RSΩ(X) are of the form A(s1, . . . , sn), where
A(a1, . . . , an) is a formula of KP with all free variables displayed and s1, . . . , sn are
RSΩ(X) terms.

Formulae of the form ū ∈ v̄ and ū /∈ v̄ will be referred to as basic. The properties
∆0, Σ and Π are inherited from KP formulae.

Note that the system RSΩ(X) does not contain free variables.

For the remainder of this section we shall refer to RSΩ(X) terms and formulae sim-
ply as terms and formulae.

For any formula A we define

k(A) :={| t | | t occurs in A, subterms included}
∪ {Ω | if A contains an unbounded quantifier}.

If Γ is a finite set of the RSΩ(X) formulae A1, . . . , An then we define

k(Γ) := k(A1) ∪ . . . ∪ k(An).

Abbreviations 3.5.

i) For RSΩ(X) terms s and t, the expression s = t will be considered as shorthand
for

(∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s).

ii) If | s | < | t |, A(s, t) is an RSΩ(X) formula and 3 is a propositional connective
we define:

s ∈̇ t3A(s, t) :=





s ∈ t3A(s, t) if t ≡ ū
A(s, t) if t ≡ Lα(X)
B(s) 3A(s, t) if t ≡ [x ∈ Lα(X) | B(x)].

Our aim will be to remove cuts from certain RSΩ(X) derivations of Σ sentences. In
order to do this we need to express a certain kind of uniformity in infinite derivations.
The right tool for expressing this uniformity was developed by Buchholz in [11] and
is termed operator control.
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Definition 3.6. Let P(ON) := {Y : Y is a set of ordinals}. A class function

H : P(ON)→ P(ON)

is called an Operator if the following conditions are satisfied for Y, Y ′ ∈ P(ON).

(H1) 0 ∈ H(Y ) and Γβ ∈ H(Y ) for any β ≤ θ + 1.

(H2) If α =NF α1 + . . .+ αn then α ∈ H(Y ) iff α1, . . . , αn ∈ H(Y ).

(H3) If α =NF ϕα1α2 then α ∈ H(Y ) iff α1, α2 ∈ H(Y ).

(H4) Y ⊆ H(Y ).

(H5) Y ′ ⊆ H(Y )⇒ H(Y ′) ⊆ H(Y ).

Note that this definition of operator, as with the infinitary system RSΩ(X) is de-
pendent on the set X and its ∈-rank θ.

Abbreviations 3.7. For an operator H:

i) We write α ∈ H instead of α ∈ H(∅).

ii) Likewise Y ⊆ H is shorthand for Y ⊆ H(∅).

iii) For any RSΩ(X) term t, H[t](Y ) := H(Y ∪ | t |).

iv) If X is an RSΩ(X) formula or set of formulae then H[X](Y ) := H(Y ∪ k(X)).

Lemma 3.8. Let H be an operator s an RSΩ(X) term and X an RSΩ(X) formula
or set of formulae.

i) If Y ⊆ Y ′ then H(Y ) ⊆ H(Y ′).

ii) H[s] and H[X] are operators.

iii) If | s | ∈ H then H[s] = H.

iv) If k(X) ⊆ H then H[X] = H.

Proof. These results are easily checked, they are proved in full in [50]. ut
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Definition 3.9. If H is an operator, α an ordinal and Γ a finite set of RSΩ(X)-
formulae, we give an inductive definition of the relation H α Γ by recursion on α.
(H-controlled derivability in RSΩ(X).) We require always that

{α} ∪ k(Γ) ⊆ H

this condition will not be repeated in the inductive clauses pertaining to the axioms
and inference rules below. We have the following axioms:

H α Γ, ū ∈ v̄ if u, v ∈ TC(X) and u ∈ v
H α Γ, ū /∈ v̄ if u, v ∈ TC(X) and u /∈ v.

The following are the inference rules of RSΩ(X), the column on the right gives the
requirements on the ordinals, terms and formulae for each rule.

(∧) H α0 Γ, A H α1 Γ, B
H α Γ, A ∧B

α0, α1 < α

(∨) H α0 Γ, C for some C ∈ {A,B}
H α Γ, A ∨B

α0 < α

(/∈) H[s] αs Γ, s ∈̇ t→ r 6= s for all | s | < | t |
H α Γ, r /∈ t

αs < α
r ∈ t is not basic

(∈) H α0 Γ, s ∈̇ t ∧ r = s

H α Γ, r ∈ t

α0 < α
| s | < | t |

| s | < Γθ+1 + α
r ∈ t is not basic

(b∀) H[s] αs Γ, s ∈̇ t→ A(s) for all | s | < | t |
H α Γ, (∀x ∈ t)A(x)

αs < α

(b∃) H α0 Γ, s ∈̇ t ∧A(s)
H α Γ, (∃x ∈ t)A(x)

α0 < α
| s | < | t |

| s | < Γθ+1 + α
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(∀) H[s] αs Γ, A(s) for all s
H α Γ, ∀xA(x)

αs < α

(∃) H α0 Γ, A(s)
H α Γ, ∃xA(x)

α0 < α
| s | < Γθ+1 + α

(Cut) H α0 Γ, A H α0 Γ,¬A
H α Γ

α0 < α

(Σ-RefΩ(X)) H α0 Γ, A
H α Γ,∃zAz

α0,Ω < α
A is a Σ formula

Az results from A by restricting all unbounded quantifiers in A to z. The reason for
the condition preventing the derivation of basic formulas in the rules (∈) and (/∈)
is to prevent derivations of sequents which are already axioms, as this would cause
a hindrance to cut-elimination. The condition that | s | < Γθ+1 + α in (∈) and (∃)
inferences will allow us to place bounds on the location of witnesses in derivable Σ
formulas.

3.3 Cut elimination for RSΩ(X)
We need to keep track of the complexity of cuts appearing in a derivation, to this
end we define the rank of an RSΩ(X) formula.

Definition 3.10. The rank of a term or formula is defined by recursion on the
construction as follows:

1. rk(ū) := Γrank(u)

2. rk(Lα(X)) := Γθ+1 + ω · α

3. rk([x ∈ Lα(X)|F (x)]) := max(Γθ+1 + ω · α+ 1, rk(F (∅̄)) + 2)

4. rk(s ∈ t) := rk(s /∈ t) := max(rk(t) + 1, rk(s) + 6)

5. rk((∃x ∈ ū)F (x)) := rk((∀x ∈ ū)F (x)) := max(rk(ū) + 3, rk(F (∅̄)) + 2).
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6. rk((∃x ∈ t)F (x)) := rk((∀x ∈ t)F (x)) := max(rk(t), rk(F (∅̄)) + 2) if t is not of
the form ū.

7. rk(∃xF (x)) := rk(∀xF (x)) := max(Ω, rk(F (∅̄)) + 1)

8. rk(A ∧B) := rk(A ∨B) := max(rk(A), rk(B)) + 1

H α

ρ Γ will be used to denote that H α Γ and all cut formulas appearing in the
derivation have rank < ρ.

Observation 3.11. i) For each term t, rk(t) = ω · | t |+ n for some n < ω.

ii) For each formula A, rk(A) = ω ·max(k(A)) + n for some n < ω.

iii) rk(A) < Ω if and only if A is ∆0.

The next Lemma shows that the rank of a formula A is determined only by
max(k(A)) and the logical structure of A.

Lemma 3.12. For each formula A(s), if | s | < max(k(A(s))) then rk(A(s)) =
rk(A(∅̄)).
Proof. The proof is by induction on the complexity of A.

Case 1. If A(s) ≡ s ∈ t then by assumption | s | < | t |, so rk(A(s)) = rk(t) + 1 =
rk(A(∅̄)).

Case 2. If A(s) ≡ t ∈ s we may argue in a similar fashion to Case 1.

Case 3. It cannot be the case that A(s) ≡ s ∈ s.

Case 4. If A(s) ≡ (∃y ∈ ū)B(y, s) then

rk(A(s)) = max(rk(ū) + 3, rk(B(∅̄, s)) + 2)

and
rk(A(∅̄)) = max(rk(ū) + 3, rk(B(∅̄, ∅̄)) + 2).

4.1 If | ū | > max(k(B(∅̄, ∅̄))) then | s | < | ū | by assumption, so using observation
3.11ii) gives us

rk(A(s)) = rk(ū) + 3 = rk(A(∅̄)).
4.2 If | ū | ≤ max(k(B(∅̄, ∅̄)) then | s | < max(k(B(∅̄, ∅̄))) by assumption, so by
induction hypothesis

rk(B(∅̄, s)) = rk(B(∅̄, ∅̄))
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and hence using Observation 3.11ii) gives us

rk(A(s)) = rk(B(∅̄, ∅̄)) + 2 = rk(A(∅̄)).

Case 5. If A(s) ≡ (∃y ∈ t)B(y, s) for some t not of the form ū, we may argue in a
similar way to case 4.

Case 6. A(s) ≡ (∃y ∈ s)B(y, s), now | s | < max(k(A(∅̄))) = max(k(B(∅̄, ∅̄))), so by
induction hypothesis

rk(B(∅̄, s)) = rk(B(∅̄, ∅̄))

and hence using observation 3.11 we see that

rk(A(s)) = rk(B(∅̄, s)) + 2
= rk(B(∅̄, ∅̄)) + 2
= rk(A(∅̄)).

Case 7. If A(s) ≡ ∃xB(x, s) then | s | < max(k(A(s))) = max(k(B(∅, s))) by
assumption, so we may apply the induction hypothesis to see that rk(A(s)) =
max(Ω, rk(B(∅, s)) + 1) = max(Ω, rk(B(∅, ∅)) + 1) = rk(A(∅)).

Case 8. All other cases are either propositional in which case we may just use the
induction hypothesis directly or are dual to cases already considered. ut

Definition 3.13. To each non-basic formula A we assign an infinitary disjunction
(∨Ai)i∈y or conjunction (∧Ai)i∈y as follows:

1. r ∈ t :' ∨(s ∈̇ t ∧ r = s)| s |<| t | provided r ∈ t is not a basic formula.

2. (∃x ∈ t)B(x) :' ∨(s ∈̇ t ∧B(s))| s |<| t |

3. ∃xB(x) :' ∨(B(s))s∈T

4. B0 ∨B1 :' ∨(Bi)i∈{0,1}

5. ¬B :' ∧(¬Bi)i∈y if B is of the form considered in 1.-4.

The idea is that the infinitary conjunction or disjunction lists the premises re-
quired to derive A as the principal formula of an RSΩ(X)-inference different from
(Σ-RefΩ(X)) or (Cut).
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Lemma 3.14. If A ' (∨Ai)i∈y or A ' (∧Ai)i∈y then

∀i ∈ y(rk(Ai) < rk(A)).

Proof. We need only treat the case where A ' (∨Ai)i∈y since the other case is dual
to this one. We proceed by induction on the complexity of A.

Case 1. Suppose A ≡ r ∈ t then by assumption either r or t is not of the form ū,
we split cases based on the form of t.

1.1 If t ≡ ū then r is not of the form v̄ and rk(A) = rk(r) + 6. In this case
Ai ≡ v̄ ∈ ū ∧ v̄ = r for some | v̄ | < | ū | and we have

rk(Ai) = max(rk(v̄ ∈ ū), rk(v̄ = r)) + 1
= rk(v̄ = r) + 1
= max(rk((∀x ∈ v̄)(x ∈ r)), rk((∀x ∈ r)(x ∈ v̄))) + 2
= rk(r) + 5 < rk(r) + 6 = rk(A).

1.2 If t ≡ Lα(X) then Ai ≡ s = r for some | s | < | t |. So we have

rk(Ai) = rk((∀x ∈ s)(x ∈ r) ∧ (∀x ∈ r)(x ∈ s))
= max(rk(s) + 4, rk(r) + 4)
< max(rk(r) + 1, rk(t) + 6) = rk(A).

1.3 If t ≡ [x ∈ Lα(X)|B(x)] then Ai ≡ B(s) ∧ s = r for some | s | < | t |. So we have

rk(Ai) = max(rk(B(s)) + 1, rk(r = s) + 1).

First note that rk(r = s) + 1 = max(rk(s) + 5, rk(r) + 5) < rk(A). So it remains to
verify that rk(B(s))+1 < rk(A), for this it is enough to show that rk(B(s)) < rk(t).

1.3.1 If max(k(B(s))) ≤ | s | then by Observation 3.11ii) we have rk(B(s)) + 1 <
ω · | s |+ ω ≤ rk(t).

1.3.2 Otherwise max(k(B(s))) > | s | then by Lemma 3.12 we have

rk(B(s)) + 1 = rk(B(∅̄)) + 1
< max(Γθ+1 + ω · α+ 1, rk(B(∅̄)) + 2) = rk(t).

Case 2. Suppose A ≡ (∃x ∈ t)B(x), we split into cases based on the form of t.
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2.1 If t ≡ ū then rk(A) := max(rk(ū)+3, rk(B(∅̄))+2). In this case Ai ≡ v̄ ∈ ū∧B(v̄)
for some | v̄ | < | ū |, so we have

rk(Ai) = max(rk(ū) + 2, rk(B(v̄)) + 1).

Clearly rk(ū) + 2 < rk(ū) + 3 so it remains to verify that rk(B(v̄)) + 1 < rk(A).

2.1.1 If |v̄| ≥ max(k(B(v̄))) then by Observation 3.11i) rk(B(v̄)) + 1 < rk(ū) <
rk(ū) + 3.

2.1.2 If |v̄| < max(k(B(v̄))) then by Lemma 3.12 rk(B(v̄)) + 1 = rk(B(∅̄)) + 1 <
rk(B(∅̄)) + 2.

2.2 Now suppose t ≡ Lα(X), so rk(A) = max(rk(t), rk(B(∅̄)) + 2). In this case
Ai = B(s) for some | s | < | t |.

2.2.1 If | s | ≥ max(k(B(s))) then rk(B(s)) < rk(t) by Observation 3.11.

2.2.2 If | s | < max(k(B(s))) then by Lemma 3.12 rk(B(s)) = rk(B(∅̄)) < rk(A).

2.3. Now suppose t ≡ [y ∈ Lα(X) | C(y)], so we have

rk(A) := max(rk(t), rk(B(∅̄)) + 2)
= max(Γθ+1 + ω · α+ 1, rk(C(∅̄)) + 2, rk(B(∅̄)) + 2).

In this case Ai ≡ C(s) ∧B(s) for some | s | < | t |.

2.3.1 If | s | < max(k(B(s))) then rk(B(s)) + 1 = rk(B(∅̄)) + 1 < rk(B(∅̄)) + 2. It
remains to show that rk(C(s)) < rk(A).

2.3.1.1 If max(k(C(s))) < | t | then rk(C(s)) + 1 < rk(t) by Observation 3.11.

2.3.1.2 Now if max(k(C(s))) ≥ | t | then we may apply Lemma 3.12 to give

rk(C(s)) + 1 = rk(C(∅̄)) + 1 < rk(C(∅̄)) + 2 ≤ rk(A).

2.3.2 If | s | ≥ max(k(B(s))) then rk(B(s)) < Γθ+1 +ω ·α by Observation 3.11. Now
we may apply the same argument as in 2.3.1.1 and 2.3.1.2 to yield rk(C(s)) + 1 <
rk(A).
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Case 3. If A ≡ ∃xB(x) then rk(A) := max(Ω, rk(B(∅̄)) + 1). In this case Ai ≡ B(s)
for some term s.

3.1 If B contains an unbounded quantifier then by Lemma 3.12
rk(B(s)) = rk(B(∅̄)) < rk(A).

3.2 If B does not contain an unbounded quantifier then rk(B(s)) < Ω by Observa-
tion 3.11iii).

Case 4. If A ≡ B ∨ C then the result is clear immediately from the definition of
rk(A). ut

Lemma 3.15. Let H be an arbitrary operator.

i) If α ≤ α′ ∈ H, ρ ≤ ρ′, k(Γ′) ⊆ H and H α

ρ Γ then H α′

ρ′
Γ,Γ′ .

ii) If C is a basic formula which holds true in the setX andH α

ρ Γ,¬C thenH α

ρ Γ .

iii) If H α

ρ Γ, A ∨B then H α

ρ Γ, A,B .

iv) If A ' ∧(Ai)i∈y and H α

ρ Γ, A then (∀i ∈ y)H[i] α

ρ Γ, Ai .

v) If γ ∈ H and H α

ρ Γ, ∀xF (x) then H α

ρ Γ, (∀x ∈ Lγ(X))F (x) .

Proof. All proofs are by induction on α.

i) If Γ is an axiom then Γ,Γ′ is also an axiom, and since {α′} ∪ k(Γ′) ⊆ H there is
nothing to show.

Now suppose Γ is the result of an inference

. . .Hi
αi
ρ Γi . . .

(I) (i ∈ y) αi < α.
H α

ρ Γ

Using the induction hypothesis we have

. . .Hi
αi

ρ′
Γi,Γ′ . . . (i ∈ y) αi < α.

It’s worth noting that k(Γ′) ⊆ Hi, since Hi(∅) ⊇ H(∅), this can be observed by
looking at each inference rule.
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Finally we may apply the inference (I) again to obtain

H α′

ρ′
Γ,Γ′

as required.

ii) If Γ,¬C is an axiom then so is Γ so there is nothing to show.

Now suppose Γ,¬C was derived as the result of an inference rule (I), then ¬C cannot
have been the principal formula since it is basic so we have the premise(s)

Hi
αi
ρ Γi,¬C αi < α.

Now by induction hypothesis we obtain

Hi
αi
ρ Γi αi < α

to which we may apply the inference rule (I) to complete the proof.

iii) If Γ, A ∨ B is an axiom then Γ, A,B is also an axiom. If A ∨ B was not the
principal formula of the last inference then we can apply the induction hypothesis
to its premises and then the same inference again.

Now suppose that A∨B was the principal formula of the last inference. So we have

H α0
ρ Γ, C or H α0

ρ Γ, C,A ∨B where C ∈ {A,B} and α0 < α.

By i) we may assume that we are in the latter case. By the induction hypothesis,
and a contraction, we obtain

H α0
ρ Γ, A,B

Finally using i) yields
H α

ρ Γ, A,B .

iv) If Γ, A is an axiom, then Γ is also an axiom since A cannot be the active part of
an axiom, so Γ, Ai is an axiom for any i ∈ y. If A was not the principal formula of
the last inference then we may apply the induction hypothesis to its premises and
then use that inference again.

Now suppose A was the principal formula of the last inference. With the possible
use of part i), we may assume we are in the following situation:

H[i] αi
ρ Γ, A,Ai (∀i ∈ y) αi < α.
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Inductively and via a contraction we obtain

H[i] αi
ρ Γ, Ai .

Here it is important to note that H[i][i] ≡ H[i]. To which we may apply part i) to
obtain

H[i] α

ρ Γ, Ai
as required.

v) The interesting case is where ∀xF (x) was the principal formula of the last infer-
ence. In this case we may assume we are in the following situation:

(1) H[s] αs
ρ Γ,∀xF (x), F (s) for all terms s, with αs < α.

Using the induction hypothesis yields

(2) H[s] αs
ρ Γ, (∀x ∈ Lγ(X))F (x), F (s) .

Note that for | s | < Γθ+1 + γ we have s ∈̇ Lγ(X)→ F (s) ≡ F (s). So as a subset of
(2) we have

H[s] αs
ρ Γ, (∀x ∈ Lγ(X))F (x), s ∈̇ Lγ(X)→ F (s)

for all | s | < Γθ+1 +γ, with αs < α. From which one application of (b∀) gives us the
desired result. ut

Lemma 3.16 (Reduction for RSΩ(X)). Suppose C ≡ ū ∈ v̄ or C ' ∨(Ci)i∈y and
rk(C) := ρ 6= Ω.

If [H α

ρ Λ,¬C & H β

ρ Γ, C ] then H α+β
ρ Λ,Γ .

Proof. If C ≡ ū ∈ v̄ then by 3.15ii) we have either H α

ρ Λ or H β

ρ Γ . Hence using
3.15i) we obtain H α+β

ρ Λ,Γ as required.

Now suppose C ' ∨(Ci)i∈y, we proceed by induction on β. We have

H α

ρ Λ,¬C(1)

H β

ρ Γ, C .(2)

If C was not the principal formula of the last inference in (2), then we may apply the
induction hypothesis to the premises of that inference and then the same inference
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again. Now suppose C was the principal formula of the last inference in (2). If
B was the principal formula of the inference (Σ-RefΩ(X)), then B is of the form
∃zF (s1, . . . , sn)z, which implies rk(B) = Ω, therefore the last inference in (2) was
not (Σ-RefΩ(X)). So we have

(3) H β0
ρ Γ, C, Ci0 for some i0 ∈ y, β0 < β with | i0 | < Γθ+1 + β.

The induction hypothesis applied to (2) and (3) yields

(4) H α+β0
ρ Λ,Γ, Ci0 .

Now applying Lemma 3.15iv) to (1) provides

(5) H[i0] α

ρ Λ,¬Ci0 .

But | i0 | ∈ H by (4), which means H[i0] = H by Lemma 3.8iv), so in fact we have

(6) H α

ρ Λ,¬Ci0 .

Thus we may apply (Cut) to (4) and (6) (noting that rk(Ci0) < rk(C) := ρ by
Lemma 3.14) to obtain

H α+β
ρ Λ,Γ

as required. ut

Theorem 3.17 (Predicative cut elimination for RSΩ(X)).
If H β

ρ+ωα Γ and Ω /∈ [ρ, ρ+ ωα) and α ∈ H then H ϕαβ

ρ Γ.

Proof. The proof is by main induction on α and subsidiary induction on β. If Γ is
an axiom then the result is immediate. If the last inference was anything other that
(Cut) we may apply the subsidiary induction hypothesis to its premises and then
the same inference again. The crucial case is where the last inference was (Cut), so
suppose there is a formula C with rk(C) < ρ+ ωα such that

H β0

ρ+ωα Γ, C with β0 < β.(1)

H β0

ρ+ωα Γ,¬C with β0 < β.(2)

Applying the subsidiary induction hypothesis to (1) and (2) yields

H ϕαβ0
ρ Γ, C .(3)

H ϕαβ0
ρ Γ,¬C .(4)
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Case 1. If rk(C) < ρ then we may apply (Cut) to (3) and (4), noting that
ϕαβ0 + 1 < ϕαβ ∈ H, to give the desired result.

Case 2. Now suppose rk(C) ∈ [ρ, ρ + ωα), so we may write rk(C) in the following
form:

(5) rk(C) = ρ+ ωα1 + . . .+ ωαn with α > α1 ≥ . . . ≥ αn.

If n = 0, this means that rk(C) = ρ. From (3) we know that k(C) ⊆ H and thus
rk(C) ∈ H. Now (5) and (H2) and (H3) from Definition 3.6 give us α1, . . . , αn ∈ H.
Since rk(C) 6= Ω we may apply the Reduction Lemma 3.16 to (3) and (4) to obtain

(6) H ϕαβ0+ϕαβ0

ρ+ωα1+...+ωαn Γ .

Now ϕαβ0 + ϕαβ0 < ϕαβ, so by Lemma 3.15i) we have

(7) H ϕαβ

ρ+ωα1+...+ωαn Γ .

Applying the main induction hypothesis (since αn < α) to (7) gives

H ϕαn(ϕαβ)
ρ+ωα1+...+ωαn−1

Γ .

But since ϕαβ is a fixed point of the function ϕαn(·) we have

H ϕαβ

ρ+ωα1+...+ωαn−1
Γ .

Now since α1, . . . , αn−1 < α we may repeat this application of the main induction
hypothesis a further n− 1 times to obtain

H ϕαβ

ρ Γ

as required. ut

Lemma 3.18 (Boundedness for RSΩ(X)). If C is a Σ formula, α ≤ β < Ω, β ∈ H
and H α

ρ Γ, C then H α

ρ Γ, CLβ(X) .

Proof. The proof is by induction on α. If C is basic then C ≡ CLβ(X) so there
is nothing to show. If C was not the principal formula of the last inference then
we may apply the induction hypothesis to its premises and then the same inference
again. Now suppose C was the principal formula of the last inference. The last
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inference cannot have been (Σ-RefΩ(X)) since α < Ω.

Case 1. Suppose C ' ∧(Ci)i∈y and H[i] αi
ρ Γ, C, Ci with αi < α. Since C is a Σ

formula, there must be some η ∈ H(∅) ∩ Ω such that (∀s ∈ y)(| s | < η). Therefore
CLβ(X) ' ∧(CLβ(X)

i )i∈y. Now two applications of the induction hypothesis gives

H[i] αi
ρ Γ, CLβ(X), C

Lβ(X)
i

to which we may apply the appropriate inference to gain the desired result.

Case 2. Now suppose C ' ∨(Ci)i∈y and H α0
ρ Γ, C, Ci0 , with i0 ∈ y, | i0 | < Γθ+1+α

and α0 < α. In this case CLβ(X) ' ∨(Ci)i∈y′ where either y′ = y or y′ = {i ∈ y || i | <
Γθ+1 + β}. Now by assumption | i0 | < Γθ+1 + α < Γθ+1 + β, so i0 ∈ y′. Thus using
the same inference again, or (b∃) in the case that the last inference was (∃), we
obtain

H α

ρ Γ, CLβ(X)

as required. ut

Definition 3.19. For each η ∈ T (θ) we define

Hη : P(ON) 7→ P(ON)
Hη(Y ) :=

⋂
{B(α) | Y ⊆ B(α) and η < α}

Lemma 3.20. For any η, Hη is an operator.

Proof. We must verify the conditions (H1) - (H5) from Definition 3.6.

(H1) Clearly 0 ∈ Hη(Y ) and {Γβ | β ≤ θ} ⊆ Hη(Y ) since these belong in any of the
sets B(α). It remains to note that Hη(Y ) ⊇ B(1) and since Γθ+1 = ψ0 ∈ B(1) we
have Γθ+1 ∈ Hη(Y ).

(H2) and (H3) follow immediately from Lemma 2.8i) and ii) respectively.

(H4) is clear from the definition. Now for (H5) suppose Y ′ ⊆ Hη(Y ), then Y ′ ⊆ B(α)
for every α such that η < α and Y ⊆ B(α). It follows that Hη(Y ′) ⊆ Hη(Y ). ut

Lemma 3.21. i) Hη(Y ) is closed under ϕ and ψ|η+1.

ii) If δ < η then Hδ(Y ) ⊆ Hη(Y ).
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iii) If δ < η and Hδ
α

ρ Γ then Hη
α

ρ Γ

Proof. i) Note that for any X, Hη(X) = B(α) for some α ≥ η + 1.

ii) follows immediately from the definition of Hη and iii) follows easily from ii). ut

Lemma 3.22. Suppose η ∈ B(η) and for any ordinal β let β̂ := η + ωΩ+β.

i) If α ∈ Hη then α̂, ψα̂ ∈ Hα̂.

ii) If α0 ∈ Hη and α0 < α then ψα̂0 < ψα̂

Proof. i) First note that Hη(∅) = B(η + 1). Now from α, η ∈ B(η + 1) we get
α̂ ∈ B(η + 1) and thus α̂ ∈ B(α̂). It follows that ψα̂ ∈ B(α̂+ 1) = Hα̂(∅).

ii) Suppose that α0 ∈ Hη and α0 < α, using the preceding argument we get that
ψα̂0 ∈ B(α̂0 + 1) ⊆ B(α̂), thus ψα̂0 < ψα̂. ut

Theorem 3.23 (Collapsing for RSΩ(X)). Suppose Γ is a set of Σ formulae and
η ∈ B(η).

If Hη
α

Ω+1 Γ then Hα̂
ψα̂

ψα̂
Γ .

Proof. We proceed by induction on α. First note that from α ∈ Hη we get α̂, ψα̂ ∈
Hα̂ from Lemma 3.22i).

If Γ is an axiom then the result follows by Lemma 3.15i). So suppose Γ arose as the
result of an inference, we shall distinguish cases according to the last inference of
Hη

α

Ω+1 Γ .

Case 1. Suppose A ' ∧(Ai)i∈y ∈ Γ and Hη[i]
αi

Ω+1 Γ, Ai with αi < α for each
i ∈ y. Since A is a Σ formula, we must have sup{| i | | i ∈ y} < Ω, therefore as
k(A) ⊆ Hη = B(η + 1) we must have sup{| i | | i ∈ y} < ψ(η + 1). It follows that for
any i ∈ y | i | ∈ Hη and thus Hη[i] = Hη. This means that we may use the induction
hypothesis to give

Hα̂i
ψα̂i

ψα̂i
Γ, Ai for all i ∈ y.

Now applying Lemma 3.21ii) we get

Hα̂
ψα̂i

ψα̂i
Γ, Ai for all i ∈ y.
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Upon noting that ψα̂i < ψα̂ by 3.22ii) we may apply the appropriate inference to
obtain

Hα̂
ψα̂

ψα̂
Γ .

Case 2. Now suppose that A ' ∨(Ai)i∈y ∈ Γ and Hη α0

Ω+1 Γ, Ai0 with i0 ∈ y,
|i0| ∈ Hη and α0 < α. We may immediately apply the induction hypothesis to
obtain

Hα̂
ψα̂0

ψα̂0
Γ, Ai0 .

Now we want to be able to apply the appropriate inference to derive Γ but first we
must check that | i0 | < Γθ+1 + ψα̂. Since | i0 | ∈ Hη = B(η + 1) we have

| i0 | < ψ(η + 1) < ψα̂ ≤ Γθ+1 + ψα̂.

Therefore we may apply the appropriate inference to yield

Hα̂
ψα̂

ψα̂
Γ .

Case 3. Now suppose the last inference was (Σ-RefΩ(X)) so we have ∃zF z ∈ Γ and
Hη α0

Ω+1 Γ, F with α0 < α and F a Σ formula. Applying the induction hypothesis
we have

Hα̂
ψα̂0

ψα̂0
Γ, F .

Applying Boundedness 3.18 we obtain

Hα̂
ψα̂0

ψα̂0
Γ, FLψα̂0 (X) .

Now by Lemma 3.22 |Lψα̂0(X) | = Γθ+1 + ψα̂0 < Γθ+1 + ψα̂, so we may apply (∃)
to obtain

Hα̂
ψα̂

ψα̂
Γ, ∃zF z

as required.

Case 4. Finally suppose the last inference was (Cut), so for some A with rk(A) ≤ Ω
we have

Hη α0

Ω+1 Γ, A with α0 < α.(1)

Hη α0

Ω+1 Γ,¬A with α0 < α.(2)
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4.1 If rk(A) < Ω then A is ∆0. In this case both A and ¬A are Σ formulae so we
may immediately apply the induction hypothesis to both (1) and (2) giving

Hα̂0
ψα̂0

ψα̂0
Γ, A(3)

Hα̂0
ψα̂0

ψα̂0
Γ,¬A .(4)

Since k(A) ⊆ Hη(∅) = B(η + 1) and A is ∆0 it follows from Observation 3.11 that
rk(A) ∈ B(η + 1) ∩ Ω. Thus rk(A) < ψ(η + 1) < ψα̂, so we may apply (Cut) to
complete this case.

4.2 Finally suppose rk(A) = Ω. Without loss of generality we may assume that A ≡
∃zF (z) with F a ∆0 formula. We may immediately apply the induction hypothesis
to (1) giving

(5) Hα̂0
ψα̂0

ψα̂0
Γ, A .

Applying Boundedness 3.18 to (5) yields

(6) Hα̂0
ψα̂0

ψα̂0
Γ, ALψα̂0 (X) .

Now using Lemma 3.15v) on (2) yields

(7) Hα̂0
α0

Ω+1 Γ,¬ALψα̂0 (X) .

Observe that since η, α0 ∈ Hη we have α̂0 ∈ B(η+1) ⊆ B(α̂0). So since Γ,¬ALψα̂0 (X)

is a set of Σ-formulae we may apply the induction hypothesis to (7) giving

(8) Hα1
ψα1

ψα1
Γ,¬ALψα̂0 where α1 := α̂0 + ωΩ+α0 .

Now
α1 = α̂0 + ωΩ+α0 = η + ωΩ+α0 + ωΩ+α0 < η + ωΩ+α := α̂.

Owing to Lemma 3.22ii) we have ψα̂0, ψα1 < ψα̂, thus we may apply (Cut) to (6)
and (8) giving

Hα̂
ψα̂

ψα̂
Γ

as required. ut
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4 Embedding KP into RSΩ(X)
Definition 4.1. i) Given ordinals α1, . . . , αn. The expression ωα1# . . .#ωαn de-

notes the ordinal ωαp(1) + . . . + ωαp(n) , where p : {1, . . . , n} 7→ {1, . . . , n}
such that αp(1) ≥ . . . ≥ αp(n). More generally α#0 := 0#α := 0 and
α#β := ωα1# . . .#ωαn#ωβ1# . . .#ωβm for α =NF ωα1 + . . . + ωαn and
β =NF ω

β1 + . . .+ ωβm .

ii) If A is any RSΩ(X)-formula then no(A) := ωrk(A).

iii) If Γ = {A1, . . . , An} is a set of RSΩ(X)-formulae then

no(Γ) := no(A1)# . . .#no(An).

iv)  Γ will be used to abbreviate that

H[Γ] no(Γ)
0 Γ holds for any operator H.

v) αρ Γ will be used to abbreviate that

H[Γ] no(Γ)#α
ρ Γ holds for any operator H.

As might be expected α Γ and ρ Γ stand for α0 Γ and 0
ρ Γ respectively.

The following lemma shows that under certain conditions we may use  as a calculus.

Lemma 4.2. i) If Γ follows from premises Γi by an RSΩ(X) inference other than
(Cut) or (Σ-RefΩ(X)) and without contractions then

if αρ Γi then αρ Γ.

ii) If αρ Γ, A,B then αρ Γ, A ∨B.

Proof. Part i) follows from Lemma 3.14. It also needs to be noted that if the last
inference was universal with premises {Γi}i∈Y , then H[Γi] ⊆ H[i].

For part ii) suppose αρ Γ, A,B, so we have

H[Γ] no(Γ,A,B)#α
ρ Γ, A,B .

Two applications of (∨) and a contraction yields

H[Γ] no(Γ,A,B)#α+2
ρ Γ, A ∨B .
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It remains to note that since ωrk(A∨B) is additive principal, Lemma 3.14 gives us

no(Γ, A,B)#α+ 2 = no(Γ)#α#ωrk(A)#ωrk(B) + 2 < no(Γ)#α#ωrk(A∨B)

= no(Γ, A ∨B)#α.

So we may complete the proof with an application of Lemma 3.15i). ut

Lemma 4.3. Let A be an RSΩ(X) formula and s, t be RSΩ(X) terms.

i)  A,¬A.

ii)  s /∈ s.

iii)  s ⊆ s where s ⊆ s :≡ (∀x ∈ s)(x ∈ s).

iv) If | s | < | t | then  s ∈̇ t→ s ∈ t and  ¬(s ∈̇ t), s ∈ t.

v)  s 6= t, t = s.

vi) If | s | < | t | and  Γ, A,B then  Γ, s ∈̇ t→ A, s ∈̇ t ∧B.

vii) If | s | < Γθ+1 + α then  s ∈ Lα(X).

Proof. i) We use induction of rk(A), and split into cases based upon the form of A:

Case 1. Suppose A ≡ ū ∈ v̄. In this case either A or ¬A is an axiom so there is
nothing to show.

Case 2. Suppose A ≡ r ∈ t where max(| r |, | t |) ≥ Γθ+1. By Lemma 3.14 and the
induction hypothesis we have  s ∈̇ t ∧ r = s, s ∈̇ t→ r 6= s for all | s | < | t |. Thus
we have the following template for derivations in RSΩ(X):

 s ∈̇ t ∧ r = s, s ∈̇ t→ r 6= s(∈)  r ∈ t, s ∈̇ t→ r 6= s(/∈)  r ∈ t, r /∈ t
Case 3. Suppose A ≡ (∃x ∈ t)F (x). By Lemma 3.14 and the induction hypothesis
we have  s ∈̇ t ∧ F (s), s ∈̇ t → ¬F (s) for all | s | < | t |. We have the following
template for derivations in RSΩ(X):

 s ∈̇ t ∧ F (s), s ∈̇ t→ ¬F (s) for all | s | < | t |(b∃)  (∃x ∈ t)F (x), s ∈̇ t→ ¬F (s)(b∀)  (∃x ∈ t)F (x), (∀x ∈ t)¬F (x)

715



Cook and Rathjen

Case 4. A ≡ A0 ∨A1. We have the following template for derivations in RSΩ(X):

 A0,¬A0(∨)  A0 ∨A1,¬A0

 A1,¬A1(∨)  A0 ∨A1,¬A1(∧)  A0 ∨A1,¬A0 ∧ ¬A1

All other cases may be seen as variations of those above.

ii) We proceed by induction on rk(s). If s is of the form ū then s /∈ s is already
an axiom. Inductively we have  r /∈ r for all | r | < | s |. Now suppose s is of the
form Lα(X), in this case r /∈ r ≡ r ∈̇ s∧ r /∈ r so we have the following template for
derivations in RSΩ(X):

 r ∈̇ s ∧ r /∈ r(b∃)  (∃x ∈ s)(x /∈ r)(∨)  s 6= r3.5ii)  r ∈̇ s→ s 6= r(/∈)  s /∈ s

Now suppose s is of the form [x ∈ Lα(X) | B(x)], by i) we have  B(r),¬B(r) for
any | r | < | s |. We have the following template for derivations in RSΩ(X):

 r /∈ r  B(r),¬B(r) for any | r | < | s |(∧)  B(r) ∧ r /∈ r,¬B(r)(b∃)  (∃x ∈ s)(x /∈ r),¬B(r)(∨)  s 6= r,¬B(r)Lemma 4.2ii)  B(r)→ s 6= r(/∈)  s /∈ s

iii) Again we proceed by induction on rk(s). If s ≡ ū then  v̄ /∈ ū, v̄ ∈ ū for any
| v̄ | < | ū | by part i), so we have the following template for derivations in RSΩ(X):

 v̄ /∈ ū, v̄ ∈ ūLemma 4.2ii)  v̄ ∈ ū→ v̄ ∈ ū(b∀)  (∀x ∈ s)(x ∈ s)

Suppose s ≡ Lα(X), by the induction hypothesis we have  r ⊆ r for all | r | < | s |.
We have the following template for derivations in RSΩ(X):
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 r ⊆ r  r ⊆ r(∧)  r = r(∈)  r ∈ s3.5ii)  r ∈̇ s→ r ∈ s(b∀)  (∀x ∈ s)(x ∈ s)

Finally suppose s ≡ [x ∈ Lα(X) |B(x)], again by the induction hypothesis we have
 r ⊆ r for all | r | < | s |. Also by part i) we have  ¬B(r), B(r) for all such r. We
have the following template for derivations in RSΩ(X):

 ¬B(r), r ⊆ r(∧)  ¬B(r), r = r  ¬B(r), B(r)(∧)  ¬B(r), B(r) ∧ r = r(∈)  ¬B(r), r ∈ sLemma 4.2ii)  B(r)→ r ∈ s(b∀)  (∀x ∈ s)(x ∈ s)

iv) Was shown whilst proving iii).

v) By part i) we have  ¬(s ⊆ t), s ⊆ t and  ¬(t ⊆ s), t ⊆ s for all | s | < | t |. We
have the following template for derivations in RSΩ(X).

 ¬(s ⊆ t), s ⊆ t(∨)  ¬(s ⊆ t) ∨ ¬(t ⊆ s), s ⊆ t
 ¬(t ⊆ s), t ⊆ s(∨)  ¬(t ⊆ s) ∨ ¬(s ⊆ t), t ⊆ s(∧)  ¬(s ⊆ t) ∨ ¬(t ⊆ s), s ⊆ t ∧ t ⊆ s3.5i)  s 6= t, t = s

vi) If t ≡ Lα(X) then this result is trivial since s ∈̇ t→ A := A and s ∈̇ t∧B := B.

Now if t ≡ ū then s ∈̇ t := s ∈ t and if t ≡ [x ∈ Lα(X) | C(x)] then s ∈̇ t := C(s).
In either case we have the following template for derivations in RSΩ(X):

 Γ, A,B(∨)  Γ, s ∈̇ t→ A,B

 Γ,¬(s ∈̇ t), s ∈̇ t by i)(∨)  Γ, s ∈̇ t→ A, s ∈̇ t(∧)  Γ, s ∈̇ t→ A, s ∈̇ t ∧B

vii) By part iii) we have  s = s for all | s | < Γθ+1 + α which means we have
 s ∈̇ Lα(X) ∧ s = s for all such s. From which one application of (∈) gives the
desired result. ut
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Lemma 4.4 (Extensionality). For any RSΩ(X) formula A(s1, . . . , sn),

 [s1 6= t1], . . . , [sn 6= tn],¬A(s1, . . . , sn), A(t1, . . . , tn).

Where [si 6= ti] := ¬(si ⊆ ti),¬(ti ⊆ si).

Proof. The proof is by induction on rk(A(s1, . . . , sn))#rk(A(t1, . . . , tn)).

Case 1. Suppose A(s1, s2) ≡ s1 ∈ s2. By the induction hypothesis we have  [s1 6=
t1], [s 6= t], s1 6= s, t1 = t for all | s | < | s2 | and all | t | < | t2 |. What follows is a
template for derivations in RSΩ(X), for ease of reading the principal formula of each
inference is underlined (some lines do not necessarily represent single inferences, but
in these cases it is clear how to extend the concept of "principal formula" in a sensible
way).

 [s1 6= t1], [s 6= t], s1 6= s, t1 = t(∨)  [s1 6= t1], s 6= t, s1 6= s, t1 = t
Lemma 4.3 vi)  [s1 6= t1], t ∈̇ t2 → s 6= t, s1 6= s, t ∈̇ t2 ∧ t1 = t

(∈)  [s1 6= t1], t ∈̇ t2 → s 6= t, s1 6= s, t1 ∈ t2(/∈)  [s1 6= t1], s /∈ t2, s1 6= s, t1 ∈ t2Lemma 4.3 vi)  [s1 6= t1], s ∈̇ s2 ∧ s /∈ t2, s ∈̇ s2 → s1 6= s, t1 ∈ t2(b∃)  [s1 6= t1], (∃x ∈ s2)(x /∈ t2), s ∈̇ s2 → s1 6= s, t1 ∈ t2
(/∈)  [s1 6= t1], (∃x ∈ s2)(x /∈ t2), s1 /∈ s2, t1 ∈ t2Lemma 3.15i)  [s1 6= t1], s2 6= t2, s1 /∈ s2, t1 ∈ t2

Case 2. Suppose A(s1) ≡ s1 ∈ s1. In this case ¬A(s1) ≡ s1 /∈ s1 so the result follows
from Lemma 4.3ii).

Case 3. Suppose A(s1, . . . , sn) ≡ (∃y ∈ si)(B(y, s1, . . . , sn)) for some 1 ≤ i ≤ n.
Inductively we have

 [s1 6= t1], . . . , [sn 6= tn],¬B(r, s1, . . . , sn), B(r, t1, . . . , tn)

for all | r | < | si |. Now by applying 4.3iv) we obtain

 [s1 6= t1], . . . , [sn 6= tn], r ∈̇ si → ¬B(r, s1, . . . , sn), r ∈̇ si ∧B(r, t1, . . . , tn).

To which we may apply (b∃) followed by (b∀) to arrive at the desired conclusion.
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Case 4. Suppose A(s1, . . . , sn) ≡ (∃x ∈ r)B(x, s1, . . . , sn) for some r not present in
s1, . . . , sn. From the induction hypothesis we have, for all | p | < | r |:

 [s1 6= t1], . . . , [sn 6= tn], p ∈̇ r → ¬B(p, s1, . . . , sn), p ∈̇ r ∧B(p, t1, . . . , tn)

Applying (b∃) followed by (b∀) gives us the desired result.

The cases where A(s1, . . . , sn) ≡ ∃xB(x, s1, . . . , sn) or A(s1, . . . , sn) ≡ B ∨ C may
be treated in a similar manner to case 4. All other cases are dual to one of the ones
considered above. ut

Lemma 4.5 (Set Induction). For any RSΩ(X)-formula F :

ω
rk(A)
∀x[(∀y ∈ x)F (y)→ F (x)]→ ∀xF (x)

where A := ∀x[(∀y ∈ x)F (y)→ F (x)].

Proof. Claim:

(*) H[A, s] ωrk(A)#ω| s |+1

0 ¬A,F (s) for any term s.

We begin by verifying (*) using induction on | s |. From the induction hypothesis we
know that

(1) H[A, t] ωrk(A)#ω| t |+1

0 ¬A,F (t) for all | t | < | s |.

By applying (∨) if necessary to (1) we obtain

(2) H[A, t, s] ωrk(A)#ω| t |+1+1
0 ¬A, t ∈̇ s→ F (t) for all | t | < | s |.

To which we may apply (b∀) yielding

(3) H[A, s] η+2
0 ¬A, (∀y ∈ s)F (y) where η := ωrk(A)#ω| s |.

Observe that no(¬F (s), F (s)) < ωrk(A), so by Lemma 4.3i) we have

(4) H[A, s] η+2
0 ¬F (s), F (s) .

Applying (∧) to (3) and (4) yields

(5) H[A, s] η+3
0 ¬A, (∀y ∈ s)F (y) ∧ ¬F (s), F (s) .
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To which we may apply (∃) to otain

(6) H[A, s] η+4
0 ¬A,∃x[(∀y ∈ x)F (y) ∧ ¬F (x)], F (s) .

It remains to observe that ¬A ≡ ∃x[(∀y ∈ x)F (y) ∧ ¬F (x)] and that η + 4 <
ωrk(A)#ω| s |+1, and hence we may apply Lemma 3.15i) to provide

(7) H[A, s] ωrk(A)#ω| s |+1

0 ¬A,F (s)

so the claim is verified.

Applying (∀) to (*) gives

H[A] ωrk(A)#Ω
0 ¬A,∀xF (x) .

Now by two applications of (∨) we may conclude

H[A] ωrk(A)#Ω+2
0 A→ ∀xF (x) .

It remains to note that no(A→ ∀xF (x)) ≥ ωΩ+1 > Ω + 2, so we have

(1) ω
rk(A)

0 A→ (∀x ∈ Lα(X))F (x)

as required. ut

Lemma 4.6 (Infinity). Suppose ω < µ < Ω, then

 (∃x ∈ Lµ(X))[(∃z ∈ x)(z ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)].

Proof. The following gives a template for derivations in RSΩ(X), the idea is that
Lω(X) serves as a witness inside Lµ(X).

Lemma 4.3vii)
 s ∈ Lk(X) for any | s | < |Lk(X) | and k < ω.3.5ii)  Lk(X) ∈̇ Lω(X) ∧ s ∈ Lk(X)(b∃)  (∃z ∈ Lω(X))(s ∈ Lk(X))3.5ii)  s ∈̇ Lω(X)→ (∃z ∈ Lω(X))(s ∈ z)(b∀)  (∀y ∈ Lω(X))(∃z ∈ Lω(X))(y ∈ z)

 L0(X) ∈ Lω(X)3.5ii)  L0(X) ∈̇ Lω(X) ∧ L0(X) ∈ Lω(X)(b∃)  (∃z ∈ Lω(X))(z ∈ Lω(X))(∧)  (∀y ∈ Lω(X))(∃z ∈ Lω(X))(y ∈ z) ∧ (∃z ∈ Lω(X))(z ∈ Lω(X))3.5ii)  Lω(X) ∈̇ Lµ(X) ∧ [(∀y ∈ Lω(X))(∃z ∈ Lω(X))(y ∈ z) ∧ (∃z ∈ Lω(X))(z ∈ Lω(X))]
(b∃)  (∃x ∈ Lµ(X))[(∃z ∈ x)(z ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)]

ut
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Lemma 4.7 (∆0-Separation). Suppose A(a, b1, . . . , bn) be a ∆0-formula of KP with
all free variables indicated, µ a limit ordinal and | s |, | t0 |, . . . , | tn | < Γθ+1 + µ.

 (∃y ∈ Lµ(X))
[
(∀x ∈ y)(x ∈ s ∧A(x, t1, . . . , tn))

∧ (∀x ∈ s)(A(x, t1, . . . , tn)→ x ∈ y)
]

Proof. Let α := max{| s |, | t0 |, . . . , | tn |}+ 1 and note that α < Γθ+1 + µ since µ ia
a limit. Now let β be the unique ordinal such that α = Γθ+1 + β if such an ordinal
exists, if not set β := 0. Now define

t := [z ∈ Lβ(X) | z ∈ s ∧B(z)]

where B(z) := A(z, t1, . . . , tn). We have the following templates for derivations in
RSΩ(X):

Lemma 4.3 i)
 ¬(r ∈ s ∧B(r)), r ∈ s ∧B(r) for all | r | < αLemma 4.2ii)  (r ∈ s ∧B(r))→ r ∈ s ∧B(r)3.5ii)  r ∈̇ t→ r ∈ s ∧B(r)(b∀)  (∀x ∈ t)(x ∈ s ∧B(r))

In the following derivation r ranges over terms | r | < | s |.

Lemma 4.3 iv)
 ¬(r ∈̇ s), r ∈ s

Lemma 4.3 i)
 ¬B(r), B(r)(∧)  ¬(r ∈̇ s),¬B(r), r ∈ s ∧B(r)

Lemma 4.3 iii)
 r = r(∧)  ¬(r ∈̇ s),¬B(r), (r ∈ s ∧B(r)) ∧ r = r3.5ii)  ¬(r ∈̇ s),¬B(r), r ∈̇ t ∧ r = r(∈)  ¬(r ∈̇ s),¬B(r), r ∈ tLemma 4.2ii)  ¬(r ∈̇ s), (B(r)→ r ∈ t)Lemma 4.2ii)  r ∈̇ s→ (B(r)→ r ∈ t)(b∀)  (∀x ∈ s)(B(x)→ x ∈ t)

Now applying (∧) to the two preceding derivations and noting that | t | < Γθ+1 + µ
gives us

 t ∈̇ Lµ(X) ∧ [(∀x ∈ t)(x ∈ s ∧B(r)) ∧ (∀x ∈ s)(B(x)→ x ∈ t)]

to which we may apply (b∃) to obtain

 (∃y ∈ Lµ(X))[(∀x ∈ y)(x ∈ s ∧B(x)) ∧ (∀x ∈ s)(B(x)→ x ∈ y)].
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It should also be checked that

t ∈ H[(∃y ∈ Lµ(X))[(∀x ∈ y)(x ∈ s ∧B(x)) ∧ (∀x ∈ s)(B(x)→ x ∈ y)]]

but this is the case since

| s |, | t0 |, . . . , | tn | ∈ k((∃y ∈ Lµ(X))[(∀x ∈ y)(x ∈ s ∧B(x)) ∧ (∀x ∈ s)(B(x)→ x ∈ y)])

and | t | = max{max{| s |, | t0 |, . . . , | tn |}+ 1,Γθ+1}. ut

Lemma 4.8 (Pair and Union). Let µ be a limit ordinal and let s, t be RSΩ(X)-terms
such that | s |, | t | < Γθ+1 + µ, then

i)  (∃z ∈ Lµ(X))(s ∈ z ∧ t ∈ z)

ii) (∃z ∈ Lµ(X))(∀y ∈ s)(∀x ∈ y)(x ∈ z).

Proof. Let α := max{| s |, | t |} + 1, now let β be the unique ordinal such that α =
Γθ+1 + β if such an ordinal exists, otherwise set β := 0. Now by Lemma 4.3vii) we
have

 s ∈ Lβ(X) and  t ∈ Lβ(X).

Now by (∧) and noticing that β < µ since µ is a limit, we have

 Lβ(X) ∈̇ Lµ(X) ∧ (s ∈ Lβ(X) ∧ t ∈ Lβ(X)).

To which we may apply (b∃) to obtain the desired result.

ii) Let β be the unique ordinal such that | s | = Γθ+1 + β if such an ordinal exists,
otherwise let β = 0. By Lemma 4.3vii) we have  r ∈ Lβ(X) for any | r | < | s |.
In the following template for derivations in RSΩ(X), r and t range over terms such
that | r | < | t | < | s |:

 r ∈ Lβ(X)
(∨) if necessary  r ∈̇ t→ r ∈ Lβ(X)

(b∀)  (∀x ∈ t)(x ∈ Lβ(X))
(∨) if necessary  t ∈̇ s→ (∀x ∈ t)(x ∈ Lβ(X))

(b∀)  (∀y ∈ s)(∀x ∈ y)(x ∈ Lβ(X))
3.5ii)  Lβ(X) ∈̇ Lµ(X) ∧ (∀y ∈ s)(∀x ∈ y)(x ∈ Lβ(X)) since β < µ
(b∃)  (∃z ∈ Lµ(X))(∀y ∈ s)(∀x ∈ y)(x ∈ z)

ut
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Lemma 4.9 (∆0-Collection). Suppose F (a, b) is any ∆0 formula of KP.

 (∀x ∈ s)∃yF (x, y)→ ∃z(∀x ∈ s)(∃y ∈ z)F (x, y)

Proof. By Lemma 4.3i) we have

 ¬(∀x ∈ s)∃yF (x, y), (∀x ∈ s)∃yF (x, y).

Applying (Σ-RefΩ(X)) yields

H[(∀x ∈ s)∃yF (x, y)] α+1
0 ¬(∀x ∈ s)∃yF (x, y),∃z(∀x ∈ s)(∃y ∈ z)F (x, y)

where α := ωrk((∀x∈s)∃yF (x,y))#ωrk((∀x∈s)∃yF (x,y)). Now two applications of (∨) pro-
vides

H[(∀x ∈ s)∃yF (x, y)] α+3
0 (∀x ∈ s)∃yF (x, y)→ ∃z(∀x ∈ s)(∃y ∈ z)F (x, y) .

It remains to note that

α+ 3 < ωrk(∀x∈s)∃yF (x,y)+1 = no((∀x ∈ s)∃yF (x, y)→ ∃z(∀x ∈ s)(∃y ∈ z)F (x, y))

so the proof is complete. ut

Theorem 4.10. If KP ` Γ(a1, . . . , an) where Γ(a1, . . . , an) is a finite set of formulae
whose free variables are amongst a1, . . . , an, then there is some m < ω (which we
may compute from the derivation) such that

H[s1, . . . , sn] Ω·ωm
Ω+m Γ(s1, . . . , sn)

for any operator H and any RSΩ(X) terms s1, . . . , sn.

Proof. Suppose Γ(a1, . . . , an) ≡ {A1(a1, . . . , an), . . . , Ak(a1, . . . , an)}. Note that for
any choice of terms s1, . . . , sn and each 1 ≤ i ≤ k

rk(Ai(s1, . . . , sn)) = ω ·max(k(Ai(s1, . . . , sn))) +mi for some mi < ω

≤ ω · Ω +mi = Ω +mi.

Therefore

no(Ai(s1, . . . , sn)) = ωrk(Ai(s1,...,sn)) ≤ ωΩ+mi = ωΩ · ωmi = Ω · ωmi .
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So letting m = max(m1, . . . ,mk) + 1 we have

no(Γ(s1, . . . , sn)) ≤ Ω · ωm1# . . .#Ω · ωmn
= Ω · (ωm1# . . .#ωmn)
≤ Ω · ωm

The proof now proceeds by induction on the KP derivation. If Γ(a1, . . . , an) is an
axiom of KP then the result follows from 4.3i), 4.4, 4.5, 4.6, 4.7, 4.8 or 4.9.

Now suppose that Γ(a1, . . . , an) arises as the result of an inference rule.

Case 1. Suppose the last inference was (b∀), so (∀x ∈ ai)F (x, ā) ∈ Γ(ā) and we are
in the following situation in KP

Γ(ā), c ∈ ai → F (c, ā)(b∀) Γ(ā)
where c is different from a1, . . . , an. Inductively we have some m < ω such that

(1) H[s̄, r] Ω·ωm
Ω+m Γ(s̄), r ∈ si → F (r, s̄) for all | r | < | si |.

1.1 If si is of the form ū we may immediately apply (b∀) to complete this case.

Suppose si ≡ Lα(X) for some α. Applying Lemma 3.15iii) to (1) gives

(2) H[s̄, r] Ω·ωm
Ω+m Γ(s̄),¬(r ∈ si), F (r, s̄) .

Since | r | < | s |, by Lemma 4.3vii) we have

(3)  r ∈ s.

Applying (Cut) to (1) and (2) yields

(4) H[s̄, r] Ω·ωm+1
Ω+m Γ(s̄), F (r, s̄) .

To which we may apply (b∀) to complete this case.

Suppose si ≡ [x ∈ Lα(X) | B(x)], again we may apply Lemma 3.15iii) to (1) to
obtain

(5) H[s̄, r] Ω·ωm
Ω+m Γ(s̄),¬(r ∈ si), F (r, s̄) .
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Since | r | < | s | by Lemma 4.3iv) we have

(6)  ¬(r ∈̇ s), r ∈ s.

Applying (Cut) to (5) and (6) yields

(7) H[s̄, r] Ω·ωm+1
Ω+m Γ(s̄),¬(r ∈̇ si), F (r, s̄) .

Now two applications of (∨) provide

(8) H[s̄, r] Ω·ωm+3
Ω+m Γ(s̄), r ∈̇ si → F (r, s̄) .

To which we may apply (b∀) to complete this case.

Case 2. Suppose the last inference was (∀) so ∀xA(x, ā) ∈ Γ(ā) and we are in the
following situation in KP

Γ(ā), F (c, ā)(∀) Γ(ā)
where c is different from a1, . . . an. Inductively we have some m < ω such that

H[s̄, r] Ω·ωm
Ω+m Γ(s̄), F (r, s̄) for all terms r.

We may immediately apply (∀) to complete this case.

Case 3. Suppose the last inference was (b∃) so (∃x ∈ si)F (x, s̄) ∈ Γ(s̄) and we are
in the following situation in KP

Γ(ā), c ∈ ai ∧ F (c, ā)(b∃) Γ(ā)

3.1 Suppose c is different from a1, . . . , an. Using the induction hypothesis we find
some m < ω such that

(9) H[s̄] Ω·ωm
Ω+m Γ(s̄), ∅̄ ∈ si ∧ F (∅̄, s̄) .

3.1.1 If si is of the form ū we may immediately apply (b∃) to complete the case.

3.1.2 Suppose si is of the form Lα(X). Applying Lemma 3.15iv) to (1) yields

(10) H[s̄] Ω·ωm
Ω+m Γ(s̄), F (∅̄, s̄) .
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Noting that in this case ∅̄ ∈̇ s ∧ F (∅̄, s̄) ≡ F (∅̄, s̄), we may apply (b∃) to complete
this case.

3.1.3 Suppose si is of the form [x ∈ Lα(X) | B(x)]. First we must verify the following
claim

(*)  ¬(∅̄ ∈ si ∧ F (∅̄, s̄)), ∅̄ ∈̇ si ∧ F (∅̄, s̄).

Note that owing to Lemma 4.4 we have  [r 6= ∅̄],¬B(r), B(∅̄) for all | r | < | si |. In
the following template for derivations in RSΩ(X) r ranges over terms | r | < | si |.

 [r 6= ∅̄],¬B(r), B(∅̄)Lemma 4.2ii)
 r 6= ∅̄,¬B(r), B(∅̄)Lemma 4.2ii)
 B(r)→ r 6= ∅̄, B(∅̄)(/∈)
 ¬(∅̄ ∈ si), B(∅̄)

Lemma 4.3i)
 ¬F (∅̄, s̄), F (∅̄, s̄)(∧)

 ¬(∅̄ ∈ si),¬F (∅̄, s̄), B(∅̄) ∧ F (∅̄, s̄)Lemma 4.2ii)
 ¬(∅̄ ∈ si) ∨ ¬F (∅̄, s̄), B(∅̄) ∧ F (∅̄, s̄)

Now applying (Cut) to (9) and (*) we get

(11) H[s̄] Ω·ωm+1
Ω+m′

Γ(s̄), ∅̄ ∈̇ si ∧ F (∅̄, s̄) .

Note the possible increase in cut rank. We may apply (b∃R) to (11) to complete
this case.

3.2 Suppose c is one of a1, . . . , an, without loss of generality let us assume c = a1.
Applying the induction hypothesis we can compute some m < ω such that

(12) H[s̄] Ω·ωm
Ω+m Γ(s̄), s1 ∈ si ∧ F (s1, s̄).

Note that in fact 3.2 subsumes 3.1 since we can conclude (12) from the induction
hypothesis regardless of whether or not c is a member of ā. To help with clarity 3.1
is left in the proof above, but in later embeddings we shall dispense with such cases.

If s1 and si are of the form ū and v̄ with | s1 | < | si | then we may immediately apply
(b∃) to complete this case. If this is not the case then we verify the following claim

(**)  ¬(s1 ∈ si ∧ F (s1, s̄)), (∃x ∈ si)F (x, s̄).
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To prove (**) we split into cases based on the form of si.

3.2.1 Suppose si is of the form ū.

3.2.1.1 If s1 is also of the form v̄ [remember that by assumption | s1 | ≥ | si |] then
¬(s1 ∈ si), F (s1, s̄), (∃x ∈ si)F (x, s̄) is an axiom so we may apply (∨) twice to com-
plete this case.

3.2.1.2 Now suppose s1 is not of the form v̄. We have following template for deriva-
tions in RSΩ(X), here r ranges over terms with | r | < | si |.

Lemma 4.3i)
 ¬(r ∈ si), r ∈ si

Lemma 4.4
 r 6= s1,¬F (s1, s̄), F (r, s̄)(∧)  ¬(r ∈ si), r 6= s1,¬F (s1, s̄), r ∈ si ∧ F (r, s̄)(b∃)  ¬(r ∈ si), r 6= s1,¬F (s1, s̄), (∃x ∈ si)F (x, s̄)Lemma 4.2ii)  r ∈ si → r 6= s1,¬F (s1, s̄), (∃x ∈ si)F (x, s̄)(/∈)  ¬(s1 ∈ si),¬F (s1, s̄), (∃x ∈ si)F (x, s̄)Lemma 4.2ii)  ¬(s1 ∈ si) ∨ ¬F (s1, s̄), (∃x ∈ si)F (x, s̄)

3.2.2 Now suppose si is of the form Lα(X). In the following template for derivations
in RSΩ(X) r ranges over terms with | r | < | si |.

Lemma 4.4
 r 6= s1,¬F (s1, s̄), F (x, s̄)3.5ii)  r 6= s1,¬F (s1, s̄), r ∈̇ si ∧ F (x, s̄)(b∃)  r 6= s1,¬F (s1, s̄), (∃x ∈ si)F (x, s̄)3.5ii)  r ∈̇ si → r 6= s1,¬F (s1, s̄), (∃x ∈ si)F (x, s̄)(/∈)  ¬(s1 ∈ si),¬F (s1, s̄), (∃x ∈ si)F (x, s̄)Lemma 4.2ii)  ¬(s1 ∈ si) ∨ ¬F (s1, s̄), (∃x ∈ si)F (x, s̄)

3.2.3 Finally suppose si is of the form [x ∈ Lα | B(x)]. In the following template for
derivations in RSΩ(X) r ranges over terms with | r | < | si |.

Lemma 4.3i)
 ¬B(r), B(r)

Lemma 4.4
 r 6= s,¬F (s1, s̄), F (r, s̄)(∧)  ¬B(r), r 6= s1,¬F (s1, s̄), B(r) ∧ F (r, s̄)(b∃)  ¬B(r), r 6= s1,¬F (s1, s̄), (∃x ∈ si)F (x, s̄)Lemma 4.2ii)  B(r)→ r 6= s1,¬F (s1, s̄), (∃x ∈ si)F (x, s̄)(/∈)  ¬(s1 ∈ si),¬F (s1, s̄), (∃x ∈ si)F (x, s̄)Lemma 4.2ii)  ¬(s1 ∈ si) ∨ ¬F (s1, s̄), (∃x ∈ si)F (x, s̄)
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This completes the proof of the claim (**). It remains to note that we may apply
(Cut) to (**) and (12) to complete Case 3.

Case 4. Suppose the last inference was (∃) so ∃xF (x, s̄) ∈ Γ(s̄) and we are in the
following situation in KP:

Γ(ā), F (c, ā)(∃) Γ(ā)

Let p = sj if c = aj otherwise let p = ∅̄, from the induction hypothesis we can
compute some m < ω such that

H[s̄] Ω·ωm
Ω+m Γ(s̄), F (p, s̄) .

Applying (∃) completes this case.

Case 5. If the last inference was (∧) or (∨) the result follows immediately by apply-
ing the corresponding RSΩ(X) inference to the induction hypotheses.

Case 6. Finally suppose the last inference was (Cut). So we are in the following
situation in KP

Γ(ā), B(ā, b̄) Γ(ā),¬B(ā, b̄)(Cut) Γ(ā)

Here b̄ := b1, . . . , bl denotes the free variables occurring in B that are different from
a1, . . . , an. Let ¯̄∅ denote the sequence of l occurrences of ∅̄. From the induction
hypothesis we find m1 and m2 such that

H[s̄] Ω·ωm1

Ω+m1
Γ(s̄), B(s̄, ¯̄∅)

H[s̄] Ω·ωm1

Ω+m2
Γ(s̄),¬B(s̄, ¯̄∅)

To which we may apply (Cut) to complete the proof. ut

5 A well ordering proof in KP
The aim of this section is to give a well ordering proof in KP for initial segments of
formal ordinal terms from T (θ). First let

e0 := Ω + 1(2)
en+1 := ωen .
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Each en is a formal term belonging to every representation system T (θ) from 2.13.
Although the term is the same, the order type of terms in T (θ) below en will be
dependent upon θ. We aim to verify that for every n < ω

KP ` An(θ) :=∃α∃f [dom(f) = α ∧ range(f) = {a ∈ T (θ) | a ≺ ψθ(en))}
∧ ∀γ, δ ∈ dom(f)(γ < δ → f(γ) ≺ f(δ))]

where in the above formula ≺ denotes the ordering on T (θ). Formally An(θ) is a
Σ-formula of KP in which θ is a parameter (free variable) ranging over ordinals. For
the remainder of this section we argue informally in KP. The symbols α, β, γ, . . .
are to be KP-variables ranging over ordinals and are ordered by <, the symbols
a, b, c, . . . are seen as KP-variables ranging over codes of formal terms from T (θ),
these are ordered by ≺. For the remainder of this section the variable θ will remain
free as we argue in KP, for ease of reading we shall simply write Ω and ψ instead
of Ωθ and ψθ. This proof is an adaptation to the relativised case of a well ordering
proof in [50] or [54].

Definition 5.1. The set Accθ is defined by

Accθ :={a ∈ T (θ) | a ≺ Ω ∧ ∃α∃f [dom(f) = α ∧ range(f) = {b : b � a}
∧ ∀γ, δ ∈ dom(f)(γ < δ → f(γ) ≺ f(δ))]}.

Lemma 5.2 (Accθ-induction). For any KP-formula F (a) we have

(∀a ∈ Accθ)[(∀b ≺ a)F (b)→ F (a)]→ (∀a ∈ Accθ)F (a).

Proof. For a ∈ Accθ let o(a) and fa be the unique ordinal and function such that
o(a) = dom(fa), {b : b � a} = range(fa) and ∀γ, δ ∈ o(a)(γ < δ → fa(γ) ≺ fa(δ)).
Now for a contradiction let us assume that

(∀a ∈ Accθ)[(∀b ≺ a)F (b)→ F (a)] but ¬F (a0) for some a0 ∈ Accθ

Using set induction/foundation we may pick a0 such that o(a0) is minimal. (Note
that here we must make use of the full set induction schema of KP since the formula
F is of unbounded complexity.) Now for any b ≺ a0 we have o(b) < o(a0), thus by
our choice of a0 we get F (b), thus we have

(∀b ≺ a0)F (b).

So by assumption we have F (a0), contradiction. ut
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Lemma 5.3. Accθ has the following closure properties:

i) b ∈ Accθ ∧ a ≺ b → a ∈ Accθ

ii) (∀a ≺ b)(a ∈ Accθ) → b ∈ Accθ

iii) a, b ∈ Accθ → a+ b ∈ Accθ

iv) a, b ∈ Accθ → ϕab ∈ Accθ

v) (∀β ≤ θ) Γβ ∈ Accθ

Proof. i) Using the notation defined at the start of the proof of Lemma 5.2 we may
define

o(a) := {δ ∈ o(b) | fb(δ) � a} and fa := fb|o(a)+1

thus witnessing that a ∈ Accθ.

ii) Let us assume that (∀a ≺ b)(a ∈ Accθ), we must verify that b ∈ Accθ. Using
∆0-Separation and Infinity we may form the set {a | a ≺ b}, therefore f := ∪a≺bfa
is a set by ∆0-Collection and Union. Let β := dom(f). Setting o(b) := β + 1 and
fb := f ∪ {(β, b)} furnishes us with the correct witnesses to confirm that b ∈ Accθ.

iii) Firstly we must specify what a + b means, since it may not be the case that
the string a + b is a term in T (θ). However, we may define a θ-primitive recursive
function + : T (θ)× T (θ)→ T (θ) which corresponds to ordinal addition.

Let us assume that (∀c ≺ b)(a + c ∈ Accθ), now if we can show that a + b ∈ Accθ
then the desired result will follow from Accθ-induction (5.2). Now let d ≺ a + b,
either d � a in which case d ∈ Accθ by i) or d � a and thus d = a + c for some
unique c ≺ b. Such a c may be determined in a θ-primitive recursive fashion, hence
d ∈ Accθ by assumption. Thus we have

(∀d ≺ a+ b)(d ∈ Accθ).

From which we may use ii) to obtain a+ b ∈ Accθ, completing the proof.

iv) Again a function ϕ : T (θ)×T (θ)→ T (θ) may be defined in a θ-primitve recursive
fashion. It is our aim to show (∀x, y ∈ Accθ)(ϕxy ∈ Accθ), to this end let

F (a) := (∀b ∈ Accθ)(ϕab ∈ Accθ)
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and assume

(*) (∀z ≺ a)F (z)

by 5.2 it suffices to verify F (a). So let us assume

(**) a, b ∈ Accθ and (∀y ≺ b)(ϕay ∈ Accθ)

now we must verify ϕab ∈ Accθ. To do this we prove that

d ≺ ϕab⇒ d ∈ Accθ

by induction on Gd; the term complexity of d.

1) If d is strongly critical then d � a or d � b in which case d ∈ Accθ by (*) or (**).

2) If d ≡ ϕd0d1 then we have the following subcases:

2.1) If d0 ≺ a and d1 ≺ ϕab then since Gd1 < Gd we get d1 ∈ Accθ from the induc-
tion hypothesis. So by (*) we get d ≡ ϕd0d1 ∈ Accθ.

2.2) If d ≡ ϕad1 and d1 ≺ b then d ∈ Accθ by (**).

2.3 If a ≺ d0 and d ≺ b then d ∈ Accθ since b ∈ Accθ.

3. If d ≡ d1 + . . . + dn and n > 1 we get d1, . . . , dn ∈ Accθ from the induction
hypothesis and thus d ∈ Accθ follows from iii).

Thus we have verified that

(∀b ∈ Accθ)[(∀y ≺ b)(ϕay ∈ Accθ)→ ϕab ∈ Accθ].

So, from Accθ-induction we get (∀b ∈ Accθ)(ϕab ∈ Accθ), ie. F (a) completing the
proof.

v) We aim to show that

(∀β ≤ θ)[(∀γ < β)(Γγ ∈ Accθ)→ Γβ ∈ Accθ]

from which we may use transfinite induction along θ (since θ is an ordinal) to obtain
the desired result.
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So suppose β ≤ θ and (∀δ < β)(Γδ ∈ Accθ). Now suppose b ≺ Γβ, by induction on
the term complexity of b we verify that b ∈ Accθ.

If b ≡ 0 we are trivially done by ii) or if b ≡ Γδ for some δ < β then we know
b ∈ Accθ by assumption.

If b ≡ b0 + . . .+ bn or b ≡ ϕb0b1 then we may use parts iii) and iv) and the induction
hypothesis since the components bi have smaller term complexity.

It cannot be the case that b ≡ ψb0 since ψa � Γθ for every a.

Thus using ii) we get that Γβ ∈ Accθ and the proof is complete. ut

Definition 5.4. By recursion through the construction of ordinal terms in T (θ) we
define the set SC≺Ω(a) which lists the most recent strongly critical ordinal below Ω
used in the build up of the ordinal term a:

1) SC≺Ω(0) := SC≺Ω(Ω) := ∅.

2) SC≺Ω(a) := {a} if a ≡ Γβ for some β ≤ θ or a ≡ ψa0.

3) SC≺Ω(a1 + . . .+ an) := ⋃
1≤i≤n SC≺Ω(ai).

4) SC≺Ω(ϕa0a1) := SC≺Ω(a0) ∪ SC≺Ω(a1).

5) SC≺Ω(ψa) := {ψa}.

Now let
Mθ := {a ∈ T (θ) | SC≺Ω(a) ⊆ Accθ}

and
a ≺Mθ

b := a, b ∈Mθ ∧ a ≺ b.

Finally for a definable class U we define the following formula

ProgMθ
(U) := (∀y ∈Mθ)[(∀z ≺Mθ

y)(z ∈ U)→ (y ∈ U)].

Lemma 5.5.
Accθ = Mθ ∩ Ω := {a ∈Mθ | a ≺ Ω}.
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Proof. Suppose that a ∈ Accθ and observe that (∀x ∈ SC≺Ω(a))(x � a), thus
SC≺Ω(a) ⊆ Accθ by 5.3i) thus we have verified that a ∈Mθ ∩ Ω.

Now let us suppose that a ∈Mθ ∩ Ω, so we know that SC≺Ω(a) ⊆ Accθ. By induc-
tion on the term complexity Ga we verify that a ∈ Accθ.

Clearly 0 ∈ Accθ and if a ≡ Γβ for some β ≤ θ then a ∈ Accθ by Lemma 5.3v).

If a ≡ a1 + . . . + an then we get a1, . . . , an ∈ Mθ ∩ Ω since SC≺Ω(ai) ⊆ SC≺Ω(a)
for each i. Now using the induction hypothesis we get a1, . . . , an ∈ Accθ and so by
Lemma 5.3ii) we have a ∈ Accθ.

If a ≡ ϕbc then we get b, c ∈ Mθ ∩ Ω, so using the induction hypothesis we get
b, c ∈ Accθ and so by Lemma 5.3iii) we have a ∈ Accθ.

If a ≡ ψa0 then SC≺Ω(a) = {a} so we have a ∈ Accθ by assumption. ut

Definition 5.6. For a definable class U let

U δ := {b ∈Mθ | (∀a ∈Mθ)[Mθ ∩ a ⊆ U →Mθ ∩ a+ ωb ⊆ U ]}

where Mθ ∩ a := {b ∈Mθ | b ≺ a}.

Lemma 5.7. KP ` ProgMθ
(U)→ ProgMθ

(U δ).

Proof. Assume

ProgMθ
(U)(1)

b ∈Mθ(2)
(∀x ≺Mθ

b)(z ∈ U δ).(3)

Under these assumptions we need to verify that b ∈ U δ. Since we already have that
b ∈Mθ by (2), it suffices to verify

(∀a ∈Mθ)[Mθ ∩ a ⊆ U →Mθ ∩ a+ ωb ⊆ U ]

to this end we assume that

(4) a ∈Mθ and Mθ ∩ a ⊆ U.
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Now choose some d ∈Mθ ∩a+ωb, we must show that d ∈ U under the assumptions
(1)-(4).

If d ≺ a then we have d ∈ U by (4).

If d = a then using (1) and (4) we have a ∈ U .

If d � a then since d ≺ a+ ωb, we may find d1, . . . , dk such that

d = a+ ωd1 + . . .+ ωdk and dk � . . . � d1 ≺ b.

Since Mθ ∩ a ⊆ U we get Mθ ∩ a+ ωd1 ⊆ U from (3).

In a similar fashion using (3) a further k − 1 times we obtain

Mθ ∩ a+ ωd1 + . . .+ ωdk ⊆ U.

Finally using one application of ProgMθ
(U) (assumption (1)) we have d ∈ U and

thus the proof is complete. ut

Definition 5.8. We define the class Xθ in KP as

Xθ := {a ∈Mθ | (∃x ∈ Ka)(x � a) ∨ ψa ∈ Accθ}.

Recall that the function k was defined in Definition 2.11 and can be computed in a
θ-primitive recursion fashion. The class Xθ may be thought of as those a ∈ Mθ for
which either ψa is undefined or ψa ∈ Accθ.

Lemma 5.9. KP ` ProgMθ
(Xθ).

Proof. Assume

a ∈Mθ(1)
(∀z ≺Mθ

a)(z ∈ Xθ).(2)

We need to verify that a ∈ Xθ. If (∃x ∈ Ka)(x � a) then we are done, so assume
(∀x ∈ Ka)(x ≺ a) and thus ψa ∈ T (θ) and we must verify that ψa ∈ Accθ. To
achieve this we verify that

(*) b ≺ ψa ⇒ b ∈ Accθ
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from which we would be done by 5.3ii). To verify (*) we proceed by induction on
Gb, the term complexity of b.

If b ≡ 0 or b ≡ Γβ for some β ≤ θ we are done by 5.3v).

If b ≡ b0 + . . .+ bn or b ≡ ϕb0b1 then the result follows by the induction hypothesis
and 5.3ii) or 5.3iii).

So suppose that b ≡ ψb0. It must be the case that (∀x ∈ Kb0)(x ≺ b0) and b0 ≺ a.
We must now show that b0 ∈Mθ in order to use (2) to conclude that b0 ∈ Xθ. The
claim is that

(**) SC≺Ω(b0) ⊆ Accθ and thus b0 ∈Mθ.

Suppose d ∈ SC≺Ω(b0) then either d ≡ Γβ for some β ≤ θ in which case d ∈ Accθ by
5.3v) or d ≡ ψd0 ≺ ψa for some d0. But

Gd ≤ Gb0 < Gb

and thus d ∈ Accθ by induction hypothesis. Thus the claim (**) is verified. Now
using (2) we obtain b0 ∈ Xθ which implies b ≡ ψb0 ∈ Accθ. ut

Lemma 5.10. For any n < ω and any definable class U

KP ` ProgMθ
(U) → Mθ ∩ en ⊆ U ∧ en ∈ U.

Proof. We proceed by induction on n [outside of KP].

If n = 0 then ProgMθ
(U) says that

(∀a ∈ Accθ)[(∀b ≺ a)(b ∈ U)→ a ∈ U ].

So using Accθ-induction (Lemma 5.2) we obtain Accθ ⊆ U . Hence from 5.5 we get
Mθ ∩ Ω ⊆ U . Now Ω,Ω + 1 ∈ Mθ so using ProgMθ

(U) a further two times we have
Ω + 1 := e0 ∈ U as required.

Now suppose the result holds up to n; since the induction hypothesis holds for all
definable classes we have that that

KP ` ProgMθ
(U δ)→Mθ ∩ en ⊆ U δ ∧ en ∈ U δ
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and by Lemma 5.7 we have

(1) KP ` ProgMθ
(U)→Mθ ∩ en ⊆ U δ ∧ en ∈ U δ.

Now we argue informally in KP. Suppose ProgMθ
(U), then from (1) we obtain

Mθ ∩ en ⊆ U δ ∧ en ∈ U δ.

This says that

(∀b ∈Mθ ∩ (en + 1))(∀a ∈Mθ)[Mθ ∩ a ⊆ U →Mθ ∩ a+ ωb ⊆ U ].

Now if we put a = 0 and b = en (noting that en ∈Mθ) we obtain

Mθ ∩ ωen ⊆ U

from which ProgMθ
(U) implies ωen ∈ U as required. ut

Theorem 5.11. For every n < ω

KP ` ∀θ ψ(en) ∈ Accθ

and hence KP ` ∀θ An(θ).

Proof. By 5.9 we have ProgMθ
(Xθ) recalling that

Xθ := {a ∈Mθ | (∃x ∈ Ka)(x � a) ∨ ψa ∈ Accθ}.

So from 5.10 we get en ∈ Xθ for any n < ω and thus ψ(en) ∈ Accθ. ut

6 The provably total set functions of KP
At this point we should perhaps remind ourselves that the ordinal ψα depends on a
parameter θ which is the rank of TC({X}) as ψ is defined simultaneously with the
sets Bθ(α). After Definition 2.4 we adopted the convention to drop the subscript θ
from ψθ. For the next application we have to be aware of this dependence. For each
n < ω we define the following recursive set function

Gn(X) := Lψθ(en)(X)

where θ is the rank of TC({X}). For a formula A(a, b) of KP let

∀x∃!yA(x, y) := ∀x∀y1∀y2[A(x, y1) ∧A(x, y2)→ y1 = y2] ∧ ∀x∃yA(x, y).
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Definition 6.1. If T is a theory formulated in the language of set theory, f a set
function and X a class of formulae. We say that f is X definable in T if there is
some X-formula Af (a, b) with exactly the free variables a, b such that

i) V |= Af (x, y)↔ f(x) = y.

ii) T ` ∀x∃!yAf (x, y).

Theorem 6.2. Suppose f is a set function that is Σ definable in KP, then there is
some n (which we may compute from the finite derivation) such that

V |= ∀x(f(x) ∈ Gn(x)).

Moreover Gm is Σ definable in KP for each m < ω.

Proof. Let Af (a, b) be the Σ formula expressing f such that KP ` ∀x∃!yAf (x, y)
and fix an arbitrary set X. Let θ be the rank of X. Applying Theorem 4.10 we can
compute some k < ω such that

H0
Ω·ωk
Ω+k ∀x∃!yAf (x, y) .

Applying Lemma 3.15 iv) twice we get

H0
Ω·ωk
Ω+k ∃yAf (X, y) .

Applying Theorem 3.17 (predicative cut elimination) we get

H0
ek+1

Ω+1 ∃yAf (X, y) .

Now by Theorem 3.23 (collapsing) we have

Hek+2

ψθ(ek+2)
ψθ(ek+2)

∃yAf (X, y) .

Applying Theorem 3.17 (predicative cut elimination) again yields

Hγ
ϕ(ψθγ)(ψθγ)
0 ∃yAf (X, y) where γ := ek+2.

Now by Lemma 3.18 (boundedness) we obtain

(1) Hγ
α

0 (∃y ∈ Lα(X))Af (X, y)Lα(X) where α := ϕ(ψθγ)(ψθγ).
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Since (1) contains no instances of (Cut) or (Σ-RefΩ(X)), it follows by induction on
α that

Lα(X) |= ∃yAf (X, y).

It remains to note that Lα(X) ⊆ Gk+3(X) to complete this direction of the proof.

For the other direction we argue informally in KP. Let X be an arbitrary set, we
may specify the rank of X in a ∆0 manner([3] p. 29). By Theorem 5.11 we can find
an ordinal of the same order type as ψθ(en) with θ being the rank of TC({X}). We
can now generate Lψθ(en)(X) by Σ-recursion ([3] p. 26 Theorem 6.4). ut

The comparison of Theorem 1.2 with Theorem 6.2 provides a pleasing relation be-
tween the arithmetic and set theoretic worlds.

Remark 6.3. In fact the first part of 6.2 can be carried out inside KP, i.e. If
f is Σ definable in KP then we can compute some n such that KP ` ∀x(∃!y ∈
Gn(x))Af (x, y). This is not immediately obvious since it appears we need induction
up to ψθ(εΩ+1), which we do not have access to in KP. The way to get around this
is to note that we could, in fact, have managed with an infinitary system based on
an ordinal representation built out of Bθ(em), provided m is high enough, and we
may compute how high m needs to be from the finite derivation. We do have access
to induction up to ψ(em) for any ordinal θ in KP by Theorem 5.11.

7 Applications to semi-intuitionistic KP
PA is conservative over its intuitionistic cousin (called Heyting arithmetic, HA)
for Π0

2-statements. One might wonder whether a corresponding result holds in set
theory for Π2-statements. As it turns out, such a result does not obtain for KP
and its intuitionistic version IKP,2 however, adding the law of excluded middle for
atomic formulas to IKP yields conservativity for Π2 theorems.

A semi-intuitionistic version of IKP is obtained by assuming the law of excluded
middle for atomic formulas, i.e.,

∀x∀y (x ∈ y ∨ ¬x ∈ y).(3)

Semi-intuitionistic versions of KP have become important in Feferman’s work in
connection with discussions of definiteness of concepts and the continuum hypothesis
(cf. [17, 18, 19, 20, 51]).

2See [1, 2] for a definition of IKP.
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Theorem 7.1. KP is Π2 conservative over the semi-intuitionistic theory IKP plus
(3).

Proof. Let T be the theory IKP augmented by (3). Assume that KP ` ∀x∃yA(x, y),
where A(a, b) is ∆0. We now argue in T . LetX be an arbitrary set. As in the proof of
Theorem 4.10 we can determine an α (uniformly depending on the rank of TC({X})
such that

Hγ
α

0 (∃y ∈ Lα)Af (X, y)Lα .(4)

To see that we can do this inside T note that them in Remark 6.3 does not depend on
θ. Since (4) contains no instances of (Cut) or (Σ-RefΩ(X)), it follows by induction
on α that

Lα(X) |= ∃yA(X, y).

Excluded middle for atomic formulas is required at several points. For instance it is
needed in Lemma 4.3i), Case 1. Also when showing that all sequents Λ occurring in
the derivation (4) are true in Lα(X)3 one needs to invoke the law of excluded middle
for ∆0-formulas. The latter follows from (3) with the help of ∆0-Separation. ut

8 A relativised ordinal analysis of KP(P)
With the help of [56] and the foregoing machinery one can also characterize the
provable power recursive set functions of Power Kripke-Platek set theory, KP(P).
For background on KP(P) see [56]. To introduce its axioms we need the notion of
subset bounded formula.

Definition 8.1. We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆ y . . . as
abbreviations for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.

The ∆P0 -formulae are the smallest class of formulae containing the atomic for-
mulae closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

A formula is in ΣP if belongs to the smallest collection of formulae which contains the
∆P0 -formulae and is closed under ∧,∨ and the quantifiers ∀x ∈ a, ∃x ∈ a, ∀x ⊆ a and
∃x. A formula is ΠP if belongs to the smallest collection of formulae which contains
the ∆P0 -formulae and is closed under ∧,∨, the quantifiers ∀x ∈ a, ∃x ∈ a, ∀x ⊆ a
and ∀x.

3This means that the disjunction over all formulas in Λ is true in Lα(X).
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Definition 8.2. KP(P) has the same language as ZF. Its axioms are the following:
Extensionality, Pairing, Union, Infinity, Powerset, ∆P0 -Separation, ∆P0 -Collection
and Set Induction (or Class Foundation).
The transitive models of KP(P) have been termed power admissible sets in [22].

Remark 8.3. Alternatively, KP(P) can be obtained from KP by adding a function
symbol P for the powerset function as a primitive symbol to the language and the
axiom

∀y [y ∈ P(x)↔ y ⊆ x]
and extending the schemes of ∆0 Separation and Collection to the ∆0-formulae of
this new language.

Lemma 8.4. KP(P) is not the same theory as KP + Pow, where Pow denotes
the Powerset Axiom. Indeed, KP + Pow is a much weaker theory than KP(P) in
which one cannot prove the existence of Vω+ω.

Proof. [56, Lemma 2.4]. ut

8.1 The infinitary proof system RSPΩ(X)
The infinitary proof system RSPΩ of [56] is based on a formal analogue of the von
Neumann hierarchy along the Bachmann-Howard ordinal. For our purposes both
have to be relativised to a given set X.

Definition 8.5. Let X be any set. We may relativise the von Neumann hierarchy
to X as follows:

V0(X) := TC({X}) the transitive closure of {X}
Vα+1(X) := {B : B ⊆ Vα(X)}
Vθ(X) :=

⋃

ξ<θ

Vξ(X) when θ is a limit.

Let X be an arbitrary (well founded) set and let θ be the set-theoretic rank of
X (hereby referred to as the ∈-rank). Henceforth all ordinals are assumed to belong
to the ordinal notation system T (θ) developed in section 3. The system RSPΩ(X)
will be the relativised version of the infinitary proof system RSPΩ from [56].

Definition 8.6. We give an inductive definition of the set T P of RSPΩ(X) terms.
To each term t ∈ T P we assign an ordinal level | t |.

(i) For every u ∈ TC({X}), ū ∈ T P and | ū | := Γrank(u).

740



Classifying KP and KP(P)

(ii) For every α < Ω, Vα(X) ∈ T P and |Vα(X) | := Γθ+1 + α.

(iii) For each α < Ω, we have infinitely many free variables aα1 , aα2 , aα3 , . . . which
are terms of level Γθ+1 + α.

(iv) If α < Ω, A(a, b1, . . . , bn) is a ∆P0 formula of KP(P) with all free variables
displayed and s1, . . . , sn are terms in T P then

[x ∈ Vα(X)|A(x, s1, . . . , sn)]

is a term of level Γθ+1 + α.

The RSPΩ(X)–formulae are the expressions of the form F (s1, . . . , sn), where
F (a1, . . . , an) is a formula of KP(P) with all free variables exhibited and s1, . . . , sn
are RSPΩ(X)-terms. We set

|F (s1, . . . , sn) | = {| s1 |, . . . , | sn |}.

For a sequent Γ = {A1, . . . , An} we define

|Γ | := |A1 | ∪ . . . ∪ |An | .

A formula is a ∆P0 -formula of RSPΩ(X) if it is of the form F (s1, . . . , sn) with
F (a1, . . . , an) being a ∆P0 -formula of KP(P) and s1, . . . , sn RSPΩ(X)-terms.

As in the case of the Tait-style version of KP(P) in [56, Sec. 3], we let ¬A be
the formula which arises from A by (i) putting ¬ in front of each atomic formula,
(ii) replacing ∧,∨, (∀x∈s), (∃x∈s), (∀x ⊆ s), (∃x ⊆ s),∀x,∃x by ∨,∧, (∃x∈s), (∀x∈
s), (∃x ⊆ s), (∀x ⊆ s),∃x,∀x, respectively, and (iii) dropping double negations.
A→ B stands for ¬A ∨ B.

Remark 8.7. There is a crucial difference between Definition 3.3 and Definition
8.6 when it comes to measuring the level of a comprehension term. The level of
[x ∈ Vα(X)|A(x, s1, . . . , sn)] does not take the terms s1, . . . , sn into account. They
may be of arbitrary (especially higher) level.

Since we also want to keep track of the complexity of cuts appearing in deriva-
tions, we endow each formula with an ordinal rank.

Definition 8.8. The rank of a term or formula is determined as follows.

1. rk(ū) := Γrank(u) for u in the transitive closure of X.

2. rk(Vα(X)) := Γθ+1 + ω · α.

741



Cook and Rathjen

3. rk([x ∈ Vα(X) | F (x)]) := max{Γθ+1 + ω · α+ 1, rk(F (0̄)) + 2}.

4. rk(s ∈ t) := rk(s /∈ t) := max{| s |+ 6, | t |+ 1}.

5. rk((∃x ∈ t)F (x)) := rk((∀x ∈ t)F (x)) := max{rk(t) + 3, rk(F (0̄)) + 2}.

6. rk((∃x ⊆ t)F (x)) := rk((∀x ⊆ t)F (x)) := max{rk(t) + 3, rk(F (0̄)) + 2}.

7. rk(∃xF (x)) := rk(∀xF (x)) := max{Ω, rk(F (0̄)) + 2}.

8. rk(A ∧B) := rk(A ∨B) := max{rk(A), rk(B)}+ 1.

Definition 8.9. The axioms of RSPΩ(X) are:

(X1) Γ, ū ∈ v̄ if u, v ∈ TC(X) and u ∈ v.

(X2) Γ, ū /∈ v̄ if u, v ∈ TC(X) and u /∈ v.

(A1) Γ, A, ¬A for A in ∆P0 .

(A2) Γ, t = t.

(A3) Γ, s1 6= t1, . . . , sn 6= tn,¬A(s1, . . . , sn), A(t1, . . . , tn)
for A(s1, . . . , sn) in ∆P0 .

(A4) Γ, s ∈ Vα(X) if | s | < |Vα(X) |.

(A5) Γ, s ⊆ Vα(X) if | s | ≤ |Vα(X) |.

(A6) Γ, t /∈ [x ∈ Vα(X) | F (x,~s )], F (t, ~s )
whenever F (t, ~s ) is ∆P0 and | t | < |Vα(X) |.

(A7) Γ,¬F (t, ~s ), t ∈ [x ∈ Vα(X) | F (x,~s )]
whenever F (t, ~s ) is ∆P0 and | t | < |Vα(X) |.

We adopt the notion of operator from Definition 3.6. If s is an RSPΩ(X)-term,
the operator H[s] is defined by

H[s](X) = H(X ∪ {| s |}).

Likewise, if X is a formula or a sequent we define

H[X](X) = H(X ∪ |X | ).
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Definition 8.10. Let H be an operator and let Λ be a finite set of RSPΩ(X)–
formulae. H α

ρ Λ is defined by recursion on α.
If Λ is an axiom and |Λ | ∪ {α} ⊆ H(∅), then H α

ρ Λ .
Moreover, we have inductive clauses pertaining to the inference rules of RSPΩ(X),

which all come with the additional requirement that

|Λ | ∪ {α} ⊆ H(∅)

where Λ is the sequent of the conclusion. We shall not repeat this requirement
below.

Below the third column gives the requirements that the ordinals have to satisfy
for each of the inferences. For instance in the case of (∀)∞, to be able to con-
clude that H α

ρ Γ,∀xF (x) , it is required that for all terms s there exists αs such
that H[s] αs

ρ Γ, F (s) and | s | < αs + 1 < α. The side conditions for the rules
(b∀)∞, (pb∀)∞, ( 6∈)∞, ( 6⊆)∞ below have to be read in the same vein.

Below we shall write | s | <̇ | t | and | s | ≤̇ | t | for | s | < max(Γθ+1, | t |) and | s | ≤
max(Γθ+1, | t |), respectively.

The clauses are the following:

(∧)
H α0

ρ Γ, A0 H α0
ρ Γ, A1

H α

ρ Γ, A0 ∧A1
α0 < α

(∨)
H α0

ρ Λ, Ai
H α

ρ Γ, A0 ∨A1

α0 < α
i ∈ {0, 1}

(Cut)
H α0

ρ Λ, B H α0
ρ Λ,¬B

H α

ρ Λ
α0 < α

rk(B) < ρ

(b∀)∞
H[s] αs

ρ Γ, s ∈ t→ F (s) for all | s | < | t |
H α

ρ Γ, (∀x ∈ t)F (x)
| s | ≤ αs < α

(b∃) H α0
ρ Γ, s ∈ t ∧ F (s)

H α

ρ Γ, (∃x ∈ t)F (x)

α0 < α
| s | < | t |
| s | < α
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(pb∀)∞
H[s] αs

ρ Γ, s ⊆ t→ F (s) for all | s | ≤̇ | t |
H α

ρ Γ, (∀x ⊆ t)F (x)
| s | ≤ αs < α

(pb∃) H α0
ρ Γ, s ⊆ t ∧ F (s)

H α

ρ Γ, (∃x ⊆ t)F (x)

α0 < α
| s | ≤̇ | t |
| s | < α

(∀)∞
H[s] αs

ρ Γ, F (s) for all s

H α

ρ Γ,∀xF (x)
| s | < αs + 1 < α

(∃) H α0
ρ Γ, F (s)

H α

ρ Γ,∃xF (x)
α0 + 1 < α
| s | < α

( 6∈)∞
H[r] αr

ρ Γ, r ∈ t→ r 6= s for all | r | < | t |
H α

ρ Γ, s 6∈ t
| r | ≤ αr < α

(∈)
H α0

ρ Γ, r ∈ t ∧ r = s

H α

ρ Γ, s ∈ t

α0 < α
| r | < | t |
| r | < α

( 6⊆)∞
H[r] αr

ρ Γ, r ⊆ t→ r 6= s for all | r | ≤̇ | t |
H α

ρ Γ, s 6⊆ t
| r | ≤ αr < α

(⊆)
H α0

ρ Γ, r ⊆ t ∧ r = s

H α

ρ Γ, s ⊆ t

α0 < α
| r | ≤̇ | t |
| r | < α

(ΣP -Ref)
H α0

ρ Γ, A

H α

ρ Γ,∃z Az
α0 + 1,Ω < α

A ∈ ΣP

Remark 8.11. Suppose H α

ρ Γ(s1, . . . , sn) where Γ(a1, . . . , an) is a sequent of
KP(P) such that all variables a1, . . . , an do occur in Γ(a1, . . . , an) and s1, . . . , sn
are RSPΩ(X)-terms. Then we have that | s1 |, . . . , | sn | ∈ H(∅). Standing in sharp
contrast to the ordinal analysis of KP, however, the terms si may and often will
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contain subterms that the operator H does not control, that is, subterms t with
| t | 6∈ H(∅).

The embedding of KP(P) into RSPΩ(X) and the ordinal analysis of RSPΩ(X) can
be carried out in much the same way as for RSPΩ in [56] with only minor amendments
necessary to deal with terms and axioms pertaining to the given set X. Below we
list the main steps.

Theorem 8.12. If KP(P) ` Γ(a1, . . . , an) where Γ(a1, . . . , an) is a finite set of
formulae whose free variables are amongst a1, . . . , an, then there is some m < ω
(which we may compute from the derivation) such that

H[s1, . . . , sn] Ω·ωm
Ω+m Γ(s1, . . . , sn)

for any operator H and any RSPΩ(X) terms s1, . . . , sn.

Proof. This can be proved in the same way as [56, Theorem 6.9]. ut

Theorem 8.13 (Cut elimination I).

H α

Ω+n+1 Γ ⇒ H ωn(α)
Ω+1 Γ

where ω0(β) := β and ωk+1(β) := ωωk(β).

Proof : The proof is the special case of Theorem 3.17 when ρ = Ω+n and α = 0.
See also [56, Theorem 7.1]. ut

For a formula C of RSPΩ(X), CVδ(X) is obtained from C by replacing all un-
bounded quantifiers Qz in C by (Qz ∈ Vδ(X)).

Lemma 8.14 (Boundedness for RSPΩ(X)). If C is a ΣP formula, α ≤ β < Ω, β ∈ H
and H α

ρ Γ, C then H α

ρ Γ, CVβ(X) .

Proof. Similar to Lemma 3.18. ut

Theorem 8.15 (Collapsing for RSPΩ(X)). Suppose Γ is a set of ΣP formulae such
that |Γ | ⊆ B(η) and η ∈ B(η).

If Hη
α

Ω+1 Γ then Hα̂
ψα̂

ψα̂
Γ

where α̂ = η + ωΩ+α.
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Proof. The proof is essentially the same as that of [56, Theorem 7.4]. ut

For the characterisation theorem for KP(P), we need to show that derivability
in RSPΩ(X) entails truth for ΣP -formulae. Since RSPΩ(X)-formulae contain variables
we need the notion of assignment. Let V AR be the set of free variables of RSPΩ(X).
A variable assignment ` is a function

` : V AR −→ Vψ(εΩ+1)

satisfying `(aα) ∈ Vα+1(X). ` can be canonically lifted to all RSPΩ(X)-terms as
follows:

`(ū) = u for u in TC({X})
`(Vα(X)) = Vα(X)

`([x ∈ Vα(X) | F (x, s1, . . . , sn)]) = {x ∈ Vα(X) : F (x, `(s1), . . . , `(sn))} .

Note that `(s) ∈ Vψ(εΩ+1)(X) holds for all RSPΩ(X)-terms s. Moreover, we have
`(s) ∈ V| s |+1(X).

Theorem 8.16 (Soundness). Let H be an operator with H(∅) ⊆ B(εΩ+1) and
α, ρ < ψ(εΩ+1). Let Γ(s1, . . . , sn) be a sequent consisting only of ΣP-formulae with
constants from TC({X}). Suppose

H α

ρ Γ(s1, . . . , sn) .

Then, for all variable assignments `,

Vψ(εΩ+1)(X) |= Γ(`(s1), . . . , `(sn)) ,

where the latter, of course, means that Vψ(εΩ+1) is a model of the disjunction of the
formulae in Γ(`(s1), . . . , `(sn)).

Proof : The proof is basically the same as for [56, Theorem 8.1]. It proceeds
by induction on α. Note that, owing to α, ρ < Ω, the proof tree pertaining to
H α

ρ Γ(s1, . . . , sn) neither contains any instances of (ΣP -Ref) nor of (∀)∞, and
that all cuts are performed with ∆P0 -formulae. The proof is straightforward as all
the axioms of RSPΩ are true under the interpretation and all other rules are truth
preserving with respect to this interpretation. Observe that we make essential use
of the free variables when showing the soundness of (b∀)∞, (pb∀)∞, ( 6∈)∞ and ( 6⊆)∞.
We treat (pb∀)∞ as an example. So assume (∀x ⊆ si)F (x,~s ) ∈ Γ(~s ) and

H[r] αr
ρ Γ(s1, . . . , sn), r ⊆ si → F (r, ~s )
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holds for all terms r with | r | ≤ | si | for some αr < α. In particular we have

H[aβ] α′

ρ Γ(s1, . . . , sn), aβ ⊆ si → F (aβ, ~s )

where β = | si | and aβ is a free variable not occurring in Γ(s1, . . . , sn) and α′ = αaβ .
By the induction hypothesis we have

VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn)), `′(aβ) ⊆ `(si)→ F (`′(aβ), `(s1), . . . , `(sn) )

where `′ is an arbitrary variable assignment. This entails that either

VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn))

or
VψΩ(εΩ+1) |= `′(aβ) ⊆ `(si)→ F (`′(aβ), `(s1), . . . , `(sn) )

for all assignments `′. In the former case we have found what we want and in the
latter case we arrive at VψΩ(εΩ+1) |= (∀x ⊆ `(si))F (x, `(s1), . . . , `(sn) ) and therefore
also have VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn)). ut

8.2 The provably total set functions of KP(P)
For each n < ω we define the following recursive set function

GPn (X) := Vψθ(en)(X)

where en was defined in (2) and θ stands for the rank of the transitive closure of X.

Theorem 8.17. Suppose f is a set function that is ΣP definable in KP(P), then
there is some n (which we may compute from the finite derivation) such that

V |= ∀x(f(x) ∈ GPn (x)).

Moreover GPm is ΣP definable in KP(P) for each m < ω.

Proof. Let Af (a, b) be the ΣP formula expressing f such that KP(P)`∀x∃!yAf (x, y)
and fix an arbitrary set X. Let θ be the rank of X. Applying Theorem 8.12 we can
compute some k < ω such that

H0
Ω·ωk
Ω+k ∀x∃!yAf (x, y) .

Applying inversion as in Lemma 3.15 iv) twice we get

H0
Ω·ωk
Ω+k ∃yAf (X, y) .
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Applying Theorem 8.13 we get

H0
ek+1

Ω+1 ∃yAf (X, y) .

Now by Theorem 8.15 (collapsing) we have

Hek+2

ψθ(ek+2)
ψθ(ek+2)

∃yAf (X, y) .

Now by Lemma 8.14 (boundedness) we obtain

Hγ
ψθ(γ)
ψθ(γ)

(∃y ∈ Vψθ(γ)(X))Af (X, y)Vψθ(γ) where γ := ek+2.(5)

The Soundness Theorem 8.16 applied to (5) now yields that

Vψθ(γ) |= ∃y Af (X, y).

It remains to note that Vα(X) ⊆ GPk+3(X) to complete this direction of the proof.

For the other direction we argue informally in KP(P). Let X be an arbitrary set.
By Theorem 5.11 we can find an ordinal of the same order type as ψθ(en). We can
now generate Vψθ(en)(X) by ΣP -recursion (similar to [3] p. 26 Theorem 6.4). ut

Remark 8.18. As was the case for KP, the first part of 6.2 can be carried out
inside KP(P), i.e. If f is ΣP definable in KP(P) then we can compute some n such
that

KP(P) ` ∀x(∃!y ∈ GPn (x))Af (x, y) .

This is not immediately obvious since it appears we need induction up to ψθ(εΩ+1),
which we do not have access to in KP(P). The way to get around this is to note
that we could, in fact, have managed with an infinitary system based on an ordinal
representation built out of Bθ(em), provided m is high enough, and we may compute
how high m needs to be from the finite derivation. We do have access to induction
up to ψθ(em) in KP(P) by Theorem 5.11.

9 Adding global choice: KP(P) + ACglobal

Here we extend the relativised ordinal analysis to KP(P) with global choice. Since
the global axiom of choice, ACglobal, is less familiar, let us spell out the details. By
KP(P) + ACglobal we mean an extension of KP(P) where the language contains a
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new binary relation symbol R and the axiom schemes of KP(P) are extended to this
richer language and the following axioms pertaining to R are added:

(i) ∀x∀y∀z[R(x, y) ∧ R(x, z)→ y = z](6)
(ii) ∀x[x 6= ∅ → ∃y ∈ xR(x, y)].(7)

Section 3 of [58] describes an extension of RSPΩ that incorporates the new symbol
R. We can now relativise this system to a given set X as we did with RSPΩ in
the previous section. Let us call the relativized version RSPΩ(R, X). The ordinal
analysis of RSPΩ(R, X) can be performed with almost no changes as for RSPΩ(X) in
the foregoing section. On account of the relativization we arrive at stronger versions
of [58, Corollary 3.1] and [58, Theorem] which incorporate the parameter X. A
ΠP2 -formula is a formula of the form ∀y A(y) with A(y) in ΣP .

Theorem 9.1. Let B be ΠP2 -sentence of the language without the predicate R. If
KP(P) + ACglobal ` B, then KP(P) + AC ` B.

Proof. Basically as in [58, Theorem 3.2]. ut

The acronym CZF stands for Constructive Zermelo-Fraenkel set theory. For
details see [1, 2].

Corollary 9.2. (i) KP(P) + ACglobal, KP(P) + AC, and CZF + AC prove the
same ΠP2 -sentences.

(ii) The three theories are of the same proof-theoretic strength as KP(P). More
precisely, they prove the same Π1

4-sentences of the language of second order
arithmetic when identified with their canonical translation into the language of
set theory.

Proof. (i) For KP(P) + ACglobal and KP(P) + AC this follows from the forego-
ing Theorem. A question left open in [55] was that of the strength of constructive
Zermelo-Fraenkel set theory with the axiom of choice. There CZF + AC was in-
terpreted in KP(P) + V = L ([55, Theorem 3.5]). However, the realizability in-
terpretation works with ACglobal as well. Moreover, for this notion of realizability,
realizability of a ΠP2 -sentence B entails its truth. Therefore if CZF+AC ` B, then
KP(P) + ACglobal ` B.

Conversely note that CZF + AC proves the law of excluded middle for ∆P0 -
formulae. This amount of classical logic suffices to prove the power set axiom
from the subset collection axiom. The proof-theoretic ordinal of CZF is also the
Bachmann-Howard ordinal. Moreover, in Theorem 5.11, KP can be replaced by
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CZF + AC. As a result, the ordinal analysis for B utilizing RSPΩ(R, X), can be
carried out in CZF + AC itself and the proof of the pertaining soundness is also
formalisable in CZF + AC, whence the latter theory proves B.

(ii) follows from (i) viewed in conjunction with [54, Corollary 3.5]. ut

Finally, we remark that the three theories of Corollary 9.2 can be added to the
list of proof-theoretically equivalent theories presented in [57, Theorem 15.1].

10 The provably total set functions of other theories

Part of the machinery developed here could also be used to give a characterization
of the total set functions of extensions of KP such as the theories KPi and KPM
that are describing a recursively inaccessible and a recursively Mahlo universe of sets,
respectively (see [30, 43, 49]). This however would also require an interpretation of
collapsing functions as acting on set-theoretic ordinals along the lines of [46, 44].
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