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1 Introduction
If one’s introduction to philosophical logic has been carried out in the shadow of the
canonical history of Western logic, one may be forgiven for believing that connex-
ive theses concerning reasoning—e.g., that no proposition entails or is entailed by
its own negation—have been soundly defeated in favor of their classically-accepted
cousins. Even among work devoted to examining non-classical themes, the discus-
sion of connexive principles frequently either warrants only a few negative comments
(e.g, the Kneales’ [15]) or is omitted entirely (e.g., Haack’s [12], Bell, de Vidi, and
Solomon’s [6], and Priest’s [36]).1 Among logicians and philosophers who are gener-
ally sympathetic to—or tolerant of—non-classical themes, connexive logic has been
given remarkably short shrift.

1In fairness, Priest’s second edition [37] includes a brief discussion of the connexive logic intro-
duced in [50]. Another exception is Humberstone’s [13].
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Hence, the warrant for the present collection—its legitimacy—is intimately tied
to the question: What explains the status of connexive logic in the current land-
scape?

The historical appearances of such theses are often treated as tokens of a com-
mon mistake made by otherwise brilliant thinkers. But when one surveys the myriad
occasions in which such “mistakes” were committed—and the brilliance of their re-
spective transgressors—it becomes increasingly difficult to dismiss these instances as
errors. Aristotle appeals to connexive principles in the Organon both explicitly and
implicitly. It is clear from the studies of syllogistic and the square of opposition in
Hugh MacColl’s [21], Storrs McCall’s [26], and Luis Estrada-González’ [9] that there
exists a deep connection between Aristotelian syllogistic and connexive implication
(a fact that features heavily in Estrada-González and Elisángela Ramírez-Cámara’s
contribution to this collection). In medieval and early modern studies of inference,
such theses were also common; Priest’s [35] and Richard Sylvan’s [46] deftly doc-
ument countless other appearances of these principles in the texts of philosophers
ranging from Abelard to Berkeley.

But even in the era following Frege, the eradication of connexive theses has
proven incredibly stubborn. Like a logical Zelig, when one traces many trends in
logic to their sources, one finds connexive theses waiting. With respect to the modern
treatment of modal logic, C.I. Lewis is frequently cited as its progenitor. Despite
this, Lewis’ formalizations of modal systems owe a great deal to the Calculus of
Equivalent Statements developed by Hugh MacColl in [17, 18, 19, 20]. (Stephen
Read suggests that MacColl’s role was obscured by the fact that Lewis was “not
fully candid... in acknowledging his debt to MacColl” [42, p. 59].) Insofar as Mac-
Coll’s calculus admits connexive theorems in special cases—a fact discussed in detail
in [22]—it is fair to say that connexive intuitions played a strong role in the incu-
bation of modern modal logic. A similar connexive provenance holds of the field
of conditional logic, whose themes are seeded in the Ramsey test—the method of
evaluating conditionals described in Frank Ramsey’s famous footnote in [40]. As
observed in [10] and [27], however, Ramsey’s account of conditionals assumes the
validity of connexive principles, namely, Boethius’ Thesis, a feature that rests at the
heart of Matthias Unterhuber’s contribution to this special issue. In these cases, we
find a connexive specter haunting entire fields of non-classical logic.

Many of the obstacles to connexive logic’s securing a foothold in the canon have
been purely contingent. Some of these are largely political in nature. For example,
while intuitionistic and relevant logics reaped the benefits of careful curation by
their respective champions (e.g., Anderson and Belnap’s [1]), connexive logic has not
enjoyed a similar benefactor. The lack of a unified vade mecum has led to problems
that would cripple the dissemination of any formal system. In many ways, this has
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had a devastating effect on the very coherence of the term “connexive logic”; while
careful curation ensured that important non-classical notions like constructivity and
relevance received relatively distinct and salient definitions, the very concept of a
“connexive logic” remains quite fluid. The appearance of sources such as [52] and
[27] has undoubtedly served to ameliorate this deficit, but its effects still linger.

Some impediments, however, are more entrenched. Frequently, those best posi-
tioned to take up the mantle of champion of connexive logic—like Everett Nelson
or Storrs McCall—quickly disavowed the particular implementations of connexive
principles they had introduced. We might consider the collection of work on con-
nexive logic scattered between the early 1960s and the late 1980s to constitute the
“first wave” of the modern era of connexive logic.

Judging by the fruits of these earlier papers, it is not entirely unreasonable to
greet the notion of connexive logic with some suspicion. The semantics offered for
connexive systems during this period did not arise from any salient portraits of
familiar semantic notions, but were offered strictly as tools in the service of proof-
theoretic properties about the favored axiom systems. As a result, authors during
this period explicitly postponed any discussion of salient or useful interpretations
for their semantics (e.g., [2] and [24]). From the axiomatic side, too, the costs
of adopting Aristotle and Boethius’ Theses appeared to be astonishingly severe,
frequently requiring the rejection of one or more prima facie valid inferences. Among
the early systems of connexive logic, one of the most suspicious sacrifices was the
rejection of conjunctive simplification—the inference from a conjunction to each of
its conjuncts—as observed, e.g., by John Woods in [55].

Problematically, on the few occasions in which logicians did defend these sac-
rifices on philosophical grounds, the defenses tended towards opaqueness. In the
particular case of the invalidity of conjunctive simplification, the arguments Everett
Nelson outlines against the inference in, e.g., [29] and [30] are extraordinarily eso-
teric. Furthermore, Bruce Thompson’s arguments in [47] center around a notion of
“reversal negation” that is primarily motivated by a vague and imprecise analogy of
laying down, removing, rotating, and tearing apart playing cards on a table.

But in hindsight, some of these discussions become more sympathetic. While
McCall and Angell’s many-valued semantics were often decried as counterintuitive,
it has become far more common to divorce the utility of a truth-functional semantics
from an intuitive interpretation (primarily due to the success of matrix semantics in
the study of modal and relevant logics). Furthermore, some of the discussion might
be viewed more favorably in the light of contemporary developments in logic. For
example, Everett Nelson in [29] rejects the inference from ϕ ∧ ψ to ϕ because ψ
need not have been “used” to derive the conclusion. Insofar as simplification fails
for multiplicative conjunction in linear logic for precisely the reasons Nelson gives
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in [29]—that is, because not all resources identified in the premises are being used
in the derivation—one might argue that Nelson is an unsung herald of linear logic.
When one removes “reversal negation” from the picture in Thompson’s [47], too,
some of its arguments become more convincing. Thompson, for example, states
that we must “guard against” formulae such as:

• (p ∧ ¬(p→ p))→ p

This formula is read by Thompson as the assertion that “‘p’ follows from ‘p’, even
under the condition that it does not.”[47, p. 253] The orthodoxy explains that p is a
consequence of one of the conjuncts—in this case, the first conjunct—because p is a
consequence of itself. The validity of conjunctive simplification, then, presupposes
the validity of self-implication, an inference that itself has been challenged in other
contexts, such as Errol Martin and Robert Meyer’s S in [23].

For many reasons, we suggest that connexive logic has been too casually rejected.

2 The Persistence of Connexive Principles
To address the matter of the merits of a study of connexive logic, it helps to consider
the matter of the sheer persistence and tenacity of its primary theses. Much of
their persistence in philosophical logic can be considered a consequence of a simple
feature that holds in classical propositional logic—and hence, in each of its fragments
and subsystems (e.g., intuitionistic logic): The only counterexamples to connexive
theses such Aristotle and Boethius’ Theses are those in which the antecedent of
the conditional is logically impossible. In (for example) [11], we find the following
observation:

Observation. For a formula ϕ, if ϕ is satisfiable in classical logic, then ¬ϕ is not
a classical consequence of ϕ.

In other words, it is only contradictions that entail their own negations. Conse-
quently, because nearly all common non-classical propositional logics remain frag-
ments of classical logic, this fact holds of constructive logics, logics of strict impli-
cation, relevant logics, fuzzy logics, etc. as well.

This fact has a number of consequences for the tenacity of connexive principles:
Firstly, while there are infinitely many formulae that are classically inconsistent, the
most entrenched philosophical accounts ofmeaning suggest that all of these represent
a single proposition, entailing a scarcity of propositions with respect to which Aristo-
tle’s Thesis (AT) fails. Secondly, the most common accounts of semantic validity in-
volve the preservation of some property—truth, non-falsity, meaningfulness—across

282



The Tenacity of Connexive Logic

all models. In the case of classical logic and its non-paraconsistent subsystems, con-
tradictions have no models, whence the validity of all counterexamples to Aristotle’s
Thesis is vacuously satisfied.

2.1 The Paucity of Counterexamples
In his contribution to this special issue, Matthias Unterhuber describes Aristotle’s
Thesis by means of an incredibly apt and perceptive phrase: Aristotle’s Thesis,
says Unterhuber, is “almost true.” Appropriately understood, this description is apt
as the property of being “almost true” indeed holds of Aristotle’s Thesis in, e.g.,
classical logic in a very robust and precise sense. Moreover, the appropriateness of
this description of AT parallels one of the reasons for the tenacity of connexive logic,
namely, the sheer paucity of counterexamples to the archetypal connexive theses.

In a formal setting, the term “almost all” has a very precise meaning. If one fixes
two infinite sets S and T such that S ⊆ T , to say that “almost all T s are Ss” (or,
“almost all members of T are members of S”) is to say that S is cofinite in T , that
is, that the infinite set S includes all but a finite number of elements of T . Such
situations become more interesting when probability is taken into account. That
almost all elements of T are elements of S suggests that an arbitrary element a ∈ T
will almost always be a member of S, that is, that for an arbitrary a ∈ T , one may
infer that a is a member of S as well with probability 1. That T is infinite while the
relative complement T r S is finite means the probability of selecting an element
not in S is smaller than any positive, real-valued probability.

To bring this to bear on Aristotle’s Thesis, recall that the counterexamples to AT
in classical logic are precisely those formulae ϕ → ¬ϕ where ϕ is a contradiction.
That AT can be considered “almost true” is underscored by the fact that most
theories of propositions—that is, the meanings expressed by sentences—support the
notion that almost all propositions do not entail their own negations.

For example, in the frequently-encountered possible-worlds interpretation of
propositions, the proposition expressed by a sentence ϕ is identified with the set
of possible worlds at which ϕ is true. Now, because contradictions are true at no
world, in this type of model, all contradictions express the same proposition, i.e.,
the empty set.2 On this interpretation of propositions, then, that there is a single
inconsistent proposition entails that there is a single proposition that entails its own
negation. From this perspective, we face a picture in which there exist infinitely
many propositions that do not entail their own negations. Because there are only

2In some semantics, a single “absurd world,” at which all sentences are true, is identified. This
account agrees that all contradictions express the same proposition, differing only for exchanging
the empty set for the singleton containing only the absurd world.
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finitely many propositions that do entail their own negations, this can be strength-
ened to the claim that almost all propositions do not entail their own negations.
Consequently, Aristotle’s Thesis correctly describes the inferential status of almost
all propositions. Aristotle’s Thesis is quite literally almost always true.

This has a number of interesting consequences in the context of Niki Pfeifer’s
experimental study [34]. Pfeifer provided experimental evidence that under very
reasonable interpretations of the conditional, respondents endorsed Aristotle’s The-
sis far more frequently than they rejected it as false. The set-up of Pfeifer’s study
presented participants with the sentence:

It is not the case, that: If not-A, then A.

and asked whether the sentence was “guaranteed to be false,” “guaranteed to be
true,” or if one could not infer its truth or falsity on its face.

Now, participants responded that Aristotle’s Thesis was “guaranteed to be true”
roughly three times as frequently as it was rejected, a result which—to classical
eyes—might be thought of as providing evidence of the irrationality of most students.
Viewed through this lens, such an observation might be understood as similar to
experimental results in which players do not act rationally from the perspective
of game theory, that is, cases in which respondents inconsistently assign utility
values to goods, or in which agents have inconsistent sets of beliefs. But the above
considerations suggest that there is something markedly different about these types
of case.

Can the disagreement with classical principles demonstrated by the subjects of
Pfeifer’s study be in any way thought irrational? If one should elect to follow
Aristotle and refuse to employ any inference from a statement to its negation in
one’s reasoning, would one’s welfare be crippled by adhering to this strategy?

The respondents were asked whether instances of Aristotle’s Thesis were “guar-
anteed to be true,” and it seems that interpreting the claim that “φ is guaranteed
to be true” as “φ is true with probability 1” is an entirely natural one. Rather than
being irrational, then, this reading vindicates the respondents who believed that
Aristotle’s Thesis was guaranteed. From a more pragmatic perspective, what would
the consequences be for the layperson—that is, an individual who does not make use
of formal proof in her day-to-day life—if she should accept Aristotle’s Thesis as a
correct principle, and employ it in her day-to-day reasoning? Quite possibly—quite
likely, even—most individuals have never uttered a sentence for which Aristotle’s
Thesis will lead them astray. Following Aristotle, then, hardly seems irrational.
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2.2 The Vacuity of Counterexamples

Beyond the poverty of the class of propositions for which Aristotle’s Thesis fails,
further consideration of the classical counterexamples to Aristotle’s Thesis reveals
an additional vacuity implicit in each of these cases. This vacuity emerges when
one considers any counterexample to Aristotle—say, the validity of the inference
from p ∧ ¬p to ¬(p ∧ ¬p)—and asks why the inference is valid. From a classical
perspective, the validity of the inference may be exhaustively explained by appeal
to the vacuously true statement: Every model in which p ∧ ¬p is true is one in
which ¬(p ∧ ¬p) is likewise true, something that holds precisely because there are
no models satisfying p ∧ ¬p.

There seems to be an innate suspicion for such vacuous occasions of inference.
The truth of the sentence “All unicorns have a horn” can be explained not on
the basis of any property exhibited by unicorns, but solely on the basis of the
non-existence of unicorns. This particular type of explanation plays a role in the
distinction between the traditional and modern squares of opposition—and thus,
modern syllogistic—and we have noted that [21], [26], and [9] tie these notions to
connexive implication.

Intriguingly, the vacuity inherent in classical counterexamples to Aristotle shares
important traits with Andreas Kapsner’s critique of “empty promise conversions” in
constructive semantics. In [14], Kapsner appeals to such vacuity when forming his
arguments against the intuitionistic account of falsification. The Brouwer-Heyting-
Kolmogorov (BHK) interpretation of the conditional suggests that a proof of a con-
ditional ϕ→ ψ is a computable function that converts any proof of ϕ into a proof of
ψ. Consequently, a proof of an intuitionistically negated formula ¬ϕ—interpreted by
Kapsner as an intuitionistic falsification of ϕ—converts any proof of ϕ into a proof
of the absurdity ⊥. Kapsner’s critique of “empty promise conversions” may be seen
as taking up earlier criticism of the BHK-clause for intuitionistic negation. In [49]
it is observed that according to the BHK semantics, an intuitionistically negated
formula ¬A is valid if and only if there exists a construction that outputs a non
existent object, namely a proof of ⊥, when applied to a proof so A. This condition
can be satisfied only vacuously for unprovable formulas A.

Ideally, the BHK-type interpretations of intuitionistic connectives are robust and
non-vacuous. A proof of, say, ϕ→ (ϕ∨ ψ) can be easily conceived as the process of
taking a proof of ϕ and applying a single instance of disjunction introduction to its
terminal line. In the cases in which we are interested, however—cases in which the
antecedent of a conditional is logically impossible—the BHK clause can be satisfied
in a much less satisfying way. As Kapsner observes, insofar as one will never be
faced with an intuitionistic proof of a contradiction, in this case one may fulfill the
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letter of the BHK requirement by an “empty promise.” One does not need to design
or construct an appropriate algorithm. The logical impossibility of a formula ϕ
precludes the existence of a proof of ϕ. Hence, the collection of all proofs of the
formula ϕ is empty, vacuously entailing that one has a recursive method to convert
all members of this collection into proofs of ψ.3

In instances of the vacuous satisfaction of the BHK clause by an “empty promise”
—and, consequently, in those cases with respect to which Aristotle’s Thesis fails—
there is a fault in the explanatory power of the proof. On its face, the BHK inter-
pretation promises something tangible and satisfying—in the case of a conditional
ϕ → ψ, one expects the description of a computation that explains how proofs of
ϕ lead to proofs of ψ. To Kapsner, empty promises pose a problem for the intu-
itionistic account of falsity because there is no requirement that any work be done
in demonstrating how p ∧ ¬p comes to imply ⊥. In the case of counterexamples
to Aristotle, these vacuous conversions undermine the promise of BHK semantics
because they do not require that a proof of the antecedent causes, constructs, or
otherwise brings about a proof of the consequent, leading to a sort of inferential
inertness.4

Applying the themes of Kapsner’s [14] to the particular class of counterexamples
to Aristotle’s Thesis permits us to resituate the classical problems at the heart of
connexive themes. For example, Kapsner’s analysis can be brought to bear on the
notion of self-refutation by appealing to the corollary that the BHK semantics permit
all self-refutations to be conducted on the basis of empty promises. The theme of
self-refutation lies at the heart of many the passages in which Aristotle invokes
connexive themes. In Luca Castagnoli’s work on the subject of self-refutation [8] we
find several instances in which Aristotle’s connexive theses are discussed. Castagnoli
observes that many of the notions of entailment assumed by Aristotle presuppose

3Of course, there are methods by which one may convert an intuitionistic proof of a formula
ϕ∧¬ϕ into a proof of ¬(ϕ∧¬ϕ) that are more robust than a mere empty promise. In, say, Gentzen’s
sequent calculus LJ there is obviously an algorithmic method by which when faced with an initial
formula ϕ ∧ ¬ϕ, one may iteratively apply rules to yield a sequence of formulae terminating with
the formula ¬(ϕ ∧ ¬ϕ). What Kapsner’s notion of an “empty promise conversion” unearths is the
simple fact that possession of such a method is not a requirement for the satisfaction of the BHK
interpretation of implication.

4It is worth noting a similar asymmetry between proving an arbitrary formula from a contra-
diction and proving a tautology from an arbitrary formula. While the satisfaction of the BHK
conditions for, e.g., the formula ϕ → (ψ → ψ), is “inert” in the sense that it does not require that a
proof of ϕ be employed—the constant function that on any input returns the same proof of ψ → ψ
will suffice, after all—the BHK conditions in this case nevertheless cannot be vacuously satisfied.
Suggestively, this asymmetry mirrors the choice to emphasize the fact that classical counterexamples
to Aristotle’s Thesis have inconsistent antecedents rather than the fact that such counterexamples
also have tautologous consequents.
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that the validity of an inference demands that the antecedent play an active role in
the bringing about of the consequent. The passivity that classical and intuitionistic
entailment permits is entirely ruled out in cases in which Aristotle understands
entailment as a type of demonstration. For example, Aristotle describes a number of
necessary conditions for the validity of a demonstration in the Posterior Analytics,
in which we find:

The premisses must be the causes of the conclusion, better known than it,
and prior to it; its causes, since we possess scientific knowledge of a thing
only when we know its cause; prior, in order to be causes; antecedently
known, this antecedent knowledge being not our mere understanding of
the meaning, but knowledge of the fact as well.[4]

Moreover, Aristotle’s interpretation of the notion of demonstration presupposes
another feature absent in the case of “empty promise” conversions: Explanation.
Castagnoli, for example, points to Robin Smith’s commentary on the Prior Analyt-
ics, in which he considers Aristotle’s articulation of connexive theses and suggests
that Aristotle’s embrace of connexive principles is a natural consequence of his de-
mand for explanation in valid entailments:

Aristotle... may also have in mind that the conclusion is not explained
by the premises in such a case [i.e., Aristotle’s Thesis]... [O]ne possible
reason for seeking a further explanation might be Aristotle’s concern,
not simply with deductions in general, but with causal or explanatory
deductions (demonstrations).[5, p. 190]

It seems reasonable to suggest that, insofar as an inconsistent or logically impos-
sible antecedent cannot obtain, such antecedents can never serve as a cause of any
consequent, including its own negation.5 This neatly provides an analogy between
Wansing and Kapsner’s critique of the BHK account of falsification and Aristotle’s
connexive critique of self-refutation.

3 Contents of the Special Issue
This special issue has assembled a collection of papers both old and new. In addition
to papers authored specifically for inclusion in the volume, we have included a num-
ber of papers that have been omitted from the mainstream literature on connexive

5Note that Priest’s account in [35], whose account of entailment demands that a contradiction
does not entail itself, comports with such an Aristotelian line.
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logic, due to being unpublished, untranslated, or otherwise inaccessible. This special
issue has assembled a collection of papers both old and new and was projected in
connection with the Workshop on Connexive Logic at the Fifth World Congress and
School on Universal Logic in Istanbul, June 2015.6

We are confident that the scope and breadth of the papers collected in this volume
serve to showcase the richness and variety of the contexts in which connexive theses
appear. Now, we will proceed to sketch out these themes as we describe the material
found in the papers in this volume.

3.1 Posthumous, Translated, and Reprinted Contents
We are especially happy to include a pair of previously unpublished papers that to-
gether unearth an important—but forgotten—chapter in the development of connex-
ive logic. These posthumous papers—R. B. Angell’s Connexive Implication, Modal
Logic and Subjunctive Conditionals and Richard Sylvan (formerly “Routley”)7 and
Hugh Montgomery’s Models for Connexive Logics—are especially notable as they
jointly reveal the influence that Angell and McCall’s “American plan” for connexive
logic in [2] and [24] provided the foundation of for the possible-worlds “Australian
plan” of Montgomery and Sylvan’s [44], Sylvan’s [43], Mortensen’s [28], and Brady’s
[7]. At first blush, the matrix semantics favored by McCall and Angell seem entirely
distinct from the possible worlds semantics employed in the Australasian papers.
Despite this appearance of independence, these two papers document the way in
which Angell’s semantics for necessity operators in connexive logic were reconfig-
ured and molded into the prototype for the possible worlds approach to connexive
logic championed in [44].

Connexive Implication, Modal Logic and Subjunctive Conditionals is the full text
of a paper presented at the 1967 meeting of the Association for Symbolic Logic. This
work has previously appeared only as the abstract [3]. In the paper, Angell consid-
ers formulations of the connexive systems PA1 and CC1 as modal systems—Angell
calls their modal reformulations PA1m and CC1m, respectively—in which connexive

6The website on connexive logic at https://sites.google.com/site/connexivelogic/, in ad-
dition to offering a very brief overview of connexive logic, collects some information about events
on connexive logic and keeps an updated list of publications related to connexive logic.

7Due to the depth of the convictions that led Richard Sylvan to take the surname “Sylvan,” the
matter of how to attribute this paper was an especially sensitive one, requiring a few remarks con-
cerning our decision to attribute co-authorship of the paper to “Richard Routley.” Most importantly,
although the work—composed while Sylvan was still publishing under the name “Routley”—was
neither published nor widely distributed, the paper has on several occasions been cited in print with
its authorship attributed to “Routley and Montgomery.” We suspect that introducing a competing
attribution for the paper would carry a risk of confusion.
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implication is not taken as primitive, but instead as a defined connective arising
from the logical signature of conjunction, negation, and a necessity operator 2. By
observing that the matrices for negation and necessity in PA1m and CC1m are equiv-
alent to those employed in consistency proofs for Lewis’ S3, Angell is able to suggest
that these connexive logics can be considered to disagree with the more common
deductive systems primarily in terms of their interpretation of conjunction. Thus,
Angell provides a novel perspective in which connexive logic—which is frequently
considered to follow from a deviant account of the conditional—can just as easily
be considered a deviant theory of conjunction.

In the case of Sylvan and Montgomery’s Models for Connexive Logics, while its
existence had been known—it had been cited in Mortensen’s [28] and in Sylvan’s own
[43]—its contents have remained mysterious. Serendipitously, the unpublished Mod-
els for Connexive Logic is primarily an investigation into Angell’s own unpublished
paper, making the pairing of the papers together all the more appropriate. From
a formal perspective, Sylvan and Montgomery’s paper complements Angell’s paper
due to its including proofs of a number of the assertions from Connexive Implication,
Modal Logic and Subjunctive Conditionals that Angell left unproven. The primary
device used in its proofs, too, is unique: Sylvan and Montgomery investigate An-
gell’s PA1m and CC1m by means of a Kripke-style possible worlds semantics. This
semantics underscores the relationship between connexive logic and S3 identified by
Angell but—more importantly—directly shows how the truth-functional semantics
of McCall and Angell gave rise to the possible-worlds semantics employed by Sylvan,
Montgomery, Mortensen, and Brady.

We are also pleased to reprint a pair of Grigory Olkhovikov’s papers on the
connexive logic LImp that have been notoriously difficult to access. We include
a translation of Olkhovikov’s On a New Three-Valued Paraconsistent Logic from
the Russian [31], in which Olkhovikov introduces the propositional logic LImp that
counts a number of connexive theses as theorems.8 Notably, in contrast to the
interpretative opaqueness of many multiple-valued semantics for connexive logics,
Olkhovikov provides a philosophical discussion of natural language propositions with
truth-value gaps and is led on philosophical grounds to the development of seman-
tics corresponding to LImp. Complementing this paper is a corrected version of
Olkhovikov’s extended abstract that had been written for a special session of the
Fourth Irish Conference on the Mathematical Foundations of Computer Science and
Information Technology in 2006. The abstract was published in the locally produced
proceedings volume [32] that was distributed to participants of the conference but
does not appear in the more widely-distributed proceedings volume [45]. That this

8The system LImp has been independently discovered by Hitoshi Omori in [33].
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pair of papers has only been available by locally-published proceedings volumes has
crippled access to the fruits of Olkhovikov’s research. We are very pleased to have
the opportunity to make these papers easily accessible to scholars investigating con-
nexive logics.

3.2 Contents Original to This Volume

The contributed papers included in this volume provide a showcase of the many
points of intersection between connexive principles and a host of independent sub-
fields in philosophical and mathematical logic. In the papers original to the present
volume, the understanding of connexive theses is reinforced by examining their in-
tersection with relevant logic, proof-theoretic semantics, conditional logic, tradi-
tional Aristotelian theories of syllogism, and Brouwer-Heyting-Kolmogorov seman-
tics, among other areas.

A Comparison of Connexive Logics—the contribution jointly authored by Luis
Estrada-González and Elisángela Ramírez-Cámara—revisits the intimate relation-
ship between connexive implication and the traditional syllogism that has surfaced
on a number of occasions. This relationship appears, for example, in Hugh MacColl’s
formalization of traditional syllogistic in [21] and in Storrs McCall’s [26], both of
which show that connexive theses about entailment lead naturally to the Aristotelian
account of the syllogism. Estrada-González’s [9] introduced a contraclassical deduc-
tive system MRSP that is “demi-connexive” in the sense that it exhibits some—but
not all—of the archetypal connexive properties, e.g., the system counts Aristotle’s
Theses as theorems while failing to satisfy Boethius’ Theses. A Comparison of Con-
nexive Logics explicitly analyzes the system MRSP by the lights of connexive logic.
That MRSP does not validate all traditional connexive theses motivates a detailed
examination of the constellation of principles that have been given this label and a
comparison of the merits of particular properties.

Thomas Ferguson’s On Arithmetic Formulated Connexively investigates the
prospects for formulating mathematics against a connexive background logic. Such
investigations have appeared within the connexive logic literature before—McCall’s
[25] and J. E. Wiredu’s [54] consider the impact that connexive principles would
have on set or class theories. In particular, the paper considers some philosophical
affinities between connexive principles and constructive mathematics. The paper
ultimately focuses on three connexive logics—Angell’s PA1 and PA2 and Priest’s
connexive logic—and investigates how weak subsystems of Peano arithmetic fare
when analyzed in arbitrary first-order extensions of these systems.

We have observed that the genesis of the field of conditional logics was inter-
twined with connexive principles, although frequently in a veiled fashion. David
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Lewis, for example, briefly describes a conditional in [16] that is connexive without
identifying it as such. Matthias Unterhuber—whose [48] includes much discussion
of the role of connexive theses in conditional logic—sheds further light on this in-
teraction in Beyond System P–Hilbert-Style Convergence Results for Conditional
Logics with a Connexive Twist. Aside from making contributions to conditional
logic proper by proving the equivalence of two systems of conditional logic, Unter-
huber also strengthens a result that a broad class of conditional logics cannot be
enriched with axioms corresponding to Aristotle and Boethius’ theses, although they
do admit default rule versions of these axioms. Moreover, the contribution considers
the role that such default assumptions play in the broader field of conditional logic
and how they lead to the equivalence of a number of monotonicity assumptions with
respect to conditional reasoning.

An increasingly frequent approach to connexive logic derives from HeinrichWans-
ing’s “narrow scope” account of negated conditionals described [50], in which the
formula ¬(ϕ → ψ) is identified with the formula ϕ → ¬ψ. This approach can
be naturally recalibrated to provide a connexive account of Cecylia Rauszer’s co-
implication connective (see, e.g., [41]). Such a definition directly leads to a connex-
ive counterpart to the bi-intuitionistic logic 2Int of [53]. Wansing’s contribution to
this volume—Natural Deduction for Bi-Connexive Logic and a Two-Sorted Typed
λ-Calculus—provides a deeper analysis of this connexive counterpart—2C—by pro-
viding a Curry-Howard-style correspondence with a typed λ-calculus 2λ. The ensu-
ing formulae-as-types interpretation of 2C is discussed and explored, and its utility
in giving a deeper analysis of Wansing’s systems is described. The formulae-as-types
account is especially interesting for the light it sheds on some of the unusual features
of Wansing’s approach, such as its having inconsistent theorems.

The theme of providing connexive interpretations of Rauszer’s co-intuitionistic
connectives is again visited in Norihiro Kamide and Heinrich Wansing’s joint con-
tribution Completeness of Connexive Heyting-Brouwer Logic, in which a number of
theorems are proven concerning a connexive version of Heyting-Brouwer logic called
BCL (introduced by Wansing in [51] as “I2C2”). Both a Gentzen-style sequent
calculus and a method of tableau proof are introduced in the paper, notably permit-
ting novel opportunities to relate BCL—and connexive principles more generally—
to other systems. The sequent calculus for BCL, for example demands a faithful
translation mapping BCL to bi-intuitionistic logic, making new connections appar-
ent. The tableau system considered by the authors borrows the framework of [37]
and [38], relating BCL to the class of many-valued modal logics in the style of [38].

Hitoshi Omori’s first contribution A Simple Connexive Extension of the Basic
Relevant Logic BD recalls the fragile alliance between connexive and relevance log-
ics witnessed by, e.g., the sections on connexive implication McCall provided for
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Anderson and Belnap’s [1]. One element of this relationship is revisited in Omori’s
paper, which applies connexive theses to the investigation of an open problem in
relevant logic. In relevant logic, Priest and Sylvan in [39] provides simplified seman-
tics for the relevant logic BD in two flavors—a version with the Routley star and a
four-valued version without the Routley star—and describes two possible (not con-
nexive) model-theoretic accounts of the falsity conditions for relevant conditionals.
Priest and Sylvan leave open the problem of providing a natural proof theory for
these particular falsity conditions and, although the problem remains open, Omori’s
results provide new vantage points from which to frame the problem. Omori in-
troduces three distinct accounts of the falsity conditions for relevant conditionals
not considered by Priest and Sylvan—including the aforementioned “narrow scope”
account—and proves the correspondence between their semantics and naturally for-
mulated axioms, which leads to new hope for solving the open problem.

In his contribution to the special issue, Nissim Francez identifies two intriguing
ways in which negation and conditionals interact in natural language and investigates
their properties. The resulting investigation—Natural-Deduction for Two Connexive
Logics—provides illustrations of these interactions by means of formal dialogues and,
by showing a correspondence between certain logical interderivabilities and these
particular dialogues, shows the phenomena to be essentially connexive in character.
To further study these interactions, Francez introduces a pair of natural deduction
calculi N¬r and N¬l—each with a distinct negation operator—in which negation
and the conditional exhibit behavior analogous to the natural language, connexive
phenomena. Furthermore, Francez’ paper introduces connexive logic into the field
of proof-theoretic semantics by providing such semantics for the natural deduction
systems and showing how the proof-theoretic use of these instances of negation can
be understood as meaning-conferring.

An interesting feature of Francez’ paper inspired the second contribution by
Hitoshi Omori. While Francez’ calculus N¬r follows the aforementioned “narrow
scope” reading of negated conditionals in its identification of ¬r(ϕ→ ψ) with ϕ→
¬rψ, Francez’ calculus N¬l admits the interderivability of the two formulae:

¬l(ϕ→ ψ) a` ¬lϕ→ ψ

where ¬l is the unary negation operator at the center of N¬l . The syntactic re-
semblance between the interpretation of negated conditionals in Francez’ N¬l and
the “narrow scope” reading described above is clear.9 In Omori’s research note on

9But note that the interderivability validated in N ¬l is in many ways unusual, even in the
context of connexive logic. The above equivalence does not, for example, enjoy the experimental
support that Pfeifer has provided for the “narrow scope” equivalence in [34].
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Francez’ paper, this proximity is explored from a model-theoretic perspective, in
which a deductive calculus including the analogous axiom

¬(ϕ→ ψ)↔ (¬ϕ→ ψ)

is introduced by means of an axiomatic proof theory and a corresponding possible
worlds semantics. The system is yielded by modifying the “narrow scope” falsity
conditions in Wansing’s connexive logic of [50]; by describing a semantic falsity con-
dition for conditionals that is cognate with Francez’ “unusual” equivalence, Omori
shows how this leads to a “pseudo-connexive” counterpart of Wansing’s favored con-
nexive system.
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Abstract

McCall’s article on “connexive implication” [4] credits Meredith with the
suggestion that the matrices for →, ·, and ∼ in connexive implication can be
replaced by the matrices for · and ∼ supplemented by a matrix for the unary
necessity operator, 2. Since the matrices for McCall’s connexive implication
are those of this writer’s subjunctive conditional [1], it follows that the latter,
also, may be reduced to a modal logic.

In this paper two axiom sets for a modal logic based on Meredith’s observa-
tion are constructed. Both are shown consistent, and they are shown complete
with respect to (1) this writer’s system, PA1, and (2) McCall’s system CC1,
respectively. Certain differences between these two systems are pointed out,
together with observations concerning Post-completeness and functional com-
pleteness in the latter. Finally, a brief discussion is presented concerning some
philosophical implications of finding connexive implication, or subjunctive con-
ditionals, reducible to a modal logic.

Professor Storrs McCall and I share an interest in logical systems which contain
the non-classical theorems:

1. ∼(p→ ∼p)—It is false that if p then not-p,

2. (p→ q)→ ∼(p→ ∼q)—If (if p then q) then it is false that (if p then not-q);

although our motives differ. I called my system PA1 (in [1]) a logic of subjunctive
conditionals; he called his system, CC1 (in [4]) a system of “connexive implication”
and allied himself with those who, according to Sextus Empiricus, “say that a con-
ditional is sound when the contradictory of its consequent is incompatible with its

This paper was supported by NSF Grants GS 630 and GS 1010.
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antecedent”. Nevertheless, our two systems are very closely related formally. Mc-
Call, in effect, added five axioms to my system and established the completeness of
this expanded axiom-set with respect to the same truth-tables I had used in 1962 for
the primitives, the conditional, conjunction and negation. PA1 showed it possible to
have a consistent propositional logic which 1) contains the classical PM [Principia
Mathematica] calculus (with “⊃” interpreted as “not...or...”), 2) eliminates all the so-
called paradoxes of material and strict implication from the conditional, 3) includes
most of the traditional logical principles involving conditionals, and yet 4) includes
the non-classical theorems mentioned above. McCall pointed out the independence
of all such systems of any of the well-known systems of logic and proved his system
Post-complete.

Besides these two systems there are many other constructible systems which
share the properties just described. The problem is to find a satisfactory one. Cer-
tain difficulties of interpretation arose in connection with PA1 which led me to look
for better systems; these difficulties are aggravated, rather than mollified, by the
new axioms in McCall’s expansion, although from a formal point of view his system
is certainly the more interesting. These difficulties, as well as the relationships of
these two systems to each other and to modal logic, stand out clearly in the light of
an observation which McCall credits to Meredith—namely, that the truth-table we
both used for the conditional can be eliminated in favor of a unary modal operator.

In this paper I present two modal logics, PA1m and CC1m, which use C.I. Lewis’s
primitives for possibility, negation and conjunction, and Lewis’s definitions of other
logical constants, but yield respectively my so-called “logic of subjunctive condition-
als” and McCall’s system of “connexive implication”. The four-valued truth-tables
for negation and possibility are those of Lewis’s Group II matrices; the truth-table
for conjunction is that of PA1 and CC1, not Lewis’s. On this basis, the defined
conditional comes out to have the same truth-table as that assigned in PA1 and
CC1. This suggests the odd conclusion that the difference between PA1 and CC1 on
the one hand and Lewis’s systems was not related to conditionality or possibility so
much as to the different concepts of conjunction.

Table I shows three axiom sets: Lewis’s S3, the modal version, PA1m of my
logic of subjunctive conditionals and a modal version, CC1m, of McCall’s system
of “connexive implication”. The matrices establish the consistency of the various
systems presented, and the derivations appended to this paper show that CC1m
and PA1m are complete with respect to McCall’s CC1, and my PA1, respectively.
Table II shows the interrelationships between the axioms and theorems of Lewis’s
systems, S1, S2, S3, S4, S5, McCall’s CC1, my PA1, PA1m, CC1m, and Rosser’s
axiomatization of the classical propositional calculus of Principia Mathematica. The
following remarks draw together and reflect upon some of the results shown in these
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I Primitive Symbols
1. Grouping Devices: ( , )
2. Logical Constants: ∼, · , 3
3. Propositional Variables: p, q, r, s, p′

II Rules of Formation
1. A single variable, by itself, is well-formed.
2. If S is well-formed, then p∼Sq and p3Sq are well-formed.
3. If S and S′ are well-formed, then pS · S′q is well-formed.

III Abbreviations (Definitions)
1. p(S ∨R)q for p∼(∼S · ∼R)q
2. p(S ⊃ R)q for p∼(S · ∼R)q
3. p(S ≡ R)q for p(S ⊃ R) · (R ⊃ S)q
4. p(S → R)q for p∼3(S · ∼R)q
5. p(S ↔ R)q for p(S → R) · (R→ S)q
6. p2Sq for p∼3∼Sq

IV Rules of Transformation (Rules of Inference)
1. If ` S and ` (S → R) then ` R. (Modus Ponens)
2. If ` S and ` R then ` (S ·R) (Adjunction)
3. If ` S and ` S′ is formed from S by substituting some wff at every occurrence of a proposi-

tional variable in S, then ` S′. (Substitution)
4. If ` (S ↔ R) and ` Q, then if Q′ is formed replacing an occurrence of S in Q by R, then

` Q′. (Rule of Replacement of Strict Equivalents)1

Matrices for Consistency Proofs

∼ p 3 p
4 1 1 1
3 2 2 2
2 3 1 3
1 4 4 4

(Satisfied in S3, PA1m, and
CC1m)

(p · q) 1 2 3 4
1 1 2 3 4
2 2 2 4 4
3 3 4 3 4
4 4 4 4 4

(Satisfied in S3, not others)

(p · q) 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 3 4
4 4 3 4 3

(Satisfied in PA1m, CC1m only)

Axiom Systems

S3 Axioms [3] PA1m Axioms [1] CC1m Axioms [4]
A1. (p · q)→ (q · p) A1.p→ p A1. 23(p · p)
A2. (q · p)→ p A2. (q · p) ⊃ p A2. ∼∼3(p · p)→ (q → q)
A3.p→ (p · p) A3.p ⊃ (p · p) A3. p ⊃ (p · p)
A4. (p · (q · r))→ (q · (p · r)) A4. (p · (q · r))→ (q · (p · r)) A4. (p · (q · r))→ (q · (p · r))
A5. ((p→ q) · (q → r))→ (p→ r) A5. ((r · p) · ∼(q · r))→ (p · ∼q) A5. ((r · p) · ∼(q · r))→ (p · ∼q)
A6.∼3p→ ∼p A6.∼3p→ ∼p A6. ∼3p→ ∼p
A7. (p→ q)→ (∼3q → ∼3p) A7. (p→ q)→ (∼3q → ∼3p) A7. (p→ q)→ (∼3q → ∼3p)

A8. (p→ q)→ ∼(p→ ∼q) A8. p→ ((p · p) · p)
A9. (p · p)→ 2(p · p)
A10. (p · ∼2p) ⊃ ((q ∨ q)→ p)

Figure 1: A Comparison of S3, PA1m and CC1m
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Classical Theorems S1 S2 S3 S4 S5 PA1 PA1m CC1 CC1mPM 2

1. p→ p + + + + + ∗ A1 ∗23 ∗2 +
2. (p · q)→ (q · p) A1 A1 A1 A1 A1 ∗20 ∗4 ∗27 ∗4 +
3. (q · p)→ p A2 A2 A2 A2 A2 − − − − +
4. (q · p) ⊃ p + + + + + + A2 + ∗83 +
5. (p · q) ⊃ p + + + + + A8 ∗73 ∗92 ∗84 A2
6. p→ (p · p) A3 A3 A3 A3 A3 − − − − +
7. p ⊃ (p · p) + + + + + A9 A3 A10 A3 A1
8. (p · (q · r))→ (q · (p · r)) A4 A4 A4 A4 A4 A4 A4 A5 A4 +
9. ((p→ q) · (q → r))→ (p→ r) A5 A5 A5 A5 A5 + ∗66 + ∗66 +
10. (p→ q)→ ((q → r)→ (p→ r)) − − + + + ∗43 ∗44 A1 ∗44 +
11. (q → r)→ ((p→ q)→ (p→ r)) − − + + + A1 ∗31 ∗24 ∗31 +
12. ((r · p) · ∼(q · r))→ (p · ∼q) + + + + + + A5 + A5 +
13. (p ⊃ q) ⊃ (∼(q · r) ⊃ ∼(r · p)) + + + + + ∗74 ∗67 ∗94 ∗67 A3
14. p→ q)→ ((r · p)→ (q · r)) − + + + + A2 ∗3 + ∗3 +
15. (p→ ∼(q · r))→ ((q · p)→ ∼r) + + + + + A3 ∗59 + ∗59 +
16. ((p · q)→ r)→ ((p · ∼r)→ ∼q) + + + + + + + ∗160 + +
17. (p→ ∼q)→ (q → ∼p) + + + + + A5 ∗35 ∗40 ∗35 +
18.∼∼p→ p + + + + + A6 ∗7 ∗64 ∗7 +
19. (p→ q)→ (p ⊃ q) + + + + + A7 ∗1 ∗89 ∗73 +
20. ((p→ p)→ q)→ q − + + + + − − A2 ∗94 +
21. (q · q)→ (p→ p) + + + + + − − A4 ∗96 +
22. (p · p)→ ((p→ p)→ (p · p)) − − − − − − − A6 ∗112 +
23. p→ ((p · p) · p) + + + + + − − A7 A8 +
24. ((p→ ∼q) · q)→ ∼p + + + + + + ∗64 A8 ∗64 +
25. (p · ∼(p · ∼q))→ q + + + + + + ∗65 A9 ∗65 +
26. (∼p∨((p→ p)→ p))∨(((p→ p)∨(p→ p))→ p) − − − − − − − A11 ∗121 +

Non-Classical Theorems

27. (p→ q)→ ∼(p→ ∼q) − − − − − A10 A8 ∗102 + −
28. (p→ p)→ ∼(p→ ∼p) − − − − − + ∗2 A12 ∗108 −
29.∼(p→ ∼p) − − − − − ∗77 + + + −

Modal Theorems

30.∼3p→ ∼p A6 A6 A6 A6 A6 A6 A6
31. 3(p · q)→ 3p − A7 + + + − −
32. (p→ q)→ (∼3q → ∼3p) − − A7 + + A7 A7
33 33p→ 3p − − − A7 + − −
34. 3p→ 23p − − − − A7 − −
35. 23(p · p) − − − − − A1
36.∼∼3(q · q)→ (p→ p) + + + + + A2
37. (p · p)→ 2(p · p) − − − − − A9
38. (p · ∼2p) ⊃ ((q ∨ q)→ p) − − − − − A10

Figure 2: Interrelationships of Axioms in S1, S2, S3, S4, S5, PA1, PA1m, CC1, CC1m,
PM (Rosser)
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two tables.
The differences between S3 and PA1m are not so great, in one respect, as they

first appear to be. The formulas appearing as A1 and A5 in each are mutually
derivable in the other; Axioms 4, 6, and 7 are identical in both systems. Thus, the
real differences boil down to the fact that the strict implications in S3’s Axioms 2
and 3 are merely the corresponding truth-functional conditionals in PA1m, and that
PA1m contains, in Axiom 8, the non-classical formula, (p→ q)→ ∼(p→ ∼q).

Examination of Table II shows that in McCall’s and my systems the formulae 3.
(q ·p)→ p and 6. p→ (p ·p) are nowhere derivable. As Everett Nelson pointed [out]
long ago, the non-derivability of the first of these, Simplification, is a price we must
pay for using the non-classical theorems with standard transposition, syllogism, and
the ordinary rules of substitution. Both McCall’s system and mine must face up to
the demand that we either revise our systems to include these theorems, or explain
why they are non-derivable and justify their non-inclusion. In modal logic, the non-
derivability of these formulae leads to the non-inclusion of the distinctive axiom of
S2, 3(q · p) → 3p. But 3(q · p) ⊃ 3p also fails in all these systems; and this is
clearly due to the properties of conjunction (as reflected in the different conjunction
matrix).

Secondly, all of McCall’s and my systems include, as intended, the following
theorems or axioms which are not derivable in Lewis or in classical logic:

27. (p→ q)→ ∼(p→ ∼q)
28. (p→ p)→ ∼(p→ ∼p)
29. ∼(p→ ∼p)

and others. Ordinarily, this would be cause for self-congratulation. But when these
theorems are reduced to modal propositions they present serious problems of inter-
pretation. They become, respectively, equivalent to theorems stating:

1McCall [4] proves that this rule is derivable in CC1, using theorems which can be established
in S3, PA1 and CC1, though not in S1 or S2. Hence R4 is derivable in all three systems.

2Notes on Table II:
• “+” means that the theorem to the left is derivable in the system indicated above it.
• “−” means that the theorem to the left is provably not derivable in this system. S1, S2, S3, S4,

S5 are based on the formulations in [2], except that “p→ 3p” and “(p→ q)→ (3p→ 3q)”
are replaced by the axioms “∼3p→ ∼p” and “(p→ q)→ (∼3q → ∼3p)” of [3].

• PA1 refers to the system of [1].
• CC1 refers to the system of connexive implication in [4].
• PA1m and CC1m are the modal versions of PA1 and CC1.
• “∗n” gives the number of the theorem in this system indicated at the top of the column.
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27′. 3(p · q)→ 3(p · ∼q)
28′. 3(p · p)→ 3(p · ∼p)
29′. 3(p · p)

The first would seem false whenever q is a tautology; the second would seem false
whenever p is consistent; and the third would be false whenever p was inconsistent.
These consequences alone seem fairly devastating for both of our systems.

When we consider the new axioms McCall added to establish Post-completeness,
however, the difficulties in interpretation increase. To be sure some of additional
axioms in CC1 (cf. 20, 21, 22, 23, and 26 in Table II) seem plausible, e.g., his
CC1 Axiom 2, (((p → p) → q) → q) (#20 in Table II) which occurs in all Lewis
systems except S1, as well as in PM. But there is a peculiar and irrational bias in
some of them. Thus Axiom 7 of CC1 (#23 in Table II), p → ((p · p) · p), seems
eminently plausible until it is realized that while p will imply (or be implied by) any
conjunction containing just an odd number of iterations of itself, it never implies (or
is implied by) a conjunction with an even number of conjuncts of itself. Thus

• p→ ((p · p) · p)

• p→ ((((p · p) · p) · p) · p)

• p→ ((((((p · p) · p) · p) · p) · p) · p)

are all logical truths, but

• p→ (p · p)

• p→ (((p · p) · p) · p)

• p→ (((((p · p) · p) · p) · p) · p)

are merely contingent. Again, any conjunction containing just an even number of
conjuncts of p, as in

• (p · p)→ (q → q) (CC1 Axiom 4, #21 in Table II)

• ((p · p) · (p · p))→ (q → q), etc.

will imply any theorem of CC1, but no conjunctions having just an odd number of
occurrences of a given variable will imply any theorem. Similar remarks pertain
to the double p’s in CC1 Axiom 7 (#22 in Table II). It is hard to [see] how the
concept of connexive implication—that logically true conditionals have antecedents
which are compatible with the contradictories of their consequents—can justify these
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distinctions between odd and even numbers of variable occurrences. In the modal
versions of CC1, the modal correlates of these implausibilities (cf. 35, 36, 37, 38 in
Table II, which represent the axioms (except Axiom 8) of CC1m which differ from
those of PA1m) seem just as unlikely:

35. 23(p · p) (Axiom 1, CC1m)
36. ∼∼3(p · p)→ (q → q) (Axiom 2, CC1m)
37 (p · p)→ 2(p · p) (Axiom 9, CC1m)
38 (p · ∼2p) ⊃ ((q ∨ q)→ p) (Axiom 10, CC1m)

The only one of these four that is included in the modal systems of Lewis is the
second, #36, and this only because it is a paradox of strict implication. The other
three are not derivable in any of the five Lewis systems, and in any case are in-
tuitively unconvincing. The peculiarities of a type of conjunction which yields dif-
ferent implications for odd-numbered conjunctive iterations of a variable than for
even-numbered ones stand out in all four of these; each fails if an even-numbered
conjunctive iteration (or alternation) is replaced by an odd-numbered one. These
same peculiarities are reflected in the difficulty of finding a consistent interpretation
for the conjunction matrix axiomatized in CC1, PA1, etc.

Among the interesting formal results in McCall’s system is that fact that not
only can we define connexive implication in terms of negation, conjunction and a
modal operator (possibility or necessity), but we can define the modal operators
(either possibility or necessity) in terms of the primitives of CC1, i.e., negation,
conjunction and the conditional. Thus we could have, in CC1, the definitions:

• 2p =Df ((p→ p)→ p)

• 3p =Df ∼((∼p→ ∼p)→ ∼p)

Since McCall proved that all tautologies are theorems in his system, and the matri-
ces for those defined terms are identical with those already referred to (the Group
II Lewis matrices), it follows that the nine axioms of CC1m can also be used for
CC1 with the conditional primitive instead of the modal operator. Thus CC1 and
CC1m are exactly equivalent systems. Since CC1 was proved Post-complete, CC1m
can be proved Post-complete also. Since CC1 is functionally incomplete, CC1m is
functionally incomplete also.

In spite of the instructive and interesting formal properties revealed in CC1 and
PA1, in my opinion, the foregoing analysis shows rather conclusively the inadequacy
as a formalization of a viable logic, of both my system PA1 and McCall’s CC1. Ad-
mitting these inadequacies does not, of course, entail rejection of the non-classical
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theorems. There are other systems which contain these theorems and lack the ob-
jectionable features just discussed. Although not fully satisfactory systems, PA1
and CC1 are, I believe, helpful first efforts towards the construction of a satisfactory
non-classical logic.

1. [A6 = 1] (p→ q)→ ∼(p · ∼q) PA1 Axiom 7
2. [A8 = 2] (p→ p)→ ∼(p→ ∼p) CC1 Axiom 12
3. [A7 = (A5→ 3)] (p→ q)→ ((r · p)→ (q · r) PA1 Axiom 2
4. [3 = (A1→ 4)] (p · q)→ (q · p) S3 Axiom 1
5. [A7 = (4→ 5)] ∼3(q · p)→ ∼3(p · q)
6. [D4, 5 = 6] (∼q → p)→ (∼p→ q)
7. [6 = (A1→ 7)] ∼∼p→ p PA1 Axiom 63

8. [3 = (7→ 8)] (q · ∼∼p)→ (p · q)
9. [A7 = (8→ 9)] (p→ q)→ (∼q → ∼p)
10. [9 = (4→ 10)] ∼(q · p)→ ∼(p · q) CC1 Axiom 9
11. [D4, 5 = (A1→ 11)] ∼3(∼p · p)
12. [A7 = (8→ 12)] ∼3(∼p · p)→ ∼3(p · ∼∼∼p)
13. [12 = (11→ 13)] p→ ∼∼p
14. [3 = (4→ 14)] (∼(q · r) · (p · r))→ ((r · p) · ∼(q · r))
15. [A7 = (14→ 15)] ∼3((r · p) · ∼(q · r))→ ∼3((q · r) · (p · r))
16. [9 = (15→ 16)] ∼∼3(∼(q · r) · (p · r))→ ∼∼3((r · p) · ∼(q · r))
17. [3 = (16→ 17)] ((p→ q) · ∼∼3(∼(q · r) · (p · r)))→

(∼∼3((r · p) · ∼(q · r)) · (p→ q))
18. [A7 = (17→ 18)] ∼3(∼∼3((r · p) · ∼(q · r)) · (p→ q))→

∼3((p→ q) · ∼∼3(∼(q · r) · (p · r)))
19. [5 = (3→ 19)] ∼3(∼∼3((r · p) · ∼(q · r)) · (p→ q))
20. [18 = (19→ 20)] ∼3((p→ q) · ∼∼3(∼(q · r) · (p · r)))
21. [5 = (20→ 21)] ∼3(∼∼3(∼(q · r) · (p · r)) · (p→ q))
22. [9 = (5→ 22)] ∼∼3(q · p)→ ∼∼3(p · q)
23. [3 = (22→ 23)] (r · ∼∼3(q · p))→ (∼∼3(p · q) · r)
24. [A7 = (23→ 24)] ∼3(∼∼3(p · q) · r)→ ∼3(r · ∼∼3(q · p))
25. [D4, 22 = (21→ 25)] (p→ q)→ ((p · r)→ (q · r))
26. [9 = (A7→ 26)] ∼(∼3q → ∼3p)→ ∼(p→ q)
27. [3 = (26→ 27)] (r · ∼(∼3q → ∼3p))→ (∼(p→ q) · r)
28. [A7 = (27→ 28)] ∼(∼(p→ q) · r)→ ∼3(r · ∼(∼3q → ∼3p))
29. [D4, 5 = (25→ 29)] ∼3(∼((p · r)→ (q · r)) · (p→ q))
30. [28 = (29→ 30)] ∼3((p→ q) · ∼(∼3(q · r)→ ∼3(p · r))
31. [D4, 30 = 31] (p→ q)→ ((q → r)→ (p→ r)) CC1 Axiom 1
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32. [31 = (13→ 32)] (∼∼p→ q)→ (p→ q)
33. [31 = 6→ (32→ 33)] (∼q → ∼p)→ (p→ q)
34. [31 = (7→ 34)] (p→ q)→ (∼∼p→ q)
35. [31 = 34→ (33→ 35)] (p→ ∼q)→ (q → ∼p) PA1 Axiom 5
36. [31 = 36] (∼q → ∼p)→ ((∼p→ ∼r)→ (∼q → ∼r))
37. [31 = 9→ (36→ 37)] (p→ q)→ ((∼p→ ∼r)→ (∼q → ∼r))
38. [31 = (9→ 38)] ((∼p→ ∼r)→ (∼q → ∼r))→

((r → p)→ (∼q → ∼r))
39. [31 = 37→ (38→ 39)] (p→ q)→ ((r → p)→ (∼q → ∼r))
40. [31 = 9→ (39→ 40)] (p→ q)→ (∼(∼q → ∼r)→ ∼(r → p))
41. [9 = (33→ 41)] ∼(r → q)→ ∼(∼q → ∼r)
42. [31 = (41→ 42)] (∼(∼q → ∼r)→ ∼(r → p))→

(∼(r → q)→ ∼(r → p))
43. [31 = 42→ (40→ 43)] (p→ q)→ (∼(r → q)→ ∼(r → p))
44. [31 = 41→ (33→ 44)] (p→ q)→ ((r → p)→ (r → q)) PA1 Axiom 1
45. [44 = (4→ 45)] ((r · p)→ (q · r))→ ((r · p)→ (r · q))
46. [44 = 45→ (3→ 46)] (p→ q)→ ((r · p)→ (r · q))
47. [31 = (4→ 47)] ((r · p)→ (r · q))→ ((p · r)→ (r · q))
48. [31 = 46→ (47→ 48)] (p→ q)→ ((p · r)→ (r · q)) CC1 Axiom 3
49. [46 = (7→ 49)] ((q · p) · ∼∼r)→ ((q · p) · r)
50. [31 = 49→ (4→ 50)] ((q · p) · ∼∼r)→ (r · (q · p))
51. [31 = 50→ (A4→ 51)] ((q · p) · ∼∼r)→ (q · (r · p))
52. [46 = (4→ 52)] (q · (r · p))→ (q · (p · r))
53. [31 = 52→ (A4→ 53)] (q · (r · p))→ (p · (q · r))
54. [31 = 51→ (53→ 54)] ((q · p) · ∼∼r)→ (p · (q · r))
55. [44 = (13→ 55)] (p · (q · r))→ (p · ∼∼(q · r))
56. [31 = 54→ (55→ 56)] ((q · p) · ∼∼r)→ (p · ∼∼(q · r))
57. [A7 = (56→ 57)] (p→ ∼(q · r))→ ((q · p)→ ∼r) PA1 Axiom 3
58. [44 = (7→ 58)] (p→ ∼∼q)→ (p→ q)
59. [31 = 57→ (58→ 59)] (p→ ∼(q · ∼r))→ ((q · p)→ r)
60. [31 = (4→ 60)] ((q · p)→ r)→ ((p · q)→ r)
61. [31 = 59→ (60→ 61)] (p→ ∼(q · ∼r))→ ((p · q)→ r)
62. [44 = (A6→ 62)] (p→ ∼3(q · ∼r))→ (p→ ∼(q · ∼r))
63. [31 = 62→ (61→ 63)] (p→ (q → r))→ ((p · q)→ r) Importation
64. [63 = (35→ 64)] ((p→ ∼q) · q)→ ∼p CC1 Axiom 8
65. [59 = (A1→ 65)] (p · ∼(p · ∼q))→ q CC1 Axiom 9
66. [63 = (31→ 66)] ((p→ q) · (q → r))→ (p→ r) S3 Axiom 5
67. [44 = 8→ (A5→ 67)] (∼(q · r) · ∼∼(r · p))→ (p · ∼q)
68. [9 = (67→ 68)] (p ⊃ q)→ (∼(q · r) ⊃ ∼(r · p))
69. [A6 = (68→ 69)] (p ⊃ q) ⊃ (∼(q · r) ⊃ ∼(r · p)) PM Axiom 3
70. [31 = 53→ (4→ 70)] (p · (q · r))→ ((p · q) · r)
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71. [25 = (4→ 71)] ((p · q) · ∼p)→ ((q · p) · ∼p)
72. [9 = (71→ 72)] ∼((q · p) · ∼p)→ ((p · q) · ∼p)
73. [72 = (A2→ 73)] ∼((p · q) · ∼p) PM Axiom 2

The theorems of PA1m, and their justifications, may be kept provided we replace
Theorems 1 and 2 by

1. [A6 = (A1→ 1)] ∼∼3(q · q)
2. [A2 = (1→ 2)] p→ p

changing ‘A1’ to ‘2’ in the proofs of Theorems 4, 7, and 11, and replacing Theorem
73 in PA1m by what was 2 in PA1m, i.e.,

73. [A6 = 73] (p→ q)→ ∼(p · ∼q)

The proof of Theorem 2 in PA1m does not hold, so far, in CC1m since ‘(p → q) →
∼(p → ∼q)’ must be derived from CC1m Axiom 12, (p → p) → ∼(p → ∼p), which
is derivable in proofs in CC1m then may proceed as follows, establishing PA1m’s
Axiom 2, ‘(q · p) ⊃ p’, in Theorem 83.

74. [44 = 46→ (33→ 74)] (p→ q)→ ((r · ∼q)→ (r · ∼p)
75. [31 = 74→ (9→ 75)] (p→ q)→ ((r ⊃ q)→ (r ⊃ p))
76′. [35 = (A6→ 76′)] (q · q)→ ∼∼3(q · q)
76. [31 = 76′ → (A2→ 76)] (q · q)→ (p→ p)
77. [31 = 76→ (73→ 77)] (q · q)→ ∼(p · ∼p)
78. [61 = (77→ 78)] ((q · q) · p)→ p
79. [25 = (4→ 79)] ((r · p) · ∼(q · r))→ ((p · r) · ∼(q · r))
80. [31 = A5→ (79→ 80)] ((p · r) · ∼(q · r))→ (p · r)
81. [9 = (80→ 81)] (p ⊃ q)→ ((p · r) ⊃ (q · r))
82. [81 = (A3→ 82)] (q · p) ⊃ ((q · q) · p)
83. [75 = 78→ (82→ 83)] (q · p) ⊃ p
84. [72 = (83→ 84)] (p · q) ⊃ p
85. [51 = (10→ 85)] (q · ∼(p · q))→ ∼p
86. [A7 = (85→ 86)] 2p→ (q → (p · q))
87. [31 = A6→ (7→ 87)] 2p→ p
88. [31 = A7→ (33→ 88)] (p→ q)→ (2p→ 2q)
89. [31 = 13→ (A2→ 89)] 3(q · q)→ (p→ p)
90. [88 = (89→ 90)] 23(q · q)→ 2(p→ p)
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91. [90 = (A1→ 91)] 2(p→ p)
92. [86 = (91→ 92)] q → ((p→ p) · q)
93. [6 = (92→ 93)] ((p→ p) ⊃ q)→ q
94. [31 = 73→ (93→ 94)] ((p→ p)→ q)→ q CC1 Axiom 2
95. [33 = (A6→ 95)] p→ 3p
96. [31 = 95→ (89→ 96)] (q · q)→ (p→ p) CC1 Axiom 4
97. [31 = 9→ (7→ 97)] (∼r → (p · ∼q))→ ((p ⊃ q)→ r)
98. [31 = (75→ 98)] ((p ⊃ q)→ r)→ ((p→ q)→ r)
99. [31 = 86→ (97→ 99)] 2p→ ((p ⊃ q)→ q)
100. [31 = 99→ (98→ 100)] 2p→ ((p→ q)→ q)
101. [100 = (A1→ 101)] (3(p · p)→ 3(p · p))→ 3(p · p)
102. [31 = A7→ (33→ 102)] (p→ q)→ (3p→ 3q)
103. [31 = 3→ (102→ 103)] (p→ p)→ (3(p · p)→ 3(p · p))
104. [31 = 103→ (101→ 104)] (p→ p)→ (p · p)
105. [31 = 11→ (48→ 105)] (p · q)→ (p · ∼∼q)
106. [102 = (105→ 106)] 3(p · q)→ 3(p · ∼∼q)
107. [31 = 104→ (106→ 107)] (p→ p)→ 3(p · ∼∼p)
108. [31 = 107→ (13→ 108)] (p→ p)→ ∼(p→ ∼p) CC1 Axiom 12
109. [100 = 109] 2(p · p)→ (((p · p)→ (p · p))→ (p · p))
110. [31 = A9→ (109→ 110)] (p · p)→ (((p · p)→ (p · p))→ (p · p))
111. [31 = (3→ 111)] (((p · p)→ (p · p))→ (p · p))→ ((p→ p)→ (p · p))
112. [31 = 110→ (111→ 112)] (p · p)→ ((p→ p)→ (p · p)) CC1 Axiom 6
113. [9 = (100→ 113)] ∼((p→ p)→ p)→ ∼2p
114. [48 = (113→ 114)] (∼((p→ p)→ p) · p)→ (p · ∼2p)
115. [48 = (7→ 115)] (∼∼p · ∼((p→ p)→ p))→ (∼((p→ p)→ p) · p)
116. [31 = 115→ (114→ 116)] (∼∼p · ∼((p→ p)→ p))→ (p · ∼2p)
117. [31 = 34→ (25→ 117)] (p→ q)→ ((∼∼p · ∼r)→ (q · ∼r))
118. [31 = 117→ (9→ 118)] (p→ q)→ (∼(q · ∼r)→ ∼(∼∼p · ∼r))
119. [118 = 116→ (A10→ 119)] ∼(∼∼(∼∼p · ∼((p→ p)→ p)) · ∼((q ∨ q)→ p))
120. [119 = 120] (∼p ∨ ((p→ p)→ p)) ∨ ((q ∨ q)→ p)
121. [120 = 121] (∼p ∨ ((p→ p)→ p))∨ CC1 Axiom 11

(((p→ p) ∨ (p→ p))→ p)
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Sentential connexive logics have a two-valued worlds semantics (by [6]). But at
least for some connexive logics it is possible to improve vastly on the cumbersome
uniform models so supplied. The basic idea for the more improved models here
presented is that the worlds of each connexive logic model divide into two classes,
the regular worlds U where conjunctions are evaluated in the normal way, and the
irregular equivalential worlds I where conjunctions are evaluated like equivalences.
That is, the initial evaluation rule for conjunction is as follows:

• for H ∈ I, v(A ·B,H) = T iff v(A,H) = v(B,H); and

• for H ∈ U = K − I, v(A ·B,H) = T iff v(A,H) = T = v(B,H).

Here A and B are arbitrary wff; K is the set of worlds of the given model, with U
and J subsets of K; and v is a two-valued valuation function; (for background see
Kripke [3]).

The fact that · ceases to behave normally in I situations is forced by the very
features that characterise connexive logics, the inclusion of such connexive principles
as Boethius p → q → ∼(p → ∼q) and its consequence Aristotle ∼(p → ∼p).1 This
becomes plain when one considers modal reformulations of these principles: Aristotle
for example can be reformulated as 3(p · p) given quite weak principles generally
admitted in connexive logics. If however the modal connective 3 is interpreted
in anything approaching the usual fashion, as saying that 3A holds iff A holds in
some possible situation, then p · p must hold in some situation, whatever p. Were
conjunction evaluated normally (i.e. as for U worlds) we should have somehow to
guarantee that each sentential parameter p and each wff held in some world; and this
is not only difficult to ensure but would do too much. For it would make 3p, and
so ∼2p, theorems, and hence render connexive logics, all of which contain theses of

1On the rationale of the names these principles are given, see [7].
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the form 2B, inconsistent. Indeed the fact that 3(p · p) is a theorem but 3p is not,
on pain of inconsistency, means that within the general framework of a two-valued
worlds semantics one has no option but to change the conjunction rule. For were
conjunction normal then in every world p · p would hold where and only where p
held, so p · p and p would be interchangeable in every sentence context, and hence
in the frame 3( ). The only question then is how conjunction behaves in irregular
worlds. There are, as we shall see, several options other than material equivalence
that can be exploited in order to distinguish connexive systems.

The semantical features of connexive logics, the fact that such irregular worlds
have to be introduced into the modellings, is enough to cast serious doubt at least on
the adequacy of such systems as providing analyses of implication and subjunctive
conditionals (cf. also [7]). Perhaps the observed semantical peculiarities of connexive
logics will do something to dampen the philosophical revival these logics are currently
enjoying.

1 McCall’s system CC1
The most investigated and best understood connexive logic is McCall’s system CC1.
It makes a natural starting point before we turn to the more difficult but superior
systems Angell has devised.

CC1 has primitive connectives the set {∼,2, ·}. The connexive implication → is
defined:

• A→ B =Df 2∼(A · ∼B).

Alternatively, if → is taken as primitive in place of 2, then 2 can be defined:

• 2A =Df (A→ A)→ A; or

• 2A =Df 1→ A where 1 =Df ∼(p · ∼p).

The complex postulate theory of CC1 is developed in McCall [5]. The semantics of
CC1, to which we turn, resembles that of finite-valued modal logics, e.g. that of
Łukasiewicz’s system Ł as modelled in Lemmon [4]. A CC1-model M is a structure
M = 〈G, J,R, v〉, i.e. a two-world structure with K = {G, J}, where R is reflexive
and such that GRJ but not JRG. The valuation function v, specified in the model
for atomic wff only is extended inductively to all wff recursively, as follows:

• v(∼A,H) = T iff v(A,H) = F
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• v(2A,H) = T iff (Hi)(HRHi ⊃ v(A,Hi) = T )

• v(A ·B,H) = T iff v(A,H) = v(B,G) and either H = J or v(A,H) = T

in each case for every H ∈ K and every wff. A wff B is CC1-valid iff v(B,G) = T
in all CC1-models. CC1-satisfiability, etc., are defined in the usual way.

CC1 models can be reformulated in ways that look initially to be more general
but turn out not to be; for example G can be replaced by a set U of elements to
which G belongs given that it required for H in K = U ∪ {J} GRH iff H = J .
Likewise the element J can be replaced by a set of elements I subject to appropriate
restrictions.

Theorem 1 (Soundness theorem for CC1). If `CC1 B, then B is CC1-valid.

Proof. By induction over the length of proofs. Alternatively, and more briefly given
[5], the result will follow upon showing that every CC1-model provides a CC1-matrix.

In the style of Carnap, and later Kripke [3], we represent propositions as map-
pings from elements of K to II = {T, F}. In the case of CC1-models there are only
four propositions to consider: a first, 1, which maps {G, J} to T , 2, which maps G
to T (and J to F ), 3, which maps J to T , and 4, which maps both G and J to F
and accordingly maps ∅ to T .

A proposition is designated if it maps G to T ; thus 1 and 2 are designated.
Prescriptions for compound mappings ∼ρ, 2ρ and ρ · σ in terms of mappings ρ and
σ parallel the recursive specification of v. Thus ∼ρ is defined that

• ∼ρ(H) = T iff ρ(H) = F ,

i.e., ∼ρ maps H to T iff ρ maps H to F . Hence (∼ρ)(H) = ∼ρ(H).

• 2ρ(H) = T iff ρ(Hi) = T for every Hi such that HRHi.

• ρ · σ(H) = T iff ρ(H) = σ(H) and either ρ(H) = T or H = J .

The effects of ∼, 2, and · on propositions 1, 2, 3, and 4 can be represented in the
following matrices S:

· 1 2 3 4 ∼ 2
?1 1 2 3 4 ?1 4 ?1 1
?2 2 1 4 3 ?2 3 ?2 4
3 3 4 3 4 3 2 3 3
4 4 3 4 3 4 1 4 4
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Lemma 1. If B is CC1-valid then B takes a designated value for each assignment
of propositions to its atomic parts, and conversely.

Lemma 2. The matrices (S) are characteristic for CC1.

Proof. The result is proved in McCall [5].

Theorem 2 (Completeness theorem for CC1). If B is CC1-valid then `CC1 B.

Proof. By the previous lemmata.

2 Angell’s systems
As an analysis of implication CC1 is a remarkably unsatisfactory system. For exam-
ple it contains as axioms the paradoxical principle

C1. q · q →. p→ p,
the fallacy

C2. p · p →. p→ p→ p · p,
and the quite unmotivated

C3. (∼p ∨. p→ p→ p) ∨. p→ p ∨ p→ p →. p
And though it lacks, on pain of inconsistency, both p→ p2n and p2n → p for n ≥ 1,
where

• p1 = p

• pn+1 = (pn · p)

it contains the peculiar principles
C4. p→ p2n+1 and
C5. p2n+1 → p, for n ≥ 0

In all these respects, at any rate, the connexive logics that Angell has prepared
look superior; and Angell indeed claims in [1] that none of C1–C3 are derivable in his
systems PA1 and PA1m. Likewise he asserts that p→ (p · p) · p, i.e., C4 for n = 1, is
demonstrably not derivable in PA1 or PA1m. However, so far as we are aware, these
non-derivability claims have never been made good. An advantage of the modellings
we offer is that they enable the proof of some of these non-derivability results, and
put us on the way to separating and rounding out axiomatically various different
connexive logics.
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Angell’s system PA1m (which is supposed to be a modal version of the system
PA1 of [2]) has the same syntax as CC1, with A ⊃ B =Df ∼(A · ∼B), and these
axioms:

A1. p→ p
A3. p ⊃ p · p
A5. (r · p) · ∼(q · r)→ p · ∼q
A7. p→ q →. 2p→ 2q

A2. q · p ⊃ p
A4. p · (q · r)→ q · (p · r)
A6. 2p→ p
A8. p→ q → ∼(p→ ∼q)

(Minor changes have been made to A6 and A7, since 2 is taken as primitive rather
than, as in [1], 3.) The rules are Detachment (for→), Adjunction, and Substitution.

A CM1-model M is a structureM = 〈G,K, I,R, v〉 where I ⊆ K, G ∈ U = K−I,
R is a binary relation on K and v is a bivalent valuation function on sentential
parameters and elements of K, such that

i) R is transitive and reflexive;

ii) if H1RH2 then H1 = H2 for H1 ∈ I, i.e., I-worlds are terminal

iii) if GRH then, for some H1 ∈ I, HRH1 (or equivalently, every world is R-
connected to an I-world).

A CM1S-model is a CM1 model such that I = {J}, i.e. there is just one irregular
world J .

The recursive extension of v to all wff in connective set {∼, ·,2} is the same as
for CC1 except that the rule for · is generalized to:

• v(A ·B,H) = T iff v(A,H) = v(B,H) and either H ∈ I or else v(A,H) = T .

A wff A is CM1-valid iff v(A,G) = T for every CM1-model, i.e., A is true in
every CM1-model.

Theorem 3. If B is a theorem of PA1m then B is CM1-valid.

Proof. By induction over the length of proofs. Validation of some of the axioms,
especially A7 and A8, requires the investigation of several cases according as H ∈ I
or H ∈ U .

Corollary. Neither C2 nor C3 is a theorem of PA1m. Hence PA1m is a proper
subsystem of CC1.
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Proof. Proof is a matter of constructing countermodels to C2 and C3. We illustrate
the method, familiar from modal logic semantics, by setting out a countermodel to
C2. Let K = {G,H1, H2, J}; I = {J}; GRH1, H1RH2, GRH2 and HRJ and HRH
for every H ∈ K; v(p,H1) = T , v(p,H2) = F , and otherwise v may be arbitrary,
so say v(S,H) = F otherwise. Since v(p, J) 6= v(∼p, J), v(p · ∼p, J) = F and
v(∼(p · ∼p), J) = T . Since v(p,H2) = F , v(∼p,H2) = T , whence v(p · ∼p,H2) = F
since H2 ∈ U , and v(∼(p · ∼p), H2) = T . Combining these evaluations v(2∼(p ·
∼p), H2) = T , i.e. v(p → p,H2) = T . Hence too v(p → p · ∼(p · p), H1) = F . But
v(p · p,H1) = T , whence since GRH1, v(C2, G) = F .

The converse of Theorem 3 is however false. Both C1 and the S4 axiom
C6. 2p→ 22p

are validated by CM1-models, though they are not theorems of PA1m. This can be
shown by tightening up CM1-models in the way Kripke tightened up S4 models (in
[3]) to provide a semantics for Lewis system S3.

A CM2-model M is a structure 〈G,K,N, I,R, v〉 which differs from a CM1 model
only in having a set N ⊆ K such that G ∈ N and I ⊆ N . (It is enough also to
require that R be a quasi-ordering on N .)

Theorem 4. If B is a theorem of PA1m then B is CM1-valid.

Corollary. Neither C1 nor C6 is a theorem of PA1m.

But again the converse of Theorem 4 is false. C4 and C5 are CM1-valid but
neither appears to be a theorem of PA1m for any n > 0. This can be seen by
modifying the rule for · in irregular worlds so that · behaves not like material
equivalence but like some brand of strict equivalence. Since p ↔. (p ↔ p) ↔ p,
p ↔. (((p↔ p)↔ p)↔ p), etc., are not theorems of strict implication, I situations
will serve then to falsify C4 and C5. The argument can be filled out by adding a re-
lation S on K to the model, with S reflexive and transitive (and possibly coinciding
with R), and by modifying the rule for · to the following:

• v(A ·B,H) = T iff v(A,H) = T = v(B,H), for H ∈ U ; and

• v(A · B,H) = T iff for some H1 ∈ I if HSH1 then v(A,H1) = v(B,H1), for
H ∈ I.

As well the modelling conditions have to be amended, condition ii) for CM1-models
has to be abandoned, the requirements that for some H1 ∈ I HSH1, for every H ∈ I
and that I is hereditary under S (i.e., if H1 ∈ I and H1SH2 then H2 ∈ I) added,
etc.
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1 Truth-Value Gaps and Interpreting Conditionals
Classically, the formulae of propositional logic are interpreted as follows: Variables
accept values from the domain {0, 1}, in which 0 is the designated value and is
interpreted as the truth of a corresponding expression, while 1 is interpreted as its
falsity. The values of complex formulae are given by the following matrices:

p q p & q p ∨ q ¬p p ⊃ q

0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 0 0
1 1 1 1 0 0

In the sequel, we will refer to classical propositional logic, which is based on this in-
terpretation of propositional formulae, as CL and the above matrices as C-matrices.

Translator’s Note: The following is a translation of the paper Ob odnoy novoy tryohznachnoy
paraneprotivorechivoy logike, which appeared in Russian as [3]. Much of the terminology of the
original paper is drawn from a Russian translation of Alonzo Church’s [1]; in such cases, the present
translation employs Church’s terminology whenever possible.
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However, not all natural language propositions that are identified with true for-
mulae of CL are true in their own right. In natural language, many propositions do
not have definite truth values; in these cases we have truth value gaps. A prime ex-
ample of such propositions is the case of conditional sentences with false antecedents.
For the sake of simplicity of logical theory, such propositions are interpreted in CL
as true and prima facie this correction of natural language appears justified. Argu-
ing against the representation of such propositions as theorems of the theories we
intend to formulate in CL seems equally impossible. However, these considerations
do not negate the fact that the truth of those propositions—interpreted as true for
the sake of formalization—differ radically from the truth of those propositions that
are already true in natural language. The propositions in this latter category should
be evaluated as true if we wish to obtain a correct formalization; the validity of
their translations into formal languages is a necessary condition on the adequacy of
a translation. However, there is no need to translate those propositions of natural
language lacking a truth value as true; we may just as easily assign the value of
“false” to all such propositions. That such formulae are treated as true, therefore,
is arbitrary—or merely accidental—in contrast to the evaluation of the formal lan-
guage counterparts of true natural language statements as essentially or necessarily
true. The lack of a distinction between accidental and essential truth in the frame-
work of CL disrupts the uniformity of the interpretation of truth-value gaps, as the
sentences “If 2 + 2 = 5 then 4 + 8 = 7” and “It is not the case that if 2 + 2 = 5 then
4 + 8 = 7” do not have a particular truth value in natural language. But the first
of them will be represented in CL as a true formula and the second, as false. In
particular, such confusion leads to discussions concerning the so-called “paradoxes
of material implication” (such as the law of affirmation of the consequent), although
the proper reading of these formulae is hardly paradoxical.

In order to remedy the situation, I recommend constructing a propositional logic
approximating the logical connectives of natural language as follows. We will employ
the three-element set of truth values {0, 1, 2} where 0 and 1 are designated values.
0 is understood as an essential truth, 1 as an accidental truth (or as truth for
purposes of formalization) and 2 as the falsity of the expressions to which these
values are assigned. It is supposed that the propositions of natural language that
lack a definite truth value will be assigned a value of 1 when translated into the
language of propositional logic. The truth values of complex formulae are specified
by the following matrices (which will be called M-matrices):
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p q ¬p Lp p ∨ q p & q p ⊃ q

0 0 2 0 0 0 0
0 1 2 0 0 1 1
0 2 2 0 0 2 2
1 0 1 2 0 1 0
1 1 1 2 1 1 1
1 2 1 2 1 2 2
2 0 0 2 0 2 1
2 1 0 2 1 2 1
2 2 0 2 2 2 1

Here, Lp means “p is essentially true” (or “p is necessarily true”) and L can be
regarded as a (truth-functional) strong alethic modality.

The formulae of propositional modal logic to which the M-matrices assign values
from the set {0, 1} for all assignments of values to propositional variables will be
called M-tautologies. There is an immediate connection between the interpretation
of the connectives ¬, &, and ∨ induced by the M-matrices and Kleene’s three-valued
logic K3.1 However, the definition of the implication connective that precisely cap-
tures the foregoing ideas on the truth value of the conditional in natural language is
sufficiently novel and—to the best of my knowledge—has not been previously con-
sidered. In the sequel, the logic based on the interpretation of modal propositional
formulae induced by M-matrices will be denoted by LImp.

One can raise the question of the functional completeness of the set of connectives
{¬, L,&,∨,⊃}. The answer to this question is yes, although we will not discuss the
matter in detail. Rather, we will consider the grounds for stronger assertion of
the functional completeness of the set {¬, L,⊃}; an affirmative answer to the latter
assertion will lead to an affirmative answer to the first issue. As is well-known,2
any function of three-valued logic is expressible by compositions of the so-called
Webb function V3(x, y) = max(x, y) + 1, where + represents addition modulo 3.
Hence, if we could define V3(x, y) as a composition of the functions ¬, L, ⊃, this
would constitute proof of the functional completeness of the set {¬, L,⊃}. For
example, one composition corresponding to the function V3(x, y) is given by the
formula ¬L(Lx ⊃ y) ⊃ ¬L¬(x ⊃ L¬y) (?), as can be verified on the basis of the
following table:

1On K3, see A.S. Karpenko’s Logic and Computer [2, 22-23].
2See S.V. Yablonsky’s Introduction to Discrete Mathematics [5, 50].
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x y max(x, y) max(x, y) + 1 Lx L¬y Lx ⊃ y

0 0 0 1 0 2 0
0 1 1 2 0 2 1
0 2 2 0 0 0 2
1 0 1 2 2 2 1
1 1 1 2 2 2 1
1 2 2 0 2 0 1
2 0 2 0 2 2 1
2 1 2 0 2 2 1
2 2 2 0 2 0 1

x y x ⊃ L¬y ¬L(Lx ⊃ y) ¬L¬(x ⊃ L¬y) (?)
0 0 2 2 2 1
0 1 2 0 2 2
0 2 0 0 0 0
1 0 2 0 2 2
1 1 2 0 2 2
1 2 0 0 0 0
2 0 1 0 0 0
2 1 1 0 0 0
2 2 1 0 0 0

Thus, the set {¬, L,⊃} is functionally complete, that is, any of the functions of three-
valued logic can be expressed as compositions of instances of its members, including
the other functions defined by the above M-matrices, i.e., & and ∨. Hence, we take
the connectives ¬, L, and ⊃ to be the primitive connectives of LImp.

The set of M-tautologies can be determined in a purely syntactical fashion, i.e.,
by means of an uninterpreted modal propositional calculus, in which all and only
M-tautologies are deducible. But before we proceed to the examination of such
a system, let us observe a number of important properties of LImp, which are
already quite apparent at the semantic level. Firstly, all tautologies of CL that
contain no instances of the symbol ¬ are M-tautologies. Secondly, the set of M-
tautologies does not include all of the tautologies of CL. Furthermore, the set
of M-tautologies includes neither the set of theorems of intuitionistic propositional
logic nor the set of theorems of the Kolmogorov-Johansson minimal propositional
logic. Indeed, the formula (p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p) is provable in CL as well
as the intuitionistic and minimal propositional logics but is not an M-tautology.
Thirdly, the set of M-tautologies in which no instances of the modal operator L
appear is not exhausted by the set of formulae provable in CL. Indeed, the M-
tautology (p ⊃ ¬q) ⊃ ¬(p ⊃ q) cannot be proved in CL. It is also clear that LImp
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is a weakly paraconsistent logic, because the formula p & ¬p—although not an M-
tautology—turns out to be satisfiable according to the M-matrices. Moreover, it
is easy to see that the negation of the “law of excluded third,” i.e., the formula
¬(p ∨ ¬p), is also satisfiable. Finally, if we consider LImp as a modal logic, we find
that in this respect its characteristics are quite interesting. It is a non-normal modal
logic insofar as it does not admit Gödel’s rule. On the other hand, as we shall see
below, many intuitively correct theorems about modality are provable in LImp (see
theorems T13, T17, T18 below). LImp does not verify the well-known formulae
that express the so-called “paradoxes of strict implication,” that is, the formulae
Lp ⊃ L(q ⊃ p) and L¬p ⊃ L(p ⊃ q), although the no less paradoxical “converse”
formulae L¬p ⊃ ¬(p ⊃ q) and L(q ⊃ p) ⊃ Lp are M-tautologies. In contrast to
the four-valued logic of Łukasiewicz, in LImp there exist theorems of the form Lα,
such as, for example, the formula L¬L¬(p ⊃ p). Hence, LImp, construed as a
modal logic, is intuitive in a number of respects, especially in virtue of its relative
simplicity. Of course, it is not a perfect modal logic and it is very easy to point out
implausible and even paradoxical M-tautologies.

To my mind, the following definition of modalities will be most productive within
the framework of LImp, which differs from the traditional definition in several ways,
in particular by excluding the so-called improper modalities of p and ¬p. Modalities
in LImp will be assumed to be any unary truth function that maps the set {0, 1, 2}
into the set {0, 2}. From this perspective, there are only eight pairwise distinct
modalities, defined in particular by the following formulae of LImp: L(p ⊃ ¬p),
¬L(p ⊃ ¬p), Lp, L¬p, ¬Lp, ¬L¬p, L¬(p ⊃ Lp), ¬L¬(p ⊃ Lp).

2 LImp as an Axiomatic System

The primitive symbols of LImp are the propositional variables that appear in the
following countably infinite enumeration:

p, q, r, s, p1, q1, ...,

In addition, the primitive symbols include the unary connectives L and ¬ and binary
connective ⊃. The definitions of a well-formed formula, proofs, and deriving a
conclusion from hypotheses are given in the standard way. In the metalanguage,
the statement ` α means that α is provable in LImp while α1, ..., αn ` β means that
β is provable in LImp from hypotheses α1, ..., αn.

The axioms of LImp are:
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A1. p ⊃ (q ⊃ p)
A2. (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))
A3. ¬(p ⊃ q) ⊃ (p ⊃ ¬q)
A4. (¬p ⊃ ¬¬p) ⊃ p
A5. (Lp ⊃ L¬q) ⊃ ¬(q ⊃ p)
A6. (¬p ⊃ ¬q) ⊃ (Lq ⊃ L¬¬Lp)

The inference rules of LImp are:

R1. Rule of substitution: Substitute formulae α1, ..., αn for propositional
variables β1, ..., βn, respectively.

R2. Modus ponens (MP): If ` A and ` A ⊃ B, then ` B
In the sequel, a substitution instance of a previously proven formula F is denoted
F (α1/β1, ..., αn/βn). If a provable formula appears on the mth line of the proof of a
theorem T ∗, we will consider it to be a theorem as well and will denote it as T ∗ : m.
For an inference rule R differing from the rule of substitution, either primitive or
derived, the application of R to formulae appearing at linesm1, ...,mn in a derivation
will be denoted by R(m1, ...,mn).

Just as in CL, by appeal to A1 and A2 the following theorems can be proven:

T1. p ⊃ p
T2. (p ⊃ (p ⊃ q)) ⊃ (p ⊃ q)
T3. p ⊃ ((p ⊃ q) ⊃ q)
T4. (p ⊃ (q ⊃ r) ⊃ (q ⊃ (p ⊃ r))
T5. (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)
T6. (q ⊃ r) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)
T7. ((p ⊃ q) ⊃ (p ⊃ r)) ⊃ (p ⊃ (q ⊃ r))

And the following derived rules of inference can be shown to be admissible:

DR1. A ⊃ B,B ⊃ C ` A ⊃ C
DR2. A ⊃ B ` (B ⊃ C) ⊃ (A ⊃ C)
DR3. B ⊃ C ` (A ⊃ B) ⊃ (A ⊃ C)
DR4. A ⊃ (B ⊃ C) ` B ⊃ (A ⊃ C)
DR5. If ` A ⊃ B and ` B ⊃ C then ` A ⊃ C
DR6. If ` A ⊃ B then ` (B ⊃ C) ⊃ (A ⊃ C)
DR7. If ` B ⊃ C then ` (A ⊃ B) ⊃ (A ⊃ C)
DR8. If ` A ⊃ (B ⊃ C) then ` B ⊃ (A ⊃ C)
DR9. A1, ..., Ai−1, Ai, ..., An ` B if and only if

A1, ..., Ai−1 ` Ai ⊃ (... ⊃ (An ⊃ B)) for 1 ≤ i ≤ n
Now, we prove some important theorems of LImp that will be needed in the sequel.
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T8. (Lp ⊃ L¬q) ⊃ (q ⊃ ¬p)

1 (Lp ⊃ L¬q) ⊃ ¬(q ⊃ p) A5
2 ¬(q ⊃ p) ⊃ (q ⊃ ¬p) A3(q/p, p/q)
3 (Lp ⊃ L¬q) ⊃ (q ⊃ ¬p) DR5(1, 2)

T9. p ⊃ ¬¬p

1 L¬p ⊃ L¬p T1(L¬p/p)
2 (L¬p ⊃ L¬p) ⊃ (p ⊃ ¬¬p) T8(¬p/p, p/q)
3 p ⊃ ¬¬p MP (1, 2)

T10. ¬¬p ⊃ p

1 ¬¬p ⊃ (¬p ⊃ ¬¬p) A1(¬¬p/p,¬p/q)
2 (¬p ⊃ ¬¬p) ⊃ p A4
3 ¬¬p ⊃ p DR5(1, 2)

T11. L¬p ⊃ (p ⊃ q)

1 L¬p ⊃ (L¬q ⊃ L¬p) A1(L¬p/p, L¬q/q)
2 (L¬q ⊃ L¬p) ⊃ (p ⊃ ¬¬q) T8(¬q/p, p/q)
3 ¬¬q ⊃ q T10(q/p)
4 (p ⊃ ¬¬q) ⊃ (p ⊃ q) DR7(3)
5 (L¬q ⊃ L¬p) ⊃ (p ⊃ q) DR5(2, 4)
6 L¬p ⊃ (p ⊃ q) DR5(1, 5)

T12. L¬L¬p ⊃ p

1 L¬L¬p ⊃ (L¬p ⊃ L¬(p ⊃ p)) T11(L¬p/p, L¬(p ⊃ p)/q)
2 (L¬p ⊃ L¬(p ⊃ p)) ⊃ ((p ⊃ p) ⊃ p) T11: 5(p ⊃ p/p, p/q)
3 L¬L¬p ⊃ ((p ⊃ p) ⊃ p) DR5(1, 2)
4 (p ⊃ p) ⊃ (L¬L¬p ⊃ p) DR8(3)
5 p ⊃ p T1
6 L¬L¬p ⊃ p MP (4, 5)

T13. p ⊃ L¬L¬p

1 L¬L¬L¬p ⊃ L¬p T12(L¬p/p)
2 (L¬L¬L¬p ⊃ L¬p) ⊃ (p ⊃ L¬L¬p) T11: 5(L¬L¬p/q)
3 p ⊃ L¬L¬p MP (1, 2)
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T14. (¬p ⊃ ¬q) ⊃ (Lq ⊃ Lp)

1 L¬¬Lp ⊃ (¬Lp ⊃ ¬¬Lp) T11(¬Lp/p,¬¬Lp/q)
2 (¬Lp ⊃ ¬¬Lp) ⊃ Lp A4(Lp/p)
3 L¬¬Lp ⊃ Lp DR5(1, 2)
4 (¬p ⊃ ¬q) ⊃ (Lq ⊃ L¬¬Lp) A6
5 (Lq ⊃ L¬¬Lp) ⊃ (Lq ⊃ Lp) DR7(3)
6 (¬p ⊃ ¬q) ⊃ (Lq ⊃ Lp) DR5(4, 5)

T15. L¬¬p ⊃ Lp

1 ¬p ⊃ ¬¬¬p T9(¬p/p)
2 (¬p ⊃ ¬¬¬p) ⊃ (L¬¬p ⊃ Lp) T14(¬¬p/q)
3 L¬¬p ⊃ Lp MP (1, 2)

T16. Lp ⊃ L¬¬p

1 ¬¬¬p ⊃ ¬p T10(¬p/p)
2 (¬¬¬p ⊃ ¬p) ⊃ (Lp ⊃ L¬¬p) T14(¬¬p/p, p/q)
3 Lp ⊃ L¬¬p MP (1, 2)

T17. Lp ⊃ LLp

1 ¬p ⊃ ¬p T1(¬p/p)
2 (¬p ⊃ ¬p) ⊃ (Lp ⊃ L¬¬Lp) A6(p/q)
3 Lp ⊃ L¬¬Lp MP (1, 2)
4 L¬¬Lp ⊃ LLp T15(Lp/p)
5 Lp ⊃ LLp DR5(3, 4)

T18. Lp ⊃ p

1 L¬¬p ⊃ (¬p ⊃ ¬¬p) T11(¬p/p,¬¬p/q)
2 Lp ⊃ L¬¬p T16
3 Lp ⊃ (¬p ⊃ ¬¬p) DR5(1, 2)
4 (¬p ⊃ ¬¬p) ⊃ p A4
5 Lp ⊃ p DR5(3, 4)
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T19. (p ⊃ q) ⊃ (L¬q ⊃ L¬p)

1 p ⊃ q Premise
2 q ⊃ ¬¬q T9(q/p)
3 (p ⊃ q) ⊃ (p ⊃ ¬¬q) DR3(2)
4 p ⊃ ¬¬q MP (1, 3)
5 ¬¬p ⊃ p T10
6 (p ⊃ ¬¬q) ⊃ (¬¬p ⊃ ¬¬q) DR2(5)
7 ¬¬p ⊃ ¬¬q MP (4, 6)
8 (¬¬p ⊃ ¬¬q) ⊃ (L¬q ⊃ L¬p) T14(¬p/p,¬q/q)
9 L¬q ⊃ L¬p MP (7, 8)
10 (p ⊃ q) ⊃ (L¬q ⊃ L¬p) DR9(1–9)

T20. ¬p ⊃ L¬Lp

1 ¬p ⊃ L¬L¬¬p T13(¬p/p)
2 Lp ⊃ L¬¬p T16
3 (Lp ⊃ L¬¬p) ⊃ (L¬L¬¬p ⊃ L¬Lp) T19(Lp/p, L¬¬p/q)
4 L¬L¬¬p ⊃ L¬Lp MP (2, 3)
5 ¬p ⊃ L¬Lp DR5(1, 4)

T21. (p ⊃ ¬q) ⊃ ¬(p ⊃ q)

1 (p ⊃ ¬q) ⊃ (L¬¬q ⊃ L¬p) T19(¬q/q)
2 Lq ⊃ L¬¬q T16(q/p)
3 (L¬¬q ⊃ L¬p) ⊃ (Lq ⊃ L¬p) DR6(2)
4 (Lq ⊃ L¬p) ⊃ ¬(p ⊃ q) A5(q/p, p/q)
5 (L¬¬q ⊃ L¬p) ⊃ ¬(p ⊃ q) DR5(3, 4)
6 (p ⊃ ¬q) ⊃ ¬(p ⊃ q) DR5(1, 5)

T22. (L¬p ⊃ p) ⊃ p

1 L¬p ⊃ (p ⊃ L¬(p ⊃ p)) T11(L¬(p ⊃ p)/q)
2 (L¬p ⊃ (p ⊃ L¬(p ⊃ p))) ⊃ A2(L¬p/p, p/q,

((L¬p ⊃ p) ⊃ (L¬p ⊃ L¬(p ⊃ p))) L¬(p ⊃ p)/r)
3 (L¬p ⊃ p) ⊃ (L¬p ⊃ L¬(p ⊃ p)) MP (1, 2)
4 (L¬p ⊃ L¬(p ⊃ p)) ⊃ ((p ⊃ p) ⊃ p) T11: 5(p ⊃ p/p, p/q)
5 (L¬p ⊃ p) ⊃ ((p ⊃ p) ⊃ p) DR5(3, 4)
6 (p ⊃ p) ⊃ ((L¬p ⊃ p) ⊃ p) DR8(5)
7 p ⊃ p T1
8 (L¬p ⊃ p) ⊃ p MP (6, 7)
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T23. (Lp ⊃ q) ⊃ ((p ⊃ (¬p ⊃ q)) ⊃ ((L¬p ⊃ q) ⊃ q))

1 Lp ⊃ q Premise
2 p ⊃ (¬p ⊃ q) Premise
3 L¬p ⊃ q Premise
4 (L¬p ⊃ q) ⊃ (L¬q ⊃ L¬L¬p) T19(L¬p/p)
5 L¬q ⊃ L¬L¬p MP (3, 4)
6 L¬L¬p ⊃ p T12
7 L¬q ⊃ p DR1(5, 6)
8 L¬q ⊃ (¬p ⊃ q) DR1(2, 7)
9 (¬p ⊃ q) ⊃ (L¬q ⊃ L¬¬p) T19(¬p/p)
10 L¬q ⊃ (L¬q ⊃ L¬¬p) DR1(8, 9)
11 (L¬q ⊃ (L¬q ⊃ L¬¬p)) ⊃ T2(L¬q/p, L¬¬p/q)

(L¬q ⊃ L¬¬p)
12 L¬q ⊃ L¬¬p MP (10, 11)
13 L¬¬p ⊃ Lp T15
14 L¬q ⊃ Lp DR1(12, 13)
15 L¬q ⊃ q DR1(1, 14)
16 (L¬q ⊃ q) ⊃ q T22(q/p)
17 q MP (15, 16)
18 (Lp ⊃ q) ⊃ ((p ⊃ (¬p ⊃ q)) ⊃ DR9(1–17)

((L¬p ⊃ q) ⊃ q))

T24. L¬p ⊃ ¬(p ⊃ q)

1 L¬p ⊃ (p ⊃ ¬q) T11(¬q/q)
2 (p ⊃ ¬q) ⊃ ¬(p ⊃ q) T21
3 L¬p ⊃ ¬(p ⊃ q) DR5(1, 2)

T25. p ⊃ (L¬q ⊃ L¬(p ⊃ q))

1 p ⊃ ((p ⊃ q) ⊃ q) T3
2 ((p ⊃ q) ⊃ q) ⊃ (L¬q ⊃ L¬(p ⊃ q)) T19(p ⊃ q/p)
3 p ⊃ (L¬q ⊃ L¬(p ⊃ q)) DR5(1, 2)

T26. p ⊃ (Lq ⊃ L(p ⊃ q))

1 ¬(p ⊃ q) ⊃ (p ⊃ ¬q) A3
2 p ⊃ (¬(p ⊃ q) ⊃ ¬q) DR8(1)
3 (¬(p ⊃ q) ⊃ ¬q) ⊃ (Lq ⊃ L(p ⊃ q)) T14(p ⊃ q/p)
4 p ⊃ (Lq ⊃ L(p ⊃ q)) DR5(2, 3)
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T27. ¬q ⊃ ¬(p ⊃ q)

1 ¬q ⊃ (p ⊃ ¬q) A1(¬q/q)
2 (p ⊃ ¬q) ⊃ ¬(p ⊃ q) T21
3 ¬q ⊃ ¬(p ⊃ q) DR5(1, 2)

The foregoing theorems allow us to prove the following metatheorems that highlight
important properties of the system LImp.

Metatheorem 1. Let A be a formula of the system LImp and let p0, ..., pn be
a sequence of propositional variables including each variable appearing in A. Let
t1, ..., tn be some values of {0, 1, 2} corresponding to p1, ..., pn and let α(t1, ..., tn) be
a sequence of formulae satisfying the following conditions:

1. If ti = 0 then Lpi ∈ α(t1, ..., tn)

2. If ti = 1 then pi ∈ α(t1, ..., tn) and ¬pi ∈ α(t1, ..., tn)

3. If ti = 2 then L¬pi ∈ α(t1, ..., tn)

4. A formula is included in the sequence α(t1, ..., tn) only in virtue of clauses 1–3

5. If i < j, then any formula containing pi appears at an earlier stage in the
sequence α(t1, ..., tn) than any formula containing pj

6. pi appears in the sequence α(t1, ..., tn) at an earlier stage than ¬pi

Then the following assertions hold with respect to the M-matrices:

I If the values t1, ..., tn are assigned to variables p1, ..., pn, respectively, the formula
A receives a value of 0, then α(t1, ..., tn) ` LA.

II If the values t1, ..., tn are assigned to variables p1, ..., pn, respectively, the formula
A receives a value of 1, then α(t1, ..., tn) ` A and α(t1, ..., tn) ` ¬A.

III If the values t1, ..., tn are assigned to variables p1, ..., pn, respectively, the formula
A receives a value of 2, then α(t1, ..., tn) ` L¬A.

Proof. We prove Metatheorem 1 by induction on s(A), the number of occurrences
of the symbols L, ¬, and ⊃ in the formula A.
Basis step: Let s(A) = 0. Then trivially we have that Lpi ` Lpi holds, that both
pi,¬pi ` pi and pi,¬pi ` ¬pi hold, and that L¬pi ` L¬pi holds, whence assertions
I–III are demonstrated to hold.
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Induction step: Suppose that whenever s(A) ≤ k, assertions I–III hold and let
s(A) = k + 1. Then there are precisely three cases:
1. A has the form A′ ⊃ A′′, where s(A′) ≤ k and s(A′′) ≤ k.
1.1. If the value assigned to A for values t1, ..., tn according to the M-matrices is 0,
then for the same values t1, ..., tn, A′′ receives a value of 0 while A′ receives a value
from {0, 1}. By induction hypothesis, we have:

α(t1, ..., tn) ` LA′′ (1)

and either:

α(t1, ..., tn) ` A′ (2)

or:

α(t1, ..., tn) ` LA′ (3)

If (3) holds, in virtue of T18 we infer that ` LA′ ⊃ A′ and by applying MP again
infer that α(t1, ..., tn) ` A′. Hence, (2) holds in either case. By T26 we know
that ` A′ ⊃ (LA′′ ⊃ L(A′ ⊃ A′′)), and by appeal to MP , from (2) we obtain the
proposition that α(t1, ..., tn) ` LA′′ ⊃ L(A′ ⊃ A′′). Thus, by an application of MP
to (1), we infer that α(t1, ..., tn) ` L(A′ ⊃ A′′).

1.2. If the value assigned to A by the M-matrices under values t1, ..., tn is 2, then
for the same values t1, ..., tn A′′ takes the value 2 and A′ takes a value from {0, 1}.
Thus, by induction hypothesis, we infer that:

α(t1, ..., tn) ` L¬A′′ (4)

and, as before, are able to infer that either (2) holds or (3) holds. The above
reasoning again establishes that we may derive (2) in either case. By T25, we have
` A′ ⊃ (L¬A′′ ⊃ L¬(A′ ⊃ A′′)). Hence, it follows from the application of MP to
(2) that we obtain α(t1, ..., tn) ` L¬A′′ ⊃ L¬(A′ ⊃ A′′). From this and (4), by MP
we infer that α(t1, ..., tn) ` L¬(A′ ⊃ A′′).

1.3. If the value of A under the assignment t1, ..., tn according to the M-matrices is
1, then under the same values t1, ..., tn, either A′′ receives a value of 1 or A′ receives
a value of 2. In the first case we have:

α(t1, ..., tn) ` A′′ (5)

and
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α(t1, ..., tn) ` ¬A′′ (6)

As an instance of A1, we obtain α(t1, ..., tn) ` A′′ ⊃ (A′ ⊃ A′′). From this in
conjunction with (5), we derive α(t1, ..., tn) ` A′ ⊃ A′′.

By T27 we obtain ` ¬A′′ ⊃ ¬(A′ ⊃ A′′). From this and (6) we infer that
α(t1, ..., tn) ` ¬(A′ ⊃ A′′). In the latter case, we have:

α(t1, ..., tn) ` L¬A′ (7)

As an instance of T11, we have ` L¬A′ ⊃ (A′ ⊃ A′′). From this in conjunction with
(7) we may derive that α(t1, ..., tn) ` A′ ⊃ A′′.

As an instance of T24, we obtain L¬A′ ⊃ ¬(A′ ⊃ A′′). Together with (7), from
this we infer that α(t1, ..., tn) ` ¬(A′ ⊃ A′′).

2. A has the form ¬A′, where s(A′) ≤ k.
2.1. If the M-matrices assign A a value of 0 under the values t1, ..., tn, then under
the same values t1, ..., tn, A′ takes the value of 2. Then, by induction hypothesis, we
have:

α(t1, ..., tn) ` L¬A′ (8)

But L¬A′ syntactically coincides with LA, so that (8) can also be written as the
assertion that α(t1, ..., tn) ` LA.
2.2. If the M-matrices ensure that the assignment of values t1, ..., tn assigns A a
value of 1, then for the same values t1, ..., tn, A′ receives the value of 1 as well. By
the induction hypothesis, we obtain:

α(t1, ..., tn) ` ¬A′ (9)
α(t1, ..., tn) ` A′ (10)

As an instance of T9, we have A′ ⊃ ¬¬A′. By applying MP to this and (10),
we obtain α(t1, ..., tn) ` ¬¬A′. This last derivation can be rewritten in the form
α(t1, ..., tn) ` ¬A, while (9) can itself be rewritten as α(t1, ..., tn) ` A.
2.3. When the M-matrices assign the value 2 to A under the assignment of values
t1, ..., tn, then the values t1, ..., tn also assign A′ the value 0. By induction hypothesis,
we have:

α(t1, ..., tn) ` LA′ (11)

By appeal to T16, we infer that ` LA′ ⊃ L¬¬A′, i.e., ` LA′ ⊃ L¬A. By an
application of MP to this and (11), we obtain that α(t1, ..., tn) ` L¬A.
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3. A is of the form LA′, where s(A′) ≤ k.
3.1. Now, if under the values t1, ..., tn, A receives a value of 0 according to the
M-matrices, then the same values t1, ..., tn assign A′ the value 0. By induction
hypothesis, we infer that:

α(t1, ..., tn) ` LA′ (12)

As an instance of T17, we obtain LA′ ⊃ LLA′. By applying MP , from this and
(12) we obtain α(t1, ..., tn) ` LLA′.
3.2. If according to the M-matrices, under the assignment of values t1, ..., tn, A
receives a value of 2, then these values t1, ..., tn assign the formula A′ a value from
the set {1, 2}. By induction hypothesis, we know that either:

α(t1, ..., tn) ` ¬A′ (13)

or:

α(t1, ..., tn) ` L¬A′ (14)

In the case in which (14) holds, then we have ` L¬A′ ⊃ ¬A′ as an instance of T18
and by applying MP to this and (14), we have (13) as well. Thus, (13) holds in
either case. By T20, we have ` ¬A′ ⊃ L¬LA′. From this and (13), by applying
MP we obtain α(t1, ..., tn) ` L¬LA′.
This proves Metatheorem 1.

Metatheorem 2. For all formulae A, if ` A, then A is an M-tautology.

Proof. It is easy to confirm that each of the axioms of LImp is an M-tautology and
that the rules of inference of LImp preserve the property of being an M-tautology.

Metatheorem 3. If a formula A is an M-tautology, then ` A.

Proof. If A is an M-tautology, then for all t1, ..., tn, either

α(t1, ..., tn) ` LA (15)

or

α(t1, ..., tn) ` A (16)

330



On a New Three-Valued Paraconsistent Logic

where α(t1, ..., tn) is as defined as in Metatheorem 1. If (15) holds, then by T18,
we have ` LA ⊃ A and by MP obtain (16). Since we have (16) in both cases, by
the definition of α(t1, ..., tn), for any t1, ..., tn−1 we infer correctness of the following
inferences:

α(t1, ..., tn−1), L pn ` A (17)
α(t1, ..., tn−1), pn,¬pn ` A (18)
α(t1, ..., tn−1), L¬pn ` A (19)

By DR9, from (17)–(19), we obtain:

α(t1, ..., tn−1) ` Lpn ⊃ A (20)
α(t1, ..., tn−1) ` pn ⊃ (¬pn ⊃ A) (21)
α(t1, ..., tn−1) ` L¬pn ⊃ A (22)

By T23 we have ` (Lpn ⊃ A) ⊃ ((pn ⊃ (¬pn ⊃ A)) ⊃ ((L¬pn ⊃ A) ⊃ A)).
From this in conjunction with (20)–(22), by three applications of MP we obtain
α(t1, ..., tn−1) ` A for arbitrary t1, ..., tn−1. In this way, by successively reducing the
index i in α(t1, ..., ti) ` A where 1 ≤ i ≤ n, we can clearly ensure that ` A holds.
This proves Metatheorem 3.

Before proceeding to the proofs of further metatheorems, we introduce a number
of important concepts. A formal system is called absolutely consistent whenever
there exists a formula that is not provable in the system. A formal system is called
consistent in the sense of Post if and only if no formulae in which no connectives
appear are provable in the system. A system is called relatively consistent with
respect to a transformation mapping formulae A to formulae A∗ if and only if there
exists no formula A such that both A and A∗ are theorems of that system. A formal
system is called absolutely complete (alternately, complete in the sense of Post or
with respect to a transformation mapping formulae A to A∗) if and only if the
enrichment of that system by an arbitrary new axiom makes the system absolutely
inconsistent (inconsistent in the sense of Post or with respect to a transformation
mapping formulae A to A∗, respectively).

Metatheorem 4. The system LImp is:

I Absolutely consistent.

II Consistent in the sense of Post.

III Relatively consistent with respect to the transformation mapping A to L¬A.

IV Relatively inconsistent with respect to the transformation mapping A to ¬A.
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Proof. For I, the property follows from Metatheorem 2 that any formula that is not
M -tautologous is not provable in LImp.

For II, note that no formula in which no connectives appear (i.e., an atomic
formula) is an M-tautology. Hence, in virtue of Metatheorem 2, no such formula is
provable in LImp.

For III, it follows from the M-matrices that for any formula A, it is not the case
that both A and L¬A are M-tautologies. Hence, by Metatheorems 2 and 3, at least
one of these formulae is unprovable in LImp.

For IV, consider the formulae L¬(p ⊃ p) ⊃ p and ¬(L¬(p ⊃ p) ⊃ p), both of
which are M-tautologies. By appeal to Metatheorem 3, each of these formulae are
provable in LImp.

Metatheorem 5. The system LImp is:

I Absolutely complete.

II Complete in the sense of Post.

III Complete relative to the transformation mapping formulae A to L¬A.

Proof. Suppose that A is a formula unprovable in LImp. Then A is not an M-
tautology, i.e., there are values t1, ..., tn that, when assigned to the atomic formulae
p1, ..., pn appearing in A, assign A the value of 2. Let A∗ be the formula obtained
from A by the following substitution:

• If ti = 0, then in place of pi, substitute the formula ¬L¬(p ⊃ p)

• If ti = 1, then in place of pi, substitute the formula L¬(p ⊃ p) ⊃ p

• If ti = 2, then in place of pi, substitute the formula L¬(p ⊃ p)

If we add A to LImp as a new axiom, then by an application of the rule of substitu-
tion, we infer that ` A∗. However, according to the M-matrices, the value assigned
to A∗ is identical to 2. Hence, the value assigned to L¬A∗ is equal to 0, and—
because L¬A∗ is thus an M-tautology—the formula is provable in LImp. We have
` A∗, ` L¬A∗, and—by appeal to T11—also ` L¬A∗ ⊃ (A∗ ⊃ B), where B is an
arbitrary formula. By two applications of MP , we infer that ` B, i.e., LImp+A is
absolutely inconsistent and, as a result, both inconsistent in the sense of Post and
inconsistent with respect to the transformation mapping A to L¬A. This proves
Metatheorem 5.

Metatheorem 6. All axioms of LImp—except, perhaps, A1—are independent.
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Proof. 1) For the independence of A2, fix a set of truth values {0, 1, 2, 3, 4} with 0
and 1 designated. Consider the following interpretation of the connectives of LImp:

p ¬p Lp ⊃ 0 1 2 3 4
0 4 0 0 0 1 4 4 4
1 1 4 1 0 1 4 4 4
2 0 4 2 1 1 1 4 1
3 0 4 3 1 1 1 1 1
4 0 4 4 1 1 1 1 1

2) Let {0, 1, 2} be a fixed set of truth values with 0 and 1 designated values and let
functors L and ¬ be interpreted in the same manner as in the M -matrices. Then
independence of A3 can be proven by considering the following interpretation of the
connective ⊃:

⊃ 0 1 2
0 1 1 2
1 1 1 2
2 1 1 1

3) Let {0, 1} be a fixed set of truth values with 0 the designated value. Let ⊃ be
interpreted as in the C-matrices with L and ¬ interpreted according to the following
table:

p Lp ¬p
0 0 0
1 1 0

The foregoing interpretation verifies all the axioms and rules of inference of LImp
except A4, thereby proving the independence of the latter.

4) Independence of A5 as an axiom of LImp can be proven by appeal to the following
interpretation of its formulae. Fix a set of truth values {0, 1, 2} with 0 and 1 as its
designated values. Let the functors ⊃ and ¬ be interpreted in the same manner as
the M -matrices and interpret L as the functor mapping all arguments to a value of
0.

5) Independence of A6 as an axiom of LImp can be proven by using the following
interpretation of its formulae. Let {0, 1, 2} be a fixed set of truth values with 0
and 1 designated values. Let the functors ⊃ and ¬ be interpreted as in the case of
M -matrices and the functor L be interpreted according to the following array:
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p Lp

0 1
1 2
2 2

This proves Metatheorem 6.
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Abstract

I designed the three-valued paraconsistent logic LImp as a very slight and
natural improvement of classical material implication. From a commonsense
point of view, both statements (2 + 2) = 5 → (0 = 0) and ¬((2 + 2) = 5 →
(0 = 0)) present a truth-value gap. However, within the classical two-valued
logic, the first one is true, and the last one is false. Hence, I added the third
(designated) value ‘truth-value gap’ and stipulated that an implication has this
value if its antecedent is false. Otherwise, the implication truth value is the
truth value of the implication consequent. If one adds the negation which
maps truth-value gap to truth value gap and behaves classically in other cases,
and the ‘material truth’ functor L mapping truth to truth and other values
to falsehood, then a functionally complete set of three-valued connectives is
obtained. I investigated the propositional logic operating with the described set
of connectives and designed a complete, correct and independent axiomatization
of it. The result was published in Russian only (see [1]).

Now I would like to present an extension of this axiomatization onto the
first-order level.

For simplicity, I address the version of FOL that operates with relation and
individual constants only (without identity). The only quantifier added is ∀ (∃ is
to be defined in the standard way). The truth-values truth, truth-value gap and
falsehood are represented with 0, 1 and 2, respectively. The notion of signature
(symbol set, set of constants) is defined in the usual way. A model of signature Σ is
an ordered pair M = 〈A,α〉 where A is a non-empty set and α a function mapping
each n-placed predicate constant P to a partition 〈Pα0, Pα1, Pα2〉 of the set An and
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each individual constant c to an element of A. We accept v0, . . . , vn, . . . , as the set
of individual variables and define their evaluation in the standard way.

A pair J = 〈M,β〉 whereM is a model of signature Σ and β a variable evaluation
is an interpretation. The meaning mean(_, J) of terms and formulas under a given
interpretation J = 〈M,β〉 of the corresponding signature is defined as follows:

(1) mean(c, J) = α(c)
(2) mean(vi, J) = β(vi)
(3) mean(P (t1, . . . , tn), J) = i iff 〈mean(t1, J), . . . ,mean(tn, J)〉 ∈ Pαi
(4) mean((Φ→ Ψ), J) = 1, if mean(Φ, J) = 2
(5) mean((Φ→ Ψ), J) = mean(Ψ, J), if mean(Φ, J) < 2
(6) mean(¬Φ, J) = (2−mean(Φ, J))
(7) mean(LΦ, J) = 0 iff mean(Φ, J) = 0, otherwise mean(LΦ, J) = 2
(8) mean(∀viΦ, J) = max({mean(Φ, J ′)|J ′ = 〈M,β′〉 and β′(vj) = β(vj)

for all j 6= i})
Notions of satisfiability, validity, semantic consequence and inference are then defined
in the usual way. Let Φ[t/vi] be the result of replacement of the variable vi with the
term t in the formula Φ.

Consider the following Hilbert-style axiomatic system.

Axiom schemes:
A1. (Φ → (Ψ → Φ))
A2. ((Φ → (Ψ → Ξ))→ ((Φ → Ψ)→ (Φ → Ξ)))
A3. (¬(Φ → Ψ)→ (Φ → ¬Ψ))
A4. ((¬Φ → ¬¬Φ)→ Φ)
A5. ((LΦ → L¬Ψ)→ ¬(Ψ → Φ))
A6. ((¬Φ → ¬Ψ)→ (LΨ → L¬¬Φ))
A7. (∀viΦ → Φ[t/vi])
A8. (¬Φ[t/vi]→ ¬∀viΦ)
A9. (∀vi(Φ → Ψ)→ (Φ→ ∀viΨ)) where vi is not free in Φ
A10. (∀vi(¬Φ → Ψ)→ (¬∀viΦ→ Ψ)) where vi is not free in Ψ.

Inference rules:
R1. Φ, (Φ→ Ψ)⇒ Ψ
R2. Φ⇒ ∀viΦ

Theorem 1. A formula Φ of signature Σ is valid iff it is derivable from signature
Σ substitution cases of A1–A10 by R1–R2.

Proof. The ‘if’ part of the theorem follows from the fact that all Σ substitution cases
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of A1–A10 are valid and R1–R2 do preserve validity. The fact is easily verified on
the basis of the definitions given above.

The ‘only if’ part can be derived from the lemma stating that every set of Σ
formulas that is consistent with respect to the considered axiomatic system has a
superset that has a model of a signature Σ′ ⊇ Σ. This lemma can be proved in a
way similar to that of analogous proofs in classical FOL. I just sketch some crucial
steps here.

Consider a consistent set X of Σ. We substitute each variable that occurs free
in some formulas of X with a new unique individual constant. This operation may
result in an extension of Σ with some new constants and we name the least required
extension Σ0, and we name X ′ the set of statements (i.e. formulas without free
variables) obtained fromX by the described substitution. Of course, X ′ is consistent
iff X is consistent. Call a set Y of Σ complete in Σ iff for any statement Φ of Σ either
Φ ∈ Y or L¬Φ ∈ Y holds. By Zorn’s lemma, there is a consistent and complete
in Σ0 set X0 such that X ⊆ X0. Further, we construct a sequence X0, . . . , Xn, . . . ,
and their respective signatures Σ0, . . . ,Σn, . . . , by the following induction. To obtain
Xi+1 on the basis of Xi we add a new unique constant cΦ to Σi for each Φ ∈ Xi

and we define Σi+1 as the result of extending Σi with all the needed constants. Then
for any statement ¬∀viΦ ∈ Xi we add to Xi the new formula ¬Φ[cΦ/vi]. Thus we
construct the set X ′

i and we set Xi+1 to be any complete in Σi+1 superset of X ′
i.

Finally, we set Σω to be the union of Σi for all natural i and Xω to be the union of
Xi for all natural i.

Now we state that Xω has the following properties for arbitrary statements Φ,
Ψ of Σω:

P1 It is consistent
P2 Either Φ ∈ Xω or L¬Φ ∈ Xω

P3 Either ¬Φ ∈ Xω or LΦ ∈ Xω

P4 At least one element of {Φ,¬Φ} is in Xω

P5 (Φ → Ψ) ∈ Xω iff (Φ /∈ Xω or Ψ ∈ Xω)
P6 ¬(Φ → Ψ) ∈ Xω iff (Φ /∈ Xω or ¬Ψ ∈ Xω)
P7 ¬LΦ ∈ Xω iff ¬Φ ∈ Xω

P8 ¬¬Φ ∈ Xω iff Φ ∈ Xω

P9 ∀viΦ ∈ Xω iff for all c from Σω, Φ[c/vi] ∈ Xω

P10 ¬∀viΦ ∈ Xω iff for some c from Σω, ¬Φ[c/vi] ∈ Xω

P2–P4 imply that for an arbitrary statement Φ of Σω there can be exactly three
options: either Φ, LΦ ∈ Xω and ¬Φ, L¬Φ /∈ Xω, or Φ,¬Φ ∈ Xω and LΦ, L¬Φ /∈
Xω, or ¬Φ, L¬Φ ∈ Xω and Φ, LΦ /∈ Xω. Thus we define the required model
M = 〈A,α〉 for Xω in the following way: A is the set of constants of Σω and α a
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function such that for each n-placed predicate constant P and arbitrary n-tuple of
constants c1, . . . , cn, 〈c1, . . . , cn〉 ∈ Pα0 iff both P (c1, . . . , cn),and LP (c1, . . . , cn),
are in Xω, 〈c1, . . . , cn〉 ∈ Pα1 iff both P (c1, . . . , cn),and ¬P (c1, . . . , cn), are in Xω,
and 〈c1, . . . , cn〉 ∈ Pα2 iff both ¬P (c1, . . . , cn),and L¬P (c1, . . . , cn), are in Xω. It is
easy to verify, by induction, that any statement of Σω has a designated truth-value
in M iff it is in Xω.

Theorem 2. A1–A10 and R1–R2 are pairwise independent.

Proof. Proofs of independence of A2–A6 were given in [1]. To prove independence
of A1, let ∀viΦ be equivalent to Φ and let {0, 1, 2, 3, 4} be the set of truth values
where the only non-designated value is 4. Let (Φ → Ψ) take the value 0 iff the
value of Ψ is 0 and the value of Φ is designated, take the value 1 iff the value of Ψ
is in {1, 2} or the value of Φ is 4, or the value of both Φ and Ψ is 3, take value 3 iff
the value of Ψ is 3 and the value of Φ is in {0, 1}, and take the value 4 iff the value
of Ψ is 4 and the value of Φ is designated, or the value of Ψ is 3 and the value of Φ
is 2. Let ¬Φ take the value 0 iff the value of Φ is 4, take the value 4 iff the value of
Φ is 0, and take the value 1 otherwise. Let LΦ take the value 0 iff the value of Φ is
0 and take the value 4 otherwise.

To prove independence of A7, let {0, 1, 2, 3} be the set of truth values where
the only designated values are 0 and 1. Let (Φ → Ψ) take the value 0 iff the
value of Ψ is 0 and the value of Φ is designated, take the value 1 iff the value of
Ψ is 1 or the value of Φ is non-designated, and take value 2 iff the value of Ψ is
non-designated and the value of Φ is designated. Let ¬Φ take the value 0 iff the
value of Φ is non-designated, take the value 2 iff the value of Φ is 0, and take the
value 1 otherwise. Let LΦ take the value 0 iff the value of Φ is 0 and to take the
value 2 otherwise. For all vi, let the value of ∀viΦ be 1 if the value of Φ is 3 and let
the value of ∀viΦ be the value of Φ otherwise.

To prove independence of A8, define the values of (Φ → Ψ) , ¬Φ, LΦ as
in the main interpretation and let ∀viΦ take the value of ¬L¬∀viΦ in the main
interpretation.

To prove independence of A9, let {0, 1, 2, 3} be the set of truth values where the
only non-designated value is 3. Let (Φ → Ψ) take the value 0 iff the value of Ψ is 0
and the value of Φ is designated, take the value 1 iff the value of Ψ is in {1, 2} or the
value of Φ is 3, take value 3 iff the value of Ψ is 3 and the value of Φ is designated.
Let ¬Φ take the value 0 iff the value of Φ is 3, take the value 3 iff the value of Φ is
0, and to take the value 1 otherwise. Let LΦ take the value 0 iff the value of Φ is 0
and take the value 3 otherwise. For all vi, let the value of ∀viΦ be 1 if the value of
Φ is 2 and let the value of ∀viΦ be the value of Φ otherwise.
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To prove independence of A10, define the values of (Φ → Ψ) , ¬Φ, LΦ as in
the main interpretation and define ∀viΦ to take the value of (L¬∀viΦ → ∀viΦ) in
the main interpretation.

Independence of R1 and R2 can be proved as in classical FOL.

The distinction between designated values 0 and 1 can be taken up to simulate
the difference between the program implementations that use hardware resources
and those that do not. For example, implementing the command ‘if P then A’, a
computer verifies the state P and then realizes A. If P holds but A is not realized
then the computer fails to realize the command (value 2). If P holds and the com-
puter realizes A, then the command is accomplished and some part of its hardware
is used, if needed. Hence the command is accomplished with or without using hard-
ware whenever A is accomplished with (value 0) or without (value 1) such a use.
Finally, when P fails, the computer accomplishes the command without using any
hardware (value 1).
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Abstract

The most widespread criterion for the admission of a logic into the connexive
family is the satisfaction of the pairs of formulas known as Aristotle’s and
Boethius’ theses, along with the non-symmetry of implication. In this paper,
we discuss whether this is enough to characterize a connexive logic or if more
can be said about the issue. Our strategy is the following: first, we introduce
a logic that has origins and motivations that have little to do with connexive
logic. We then present a list of additional criteria found scattered throughout
the literature on connexivity and propose to use this list to compare this logic
and some of the well-known non-bivalent truth-functional connexive logics. This
comparison gives us several interesting results: when every condition is given
the same weight, the introduced logic can score as high as some of the well-
known systems. Furthermore, a connection between the satisfaction of the
most conditions and the loss of intuitiveness or an increase in the complexity of
certain structural properties of the system seems to arise. We take these results
to motivate the more general open problem of finding the most adequate way
of judging systems of connexive logic.
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1 Introduction

This paper is part of a larger project aimed at investigating (1) what the necessary
and sufficient conditions a logic should meet in order to belong to the connexive
family are and (2) whether there is a known connexive logic that can be said to
stand as the best one. More precisely, in this paper we collect and present what
we take to be the most common desiderata to be met by any connexive logic. On
that basis, we compare some of the most well-known non-bivalent truth-functional
connexive logics. To make things more interesting, we also present MRSP , a logic
first introduced in [9], and use it as a sort of trial balloon for our list of criteria. Our
motivations for this are the following: first, MRSP arises from a technique different
from the ones commonly used to get connexive logics—the algebraic, the ternary
frames, the constructive, and the consequential ones. Second, both the technique
and the resulting logic have a rationale independent from that of connexive logics,
that is, they are not explicitly designed to validate Aristotle’s Theses and related
principles, but rather depend on general considerations about the proper valuation
for conditionals with false antecedent. We believe that, with some argumentation,
MRSP could be shown to score high (as the best, even) among the connexive logics
here considered. Nonetheless, we are not going to defend this claim, but rather
encourage further investigation on the comparison of connexive logics.

The plan of the paper is as follows. Section 2 begins with a precise definition
of the technique of weakening semantics. For simplicity, we restrict ourselves to
the zero-order case. After that, we present the special weakening of the usual two-
valued semantics for classical (zero-order) logic which characterizes the logic MRSP .
In Section 3, we collect and present what we take to be the most common desiderata
to be met by a connexive logic. Finally, in Section 4 these desiderata become the
starting point for a comparison of some of the most well-known non-bivalent truth-
functional connexive logics. Here we include MRSP as a test case, with the result
that it scores rather high as a connexive logic if certain connexivist principles are
loosened a bit. We take this to suggest that more remains to be done in order to
determine the best way to compare any set of connexive logics.

2 The Logic MRSP

The notion of weakened semantics was superficially introduced by that name in [9].
We will now offer a more formal presentation.

Let L be a formal language, V a collection of truth values partially ordered by
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≤ 1 (with at least two non-empty subcollections D+ and D− of designated and anti-
designated values, respectively), and SEM a collection of interpretation functions
of the form σ : L× I −→ V , where I is a collection of indexes of evaluation with a
certain relation R among them. A weakened semantics of L based on SEM , SEMW ,
is a collection of interpretations σW : L× I∗ −→ V ∗ such that:

(WS1) V ⊆ V ∗, D+ ⊆ D+∗ , D− ⊆ D−∗ (with D+∗ and D−∗ as non-empty subcol-
lections of V ∗), I ⊆ I∗ (and R ⊆ R∗) and there is at least one v∗ in V ∗ and a
v in V such that v∗ < v in V ∗;

(WS2) for some A1, . . . , An and n-ary connective k, there are a σ and a σW such
that either σ(k(A1, . . . , An)) = v and σW (k(A1, . . . , An)) = v∗, or, for each Ai,
σW (k(A1, . . . , An)) < σW (Ai);

(WS3) if there are two n-ary connectives c, k such that c(A1, . . . , An) and
k(A1, . . . , An) are L-formulas, and there is a valuation σ such that
σ(c(A1, . . . , An)) 6= σ(k(A1, . . . , An)), then there is a σW such that
σW (c(A1, . . . , An)) 6= σW (k(A1, . . . , An)) too; and

(WS4) the notion of logical consequence associated to SEMW must be at most as
strong as the notion of logical consequence associated to SEM .

Proper weakening can be attained by adding the following condition:

(PW) There are no A in L, v∗ in V ∗ and v in V such that v < v∗ in V ∗, σ(A) = v
and σW (A) = v∗.

The informal reading of the above is this. The weak semantics must have enough
resources (WS1) to ensure that some formulas get a value lesser than the one they
would obtain under the original interpretation (WS2). Nonetheless, the weakening
of the semantics must be such that different connectives remain distinguishable after
the weakening (WS3) and the notion of logical consequence associated to SEMW

must be at most equivalent to the notion of logical consequence associated to SEM
(WS4). Finally, the intuitive reading of (PW) is that even if weakening allows
for making formulas less true than they were under the original SEM , a proper
weakening should not allow interpretations that make formulas “truer” than they
were under the original SEM .

A notion of strengthening semantics can be defined too. It is like weakening
semantics, except that certain orderings in (WS1), (WS2) and (WS4) are inverted.

Thus,
1Every partial order ≤ induces a strict order, defined as x < y = (x ≤ y and x 6= y).
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(SS1) V ⊆ V ∗, D+ ⊆ D+∗ , D− ⊆ D−∗ (with D+∗ and D−∗ as non-empty subcol-
lections of V ∗), I ⊆ I∗ (and R ⊆ R∗), and there is at least one v∗ in V ∗ and a
v in V such that v < v∗ in V ∗;

(SS2) for some A1, . . . , An and n-ary connective k, there are σ and σS such that
either σ(k(A1, . . . , An)) = v and σS(k(A1, . . . , An)) = v∗, or, for each Ai,
σS(k(A1, . . . , An)) < σS(Ai);

(SS3) if there are two n-ary connectives c, k such that c(A1, . . . , An) and
k(A1, . . . , An) are L-formulas, and there is a valuation σ such that
σ(c(A1, . . . , An)) 6= σ(k(A1, . . . , An)), then there is a σS such that
σS(c(A1, . . . , An)) 6= σS(k(A1, . . . , An)) too; and

(SS4) the notion of logical consequence associated to SEMS must be at least as
strong as the notion of logical consequence associated to SEM .

Note that (WS3) goes unchanged and (SS2) is typographically identical to (WS2),
but its ordering is dependent on the first clause. As expected, proper strengthening
is also definable:

(PS) There are no v∗ in V ∗ and v in V such that v∗ < v in V ∗, σ(A) = v and
σS(A) = v∗.

MRSP was defined as a logic obtained by weakening the usual two-valued semantics
for classical zero-order logic as follows:

If in the classical case V = {⊥,>} with ⊥ < >, let V ∗ = {⊥, ∗,>}, with
⊥ < ∗ < > and D+ = D+∗ = {>}. (Given that in the classical case there is only
one index of evaluation with the identity relation as R, it can be left implicit.) With
the only exception of the conditional, the satisfiability conditions for connectives are
the usual ones:

• σW ∗(¬A) =
{
⊥ if σW ∗(A) = >
> otherwise

f.

• σW ∗(A ∧B) = inf(σW ∗(A), σW ∗(B)).

• σW ∗(A ∨B) = sup(σW ∗(A), σW ∗(B)).

• σW ∗(A ≡ B) =
{
> if σW ∗(A) = σW ∗(B)
inf(σW ∗(A), σW ∗(B)) otherwise

.
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• σW ∗(A ⊃ B) =
{
σW ∗(B) if σW ∗(A) = >
∗ otherwise

.

Or, using truth tables:

A B ¬ A A ∧ B A ∨ B A ⊃ B A ≡ B

> > ⊥ > > > >
> ∗ ⊥ ∗ > ∗ ∗
> ⊥ ⊥ ⊥ > ⊥ ⊥
∗ > > ∗ > ∗ ∗
∗ ∗ > ∗ ∗ ∗ >
∗ ⊥ > ⊥ ∗ ∗ ⊥
⊥ > > ⊥ > ∗ ⊥
⊥ ∗ > ⊥ ∗ ∗ ⊥
⊥ ⊥ > ⊥ ⊥ ∗ >

It is easy to verify that this semantics satisfies the conditions to be a weakening
of the usual two-valued semantics for classical logic.2 One finds that ∗ < > from
looking at the proposed V ∗, and clearly D+ = D+∗, so the first condition is met.
From the weakened satisfiability conditions for the conditional, one can see that
σW ∗(A ⊃ B) = ∗ whenever σW ∗(A) = ⊥; in the classical case, the value of the
conditional is > when the antecedent is ⊥. The truth table above shows clearly that
all of (A ∧ B), (A ∨ B), (A ⊃ B), (A ≡ B) remain in general non-equivalent to
each other. The notion of logical consequence is the Tarskian notion of consequence
usually associated with classical logic, which is reflexive, transitive and monotonic.
The reader can easily verify that, moreover, this weakening is proper.

The logic MRSP was introduced in [9] as a logic to validate more relations in
the square of opposition, especially subalternation, hence the name.3 The proposed
solution was to get a logic in which the inference from a conditional A ⊃ B to
the conjunction A∧B never leads from truth to falsity. Besides subalternation and
some other relations of opposition, Aristotle’s Thesis together with other connexivist
principles were validated.

Thus, the connexivist ideas on implication could serve as a conceptual foundation
for MRSP as a whole. Even so, a motivation for assigning the intermediate value

2Note that even if the biconditional cannot be defined in the usual way, i.e. as (A ⊃ B)∧ (B ⊃
A), its satisfiability conditions are the usual ones, and given that the satisfiability conditions of the
conjunction are also the standard ones, what should be blamed—if at all—for the failure of the
equivalence are either the structure of V ∗ or the satisfiability conditions for the conditional.

3In [9] the superscript ‘P ’ was used to indicate, mistakenly, that negation is Post’s cyclic nega-
tion. Despite this, we are going to keep the name.
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∗ to a conditional when its antecedent is ⊥ is needed to make the logic something
more than a nearly ad hoc way of validating Aristotelian inferences or connexivist
principles. On that note, we would like to point out that the satisfiability conditions
of the conditional in MRSP coincide with those of Blamey’s transplication (see [5]).
This means that Blamey’s motivations for such a connective—for example, Strawso-
nian presupposition or conditional assertion—can be invoked (more about this can
be found in [4]). Furthermore, Edgington-like arguments against the usual satisfia-
bility conditions for conditionals with a false antecedent could be given (cf. [7], [8];
see also [14]), with the caution that her arguments against the other clauses should
be either blocked or ignored!

Given that MRSP validates Aristotle’s Theses—something considered a distin-
guishing mark of a connexive logic—without being explicitly designed for this pur-
pose, one may wonder whether it has some other properties typical of connexive
logics. In order to find out how connexive MRSP really is, one may compare it with
other more famous logics in that family. In the next two sections, we address such
a task. We begin by isolating what seem to be some of the typical properties of a
connexive logic in the one that follows.

3 Desiderata for Connexivity and Kinds of Connexive
Logics

Connexive logics codify certain ideas about the connection or coherence between the
relata of an implication. Thus far there is no comprehensive, systematic study on
what the properties of a connexive logic should be. This section aims to be a small
step in that direction. Here we have identified, and labeled when necessary, some
of the desiderata for a connexive logic found scattered through the literature, but
particularly in the surveys [13] and [18].

In accordance with the mentioned literature, we take the following to be the
minimal requirements for a connexive logic:

 ¬(A ⊃ ¬A) (Aristotle’s Thesis)
 ¬(¬A ⊃ A) (Variant of Aristotle’s Thesis)
 (A ⊃ B) ⊃ ¬(A ⊃ ¬B) (Boethius’ Thesis)
 (A ⊃ ¬B) ⊃ ¬(A ⊃ B) (Variant of Boethius’ Thesis)4

1 (A ⊃ B) ⊃ (B ⊃ A) (Non-Symmetry of Implication)
4An anonymous reviewer pointed out that we were not considering the satisfaction of the con-

verses of both Boethius’ Thesis and its variant as a condition for minimality. We think that the
satisfaction of these theses is perhaps better suited to be taken as an additional criterion when com-
paring connexive logics. However, we decided not to include them, as the theses are not validated
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A subminimal connexive logic is a logic which satisfies at least some but not all of the
above conditions. Specifically, a subminimal connexive logic is one which satisfies at
least some of the positive conditions.

However, the story about connexivity does not end here. Some (sub)minimal
connexive logics have been judged or evaluated, more or less consciously, by appeal-
ing to some other properties besides minimality (we will sketch how this has been
done in the following section). Again, we extract these other desiderata from the
available literature.

An Abelardian logic satisfies either of the following requirements:
 ¬((A ⊃ B) ∧ (¬A ⊃ B)) (Aristotle’s Second Thesis)
 ¬((A ⊃ B) ∧ (A ⊃ ¬B)) (Abelard’s Principle)5

A logic is anti-paradox if it satisfies the following requisites:
1 A ⊃ (B ⊃ A) (Positive Paradox of Implication)
1 A ⊃ (¬A ⊃ B) (Negative Paradox of Implication)
1 A ⊃ (B ⊃ C) where A is a contingent truth and (B ⊃ C)

a logical truth (Paradox of Necessity)
A logic is simplificative if it meets the following conditions:

 (A ∧B) ⊃ A (Simplification (a))
 (A ∧B) ⊃ B (Simplification (b))

A conjunction-idempotent logic is a logic in which both of the following conditions
hold:

 (A ∧A) ⊃ A (Idempotence (a))
 A ⊃ (A ∧A) (Idempotence (b))

A weakly consistent logic is a logic in which there is no formula A such that it and ¬A
are both theorems; it is strongly inconsistent otherwise. A strongly consistent logic
is a logic in which there is no formula A such that it and ¬A are both satisfiable; it
is weakly inconsistent otherwise.

Furthermore, a logic is Kapsner-strong if the two following conditions are met:
A ⊃ ¬A is unsatisfiable
A ⊃ B and A ⊃ ¬B are not simultaneously satisfiable.

These two conditions were introduced in [10] to characterize strongly connexive log-
ics, that is, minimal connexive logics which are also Kapsner-strong. We emphasize

by many connexive logics and seem to have counterexamples even by connexivist lights. See [13,
446] for further discussion.

5Also known as ‘Strawson’s Thesis’.
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the distinction between a logic being Kapsner-strong and being strongly connexive
to allow for the possibility of a logic being both subminimal and Kapsner-strong.

Finally, a logic is totally connexive if it is of all the other kinds above (only
satisfying, of course, the appropriate versions of (in)consistency, as no logic can
satisfy all of them). Clearly, there are some obstacles to get a totally connexive
logic. For example, it is well-known that a consistent connexive logic cannot be
simplificative if it also satisfies Contraposition for the conditional and Transitivity
of logical consequence. The same goes for a logic that satisfies Detachment and
validates ((A ⊃ B) ⊃ (B ⊃ C)) ⊃ (A ⊃ C). As a result, an open problem is to find
out whether there are totally connexive logics and what is the minimal one.

In non-bivalent contexts, where the Deduction (meta)theorem might not be avail-
able, it is extremely useful, and even conceptually mandatory, to distinguish between
 A ⊃ B and A  B. For the purposes of this paper, it will be useful to consider
a specific variety of connexive logics. Let K be a set of conditions for a connexive
logic of the form  A1 ⊃ B1; . . . ;  An ⊃ Bn. A logic will be called inferentially K
connexive logic if it satisfies A1  B1; . . . ; An  Bn.

4 Comparison with CC1, M3V and CN

The above list of desiderata for a connexive logic is not meant to be exhaustive,
and is far from being a set of necessary and sufficient conditions for connexivity.
It does, however, give us some working data to compare a very specific selection
of connexive logics. That is, it allows us to compare some of the most well-known
non-bivalent truth-functional connexive logics: Angell’s CC1, Mortensen’s M3V and
Cantwell’s CN, to which we will add MRSP . For simplicity and to avoid making
the paper unnecessarily long, we will assign the same weight to each of the criteria.
Certainly, there might be reasons to favor some of them above the others—for ex-
ample, strong consistency and simplificativeness over Abelardianism, thus reviving
the twelfth century crisis in logic (see [11]). Also for brevity we omit the proofs of
the claims that a logic satisfies such and such properties. In most cases, the proofs
are already well-known, not too difficult, and can be found somewhere else in the
easily traceable literature on connexive logics. Nonetheless, we will invariably give
the required counterexamples when we say that a logic fails to satisfy certain proper-
ties. These counterexamples may also be easy to find, well-known and traceable, but
their inclusion makes for a smoother reading, as it makes the paper self-contained
with respect to the inclusion of elements that facilitate the comparisons.

CC1 was introduced in [2] and is the first logic of the latest generation of studies
on connexive implication, which began in the 1960s. It is characterized by the
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following truth tables with the values6 VCC1 = {>+,>−,⊥+,⊥−} ordered ⊥− <
⊥+ < >− < >+ and with D+ = {>+,>−}:

A B ¬ A A ∧ B A ⊃ B

>+ >+ ⊥− >+ >+

>+ >− ⊥− >− ⊥−

>+ ⊥+ ⊥− ⊥+ ⊥+

>+ ⊥− ⊥− ⊥− ⊥−

>− >+ ⊥+ >− ⊥−

>− >− ⊥+ >+ >+

>− ⊥+ ⊥+ ⊥− ⊥−

>− ⊥− ⊥+ ⊥+ ⊥+

⊥+ >+ >− ⊥+ >+

⊥+ >− >− ⊥− ⊥−

⊥+ ⊥+ >− ⊥+ >+

⊥+ ⊥− >− ⊥− ⊥−

⊥− >+ >+ ⊥− ⊥−

⊥− >− >+ ⊥+ >+

⊥− ⊥+ >+ ⊥− ⊥−

⊥− ⊥− >+ ⊥+ >+

To avoid making the truth table unnecessarily confusing, we will just point out
that disjunction and the biconditional for CC1 can be defined in the usual ways—as
¬(¬A∧¬B) and (A ⊃ B)∧(B ⊃ A), respectively. Before discussing which conditions
are met by CC1, we would like to note in passing that its matrices could be seen as
the result of both a weakening and a strengthening of any n-valued truth-functional
logic, with n < 4. For example, if σ(A) = σ(B) = ⊥−, σ(A ∧ B) is not ⊥− as
one would expect, but ⊥+; since ⊥− < ⊥+, this particular σ can be regarded as
a strengthening of the satisfiability conditions for ∧ of most n(< 4)-valued truth-
functional logics. Another example of strengthening for the conjunction is given by
σ(A) = σ(B) = >−, which yields σ(A ∧ B) = >+. On the other hand, σ(A) = >+

and σ(B) = >−, as well as σ(A) = >− and σ(B) = >+, would give an example of
weakened σ(A ⊃ B). The reader is kindly asked to check whether something similar
happens with the other logics presented in this section.

Among the desiderata for a connexive logic, CC1 is minimal, (strongly) con-
sistent, Abelardian and Kapsner-strong. As is well-known since the works by Mc-

6Since we are mostly going to discuss the structural properties of truth values, no deep conse-
quences should be extracted from typographical identity; in particular, that two logics share, say,
the symbol ‘⊥’ for their least value does not imply that the intended interpretation for such a
symbols is the same in those two logics.
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Call ([12]) and Routley and Montgomery ([16]), it fails to be simplificative7 and
idempotent8. It also fails to meet anti-paradoxicality, for any formula of the form
(A ∧A) ⊃ (B ⊃ B) is a theorem of CC1.

The logic M3V was introduced, although not with that name, in [15] (the name
was given in [13], presumably to mean “Mortensen’s 3-valued connexive logic”).
Its biconditional is also defined as usual, that is, as (A ⊃ B) ∧ (B ⊃ A). The
following truth tables, with VM3V = {>,>∗,⊥} ordered ⊥ < >∗ < >, and with
D+ = {>,>∗}, characterize M3V:

A B ¬ A A ∧ B A ∨ B A ⊃ B

> > ⊥ > > >∗

> >∗ >∗ > ⊥
> ⊥ ⊥ > ⊥
>∗ > >∗ >∗ > >∗

>∗ >∗ >∗ >∗ >∗

>∗ ⊥ ⊥ >∗ ⊥
⊥ > > ⊥ > >∗

⊥ >∗ ⊥ >∗ >∗

⊥ ⊥ ⊥ ⊥ >∗

M3V is minimal, anti-paradox9, Abelardian, simplificative and idempotent. How-
ever, it is strongly inconsistent10 and fails to be Kapsner-strong11.

CN is a logic for “conditional negation” studied in [6]. As with the other logics,
its biconditional can be defined as (A ⊃ B) ∧ (B ⊃ A). After considering that for
CN the following apply: VCN = {>,−,⊥} ordered ⊥ < − < >, with D+ = {>,−};
one can build the following truth tables for its other connectives:

7For a counterexample to (A∧B) ⊃ A, take σ(A) = >+ and σ(B) = >−; for a counterexample
to (A ∧B) ⊃ B, take σ(A) = >− and σ(B) = >+.

8For a counterexample to (A ∧ A) ⊃ A take σ(A) = >−; for a counterexample to A ⊃ (A ∧ A)
take σ(A) = ⊥−.

9Actually, Mortensen’s satisfiability conditions for the conditional are structurally the same as
the ones used by Anderson and Belnap in [1] to block the paradox of necessity.

10Any formulas of the form A ⊃ A and ¬(A ⊃ A) are theorems of M3V.
11A formula of the form A ⊃ ¬A is satisfiable when σ(A) = ⊥; moreover, A ⊃ B and A ⊃ ¬B

are simultaneously satisfiable with σ(A) = σ(B) = ⊥.

350



A Comparison of Connexive Logics

A B ¬ A A ∧ B A ∨ B A ⊃ B

> > ⊥ > > >
> − − > −
> ⊥ ⊥ > ⊥
− > − − > >
− − − − −
− ⊥ ⊥ − ⊥
⊥ > > ⊥ > −
⊥ − ⊥ − −
⊥ ⊥ ⊥ ⊥ −

CN is a minimal connexive logic; moreover, it is Abelardian, simplificative and idem-
potent. However, it fails to be strongly consistent, does not avoid all the paradoxes
of implication12 and is not Kapsner-strong13.

What about MRSP ? It is only subminimal, since it does not validate Boethius’
Theses14; it is Abelardian, anti-paradox, strongly consistent and Kapsner-strong.
However, it is neither simplificative nor idempotent.15

Although the above comparison looks rather unfavorable for MRSP , there is more
to be said in its favor. For instance, one can wonder what resources for achieving
the properties each logic needs. Accordingly, one can consider:
The number of designated values Roughly, the idea is that something can be said in
favor of the thought that, whenever possible, one should obtain theoremhood and
validity only with truth, not with truth and something lesser than it. Although it
is not logically necessary that this be the case, several logics take the distinction
between truth and any other truth value as fundamental. Of course, this could be
generalized to a bipartition between designated and anti-designated values. Such a
bipartition comes into play in debates regarding, for example, pluralism about truth
predicates (See [3] and [17] for an introduction to both sides of the debate). We
think that an analogy can be traced between this debate and what we are trying to
establish with this condition. However, it is important to note that the matter is
far from settled as the analogy can be drawn towards both sides of the debate.
The intuitiveness of the satisfiability conditions The idea is, broadly put, that there
seems to be no disagreement between the valuations of the logics considered and

12It validates both the Positive Paradox and the Paradox of Necessity by validating A ⊃ (A ⊃ A),
for example.

13A ⊃ ¬A is satisfiable with σ(A) = − and even with σ(A) = ⊥. This assignment suffices to
also satisfy A ⊃ B and A ⊃ ¬B simultaneously.

14For an easy counterexample, consider σ(A) = σ(B) = ∗.
15For a counterexample to these latter properties, take σ(A) = ∗.
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the ones for the classical case when they are restricted to the greatest and the least
values in the semantics, and this should generalize as much as possible for the case
of designated and antidesignated values. For example, there is no disagreement be-
tween the evaluation of A ⊃ B offered by the logics considered and the classical case
when both σ(A) and σ(B) are the greatest value—in every case, the whole condi-
tional has the greatest value. Similarly, when σ(A) is the greatest value and σ(B)
the least one—the value of the whole conditional is the least one. In this sense, it
would be reasonable to expect that when both σ(A) and σ(B) are designated values,
the whole conditional is also interpreted as a designated value; or that when σ(A) is
designated and σ(B) is antidesignated, the whole conditional is antidesignated too.

If these two criteria are taken into consideration, then MRSP achieves at least as
much as CN—the satisfaction of four properties—with fewer logical resources, in the
sense that it only requires one designated value. It should be noted, however, that
this only works as an advantage if it is granted that both logics are on equal footing
as to the intuitiveness of their respective satisfiability conditions. Moreover, if one
finds consistency desirable, MRSP gains an advantage over those of the examined
proposals that have more designated values than antidesignated ones. In particular,
MRSP ’s strong consistency would make it score better than CN, as the latter is only
weakly consistent.

The concession about the intuitiveness of their satisfiability conditions cannot
be as easily made for either CC1 or M3V. While it is true that they meet the most
properties out of all the proposals considered, they only do so at what seems to be a
very high price to pay. In the case of CC1, the truth tables are very anomalous for
a linear ordering, and seem more like “a formal tool with little explanatory power”,
as Wansing puts it (cf. [18]). This results in several odd interpretations: The con-
junction of two non-greatest values yields a greatest value and the conjunction of
two non-least values yields a least value, as can be seen in the sixth and tenth lines
of the truth table. Furthermore, conditionals with designated values as both the an-
tecedent and consequent yield anti-designated values. M3V is in no better position:
Even for most contradictions’ friends, these are very rare, and certainly very few
of these people would propose logics with pairs of contradictory theorems. More-
over, the satisfiability conditions for M3V imply that a conditional might have an
anti-designated value even if both the antecedent and the consequent are designated
values.

As a final point of comparison, given that no logic considered here is total, we
will now return to the notion of inferentially K connexive logic, taking K to be the
set of the inferential versions of the desiderata listed above, to check whether any of
the logics above can count as inferentially total. Under this examination, MRSP is
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inferentially minimal, inferentially simplificative and inferentially idempotent. This,
together with the properties already satisfied, makes MRSP an inferentially total
connexive logic. As a result, MRSP gains some advantage over M3V and CN, as
neither consistency nor Kapsner-strength have the required format for their infer-
ential versions to be considered. The requisite of anti-paradoxicality does have it,
but this does not make any difference for the comparison with CN, as the inferences
from A to B ⊃ A and from A to A ⊃ A would be valid.

Things are a bit different for CC1. It is inferentially simplificative and infer-
entially idempotent, which means it fulfills the only two properties it needed to be
inferentially total, against the three needed by MRSP . However, it should be recalled
that CC1 can achieve this only because of the oddness of its four-valued matrices.
As CC1 is not only inferentially total, but also needs to meet fewer properties to be
so, one might find it superior to MRSP . However, if one considers the odd matrices
used by CC1 and recalls the inclusion of considerations about the simplicity of the
structure of designated values and the intuitiveness of the satisfiability conditions in
the comparison, then one might take this to fairly tip the scales in favor of MRSP .

But the connexive superiority of MRSP is far from being established. It is only
subminimal, and thus one could reasonably argue that MRSP had already lost very
early in the race. Another point against MRSP is that the notion of inferential
connexivity is anything but connexive: An important part of the connexive effort
was to reflect in the object language some metatheoretical ideas about implication,
and inferential connexivity has nothing to do with these ideas. Saying that MRSP

satisfies Boethius inferentially could be regarded as artificial as saying that classical
logic is connexive because it satisfies Aristotle’s Thesis in the form A 1 ¬A.

The only moral that can be drawn at this point is that it is extremely difficult
to rank the logics studied here, as each of them exhibits very different combinations
of virtues and problems. Were MRSP at least minimal, a good case for it could be
made. Regardless, it should be stressed that the other logics achieve minimality at
the expense of intuitiveness or increasing the number of truth values. Our hope is
that, rather than to achieve a consensus about which logic is the definitive winner,
this discussion will serve to motivate a debate between the experts on connexive
logic to rank the desiderata above, including intuitiveness and structural properties
like the number of designated values or a certain degree of conservativeness over
classical logic (for example, not departing radically from the classical valuations
involving just the least and greatest elements). This debate, we believe, will lead to
the development of better tools for logic choice or, at least, to a better mapping of
the connexivist landscape.
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5 Conclusions

In this paper we presented a roster of what we take to be the most common desiderata
to be met by a connexive logic. Using the list and some additional criteria, we
compared some well-known many-valued truth-functional connexive logics, namely
Angell’s CC1, Mortensen’s M3V and Cantwell’s CN. To these we have added MRSP ,
a logic known to validate Aristotle’s Theses, so one can legitimately ask what is its
place in the universe of connexive logics. We showed that, with some pressure, one
can conclude that MRSP scores better than the other logics analyzed here.

Nevertheless, any case for favoring one of the logics above the others is far from
conclusive. Thus, we take that the right conclusion of the analysis is that there is
an important open problem of conceptual nature in the study of connexive logic,
one that has to do with the investigation of necessary and sufficient conditions
for connexivity, and with finding the most adequate criteria for the comparison of
connexive logics that are not necessarily truth-functional, based on those conditions.

Along the way, we also encountered other open problems, more formal in nature,
that require further attention even if the above problem resists solution. For exam-
ple, there is the problem of knowing under what conditions a SEM which does not
characterize a connexive logic can be (properly) weakened into a semantics SEMW

that does characterize one. An analogous problem can be formulated for (properly)
strengthened semantics. Finally, another open problem is to know whether there
are total connexive logics as have been defined above and, if there are, which is the
minimal one.
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Abstract

In this paper, we reflect on some themes related to the formulation of math-
ematics against the backdrop of a connexive logic. From a positive perspective,
we will consider some remarks of the Kneales concerning Aristotle’s position on
connexive implication and suggest that common themes between the Kneales’
Aristotle and the hyper-constructive arithmetic of David Nelson may provide a
philosophical basis for connexive mathematics. We will also consider some his-
torical points, including Łukasiewicz’ argument that connexive principles may
be refuted by appeal to number-theoretic intuitions. Finally, we will take more
concrete steps towards the implementation of connexive mathematics by ex-
amining how weak subtheories of arithmetic fare when formulated in modest
first-order extensions of three connexive logics: Richard Angell’s PA1 and PA2
and Graham Priest’s PN. Unfortunately, we will observe that severe patholo-
gies emerge when even extraordinarily weak subsystems of Peano arithmetic are
evaluated in these logics, suggesting that Angell and Priest’s systems constitute
strained, if not unserviceable, bases for arithmetic.

1 The Allure of Connexive Mathematics
Frequently, non-classical logics are presented as formalizations of correct deduc-
tive reasoning and mathematical reasoning, as an a priori discipline, is uniquely
sensitive to the adoption or rejection of logical principles. The analysis of how var-
ious mathematical theories fare under enriched or restrained theories of inference
makes up one of the most salient applications of a non-classical theory of deduc-
tion. Historically, this is most evident in the case of intuitionism, insofar as the

I am very grateful for some helpful comments due to Maarten McKubre-Jordens and Can Bas̨kent
when the material was presented at the Workshop on Connexive Logic at the Fifth World Congress
and School on Universal Logic. I also appreciate the very helpful comments of two anonymous
referees.
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intuitionistic standpoints with respect to deduction and mathematical practice are
tightly bound together. But similar sentiments apply to mathematics investigated in
other non-classical settings. For example, the analysis of mathematical principles by
substructural logics has been particularly fruitful, including Robert Meyer’s investi-
gations into the relevant arithmetic R],1 John K. Slaney, Greg Restall, and Meyer’s
investigation into the linear arithmetic LL] in [20], and Zach Weber’s more recent
investigations into set theory in weak relevant logics (e.g., [24] and [25]). The con-
cern of this work is to begin investigating the prospects for a connexive formulation
of mathematics.

Connexive logics are deductive systems that contain one or more of the following
as theorems:

Aristotle’s Thesis ∼(ϕ→ ∼ϕ)
Boethius’ Thesis (ϕ→ ψ)→ ∼(ϕ→ ∼ψ)
Strawson’s Thesis ∼((ϕ→ ψ) ∧ (ϕ→ ∼ψ))

where “→” represents a binary conditional connective, possibly interpreted as mate-
rial implication (e.g., in the classical case) or as an intensional entailment connective.
The present examination of mathematics formulated with a connexive background
logic is not unique, as there have been several forays into connexive mathematics
in the modern era of connexive logic. Some of these investigations have been har-
monious with reasonable and salient mathematical notions; some have been more
negative, revealing that if the connexive principles of inference are to be retained,
some revision of common mathematical practice must inevitably follow.

As an example of the former, Storrs McCall’s [11] considers the thesis of classical
set theory that the empty set is a subset of its complement and compares this with
the intuition that a proposition should not entail its own negation. Indeed, [11] opens
with a dialogue in which a mathematics student’s plausible resistance to classical
set theoretic theses serves to both illustrate and motivate connexive theses. At the
conclusion of the paper, McCall demonstrates that a coherent theory of classes in
which no class is contained in its complement—i.e., a connexive class theory—is
entirely practicable.

On the other hand, J.E. Wiredu’s [26] considers what restrictions to classical set
theory would have to be made in order to accommodate connexive theses. Wiredu
shows that assuming connexive principles entails that even the restricted compre-
hension axioms of ZF are too strong. The upshot is that any reasonable connexive
theory of sets must restrict comprehension even more severely than, say, Zermelo’s

1We will adhere to Meyer’s convention of, e.g., [12], according to which the theory of Peano
arithmetic formulated in a logic L will be labeled L].
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axiom of separation. Now, while this may demand a revision of some mathematical
principles, to suggest a restriction of intuitive mathematical theses isn’t uniquely of-
fensive; following Zermelo, mathematicians—set theorists, computability theorists,
etc.—have demonstrated a willingness to restrict comprehension if need be. In other
words, while Wiredu shows the need to restrict some set theoretical intuitions, this
does not on its face preclude a connexive mathematics.

Now, connexive logics share peculiar features that undoubtedly complicate mat-
ters. The contraclassicality of connexive logics, for example, entails that the de-
velopment of connexive mathematics will be more complex—and, arguably, more
interesting—than intuitionistic or substructural accounts. For example, although
formally undecidable sentences in classical Peano arithmetic remain independent
of its intuitionistic and relevant counterparts, there exist undecidable sentences of
classical arithmetic that will become decidable modulo any reasonable connexive
arithmetic.

In, e.g., Peano arithmetic, there exists an undecidable sentence ξ. In the classical
case, that is, when the conditional → is construed as the material conditional, ξ is
equivalent to the formula ∼(ξ → ∼ξ), i.e., ∼(∼ξ∨∼ξ). This entails that in classical
Peano arithmetic the sentence ∼(ξ → ∼ξ) is likewise undecidable. Of course, in
a connexive logic L and connexive arithmetic L], one expects that L] should prove
∼(ξ → ∼ξ) by default, witnessing that some classically undecidable statements in
number theory become decidable connexively.

Although this example is extremely simple, it demonstrates that there are many
subtle questions that uniquely arise in a connexive mathematics. In this paper, I
wish to make a few comments on how mathematics—in particular, arithmetic—must
behave if formulated connexively. We will first consider some relevant historical and
philosophical topics before taking a foray into the formalization of modest subsys-
tems of arithmetic in predicate calculi corresponding to Richard Angell’s PA1 and
PA2 (described in [1] and [3], respectively) and Graham Priest’s PN (described in
[17]).

The more philosophical observations of this paper are guardedly optimistic. For
example, we will consider a kinship between Everett Nelson’s connexive theory of
self-cotenability in [15] and David Nelson’s philosophy of mathematics in [13] and
suggest that Heinrich Wansing’s work on constructive connexive logic in [21] serves
as a successful harmonization of the two themes. We will also diagnose problems with
Jan Łukasiewicz’ argument of [9] that number theory is inconsistent with connexive
principles, countering the most prominent foil to a connexive mathematics in print.
In contrast, the formal results of the paper are relatively discouraging. We will
see that theories of arithmetic in Angell’s logics inevitably suffer from some rather
counterintuitive features and that any theory including even weak induction schema
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(i.e., those including induction for quantifier-free formulae) will have no consequences
in Priest’s system.

2 Historical Points
In this section, we will consider a few more philosophical points before proceeding
to formalizations of fragments of arithmetic.

2.1 Anti-Zenonian Mathematics and Reductiones ad Absurdum
The suggestion of a positive philosophical foundation for connexive mathematics
can be discovered in an interesting remark in William and Martha Kneales’ [7].
While discussing Aristotle’s articulation of connexive principles, the Kneales suggest
that it is “tempting” to infer that “what [Aristotle] attacks is in effect the positive
counterpart of Zeno’s reductio ad impossibile.” [7, 97] William Kneale is even more
explicit in tethering Aristotle’s Thesis to the rejection of reductiones, noting that

the entailment assertions which Aristotle refuses to admit are just those
required for justification of the hypothetical premisses in... the construc-
tive counterpart of the reductio ad absurdum. [6, 66]

The connection between Aristotle’s Thesis and a rejection of reductiones is also
observed by Angell in [1], writing that “[t]he objection has been raised that such
theorems... would eliminate reductio ad absurdum proofs.” [1, 337] The importance
of reductiones to the development of mathematics suggests that there is a mathe-
matical thesis to be squeezed out of the connexive position.

While the Kneales are tentative about this suggestion, a tension between connex-
ive principles and the technique of reductio is more also apparent in Everett Nelson’s
[15]. A tension with—if not outright denial of—the legitimacy of reductiones is im-
plicit in his connexive analysis of entailment in [15]. Nelson notes that there exists
a

difference between a logic in which relations [of entailment] are based on
facts extrinsic to the essence of the propositions and one in which they
are based on the essence itself.[15, 451]

Nelson suggests that any acceptable characterization of logical entailment ought to
take the latter route by analyzing the connections between the distinct essences of
propositions.

One of the notable assumptions distinguishing Nelson’s account of entailment
can be summarized by the passage:
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If p entails q, then p is consistent with q. This assertion, together with
p E p [i.e., the principle that p entails p], gives rise to p ◦ p [i.e., that p
is consistent with p].[15, 447]

Nelson’s account of the relationship between consistency and entailment diverges
from the familiar Lewisian notion of cotenability. C.I. Lewis chooses to define en-
tailment in terms of consistency in [8],2 so that ϕ→ ψ is defined as ∼(ϕ ◦∼ψ), that
is, ϕ entails ψ when ϕ and ∼ψ are not mutually consistent. Hence, while Nelson
infers from the thesis that ϕ → ϕ is that all propositions are self-cotenable, the
Lewisian account only infers from ϕ → ϕ the much tamer claim that ∼(ϕ ◦ ∼ϕ),
i.e., that ϕ is inconsistent with its negation.

The identification of the mutual consistency of two propositions with their coten-
ability brings out some of the prima facie plausibility of Nelson’s position. Under this
reading, that every proposition is self-consistent is just to say that every proposition
is tenable in some sense, which suggests that no proposition is so defective so as to
preclude even its consideration. There is something admittedly attractive about this
notion insofar as it comports with philosophical practice. Philosophers, for example,
frequently engage in counterpossible reasoning, in which even inconsistent proposi-
tions can be maintained for the sake of argument. In this sense, every proposition
is to some degree tenable—and one might reasonably identify self-cotenability with
tenability simpliciter.

The tension between Nelson’s assertion that every proposition is self-consistent
and the foundation for the legitimacy of reductiones is subtle. If one considers a
contradiction ϕ ∧ ∼ϕ, from this one can trivially derive a contradiction: ϕ ∧ ∼ϕ
itself. But if one assumes that what has been derived is consistent with what has
been assumed, to apply a reductio to disprove ϕ ∧ ∼ϕ is to reject ϕ ∧ ∼ϕ on the
basis that it entails itself.

In other words, that every proposition is self-consistent entails that within the
essence of any proposition, one cannot discover any feature sufficiently defective to
warrant its rejection solely on these grounds. Hence, if reductiones serve to reject
propositions on the basis of the defectiveness of their essences, the technique of
reductio is, in a sense, empty and vacuous.

It is interesting to note that David Nelson’s [13] is also motivated by a resistance
to reductiones ad absurdum. In the context of constructive mathematics, Nelson
notes while positive formulae must always be constructibly verified in intuitionistic
logic, there is no analogous requirement—indeed, no corresponding operation—for
constructive disproof. The intuitionistic negation ϕ → ⊥ can be recognized as the
assertion of the existence of a reductio disproof for ϕ. But while ϕ → ⊥ is a

2Lewis goes so far as to refer to the Survey System as the “Calculus of Consistencies” in [8].
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perfectly well-formed formula that imparts some information about ϕ, the formula
is not identified with ∼ϕ.

[J]ust as in the case of an existential proposition, we may, in the case of
the negation of a generality statement∼∀xA(x), distinguish two methods
of proof. In one there is presented an effective method of constructing an
n such that∼A(n) is true, in the other there is presented a demonstration
that ∀xA(x) implies an absurdity.[13, 16–17]

If ∀xA(x) is judged as false, we tend to think that there is some (possibly more than
one) false instance A(n) that is responsible for the falsity of ∀xA(x).3 Intuitionisti-
cally, to assert the truth of ∃xA(x) is to have a construction of a natural number n
witnessing that a verifying instance A(n) is true. From a constructive standpoint,
it seems just as natural to expect an effective construction of a falsifying instance
of A(n) when ∀xA(x) is false. But the existence of a proof that ∀xA(x) entails an
absurdity does not guarantee a procedure that produces such a witness.

Hence, Nelson reasons that intuitionistic negation does not provide an adequate
characterization of falsity. From this, he argues that a true commitment to construc-
tivity in mathematics entails concern for constructive falsity as well as for construc-
tive truth. The moral is that just as the intuitionist rejects non-constructive proof as
vacuous, the intuitionist ought to reject non-constructive disproof, i.e., reductiones
ad absurdum, as empty and vacuous.

The proximity between the opinions concerning reductiones—the connexivist
rejection on the one hand and the constructivist rejection on the other—suggests a
ground for a philosophy of connexive mathematics. On both accounts, a disproof
of ϕ requires more than the mere demonstration of a defect with respect to ϕ. To
disprove ϕ demands something further, such as the explicit production of evidence
that ϕ fails to comport with arithmetical facts. On the one hand, to derive the
negation of ϕ from ϕ itself is fruitless because rather than revealing a defect with
respect to ϕ, one has deduced improperly. On the other hand, it is fruitless because
such a derivation fails to reveal what makes ϕ false. An interesting fact is that there
already exist formalisms that apparently harmonize these two considerations.

It is arguable that Wansing’s approach to connexive logic described in, e.g.,
[21] and [22] reflects this coincidence between connexivity and strong constructivity.
Wansing’s C and related systems are presented within a framework generalizing the
semantics of David Nelson’s logic of constructible falsity and, indeed, the discussion

3As an example, it is natural to assert that “all prime numbers are odd” is false because “2 is a
prime number and is odd” is false.
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of falsification in [23] is consistent with the above considerations on reductiones ad
absurdum.

A particular feature of Wansing’s C that might be thought to exhibit the con-
vergence of the two notions is the theoremhood of formulae ∼(A→ ⊥) is a theorem
of C, i.e., the theoremhood of ∼¬A where ¬ denotes intuitionistic negation. On the
one hand, when this feature is read as the thesis that all intuitionistically negated
formulae are false in C, this might be thought to be counterintuitive. But providing a
natural Brouwer-Heyting-Kolmogorov-type reading, the theoremhood of ∼(A→ ⊥)
is interpreted as the statement that for an arbitrary formula A, it is false that there
exists a procedure to convert a proof of A into a proof of ⊥,4 an interpretation that
might be thought to capture the shared ground between Everett and David Nelson.

2.2 Łukasiewicz’ Counterexample to Aristotle’s Thesis
We have encountered one apparently negative result concerning connexive mathe-
matics in Wiredu’s remarks of [26] that connexive principles might require further
restriction to the comprehension axioms of set theory. A more dangerous specter
for connexive mathematics appears in a remark of Jan Łukasiewicz in [9], in which
he aims to demonstrate the inconsistency of Aristotle’s Thesis with respect to a
fundamental number-theoretic principle:

[Euclid] states first that ‘If the product of two integers, a and b, is di-
visible by a prime number n, then if a is not divisible by n, b should be
divisible by n.’ Let us now suppose that a = b and the product a × a
(a2) is divisible by n. It results from this supposition that ‘If a is not di-
visible by n, then a is divisible by n.’ Here we have an example of a true
implication the antecedent of which is the negation of the consequent.[9,
50–51]

Let us make this argument somewhat more perspicuous by formalizing the sequence
of reasoning. Where “a | b” symbolizes the relation that b is divisible by a, we
provide the following scheme with n prime:

1. ∀a, b[n | (a× b)→ [n - a→ n | b]] Number-Theoretic Truth
2. n | n2 Number-Theoretic Truth
3. n | n2 → [n - n→ n | n] Universal Instantiation, 1.
4. n - n→ n | n Modus Ponens, 2,3.

4But n.b. that C is inherently negation inconsistent, a point that problematizes a BHK-style
interpretation. Because both ⊥ → ⊥ and ∼(⊥ → ⊥) are theorems, for example, our naive BHK
interpretation entails both the existence and non-existence of a procedure turning proofs of ⊥ into
proofs of ⊥.
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Hence, it appears that, granted very weak logical assumption, instances of Euclid’s
lemma serve as counterexamples to Aristotle’s Thesis. Furthermore, it is not clear
that Euclid’s lemma can be restricted as naturally or as readily as naive compre-
hension.5

Despite Euclid’s employing a conditional in the statement of the lemma, to state
that if a prime n divides a composite number a × b then either n divides a or n
divides b is an equally good (and perhaps superior) formulation of Euclid’s lemma.
If so, Łukasiewicz’ argument requires an enthymematic assumption of the validity
of disjunctive syllogism. Formally, the initial steps would be:

1. ∀a, b[n | (a× b)→ [n | a ∨ n | b]] Number-Theoretic Truth
2. n | n2 Number-Theoretic Truth
3. n | n2 → [n | n ∨ n | n] Universal Instantiation, 1.
4. n | n ∨ n | n Modus Ponens, 2,3.

If we state Euclid’s lemma in this way, the most natural way to generate the coun-
terexample to Aristotle’s Thesis is by inferring n - n→ n | n from n | n∨ n | n, e.g.,
by producing a conditional proof making an explicit appeal to the validity of dis-
junctive syllogism. But this sort of argument is much less compelling. Łukasiewicz
intends to argue against Aristotle’s Thesis on purely mathematical grounds, that
is, Aristotle’s Thesis is to be rejected not due to its inconsistency with competing
logical principles, but due to its inconsistency with mathematical intuitions. More-
over, if one follows Richard Sylvan in maintaining that connexivism “coincides with
the broad requirement of relevance”[18, 393], then it is virtually obligatory that one
rejects disjunctive syllogism as an archetypal fallacy of relevance. Hence, the force
of Łukasiewicz’ counterexample to Aristotle’s Thesis is not generated by features of
number theory, but by assumptions concerning logic.6

5A referee has noted that such restrictions to Euclid’s lemma—by, e.g., stipulating that a and b
must be either nonequal or relatively prime—would in fact stave off counterexamples to Aristotle’s
Thesis. It is worth mentioning that this reply shares an affinity with the approach to connexive
logic described in Graham Priest’s [17], in which counterexamples to Aristotle’s Thesis are avoided
by filtering out cases in which an antecedent is contradictory.

6A referee has noted that in any logic in which Weakening is admissible, n - n → n | n will
follow from the truth of n | n. This suggests that Łukasiewicz could have formulated a similar
argument against Aristotle’s Thesis by appeal to Weakening. Such an argument, of course, would
also have to make an appeal to explicitly logical principles, something Łukasiewicz appears to be
attempting to avoid in [9].
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3 Fragments of Arithmetic in Connexive Logics
Łukasiewicz, I have suggested, failed to give a definitive number-theoretic refutation
of Aristotle’s Thesis. We have also considered some apparent connections between
the connexive account of entailment and David Nelson’s philosophy of mathematics.
This is not to say, however, that existent connexive logics are compatible with our
standard convictions concerning arithmetic. In this section, we will examine three
connexive propositional logics and modest extensions thereof, revealing that any
reasonable extensions of these systems are either straightforwardly incompatible with
arithmetical principles or lead to severely pathological formulations of arithmetic.

3.1 Three Connexive Logics

Richard Angell’s propositional logic PA1 was introduced in [1] as an attempt to cap-
ture a notion of a subjunctive conditional, in which Boethius’ Thesis is presented
as the principle of subjunctive contrariety. A further connexive logic PA2 was in-
troduced by Angell in work first appearing as the abstract [2] and subsequently
appearing in Italian as [3]. PA2 was intended to rectify certain shortcomings of PA1
and McCall’s system CC1 of [10], one of which shall make an appearance in the
sequel.

To define Angell’s PA1 and PA2, we will follow the presentation of many-valued
logics in [4].

Definition 1. The semantic matrix for PA1 is 〈VPA1,DPA1, f∼PA1, f
∧
PA1, f

→
PA1〉 where

• VPA1 = {0, 1, 2, 3}
• DPA1 = {0, 1}

and the truth functions are defined by the following matrices:

∼ ϕ ϕ ∧ ψ 0 1 2 3 ϕ→ ψ 0 1 2 3
3 0 0 1 0 3 2 0 1 2 3 2
2 1 1 0 1 2 3 1 2 1 2 3
1 2 2 3 2 3 2 2 1 2 1 2
0 3 3 2 3 2 3 3 2 1 2 1

Definition 2. The semantic matrix for PA2 is 〈VPA2,DPA2, fT
PA2, f

∼
PA2, f

∧
PA2, f

→
PA2〉

where VPA2 = VPA1 and DPA2 = DPA1 and the truth functions are defined by the
following matrices:
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T ϕ ∼ ϕ ϕ ∧ ψ 0 1 2 3 ϕ→ ψ 0 1 2 3
1 0 3 0 0 0 1 2 3 0 1 3 3 3
1 1 2 1 1 1 1 2 3 1 3 1 3 3
3 2 1 2 2 2 2 2 3 2 1 3 1 3
3 3 0 3 3 3 3 3 3 3 3 1 3 1

Semantic validity in both PA1 and PA2 is defined in the standard way, that is, as
preservation of designated values from premises to conclusion.

Angell fails to provide any intuitive reading for these matrices. The nearest thing
to a natural interpretation the matrices for PA1 might be derived from Routley and
Montgomery’s interpretation of McCall’s CC1. With notation adjusted to reflect
Angell’s matrices, Routley and Montgomery write:

CC1, for instance, can be given a semantics by associating the matrix
value [0] with logical necessity, value [3] with logical impossibility, value
[1] with contingent truth, and value [2] with contingent falsehood.[19,
95]

However, Routley and Montgomery concede that such an interpretation is given to
anomalies—e.g., the conjunction of two necessary truths is a contingent truth—and
these anomalies follow when such an interpretation is given to PA1. It is common to
treat these matrices merely as a theoretical tool. Wansing, for example, states that
the semantics for CC1 “appears to be a purely formal method with little explanatory
power.”[21, 370]

Despite the apparent artificiality of the semantics for PA1 and PA2, Graham
Priest has introduced a pair of connexive logics in [17] whose semantics are much
more philosophically salient. Priest’s semantics are motivated by a theme of negation
as “cancellation,” so that a formula ∼ϕ cancels a formula ϕ. One of the formal
features of this account of negation is that the cancellation of ϕ by ∼ϕ entails that
ϕ ∧ ∼ϕ has no content and therefore entails nothing. Priest traces the provenance
of this notion of negation-as-cancellation through Western philosophy, describing
appearances in the work of not only Aristotle and Boethius, but also Abelard and
Berkeley. In this paper, we will focus only on the “non-symmetrized” version PN.7

Definition 3. A model for PN is a 3-tuple M = 〈W, g, v〉, where W is a nonempty
set of points with g ∈W and v is a function mapping At to subsets of W .

• M, w  p iff w ∈ v(p) for p ∈ At
7Priest’s [17] only refers to this system as the “plain connexive logic.” The nomenclature PN was

introduced in [5].
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• M, w  ∼ϕ iff M, w 1 ϕ

• M, w  ϕ ∧ ψ iff M, w  ϕ and M, w  ψ
• M, w  ϕ ∨ ψ iff M, w  ϕ or M, w  ψ

• M, w  ϕ→ ψ iff
{
∃w′ ∈W such that M, w′  ϕ, and
∀w′ ∈W , if M, w′  ϕ then M, w′  ψ

Validity is defined by appealing to the designated world g.

Definition 4. Validity is defined so that:

Γ �PN ϕ if
{
there exists an M such that for all ψ ∈ Γ, M, g  ψ
for all M such that for all ψ ∈ Γ, M, g  ψ, also M, g  ϕ

The case of validity in PN is atypical in that it is not Tarskian. Notably, the pre-
sumption of reflexivity (i.e., self-entailment) fails, which can be clearly illustrated.
Consider the set {p∧∼p}. Then there exists no model M such that M, g  p∧∼p,
whence p ∧ ∼p 2PN p ∧ ∼p may be inferred.

3.2 Formal Languages
Of course, it is impossible to sufficiently express the richness of arithmetical theses
in a purely propositional language. For the purposes of this section—showing that
PA1, PA2, and PN are questionable bases for arithmetic—we need not develop the
full language of arithmetic. Rather, we appeal to weak subsystems of arithmetic,
simplifying matters by considering only a modest fragment of the full language of
arithmetic, i.e., the language with a constant 0, a binary symbol =̇ representing
identity, and a successor function (·)′.

We will define very weak languages that one may expect to be included in any
sufficiently expressive language of arithmetic and then proceed to describe general
schema for extending the semantics of PA1, PA2, and PN to a framework rich enough
to accommodate these languages.

Now, let us define the formal languages with which we will work. Suppose that
we have a denumerable set Var of variables {x0, x1, ..., y0, ...}; then the set of terms
Tm] is

{τ ′ ... ′︸︷︷︸
n times

| n ∈ ω and τ ∈ Var ∪ {0}}

The set of closed terms Tm]
C is the subset comprising instances of the symbol 0

followed by finitely (possibly zero) many applications of (·)′.
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Definition 5. At] is defined as the set {s=̇t | s, t ∈ Tm]} and the set of closed
atoms At]

C is defined as the set {s=̇t | s, t ∈ Tm]
C}.

Given the distinct logical connectives of PA1 and PA2, we must define two lan-
guages of arithmetic.

Definition 6. If ϕ is a formula and s, t ∈ Tm], then ϕ[s ::= t] is the formula
generated by replacing each instance of s with an instance of t.

Definition 7. L ] is defined

• If ϕ ∈ At] then ϕ ∈ L ]

• If ϕ ∈ L ] then ∼ϕ ∈ L ]

• If ϕ,ψ ∈ L ] then ϕ ∧ ψ ∈ L ]

• If ϕ,ψ ∈ L ] then ϕ→ ψ ∈ L ]

• If ϕ ∈ L ] then ∀x(ϕ[t ::= x]) ∈ L ] for x ∈ Var

Definition 8. L ]
T is defined in a similar fashion, appending the recursive clause:

• If ϕ ∈ L ]
T then Tϕ ∈ L ]

T

3.3 Protoarithmetical Theories in Angell’s PA1 and PA2
In this section, we will consider some of the idiosyncrasies that will meet arithmetic
if its axioms are formulated in appropriately rich extensions of PA1 and PA2.

Definition 9. A universal-identity (UI) extension of PA1 is any deductive system
extending PA1 rich enough to ensure that:

• there exist valuations v : At]
C → VPA1

• the valuations respect the truth functions of PA1
• for any valuation v there exists a recursive method of evaluating each formula
∀xϕ[t ::= x] so that v(∀xϕ[t ::= x]) ∈ VPA1

A UI extension of PA2 is defined analogously.

We will denote these systems generically by “PA1+” and “PA2+,” defining validity
in the expected way:
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Definition 10. We say that Γ �PA1+ ϕ (respectively, Γ �PA2+ ϕ) when in every
PA1+ model (respectively, PA2+ model) such that v(ψ) ∈ DPA1 for all ψ ∈ Γ, also
v(ϕ) ∈ DPA1 (respectively, DPA2).

A further logical definition is required before turning to look at arithmetic-specific
considerations. We will define a theory semantically as a set of sentences closed
under semantic consequence:

Definition 11. In a deductive system L, a theory T is a collection of sentences
closed under semantic consequence, that is, T is a set such that ϕ ∈ T iff T �L ϕ.

Note an important aspect of the foregoing definition. In classical logic, the standard
definition of a theory is only that T �L ϕ entails that ϕ ∈ T . While the converse holds
classically by the definition of consequence—guaranteeing the felicity of the above
definition—the converse must be explicitly expressed in cases in which consequence
is non-Tarskian.

Now, suppose we also employ a convention defining an extension of L ] to include
formulae with open variables x, y, etc. Then the standard definition of a bounded
universal quantifier is expressible in the theories of L ].

Definition 12. For a natural number n, define a bounded universal quantifier so
that

(∀x ≤ n)ϕ(x) =df ϕ(x)[x := 0] ∧ ϕ(x)[x := 0′] ∧ ... ∧ ϕ(x)[x := 0 ′ ... ′︸︷︷︸
n times

]

A very reasonable expectation concerning bounded universal quantifiers in arith-
metic is that if all natural numbers less than n have a property ϕ, then when
m < n, all natural numbers less than m have the property ϕ.

Despite this expectation, we observe the following idiosyncrasy with respect to
arithmetic in any UI extension of PA1:

Observation 1. There exists a formula ψ such that for any theory T in a UI
extension PA1+ and natural numbers m and n,

T �PA1+ (∀x ≤ n+ 2m)ψ(x)→ (∀x ≤ n)ψ(x)

although

T 2PA1+ (∀x ≤ n+ 2m− 1)ψ(x)→ (∀x ≤ n)ψ(x)

369



T. M. Ferguson

Proof. Let x ˙6=y denote the formula ∼(x=̇y) and let ψ(x) denote the formula
∼((x=̇x → (x ˙6=x)) ∧ (x=̇x → x ˙6=x)). Then it can easily be confirmed that for
any natural number n, the value assigned to ψ(x)[x := pnq] is 0.

Then the value assigned to (∀x ≤ n)ψ(x) is determined entirely by the parity of
n, that is, for any valuation v, we have the following:

v((∀x ≤ n)ψ(x)) =
{

0 if n is odd
1 if n is even

Hence, the formula (∀x ≤ n + 2m)ψ(x) → (∀x ≤ n)ψ(x) will take a value of 1 in
any model of T while (∀ ≤ n+ 2m− 1)ψ(x)→ (∀x ≤ n)ψ(x) will take a value of 2
in any model of T .

This means that for all n, T �PA1+ (∀x ≤ n+2m)ψ(x)→ (∀x ≤ n)ψ(x) although
T 2PA1+ (∀x ≤ n+ 2m− 1)ψ(x)→ (∀x ≤ n)ψ(x).

Note that this is common to all PA1+ theories, not merely those including some
fragment of arithmetic. In other words, this pathology is intimately related to John
Woods’ diagnosis of the “defects” of McCall’s connexive CC1. Although CC1 is
distinct from PA1, the similarity of the two entails that Woods’ objection applies
equally to both systems:

The upshot would appear to be that p connexively implies only odd-
numbered conjunctions of occurrences of itself, and never even-numbered
ones. [27, 474]

This feature is arguably more troubling in the context of arithmetic, as the forego-
ing observation lifts the pathology from matters of logical form to the behavior of
bounded quantification over natural numbers.

Although the revisions to conjunction central to Angell’s PA2 seem to solve these
apparently counterintuitive features of bounded quantification—PA2 is introduced
precisely to repair the pathology concerning conjunction in PA1—there remain some
peculiarities facing PA2 theories of very weak subsystems of arithmetic. Let us define
conditions for PA2+ theories to be protoarithmetical.

Definition 13. Call a theory T protoarithmetical if

• For all t ∈ Tm]
C , t=̇t ∈ T

• For all s, t ∈ Tm]
C , s′=̇t′ → s=̇t ∈ T

Essentially, that T is protoarithmetical is to say that it provides a natural interpre-
tation of identity and that each instance of the successor axiom holds.
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Lemma 1. Let v be a model of a protoarithmetical theory in a UI extension of PA2.
Then

• for all t ∈ Tm]
C , v(t=̇t) = 0 or

• for all t ∈ Tm]
C , v(t=̇t) = 1.

Proof. Suppose not and that there exist s, t ∈ Tm]
C such that v(s=̇s) = 0 although

v(t=̇t) = 1. For a term t ∈ Tm]
C , let κ(t) denote the number of primes occurring in

t so that, e.g., κ(0′′′) = 3.
Suppose without loss of generality that κ(s) < κ(t). Then there exists a term

u ∈ Tm]
C (possibly s) such that κ(s) ≤ κ(u) < κ(u′) ≤ κ(t) where v(u=̇u) = 0 and

v(u′=̇u′) = 1. Simple calculation entails that v(u′=̇u′ → u=̇u) = 3, which is not
designated. This contradicts the assumed protoarithmeticity of the theory of v.

First, consider the following definitions. Let PA2+ be a UI extension of PA2:

Definition 14. A protoarithmetical PA2+ theory T is literal if for every term t ∈
At]

C , T �PA2+ (t=̇t)↔ T(t=̇t).

Definition 15. A protoarithmetical PA2+ theory T is illiterate if for every term
t ∈ At]

C , T �PA2+ ∼((t=̇t)↔ T(t=̇t)).

Given the interpretation given to T in [3], a theory is literal if all statements of self-
identity are literally true and a theory is illiterate if self-identity is always meant
hypothetically, that is, formulae of the form t=̇t are considered absent any assump-
tion that t=̇t is true.

If we use “completeness” of a theory in the model-theoretic sense, i.e., that T
is complete when it is the theory of some model, these are the only types of com-
plete protoarithmetical PA2+ theory—and a fortiori, the only two types of complete
theories of PA2+ arithmetic. Consider the following observation:

Observation 2. For each UI extension of PA2, every complete protoarithmetical
theory is either literal or illiterate.

Proof. By model-theoretic completeness, T is the theory of a model v; from Lemma
1, either for all formulae t=̇t ∈ At]

C , v(t=̇t) = 0 or for all t=̇t ∈ At]
C , v(t=̇t) = 1.

By examining the truth tables for PA2—which PA2+ must respect—we draw the
inference that v will either uniformly assign formulae (t=̇t) ↔ T(t=̇t) the value of
3 (in the former case) or uniformly assign such formulae the value 1. As T is the
theory of v, it follows that either T is literal or illiterate.
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3.4 Numerically Inductive Theories in Priest’s PN

Just as we considered a very general scheme for extending PA1 and PA2, we can give
a similar definition to suitable extensions of PN.

Definition 16. A universal extension of PN is any extension enriching PN suffi-
ciently so that:

• models have valuations v : At]
C → ℘(W )

• the forcing conditions for the connectives are identical to those in PN

• for any model there is a recursive method of evaluating a formula ∀xϕ[t ::= x]
governing when w  ∀xϕ[t ::= x]

Recall the earlier qualification made with respect to the definition of a theory. The
peculiarities of PN—and any first-order extensions of PN—have important conse-
quences for this notion. Standardly, any set of sentences has a deductive closure
modulo most deductive systems. But the notion of logical consequence in PN devi-
ates from the standard Tarskian account and not all sets of formulae can serve as
the kernel of a deductive closure. For example, inasmuch as p ∧ ∼p 0PN p ∧ ∼p, the
set {p ∧ ∼p} may not have a deductive closure modulo `PN , i.e., {p ∧ ∼p}`PN = ∅.
This follows intuitively from Priest’s formalization of negation-as-cancellation. The
set {p ∧ ∼p} has no content and therefore has no deductive closure.

We are still concerned with showing problems with formalizing even weak arith-
metics in connexive logic but will now consider theories besides protoarithmetical
theories. It is likely that we would wish to retain some aspect of induction in our
theories of arithmetic. Let us define the following notion:

Definition 17. Let T be a theory in a UI extension of PN whose language extends
L ]. Then T is numerically inductive if the signature of T extends the signature of
arithmetic and for every formula ϕ(x), the formula

[(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x′)))→ ∀xϕ(x)] ∈ T .

Observation 3. In any UI extension of PN there are no numerically inductive the-
ories.

Proof. Let ψ be an arbitrary formula of the language (e.g., 0=̇0), let ϕ(x) = (ψ →
∼ψ), and let P+

N be an arbitrary UI extension of PN. Then for no w in any model M
will M, w  ϕ(0). Thus for arbitrary formulae ξ and ζ, the formula (ψ(0) ∧ ξ)→ ζ
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will be logically false. Hence, no matter how quantification is handled in P+
N —

i.e., irrespective of the points at which ∀x(ϕ(x) → ϕ(x′)) and ∀x(ϕ(x)) are true—
ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x′)) will hold at no w in the model by the forcing conditions
for connexive implication. It follows the formula (ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x′))) →
∀xϕ(x) will hold at no w and a fortiori at no designated point g. Moreover, if
(ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x′))) → ∀xϕ(x) ∈ T then the deductive closure of T is ∅,
that is, there are no theories including all instances of the arithmetical induction
schema.

We noted that the scheme (ϕ(0)∧ ξ)→ ζ will have logically false instances for all ξ
and ζ in any UI extension of PN. Thus, even significant restrictions to induction—
e.g., induction on quantifier-free formulae—cannot obtain. However, it is worth
noting that this pathology does not at first blush conflict with Robinson’s Q, as Q
lacks any type of induction axiom scheme. Hence, advocates of very weak subsystems
of Peano arithmetic may not be discouraged by this observation.

Furthermore, it is worth mentioning that this constitutes a trivial decidability
result concerning the Peano axioms in P+

N , i.e., (P+
N )]. Consider an arbitrary formula

ϕ in a language extending L ] and ask: Is ϕ a logical consequence of the theory
(P+

N )]? Of course, we have an answer: No. By Observation 3, (P+
N )] has no logical

consequences and is thus trivially decidable.
On its face, Observation 3 might seem to entail that first-order extensions of PN

are not suitable bases for the formulation of arithmetic. Despite this, it is important
to note that the fact that Peano arithmetic cannot be formulated in this system does
not entail that arithmetic cannot be so formulated. All this shows is that systems
of arithmetic that include even meager species of induction are not practicable.
But not all theories of arithmetic posit induction. Observation 3 fails to rule out
that Robinson’s Q—the axioms of Peano arithmetic without the induction schema—
can be formulated in Priest’s system. Moreover, several philosophical standpoints
anticipate that inclusion of the induction axioms with the other Peano axioms should
yield a trivial result. From the perspective of strict finitism—a position with which
Priest himself has flirted in [16]—the true pathology is found not in the failure of
induction but in the supposition that it holds. That an arithmetic with induction
is empty in the sense of Observation 3, after all, is a side of the same medal as e.g.,
Edward Nelson’s attempts to show that arithmetic with induction is inconsistent
(see, e.g., [14] for Edward Nelson’s criticism of the inherent impredicativity of the
induction schema).
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4 Conclusion

In this paper, we have surveyed a number of topics concerning the implementation
of a connexive arithmetic. The foregoing observations have ranged from the encour-
aging (e.g., the rebuttal to Łukasiewicz’ argument against Aristotle’s Thesis) to the
discouraging (e.g., the pathologies of PA1). However, especially in the cases of UI
extensions of PA2 and PN, what has been uncovered is that conjoining connexive
and arithmetical concerns yields a landscape that is not insuperable, although its
terrain may appear quite alien from the perspective of classical mathematics.

One can justifiably interpret this as an invitation to further study. Supposing
that there exist models of, say, Q in UI extensions of PA2 and PN, there are many
natural questions that emerge: Is there a robust and natural way of interpreting
the distinction between literal and illiterate models in PA2+? Is there any recursive
restriction of numerical induction (just as we restrict comprehension) that would
permit induction in P+

N arithmetic by, e.g., considering only induction for negation-
free formulae?

Given the pathologies that greet arithmetic formulated in these systems, it is
fair to say that the supposition that there exist a model of even Q in these systems
is a much stronger assumption than the existence of a model for classical PA. In
this regard, Wansing’s C provides a bit of a ray of light with respect to the pursuit
of connexive arithmetic. Given the faithful embedding of quantified C into positive
intuitionistic logic described in [21], it seems very likely that C] is Post consistent
relative to Heyting arithmetic J], that is:

Conjecture 1. If J] has a model then there exists a model of C].

This conjecture is very plausible and suggests that in the case of C, the presumption
of the existence of a model of C] will be a corollary of mathematical orthodoxy.

As a field, modern studies in connexive logic have generally struggled with rec-
onciling the prima facie plausibility of connexive theses with the pathologies that
emerge during their formalization. Connexive arithmetic, it appears, faces a deriva-
tive problem. Nevertheless, the connexive milieu contains the possibility of a very
distinct philosophy of mathematics and, more specifically, may yield a novel way
of looking at arithmetic. Pursuing these matters further may be interesting not
only for the sake of connexive arithmetic itself, but as a means of providing a new
perspective on classical mathematical practice.
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Abstract

The paper has three aims. Firstly, the convergence result of conditional logics
for Systems P and R is extended; based on a Hilbert style axiomatization it is
proved that Lewis’s System V and Burgess’s variant system, System V∗, are
nothing but Lehmann and Magidor’s System R. Secondly, it is shown that
connexive principles are the center stage of axiomatizations of System P and
System R. They introduce a proof-theoretic dependency of two core principles
of System P and System R – Cautious Monotonicity and Rational Monotonicity
– even when the connexive principles are formulated as default rules. Thirdly,
the impossibility result for an extension of classical conditional logics by unre-
stricted connexive principles is strengthened. It is shown that such an impossi-
bility result ensues even when Principle Refl is given up, where the latter asserts
that ‘if A then A’ is a theorem. As a consequence, on pain of inconsistency any
complete classical conditional logic can include connexive principles only in a
restricted form, where classical conditional logics are minimal conditional logics
that take classical propositional calculus to govern propositional connectives
other than conditionals. Implications of the strengthened impossibility result
are discussed.

In the last decades there has been a strong convergence result for logics describing
conditionals. Again and again, two proof-theoretic systems, System P and System
R, have been obtained by utilizing a number of different semantic concepts. System
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R is the stronger of the two systems and differs from System P by including the
following principle, where ‘RM’ is short for ‘Rational Monotonicity’ and ¬, ∧, �
abbreviate ‘negation’, ‘conjunction’, and the conditional operator, respectively:

RM if p�r and ¬(p�¬q) then (p ∧ q)�r

Both systems, System P and System R, have been found to characterize the con-
servative core of material consequence relations of default logics and non-monotonic
logics [36, 14, 15] – consequence relations that describe warranted inferences given
any type of assumption, including default assumptions. Inferences based on default
assumptions do not guarantee that the inferences hold under all possible circum-
stances; rather they might have to be retracted in light of further evidence.

Both systems also govern probabilistic inferences when the consequence relation
is understood in terms of preservation of high probability, independently of the par-
ticular framework chosen ([1, 2, 3, 4, 32, 10]; [25, Ch. 10]; [16, Theorems 69–71 and
97–100]). In addition, Systems P and R have been found to be the conditional logics
that result from reconstructing full beliefs – an agent does or does not believe a given
proposition – based on a probabilistic degree of belief framework in a non-trivial way
([18, 19, 22]; see also [13]). The principles of System P also receive empirical support
as principles guiding reasoning with conditionals. Studies in human reasoning show
that humans employ the rules of System P rather than those of classical logic in
probabilistic reasoning tasks (e.g., [27]).

Observe that not all of the convergence results put System P and System R in
opposition. In an Adams type probabilistic framework (e.g., [1, 2, 3, 4, 25, 32, 16])
both systems result from the same probabilistic semantics.1 Whether System P or
System R is obtained is determined by the degree to which the language is restricted
in which conditionals are expressed. System P results when the object language nei-
ther allows for nestings of conditionals (e.g., no ‘if p then if q then r’) nor for Boolean
combinations of conditionals (e.g., no ‘if p then q, and if r then s’). In Adams type
semantics arbitrary nestings of conditionals and arbitrary Boolean combinations of
conditionals cannot be allowed, for otherwise Lewis’s [21] triviality result ensues.
Yet, we can extend the language without triviality by including either negated con-
ditionals or disjunctions with conditionals as disjuncts and in both cases System R
is obtained ([4, 32, 16]; cf. [39, Ch. 3.6]). However, we cannot include both, negated
conditionals and disjunctions with conditionals as disjuncts, for otherwise Lewis’s
triviality result kicks in ([21]; cf. [39, Ch. 3.7]).2

1Note that not all probabilistic conditional logic systems validate the rules of System P. Systems
CLD (‘CLD’ for ‘Conditional Logic System of Douven’; [7, Theorem 5.2.1]) and O (e.g., [12, 34])
do not.

2Lewis’s triviality result is due to the assumption that the probability of a conditional ‘if p then
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Notice that not all convergence results are of this sort. For example, Lin and
Kelly’s [22] account of full beliefs differs from Leitgeb’s [18, 19] and this difference
gives rise to System P rather than System R (see also [13]).

The present paper pursues three goals. Firstly, it extends the convergence result
by proof theoretic means and shows that Lewis’s [20] counterfactual conditional
logic V and Burgess’s [5] variant system, System V∗, are nothing but System R
of Lehmann and Magidor’s [15]. The only requirement for the equivalence result
of Systems R, V, and V∗ is that the language is expressive enough to either allow
negated conditionals or disjunctions with conditionals as disjuncts (otherwise some
of the axioms cannot be expressed in the language). In fact, the result still upholds
if the language is extended to a full conditional language – in line with modal
conditional logics such as Lewis’s – which admit arbitrary nestings and Boolean
combinations of conditionals.

The equivalence of Systems R and V is shown in Theorem 7.32 of [39], whereas
the proof the equivalence of R and V∗ is new. Restating the equivalence result
in this paper seems worthwhile, since this result has only been stated in a 300+
pages book and has not yet received attention in the literature. In addition, the
equivalence proofs differ. This paper employs a full Hilbert style axiomatization
of the respective logics, devoid of axiom schemata. This contrasts with [39] who
uses a mixture of natural deduction and Hilbert-style axiomatization. A full Hilbert
style axiomatization is used here for the following reasons: Firstly, the resulting
axiomatization seems to be more natural than alternative axiomatizations (e.g.,
[35, 39]). Secondly, it is a further aim of this paper to show that a full Hilbert style
axiomatization of conditional logics is feasible as a means for the investigation of
proof theoretic dependencies in such systems. Thirdly, the use of the current Hilbert
style axiomatization makes the reliance of the equivalence proofs on the tautologies
as described by classical propositional calculus more explicit.

Moreover, the new result – the equivalence of Burgess’s System V∗ and System
R – is particularly interesting. For the axiomatization of System V∗ Burgess uses
an alternative version of RM. This version of RM uses conditionals of the form (1)
α ∨ β� ¬β rather than conditionals of the form (2) α ∨ β� α. In conditional
logics, such as Lewis’s, conditionals of type (1) are stronger than conditionals of
type (2). (2) indicates not only that α is as normal as β – as does (1) – but asserts
that α is strictly more normal than β (cf. [31, p. 1224]). The equivalence proof also

q’ is equal to the conditional probability P (q | p), which is satisfied in Adams type semantics. Note
that Lewis’s triviality result does not generalize to non-probabilistic semantics for conditionals, such
as Lewis’s [20] (cf. [39, Ch. 3.7]). In addition, there are probabilistic semantics that differ from
Adams’s approach and which allow for conjunctions of conditionals without falling prey to Lewis’s
triviality result either (e.g., [11]).
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makes explicit the conditions under which a specification of RM in terms of such a
strict normality ordering is viable.

Note that System P comes in two different brands. One brand ([3, 22]) in-
cludes the default version of Boethius’s thesis – a connexive principle – which can
be formulated as follows (‘DBT’ for ‘Default Version of Boethius’s Thesis’):3 4

DBT if α is consistent then (α�β)→¬(α�¬β)
DBT merits the label ‘default’ for the following reason. By default we seem to
restrict BT intuitively to cases in which the antecedent α is consistent.

In contrast to the first brand of System P, the Principle DBT is missing from
the second brand of System P, as described by [14] and [1, 2] (see [39, Ch. 3.6]).5
This default formulation of BT contrasts with the full version of BT and a full
version of Aristotle’s Thesis (AT), which are as follows (‘→’ for ‘material implication’,
[42, 43, 23]):
AT ¬(p�¬p)
BT (p�q)→¬(p�¬q)
Analogously to DBT, also a default version of DAT such as the following can be
introduced:
DAT if α is consistent then ¬(α�¬α)
It might appear inconsequential whether a connexive principle, such as DAT or DBT,
is included in the axiomatization of Systems P and R. However, it is not, and it is
the second aim of the paper to show why this is not so. Observe that there is an
alternative way to restrict AT and BT. This approach uses the notion of possibility
rather than the notion of consistency and we shall discuss this second approach at
the end of this section.

On the contrary, connexive principles are highly relevant for the axiomatization
of System P and System R, since they connect two core principles of Systems P
and R, Principle RM and Principle CM (‘Cautious Monotonicity’), where CM is a
theorem of both, System P and System R:

3Adams’s [3, p. 56] explicitly states that α � β and α � β are inconsistent in his logic.
Adams’s assertion might look like a full version of BT. However, it is a proper default version of BT
as [3, p. 45f] allows only conditionals with consistent antecedents to be expressible in the language
(cf. [39, Section 3.6.3]). In contrast, Adams’s [3] official rule is in fact closer to DAT (see below)
than to DBT. [3, p. 61, R7] states that if α is logically consistent and α∧ β is logically inconsistent
then α� β implies anything in his logic.

4For an empirical investigation of AT and BT in a probabilistic context see, for example, [26].
5There is a further difference between axiomatizations of P; some axiomatizations of System P

include the centering axioms [1, 2, 3, 22] whereas others, in particular [14], do not. I restrict myself
here to the discussion of System P as described in [14] plus possibly Principles DBT and DAT.
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RM (p�r)→ (¬(p�¬q)→ ((p ∧ q)�r))
CM (p�r)→ ((p�q)→ ((p ∧ q)�r))
In particular, it can be shown that given very weak assumptions CM is derivable from
RM in the presence of DAT [DBT], whereas the remaining axioms of System P and
RM do not imply CM when DAT [DBT] is absent. The only ‘substantial’ assumption
for this result is that the conditional logic L renders the following principle a theorem
(‘Refl’ for ‘Reflexivity’):

Refl p�p

Consequently, connexive principles are at the center stage for any axiomatization of
System R. This result is heightened in the light of the equivalence of Lewis’s V and
Burgess’s System V∗ and R – implying that connexive principles play a decisive role
for a broad range of conditional logics.

Before turning to the third aim of the paper, let me explain why DAT and
DBT are of interest in a probabilistic semantics for conditionals as described above.
The core idea of such probabilistic semantics for conditionals is that conditionals are
acceptable iff their conditional probability is high. In contrast to classical and modal
logics the validity of arguments is not understood as truth preservation – the truth of
all premises guarantees that the conclusion is true as well – but rather preservation
of high (conditional) probability. Preservation of high (conditional) probability can
be spelled out in very different ways. For example, in an Adams type semantics
the premises of a valid argument warrant an arbitrarily high probability of the
conclusion. Despite the different ways in which preservation of high (conditional)
probability can be understood, the same proof-theoretic systems result as outlined
above.

A peculiarity in such a high conditional probability framework is that AT and
BT are almost valid. Ignoring cases in which conditional probabilities are trivial
in a sense described below, P (β |α) and P (¬β |α) cannot both be high for a given
probability function P . This gives rise to the fact that we cannot accept both α� β
and α� ¬β, which is exactly what BT asserts.6 The only exception occurs when
the respective conditional probability P (· |α) is trivial in the sense that P (γ |α) = 1
for any γ. On a standard account of conditional probabilities this amounts to the
unconditional probability of α equalling zero.7 For example, in [3] the validity of

6Analogously, P (α |α) and P (¬α |α) cannot both be high and since P (α |α) = 1 it follows that
P (¬α |α) is low.

7Standard accounts of conditional probability define conditional probability in terms of uncon-
ditional probability. The above notion of trivial conditional probability functions still applies on
a Popper function account of conditional probability (e.g., [41]). On such an account conditional
probability is taken as primitive.
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DAT and DBT is achieved by treating conditional probabilities P (β |α) as undefined
whenever P (α) equals zero. (Adams employs a standard account of conditional
probability.) However, in order for Adams’s semantics to work, the conditional
probability P (β |α) has to be defined for some probability function P . The only
case in which this is not possible is the case in which α is a logical contradiction.
This is due to the fact that the standard axioms of probability require any logical
contradiction to receive a probability value of zero (as they require any logical truth
to receive a probability value of one). The default versions of AT and BT – DAT and
DBT – now exclude this problematic case, due to requirement that the antecedent
of a conditional has to be consistent in order for AT and BT to be applicable.

The third and final aim of this paper is to strengthen the impossibility result for
connexive extensions of classical conditional logics. The impossibility result asserts
that any classical conditional logic can be extended only by restricted versions of
AT and BT, on pain of inconsistency of the system. Classical conditional logics are
minimal conditional logics, where minimal conditional logics require (i) consequents
of conditionals to form deductively closed sets and (ii) conditionals with a fixed
consequent and logically equivalent antecedents are logically equivalent. Classical
conditional logics are then minimal conditional logics which take classical logic to
govern logical equivalence and deductive closure as described in (i) and (ii) for
propositional connectives other than conditionals.

The original impossibility result is stated for any classical conditional logic that
includes Refl. Let us see why this impossibility result holds. Take ⊥ (‘falsum’) to
be any contradiction, for example, p ∧ ¬p. Then, by Refl ⊥�⊥ follows. However,
⊥� ⊥ implies by (i) above that ⊥� ¬⊥ for classical conditional logics, thus
contradicting both BT and AT. On the other hand, ⊥ is the only case in which this
inference holds up. Thus, if we ensure that the antecedent is consistent – as done
by DBT and DAT – then the resulting system will not be inconsistent.

The paper strengthens this impossibility result by proving that this result holds
without Refl. To this end, Chellas-Segerberg (CS) semantics [6, 35] is used, a seman-
tics which is sound and complete with respect to the class of classical conditional
logic. It is shown that AT and BT correspond to distinct frame conditions in that
semantics. Remarkably, AT corresponds to a strictly stronger frame condition than
BT, yet the frame condition corresponding to AT cannot be satisfied in CS seman-
tics. As a result, even in such a minimal classical conditional logic as described by
CS semantics no extension by connexive principles without qualification is possible.
Note that the great majority of conditional logics discussed in literature are classical.
This includes Systems P and R described above.8

8Non-classical conditional logic systems with a probabilistic semantics are, for example, System
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The ‘culprit’ of the strengthened impossibility result is in fact the principle LT
(‘logical truth’) which asserts that for any theorem β, α� β is a theorem. The
original and the strengthened triviality results suggest then two possible approaches.
We can restrict AT and BT as for example [3] and [22] do – or we can restrict Refl
and LT, where [20, Sect. 1.6] and [29] seem to take the latter approach. (More on
this in Section 5).

To describe the proof-theoretic relation between CM and RM due to DAT [DBT],
the proof theory is extended to include default rule inferences. Default rules are
based on consistency conditions apart from derivability conditions. Note that con-
sistency conditions are nothing but non-provability conditions in disguise.9 To see
that, take the consistency condition in DAT and DBT. (1) By definition α is consis-
tent in a classical conditional logic L iff α is not inconsistent in L. (2) A formula α
is inconsistent in L iff there exists a proof in L that shows that ¬α is a theorem of L.
(1) and (2) imply that a formula α is consistent in a logic L iff ¬α is not provable in
L, yielding the desired result.10 To make the structure of proofs more perspicuous, I
shall give the proofs in terms of non-derivability conditions rather than consistency
conditions.

In general, default logics – logics which admit default rules – are non-monotonic.
That is, whenever a formula α is derivable from a set of formulae ∆, it is not
guaranteed that α is derivable from a set Γ such that ∆ ⊆ Γ. Monotonicity may
fail due to reliance on default rules, since a derivation of α from ∆ by a default
rule depends on the non-derivability of a formula β from the formulae in ∆ – a
condition which may not be satisfied for Γ. However, there is a set of theorems of
default logics which relies on non-trivial default rules, yet is monotonic in the above

CLD ([7]; see my Footnote 1) and System O (e.g., [12, 34]). The main difference between these
logics and classical conditional logics is that these non-classical conditional logics do not satisfy
AND (see Section 1). Interestingly, Douven’s logic neither satisfies Refl.

9The notion of consistency employed here is nothing but the standard notion of consistency
from logic (e.g., [8, p. 119]; see Section 1.2).

10The use of non-derivability conditions makes the resulting system a proper refutation logic
(cf. [37]). Note that the inclusion of default rules leads to problems. For a general first-order
extension of such systems, either (i) finite axiomatizability has to be given up (by including an
infinite number of non-theorems as axioms) or (ii) both non-derivability and derivability have to
axiomatized. Step (ii) is also problematic as it implies that there is no guarantee that such a first-
order extension is complete (e.g., [33, pp. 42–44]). Note, however, that some first-order extensions
are complete, such as negation-complete first-order theories [39, p. 53f]. Observe furthermore that
the axiomatization of DAT and DBT depends only on the non-provability of single formulae rather
than the non-derivability of formulae from sets of formulae [39, p. 50f] – a feature that may make
all the difference for a completeness result. Both notions diverge since the non-derivability of a
formula from a set of formulae is not reducible to the non-provability of a single formula – in
contrast to provability and derivability.
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sense. This happens to be the case if a formula α can be derived based on both
– a non-provability condition for some formula β – and a provability claim of the
same formula β. In order to allow for this type of ‘stable’ inference, a new inference
rule, TNT (‘TNT’ for ‘Theorem Non-Theorem’), is introduced that governs this
type of inference. Such an extensions of a default logic proof theory is required for
this paper, as the proof-theoretic dependence between CM and RM based on DAT
[DBT] is of that sort.

Moreover, to establish the negative claim – that in the absence of DAT [DBT]
the proof-theoretic dependence of CM and RM does not uphold – CS semantics is
used. To this end, the proof draws on the correspondence result of the conditional
logic principles of Systems P and R in CS semantics [39, 40].

Before we turn to the outline of the paper let us discuss an alternative way to
restrict AT and BT. This approach requires the antecedent α in AT and BT to be
possible (short: 3α) rather than to be consistent, where possibility is the stronger
of the two notions. This gives rise to the following two restricted versions of AT and
BT:
PAT 3α→¬(α�¬α)
PBT 3α→ ((α�β)→¬(α�¬β))
However, PAT and PBT are too weak to capture AT and BT in a meaningful way. In
conditional logics 3α is customarily defined in such a way that 3α iff ¬(α� ¬α).11
12 13 Thus, 3α is tantamount to AT, trivializing PAT and PBT. (PBT is trivial
when a classical conditional logic is used, as AT implies BT in classical conditional
logics by Lemma 5 of Section 2.) The problem with this definition of 3α is that it
is too strong. However, weaker definitions are hard to come by if not impossible.
In fact, if we understand 3α asserting that any formula α is true at some world
in some intensional model, we end up with the requirement that α is consistent, as
described by DAT [DBT]. The same holds for probabilistic models, such as Adams’s,
when ‘possibly α’ is understood as it being possible that α is assigned an arbitrarily

11In conditional logics 2α is defined as ¬α� α (e.g., [20, p. 22]; [24, p. 52]). Furthermore, 3α
is the dual of 2α implying 3α iff ¬2¬α. By condition (ii) of classical conditional logics, the above
equality follows. Note that in order to warrant the interpretation of 3α and 2α as ‘possibly α’ and
‘necessarily α’ in the usual sense, respectively, the classical conditional logic has to be augmented
by Principles Refl and MOD, where MOD is as follows: (¬p� p)→(q� p).

12[20, p. 22] employs a second type of possibility, called ‘inner possibility’ (short: �α), where
�α can be defined as (> � ⊥) ∨ ¬(> � ¬α). However, using �α rather than 3α for PAT and
PBT does not work. PAT and PBT are designed to exclude the cases in which α is logically false,
whereas �α holds trivially for logically false formulae α.

13[38] also uses the notion of possibility in his conditional logic semantics, as described by his
accessibility relation R. It is, however, easy to see that in his semantics R is formally ineffective
and thus can be omitted [20, p. 78].
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high probability. As a result, we shall restrict ourselves to versions DAT and DBT
rather than PAT and PBT, respectively.

The paper proceeds as follows. Section 1 describes the proof theory and model
theory used throughout the paper. Section 2 strengthens the impossibility result of
connexive principles in classical conditional logics. Section 3 proves the equivalence
of Systems R, V, and V∗ and Section 4 characterizes the proof-theoretic relation
between CM and RM due to connexive principles such as DBT. Finally, Section 5
discusses some implications of the present results.

1 Basic Definitions
This section describes the proof theory and model theory used in this paper. To
this end, two languages are introduced – the object language of the conditional logic
and the language in which the frame conditions of the model theory are formulated.
Furthermore, the traditional proof theory used in Sections 2 and 3 are described and
the model theoretic notions employed by CS semantics are outlined. The extension
of this proof theory to the default logic used for the derivation of CM from RM is
postponed to Section 4.

1.1 Languages
Throughout this paper I shall employ the full conditional logic language LCL (‘CL’
for ‘Conditional Logic’). LCL contains atomic propositional variables p, q, r, s, t, p1,
p2, . . . ∈ AV (AV is the set of atomic propositional variables) and is closed under the
truth-functional propositional connectives ¬ (‘negation’),→ (‘material implication’),
∧ (‘conjunction’), ∨ (‘disjunction’), and ↔ (‘material coimplication’) as well as the
two-place modal operator� (‘conditional’). In particular, language LCL allows for
nestings and Boolean combinations of conditional formulae.

The expressions α, α1, α2, . . . , β, γ, . . . stand for to arbitrary formulae of lan-
guage LCL. Henceforth, I shall refer by ‘formulae’ to formulae of language LCL,
except when indicated otherwise. I also omit outer parentheses and further paren-
theses as I assume that ¬ binds stronger than ∧ and ∨ and that ∧ and ∨ bind
stronger than� and→. For example, p ∧ q�r is short for ((p ∧ q)�r).

In addition to LCL I employ the language LFC (‘FC’ for ‘Frame Condition’) –
the language in which the structural conditions for our semantics are formulated.
Language LFC is the fragment of the first order logic language which contains (a)
variables for worlds w,w′, w′′, . . . and sets of worlds X,Y,X1, X2, . . ., (b) connectives
∼ (‘negation’), f (‘conjunction’), g (‘disjunction’), and ⇒ (‘material implication’),
(c) quantifiers ∀ (‘universal quantifier’), and ∃ (‘existential quantifier’), and (d) the
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non-logical predicate R(w,w′, X) (‘accessibility relation’), where w, w′ are arbitrary
world in a given set of possible worlds W and X is a subset of W . Furthermore, I
shall abbreviate ‘R(w,w′, X)’ by ‘wRXw′’.

1.2 Proof Theory
Propositional Logic The axiomatization of the propositional part of the con-
ditional logic is given by the following axioms and rules (‘A’ for ‘axiom’, ‘R’ for
‘rule’):
A1 p→ (q→p)
A2 (p→ (q→ r))→ ((p→ q)→ (p→ r))
A3 (¬p→¬q)→ (q→p)
R1 If α and α→β then β MP
R2 From α to conclude α[p1/β1, . . . , pn/βn] Sub
R3 if α then α[β1//γ1, . . . , βn//γn], such that β1, . . . , βn and γ1, . . . , γn are

substitution instances of the definienda and definiens of the following
definitions, respectively, or vice versa:
p ∧ q = df ¬(p→¬q)
p ∨ q = df ¬p→ q
p↔ q = df ¬((p→ q)→¬(q→p))

The axiomatization is a variant of the well known Frege-Hilbert axiomatization
of classical propositional logic. ‘MP’ and ‘Sub’ abbreviate ‘Modus Ponens’ and
‘Substitution’, respectively. The formula α[p1/β1, . . . , pn/βn] is the formula which
results from simultaneously substituting every instance of p1, . . . , pn in α by an
instance of β1, . . . , βn, respectively. In contrast, α[β1//γ1, . . . , βn//γn], is any formula
α which results from replacing some formula βi, 1 ≤ i ≤ n, by γi for some occurrence
of βi in α. I refer to rules that are only admissible by the phrase ‘from . . . to
conclude . . . ’. Proper rules are described by ‘if . . . then . . . ’. In semantic terms,
admissible rules only guarantee that if the premises are valid, so is the consequent.
In contrast, proper rules are also truth preserving. Whenever the premises are true,
so is the conclusion. For example, due to MP we can infer that if p and p→ q are
true, so is q. In contrast, by Sub we can only infer that if α is valid, so are its
substitution instances. This difference is also mirrored by the fact that MP renders
p→ ((p→ q)→ q) a theorem, whereas there is no such theorem for Rule Sub.

A set of formulae L is a logic (in the traditional sense) if it contains A1–A3
and is closed under rules R1–R3. A proof of a formula α in such a logic L is a
finite sequence of formulae ending with α such that every formula in that sequence
is an axiom of L or follows by the rules of L from preceding formulae. A formula
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α is provable in L (short: `L α) iff there exists a proof of α in L. A formula
α is derivable from Γ in L (short: Γ `L α) iff `L β1 ∧ . . . ∧ βn → α for some n
such that β1, . . . , βn ∈ Γ. Furthermore, a formula α is L-consistent iff {α} 6`L ⊥,
where 0L denotes non-derivability in logic L and ⊥ is defined as p ∧ ¬p. In the
present proof system rules require other formulae to be provable. To show that
such rules are derivable we thus have to presuppose that (other) formulae are
provable. To indicate that the derivability of a formula depends on provability of
such a formula, I shall introduce such a provability assumptions and mark them with
the phrase ‘Condition of . . . ’. Steps in a proof that depend on such a provability
assumption are marked by a plus sign and the number of the line on which the
derivation depends. An example of such a derivation is the proof of Lemma 14.
Dependence of provability assumptions contrast with non-derivability assumptions
which are marked by a minus sign. Proofs and derivations based on non-provability
assumptions are described in more detail in Section 4.

A set of formulae Γ is L-inconsistent if Γ `L ⊥, where ⊥ can be defined as p∧¬p.
A formula α is L-inconsistent iff {α} `L ⊥. A logic L is inconsistent iff for every
set of formulae Γ it follows that Γ `L ⊥. A set of formulae [a formula, a logic] is
L-consistent iff it is not L-inconsistent [L-inconsistent, inconsistent]. This standard
notion of consistency ensures that a formula α is L inconsistent iff ¬α is a theorem
of L. This implies that α is L-consistent iff ¬α is not a theorem of L [8, p. 119] and
it is this latter equivalence which I shall frequently employ. Furthermore, I shall
omit reference to L when no ambiguity arises.

In addition to this extension of Hilbert style proofs, I simplify proofs in the
following two ways: Firstly, any theorem of propositional calculus can be added as
a new line in a proof with the label ‘pc’ (propositional calculus). Secondly, I use the
following derived rules:
DR1 if p→ q and q→ r then p→ r
DR2 if p→ (q→ r) and r→ s then p→ (q→ s)
DR3 if p→ q and r→ (q→ s) then r→ (p→ s)
DR4 if p→ q and p→ (q→ r) then p→ r
DR5 if p→ q and r→ (q→ s) then p→ (r→ s)
DR6 if p→ (¬q→ r) and p→ (q→ s) then p→ (¬s→ r)

Classical Conditional Logic Let L be a logic. L is then a classical conditional
logic iff it contains the following axiom and is closed under the following rules:
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A4 (p�q)→ ((p�r)→ (p�q ∧ r)) AND
R4 from β→γ to conclude (α�β)→ (α�γ) RW
R5 from α→β and β→α to conclude (α�γ)→ (β�γ) LLE
R6 from β to conclude α�β LT

‘RW’, ‘LLE’, and ‘LT’ abbreviate ‘Right Weakening’, ‘Left Logical Equivalence’ and
‘Logical Truth’, respectively. The weakest classical conditional conditional is also
known as System CK. The present axiomatization of System CK differs from alter-
native axiomatizations
[6, 35, 39]. Firstly, it is a Hilbert axiomatization that avoids axiom schema and
uses axioms rather than rules whenever possible – in contrast to [6] and [35]. In par-
ticular, Rule LT is used rather than the following axiom schema which is employed
by [35] (see also [39]), where > might be defined as p ∨ ¬p:

LT∗ α� >

LT is more natural than LT∗ for the following reason: LT∗ suggests that there is
something special about the constant > that allows it to be inferred as a consequent
β of a conditional α� β with an arbitrary antecedent α. This, however, is not the
case. Rather, > is a placeholder that allows us to infer conditionals with arbitrary
antecedents if the consequent is a theorem of the respective logic. This is, however,
exactly what LT asserts.

Secondly, the present axiomatization replaces AND, RW, and LT by the following
rule employed by [6]:

RCK from β1 ∧ . . . ∧ βn→ γ to conclude (α� β1) ∧ . . . ∧ (α� βn)→ (α� γ),
n ≥ 0

Note that in the case n = 0, RCK reduces to LT. That both axiomatizations are
equivalent can be seen from Lemma 13.

Using AND, RW, and LT rather than RCK has the following advantage: Not only
do the object language proofs become simpler. AND, RW, and LT assert distinct
properties of conditionals. For example, RW and LT require (other) formulae to be
theorems, whereas AND does not. Using them as separate principles rather than the
composite rule RCK allows us to make the role of those principles in the equivalence
proofs more explicit.

Let us now return to the default formulation of the connexive principles. DAT
and DBT are the default rule formulations of AT and BT, respectively, and are
described as follows:
DAT If 6` ¬α then ¬(α�¬α)
DBT If 6` ¬α then (α�β)→¬(α�¬β)
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I specify rules with non-provability assumptions in such a way that only non-
provability assumptions are explicitly marked by ‘6`’ – in contrast to regular prov-
ability conditions and conclusions.

1.3 Model Theory
As model theory serves CS semantics,14 I shall restrict myself to the bare minimum
of semantic notions needed to obtain the desired results, where Pow(X) is the power
set of a set X:

Definition 1. 〈W,R〉 is a Chellas frame iff
(a) W is a non-empty set of possible worlds
(b) R ⊆W ×W × Pow(W )

Definition 2. Let 〈W,R〉 be a Chellas frame. 〈W,R, V 〉 is then a Chellas model iff
V is a valuation function such that V : L→ Pow(W ) and the following conditions
hold for all w ∈W :
(a) 〈W,R, V 〉 |=w ¬α iff 〈W,R, V 〉 6|=w α
(b) 〈W,R, V 〉 |=w α→β iff if 〈W,R, V 〉 |=w α then 〈W,R, V 〉 |=w β
(c) 〈W,R, V 〉 |=w α�β iff for all w′ ∈ W such that wRV (α)w

′ it holds that
〈W,R, V 〉 |=w′ β

The expressions 〈W,R, V 〉 |=w α and 〈W,R, V 〉 6|=w α stand for w ∈ V (α) and
w 6∈ V (α) for a given model 〈W,R, V 〉, respectively.

A formula α is a valid in a Chellas model 〈W,R, V 〉 (short: 〈W,R, V 〉 |= α) iff for
all its substitution instances β and all worlds w ∈W it is the case that 〈W,R, V 〉 |=w

β. A formula α is a valid on a Chellas frame 〈W,R〉 (short: 〈W,R〉 |= α) iff for all
Chellas models 〈W,R, V 〉 it holds that 〈W,R, V 〉 |= α. A formula α follows from a
set of formulae Γ in a class of Chellas model M (short: Γ |=M α) iff for all worlds
w in all Chellas models 〈W,R, V 〉 in M the following holds: if 〈W,R, V 〉 |=w β for
all β ∈ Γ then 〈W,R, V 〉 |=w α. A set of formulae Γ is satisfiable in a Chellas model
〈W,R, V 〉 iff there is a world w in W such that 〈W,R, V 〉 |=w α for all α ∈ Γ. A
set of formulae Γ is satisfiable in a class of Chellas models M iff Γ is satisfiable in
a Chellas model 〈W,R, V 〉 in M. A classical conditional logic L is complete with
respect to a class of Chellas models M iff for all sets of formulae Γ and all formulae
α it holds that if Γ |=M α then Γ `L α. A formula α corresponds to frame condition
Cα iff for all Chellas frames 〈W,R〉 it holds: 〈W,R〉 |= α iff 〈W,R〉 satisfies Cα.

14A more detailed account of CS semantics can be found in [39] (see also [40]), including a
general, non-trivial completeness proof for a lattice of systems described by thirty conditional logic
principles and corresponding structural conditions.
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2 Strengthening the Impossibility Result

We observed earlier that any classical conditional logic that includes Refl cannot be
extended to include either AT and BT, on pain of inconsistency. Before describing
the relationship between AT, BT and their variants as well as strengthening this
impossibility result to systems without Refl, observe that Refl is not warranted by
all interpretations of conditionals. For example, Refl should not be a theorem when
p� q is understood as conditional obligation in the sense of ‘if p is factually the
case, then q ought to be the case’. A second such interpretation is given when
p� q describes an agent believing q after his/her beliefs are revised by p. Such a
revision process might not be successful, leading to the rejection of p rather than its
acceptance.

It can be shown that the following variants of AT and BT, AT′ and BT′, are
theorems of classical conditional logics, whenever AT and BT, respectively, are:

AT′ ¬(¬p�p)
BT′ (¬p�q)→¬(¬p�¬q)
This result is described by the following lemma:

Lemma 3. AT [BT] is a theorem of a classical conditional logic whenever AT′ [BT′]
is, and vice versa.
Proof. I only give the derivation of AT′ from AT. The proofs of the remaining facts
are analogous.

1. ¬(p�¬p) AT
2. ¬(¬p�¬¬p) 1, Sub (p/¬p)
3. p→¬¬p pc
4. (¬p�p)→ (¬p�¬¬p) 3, RW
5. (p→ q)→ (¬q→¬p) pc
6. ((¬p�p)→ (¬p�¬¬p))→ (¬(¬p�¬¬p)→
¬(¬p�p))

5, Sub (p/¬p�p, q/¬p�
¬¬p)

7. ¬(¬p�¬¬p)→¬(¬p�p) 4, 6, MP
8. ¬(¬p�p) 2, 7, MP

Furthermore, the following lemma establishes that any version of AT implies any
version of BT:

Lemma 4. BT and BT′ are theorems of a classical conditional logic whenever AT
or AT′ are.
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Proof. By Lemma 5 BT is a theorem of a classical conditional logic whenever AT
is.15 Lemma 3 establishes that AT is a theorem of such a logic whenever AT′ is, and
likewise for BT and BT′. This yields the desired result.

Lemma 5. If AT then BT.
Proof.
1. (p�q)→ ((p�r)→ (p�q ∧ r)) AND
2. (p�¬q)→ ((p�q)→ (p�¬q ∧ q)) 1, Sub (q/¬q, r/q)
3. ¬q ∧ q→¬p pc
4. (p�¬q ∧ q)→ (p�¬p) 3, RW
5. (p�¬q)→ ((p�q)→ (p�¬p)) 2, 4, DR2
6. (p→ (q→ r))→ (¬r→ (q→¬p)) pc
7. ((p�¬q)→ ((p�q)→ (p�¬p)))→

(¬(p�¬p)→ ((p�q)→¬(p�¬q)))

6, Sub (p/p�¬q, q/p�q, r/p�¬p)

8. ¬(p�¬p)→ ((p�q)→¬(p�¬q)) 5, 7, MP

In contrast, the converse of Lemma 5 cannot be established. Only the following,
weaker result holds:

Lemma 6. From BT to conclude (p�p)→¬(p�¬p)
Proof.
1. (p�q)→¬(p�¬q) BT
2. (p�p)→¬(p�¬p) 1, Sub (q/¬p)

Lemma 7. Let L be a classical conditional logic that renders Refl a theorem. Then,
(i) AT is a theorem of L iff BT is and (ii) DAT is a derivable rule of L iff DBT is.
Proof. The lemma is a direct consequence of Lemmata 5 and 6.
To see that the converse of Lemma 5 is not valid, note that the variants of AT and
BT correspond to distinct frame conditions in CS semantics.

Lemma 8. AT and BT correspond to frame condition CAT and CBT, respectively,
where CAT and CBT are as follows:
CAT ∀X∀w∃w′(wRXw′ f w′ ∈ X)
CBT ∀X∀w∃w′(wRXw′)
Proof. See Appendix A.

15Note that Lemma 5 is stronger than required as it ensures that BT is true whenever AT is.
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Observe that in spite of the correspondence result the following lemma can be given
concerning CAT:

Lemma 9. There is no Chellas frame 〈W,R〉 which satisfies CAT.
Proof. Let 〈W,R〉 be an arbitrary Chellas frame. It holds trivially that ∅ ⊆W , yet
there is no world w′ ∈ ∅. A fortiori, there is no world w ∈W such that wR∅w

′ and
w′ ∈ ∅. Consequently, 〈W,R〉 does not satisfy CAT.

Thus, although AT corresponds to a structural condition in CS semantics, this
structural condition is never satisfied in the semantics. Observe that the failure of
AT is due to the use of the empty set. The only formulae that have to be assigned
the empty set by all valuation functions are the inconsistent formulae. Thus, AT is
bound to fail when we substitute p by ⊥. This observation gives rise to the following
fact, where > is defined as ¬⊥:

Fact 10. There is no world w in a Chellas model 〈W,R, V 〉 such that 〈W,R, V 〉 |=w

¬(⊥�>).

Based on this fact, the following theorem can be proved:

Theorem 11. Any classical conditional logic L extended by AT is either inconsis-
tent or incomplete.
Proof. Let L be a logic extended by AT. By a standard proof (e.g., [8, p. 135]) a
classical conditional logic L is complete with respect to a class of Chellas models M
iff every L-consistent set of formulae is satisfiable in the class of Chellas models M.
Note that ¬(⊥�>) is a substitution instance of AT and thus a L theorem of any
set of formulae Γ. By a standard proof it can be shown that given Γ is L-consistent,
so is Γ∪{¬(⊥�>)}. Assume that Γ is L-consistent and L is complete with respect
to the class of Chellas models. Completeness implies that ¬(⊥�>) is satisfiable,
which it is not, due to Fact 10. Contradiction. As this holds for any set of formulae
Γ it follows that L is either inconsistent or incomplete.

Let me now give a diagnosis of the strengthened impossibility result. The ‘culprit’
is LT, as described in classical conditional logics. By LT it follows that ⊥� ¬⊥,
whereas AT implies ¬(⊥� ¬⊥) yielding a contradiction. The result is surprising,
since on the one hand LT is often thought to be an innocuous, almost trivial principle.
On the other hand, consistent connexive logics target other principles, such as RW
([30, Footnote 14]; [43, Sect. 2.1]).

The impossibility result leaves two avenues for classical conditional logics to
validate connexive principles. To obtain a consistent conditional logic, we can either
restrict AT [BT] or alternatively Refl [LT]. We saw in the introductory section that

392



Beyond System P

[3] and [22] take that former approach. However, it is also possible to use the
following restricted versions of Refl and LT:
DRefl if α is consistent, then α� α
DLT if α is consistent and β is a theorem, then α� β

As we shall see in Section 5, [29] and [20, Sect. 1.6] take that approach. However,
instead of a the requirement of the antecedent α to be consistent, the authors require
α to be possible, giving rise to the following principles:
PRefl 3α→ (α� α)
PLT if β is a theorem, then 3α→ (α� β)

3 Equivalence of Systems R, V, and V∗

As starting point of the equivalence proofs of R, V, and V∗ serves System P as
described by [14]. This system is a classical conditional logic L which in addition
includes the following principles ([14, Definition 5.1]; [39, Theorem 7.17]):
Refl p�p
CM (p�r)→ ((p�q)→ (p ∧ q�r))
Or (p�r)→ ((q�r)→ (p ∨ q�r))
System R differs from System P by including the following additional principle [15,
Definition 3.4]:
RM (p�r)→ (¬(p�¬q)→ (p ∧ q�r))
Note that this axiomatization of System P and System R is devoid of any connexive
principles. To simplify the Hilbert style equivalence proofs I shall use the following
principle which is a theorem of any classical conditional logic containing Refl:
Refl+ (p�q)→ (p�p ∧ q) [Refl]
In general, principles in brackets indicate which principles beyond those of classical
conditional logics are needed for the respective theorem to be provable. Let us prove
Refl+.

Lemma 12. From Refl to conclude Refl+.
Proof.
1. (p�q)→ ((p�r)→ (p�q ∧ r)) AND
2. (p�p)→ ((p�q)→ (p�p ∧ q)) 1, Sub (q/p, r/q)
3. p�p Refl
4. (p�q)→ (p�p ∧ q) 3, 2, MP
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3.1 Equivalence of Systems V and R
System V is the basic conditional logic system of Lewis. It is defined as the minimal
logic L which includes the following axioms and is closed under the following rules
([20, p. 132f]; [17, p. 54f]):

Axioms:
Refl p�p
MOD (¬p�p)→ (q�p)
LV (p�¬q) ∨ ((p ∧ q�r)↔ (p�(q→ r))

Rules:
RCK∗ from β1 ∧ . . . ∧ βn→γ to conclude (α�β1)→ (. . .→ ((α�βn)→ (α�γ)) . . .),

n ≥ 1
LE Exchange of Logical Equivalents:

LE1 from α→β and β→α to conclude (α�γ)→ (β�γ)
LE2 from β→γ and γ→β to conclude (α�β)→ (α�γ)

‘RCK∗’, ‘LE’, and ‘Mod’ abbreviate ‘Rule of System CK’ – a rule which is character-
istic of all classical conditional logics – as well as ‘Exchange of Logical Equivalents’,
and ‘Modality’, respectively. Note that RCK∗ – unlike RCK – excludes the case in
which n = 0. Moreover, LV is the axiom which is characteristic of Lewis’s System V.
To make the equivalence proof of System V and System R more perspicuous, I split
LV into the following halves:
LV1 (p ∧ q�r)→ (¬(p�¬q)→ (p�(q→ r)))
LV2 (p�(q→ r))→ (¬(p�¬q)→ (p ∧ q�r))
To further simplify the equivalence proof I shall use a divide and conquer strategy.
Before giving the equivalence proof, the following will be shown first: (i) LE1, RCK∗,
and Refl are equivalent to LLE, RW, AND, and Refl (Lemma 13), (ii) RM and LV2
are equivalent for classical conditional logics (Lemma 18), and (iii) the following
principle is equivalent to Principle Or for any classical conditional logic rendering
Refl a theorem (Lemma 21):

S (p ∧ q�r)→ (p�(q→ r))

Note that LE2 is a trivial consequence of RW and is not needed for the following
result:

Lemma 13. From RCK∗, LE1, LE2, and Refl to conclude AND, RW, LLE, and
Refl, and vice versa.
Proof. LE1 is nothing but LLE. Lemmata 14–16 give then the desired result.
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Lemma 14. From RCK∗ to conclude RW.
Proof.
1. β→γ Condition of RW
2. (α�β)→ (α�γ) +1 1, RCK∗ (n = 1)

Lemma 15. From RCK∗ to conclude AND.
Proof.
1. β ∧ γ→β ∧ γ pc
2. (α�β)→ ((α�γ)→ (α�β ∧ γ)) +1 RCK∗ (n = 2)

Lemma 16. From AND and RW to conclude RCK∗.
Proof.
1. β1 ∧ . . . ∧ βn→γ Condition of RCK∗
2. (α�β1 ∧ . . . ∧ βn)→ (α�γ) +1 1, RW
3. (p�q)→ ((p�r)→

(p�q ∧ r))
AND

4. (α�β1 ∧ . . . ∧ βn−1)→
((α�βn)→ (α�β1∧. . .∧βn))

3, Sub (p/α, q/β1∧ . . .∧βn−1, r/βn)

5. (α�β1 ∧ . . . ∧ βn−1)→
((α�βn)→ (α�γ))

+1 4, 2, DR2

...
(2n+1). (α�β1)→ (. . .→ ((α�βn)→

(α�γ)) . . .)
+1 5, (n-2)x Sub on 3 and (n-2)x DR2

Lemma 17. System V is a classical conditional logic.
Proof. Due to Lemma 13 it only remains to be shown that from RW and Refl to
conclude LT as given by the following derivation:
1. β Condition of LT
2. β→ (α→β) pc
3. α→β +1 1, 2, MP
4. (α�α)→ (α�β) +1 3, RW
5. p�p Refl
6. α�α 5, Sub (p/α)
7. α�β +1 6, 4, MP
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Lemma 18. Let L be a classical conditional logic. RM is in L iff LV2 is.
Proof. By Lemmata 19 and 20.

Lemma 19. From RM to conclude LV2.
Proof.
1. (p�r)→ (¬(p�¬q)→ (p ∧ q�r)) RM
2. (p�(q→ r))→ (¬(p�¬q)→ (p∧ q�(q→ r))) 1, Sub (r/q→ r)
3. (p�q)→ (p�p ∧ q) Refl+ [Refl]
4. (p ∧ q�(q→ r))→ (p ∧ q�p ∧ q ∧ (q→ r)) 3, Sub (p/p ∧ q, q/q→ r)
5. p ∧ q ∧ (q→ r)→ r pc
6. (p ∧ q�p ∧ q ∧ (q→ r))→ (p ∧ q�r) 5, RW
7. (p ∧ q�(q→ r))→ (p ∧ q�r) 4, 6, DR1
8. (p�(q→ r))→ (¬(p�¬q)→ (p ∧ q�r)) 2, 7, DR2

Lemma 20. From LV2 to conclude RM.
Proof.
1. (p�(q→ r))→ (¬(p�¬q)→ (p ∧ q�r)) LV2
2. r→ (q→ r) pc
3. (p�r)→ (p�(q→ r)) 2, RW
4. (p�r)→ (¬(p�¬q)→ (p ∧ q�r)) 3, 1, DR1

Lemma 21. Let L be a classical conditional logic which has Refl as a theorem.
Then, Or is a theorem of L iff S is.
Proof. By Lemmata 22 and 26.

Lemma 22. From S to conclude Or.
Proof.
1. (p�r)→ (p ∨ q�(p ∨ ¬q→ r)) Lemma 23 [S]
2. (q�r)→ (p ∨ q�(¬p ∨ q→ r)) Lemma 24 [S]
3. (p ∨ q�(p ∨ ¬q→ r))→ ((p ∨ q�(¬p ∨ q→ r))→ (p ∨ q�r)) Lemma 25
4. (p�r)→ ((p ∨ q�(¬p ∨ q→ r))→ (p ∨ q�r)) 1, 3, DR1
5. (p�r)→ ((q�r)→ (p ∨ q�r)) 2, 4, DR3

Lemma 23. From S to conclude (p�r)→ (p ∨ q�(p ∨ ¬q→ r)).
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Proof.
1. p→ (p ∨ q) ∧ (p ∨ ¬q) pc
2. (p ∨ q) ∧ (p ∨ ¬q)→p pc
3. (p�r)→ ((p ∨ q) ∧ (p ∨ ¬q)�r) 1, 2, LLE
4. (p ∧ q�r)→ (p�(q→ r)) S
5. ((p∨ q)∧ (p∨¬q)�r)→ (p∨ q�(p∨¬q→ r)) 4, Sub (p/p ∨ q, q/p ∨ ¬q)
6. (p�r)→ (p ∨ q�(p ∨ ¬q→ r)) 3, 5, DR1

Lemma 24. From S to conclude (q�r)→ (p ∨ q�(¬p ∨ q→ r)).
Proof.
1. q→ (p ∨ q) ∧ (¬p ∨ q) pc
2. (p ∨ q) ∧ (¬p ∨ q)→ q pc
3. (q�r)→ ((p ∨ q) ∧ (¬p ∨ q)�r) 1, 2, LLE
4. (p ∧ q�r)→ (p�(q→ r)) S
5. ((p∨ q)∧ (¬p∨ q)�r)→ (p∨ q�(¬p∨ q→ r)) 4, Sub (p/p ∨ q, q/¬p ∨ q)
6. (q�r)→ (p ∨ q�(¬p ∨ q→ r)) 3, 5, DR1

Lemma 25. (p ∨ q�(p ∨ ¬q→ r))→ ((p ∨ q�(¬p ∨ q→ r))→ (p ∨ q�r)).
Proof.
1. (p�q)→ ((p�r)→ (p�q ∧ r)) AND
2. (p ∨ q� (p ∨ ¬q → r))→ ((p ∨ q� (¬p ∨ q →

r))→ (p ∨ q�(p ∨ ¬q→ r) ∧ (¬p ∨ q→ r)))
1, Sub (p/p ∨ q, q/p ∨ ¬q→
r, r/¬p ∨ q→ r)

3. (p ∨ ¬q→ r) ∧ (¬p ∨ q→ r)→ r pc
4. (p∨q�(p∨¬q→ r)∧(¬p∨q→ r))→ (p∨q�r) 3, RW
5. (p ∨ q� (p ∨ ¬q → r))→ ((p ∨ q� (¬p ∨ q →

r))→ (p ∨ q�r))
2, 4, DR2

Lemma 26. From Or and Refl to conclude S (cf. [14, p. 191])

.
Proof.
1. p ∧ ¬q→ (q→ r) pc
2. (p ∧ ¬q�p ∧ ¬q)→ (p ∧ ¬q�q→ r) 1, RW
3. p�p Refl
4. p ∧ ¬q�p ∧ ¬q 3, Sub (p/p ∧ ¬q)
5. p ∧ ¬q�(q→ r) 4, 2, MP
6. (p�r)→ ((q�r)→ (p ∨ q�r)) Or
7. (p ∧ ¬q�(q→ r))→ ((p ∧ q�(q→ r))→

((p ∧ ¬q) ∨ (p ∧ q)�(q→ r)))
6, Sub (p/p∧¬q, q/p∧q, r/q→
r)

8. (p∧q�(q→ r))→ ((p∧¬q)∨ (p∧q)�(q→ r)) 5, 7, MP
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9. (p ∧ ¬q) ∨ (p ∧ q)→p pc
10. p→ (p ∧ ¬q) ∨ (p ∧ q) pc
11. ((p ∧ ¬q) ∨ (p ∧ q)�(q→ r))→ (p�(q→ r)) 9, 10, LLE
12. (p ∧ q�(q→ r))→ (p�(q→ r)) 8, 11, DR1
13. r→ (q→ r) pc
14. (p ∧ q�r)→ (p ∧ q�(q→ r)) 13, RW
15. (p ∧ q�r)→ (p�(q→ r)) 14, 12, DR1

Let us now prove the equivalence of System V and System R.

Theorem 27. System R is System V (cf. [9]; [39, Theorem 7.32]).
Proof. By Lemma 13 RCK∗, LE1, LE2, and Refl are rules, respectively theorems,
of a logic iff AND, RW, LLE, and Refl are. Let L be any logic which renders AND,
RW, LLE, and Refl theorems, respective derived rules. To establish the theorem, we
have to show that MOD, LV1, and LV2 are in L iff CM, Or, and RM are. Lemma 18
implies that MOD, LV1, and LV2 are in L iff MOD, LV1, and RM are. Furthermore,
due to Lemma 21, CM, Or, and RM are in L iff CM, S, and RM are. It remains to
be shown that in the presence of RM, (i) CM and S imply MOD and LV1 and (ii)
that MOD and LV1 imply CM and S. Lemmata 28 and 32 give us (i), whereas by
Lemmata 30 and 33 we obtain (ii).

Lemma 28. From Refl, CM, and S to conclude MOD.
Proof.
1. (¬p�p)→ (¬p�q) Lemma 29 [Refl]
2. (p�r)→ ((p�q)→ (p ∧ q�r)) CM
3. (¬p�p)→ ((¬p�q)→ (¬p ∧ q�p)) 2, Sub (p/¬p, r/p)
4. (¬p�p)→ (¬p ∧ q�p) 1, 3, DR4
5. (p ∧ q�r)→ (p�(q→ r)) S
6. (q ∧ ¬p�p)→ (q�¬p→p) 5, Sub (p/q, q/¬p, r/p)
7. ¬p ∧ q→ q ∧ ¬p pc
8. q ∧ ¬p→¬p ∧ q pc
9. (¬p ∧ q�p)→ (q ∧ ¬p�p) 7, 8, LLE
10. (¬p ∧ q�p)→ (q�(¬p→p)) 9, 6, DR1
11. (¬p�p)→ (q�(¬p→p)) 4, 10, DR1
12. (¬p→p)→p pc
13. (q�(¬p→p))→ (q�p) 12, RW
14. (¬p�p)→ (q�p) 11, 13, DR1
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Lemma 29. From Refl to conclude (¬p�p)→ (¬p�q).
Proof.
1. (p�q)→ (p�p ∧ q) Refl+ [Refl]
2. (¬p�¬¬p)→ (¬p�¬p ∧ ¬¬p) 1, Sub(p/¬p, q/¬¬p)
3. ¬p ∧ ¬¬p→ q pc
4. (¬p�¬p ∧ ¬¬p)→ (¬p�q) 3, RW
5. (¬p�¬¬p)→ (¬p�q) 2, 4, DR1
6. p→¬¬p pc
7. (¬p�p)→ (¬p�¬¬p) 6, RW
8. (¬p�p)→ (¬p�q) 7, 5, DR1

Lemma 30. From Refl, MOD, and RM to conclude CM.
Proof.
1. (p�r)→ (¬(p�¬q)→ (p ∧ q�r)) RM
2. (p�¬q)→ ((p�q)→ (p ∧ q�r)) Lemma 31 [Refl, MOD]
3. (p→ (¬q→ r))→ ((q→ (s→ r))→ (p→ (s→

r)))
pc

4. ((p�r)→ (¬(p�¬q)→ (p ∧ q�r)))→
(((p�¬q)→ ((p�q)→ (p ∧ q�r)))→
((p�r)→ ((p�q)→ (p ∧ q�r))))

3, Sub (p/p�r, q/p�¬q, r/p∧
q�r, s/p�q)

5. ((p�¬q)→ ((p�q)→ (p ∧ q�r)))→
((p�r)→ ((p�q)→ (p ∧ q�r)))

1, 4, MP

6. (p�r)→ ((p�q)→ (p ∧ q�r)) 2, 5, MP

Lemma 31. From Refl and MOD to conclude (p�¬q)→ ((p�q)→ (p∧ q�r)).
Proof.
1. (p�q)→ ((p�r)→ (p�q ∧ r)) AND
2. (p�¬q)→ ((p�q)→ (p�¬q ∧ q)) 1, Sub (q/¬q, r/q)
3. ¬q ∧ q→¬p pc
4. (p�¬q ∧ q)→ (p�¬p) 3, RW
5. p→¬¬p pc
6. ¬¬p→p pc
7. (p�¬p)→ (¬¬p�¬p) 5, 6, LLE
8. (p�¬q ∧ q)→ (¬¬p�¬p) 4, 7, DR1
9. (¬p�p)→ (q�p) MOD
10. (¬¬p�¬p)→ (p ∧ q�¬p) 9, Sub (p/¬p, q/p ∧ q)
11. (p�¬q ∧ q)→ (p ∧ q�¬p) 8, 10, DR1
12. (p�q)→ (p�p ∧ q) Refl+ [Refl]
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13. (p ∧ q�¬p)→ (p ∧ q�p ∧ q ∧ ¬p) 12, Sub (p/p ∧ q, q/¬p)
14. (p�¬q ∧ q)→ (p ∧ q�p ∧ q ∧ ¬p) 11, 13, DR1
15. p ∧ q ∧ ¬p→ r pc
16. (p ∧ q�p ∧ q ∧ ¬p)→ (p ∧ q�r) 15, RW
17. (p�¬q ∧ q)→ (p ∧ q�r) 14, 16, DR1
18. (p�¬q)→ ((p�q)→ (p ∧ q�r)) 2, 17, DR2

Lemma 32. From S to conclude LV1.
Proof. Trivial.

Lemma 33. From LV1 to conclude S.
Proof.
1. (p ∧ q�r)→ (¬(p�¬q)→ (p�(q→ r))) LV1
2. ¬q→ (q→ r) pc
3. (p�¬q)→ (p�(q→ r)) 2, RW
4. (p→ q)→ ((r→ (¬p→ q))→ (r→ q)) pc
5. ((p�¬q)→ (p� (q→ r)))→ (((p ∧ q� r)→

(¬(p�¬q)→ (p� (q→ r))))→ ((p ∧ q�r)→
(p�(q→ r))))

4, Sub (p/p � ¬q, q/p �
(q→ r), r/p ∧ q�r)

6. ((p ∧ q�r)→ (¬(p�¬q)→ (p� (q→ r))))→
((p ∧ q�r)→ (p�(q→ r)))

3, 5, MP

7. (p ∧ q�r)→ (p�(q→ r)) 1, 6, MP

3.2 The Equivalence of Systems V∗ and R
[5] uses the following axioms and rules to axiomatize his system V∗:16

Axioms:
Refl p�p
AND (p�q)→ ((p�r)→ (p�q ∧ r))
RW′ (p�q ∧ r)→ (p�q)
CM (p�r)→ ((p�q)→ (p ∧ q�r))
Or (p�r)→ ((q�r)→ (p ∨ q�r))
RM∗ (p ∨ r�¬r)→ (¬(p ∨ q�¬q)→ (q ∨ r�¬r))

16[5] calls RM∗ ‘D′’ (p. 82). RM∗ is logically equivalent to D′[p/q, q/r, r/p] in classical conditional
logics.

400



Beyond System P

Rules:
LE Exchange of Logical Equivalents:

LE1 from α→β and β→α to conclude (α�γ)→ (β�γ)
LE2 from β→γ and γ→β to conclude (α�β)→ (α�γ)

It is not difficult to see that the following lemma holds:

Lemma 34. From AND, RW′, LE1, LE2, and Refl to conclude AND, RW, LLE,
and Refl, and vice versa.
Proof. LE1 is nothing but LLE. LE2 follows trivially from RW. It remains to be
shown that (i) that RW′ is a theorem of AND, RW, LLE, and Refl and (ii) that RW
is derivable from AND, RW′, LE1, LE2, and Refl. (i) holds trivially and Lemma 35
ensures that (ii) holds as well.

Lemma 35. RW is derivable if RW′ is a theorem and LE2 is derivable.
Proof.
1. β→γ Condition of RW
2. (β→γ)→ (β→γ ∧ β) pc
3. β→γ ∧ β +1 1, 2, MP
4. γ ∧ β→γ pc
5. (α�β)→ (α�γ ∧ β) +1 3, 4, LE2
6. (p�q ∧ r)→ (p�q) RW′
7. (α�γ ∧ β)→ (α�γ) 6, Sub (p/α, q/γ, r/β)
8. (α�β)→ (α�γ) +1 5, 7, DR1

Corollary 36. System V∗ is a classical conditional logic.

Let us now state the equivalence theorem for System V∗ and System R.

Theorem 37. System V∗ is System R.
Proof. Lemma 34 shows that AND, RW′, LE1, LE2, and Refl are equivalent to AND,
RW, LLE, and Refl. Thus, it remains to be proved that (i) RM∗ is a theorem of
System R and that (ii) RM is a theorem of System V∗. Lemmata 38 and 42 yield
(i) and (ii), respectively, and give us the desired result.

Lemma 38. From Refl, CM, Or, and RM to conclude RM∗.
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Proof.
1. (p∨q∨r�¬r)→ (¬(p∨q∨r�¬(¬p
∨ q ∨ r))→ (q ∨ r�¬r))

Lemma 39 [RM]

2. (p ∨ r�¬r)→ (p ∨ q ∨ r�¬r) Lemma 40 [Refl, Or]
3. (p ∨ q ∨ r�¬r)→ ((p ∨ q ∨ r�¬(¬p
∨ q ∨ r))→ (p ∨ q�¬q))

Lemma 41 [CM]

4. (p ∨ q ∨ r�¬r)→ (¬(p ∨ q�¬q)→
(q ∨ r�¬r))

1, 3, DR6 (p/p∨q∨r�¬r, q/p∨q∨r�
¬(¬p∨q∨r), r/q∨r�¬r, s/p∨q�¬q)

5. (p ∨ r�¬r)→ (¬(p ∨ q�¬q)→
(q ∨ r�¬r))

2, 4, DR1

Lemma 39. From RM to conclude (p∨q∨r�¬r)→ (¬(p∨q∨r�¬(¬p∨q∨r))→
(q ∨ r�¬r)).
Proof.
1. (p�r)→ (¬(p�¬q)→ (p ∧ q�r)) RM
2. (p ∨ q ∨ r�¬r)→ (¬(p ∨ q ∨ r�¬(¬p ∨ q ∨ r))→

((p ∨ q ∨ r) ∧ (¬p ∨ q ∨ r)�¬r)))
1, Sub (p/p∨q∨r,
q/¬p∨q∨r, r/¬r)

3. (p ∨ q ∨ r) ∧ (¬p ∨ q ∨ r)→ q ∨ r pc
4. q ∨ r→ (p ∨ q ∨ r) ∧ (¬p ∨ q ∨ r) pc
5. ((p ∨ q ∨ r) ∧ (¬p ∨ q ∨ r)�¬r)→ (q ∨ r�¬r) 3, 4, LLE
6. (p∨q∨r�¬r)→ (¬(p∨q∨r�¬(¬p∨q∨r))→ (q∨r�¬r)) 2, 5, DR2

Lemma 40. From Refl and Or to conclude (p ∨ r�¬r)→ (p ∨ q ∨ r�¬r).
Proof.
1. p ∨ r→ (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) pc
2. (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r)→p ∨ r pc
3. (p ∨ r�¬r)→ ((p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r)�¬r) 1, 2, LLE
4. (p ∧ q�r)→ (p�(q→ r)) Lemma 21 [Refl, Or]
5. ((p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r)�¬r)→ (p ∨ q ∨ r�

(p ∨ ¬q ∨ r→¬r))
4, Sub (p/p ∨ q ∨ r, q/p ∨ ¬q
∨ r, r/¬r)

6. (p ∨ r�¬r)→ (p ∨ q ∨ r�(p ∨ ¬q ∨ r→¬r)) 3, 5, DR1
7. (p ∨ ¬q ∨ r→¬r)→¬r pc
8. (p∨ q∨ r�(p∨¬q∨ r→¬r))→ (p∨ q∨ r�¬r) 7, RW
9. (p ∨ r�¬r)→ (p ∨ q ∨ r�¬r) 6, 8, DR1
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Lemma 41. From CM to conclude (p∨q∨r�¬r)→ ((p∨q∨r�¬(¬p∨q∨r))→
(p ∨ q�¬q)).
Proof.
1. (p�r)→ ((p�q)→ (p ∧ q�r)) CM
2. (p ∨ q ∨ r�¬q)→ ((p ∨ q ∨ r�p ∨ q ∨ ¬r)→

((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)�¬q))
1, Sub (p/p∨q∨r, q/p∨
q ∨ ¬r, r/¬q)

3. (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)→p ∨ q pc
4. p ∨ q→ (p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) pc
5. ((p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r)�¬q)→ (p ∨ q�¬q) 3, 4, LLE
6. (p∨ q∨ r�¬q)→ ((p∨ q∨ r�p∨ q∨¬r)→ (p∨ q�
¬q))

2, 5, DR2

7. ¬(¬p ∨ q ∨ r)→¬q pc
8. (p ∨ q ∨ r�¬(¬p ∨ q ∨ r))→ (p ∨ q ∨ r�¬q) 7, RW
9. (p ∨ q ∨ r�¬(¬p ∨ q ∨ r))→

((p ∨ q ∨ r�p ∨ q ∨ ¬r)→ (p ∨ q�¬q))
8, 6, DR1

10. ¬r→p ∨ q ∨ ¬r pc
11. (p ∨ q ∨ r�¬r)→ (p ∨ q ∨ r�p ∨ q ∨ ¬r) 10, RW
12. (p ∨ q ∨ r�¬r)→ ((p ∨ q ∨ r�¬(¬p ∨ q ∨ r))→

(p ∨ q�¬q))
11, 9, DR5 (p/p ∨ q ∨
r� ¬r, q/p∨ q ∨ r�
p∨q∨¬r, r/p∨q∨r�
¬(¬p∨q∨r), s/p∨q�
¬q)

Lemma 42. From Refl and RM∗ to conclude RM.
Proof.
1. (p ∨ (p ∧ q ∧ ¬r)�¬(p ∧ q ∧ ¬r))→ (¬(p ∨ (p ∧

q ∧ r)�¬(p ∧ q ∧ r))→ (p ∧ q�r))
Lemma 43 [Refl, RM∗]

2. (p�r)→ (p ∨ (p ∧ q ∧ ¬r)�¬(p ∧ q ∧ ¬r)) Lemma 44
3. (p� r)→ ((p ∨ (p ∧ q ∧ r)� ¬(p ∧ q ∧ r))→

(p�¬q))
Lemma 45 [Refl]

4. (p� r)→ (¬(p ∨ (p ∧ q ∧ r)�¬(p ∧ q ∧ r))→
(p ∧ q�r))

2, 1, DR1

5. (p�r)→ (¬(p�¬q)→ (p ∧ q�r)) 4, 3, DR6 (p/p�r, q/p∨ (p∧
q∧r)�¬(p∧q∧r), r/p∧q�
r, s/p�¬q)

Lemma 43. From Refl and RM∗ to conclude (p ∨ (p ∧ q ∧ ¬r)�¬(p ∧ q ∧ ¬r))→
(¬(p ∨ (p ∧ q ∧ r)�¬(p ∧ q ∧ r))→ (p ∧ q�r)).
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Proof.
1. (p ∨ r�¬r)→ (¬(p ∨ q�¬q)→ (q ∨ r�¬r)) RM∗
2. (p∨(p∧q∧¬r)�¬(p∧q∧¬r))→ ((¬(p∨(p∧q∧r)�
¬(p∧q∧r))→ ((p∧q∧r)∨(p∧q∧¬r)�¬(p∧q∧¬r)))

1, Sub (q/p∧q∧r, r/p∧
q ∧ ¬r)

3. (p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r)→p ∧ q pc
4. p ∧ q→ (p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) pc
5. ((p∧ q ∧ r)∨ (p∧ q ∧¬r)�¬(p∧ q ∧¬r))→ (p∧ q�
¬(p ∧ q ∧ ¬r))

3, 4, LLE

6. (p∨(p∧q∧¬r)�¬(p∧q∧¬r))→ (¬(p∨(p∧q∧r)�
¬(p ∧ q ∧ r))→ (p ∧ q�¬(p ∧ q ∧ ¬r)))

2, 5, DR2

7. (p�q)→ (p�p ∧ q) Refl+ [Refl]
8. (p∧q�¬(p∧q∧¬r))→ (p∧q�p∧q∧¬(p∧q∧¬r)) 7, Sub (p/p ∧ q, q/¬(p ∧

q ∧ ¬r))
9. (p∨(p∧q∧¬r)�¬(p∧q∧¬r))→ (¬(p∨(p∧q∧r)�
¬(p ∧ q ∧ r))→ (p ∧ q�p ∧ q ∧ ¬(p ∧ q ∧ ¬r)))

6, 8, DR2

10. p ∧ q ∧ ¬(p ∧ q ∧ ¬r)→ r pc
11. (p ∧ q�p ∧ q ∧ ¬(p ∧ q ∧ ¬r))→ (p ∧ q�r) 10, RW
12. (p∨(p∧q∧¬r)�¬(p∧q∧¬r))→ (¬(p∨(p∧q∧r)�
¬(p ∧ q ∧ r))→ (p ∧ q�r))

9, 11, DR2

Lemma 44. (p�r)→ (p ∨ (p ∧ q ∧ ¬r)�¬(p ∧ q ∧ ¬r))
Proof.
1. p→p ∨ (p ∧ q ∧ ¬r) pc
2. p ∨ (p ∧ q ∧ ¬r)→p pc
3. (p�r)→ (p ∨ (p ∧ q ∧ ¬r)�r) 1, 2, LLE
4. r→¬(p ∧ q ∧ ¬r) pc
5. (p ∨ (p ∧ q ∧ ¬r)� r)→ (p ∨ (p ∧ q ∧ ¬r)�
¬(p ∧ q ∧ ¬r))

4, RW

6. (p�r)→ (p ∨ (p ∧ q ∧ ¬r)�¬(p ∧ q ∧ ¬r)) 3, 5, DR1

Lemma 45. From Refl to conclude (p� r)→ ((p ∨ (p ∧ q ∧ r)�¬(p ∧ q ∧ r))→
(p�¬q)).
Proof.
1. (p�q)→ ((p�r)→ (p�q ∧ r)) AND
2. (p�r)→ ((p�¬(p ∧ q ∧ r))→ (p�r ∧ ¬(p ∧

q ∧ r)))
1, Sub (q/r, r/¬(p ∧ q ∧ r))

3. (p�q)→ (p�p ∧ q) Refl+ [Refl]
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4. (p�r∧¬(p∧q∧r))→ (p�p∧r∧¬(p∧q∧r)) 3, Sub (q/r ∧ ¬(p ∧ q ∧ r))
5. (p� r)→ ((p�¬(p ∧ q ∧ r))→ (p� p ∧ r ∧
¬(p ∧ q ∧ r)))

2, 4, DR2

6. p ∧ r ∧ ¬(p ∧ q ∧ r)→¬q pc
7. (p�p ∧ r ∧ ¬(p ∧ q ∧ r))→ (p�¬q) 6, RW
8. (p�r)→ ((p�¬(p ∧ q ∧ r))→ (p�¬q)) 5, 7, DR2
9. p ∨ (p ∧ q ∧ r)→p pc
10. p→p ∨ (p ∧ q ∧ r) pc
11. (p∨(p∧q∧r)�¬(p∧q∧r))→ (p�¬(p∧q∧r)) 9, 10, LLE
12. (p� r)→ ((p ∨ (p ∧ q ∧ r)�¬(p ∧ q ∧ r))→

(p�¬q))
11, 8, DR3 (p/p∨(p∧q∧r)�
¬(p∧q∧r), q/p� ¬(p∧q∧r),
r/p� r, s/p� ¬q)

4 Connexive Principles and the Relation between
Cautious Monotonicity and Rational Monotonicity

This section shows which role default connexive principles, DAT and DBT, play in
the axiomatization of Systems P and R. By the equivalence of Systems R, V, and
V∗ this extends also to the latter two systems. I shall show that CM is a theorem
rather than an axiom of the axiomatization of System R in the presence of DAT
and DBT, whereas it is not derivable from System P when DAT or an equivalent
connexive principle is missing.

To obtain the former result, I shall extend the proof system described in Sec-
tion 1 by the new rule TNT (‘Theorem Non-Theorem’). TNT is analogous to a
proof by cases as employed in natural deduction systems. Proofs by cases license
inferences of a formula β simpliciter – i.e., without either assumption α or ¬α –
if β is derivable from both α and from ¬α. Now TNT asserts that a formula β is
provable simpliciter – without reference to either a provability or a non-provability
assumption – if the same formula β is derivable both from the assumption that a
formula α is provable (theoremhood) and from the assumption that α is not provable
(non-theoremhood). TNT differs from a traditional proof by cases only in that TNT
refers to the provability/non-provability of a formula where a traditional proof by
cases refers to the assumption that a formula and its negation hold.

To formulate TNT, I use a notation akin to proof by cases in Fitch-style natural
deduction systems. By TNT also sequences of formulae as follows count as proofs,
where lines (m+1) and (n+1) are provability (theoremhood) and non-provability
(non-theoremhood) assumptions, respectively:
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m. ` α Theorem
...

n. β +m
(n+1). 6` α Non-Theorem

...
o. β −(n+1)

(o+1). β (m–n), (n+1)–o, TNT

The comment ‘+m’ in line n indicates that the derivation of β depends on the
provability of α as described in line m, whereas ‘−(n+1)’ in line o indicates that
the derivation of β depends on the non-provability of α, as stated in line (n+1).
The successful application of TNT includes the introduction of provability and non-
provability assumption as described by lines m and (n+1). TNT allows then to
dispense with assumptions +m and −(n+1) and to infer β without provability or
non-provability assumption. In addition, a reiteration rule (Reit) is required that
allows to repeat lines from subordinate (sub)proofs to superordinate (sub)proofs. In
the above schema m–n is assumed to be a superordinate proof of a (sub)proof that
includes lines 1–(o+1). An example of an application of Reit is line 15 in the proof
of Lemma 48.

Let me now show that System R has CM as a theorem rather than an axiom
when R, V, or V∗ is augmented by either DBT or DAT.

Theorem 46. CM is derivable from the classical conditional logics which have the
following principles as theorems or rules:
(1) Refl, DBT, and RM (3) Refl, DBT, and RM∗ (5) Refl, DBT, and LV2
(2) Refl, DAT, and RM (4) Refl, DAT, and RM∗ (6) Refl, DAT, and LV2
Proof. (1) follows from Lemma 48. Based on (1) Lemmata 42 and 19 imply (3) and
(5), respectively. Finally, Lemma 7 implies that (2), (4), and (6) follow from (1),
(3), and (5), respectively.

Corollary 47. System R has CM as a theorem rather than an axiom when R is
augmented by either principles DAT or DBT.

Lemma 48. From Refl, RM, and DBT to conclude CM.
Proof. Let me comment on the proof below. The assumption ¬α in line 3 states
that ¬α is provable (theoremhood), whereas the assumption ¬α in line 13 states
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that ¬α is not provable (non-theoremhood). The Rule TNT lets us infer line 17
from lines (3)–(12) and (13)–(16), since the formula in line 17 is derivable from
both the provability assumption in line 3 and the non-provability assumption in line
13. Finally, principle DBT can be applied in line 14, since α being consistent is
equivalent to ¬α not being provable (see Sections 1 and 2).

1. (p�r)→ (¬(p�¬q)→ (p ∧ q�r)) RM
2. (α�γ)→ (¬(α�¬β)→ (α ∧ β�γ)) 1, Sub (p/α, q/β, r/γ)
3. ` ¬α Theorem
4. ¬α→ (α ∧ β→γ) pc
5. α ∧ β→γ +3 3, 4, MP
6. (α ∧ β�α ∧ β)→ (α ∧ β�γ) +3 5, RW
7. (p�p) Refl
8. (α ∧ β�α ∧ β) 7, Sub (p/α ∧ β)

9. (α ∧ β�γ) +3 8, 6, MP
10. p→ (q→ (r→p)) pc
11. (α ∧ β� γ)→ ((α� γ)→ ((α� β)→

(α ∧ β�γ)))
10, Sub (p/α∧β�γ, q/α�
γ, r/α�β)

12. (α�γ)→ ((α�β)→ (α ∧ β�γ)) +3 9, 11, MP
13. 6` ¬α Non-Theorem
14. (α�β)→¬(α�¬β) −13 13, DBT
15. (α�γ)→ (¬(α�¬β)→ (α ∧ β�γ)) 2, Reit
16. (α�γ)→ ((α�β)→ (α ∧ β�γ)) −13 14, 15, DR4
17. (α�γ)→ ((α�β)→ (α ∧ β�γ)) 3–12, 13–16, TNT

Let me, finally, show that CM does not follow from the remaining axioms of System
P. To strengthen this result I shall show that CM neither follows when the following
principle is assumed to be a theorem of System P (‘CC’ for ‘Cautious Cut’):

(p ∧ q�r)→ ((p�q)→ (p�r)) (CC)

The frame conditions that correspond to the Refl, CC, CM, Or, and RM are as
follows ([39, Ch. 5]; [40, p. 905]):

Refl ∀X∀w,w′(wRXw′ ⇒ w′ ∈ X)
CC ∀X,Y ∀w(∀w′(wRXw′ ⇒ w′ ∈ Y )⇒ ∀w′(wRXw′ ⇒ wRX∩Y w′))
CM ∀X,Y ∀w(∀w′(wRXw′ ⇒ w′ ∈ Y )⇒ ∀w′(wRX∩Y w′ ⇒ wRXw

′))
Or ∀X,Y ∀w,w′ (wRX∪Y w′ ⇒ wRXw

′ g wRY w
′)

RM ∀X,Y ∀w(∃w′(wRXw′ f w′ ∈ Y )⇒ ∀w′(wRX∩Y w′ ⇒ wRXw
′))
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Lemma 49. From Refl, CC, Or, and RM not to conclude CM.
Proof. We show that there exists a Chellas frame 〈W,R〉 that satisfies CRefl, CCC,
COr, as well as CRM and does not satisfy CCM. By the correspondence results for
CRefl, CRM, CCC, COr, and CCM any theorem of a classical logic that contains only
Refl, RM, CC, and Or is valid on 〈W,R〉. However, CM is not valid on 〈W,R〉, as its
corresponding structural condition is not satisfied. Thus, the extension of a classical
conditional logic by Refl, CC, Or, and RM does not suffice to render CM a theorem.

Let us show that such a frame exists. Let 〈W,R〉 be a Chellas frame such that
W = {w,w′} and R = {〈w,w′, {w′}〉}. It is easy to see that 〈W,R〉 satisfies CRefl,
CRM, CCC, and COr. However, CCM does not hold for 〈W,R〉, since for X = W and
Y = {w′} it is not the case that wRXw′ although ∀w′′(wRXw′′ ⇒ w′′ ∈ Y ) and
wRX∩Y w′ are satisfied.

5 Conclusion
The results of the present paper strongly suggest connexive principles warrant fur-
ther study. They are at the center stage of conditional logics, such as Systems P,
R, V, and V∗. At the same time their role in conditional logics is far from fully
explored.

On the other hand, the present paper gives a diagnosis of the problem, based on
the strengthened impossibility result for connexive principles in classical conditional
logics. It is shown that either AT and BT or Refl and LT, respectively, have to be
restricted, to arrive at a consistent and complete (classical) conditional logic. Such a
restriction can than either be achieved in terms of (i) consistency requirements or (ii)
possibility conditions. This yields four different avenues for consistent and complete
(classical) conditional logics, as described by (a) DAT and DBT, (b) DRefl and DLT,
(c) PAT and PBT, or (d) PRefl and PLT, where (c) has been seen to trivialize AT
and BT (see the introductory section).

In this paper we focused on the approach (a), which is, for example, endorsed by
[3] and [22]. On such an account, connexive principles are far from inconsequential,
insofar in the presence of either DAT or DBT, RM implies CM, thereby introducing a
proof-theoretic dependency between two key principles of conditional logics. To give
a full account of the proof theory of such systems we do not only have to allow for
both theoremhood and non-theoremhood conditions – as it is generally recognized
– but also proof theoretic principles such as TNT described in Section 4.

Let me comment on the alternative approaches (b) and (d). Approach (b) seems
certainly worthwhile exploring. Taking (b) rather than (a) gives precedence of con-
nexive principles over Refl and and LT, which are arguably also core principles of
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conditional logics. Such an approach might be less plausible with DLT as the re-
sulting logic is not strictly speaking a classical conditional logic. As an alternative
we might use classical conditional logics which do not require the set of consequents
to include logical truths (e.g., [6, Sect. 8], see introductory section) or otherwise use
a minimal conditional logic with a base logic other than classical logic.

This leaves approach (d). Both [29] and [20, p. Sect. 1.6] endorse such an ap-
proach, as I shall argue. [29] and [20, p. Sect. 1.6] define truth conditions for con-
nexive conditional α� β based on truth conditions for non-connexive conditionals
α� β as described in the previous sections. To achieve this, the authors require for
α� β to be true that 3α (“α is possible”) is true and α� β is true. While this
approach seems to cash out an intuitively correct set of models, it weakens the proof
theory that characterizes α� β. Firstly, note that for α� β so defined α� α
is only valid if 3α is valid. Thus, by the use of 3α, Refl is effectively restricted
to PRefl above. Secondly, whereas the set of models described by the connexive
conditional α � β seems intuitively valid, it effects a logic which trivializes the
application of Refl. The only formulae for which 3α is guaranteed to be valid are
logically true formulae α. As a consequence, the only formulae for which α� α
is valid in all models are logically true formulae α.

In contrast, we might not need to restrict either of the above principles if we
employ a non-classical conditional logic. In fact, such an approach is the dominant
one in the literature on connexive logics [43]. In this literature it is an open question
how to characterize conditional logic systems, such as P and R, when they are
augmented by full connexive principles (cf. [23]; see also [28]).
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A Proof of Lemma 8

Lemma 8. AT and BT correspond to frame condition CAT and CBT, respectively.

Axiom schema AT. (‘⇒’): Suppose a Chellas frame 〈W,R〉 does not satisfy CAT.
Thus, ∀X∀w∃w′(wRXw′ f w′ ∈ X) does not hold and, consequently, there is a
set of worlds X ⊆ W and a world w ∈ W such that either (i) there is no world
w′ ∈ W such that wRXw′ or (ii) there are only worlds w′ ∈ W such that wRXw′
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and w′ 6∈ X. Choose V so that 〈W,R, V 〉 is a Chellas model and V (p) = X.
Then, either (i) there is no world w′ ∈ W such that wRV (p)w

′ or (ii) there are
only worlds w′ ∈ W such that wRV (p)w

′ and w′ 6∈ V (p). If (i) is the case, trivially
〈W,R, V 〉 |=w p�¬p contradicting 〈W,R〉 |=w ¬(p�¬p). Likewise, if (ii) holds,
it follows that 〈W,R, V 〉 |=w p�¬p, which contradicts 〈W,R, V 〉 |= ¬(p�¬p) as
well.

(‘⇐’): Let 〈W,R〉 be a Chellas frame such that 〈W,R〉 6|= ¬(p� ¬p). Then,
there exists a formula α and a valuation function V such that 〈W,R, V 〉 is a Chellas
model as well as a world w ∈ W such that 〈W,R, V 〉 |=w α�¬α. It follows that
for all worlds w′ ∈ W such that wRV (α)w

′ it is the case that 〈W,R, V 〉 |=w′ ¬α
where the latter is equivalent to w′ 6∈ V (α). Thus, there is some X ⊆ W , namely
X = V (α), and some w ∈W such that there is no world w′ with wRXw′ and w′ ∈ X
contradicting ∀X∀w∃w′(wRXw′ f w′ ∈ X).

Axiom schema BT. (‘⇐’) Let 〈W,R〉 be a Chellas frame such that CBT holds.
Then, 〈W,R〉 satisfies ∀X∀w∃w′(wRXw′). Suppose that 〈W,R, V 〉 is a Chellas
model such that 〈W,R, V 〉 |=w α� β. Then, for all w′′ such that wRV (α)w

′′ it
is the case that w′′ ∈ V (β). As by CBT for any X ⊆ W there is a w′ ∈ W such
that wRXw′, we obtain wRV (α)w

′ for every V (α) ⊆ W . Consequently, as for all
w′′ ∈ W such that wRV (α)w

′′ it is the case that w′′ ∈ V (β) – including w′ – it
follows that w′ ∈ V (β) and, thus, w′ 6∈ V (¬β). Since wRV (α)w

′ holds, this implies
that 〈W,R, V 〉 6|=w α� ¬β which gives us 〈W,R, V 〉 |= (α� β)→ ¬(α� ¬β).
Hence, the desired result is obtained.

(‘⇒’) Let 〈W,R〉 be a Chellas frame such that CBT does not hold. Then, there
exists a world w ∈ W and a set X ⊆ W such that there is no world w′ ∈ W with
wRXw

′. Let 〈W,R, V 〉 be a Chellas model such that X = V (p). Then, there exists
no world w′ ∈ W such that wRV (p)w

′. It follows trivially that 〈W,R, V 〉 |=w p�q
and 〈W,R, V 〉 |=w p� ¬q. Consequently, (p� q)→ ¬(p� ¬q) is not valid on
〈W,R〉.
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Abstract

The bi-connexive propositional logic 2C is being introduced, which contains
a connexive implication and a connexive co-implication that is in a certain
sense dual to the connexive implication. The system 2C is a connexive variant
of the bi-intuitionistic logic 2Int and contains a primitive strong negation. In
both systems a relation of provability is supplemented with a certain relation of
dual provability. Whereas entailment as the semantic counterpart of provability
preserves support of truth from the premises to the conclusion of an inference,
dual entailment as the semantic counterpart of dual provability preserves falsity
from the premises to the conclusion of an inference. The strong negation that is
added to the language of 2Int to obtain the system 2C internalizes falsification
with respect to provability and it internalizes verification with respect to dual
provability. This tight relation between verification, falsification, and strong
negation allows one to see the dual of provability as disprovability.

After introducing a natural deduction proof system, N2C, and a relational
semantics for 2C, a two-sorted typed λ-calculus, 2λ, is presented that can
be used to encode derivations in N2C. In particular, the {implication, co-
implication, strong negation}–fragment of 2C receives an encoding that makes
use of functional application, functional abstraction, and certain sort/type-shift
operations.
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1 Introduction
In various branches of non-classical logic a distinction is drawn between truth and
falsity as concepts that are primitive and independent of each other, though not
necessarily disconnected. The separation of truth and falsity is achieved by giving
up bivalence, so that falsity is distinguished from the absence of truth and truth
is discriminated from the absence of falsity. In many-valued logic this leads to a
distinction between a set of designated values and a set of antidesignated values
and, moreover, to a multiplicity of entailment relations. In addition to the famil-
iar preservation of designated values, there is, for example, q-entailment, “quasi-
entailment”, that leads from not-antidesignated premises to a designated conclusion
(see [11, 12, 13]) and p-entailment, “plausibility-entailment”, that leads from des-
ignated premises to a not-antidesignated conclusion (see [3, 4]). Quasi-entailment
and plausibility-entailment are peculiar insofar as entailment is not defined in terms
of preservation of membership in some subset of the set of truth values (alias truth
degrees). In [23, p. 210], preservation of not being antidesignated from the premises
to the conclusion of an inference is listed as an intuitively appealing notion of entail-
ment. If truth (being designated) and falsity (being antidesignated) are treated on
a par and not as each other’s complement, then it makes much sense to take falsity-
preservation from the premises to the conclusion of an inference very seriously as
well.

In the logic of generalized truth values (see [22, 18], [23]), entailment relations
are defined with respect to a partial order on a set of semantical values, in particular
as relations defined on a set generated from the set 2 of classical truth values by
iterated powerset formation. This approach very naturally leads to a distinction
between a truth ordering and a separate falsity ordering on the powerset of the
powerset of 2 together with two distinct entailment relations, truth entailment and
falsity entailment.1

Whilst usually a notion of falsity is internalized into the logical object language
by means of a negation connective, the notion of truth typically is not internalized
at all. This is only one out of many ways in which “positive” concepts traditionally
predominate even in non-classical logic in comparison to their “negative” counter-
parts. It would be possible to consider a formula A not as a vehicle for making
an assertion, but rather as a device for making a denial. From the latter perspec-
tive one would be interested in having available a unary connective that internalizes
truth instead of falsehood. The internalization of truth and falsity can be realized
by a division of labour, namely by using two different negation connectives, or by

1Moreover, the subset relation on the set of generalized truth values may be seen as an infor-
mation ordering.
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utilizing a single one that internalizes both truth from the point of view of falsifica-
tion and falsity from the perspective of verification. The former is achieved in the
bi-intuitionistic logic 2Int from [25]. In that system two negation operations are
defined: intuitionistic negation and a connective that is in a certain sense dual to in-
tuitionistic negation. Intuitionistic negation is negation as “implies falsity”; its dual,
called co-negation, is understood as “co-implies truth”. The intuitionistic negation
¬A of a formula A internalizes an indirect notion of falsification into the logical
object language from the point of view of verification: A state supports the truth
of ¬A iff A implies falsity (iff the assumption that A is true leads to the truth of
the falsity constant ⊥). The co-negation −A of a formula A internalizes an indirect
notion of verification into the object language from the point of view of falsification:
A state supports the falsity of −A iff A co-implies truth (iff the assumption that A
is false leads to the falsity of the truth constant >). The two negations are defined
using the zero-place connectives > and ⊥. One may, however, use a primitive strong
negation, ∼, as in Nelson’s constructive logics with strong negation N3, N4 , and
N4⊥ (see, for example, [14, 15, 1, 27, 28, 2, 29, 31, 16, 17, 7, 8]) that provides both
internalizations and thereby turns dual provability into a relation of disprovability,
cf. [33].

Nevertheless, there is a certain preoccupation with the positive dimension of logic
even in Nelson’s systems and a lacuna in the separate treatment of truth and falsity.
The constructive implication in Nelson’s logics internalizes an entailment relation
that preserves support of truth from the premises to the conclusion of an inference
or, proof-theoretically, internalizes a corresponding derivability relation. However,
in Nelson’s logics there is no connective that internalizes the preservation of support
of falsity from the premises to the conclusion of an inference or, proof-theoretically,
internalizes a corresponding relation of dual derivability. Such a dual of implication,
called co-implication, is present in the system 2Int from [25, 36].2 In the present
paper, the bi-intuitionistic system 2Int is modified. A primitive strong negation is
added that internalizes falsity with respect to verification and truth with respect
to falsification. Moreover, for this strong negation a connexive reading of negated

2An extension of Nelson’s paraconsistent constructive logic N4 by the co-implication connective
of Rauszer’s Heyting-Brouwer logic, called HB or BiInt (see [20, 6, 25] and references given there),
is considered in [32, 33] and in [9]. This co-implication connective is dual to intuitionistic implication
in another sense; it preserves non-truth from the conclusion of an inference to the conjunction of
its premises. In the relational semantics of BiInt, a co-implication A−�B is said to be true at a
state w ∈ I from a relational modelM = 〈I,≤, v〉 for BiInt iff there is a u ∈ I with u ≤ w, A is
true at u, and B is not true at u: M, w |= A−�B iff (∃u ∈ I) u ≤ w, M, u |= A, andM, u 6|= B.
Moreover, A |= B is defined to mean that for every model 〈I,≤, v〉 and every w ∈ I, M, w 6|= B
impliesM, w 6|= A. Let ⊥ be a constantly untrue formula. Then A |= B iff A−�B |= ⊥ because ≤
is reflexive.
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implications and co-implications is assumed, so that the resulting bi-connexive logic
2C also emerges as an extension of the connexive propositional logic C from [30],
which was obtained from propositional N4 by replacing the familiar falsification
condition for strongly negated implications by its connexive version.3

Connexive logics have been motivated by quite different considerations, ranging
from Aristotelian Syllogistic to Categorial Grammar and the semantics of indicative
conditions, see, for example, [34]. Most prominently, the motivation is centered on
the so-called Aristotle’s Theses and Boethius’ Theses, and the bi-connexive logic to
be developed in the present paper allows on to prove these principles, see Section
2. A particular reason for considering connexive implication, →, and connexive co-
implication, −� , instead of assuming the familiar understanding of negated implica-
tions in Nelson’s and other logics is that one obtains a neat encoding of derivations
in the {→,−� ,∼}-fragment of the language under consideration by typed λ-terms
built up from atomic terms of two sorts, one for proofs and one for dual proofs, using
only (i) functional application, (ii) functional abstraction, and (iii) certain sort/type-
shift operations that turn an encoding of a dual proof of a formula A [respectively
∼A] into an encoding of a proof of ∼A [respectively A] and that turn an encoding
of a proof of a formula A [respectively ∼A] into an encoding of a dual proof of ∼A
[respectively A]. In [26, 28] an encoding of derivations in Nelson’s constructive logics
with strong negation N3 and N4 was obtained by giving up the unique typedness
of terms. The use of terms of two sorts avoids this feature: Every term is uniquely
typed.

2 The natural deduction proof system N2C
Syntactically, the language L2C of the bi-connexive system 2C extends the language
of the bi-intuitionistic logic 2Int by a primitive negation connective ∼ and is defined
in Backus–Naur form as follows:

A ::= p | ⊥ | > | ∼A | (A ∧A) | (A ∨A) | (A→ A) | (A−�A).

3An anonymous referee expounded that even before a connexive reading of implications is
discussed, the notions of co-implication and dual proof need to be conceptually clarified. Here I
would just like to emphasize that if falsity is seen as an independent notion in its own right and
is taken to be on a par with truth, then support–of–falsity preservation arises quite naturally as a
companion to the preservation of support of truth. The object-language counterpart of support–of–
falsity preservation (from the premises to the conclusion of a dually valid inference) is co-implication
as understood in 2Int and 2C. Conceptual clarification in addition to the motivating considerations
in this introductory section can be found, for example, in [32, 33, 25, 35]. A connection between
dual intuitionistic logic and Popperian philosophy of science is discussed in [21].
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where p is a propositional variable from some fixed infinite set Φ of sentential vari-
ables (atomic formulas). The language LInt of intuitionistic propositional logic, Int
(cf. [24]), is L2C restricted to the connectives >, ⊥, ∧, ∨, and →; the language
LDualInt of dual intuitionistic propositional logic, DualInt (see, [6, 21, 25]), is L2C
restricted to the connectives >, ⊥, ∧, ∨, and −� . We write A ≡ B to indicate that
the formulas A and B are identical symbols.

In 2C (and in 2Int), the co-implication connective −� is in a sense dual to
intuitionistic implication, it internalizes a relation of dual derivability into the logical
object language. Dual derivability leads from counterassumptions (premises assumed
to be false) to false conclusions. The language of 2C (and that of 2Int) allows one
to define two “weak” negation connectives; the co-negation −A of A is defined as
>−�A, and the more familiar intuitionistic negation ¬A of A is defined as A→ ⊥.
Moreover, the equivalence and co-equivalence connectives↔ and �−� are defined as
follows:

(A↔ B) := ((A→ B) ∧ (B → A)); (A�−�B) := ((A−�B) ∨ (B−�A)).

A sound and complete natural deduction proof system N2Int for 2Int is presented
in [25, 36]. The system uses single-line rules for proofs and double-line rules for
dual proofs. Derivations in N2Int combine proofs and dual proofs, so that a proof,
in which the conclusion appears under a single line, may contain dual proofs as
subderivations, and a dual proof, in which the conclusion appears under a double
line, may contain proofs as subderivations. The conclusions of proofs and dual proofs
depend on ordered pairs (∆; Γ) of finite sets of premises, a set ∆ of assumptions that
are taken to be true, and a set Γ of “counterassumptions” that are taken to be false.
Single square brackets [ ] are used to indicate that assumptions may be cancelled,
and double-square brackets J K are used to indicate that counterassumptions may be
cancelled.4 The proof system N2C we are about to define shares these features with
N2Int.

The proof rules for the connectives >, ⊥, ∧, ∨, and → are more or less those
of intuitionistic logic, and the rules for introducing or eliminating >, ⊥, ∧, and ∨
into or from dual proofs are obtained by a dualization of their introduction and
elimination rules for proofs. The dual proof rules for implication are such that
together with the proof and dual proof rules for strong negation, implication is a
connexive implication, so that the characteristic theorems of systems of connexive
logic (cf. [34] and the references therein), namely the so-called theses of Aristotle and
Boethius, are provable. The introduction and elimination rules for −� are obtained

4We usually write [A] instead of [A] and JAK instead of JAK.
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by dualizing the rules for→, so that duals of Aristotle’s theses and Boethius’ theses
are dually provable (see p. 6).

Definition 1. We consider A as a proof of A from ({A};∅) and A as a dual proof
of A from (∅; {A}). Moreover > is a proof of > from (∅;∅) and ⊥ is a dual proof
of ⊥ from (∅;∅). In addition to these stipulations, the system N2C comprises
the introduction and elimination rules from Tables 1 and 2, where Ep stands for
“elimination from proofs”, Ip for “introduction into proofs”, Edp for “elimination
from dual proofs”, and Idp for “introduction into dual proofs”.

We write (∆; Γ) ` A if there is a proof of A from (∆; Γ); and we write (∆; Γ) `d A
if there is a dual proof of A from (∆; Γ). Moreover, we assume that if (∆; Γ) ` A, ∆ ⊆
∆′ and Γ ⊆ Γ′ for finite sets of L2Int-formulas ∆′ and Γ′, then (∆′; Γ′) ` A. Similarly,
we assume that if (∆; Γ) `d A, ∆ ⊆ ∆′ and Γ ⊆ Γ′ for finite sets of L2C-formulas ∆′
and Γ′, then (∆′; Γ′) `d A. We write P(Π, A, (∆; Γ)) [DP(Π, A, (∆; Γ))] if Π is a proof
[dual proof ] of A from the set of assumptions ∆ and the set of counterassumptions
Γ. The predicates P and DP can be used in an inductive definition of proofs and
dual proofs. The rule (∧Edp), for example, is then captured by the following clause:
If DP(Π, (A ∧ B), (∆; Γ)),DP(Π′, C, (∆′; Γ′ ∪ {A})) and DP(Π′′, C, (∆′′; Γ′′ ∪ {B})),
then

DP(
Π Π′ Π′′

C , C, (∆ ∪∆′ ∪∆′′; Γ ∪ (Γ′ \ {A}) ∪ (Γ′′ \ {B}))).
This presentation states the sets of assumptions and counterassumptions of the dual
proof obtained by applying (∧Edp) explicitly.

In the proof system N2C, Aristotle’s theses ∼(A→ ∼A), ∼(∼A→ A), Boethius’
theses, ∼(A → B) → (A → ∼B), (A → ∼B) → ∼(A → B), and their du-
als ∼(∼A−�A), ∼(A−�∼A), (∼B−�A)−�∼(B−�A), ∼(B−�A)−� (∼B−�A) are
provable, respectively dually provable as follows:

[A]
∼A

A→ ∼A
∼(A→ ∼A)

[∼A]
A

∼A→ A
∼(∼A→ A)

JAK
∼A

∼A−�A
∼(∼A−�A)

JAK
A

A−�∼A
∼(A−�∼A)

[A]
[∼(A→ B)]
A→ B

B
∼B

A→ ∼B
∼(A→ B)→ (A→ ∼B)

[A] [A→ ∼B]
∼B
B

A→ B
∼(A→ B)

(A→ ∼B)→ ∼(A→ B)
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(∆; Γ)
...
⊥
A

(⊥Ep)

(∆; Γ)
...
A
∼A (∼Ip)

(∆; Γ)
...
∼A
A

(∼Ep)

(∆; Γ)
...
A

(∆′; Γ′)
...
B

(A ∧B) (∧Ip)

(∆; Γ)
...

(A ∧B)
A

(∧Ep)

(∆; Γ)
...

(A ∧B)
B

(∧Ep)

(∆; Γ)
...
A

(A ∨B) (∨Ip)

(∆; Γ)
...
B

(A ∨B) (∨Ip)

(∆; Γ)
...

(A ∨B)

([A],∆′; Γ′)
...
C

([B],∆′′; Γ′′)
...
C

C
(∨Ep)

([A],∆; Γ)
...
B

(A→ B) (→ Ip)

(∆; Γ)
...
A

(∆′; Γ′)
...

(A→ B)
B

(→ Ep)

(∆; Γ, JAK)
...
B

(B−�A) (−� Ip)

(∆′; Γ′)
...

(B−�A)

(∆; Γ)
...
A

B
(−�Ep)

Table 1: Introduction and elimination rules of N2C w.r.t. proofs.
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(∆; Γ)
...
>
A

(>Edp)

(∆; Γ)
...
A
∼A (∼Idp)

(∆; Γ)
...
∼A
A

(∼Edp)

(∆; Γ)
...
A

(∆′; Γ′)
...
B

(A ∨B) (∨Idp)

(∆; Γ)
...

(A ∨B)
A

(∨Edp)

(∆; Γ)
...

(A ∨B)
B

(∨Edp)

(∆; Γ)
...
A

(A ∧B) (∧Idp)

(∆; Γ)
...
B

(A ∧B) (∧Idp)

(∆; Γ)
...

(A ∧B)

(∆′; Γ′, JAK)
...
C

(∆′′; Γ′′, JBK)
...
C

C
(∧Edp)

(∆; Γ, JAK)
...
B

(B−�A) (−� Idp)

(∆′; Γ′)
...

(B−�A)

(∆; Γ)
...
A

B
(−�Edp)

([A],∆; Γ)
...
B

(A→ B) (→ Idp)

(∆; Γ)
...
A

(∆′; Γ′)
...

(A→ B)
B

(→ Edp)

Table 2: Introduction and elimination rules of N2C w.r.t. dual proofs.
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J∼(B−�A)K
B−�A JAK

B
∼B

∼B−�A
(∼B−�A)−�∼(B−�A)

J∼B−�AK JAK
∼B
B

B−�A
∼(B−�A)

∼(B−�A)−� (∼B−�A)
The strong negation in 2C operates as a switch between provability and disprov-

ability, and the distinction between assumptions and counterassumptions could be
dispensed with in 2C. Let ∼Θ := {∼A | A ∈ Θ} for a set of formulas Θ. If Θ = ∅,
let ∼Θ := ∅. Then
(*) (∆; Γ) ` A iff (∆ ∪ ∼Γ;∅) ` A, (∆; Γ) `d A iff (∅; Γ ∪ ∼∆) `d A.
(**) (∆; Γ) ` A iff (∆; Γ) `d ∼A, (∆; Γ) `d A iff (Γ; ∆) ` ∼A.
Still, if we consider {∼,⊥}-free or {∼,>}-free fragments of L2C, the distinction
between assumptions and counterassumptions and between provability and its dual
is indispensable.

Let A(B) stand for the result of the uniform replacement of all occurrences
of a certain propositional variable in A by B. It is well-known that in Nelson’s
constructive logics N3, N4, and N4⊥ with strong negation, provable equivalence is
not a congruence relation, i.e., these systems are not closed under the replacement
rule:

∅ ` A↔ B
∅ ` C(A)↔ C(B).

Often this is shown by pointing out that in Nelson’s logics the usual understanding
of negated implications is assumed, so that ∼(p→ q)↔ (p∧∼q) is provable, whereas
∼∼(p→ q)↔ ∼(p∧∼q) fails to be provable, for otherwise (p→ q)↔ (∼p∨q) would
be provable. Nelson’s logics are closed under the restriction of the replacement rule
to ∼-free formulas C and under the weak replacement rule

∅ ` A⇔ B
∅ ` C(A)⇔ C(B),

where the strong equivalence A ⇔ B is defined as (A ↔ B) ∧ (∼A ↔ ∼B). Since
we assume a connexive understanding of strongly negated implications, the above
counterexample does not work. In the paraconsistent logics N4 and N4⊥ there
are, however, other counterexamples. For atomic formulas p and q, the equivalence
(p → p) ↔ (q → q) is provable, whereas ∼(p → p) ↔ ∼(q → q) is not, which gives
us a counterexample for 2C as well. Let strong co-equivalence A�=�B be defined
as (A�−�B) ∨ (∼A�−�∼B).
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Proposition 1. The system N2C is closed under the following replacement rules:

(∅;∅) ` A⇔ B

(∅;∅) ` C(A)⇔ C(B)
(∅;∅) `d A�=�B

(∅;∅) `d C(A)�=�C(B)

Proof. By induction on C. The cases where C is one of the constants >, ⊥ or an
atomic formula are trivial. If C is a strong negation ∼D, we use induction on D;
the case where D is atomic and thus DA ≡ ∼A and DB ≡ ∼B is almost trivial. We
have, for example:

[∼∼A]
∼A
A

(∅;∅)
...

A⇔ B
...

A→ B
B
∼B
∼∼B

∼∼A→ ∼∼B

(∅;∅)
...

A�=�B
...

B−�A

J∼∼AK
∼A
A

B
∼B
∼∼B

∼∼B−�∼∼A

The other cases are also straightforward. We here present some derivations that are
relevant to case C ≡ (E−�D):

(∅;∅)
...

EA ⇔ EB
...

∼EA → ∼EB

[∼(EA−�DA)]
EA−�DA

(∅;∅)
...

DA ⇔ DB
...

∼DB → ∼DA

JDBK
∼DB

∼DA

DA

EA
∼EA

∼EB
EB

EB−�DB

∼(EB−�DB)
∼(EA−�DA)→ ∼(EB−�DB)
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(∅;∅)
...

EA ⇔ EB
...

EB → EA

J∼(EB−�DB)K
EB−�DB

(∅;∅)
...

DA ⇔ DB
...

∼DA → ∼DB

JDAK
∼DA

∼DB

DB

EB
EA

EA−�DA

∼(EA−�DA)
∼(EA−�DA)−�∼(EB−�DB)

2

Proposition 2. In 2C, (i) ∧ is definable in terms of ∨ and ∼, (ii) ∨ is definable in
terms of ∧ and ∼, (iii)→ is definable in terms of −� and ∼, and (iv) −� is definable
in terms of → and ∼.
Proof. In view of Proposition 1, it is enough to note the following facts:

(∅;∅) ` (A ∧B)↔ ∼(∼A ∨ ∼B), (∅;∅) `d (A ∧B)�−�∼(∼A ∨ ∼B),

(∅;∅) ` (A ∨B)↔ ∼(∼A ∧ ∼B), (∅;∅) `d (A ∨B)�−�∼(∼A ∧ ∼B),

(∅;∅) ` (A→ B)↔ (B−�∼A), (∅;∅) `d (A→ B)�−� (B−�∼A),

(∅;∅) ` (B−�A)↔ (∼A→ B), (∅;∅) `d (B−�A)�−� (∼A→ B)

(∅;∅) ` ∼(A ∧B)↔ ∼∼(∼A ∨ ∼B), (∅;∅) `d ∼(A ∧B)�−�∼∼(∼A ∨ ∼B),

(∅;∅) ` ∼(A ∨B)↔ ∼∼(∼A ∧ ∼B), (∅;∅) `d ∼(A ∨B)�−�∼∼(∼A ∧ ∼B),

(∅;∅) ` ∼(A→ B)↔ ∼(B−�∼A), (∅;∅) `d ∼(A→ B)�−�∼(B−�∼A),

(∅;∅) ` ∼(B−�A)↔ ∼(∼A→ B), (∅;∅) `d ∼(B−�A)�−�∼(∼A→ B).
2

3 Models for 2C
The relational model theory of 2C is a modification of the relational model theory
of 2Int in [25].

Definition 2. A model for 2C is a structureM = 〈I,≤, v+, v−〉, where I is a non-
empty set of states, 〈I,≤〉 is a pre-order, and v+, v− are valuation functions from
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Φ to subsets of I. Instead of x ≤ x′ we also write x′ ≥ x. For x ∈ I the relations
M, x |=+ A (“x supports the truth of A inM”) andM, x |=− A (“x supports the
falsity of A inM”) are inductively defined as follows:

M, x |=+ > M, x 6|=− > M, x 6|=+ ⊥ M, x |=− ⊥

M, x |=+ p iff x ∈ v+(p)
M, x |=− p iff x ∈ v−(p)
M, x |=+ ∼A iff M, x |=− A
M, x |=− ∼A iff M, x |=+ A

M, x |=+ (A ∧B) iff M, x |=+ A andM, x |=+ B
M, x |=− (A ∧B) iff M, x |=− A orM, x |=− B
M, x |=+ (A ∨B) iff M, x |=+ A orM, x |=+ B
M, x |=− (A ∨B) iff M, x |=− A andM, x |=− B
M, x |=+ (A→ B) iff for every x′ ≥ x :M, x′ 6|=+ A orM, x′ |=+ B
M, x |=− (A→ B) iff for every x′ ≥ x :M, x′ 6|=+ A orM, x′ |=− B
M, x |=+ (B−�A) iff for every x′ ≥ x :M, x′ 6|=− A orM, x′ |=+ B
M, x |=− (B−�A) iff for every x′ ≥ x :M, x′ 6|=− A orM, x′ |=− B.

Moreover, support of truth and support of falsity are required to be persistent for
atomic formulas. For every p ∈ Φ, and all states x, x′: if x ≤ x′ and M, x |=+ p,
thenM, x′ |=+ p and if x ≤ x′ andM, x |=− p, thenM, x′ |=− p.

Proposition 3. For every L2C-formula A, and all states x, x′ of any modelM for
2CM: if x ≤ x′ andM, x |=+ A, thenM, x′ |=+ A and if x ≤ x′ andM, x |=− A,
thenM, x′ |=− A.

Proof. By induction on A. 2

Definition 3. An L2C-formula A is valid in a model for 2CM = 〈I,≤, v+, v−〉 iff
for every x ∈ I,M, x |=+ A; A is valid in 2C (|=2C A) iff A is valid in every model
for 2C.

An L2C-formula A is dually valid in a model for 2C M = 〈I,≤, v+, v−〉 iff for
every x ∈ I, M, x |=− A; A is dually valid in 2C (|=d

2C A) iff A is dually valid in
every model for 2C.

Definition 4. Let ∆ ∪ {A} be a set of L2C-formulas. ∆ entails A (∆ |= A) iff for
every model for 2C M = 〈I,≤, v+, v−〉 and every x ∈ I, it holds that if the truth
of every element of ∆ is supported by x, then the truth of A is supported by x.

424



Natural Deduction for Bi-Connexive Logic

Let ∆∪{A} be a set of L2C-formulas. ∆ dually entails A (∆ |=d A) iff for every
model for 2CM = 〈I,≤, v+, v−〉 and every x ∈ I, it holds that if the falsity of every
element of ∆ is supported by x, then the falsity of A is supported by x.

Definition 5. If 〈I,≤, v+, v−〉 is a model for 2C, thenM = 〈I,≤, v+〉 is a model
for Int. Formulas from LInt are interpreted in models for Int as in models for 2C,
i.e., for an LInt-formula A the relation M, x |=+ A (“x supports the truth of A
in M”) is defined as in Definition 2. Moreover, support of truth is required to be
persistent for atomic formulas.

An LInt-formula A is valid in a model for IntM = 〈I,≤, v+〉 iff for every w ∈ I,
M, w |=+ A; A is valid in Int (|=Int A) iff it is valid in every model for Int.

Definition 6. If 〈I,≤, v+, v−〉 is a model for 2C, thenM = 〈I,≤, v−〉 is a model
for DualInt. Formulas from LDualInt are interpreted in models for DualInt as in
models for 2C, i.e., for an LDualInt-formula A the relationM, x |=− A (“x supports
the falsity of A inM”) is defined as in Definition 2. Moreover, support of falsity is
required to be persistent for atomic formulas.

An LDualInt-formula A is dually valid in a model M = 〈I,≤, v−〉 for DualInt
iff for every w ∈ I,M, w |=− A; A is dually valid in DualInt (|=d

DualInt A) iff it is
dually valid in every model for DualInt.

In [25] two recursive translation functions τ and ζ are defined. The function τ
translates formulas of 2Int into formulas of Int, and ζ maps formulas of 2Int to
formulas ofDualInt. It is then shown that τ is a faithful embedding of 2Int into Int
with respect to entailment, and that ζ is a faithful embedding of 2Int into DualInt
with respect to dual entailment. In the case of 2C, we define similar translations,
here again denoted by τ and ζ.

Definition 7. Let Φ′ = {p′ | p ∈ Φ}. We inductively define the translations τ from
L2C into LInt and ζ from L2C into LDualInt based on the set of atomic formulas
Φ ∪ Φ′ as follows (some outermost brackets are omitted):

τ(p) := p τ(∼p) := p′

τ(>) := > τ(∼>) := ⊥
τ(⊥) := ⊥ τ(∼⊥) := >

τ(A ∧B) := τ(A) ∧ τ(B) τ(∼(A ∧B)) := τ(∼A) ∨ τ(∼B)
τ(A ∨B) := τ(A) ∨ τ(B) τ(∼(A ∨B)) := τ(∼A) ∧ τ(∼B)
τ(A→ B) := τ(A)→ τ(B) τ(∼(A→ B)) := τ(A)→ τ(∼B)
τ(B−�A) := τ(∼A)→ τ(B) τ(∼(B−�A)) := τ(∼A)→ τ(∼B)

τ(∼∼A) := τ(A)
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ζ(p) := p ζ(∼p) := p′

ζ(>) := > ζ(∼>) := ⊥
ζ(⊥) := ⊥ ζ(∼⊥) := >

ζ(A ∧B) := ζ(A) ∧ ζ(B) ζ(∼(A ∧B)) := ζ(∼A) ∨ ζ(∼B)
ζ(A ∨B) := ζ(A) ∨ ζ(B) ζ(∼(A ∨B)) := ζ(∼A) ∧ ζ(∼B)
ζ(A→ B) := ζ(B)−� ζ(∼A) ζ(∼(A→ B)) := ζ(∼B)−� ζ(∼A)
ζ(B−�A) := ζ(B)−� ζ(A) ζ(∼(B−�A)) := ζ(∼B)−� ζ(A)

ζ(∼∼A) := ζ(A)

An L2C-formula A is in negation normal form iff it contains occurrences of ∼
only as prefixes of atomic formulas.

Proposition 4. For every L2C-formula A, there is a formula A′ in negation normal
form such that (i) |=2C A↔ A′ and (ii) |=d

2C A�−�A′.
Proof. The following equivalences are valid in 2C:

∼> ↔ ⊥, ∼⊥ ↔ >, ∼∼A↔ A

∼(A ∧B)↔ (∼A ∨ ∼B), ∼(A ∨B)↔ (∼A ∧ ∼B)
∼(A→ B)↔ (A→ ∼B), ∼(B−�A)↔ (∼A→ ∼B)
∼(A→ B)↔ (∼B−�∼A), ∼(B−�A)↔ (∼B−�A).

Moreover, the following dual equivalences are dually valid in 2C:

∼>�−�⊥, ∼⊥�−�>, ∼∼A�−�A
∼(A ∧B)�−� (∼A ∨ ∼B), ∼(A ∨B)�−� (∼A ∧ ∼B)
∼(A→ B)�−� (A→ ∼B), ∼(B−�A)�−� (∼A→ ∼B)
∼(A→ B)�−� (∼B−�∼A), ∼(B−�A)�−� (∼B−�A).

Hence, we may put A′ = τ(A) or we may put A′ = ζ(A) with the modification that
for atomic formulas p, τ(∼p) := ∼p and ζ(∼p) := ∼p.5 2

Lemma 1. Let τ be the above mapping from L2C into LInt, and let M′ =
〈I,≤, v+, v−〉 be a model for 2C. Consider the language LInt based on the set of
atoms Φ ∪ Φ′, and let M be the structure 〈I,≤, v〉, where the function v from
Φ ∪ Φ′ into subsets of I is defined by requiring for every w ∈ I and p ∈ Φ:
w ∈ v(p) iff w ∈ v+(p);w ∈ v(p′) iff w ∈ v−(p). Clearly, M is a model for Int.
For every L2C-formula A and every w ∈ I,

1. M′, w |=+ A iffM, w |=+ τ(A),
5This modification has to be added in [25, proof of Corollary 4.4].
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2. M′, w |=− A iffM, w |=+ τ(∼A).

Proof. By simultaneous induction on the construction of A. We consider, by way of
example, the case A ≡ (B−�C). Claim 1: M′, x |=+ (B−�C) iff for every x′ ≥ x:
M′, x′ 6|=− C orM′, x′ |=+ B. The latter is the case iff for every x′ ≥ x: M, x′ 6|=+

τ(∼C) (by the induction hypothesis for 2.) or M, x′ |=+ τ(B) (by the induction
hypothesis for 1.), which holds iffM, x |=+ τ(∼C)→ τ(B) iffM, x |=+ τ(B−�C).
Claim 2: M′, x |=− (B−�C) iff for every x′ ≥ x: M′, x′ 6|=− C orM′, x′ |=− B. The
latter is the case iff for every x′ ≥ x: M, x′ 6|=+ τ(∼C) (by the induction hypothesis
for 2.) or M, x′ |=+ τ(∼B) (by the induction hypothesis for 2.), which holds iff
M, x |=+ τ(∼C)→ τ(∼B) iffM, x |=+ τ(∼(B−�C)). 2

Lemma 2. Let again τ be the above mapping from L2C into LInt, and let M =
〈I,≤, v〉 be a model for Int. Consider the language LInt based on the set of atomic
formulas Φ∪Φ′, and letM′ be the structure 〈I,≤, v+, v−〉, where the mappings v+,
v− from Φ into subsets of I are defined by requiring for every w ∈ I, every p ∈ Φ:
w ∈ v(p) iff w ∈ v+(p);w ∈ v(p′) iff w ∈ v−(p). Clearly,M′ is a model for 2C. For
every L2C-formula A and every w ∈ I,

1. M′, w |=+ A iffM, w |=+ τ(A),

2. M′, w |=− A iffM, w |=+ τ(∼A).

Proof. Analogous to the proof of the previous lemma. 2

Theorem 1. For every L2C-formula A, |=2C A iff |=Int τ(A).

Proof. Right to left: If 6|=2C A, then there is a model M′ = 〈I,≤, v+, v−〉 for 2C
and a state w ∈ I withM′, w 6|=+ A. By Lemma 1, in the modelM for Int obtained
fromM′ it holds thatM, w 6|=+ τ(A). Left to right: If 6|=Int τ(A), then there is a
modelM = 〈I,≤, v〉 for Int and a state w ∈ I withM, w 6|=+ τ(A). By Lemma 2,
in the modelM′ for 2C obtained fromM it holds thatM′, w 6|=+ A. 2

Lemma 3. Let ζ be the above mapping from L2C into LDualInt and, let M′ =
〈I,≤, v+, v−〉 be a model for 2C. Consider the language LDualInt based on the set
of atoms Φ ∪ Φ′, and let M be the structure 〈I,≤, v〉, where the function v from
Φ ∪ Φ′ into subsets of I is defined by requiring for every w ∈ I, every p ∈ Φ:
w ∈ v(p) iff w ∈ v−(p);w ∈ v(p′) iff w ∈ v+(p). Clearly,M is a model for DualInt.
For every L2C-formula A and every w ∈ I,

1. M′, w |=− A iffM, w |=− ζ(A),

2. M′, w |=+ A iffM, w |=− ζ(∼A).
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Proof. By simultaneous induction on the construction of A. 2

Lemma 4. Let ζ be the above mapping from L2C into LDualInt, and let M =
〈I,≤, v〉 be a model for DualInt. Consider the language LDualInt based on Φ ∪Φ′,
and letM′ be the structure 〈I,≤, v+, v−〉, where the mappings v+, v− from Φ into
subsets of I are defined by requiring for every w ∈ I, every p ∈ Φ: w ∈ v(p) iff w ∈
v−(p);w ∈ v(p′) iff w ∈ v+(p). Clearly,M′ is a model for 2C. For every L2C-formula
A and every w ∈ I,

1. M′, w |=− A iffM, w |=− ζ(A),

2. M′, w |=+ A iffM, w |=− ζ(∼A).

Proof. By simultaneous induction on the construction of A. 2

Theorem 2. For every L2C-formula A, |=d
2C A iff |=d

DualInt ζ(A).

Proof. Analogous to the proof of Theorem 1, using Lemmas 3 and 4. 2

Since for every LInt-formula A based on Φ, A = τ(A) and for every LDualInt-
formula A based on Φ, A = ζ(A), we may conclude that 2C is conservative over Int
with respect to validity and that 2C is conservative over DualInt with respect to
dual validity.

Theorem 3. Let A be an LInt-formula, then |=Int A iff |=2C A. Let A be an
LDualInt-formula, then |=d

DualInt A iff |=d
2C A.

Lemma 5. Let ∆, Γ be any finite sets of L2C-formulas. Let ∧{A1, . . . , An} :=
(A1 ∧ (A2 ∧ (. . . (An−1 ∧An) . . .))), let ∧

∅ := >, and let A be any L2C-formula.

1. If (∆; Γ) ` A, then |=2C (∧ ∆ ∧∧∼Γ)→ A.

2. If (∆; Γ) `d A, then |=2C (∧ ∆ ∧∧∼Γ)→ ∼A.

Proof. By simultaneous induction on the construction of derivations, i.e., proofs and
dual proofs. 2

Let NJ be the standard natural deduction prof system for intuitionistic proposi-
tional logic in the language L2Int.

Lemma 6. Let A be any L2C-formula, let Γ be any finite set of L2C-formulas, let
τ(Γ) := {τ(A) | A ∈ Γ} if Γ 6= ∅, and let τ(Γ) := > if Γ = ∅. If τ(Γ) `NJ τ(A),
then (Γ;∅) ` A.

Proof. By induction on proofs in NJ. 2
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Theorem 4. Let A be any L2C-formula, and let ∆, Γ be any finite sets of L2C-
formulas.

1. (∆; Γ) ` A iff (∆ ∪ ∼Γ) |=2C A.

2. (∆; Γ) `d A iff (∼∆ ∪ Γ) |=d
2C A.

Proof. Claim 1. Left to right: By Lemma 5 1., from (∆; Γ) ` A we obtain |=2C∧ ∆∧∧∼Γ→ A and thus (∆∪∼Γ) |=2C A. Right to left: Suppose (∆∪∼Γ) |=2C A.
Then |=2C

∧ ∆ ∧∧∼Γ→ A and by Theorem 1, |=Int τ(∧ ∆ ∧∧∼Γ→ A). By the
completeness of Int with respect to NJ, τ(∧ ∆ ∧∧∼Γ→ A) is derivable from ∅ in
NJ. By Lemma 6 and (∅;∅) ` >, (∅;∅) ` ∧ ∆ ∧∧∼Γ→ A and thus (∆; Γ) ` A.
Claim 2. Left to right. By Lemma 5 2., (∆; Γ) `d A implies |=2C

∧ ∆∧∧∼Γ→ ∼A
and thus (∆ ∪ ∼Γ) |=2C ∼A. Hence (∼∆ ∪ Γ) |=d

2C A. Right to left. Suppose
(∼∆ ∪ Γ) |=d

2C A. Then |=2C
∧ ∆ ∧∧∼Γ→ ∼A and by Theorem 1, |=Int τ(∧ ∆ ∧∧∼Γ→ ∼A). By the completeness of Int with respect to NJ, τ(∧ ∆∧∧∼Γ→ ∼A)

is derivable from ∅ in NJ. By Lemma 6 and (∅;∅) ` >, (∅;∅) ` ∧ ∆∧∧∼Γ→ ∼A
and thus (∼∆; Γ) `d A. 2

4 Formulas-as-types
Edgar López-Escobar [10] presented a proof–and–disproof interpretation of the con-
structive connectives (except for co-implication). In addition to the well-known
proof clauses of the Brouwer-Heyting-Kolmogorov interpretation of the intuitionis-
tic connectives ∧, ∨, and →, López-Escobar suggested the following clauses:6

i.) the construction c refutes A∧B iff c is of the form 〈i, d〉 with i either 0 or 1 and
if i = 0, then d refutes A and if i = 1 then d refutes B,

ii.) the construction c refutes A∨B iff c is of the form 〈d, e〉 and d refutes A and e
refutes B,

iii.) the construction c refutes A→ B iff c is of the form 〈d, e〉 and d proves A and
e refutes B,

. . .

viii.) [t]he construction c refutes ∼ A iff c proves A.

6López-Escobar uses ‘&’ instead of ‘∧’ and ‘−’ instead of ‘∼’.
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Moreover, López-Escobar assumed that a proof of ∼ A is a refutation of A (and
not a proof of (A → ⊥)). Let pr(Π, A) stand for “Π is a proof of A”. Another fun-
damental assumption made in [10] is that {A | ∃Π, pr(Π, A) and pr(Π,∼ A)} = ∅.

A formula A is said to be valid iff there exists a construction that is a proof of
A, and it would make sense to consider co-implication as well and the dual validity
of a formula A, understood as the existence of a construction that is a disproof of A.
If we the stronger assumption that {A | ∃Π1∃Π2, pr(Π1, A) and pr(Π2,∼ A)} = ∅
is made, then the rule ex contradictione quodlibet becomes validity preserving.

This proof-disproof interpretation is a semantics with respect to which David
Nelson’s constructive propositional logic with strong negation N4 (or N3, if the
above stronger assumption is made) is sound. Every theorem of N4 is valid. On the
proof-disproof interpretation every construction that proves or disproves a formula
is both a proof and a disproof (refutation):

A construction c is a disproof of A iff c is a proof of ∼A.
A construction c is a proof of A iff c is a disproof of ∼A.

A so-called formulas-as-types notion of construction, i.e., an encoding of formal
derivations by typed λ-terms, facilitates a denotational semantics of derivations
through the denotational semantics of the typed λ-calculus, see, for example, [5].
The introduction and elimination rules for strongly negated formulas in natural
deduction proof systems for N4 and N3 (cf. [7, 8]) suggest a typed λ-calculus in
which every term that encodes a proof or a disproof occurs in more than one type.
On the basis of López-Escobar’s proposal, in [26, 28] a formulas-as-types notion of
construction for substructural subsystems of Nelson’s N4 is developed that has the
feature of non-unique typedness of terms. Instead of using terms of different sorts,
it is postulated that the set of typed terms is the smallest set Γ that contains all
typed variables and satisfies in addition to the familiar term-formation conditions
the following equivalences:

• M∼∼A ∈ Γ iff MA ∈ Γ;
• M∼(A∧B) ∈ Γ iff M (∼A∨∼B) ∈ Γ;
• M∼(A∨B) ∈ Γ iff M (∼A∧∼B) ∈ Γ;
• M∼(A→B) ∈ Γ iff M (A∧∼B) ∈ Γ.

As a result of requiring the satisfaction of theses equivalences, every term occurs
in many types; the term 〈xA1 , x∼B2 〉, for example, belongs to the types (A∧ ∼ B),
∼(A→ B), ∼∼(A∧ ∼ B), ∼∼∼(A→ B), etc. In order to encode proofs and dual
proofs in 2C, we proceed differently.
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Definition 8. The set of type symbols (or just types) is the set of all formulas of
L2C. The set Var of term variables is defined as the union of two disjoint sets:

Varp := {x+A
i | i ∈ ω, A is a type} and Vardp := {x−Ai | i ∈ ω, A is a type}.

We are thus considering two sorts of typed variables, those from Varp, which we
call proof variables (p-variables), and those from Vardp, which we call dual proof
variables (dp-variables). The variables are used to build up more complex typed
terms, proof terms and dual proof terms. If M+A [M−A] is a proof term [dual proof
term] of type A, we also just writeM+ [M−] when the type is clear and no confusion
is likely to arise, and sometimes we even just write M when it is clear whether M
is a proof term or a dual proof term, and therefore no confusion is likely to arise.

Definition 9. We define the set of typed proofs terms (p-terms) Termp and the set
of typed dual proof terms (dp-terms) Termdp by a simultaneous induction as the
smallest sets Γp and Γdp, respectively, such that:

Pure clauses for p-terms

• Varp ⊆ Γp;

• Top+> ∈ Γp;

• if M+A, N+B ∈ Γp, then 〈M+, N+〉+(A∧B) ∈ Γp;

• if M+A ∈ Γp, then (K0
A,BM

+)+(A∨B) ∈ Γp;

• if M+B ∈ Γp, then (K1
A,BM

+)+(A∨B) ∈ Γp;

• if M+B ∈ Γp, x+A ∈ Varp, then (λx.M+)+(A→B) ∈ Γp;

• if M+⊥ ∈ Γp and A is a type, then (exAM+)+A ∈ Γp;

• if M+(A∧B) ∈ Γp, then (M+)+A
0 , (M+)+B

1 ∈ Γp;

• if x+A, y+B ∈ Varp and M+C , N+C , G+(A∨B) ∈ Γp,
then (K(x+,M+, y+, N+, G+))+C ∈ Γp;

• if M+(A→B), N+A ∈ Γp, then (M+, N+)+B ∈ Γp;

Pure clauses for dp-terms

• Vardp ⊆ Γdp;

• Bot−⊥ ∈ Γdp;
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• if M−A, N−B ∈ Γdp, then 〈M−, N−〉−(A∨B) ∈ Γdp;

• if M−A ∈ Γdp, then (K0
A,BM

−)(A∧B) ∈ Γdp;

• if M−B ∈ Γdp, then (K1
A,BM

−)(A∧B) ∈ Γdp;

• if M−B ∈ Γp, x−A ∈ Vardp, then (λx.M)−(B−�A) ∈ Γdp;

• if M−> ∈ Γdp and A is a type, then (exAM−)−A ∈ Γdp;

• if M−(A∨B) ∈ Γdp, then (M−)−A0 , (M−)−B1 ∈ Γdp;

• if x−A, y−B ∈ Vardp and M−C , N−C , G−(A∧B) ∈ Γdp,
then (K(x−,M−, y−, N−, G−))−C ∈ Γdp;

• if M−(B−�A), N−A ∈ Γdp, then (M−, N−)−B ∈ Γdp;

Mixed clauses

• if M−B ∈ Γdp, x+A ∈ Varp, then (λx.M−)−(A→B) ∈ Γdp;

• if M−(A→B) ∈ Γdp, N+A ∈ Γp, then (M−, N+)−B ∈ Γdp;

• if M+B ∈ Γp, x−A ∈ Vardp, then (λx.M+)+(B−�A) ∈ Γp;

• if M+(B−�A) ∈ Γp, N−A ∈ Γdp, then (M+, N−)+B ∈ Γp;

• if M−A ∈ Γdp, then (dp(M))+∼A ∈ Γp;

• if M+A ∈ Γp, then (pd(M))−∼A ∈ Γdp;

• if M−∼A ∈ Γdp, then (dp(M))+A ∈ Γp;

• if M+∼A ∈ Γp, then (pd(M))−A ∈ Γdp.

We define the set Term of typed terms as Termp ∪ Termdp.7

Note that every M ∈ Term is uniquely typed.

Definition 10. The set fv(M) of free variables of M ∈ Term, is inductively defined
as follows:

7Functional application, λ-abstraction, pairing, and left and right projection are well-known
operations. The term constructors for disjunction, the left and right injections, are here denoted by
‘K0

A,B ’ and ‘K1
A,B ’ (for types A and B), and the term destructor for disjunction, the case analysis

function, is here denoted by ‘K’.
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fv(x) = {x}, if x ∈ Var ;

fv(〈M,N〉) = fv(M) ∪ fv(N);

fv((M)i) = fv(M), i = 0, 1;

fv((Ki
A,BM)) = fv(M), i = 0, 1, for all types A,B;

fv((λx.M)) = fv(M) \ {x};

fv((K(x,M, y,N,G))) = (fv(M) ∪ fv(N) ∪ fv(G)) \ {x, y};

fv((M,N)) = fv(M) ∪ fv(N);

fv(Bot−⊥) = fv(Top+>) = ∅;

fv(exA(M)) = fv(M), for every type A;

fv(pd(M)) = fv(dp(M)) = fv(M).

A term variable is bound in term M (is an element of bv(M)) iff it does not
belong to fv(M).

We write M ≡ N to express that M and N are the same symbols or are obtain-
able from each other by renaming bound variables. If x ∈ Varp and N ∈ Termp,
respectively x ∈ Vardp and N ∈ Termpd have the same type, then M [x := N ] is the
result of substituting N for the occurrences of x ∈ fv(M) in M .

Definition 11. The logical axiom-schema and rules of the two-sorted typed λ-
calculus 2λ are:

M = M

If M = N , then N = M .

If M = N , N = G, then M = G.

If M+(A→B) = N+(A→B), then (M,G+A) = (N,G+A).

If M−(A→B) = N−(A→B), then (M,G+A) = (N,G+A).

If M−(B−�A) = N−(B−�A), then (M,G−A) = (N,G−A).

If M+(B−�A) = N+(B−�A), then (M,G−A) = (N,G−A).

If M+A = N+A, then (G+(A→B),M) = (G+(A→B), N).
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If M+A = N+A, then (G−(A→B),M) = (G−(A→B), N).

If M−A = N−A, then (G−(B−�A),M) = (G−(B−�A), N).

If M−A = N−A, then (G+(B−�A),M) = (G+(B−�A), N).

If M = N , then (λx+A.M) = (λx+A.N).

If M = N , then (λx−A.M) = (λx−A.N).

The axiom-schemata of 2λ’s theory of typed pd/dp-β-equality are:

((λx+A.M)N+A) = M [x := N ], ((λx−A.M)N−A) = M [x := N ],

dp(pd(M+A)) = M , pd(dp(M−A)) = M .

Definition 12. The binary relations —�β (one-step pd/dp-β-reduction), —��β
(pd/dp-β-reduction), and =β (pd/dp-β-convertability) are defined as follows:

(1) ((λx+A.M)N+A) —�β M [x := N ]; ((λx−A.M)N−A) —�β M [x := N ];

if M+A —�β N+A, then (G+(A→B),M) —�β (G+(A→B), N);

if M+A —�β N+A, then (G−(A→B),M) —�β (G−(A→B), N);

if M−A —�β N−A, then (G−(B−�A),M) —�β (G−(B−�A), N);

if M−A —�β N−A, then (G+(B−�A),M) —�β (G+(B−�A), N);

if M+(A→B) —�β N+(A→B), then (M,G+A) —�β (N,G+A);

if M−(A→B) —�β N−(A→B), then (M,G+A) —�β (N,G+A);

if M−(B−�A) —�β N−(B−�A), then (M,G−A) —�β (N,G−A);

if M+(B−�A) —�β N+(B−�A), then (M,G−A) —�β (N,G−A);

if M —�β N , then (λx+A.M) —�β (λx+A.N);

if M —�β N , then (λx−A.M) —�β (λx−A.N).

(2) —��β is the reflexive and transitive closure of —�β;

(3) =β is the symmetric closure of —��β.

We show that every M ∈ Term encodes a derivation in N2C, and that vice versa
every derivation in N2C is encoded by some M ∈ Term.
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Definition 13. If P(Π, A, ({A1, . . . , An}; {B1, . . . , Bm})), then M+A ∈ Termp is a
construction of Π iff there are at most the variables x+A1

1 , . . ., x+An
n , x−B1

1 , . . .,
x−Bm
m ∈ fv(M). If DP(Π, A, ({A1, . . . , An}; {B1, . . . , Bm})), then M−A ∈ Termdp is

a construction of Π iff there are at most the variables x+A1
1 , . . ., x+An

n , x−B1
1 , . . .,

x−Bm
m ∈ fv(M).

Proposition 5.
1. If P(Π, A, (∆; Γ)), then one can find a construction M+A of Π.

If DP(Π, A, (∆; Γ)), then one can find a construction M−A of Π.

2. For everyM+A ∈ Termp, one can find a proof of whichM+A is a construction.
For every M−A ∈ Termdp, one can find a dual proof of which M−A is a
construction.

Proof. 1.: By a straightforward simultaneous induction on proofs and dual proofs.
We consider some exemplary cases.

• If P(Π, A, ({A};∅)), we choose x+A, and if DP(Π, A, (∅; {A})), we choose x−A.

• If P(Π,>, (∅;∅)), we choose Top+>, and if DP(Π,⊥, (∅;∅)), we choose Bot−⊥.

• If DP(Π, (A→ B), (∆; Γ)) and if, by the induction hypothesis, DP(Π′, B, (∆∪
{A}; Γ)) with N−B being a construction of Π′, then (λx+A.N)−(A→B) is a
construction of Π.

• If DP(Π, B, (∆∪Γ; ∆′∪Γ′)) and if, by the induction hypothesis, P(Π′, A, (∆; Γ))
and DP(Π′′, (A→ B), (∆′; Γ′)) with N+A, G−(A→B) being constructions of Π′
and Π′′, respectively, then (G,N)−B is a construction of Π.

2.: By a straightforward simultaneous induction on proof terms and dual proof
terms. Again, we consider some exemplary cases.

• If M+A ∈ Varp or M−A ∈ Vardp, we choose A.

• If M ≡ Top+>, we choose >; if M ≡ Bot−⊥, we choose ⊥.
• If M ≡ (λx−A.N+B)+(B−�A), and, by the induction hypothesis, we have

P(Π, B, (∆; Γ)), then M is a construction of
Π

(B−�A), where all counter-
assumptions of A in Γ have been cancelled.

• IfM ≡ (N+(B−�A), G−A)+B, and, by the induction hypotheses for proof terms
and dual proof terms, P(Π, (B−�A), (∆; Γ)) and DP(Π′, A, (∆′; Γ′)), then M

is a construction of
Π Π′
B . 2
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5 Some peculiarities of 2C

The early systems of connexive logic have been criticized for their unintuitive or
overly complicated semantics or for having some problematic properties, cf. [34], so
that one may wonder about peculiarities of the system 2C. First, note that like C,
the system 2C is a non-trivial inconsistent logic: For any A, (A∧∼A)→ ∼(A∧∼A)
and ∼((A∧∼A)→ ∼(A∧∼A)), for example, are both provable and, moreover, the
formulas ∼(A ∨ ∼A)−� (A ∨ ∼A) and ∼(∼(A ∨ ∼A)−� (A ∨ ∼A)) are both dually
provable. Also, (A ∧ ∼A) → A and ∼((A ∧ ∼A) → A) are both provable; this
example is taken from [19].

Moreover, an anonymous referee pointed out that in 2C for every formula A,
the co-negation −A of A is valid, the intuitionistic negation ¬A of A is dually valid,
the strong negation of ¬A is valid, and the strong negation of −A is dually valid.
In terms of provability and dual provability we have the following derivations and
encoding typed terms:

>
>−�A
∼(>−�A)

(pd(λx−A.Top+>))−∼(>−�A)

⊥
A→ ⊥
∼(A→ ⊥)

(dp(λx+A.Bot−⊥))+∼(A→⊥)

Is this peculiarity surprising, and is it a “pathology”? The provability of the formula
∼(A → ⊥) shows that for every formula A, it is provably false that A implies
absurdity (understood as a proposition the falsity of which is supported by every
state). Since ⊥ → ⊥ is provable, we have another instance of inconsistency: ⊥ → ⊥
and ∼(⊥ → ⊥) are both provable. If the classical negation of a formula A is true in
a classical model, then Aristotle’s theses is not true for A in that model, so maybe
it is not exceedingly surprising that the connexive logic 2C validates ∼(A → ⊥). I
leave this issue for future discussion.

6 Summary and brief outlook

In this paper the bi-connexive logic 2C has been motivated and introduced. Its
natural deduction proof system N2C has been shown to be sound and complete for
both provability and dual provability with respect to a certain class of relational
models. It turned out that with respect to validity, 2C is a conservative extension
of and is faithfully embeddable into Int, and that with respect to dual validity, 2C
is a conservative extension of and is faithfully embeddable into DualInt. Moreover,
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it has been shown that proofs and dual proofs can be encoded by typed λ-terms
from a two-sorted typed λ-calculus.

Topics for further investigation abound and include strong normalizability for
N2C8 and 2λ, a sequent calculus for 2C and strong cut-elimination, the relation
between normalization and cut-elimination, an extension of 2C to first-order, the
definition of other kinds of proof systems (tableaux, Fitch-style, . . .), etc. Also, it
would be interesting to characterize the set of L2C formulas A for which it holds
that A and ∼A are both provable, respectively dually provable.

References
[1] A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. Journal of

Symbolic Logic, 49(1):231–233, 1984.
[2] J. M. Dunn. Partiality and its dual. Studia Logica, 66(1):5–40, 2000.
[3] S. Frankowski. Formalization of a plausible inference. Bulletin of the Section of Logic,

33(1):41–52, 2004.
[4] S. Frankowski. p-consequence versus q-consequence operations. Bulletin of the Section

of Logic, 33(4):197–207, 2004.
[5] J.-Y. Girard. Proofs and Types. Cambridge University Press, Cambridge, 1989.
[6] R. Goré. Dual intuitionistic logic revisited. In R. Dyckhoff, editor, Automated Reasoning

with Analytic Tableaux and Related Methods, volume 1847 of Lecture Notes in AI, pages
252–267. Springer Verlag, Berlin, 2000.

[7] N. Kamide and H. Wansing. Proof theory of Nelson’s paraconsistent logic: A uniform
perspective. Theoretical Computer Science, 415:1–38, 2012.

[8] N. Kamide and H. Wansing. Proof Theory of N4-Related Paraconsistent Logics. London,
College Publications, 2015.

[9] N. Kamide and H. Wansing. Completeness of connexive Heyting-Brouwer logic. The
IFCoLog Journal of Logics and Their Applications, 2016. this issue.

[10] E.G.K. López-Escobar. Refutability and elementary number theory. Indigationes Math-
ematicae, 75(4):362–374, 1972.

[11] G. Malinowski. Q-consequence operation. Reports on Mathematical Logic, 24:49–59,
1990.

[12] G. Malinowski. Many-valued Logics. Oxford, Clarendon Press, 1993.
[13] G. Malinowski. Beyond three inferential values. Studia Logica, 92(2):203–221, 2009.
[14] D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14(1):16–26, 1949.

8A normal form theorem for the system 2Int, of which 2C is connexive variant, can be found
in [35].

437



H. Wansing

[15] D. Nelson. Negation and separation of concepts in constructive systems. In A. Heyt-
ing, editor, Constructivity in Mathematics, pages 208–225. North-Holland, Amsterdam,
1959.

[16] S. Odintsov. The class of extensions of Nelson’s paraconsistent logic. Studia Logica,
80(2–3):291–320, 2005.

[17] S. Odintsov. Constructive Negations and Paraconsistency. Springer, Dordrecht, 2008.
[18] S. Odintsov and H. Wansing. The logic of generalized truth values and the logic of

bilattices. Studia Logica, 103(1):91–112, 2015.
[19] H. Omori. A simple connexive extension of the basic relevant logic BD. The IFCoLog

Journal of Logics and their Applications, 2016. this issue.
[20] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuition-

istic logic. Dissertationes Mathematicae, 167:1–62, 1980.
[21] Y. Shramko. Dual intuitionistic logic and a variety of negations: The logic of scientific

research. Studia Logica, 80(2):347–367, 2005.
[22] Y. Shramko and H. Wansing. Some useful 16-valued logics: How a computer network

should think. Journal of Philosophical Logic, 34(2):121–153, 2005.
[23] Y. Shramko and H. Wansing. Truth and Falsehood: An Inquiry into Generalized Logical

Values. Springer, Dordrecht, 2011.
[24] D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors, Handbook

of Philosophical Logic, volume III, pages 225–339. Reidel, Dordrecht, 1986.
[25] H. Wansing. Falsification, natural deduction and bi-intuitionistic logic. Journal of Logic

and Computation, 26(2016):425–450. First published online July 17, 2013.
[26] H. Wansing. Formulas-as-types for a hierarchy of sublogics of intuitionistic propositional

logic. In D. Pearce and H. Wansing, editors, Non-classical Logics and Information
Processing, volume 619 of Lecture Notes in AI, pages 125–145. Springer, Berlin, 1992.

[27] H. Wansing. Informational interpretation of substructural propositional logics. Journal
of Logic, Language and Information, 2(4):285–308, 1993.

[28] H. Wansing. The Logic of Information Structures, volume 681 of Lecture Notes in AI.
Springer, Berlin, 1993.

[29] H. Wansing. Negation. In L. Goble, editor, The Blackwell Guide to Philosophical Logic,
pages 415–436. Blackwell, Oxford, 2001.

[30] H. Wansing. Connexive modal logic. In R. Schmidt et al., editors, Advances in Modal
Logic, pages 367–383. College Publications, London, 2005.

[31] H. Wansing. Contradiction and contrariety: Priest on negation. In J. Malinowski and
A. Pietruszczak, editors, Essays in Logic and Ontology, volume 13 of Poznań Studies in
the Philosophy of the Sciences and the Humanities, pages 81–93. Rodopi, Amsterdam,
2006.

[32] H. Wansing. Constructive negation, implication, and co-implication. Journal of Applied
Non-Classical Logics, 18(2–3):341–364, 2008.

[33] H. Wansing. Proofs, disproofs, and their duals. In V. Goranko, L. Beklemishev, and
V. Shehtman, editors, Advances in Modal Logic, volume 8, pages 483–505. College

438



Natural Deduction for Bi-Connexive Logic

Publications, London, 2010.
[34] H. Wansing. Connexive logic. In E. N. Zalta, editor, The Stanford Encyclopedia of Phi-

losophy. Fall 2014 edition, 2014. http://plato.stanford.edu/archives/fall2010/
entries/logic-connexive/.

[35] H. Wansing. A more general general proof theory. 2016, submitted.
[36] H. Wansing. On split negation, strong negation, information, falsification, and verifi-

cation. In K. Bimbó, editor, J. Michael Dunn on Information Based Logics, volume 8
of Outstanding Contributions to Logic, pages 161–189. Springer, Dordrecht, 2016.

Received September 2015439



440



Completeness of Connexive
Heyting-Brouwer Logic

Norihiro Kamide
Department of Information and Electronic Engineering,

Teikyo University, Japan
drnkamide08@kpd.biglobe.ne.jp

Heinrich Wansing
Department of Philosophy II,

Ruhr-University Bochum, Germany
Heinrich.Wansing@rub.de

Abstract
In this paper, we investigate a logic called connexive Heyting-Brouwer logic

or bi-intuitionistic connexive logic, BCL. The system BCL is introduced as a
Gentzen-type sequent calculus, and we prove some theorems for embedding
BCL into a Gentzen-type sequent calculus BL for bi-intuitionistic logic, BiInt.
The completeness theorem with respect to a Kripke semantics for BCL is proved
using these embedding theorems. The cut-elimination theorem and a certain
duality principle are also shown for some subsystems of BCL. Moreover, we
present a sound and complete triply-signed tableau calculus for BCL.

1 Introduction
In [40], sixteen variants of Heyting-Brouwer logic, HB, also known as bi-intuitionistic
logic, BiInt, are presented semantically and as display sequent systems. These logics
differ in their treatment of strongly negated implications and co-implications. For
want of a better terminology and notation they were referred to as systems (Ii, Cj),
where i and j range over four ways of interpreting negated implications and co-
implications, respectively.
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In this paper, we focus on the system (I2, C2) with a connexive reading of negated
implications and co-implications. The system (I2, C2) is thus a bi-intuitionistic con-
nexive logic (or connexive Heyting-Brouwer logic), and we therefore refer to it here as
BCL. The logic BCL may also be seen as an extension of the connexive logic C from
[39] by the co-implication of BiInt, presuming a connexive understanding of negated
co-implications. Another understanding of co-implication is developed in [37, 43],
and a natural deduction proof system and formulas-as-types notion of construction
for a bi-connexive logic 2C that assumes this understanding of co-implication is
presented in [42].

Systems of connexive logic and the bi-intuitionistic logic BiInt have been care-
fully studied since the 1960s and 1970s with various philosophical and mathematical
motivations, see [2, 12, 13, 41] and [24, 25, 26, 9, 5]. The characteristic principles
of connexive logic are usually traced back to Aristotle and Boethius, and the co-
implication of BiInt can be traced back to Skolem [31] and Moisil, [15], see also
[34].

A distinctive feature of connexive logics is that they validate the so-called
Aristotle’s theses: ∼(α→ ∼α) and ∼(∼α→ α), and
Boethius’ theses: (α→ β)→ ∼(α→ ∼β) and (α→ ∼β)→ ∼(α→ β).
An intuitionistic (or constructive) connexive modal logic, CK, which is a constructive
connexive analogue of the smallest normal modal logic K, was introduced in [39] by
extending a certain basic intuitionistic (or constructive) connexive logic, C, which
is a connexive variant of Nelson’s paraconsistent logic [1, 16, 17, 8].1 A classical
connexive modal logic called CS4, which is based on the positive normal modal
logic S4, was introduced in [7] as a Gentzen-type sequent calculus. The Kripke-
completeness and cut-elimination theorems for CS4 were shown, and CS4 was shown
to be embeddable into positive S4 and to be decidable. Moreover, it was shown in
[7] that the basic constructive connexive logic C can be faithfully embedded into
CS4 and into a subsystem of CS4 lacking syntactic duality between necessity and
possibility.

Heyting-Brouwer logic, which is an extension of both dual-intuitionistic logic,
DualInt, and intuitionistic logic, Int, was introduced by Rauszer [24, 25, 26], who
proved algebraic and Kripke completeness theorems for BiInt. As was shown by
Uustalu in 2003, cf.[20], the original Gentzen-type sequent calculus by Rauszer [24]
does not enjoy cut-elimination, and various kinds of sequent systems for BiInt have
been presented in the literature, including cut-free display sequent calculi in [5, 40],
see also [21] and [20] for a comparison between sequent calculi for BiInt. Moreover,
BiInt is known to be a logic that has a faithful embedding into the future-past tense

1Information on connexive logics can also be found on the web site [19].
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logic KtT4 [10], and a modal logic based on BiInt was studied by Łukowski in [11].
Dual-intuitionistic logics are logics which have a Gentzen-type sequent calculus in

which sequents have the restriction that the antecedent contains at most one formula
[3, 4, 35]. This restriction of being singular in the antecedent is syntactically dual
to that in Gentzen’s sequent calculus LJ for intuitionistic logic, which is singular
in the consequent. Historically speaking, the logics in the set of logics containing
Czermak’s dual-intuitionistic calculus [3], Goodman’s logic of contradiction or anti-
intuitionistic logic [4], and Urbas’s extensions of Czermak’s and Goodman’s logics
[35] were collectively referred to by Urbas as dual-intuitionistic logics. The dual-
intuitionistic logic referred to as DualInt in [5, 37] is the implication-free fragment
of BiInt (in a language with constants ⊥ and >, but without intuitionistic negation
as primitive). An interpretation of DualInt as the logic of scientific research was
presented by Shramko in [29].

In this paper we combine the two approaches and introduce the bi-intuitionistic
connexive logic (or connexive Heyting-Brouwer logic), BCL, as a Gentzen-type se-
quent calculus. The logic BCL may be seen as an extension of the connexive logic C
from [39] by the co-implication of BiInt, using a connexive understanding of negated
co-implications. Another understanding of co-implication is developed in [37, 43],
and a natural deduction proof system and formulas-as-types notion of construction
for a bi-connexive logic 2C that assumes this understanding of co-implication is
presented in [42].

We will proceed as follows.
In Section 2, the logic BCL is introduced as a Gentzen-type sequent calculus, and

a dual-valuation-style Kripke semantics for BCL is defined. BCL is constructed on
the basis of Maehara’s cut-free Gentzen-type sequent calculus LJ′ for Int. We refer to
a slightly modified version of LJ′ here as IL. Gentzen-type sequent calculi ICL, DCL,
BL, IL and DL for intuitionistic connexive logic, dual-intuitionistic connexive logic,
bi-intuitionistic logic, intuitionistic logic and dual-intuitionistic logic, respectively,
are defined as subsystems of BCL.

In Section 3, some theorems for syntactically and semantically embedding BCL
into BL are proved, and using these theorems, the completeness theorem with respect
to the Kripke semantics for BCL is shown as a central result of this paper. The cut-
elimination theorems for ICL and DCL are shown using some restricted versions of
the syntactical embedding theorem of BCL into BL. The cut-elimination theorem
does not hold for BCL and BL.

In Section 4, some theorems for syntactically embedding ICL into DCL and vice
versa are shown. These theorems reveal that ICL and DCL are syntactically dual
to each other in a certain sense. Thus, it is shown in these theorems that BCL is
constructed based on a duality principle of the characteristic subsystems.
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Finally, in Section 5, we present a sound and complete tableau calculus for BCL
and its subsystems ICL, DCL, BL, IL, and DL using triply-signed formulas.

2 Sequent calculus and Kripke semantics
Prior to a detailed discussion, we introduce the language of connexive Heyting-
Brouwer logic, BCL. Formulas are constructed from countably many propositional
variables p, q, ..., the binary connectives ∧ (conjunction), ∨ (disjunction), → (impli-
cation), −� (co-implication), the constants ⊥ and >, and the unary ∼ (paracon-
sistent, strong negation). Greek small letters α, β, ... are used to denote formulas,
and Greek capital letters Γ,∆, ... are used to represent finite (possibly empty) sets
of formulas. The symbol ≡ is used to denote the equality of symbols. A sequent is
an expression of the form Γ⇒ ∆. An expression L ` Γ⇒ ∆ means that Γ⇒ ∆ is
provable in a sequent calculus L. A rule R of inference is said to be admissible in a
sequent calculus L if the following condition is satisfied: For any instance

S1 · · ·Sn
S

of R, if L ` Si for all i, then L ` S.
The bi-intuitionistic connexive logic BCL is introduced below as a Gentzen-type

sequent calculus; BCL is based on Maehara’s system LJ′ for intuitionistic logic (see,
e.g., p. 52 in [33]).

Definition 2.1 (BCL). The initial sequents of BCL are of the following form, for
any propositional variable p:

p⇒ p ∼p⇒ ∼p

Γ⇒ ∆,> ⊥,Γ⇒ ∆ ∼>,Γ⇒ ∆ Γ⇒ ∆,∼⊥.
The structural inference rules of BCL are of the form:

Γ⇒ ∆, α α,Σ⇒ Π
Γ,Σ⇒ ∆,Π (cut)

Γ⇒ ∆
α,Γ⇒ ∆ (we-left) Γ⇒ ∆

Γ⇒ ∆, α (we-right).

The positive logical inference rules of BCL are of the form:

Γ⇒ ∆
>,Γ⇒ ∆ (>-left) Γ⇒ ∆

Γ⇒ ∆,⊥ (⊥-right)
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α, β,Γ⇒ ∆
α ∧ β,Γ⇒ ∆ (∧left) Γ⇒ ∆, α Γ⇒ ∆, β

Γ⇒ ∆, α ∧ β (∧right)

α,Γ⇒ ∆ β,Γ⇒ ∆
α ∨ β,Γ⇒ ∆ (∨left) Γ⇒ ∆, α, β

Γ⇒ ∆, α ∨ β (∨right)

Γ⇒ ∆, α β,Σ⇒ Π
α→β,Γ,Σ⇒ ∆,Π (→left) α,Γ⇒ β

Γ⇒ α→β (→right)

α⇒ ∆, β
α−�β ⇒ ∆ (−� left) Γ⇒ ∆, α β,Σ⇒ Π

Γ,Σ⇒ ∆,Π, α−�β (−� right).

The negative logical inference rules of BCL are of the form:

α,Γ⇒ ∆
∼∼α,Γ⇒ ∆ (∼∼left) Γ⇒ ∆, α

Γ⇒ ∆,∼∼α (∼∼right)

Γ⇒ ∆
∼⊥,Γ⇒ ∆ (∼⊥-left) Γ⇒ ∆

Γ⇒ ∆,∼> (∼>-right)

∼α,Γ⇒ ∆ ∼β,Γ⇒ ∆
∼(α ∧ β),Γ⇒ ∆ (∼ ∧ left) Γ⇒ ∆,∼α,∼β

Γ⇒ ∆,∼(α ∧ β) (∼ ∧ right)

∼α,∼β,Γ⇒ ∆
∼(α ∨ β),Γ⇒ ∆ (∼ ∨ left) Γ⇒ ∆,∼α Γ⇒ ∆,∼β

Γ⇒ ∆,∼(α ∨ β) (∼ ∨ right)

Γ⇒ ∆, α ∼β,Σ⇒ Π
∼(α→β),Γ,Σ⇒ ∆,Π (∼→left) α,Γ⇒ ∼β

Γ⇒ ∼(α→β) (∼→right)

∼α⇒ ∆, β
∼(α−�β)⇒ ∆ (∼−� left) Γ⇒ ∆,∼α β,Σ⇒ Π

Γ,Σ⇒ ∆,Π,∼(α−�β) (∼−� right).

Gentzen-type sequent calculi ICL, DCL, BL, IL and DL for intuitionistic con-
nexive logic, dual-intuitionistic connexive logic, bi-intuitionistic logic, intuitionistic
logic and dual-intuitionistic logic, respectively, are defined as subsystems of BCL.

Definition 2.2 (Subsystems of BCL).

1. ICL is the −� -free part of BCL.

2. DCL is the →-free part of BCL.

3. BL is the ∼-free part of BCL.

4. IL is the −� -free part of BL.

5. DL is the →-free part of BL.
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We may note the following:

1. Let L be L ∈ {BCL, ICL, DCL, BL, IL, DL}. The sequents of the form α⇒ α
for any formula α are provable in L. This fact can be shown by induction on
α.

2. (→right) and (−� left) in BCL satisfy the single-succedent restriction and the
single-antecedent restriction, respectively. These rules are the usual inference
rules for the standard Gentzen-type sequent calculi LJ and DJ for intuitionistic
logic and dual-intuitionistic logic, respectively. The same restrictions are also
imposed to (∼→right) and (∼−� left) in BCL.

3. (∼→left), (∼→right), (∼−� left) and (∼−� right) correspond to the following
characteristic axiom schemes for connexive logic:

(a) ∼(α→β)↔ α→∼β,

(b) ∼(α−�β)↔ ∼α−�β.

4. A Gentzen-type sequent calculus LBiI for BiInt was presented in [20] based on
Dragalin’s sequent calculus for Int. LBiI has the logical inference rules of the
form:

α→β,Γ⇒ ∆, α β,Γ⇒ ∆
α→β,Γ⇒ ∆

α,Γ⇒ β

Γ⇒ ∆, α→β

α⇒ ∆, β
α−�β,Γ⇒ ∆

Γ⇒ ∆, α β,Γ⇒ ∆, α−�β
Γ⇒ ∆, α−�β

.

It is known that the cut-elimination theorem does not hold for LBiI [20].

5. BL is theorem-equivalent to LBiI, and the cut-elimination theorem does not
hold for BL and BCL. On the other hand, the cut-elimination theorem holds
for ICL, DCL and DL.

6. A counterexample showing the failure of the cut-elimination in BL and BCL
is presented as follows. This example is the same as that in [20]. The sequent
p⇒ q, r→((p−� q) ∧ r) where p, q and r are distinct propositional variables is
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not provable in BL without (cut), but provable in BL with (cut) by:

p⇒ p q ⇒ q
p⇒ q, p−� q (←right)

....
p−� q ⇒ p−� q....

r, p−� q, p⇒ p−� q

r ⇒ r....
r, p−� q, p⇒ r

r, p−� q, p⇒ (p−� q) ∧ r
p−� q, p⇒ r→((p−� q) ∧ r) (→right)

p, p⇒ q, r→((p−� q) ∧ r) (cut)

p⇒ q, r→((p−� q) ∧ r)
.

7. It is known that the cut-elimination theorem holds for IL which is logically
equivalent to a slightly modified version of Maehara’s LJ′ for intuitionistic
logic.

8. Intuitionistic negation is definable by ¬iα := α→⊥, and co-negation is defin-
able by ¬dα := >−�α. Moreover, in the presence of implication, > can be
defined as p → p, and in the presence of co-implication, ⊥ can be defined as
p−� p, for some fixed propositional variable p.

Next, we introduce a Kripke semantics for BCL in which a distinction is drawn
between positive valuations |=+ and negative valuations |=−.

Definition 2.3. A Kripke frame is a structure 〈M,≤〉 satisfying the following con-
ditions:

1. M is a nonempty set (of states),

2. ≤ is a preorder (i.e., a reflexive and transitive binary relation) on M .

Definition 2.4. Connexive valuations |=+ and |=− on a Kripke frame 〈M,≤〉 are
mappings from the set Φ of propositional variables to the power set 2M of M such
that for any ? ∈ {+,−}, any p ∈ Φ and any x, y ∈M , if x ∈ |=? (p) and x ≤ y, then
y ∈ |=? (p). We will write x |=? p for x ∈ |=? (p). These connexive valuations |=+

and |=− are extended to mappings from the set of all formulas to 2M by:

1. x |=+ > always,

2. x |=+ ⊥ never,

3. x |=+ α ∧ β iff x |=+ α and x |=+ β,

4. x |=+ α ∨ β iff x |=+ α or x |=+ β,
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5. x |=+ α→β iff ∀y ∈M [x ≤ y and y |=+ α imply y |=+ β],

6. x |=+ α−�β iff ∃y ∈M [x ≥ y and y |=+ α and not-(y |=+ β)],

7. x |=+ ∼α iff x |=− α,

8. x |=− > never,

9. x |=− ⊥ always,

10. x |=− α ∧ β iff x |=− α or x |=− β,

11. x |=− α ∨ β iff x |=− α and x |=− β,

12. x |=− α→β iff ∀y ∈M [x ≤ y and y |=+ α imply y |=− β],

13. x |=− α−�β iff ∃y ∈M [x ≥ y and y |=− α and not-(y |=+ β)],

14. x |=− ∼α iff x |=+ α.

The following hereditary condition holds for |=+ and |=−: For any ? ∈ {+,−},
any formula α and any x, y ∈M , if x |=? α and x ≤ y, then y |=? α.

Definition 2.5. A connexive Kripke model is a structure 〈M,≤, |=+, |=−〉 such that

1. 〈M,≤〉 is a Kripke frame,

2. |=+ and |=− are connexive valuations on 〈M,≤〉.

A formula α is true in a connexive Kripke model 〈M,≤, |=+, |=−〉 if x |=+ α for
any x ∈ M . A formula α is BCL-valid in a Kripke frame 〈M,≤〉 if it is true for
all connexive valuations |=+ and |=− on the Kripke frame. A formula α is dually
BCL-valid in a Kripke frame 〈M,≤〉 if for all connexive valuations |=+ and |=− on
the Kripke frame, x |=− α for any x ∈ M . A set of formulas Γ entails a formula α
in BCL (Γ |=BCL α) if whenever all formulas in Γ are BCL-valid in a frame, then so
is α; Γ dually entails α in BCL (Γ |=d

BCL α) if whenever all formulas in Γ are dually
BCL-valid in a frame, then so is α.

Obviously, in the presence of ∼, the notion of dual BCL-validity in a Kripke
frame is definable in terms of BCL-validity. A formula α is dually BCL-valid in a
Kripke frame iff ∼α is BCL-valid in that frame. In Section 5 we also consider a
notion of dual provability, see also [37, 43].

Next, we present a Kripke semantics for BL. It has been emphasized in [40] that
in the relational semantics of intuitionistic logic and Heyting-Brouwer logic, only
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verification conditions and no falsification conditions of formulas are specified. The
reason why negative valuations |=− have not been considered in the literature on
BiInt presumably is that its language lacks strong negation, ∼. Accordingly, the
semantics of BL is presented in terms of ordinary Kripke models.

Definition 2.6. A valuation |= on a Kripke frame 〈M,≤〉 is a mapping from the
set Φ of propositional variables to the power set 2M of M such that for any p ∈ Φ
and any x, y ∈M , if x ∈ |= (p) and x ≤ y, then y ∈ |= (p). We will write x |= p for
x ∈ |= (p). This valuation |= is extended to a mapping from the set of all formulas
to 2M by:

1. x |= > always,

2. x |= ⊥ never,

3. x |= α ∧ β iff x |= α and x |= β,

4. x |= α ∨ β iff x |= α or x |= β,

5. x |= α→β iff ∀y ∈M [x ≤ y and y |= α imply y |= β],

6. x |= α−�β iff ∃y ∈M [x ≥ y and y |= α and not-(y |= β)].2

The following hereditary condition holds for |=: For any formula α and any
x, y ∈M , if x |= α and x ≤ y, then y |= α.

Definition 2.7. A Kripke model is a structure 〈M,≤, |=〉 such that

1. 〈M,≤〉 is a Kripke frame,

2. |= is a valuation on 〈M,≤〉.

A formula α is true in a Kripke model 〈M,≤, |=〉 if x |= α for any x ∈M . A formula
α is BL-valid in a Kripke frame 〈M,≤〉 if it is true for every valuation |= on the
Kripke frame. A set of formulas Γ entails a formula α in BL (Γ |=BL α) if whenever
all formulas in Γ are BL-valid in a frame, then so is α.

2One might, perhaps, expect from truth-conditions for implication and co-implication to be
subject to “mutual duality” in the sense of obtainability from each other by interchanging between
dual notions, such as ∀ and ∃, ≤ and ≥, “or” and “and” (with meta-negation being self dual).
However, the conditions 3 and 4 in Definitions 2.4 and 2.6 seem not to be dual in this respect.
Namely, the truth condition for co-implication should then be something like this:

x |=+ α−�β iff ∃y ∈M [x ≥ y and not-(y |=+ α) and y |=+ β]
However, condition 4 in Definitions 2.4 and 2.6 is wide-spread in the literature; a discussion of this
issue may be found, for example, in [28] and [30].
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In addition one may define a formula α to be dually BL-valid in a Kripke frame
〈M,≤〉 if for all connexive valuations |=+ and |=− on the Kripke frame, x |=− α for
any x ∈M and say that Γ dually entails α in BL (Γ |=d

BL α) if whenever all formulas
in Γ are dually BL-valid in a Kripke frame, then so is α.

The following completeness theorem for bi-intuitionistic logic is well-known.

Proposition 2.8 (Completeness for BL). For any finite set of formulas Γ∪{α}, BL
` Γ⇒ α iff Γ |=BL α.

3 Embedding and completeness theorems
In the following, we introduce a translation of BCL into BL, and by using this
translation, we show two theorems for syntactically and semantically embedding
BCL into BL. A similar translation has been used by Gurevich [6], Rautenberg
[27] and Vorob’ev [36] to embed Nelson’s constructive logic N3 [16] into positive
intuitionistic logic.

Definition 3.1. We fix a set Φ of propositional variables and define the set Φ′ :=
{p′ | p ∈ Φ} of propositional variables. The language LBCL of BCL, introduced in
the previous section, is based on Φ, >,⊥,∧,∨,→,−� and ∼. The language LBL of
BL is defined using Φ, Φ′, >,⊥,∧,∨,→ and −� .

A mapping f from LBCL to LBL is defined inductively as follows.

1. for any p ∈ Φ, f(p) := p and f(∼p) := p′ ∈ Φ′,

2. f(]) := ] with ] ∈ {>,⊥},

3. f(α ] β) := f(α) ] f(β) with ] ∈ {∧,∨,→,−� },

4. f(∼∼α) := f(α),

5. f(∼>) := ⊥,

6. f(∼⊥) := >,

7. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),

8. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β),

9. f(∼(α→β)) := f(α)→f(∼β),

10. f(∼(α−�β)) := f(∼α)−� f(β).
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An expression f(Γ) denotes the result of replacing every occurrence of a formula
α in Γ by an occurrence of f(α). The same notation is used for the other mappings
discussed later. Note that the function f is surjective but not injective.

Theorem 3.2 (Syntactical embedding from BCL into BL). Let Γ, ∆ be finite sets
of formulas in LBCL, and f be the mapping defined in Definition 3.1.

1. BCL ` Γ⇒ ∆ iff BL ` f(Γ)⇒ f(∆),

2. BCL − (cut) ` Γ⇒ ∆ iff BL − (cut) ` f(Γ)⇒ f(∆).

Proof. We show only (1) below.
• (=⇒) : By induction on the proofs P of Γ⇒ ∆ in BCL. We distinguish the

cases according to the last inference of P , and show some cases.

1. Case (∼p⇒ ∼p): The last inference of P is of the form: ∼p⇒ ∼p for any
p ∈ Φ. In this case, we obtain BL ` f(∼p)⇒ f(∼p), i.e., BL ` p′ ⇒ p′

(p′ ∈ Φ′), by the definition of f .

2. Case (∼→right): The last inference of P is of the form:
α,Γ⇒ ∼β

Γ⇒ ∼(α→β) (∼→right).

By induction hypothesis, we have BL ` f(α), f(Γ)⇒ f(∼β). Then, we obtain
the required fact: ....

f(α), f(Γ)⇒ f(∼β)
f(Γ)⇒ f(α)→f(∼β) (→right)

where f(α)→f(∼β) coincides with f(∼(α→β)) by the definition of f .

3. Case (∼→left): The last inference of P is of the form:

Γ⇒ ∆, α ∼β,Σ⇒ Π
∼(α→β),Γ,Σ⇒ ∆,Π (∼→left).

By induction hypothesis, we have BL ` f(Γ)⇒ f(∆), f(α) and BL ` f(∼β),
f(Σ) ⇒ f(Π). Then, we obtain the required fact:

....
f(Γ)⇒ f(∆), f(α)

....
f(∼β), f(Σ)⇒ f(Π)

f(α)→f(∼β), f(Γ), f(Σ)⇒ f(∆), f(Π) (→left)

where f(α)→f(∼β) coincides with f(∼(α→β)) by the definition of f .
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4. Case (∼∼left): The last inference of P is of the form:

α,Γ⇒ ∆
∼∼α,Γ⇒ ∆ (∼∼left).

By induction hypothesis, we have the required fact BL ` f(α), f(Γ)⇒ f(∆)
where f(α) coincides with f(∼∼α) by the definition of f .

5. Case (cut): The last inference of P is of the form:

Γ⇒ ∆, α α,Σ⇒ Π
Γ,Σ⇒ ∆,Π (cut).

By induction hypothesis, we have BL ` f(Γ)⇒ f(∆), f(α) and BL ` f(α),
f(Σ) ⇒ f(Π). Then, we obtain the required fact:

....
f(Γ)⇒ f(∆), f(α)

....
f(α), f(Σ)⇒ f(Π)

f(Γ), f(Σ)⇒ f(∆), f(Π) (cut).

• (⇐=) : By induction on the proofs Q of f(Γ)⇒ f(∆) in BL. We distinguish
the cases according to the last inference of Q, and show some cases.

1. Case (∼∼left): The last inference of Q is of the form:

f(α), f(Γ)⇒ f(∆)
f(∼∼α), f(Γ)⇒ f(∆) (∼∼left)

where f(∼∼α) coincides with f(α) by the definition of f . By induction
hypothesis, we have the required fact BCL ` α,Γ⇒ ∆.

2. Case (cut): The last inference of Q is of the form:
....

f(Γ)⇒ f(∆), β

....
β, f(Σ)⇒ f(Π)

f(Γ), f(Σ)⇒ f(∆), f(Π) (cut).

In this case, β is a formula of BL. We then have the fact γ = f(γ) for any
formula γ in BL. This can be shown by induction on γ. Thus, Q is of the form:

....
f(Γ)⇒ f(∆), f(β)

....
f(β), f(Σ)⇒ f(Π)

f(Γ), f(Σ)⇒ f(∆), f(Π) (cut).
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By induction hypothesis, we have BCL ` Γ⇒ ∆, β and BCL ` β,Σ ⇒ Π.
Then, we obtain the required fact:

....
Γ⇒ ∆, β

....
β,Σ⇒ Π

Γ,Σ⇒ ∆,Π (cut).

3. Case (∧right): The last inference of Q is (∧right).

(a) Subcase (1): The last inference of Q is of the form:

f(Γ)⇒ f(∆), f(α) f(Γ)⇒ f(∆), f(β)
f(Γ)⇒ f(∆), f(α ∧ β) (∧right)

where f(α ∧ β) coincides with f(α) ∧ f(β) by the definition of f . By
induction hypothesis, we have BCL ` Γ⇒ ∆, α and BCL ` Γ⇒ ∆, β.
We thus obtain the required fact:

....
Γ⇒ ∆, α

....
Γ⇒ ∆, β

Γ⇒ ∆, α ∧ β (∧right).

(b) Subcase (2): The last inference of Q is of the form:

f(Γ)⇒ f(∆), f(∼α) f(Γ)⇒ f(∆), f(∼β)
f(Γ)⇒ f(∆), f(∼(α ∨ β)) (∧right)

where f(∼(α∨β)) coincides with f(∼α)∧f(∼β) by the definition of f . By
induction hypothesis, we have BCL ` Γ⇒ ∆,∼α and BCL ` Γ⇒ ∆,∼β.
We thus obtain the required fact:

....
Γ⇒ ∆,∼α

....
Γ⇒ ∆,∼β

Γ⇒ ∆,∼(α ∨ β) (∼ ∨ right).

2

We can obtain a theorem for syntactically embedding ICL into IL.

Theorem 3.3 (Syntactical embedding from ICL into IL). Suppose that LICL and
LIL are obtained from LBCL and LBL, respectively, by deleting −� . Let Γ, ∆ be
finite sets of formulas in LICL, and f be the mapping from LICL into LIL, which is
obtained from Definition 3.1 by deleting the conditions of −� .
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1. ICL ` Γ⇒ ∆ iff IL ` f(Γ)⇒ f(∆),

2. ICL − (cut) ` Γ⇒ ∆ iff IL − (cut) ` f(Γ)⇒ f(∆).

We can also obtain a theorem for syntactically embedding DCL into DL.

Theorem 3.4 (Syntactical embedding from DCL into DL). Suppose that LDCL and
LDL are obtained from LBCL and LBL, respectively, by deleting →. Let Γ, ∆ be
finite sets of formulas in LDCL, and f be the mapping from LDCL into LDL, which
is obtained from Definition 3.1 by deleting the conditions of →.

1. DCL ` Γ⇒ ∆ iff DL ` f(Γ)⇒ f(∆),

2. DCL − (cut) ` Γ⇒ ∆ iff DL − (cut) ` f(Γ)⇒ f(∆).

Using Theorems 3.3 and 3.4, we can obtain the cut-elimination theorems for ICL
and DCL.

Theorem 3.5 (Cut-elimination for ICL and DCL). Let L be ICL or DCL. The rule
(cut) is admissible in cut-free L.

Proof. We show only the case for ICL. Suppose that ICL ` Γ⇒ ∆. Then, we have
IL ` f(Γ)⇒ f(∆) by Theorem 3.3 (1), and hence IL − (cut) ` f(Γ)⇒ f(∆) by the
cut-elimination theorem for IL (this is known [33]). By Theorem 3.3 (2), we obtain
ICL − (cut) ` Γ⇒ ∆. 2

Next, we show a theorem for semantically embedding BCL into BL.

Lemma 3.6. Let f be the mapping defined in Definition 3.1. For any connexive
Kripke model 〈M,≤, |=+, |=−〉, we can construct a Kripke model 〈M,≤, |=〉 such
that for any formula α and any x ∈M ,

1. x |=+ α iff x |= f(α),

2. x |=− α iff x |= f(∼α).

Proof. Let Φ be a set of propositional variables and Φ′ be the set {p′ | p ∈ Φ} of
propositional variables. Suppose that 〈M,≤, |=+, |=−〉 is a connexive Kripke model
where |=+ and |=− are mappings from Φ to the power set 2M of M , and that the
hereditary condition with respect to p ∈ Φ holds for |=+ and |=−. Suppose that
〈M,≤, |=〉 is a Kripke model where |= is a mapping from Φ∪Φ′ to 2M , and that the
hereditary condition with respect to p ∈ Φ∪Φ′ holds for |=. Suppose moreover that
these models satisfy the following conditions: For any x ∈M and any p ∈ Φ,

1. x |=+ p iff x |= p,
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2. x |=− p iff x |= p′.
Then, the lemma is proved by (simultaneous) induction on the complexity of α.
• Base step:
Case α ≡ p ∈ Φ: For (1), we obtain: x |=+ p iff x |= p iff x |= f(p) (by
the definition of f). For (2), we obtain: x |=− p iff x |= p′ iff x |= f(∼p)
(by the definition of f).
• Induction step:
1. Case α ≡ >: For (1), we obtain: x |=+ > iff x |= > iff x |= f(>) (by the

definition of f). For (2), we obtain: x |=− > iff x |= ⊥ iff x |= f(∼>) (by the
definition of f).

2. Case α ≡ ⊥: Similar to the above case.

3. Case α ≡ β ∧ γ: For (1), we obtain: x |=+ β ∧ γ iff x |=+ β and x |=+ γ iff
x |= f(β) and x |= f(γ) (by induction hypothesis for 1) iff x |= f(β) ∧ f(γ)
iff x |= f(β ∧ γ) (by the definition of f). For (2), we obtain: x |=− β ∧ γ iff
x |=− β or x |=− γ iff x |= f(∼β) or x |= f(∼γ) (by induction hypothesis for
2) iff x |= f(∼β) ∨ f(∼γ) iff x |= f(∼(β ∧ γ)) (by the definition of f).

4. Case α ≡ β ∨ γ: Similar to the above case.

5. Case α ≡ β→γ: For (1), we obtain: x |=+ β→γ iff ∀y ∈M [x ≤ y and y |=+ β
imply y |=+ γ] iff ∀y ∈M [x ≤ y and y |= f(β) imply y |= f(γ)] (by induction
hypothesis for 1) iff x |= f(β)→f(γ) iff x |= f(β→γ) (by the definition of f).
For (2), we obtain: x |=− β→γ iff ∀y ∈ M [x ≤ y and y |=+ β imply y |=− γ]
iff ∀y ∈ M [x ≤ y and y |= f(β) imply y |= f(∼γ)] (by induction hypotheses
for 1 and 2) iff x |= f(β)→f(∼γ) iff x |= f(∼(β→γ)) (by the definition of f).

6. Case α ≡ β−� γ: For (1), we obtain: x |=+ β−� γ iff ∃y ∈ M [y ≤ x and
y |=+ β and not-(y |=+ γ)] iff ∃y ∈M [y ≤ x and y |= f(β) and not-(y |= f(γ))]
(by induction hypothesis for 1) iff x |= f(β)−� f(γ) iff x |= f(β−� γ) (by the
definition of f). For (2), we obtain: x |=− β−� γ iff ∃y ∈M [y ≤ x and y |=− β
and not-(y |=+ γ)] iff ∃y ∈M [y ≤ x and y |= f(∼β) and not-(y |= f(γ))] (by
induction hypotheses for 1 and 2) iff x |= f(∼β)−� f(γ) iff x |= f(∼(β−� γ))
(by the definition of f).

7. Case α ≡ ∼β: For (1), we obtain: x |=+ ∼β iff x |=− β iff x |= f(∼β) (by
induction hypothesis for 2). For (2), we obtain: x |=− ∼β iff x |=+ β iff
x |= f(β) (by induction hypothesis for 1) iff x |= f(∼∼β) (by the definition of
f). 2
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Lemma 3.7. Let f be the mapping defined in Definition 3.1. For any Kripke model
〈M,≤, |=〉, we can construct a connexive Kripke model 〈M,≤, |=+, |=−〉 such that
for any formula α and any x ∈M ,

1. x |= f(α) iff x |=+ α,

2. x |= f(∼α) iff x |=− α.

Proof. Similar to the proof of Lemma 3.6. 2

Theorem 3.8 (Semantical embedding from BCL into BL). Let f be the mapping
defined in Definition 3.1. For any any finite set of formula Γ ∪ {α}, f(Γ) |=BL f(α)
iff Γ |=BCL α.

Proof. By Lemmas 3.6 and 3.7. 2

Theorem 3.9 (Completeness for BCL). For any finite set of formula Γ∪{α}, BCL
` Γ⇒ α iff Γ |=BCL α (and thus also BCL ` ∼Γ⇒ ∼α iff Γ |=d

BCL α).

Proof. BCL ` Γ⇒ α iff BL ` f(Γ)⇒ f(α) (by Theorem 3.2) iff f(Γ) |=BL f(α) (by
Proposition 2.8) iff Γ |=BCL α (by Theorem 3.8). 2

4 Duality between subsystems
We show that ICL and DCL can be syntactically embedded into each other. These
results show that BCL is constructed based on a duality between ICL and DCL.
Firstly, we introduce a translation from ICL into DCL. The idea of this translation
comes from [3, 35].

Definition 4.1. We fix a common set Φ of propositional variables. The language
LICL of ICL is defined using Φ, ⊥,∧,∨,→ and ∼. The language LDCL of DCL is
defined using Φ, >,∧,∨,−� and ∼.

A mapping f from LICL to LDCL is defined inductively as follows.

1. f(p) := p for any p ∈ Φ,

2. f(⊥) := >,

3. f(α ∧ β) := f(α) ∨ f(β),

4. f(α ∨ β) := f(α) ∧ f(β),

5. f(α→β) := f(β)−� f(α),
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6. f(∼α) := ∼f(α).

We then obtain a theorem for syntactically embedding ICL into DCL.

Theorem 4.2 (Syntactical embedding from ICL into DCL). Let Γ and ∆ be finite
sets of formulas in LICL, and f be the mapping defined in Definition 4.1.

1. ICL ` Γ⇒ ∆ iff DCL ` f(∆)⇒ f(Γ),

2. ICL − (cut) ` Γ⇒ ∆ iff DCL − (cut) ` f(∆)⇒ f(Γ).

Proof. We show only the direction (=⇒) of (1) by induction on the proofs P of
Γ⇒ ∆ in ICL. We distinguish the cases according to the last inference of P , and
show some cases.

1. Case (∼→left): The last inference of P is of the form:

Γ⇒ ∆, α ∼β,Σ⇒ Π
∼(α→β),Γ,Σ⇒ ∆,Π (∼→left).

By induction hypothesis, we have DCL ` f(α), f(∆) ⇒ f(Γ) and DCL `
f(Π) ⇒ f(Σ), f(∼β) where f(∼β) coincides with ∼f(β) by the definition of
f . Then, we obtain the required fact:

....
f(Π)⇒ f(Σ),∼f(β)

....
f(α), f(∆)⇒ f(Γ)

f(Π), f(∆)⇒ f(Σ), f(Γ),∼(f(β)−� f(α)) (∼−� right)

where ∼(f(β)−� f(α)) coincides with f(∼(α→β)) by the definition of f .

2. Case (∼→right): The last inference of P is of the form:

α,Γ⇒ ∼β
Γ⇒ ∼(α→β) (∼→right).

By induction hypothesis, we have DCL ` f(∼β)⇒ f(Γ), f(α) where f(∼β)
coincides with ∼f(β) by the definition of f . Then, we obtain the required fact:

....
∼f(β)⇒ f(Γ), f(α)
∼(f(β)−� f(α))⇒ f(Γ) (∼−� left)

where ∼(f(β)−� f(α)) coincides with f(∼(α→β)) by the definition of f . 2
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Similarly, we can introduce a translation from DCL into ICL.

Definition 4.3. Φ, LDCL and LICL are the same as in Definition 4.1. A mapping g
from LDCL to LICL is defined inductively as follows.

1. g(p) := p for any p ∈ Φ,

2. g(>) := ⊥,

3. g(α ∧ β) := g(α) ∨ g(β),

4. g(α ∨ β) := g(α) ∧ g(β),

5. g(α−�β) := g(β)→g(α),

6. g(∼α) := ∼g(α).

We can obtain a theorem for syntactically embedding DCL into ICL.

Theorem 4.4 (Syntactical embedding from DCL into ICL). Let Γ and ∆ be finite
sets of formulas in LDCL and g be the mapping defined in Definition 4.3.

1. DCL ` Γ⇒ ∆ iff ICL ` g(∆)⇒ g(∆),

2. DCL − (cut) ` Γ⇒ ∆ iff ICL − (cut) ` g(∆)⇒ g(∆).

Proof. Similar to Theorem 4.2. 2

Note that the following holds for ICL and DCL:

1. ICL ` gf(Γ)⇒ gf(∆) iff ICL ` Γ⇒ ∆,

2. DCL ` fg(Γ)⇒ fg(∆) iff DCL ` Γ⇒ ∆.

Similarly, we can introduce translations from IL into DL and vice versa, and can
show the syntactical embedding theorems based on these translations.

Using Theorems 4.2, 4.4 and 3.5, we can obtain alternative proofs of the cut-
elimination theorems for ICL, DCL, IL and DL.

5 Tableau calculus
A sound and complete tableau calculus for connexive Heyting-Brouwer logic can be
obtained by modifying the tableau calculus for the modal logic BS4 from [18], which
was obtained by modifying Priest’s [22, 23] tableau calculus for the modal logic
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S4FDE (or KFDEρτ as Priest calls the latter system), i.e., S4 based on first-degree
entailment logic.

We assume some familiarity with the tableau method as applied by Priest. We
define tableau calculi for BCL and its subsystems ICL, DCL, BL, IL, and DL from
Definition 2.2. Since the languages of BL, IL, and DL lack strong negation, support
of falsity for a formula α cannot be captured as the support of truth of ∼α, and the
tableau nodes have to provide information concerning:

• support of truth, indicated by +T ,

• failure to support truth, indicated by +F ,

• support of falsity, indicated by −T ,
• failure to support falsity, indicated by −F .3

Moreover, the nodes have to provide information about “accessibility” between
states. Accordingly, in tableaux for BCL the tableau entries are of the form α,+Ti,
or α,+Fi, or α,−Ti, or α,−Fi, or irj, where α is a formula from LBCL, i and
j are natural numbers representing states, and irj is to be understood as i ≤ j.
We distinguish between single conclusion derivability statement ∆ ` β and single
conclusion dual derivability statement ∆ `d β . Tableaux for a single conclusion
derivability statement ∆ ` β start with nodes of the form α,+T0 for every premise
α from the finite premise set ∆ and a node of the form β,+F0. Tableaux for a single
conclusion dual derivability statement ∆ `d β start with nodes of the form α,−T0
for every premise α from the finite premise set ∆ and a node of the form β,−F0.

Tableau rules are applied to tableau nodes, thereby leading to more complex,
expanded tableaux. A branch of a tableau closes iff it contains a pair of nodes
α,+Ti and α,+Fi or a pair of nodes α,−Ti and α,−Fi. The tableau closes iff all
of its branches close. If a tableau (tableau branch) is not closed, it is called open. A
tableau branch is said to be completed iff no more rules can be applied to expand
it. A tableau is said to be completed iff each of its branches is completed.

Definition 5.1. The triply-signed tableau calculus for BCL consists of the following
rules:

3An anonymous referee proposed to let +F stand for support of falsity and −T for failure of a
truth support. This is certainly suggestive, but on the other hand the signs ‘+’ and ‘−’ remind one
of the support of truth and support of falsity relations, so that we prefer to use the above notation.
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Decomposition rules

α ∧ β,+Ti
↓

α,+Ti
β,+Ti

α ∧ β,+Fi
↙ ↘

α,+Fi β,+Fi

α ∧ β,−Fi
↓

α,−Fi
β,−Fi

α ∧ β,−Ti
↙ ↘

α,−Ti β,−Ti

α ∨ β,+Ti
↙ ↘

α,+Ti β,+Ti

α ∨ β,+Fi
↓

α,+Fi
β,+Fi

α ∨ β,−Fi
↙ ↘

α,−Fi β,−Fi

α ∨ β,−Ti
↓

α,−Ti
β,−Ti

α→ β,+Ti
irj
↙ ↘

α,+Fj β,+Tj

α→ β,+Fi
↓
irj

α,+Tj
β,+Fj

α→ β,−Fi
↓
irj

α,+Tj
β,−Fj

α→ β,−Ti
irj
↙ ↘

α,+Fj β,−Tj

β−�α,+Ti
↓
jri

α,+Fj
β,+Tj

β−�α,+Fi
jri
↙ ↘

α,+Tj β,+Fj

β−�α,−Fi
jri
↙ ↘

α,+Tj β,−Fj

β−�α,−Ti
↓
jri

α,+Fj
β,−Tj

∼ α,+Ti
↓

α,−Ti

∼ α,+Fi
↓

α,−Fi

∼ α,−Fi
↓

α,+Fi

∼ α,−Ti
↓

α,+Ti
·
↓

⊥,+Fi

·
↓

∼⊥,+Ti

·
↓

>,+Ti

·
↓

∼>,+Fi
Structural rules (for capturing the reflexivity and transitivity of the relation ≤)
and rules for capturing the hereditary condition

·
↓
iri

irj
jrk
↓
irk

p,+Ti
irj
↓

p,+Tj

p,−Ti
irj
↓

p,−Tj

The decomposition rules and the hereditary rules in which a statement irj appears
above an arrow are applied whenever a node irj occurs on the branch; the decompo-
sition rules in which a statement irj appears above an arrow require the introduction
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of a new natural number j not already occurring in the tableau. In applications the
smallest natural number not already occurring in the tableau is chosen. The struc-
tural rule for reflexivity may be used to introduce a node iri when i occurs on the
branch. If the application of a rule would result in creating a node that is already on
the branch, the rule is not applied. Note that due to the transitivity rule, tableaux
may nevertheless be infinite.

We define notions of provability and dual provability.

Definition 5.2. Let ∆ ∪ {α} be a finite set of LBCL-formulas. We say that α is
provable from ∆ (∆ ` α) iff there exists a closed and completed tableau for a list of
nodes consisting of α,+F0 and β,+T0, for every β ∈ ∆. We say that α is dually
provable from ∆ (∆ `d α) iff there exists a closed and completed tableau for a list
of nodes consisting of α,−F0 and β,−T0, for every β ∈ ∆.

As an example of a tableau proof we present a proof of Uustalu’s [20] counter-
example to cut-elimination in the Gentzen-type sequent calculus by Rauszer [24],
p ` q ∨ (r → ((p−� q) ∧ r)):

p,+T0
q ∨ (r → ((p−� q) ∧ r)),+F0

↓
q,+F0

r → ((p−� q) ∧ r),+F0
↓

0r1
r,+T1

(p−� q) ∧ r,+F1
↙ ↘

p−� q,+F1 r,+F1
↙ ↘

p,+F0 q,+T0

Definition 5.3. LetM = 〈M,≤, |=+, |=−〉 be any connexive Kripke model and let
br be a tableau branch. The modelM is said to be faithful to br iff there exists a
function f from the set of all natural numbers into M such that:

1. for every node α,+Ti on br, f(i) |=+ α;

2. for every node α,+Fi on br, f(i) 6|=+ α;

3. for every node α,−Ti on br, f(i) |=− α;

4. for every node α,−Fi on br, f(i) 6|=− α;
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5. for every node jrk on br, f(j) ≤ f(k).

The function f is said to show thatM is faithful to branch br.

Lemma 5.4. LetM be any connexive Kripke model and br be any tableau branch.
If M is faithful to br and a tableau rule is applied to br, then the application
produces at least one extension br′ of br, such thatM is faithful to br′.

Proof. By induction on the construction of tableaux. We show the cases of the
decomposition rules for β−�α,+Ti and β−�α,+Fi.

β−�α,+Ti: Suppose that the function f shows M to be faithful to a branch
containing β−�α,+Ti, so that f(i) |=+ β−�α. Then ∃y ∈ M [f(i) ≥ y and y |=+

β and y 6|=+ α]. An application of the rule for β−�α,+Ti yields new nodes jri,
α,+Fj, and β,+Tj. We define the function f ′ exactly as f except that f ′(j) = y.
Then f ′ shows thatM is faithful to the the extended branch.

β−�α,+Fi: Suppose that the function f shows M to be faithful to a branch
containing β−�α,+Fi and jri, so that f(j) ≤ f(i)) and f(i) 6|=+ β−�α. Then
∀y ∈M [f(i) ≥ y implies (y 6|=+ β or y |=+ α)]. Thus f(j) 6|=+ β or f(j) |=+ α and
hence f shows thatM is faithful to at least one expanded branch resulting from the
application of the decomposition rule for β−�α,+Fi. 2

Definition 5.5. Let br be a completed and open tableau branch. Then the structure
Mbr = 〈Mbr,≤br, |=+

br, |=−br〉 induced by br is defined as follows:

1. Mbr := {xj | j occurs on br},

2. xj ≤br xk iff jrk occurs on br,

3. xj ∈ |=+
br (p) iff p,+Tj occurs on br,

4. xj ∈ |=−br (p) iff p,−Tj occurs on br.

Since br is a completed branch, ≤br is reflexive and transitive, and thus 〈Mbr,≤br〉
is a Kripke frame andMbr is a connexive Kripke model. The hereditary condition
is satisfied because for any ? ∈ {+,−}, if xj |=? p and xj ≤br xk, then p, ?T j and
jrk occur on br. Since br is completed, the hereditary rule has been applied. Thus,
p, ?Tk occurs on br and hence xk |=? p. Moreover, since br is an open branch,
xj 6∈ |=+

br (p) if the node p,+Fj occurs on br, and xj 6∈ |=−br (p) if the node p,−Fj
occurs on br.

Lemma 5.6. Suppose that br is a completed and open tableau branch, and letMbr

= 〈Mbr,≤br, |=+
br, |=−br〉 be the model induced by br. Then
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• If α,+Ti occurs on br, thenMbr, xi |=+ α

• If α,+F occurs on br, thenMbr, xi 6|=+ α

• If α,−Ti occurs on br, thenMbr, xi |=− α

• If α,−Fi occurs on br, thenMbr, xi 6|=− α.

Proof. By simultaneous induction on the construction of α. If α is a propositional
variable, the claim follows by Definition 5.5 and by the fact that we consider an
open tableau branch. We present two cases for α ≡ β → γ.

Let β → γ,+Ti occur on br. Since br is completed, if irj occurs on b, then
β,+Fj or γ,+Tj occur on br. Thus, by the induction hypotheses for (5), (2), and
(1), if f(i) ≤br f(j), then f(j) 6|=+

br α or f(j) |=+
br β. But this holds just in case

f(i) |=+
br β → γ.

Let β → γ,+Fi occur on br. Since br is completed, the following nodes occur on
br for some j: (i) irj, (ii) β,+Tj, and (iii) γ+Fj. By the induction hypotheses for (5)
and (1), f(i) ≤br f(j), f(j) |=+

br α, and f(j) 6|=+
br β. In other words, f(i) 6|=+

br β → γ.
2

From the previous two lemmas, it follows that the above tableau calculus is
sound and complete for BCL with respect to both validity and dual validity.

Theorem 5.7. Let ∆ ∪ {α} be a finite set of LBCL-formulas. Then 1. ∆ |=BCL α
iff ∆ ` α, and 2. ∆ |=d

BCL α iff ∆ `d α.

Proof. We prove the second claim; the proof for the first claim is analogous.
Soundness: Suppose, by contraposition, that it is not the case that ∆ |=d

BCL α
and let ∆ = {β1, . . . , βn}. Then there is a connexive Kripke modelM with a state
x ∈ M such that x |=− β1 . . . x |=− βn but x 6|=− α. The model M is faithful to
the tableau branch consisting of β1,−T0, . . ., βn,−T0, α,−F0. By Lemma 5.4, a
completed tableau obtained from that list contains at least one branch to whichM
is faithful. Clearly, this branch and hence the tableau must be open.

Completeness: Suppose, by contraposition, that it is not the case that ∆ `d α.
Then there is a completed open tableau starting with β1,−T0, . . ., βn,−T0, α,−F0,
where ∆ = {β1, . . . , βn}. Let br be an open branch of that tableau. By Lemma 5.6,
in the model induced by br, the state x0 reveals that ∆ 6|=d

BCL α. 2

Note that sound and complete tableau calculi for the subsystems ICL, DCL, BL,
IL, and DL of BCL from Definition 2.2 can be obtained from the tableau calculus
for BCL by deleting the decomposition rules for the connectives that are left out in
the respective subsystem.
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6 Brief outlook

There are many open questions for future research with both a formal and a more
philosophical concern. Are there any specific applications of connexive Heyting-
Brouwer logic in addition to already known applications of systems of connexive
logic? Applications to modelling syllogistic reasoning call for an extension to first
order, and so does the discussion about co-implication in Heyting-Brouwer logic
as a constructive connective, cf. [9, 40]. Another topic of interest is functional
completeness for connexive Heyting-Brouwer logic, either along proof-theoretic lines,
see, for example [38], or model-theoretic lines, see, for instance, [14].
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Abstract

Motivated by an open problem formulated by Graham Priest and Richard
Sylvan related to the basic relevant logic BD, the present note offers a par-
tial solution to the problem by making use of an idea suggested by Heinrich
Wansing in the context of connexive logic. The note also presents two other
non-connexive options that can be regarded as partial solutions to the problem.

1 Introduction
The name ‘Connexive logic’ suggests that connexive logic shares a certain motivation
with relevant logic.1 And some attempts are known in the literature by relevantists
such as Richard Routley, Chris Mortensen and Ross Brady, at realizing the connexive
theses in relevant logic. The present paper goes in the same direction using a different
approach. The main motivation behind the paper involves a problem formulated by
Graham Priest and Richard Sylvan in [8], and considered further by Greg Restall
in [9, 10]. In brief, the problem is to find a proof theory for extensions of the
basic relevant logic BD in which the negation is interpreted in terms of a four-
valued semantics (i.e. the so-called American plan). The difficulty lies in finding the
appropriate axioms and/or rules of inference, to capture the corresponding falsity
condition for the conditional. Priest and Sylvan suggested two falsity conditions
for the conditional, but the corresponding axioms and/or rules of inference remain
unknown. The aim of this note is to show that for a certain falsity condition, inspired

The author is a Postdoctoral Research Fellow of the Japan Society for the Promotion of Science
(JSPS). I would like to thank Graham Priest for directing my attention to the problem discussed
in this note, and also Heinrich Wansing for his encouragement.

1For an up-to-date survey on connexive logic, see [13].
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by the work [12] on connexive logic by Heinrich Wansing, it is possible to find the
corresponding proof theory. This note also presents two other non-connexive falsity
conditions for which the corresponding proof theories are available.

2 Revisiting the basics for the basic relevant logic BD
In this section, some of the main notions and results from [8] are reviewed which
will be used in the main observation of the note.

Definition 1. The language L consists of a finite set {∼,∧,∨,→} of propositional
connectives and a countable set Prop of propositional parameters which we denote
by p, q, etc. Furthermore, we denote by Form the set of formulas defined as usual
in L. We denote a formula of L by A, B, C, etc. and a set of formulas of L by Γ,
∆, Σ, etc.

2.1 Proof theory
Definition 2. The axioms of BD are as follows:

A→A(A1)
A→(A∨B) B→(A∨B)(A2)
(A∧B)→A (A∧B)→B(A3)
(A∧(B∨C))→((A∧B)∨C)(A4)

((A→B)∧(A→C))→(A→(B∧C))(A5)
((A→C)∧(B→C))→((A∨B)→C)(A6)
∼(A∧B)↔(∼A∨∼B)(A7)
∼(A∨B)↔(∼A∧∼B)(A8)

∼∼A↔A(A9)
If

A1 . . . An
B

is a rule scheme, then we define its disjunctive form to be the scheme

(C∨A1) . . . (C∨An)
C∨B .

The rules for BD are the following plus their disjunctive forms:

A A→B
B

(R1) A B

A∧B(R2)
A→B C→D

(B→C)→(A→D) .(R3)

Finally, if Σ is a set of formulas and A is a formula, then Σ ` A is defined in the
standard classical fashion.
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Remark 3. It deserves noting that the following rules, known as Prefixing, Suffixing
and Transitivity respectively, are derivable in BD in view of (R3), (R1) and (A1):

C→D
(A→C)→(A→D)

A→B
(B→C)→(A→C)

A→B B→C
A→C .

2.2 Semantics
Definition 4. An interpretation for the language is a four-tuple 〈g,W,R, I〉, where

• W is a set (of worlds);
• g∈W (the base world);
• R is a ternary relation on W ;
• I assigns to each pair consisting of a world, w, and propositional parameter,
p, a truth value I(w, p)∈{{1}, {1, 0}, ∅, {0}}.

Truth values at worlds are then assigned to all formulas by the following conditions:
1∈I(w,∼A) iff 0∈I(w,A)
0∈I(w,∼A) iff 1∈I(w,A)
1∈I(w,A∧B) iff 1∈I(w,A) and 1∈I(w,B)
0∈I(w,A∧B) iff 0∈I(w,A) or 0∈I(w,B)
1∈I(w,A∨B) iff 1∈I(w,A) or 1∈I(w,B)
0∈I(w,A∨B) iff 0∈I(w,A) and 0∈I(w,B)
1∈I(w,A→B) iff for all x, y∈W : if Rwxy and 1∈I(x,A) then 1∈I(y,B)

Note here that the falsity of a conditional is arbitrary. Furthermore, we assume that
Rgxy iff x = y.

Finally, semantic consequence is now defined in terms of truth preservation at g:

Σ |= A iff for all 〈g,W,R, I〉, 1∈I(g,A) if 1∈I(g,B) for all B∈Σ.

Remark 5. Truth and falsity conditions for the →-free fragment are exactly as in
the four-valued logic of Belnap and Dunn, also known as First Degree Entailment.

2.3 Soundness and Completeness
For the sake of making the paper self-contained as much as possible, the soundness
and completeness proofs are briefly reviewed without the details. The results are
entirely due to [8] in which details of the proofs are spelled out.

Theorem 1 (Priest & Sylvan). For any Γ ∪ {A} ⊆ Form, if Γ ` A then Γ |= A.

Proof. The proof is by a simple induction over the length of proofs, as usual.
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Definition 6. We introduce the following notions.

1. If Π is a set of sentences, let Π→ be the set of all members of Π of the form
A→B.

2. Σ `π A iff Σ ∪Π→ ` A.
3. Σ is a Π-theory iff:

(a) if A,B∈Σ then A∧B∈Σ
(b) if `π A→B then (if A∈Σ then B∈Σ).

4. Σ is prime iff (if A∨B∈Σ then A∈Σ or B∈Σ).
5. If X is any set of sets of formulas the ternary relation R on X is defined thus:

RΣΓ∆ iff (if A→B∈Σ then (if A∈Γ then B∈∆)).

6. Σ `π ∆ iff for some D1, . . . , Dn∈∆,Σ `π D1∨ . . .∨Dn.
7. `π Σ→∆ iff for some C1, . . . , Cn∈Σ and D1, . . . , Dm∈∆:

`π C1∧ . . .∧Cn→D1∨ . . .∨Dn.

8. Σ is Π-deductively closed iff (if Σ `π A then A∈Σ).
9. 〈Σ,∆〉 is a Π-partition iff:

(a) Σ ∪∆ = Form
(b) 6`π Σ→∆

In all the above, if Π is ∅, then the prefix ‘Π-’ and the subscript π will simply be
omitted.

With these notions in mind, some lemmas are reviewed without their proofs.
The first group concerns extensions of sets with various properties.

Lemma 1. If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.

Lemma 2. If 6`π Σ→∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉 is a
Π-partition.

Corollary 1. Let Σ be a Π-theory, ∆ be closed under disjunction, and Σ ∩∆ = ∅.
Then there is Σ′ ⊇ Σ such that Σ′ ∩∆ = ∅ and Σ′ is a prime Π-theory.

Lemma 3. If Σ 6` ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉 is a
partition, and Σ′ is deductively closed.

Corollary 2. If Σ 6` A then there is Π ⊇ Σ such that A 6∈Π, Π is a prime Π-theory
and Π is Π-deductively closed.
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The second group of lemmas establishes that there are certain theories with
properties that are crucial in the proof of the main theorem as far as the conditional
is concerned.

Lemma 4. If Π is a prime Π-theory, is Π-deductively closed and A→B 6∈Π, then
there is a prime Π-theory Γ, such that A∈Γ and B 6∈Γ.

Lemma 5. If Σ,Γ,∆ are Π-theories, RΣΓ∆ and A 6∈∆, then there are prime Π-
theories, Γ′,∆′, such that Γ′ ⊇ Γ, A6∈∆′ and RΣΓ′∆′.

Lemma 6. Let Σ be a prime Π-theory and A→B 6∈Σ. Then there are prime Π-
theories, Γ′, ∆′ such that RΣΓ′∆′, A∈Γ′, B 6∈∆′.

By making use of these lemmas, we are now ready to prove the following com-
pleteness theorem.

Theorem 2 (Priest & Sylvan). For any Γ ∪ {A} ⊆ Form, if Γ |= A then Γ ` A.

Proof. We prove the contrapositive. Suppose that Γ 6` A. Then, by Corollary 2,
there is a Π ⊇ Γ such that Π is a prime theory and A 6∈Π. Define the interpretation
A = 〈Π, X,R, I〉, where X = {∆ : ∆ is a prime Π-theory}, R as in Definition 6 and
I is defined thus. For every state Σ, p ∈ Prop and C,D ∈ Form:

1∈I(Σ, p) iff p∈Σ, 0∈I(Σ, p) iff ∼p∈Σ, 0∈I(Σ, C → D) iff ∼(C → D)∈Σ.

We show that the following condition holds for any arbitrary formula, B:

(∗) 1∈I(Σ, B) iff B∈Σ and 0∈I(Σ, B) iff ∼B∈Σ

It then follows that A is a counter-model for the inference, and hence that Γ 6|= A.
The proof of (∗) is by induction on the complexity of B.
For negation: We begin with the positive clause.

1∈I(Σ,∼C) iff 0∈I(Σ, C)
iff ∼C∈Σ IH

Again, the negative clause is also straightforward.

0∈I(Σ,∼C) iff 1∈I(Σ, C)
iff C∈Σ IH
iff ∼∼C∈Σ (A9)
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For disjunction: We begin with the positive clause.

1∈I(Σ, C∨D) iff 1∈I(Σ, C) or 1∈I(Σ, D)
iff C∈Σ or D∈Σ IH
iff C∨D∈Σ Σ is a prime theory

The negative clause is also straightforward.

0∈I(Σ, C∨D) iff 0∈I(Σ, C) and 0∈I(Σ, D)
iff ∼C∈Σ and ∼D∈Σ IH
iff ∼C∧∼D∈Σ Σ is a theory
iff ∼(C∨D)∈Σ (A8)

For conjunction: We begin with the positive clause.

1∈I(Σ, C∧D) iff 1∈I(Σ, C) and 1∈I(Σ, D)
iff C∈Σ and D∈Σ IH
iff C∧D∈Σ Σ is a theory

Again, the negative clause is also straightforward.

0∈I(Σ, C∧D) iff 0∈I(Σ, C) or 0∈I(Σ, D)
iff ∼C∈Σ or ∼D∈Σ IH
iff ∼C∨∼D∈Σ Σ is a prime theory
iff ∼(C∧D)∈Σ (A7)

For the conditional: We split the case depending on Σ = Π or not. First, if
Σ = Π, then we have the following:

1∈I(Π, C→D) iff ∀Γ∈X(if 1∈I(Γ, C) then 1∈I(Γ, D))
iff ∀Γ∈X(if C∈Γ then D∈Γ) IH
iff C→D∈Π

For the last equivalence, the top-to-bottom direction holds by Lemma 4 and the
bottom-to-top direction holds by the fact that Γ is a Π-theory.

Second, if Σ 6= Π, then we have the following:

1∈I(Σ, C→D) iff for all Γ,∆ s.t. RΣΓ∆, if 1∈I(Γ, C) then 1∈I(∆, D)
iff for all Γ,∆ s.t. RΣΓ∆, if C∈Γ then D∈∆ IH
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iff C→D∈Σ

For the last equivalence, the top-to-bottom direction holds by Lemma 6 and the
bottom-to-top direction holds by the definition of R (cf. Definition 6). Thus, we
obtain the desired result.

3 Main observations
First, three falsity conditions for the conditional are introduced.

Definition 7. Consider the following falsity conditions for the conditional.

• 0∈I(w,A→B) iff for some x, y∈W : Rwxy and 1∈I(x,A) and 16∈I(y,B).
• 0∈I(w,A→B) iff 1∈I(w,A) and 0∈I(w,B).
• 0∈I(w,A→B) iff for all x, y∈W : if Rwxy and 1∈I(x,A) then 0∈I(y,B).

We define |=1, |=2 and |=3 as semantic consequence relations obtained by adding the
above conditions to the semantics for BD respectively.

Remark 8. The first condition is a variant of the following condition suggested by
Priest and Sylvan:

0∈I(w,A→B) iff for some x, y∈W : Rwxy, 1∈I(x,A) and 0∈I(y,B).

Moreover, the second condition is exactly the condition we find in the study of
constructive falsity by David Nelson (cf. [4]), followed by further systematic studies
by Norihiro Kamide, Sergei Odintsov and Heinrich Wansing among others (cf. [5, 2]).
Finally, the third condition is a natural variant of the connexive conditional studied
by Wansing in [12].

Second, three extensions of BD are introduced.

Definition 9. Consider the following formulas.

C→((A→B)∨∼(A→B))(AxS1)
((A→B)∧∼(A→B))→C(AxS2)

∼(A→B)↔(A∧∼B)(AxN)
∼(A→B)↔(A→∼B)(AxW)

Then we introduce the following three systems.

• BDS: BD with (AxS1) and (AxS2) as additional axioms.
• BDN: BD with (AxN) as an additional axiom.
• BDW: BD with (AxW) as an additional axiom.
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We define proof theoretic consequence relations `S,`N and `W for BDS, BDN
and BDW respectively, as usual.

Remark 10. BDS is named after Antonio Sette who devised a system of paracon-
sistent logic known as P1 in which every complex formula is explosive (cf. [11]).
BDN is named after Nelson who introduced the expansion of intuitionistic logic
enriched by the so-called strong negation since the axiom (AxN) is the one used in
his system. Finally, BDW is named after Wansing who introduced and studied the
axiom (AxW) in [12].

We then obtain the following results without any additional lemma.

Theorem 3. For any Γ ∪ {A} ⊆ Form, we have the following results:

• Γ |=1 A iff Γ `S A.
• Γ |=2 A iff Γ `N A.
• Γ |=3 A iff Γ `W A.

Proof. The soundness part is relatively straightforward. For the completeness part,
the proof runs exactly as in the case for BD. For both directions, the only thing to
be checked is the negative clause for conditionals.
For BDS: for the soundness, observe the following for any w∈W :

1∈I(w, (A→B)∨∼(A→B))
iff 1∈I(w,A→B) or 0∈I(w,A→B)
iff (for all x, y∈W : if Rwxy and 1∈I(x,A) then 1∈I(y,B)) or

(for some x0, y0∈W : Rwx0y0 and 1∈I(x0, A) and 16∈I(y0, B))

Moreover, for any w∈W , we have the following:

1∈I(w, (A→B)∧∼(A→B))
iff 1∈I(w,A→B) and 0∈I(w,A→B)
iff (for all x, y∈W : if Rwxy and 1∈I(x,A) then 1∈I(y,B)) and

(for some x0, y0∈W : Rwx0y0 and 1∈I(x0, A) and 16∈I(y0, B))

For the completeness, we split the case as in the positive clause. First, if Σ = Π,
then we have the following:

0∈I(Π, C→D) iff ∃Γ∈X(1∈I(Γ, C) and 1 6∈I(Γ, D))
iff ∃Γ∈X(C∈Γ and D 6∈Γ) IH
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iff C→D 6∈Π (∗)
iff ∼(C→D)∈Π

Note that (∗) is the argument given in the case for the positive clause for the condi-
tional. Moreover, for the last equivalence, the top-to-bottom direction holds in view
of (AxS1) and the bottom-to-top direction holds in view of (AxS2).

Second, if Σ 6= Π, then we have the following:

0∈I(Σ, C→D) iff ∃Γ,∆∈X(RΣΓ∆ and 1∈I(Γ, C) and 16∈I(∆, D))
iff ∃Γ,∆∈X(RΣΓ∆ and C∈Γ and D 6∈∆) IH
iff C→D 6∈Σ (?)
iff ∼(C→D)∈Σ (†)

Note that (?) is again the argument given in the case for the positive clause for the
conditional. As for (†), we make use of (AxS1) and (AxS2), as expected.
For BDN: for the soundness, observe that the following holds for any w∈W :

1∈I(w,∼(A→B)) iff 0∈I(w,A→B)
iff 1∈I(w,A) and 0∈I(w,B)
iff 1∈I(w,A) and 1∈I(w,∼B)
iff 1∈I(w,A∧∼B)

For the completeness, the following shows that we have the desired result.

0∈I(Σ, C→D) iff 1∈I(Σ, C) and 0∈I(Σ, D)
iff C∈Σ and ∼D∈Σ IH
iff C∧∼D∈Σ Σ is a theory
iff ∼(C→D)∈Σ (AxN)

For BDW: for the soundness, observe that the following holds for any w∈W :

1∈I(w,∼(A→B)) iff 0∈I(w,A→B)
iff for all x, y∈W : if Rwxy and 1∈I(x,A) then 0∈I(y,B)
iff for all x, y∈W : if Rwxy and 1∈I(x,A) then 1∈I(y,∼B)
iff 1∈I(w,A→∼B)

For the completeness, we split the case as in the positive condition. First, if Σ = Π,
then we have the following:

0∈I(Π, C→D) iff ∀Γ∈X(if 1∈I(Γ, C) then 0∈I(Γ, D))
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iff ∀Γ∈X(if C∈Γ then ∼D∈Γ) IH
iff C→∼D∈Π (∗)
iff ∼(C→D)∈Π (AxW)

Second, if Σ 6= Π, then we have the following:

0∈I(Σ, C→D)
iff ∀Γ,∆∈X(if RΣΓ∆ and 1∈I(Γ, C) then 0∈I(∆, D))
iff ∀Γ,∆∈X(if RΣΓ∆ and C∈Γ then ∼D∈∆) IH
iff C→∼D∈Σ (∗)
iff ∼(C→D)∈Σ (AxW)

Note here again that (∗) is the argument given in the case of the positive clause for
the conditional. This completes the proof.

4 Conclusion: reflections and the original open problem

4.1 Some reflections on BDW

Compared to the previous attempts in the literature at adding some connexive flavor
to relevant logics, such as [3] by Mortensen and [1] by Brady, the system BDW is
obtained in an extremely simple manner: nothing is required on top of the usual
semantic framework for relevant logics. This simplicity is made possible by choosing
the American plan rather than the Australian plan in interpreting the negation.
Indeed, if we take the Australian plan and interpret the negation in terms of the
Routley star, then we need to take additional care about the interaction between
the Routley star and the ternary relation to realize the connexive theses, and this
brings in further complications as we can find in [3, 1]. However, if we follow the
American plan, then we have a simple account of negation which flip-flops truth
and falsity, and so the connexive theses will be closely related to the problem of the
falsity condition of the conditional. And as observed in the previous section, we may
import the idea of Wansing who developed a connexive variant of Nelson logics by
introducing a simple falsity condition of the conditional.

Note here that with the Australian plan, we are forced to accept the rule of
contraposition, namely the following rule:

(Contra) A→B
∼B→∼A
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This rule plays a substantial role in stronger systems. For example, Mortensen
proves that the relevant logic R with Aristotle’s thesis, namely ∼(A→∼A), is trivial
(cf. [3, p.109, Theorem 2]). This might make us question if the system BDW is
really non-trivial. The answer is positive, i.e. that BDW is indeed non-trivial, since
BDW is a subsystem of C of Wansing, introduced in [12], and C is non-trivial. As
a related remark, note that BDW is contradictory. Indeed, both (A∧∼A)→A and
its negation are provable in BDW.2

Finally, one might question the philosophical adequacy of the condition. The
details need to be left for another occasion, but if one is in favor of the ternary
relation, then BDW seems to be quite reasonable.3

4.2 Some reflections on BDS and BDN
The system BDS has a falsity condition for the conditional which is quite similar to
the one suggested by Priest and Sylvan. Moreover, it is proved in Theorem 3 that
it has a smooth proof theory. However, seen from the proof-theoretic perspective,
(AxS2) destroys the relevance and thus probably is not a reasonable option for
relevantists.

Finally, the system BDN has an extremely simple falsity condition, as simple as
those of the extensional connectives. Note that the additional axiom (AxN) causes
some troubles when the negation is interpreted in terms of the Routley star. Indeed,
(AxN) together with (Contra) proves ex contradictione quodlibet.4 This is, of course,
a bad news for relevantists. However, in our case, this will not be the case since
BDN is a subsystem of N4, one of the Nelson logics, and N4 is paraconsistent. But
then are there any problems with the concerned extension of BD? Not that I see it
at the moment. I will leave this question for interested readers.

4.3 The original open problem
The original problem formulated by Priest and Sylvan remains open. The problem
is to find appropriate axioms and/or rules of inference, to capture the corresponding
falsity conditions for the conditional in addition to BD:

• 0∈I(w,A→B) iff for some x, y∈W : Rwxy, 0 6∈I(x,A) and 0∈I(y,B).

2A similar result is reported already in [3, p.108, Theorem 1] and [13], though the formula here
is slightly simplified.

3For an interesting argument for the ternary relation of the relevant logic B+, see [7].
4This can be proved as follows. By (AxN), we have ∼(A → B) → (A ∧ ∼B), and thus

∼(A → B) → A in view of (A4) and Transitivity (cf. Remark 3). Now by applying (Contra), we
have ∼A→ ∼∼(A→ B). Finally, by (A9) and Transitivity, we obtain ∼A→ (A→ B), as desired.
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• 0∈I(w,A→B) iff for some x, y∈W : Rwxy, 1∈I(x,A) and 0∈I(y,B).

Despite the philosophical worry of Priest about the simplified semantics in general,
recently addressed in [6], the problem is interesting from a purely technical perspec-
tive.
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Abstract

I propose two natural-deduction proof-systems N¬r and N¬l , for non-
classical interactions of a certain kind between negation and implication, that
can be seen as variants of connexive logics. These interactions are inspired by
a certain use of negation and implication in natural language. I propose the
natural-deduction systems as meaning-conferring proof-systems, not appealing
to any many-valued model theory as a semantics. The model-theory is used
mainly as an auxiliary tool for establishing non-derivability, for example of
some classical formal theorems (or, more generally, classical derivability claims)
that are not provable (not derivable) in N¬r and N¬l . The relation between
implication and negation in the system N¬r is similar to the one by Cantwell
and one by Cooper, the former unaware of the latter. The system N¬l seems
to be new.

1 Introduction

In this paper, I propose two natural-deduction (ND) proof-systems N¬r and N¬l ,
for non-classical interactions of a certain kind between negation and implication,
A talk based on this paper was presented in the workshop Inferences and Proof, University of Aix-
Marseille, Marseille, May 31 - June 1, 2016. I thank Heinrich Wansing, Hitoshi Omori and an
anonymous referee for critical comments that have improved the presentation of the ideas in this
paper.
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that can be seen as variants of connexive logics. These interactions are inspired
by a certain use of negation and implication in natural language. I propose the
natural-deduction systems N¬r and N¬l as meaning-conferring proof-systems (see
Section 4), not appealing to any many-valued model theory as a semantics. The
model-theory (in Section 5) is used mainly as an auxiliary tool for establishing
non-derivability, for example of some classical formal theorems (or, more generally,
classical derivability claims) that are not provable (not derivable) in N¬r and N¬l .
The relation between implication and negation in the system N¬r is similar to the
one in [3] and [4], the former unaware of the latter.

As is well known, characteristics of Connexive Logics (see [21] for a general survey;
see also [16]) are the following (formal) theorems, which are not theorems of classical
logic.

A1 : ` ¬(ϕ→¬ϕ)
A2 : ` ¬(¬ϕ→ϕ) (1.1)

Both are jointly known as Aristotle’s thesis. In [12], the other characteristic rela-
tionships

B1 : (ϕ→ψ)→¬(ϕ→¬ψ)
B2 : (ϕ→¬ψ)→¬(ϕ→ψ) (1.2)

are attributed to the ancient philosopher and logician Boethius. For the history of
connexive logics see [13].

However, the same intuition leading to Boethius’ theses B1 and B2 leads also to the
implications

B3 : (ϕ→ψ)→¬(¬ϕ→ψ)
B4 : (¬ϕ→ψ)→¬(ϕ→ψ) (1.3)

as well as to the converses of Bi, i = 1, · · · , 4. For B3, see a derivation in ‘Connexive
Gentzen’ ([13, p. 968], using Polish prefix notation).

Having all those Bis and their converses live together, and having implication transi-
tive, leads to certain undesired complications, related to introducing and eliminating
the operators (cf. the remark on p. 18). Identifying the two negations and creating
one negation having the properties of both would:

• blur the distinction between the views of implication as focusing on sufficiency
in contrast to focussing on necessity, a driving force behind the proposed sys-
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tems. In particular,1 ϕ→ψ becomes both necessary and sufficient for ¬ϕ→¬ψ,
as shown by the following derivations.

(ϕ→ψ)→¬(¬ϕ→ψ) (B3)

¬(¬ϕ→ψ)→(¬ϕ→¬ψ) (conv. B2)

(ϕ→ψ)→(¬ϕ→¬ψ) (Trans→)

(¬ϕ→¬ψ)→¬(ϕ→ψ) (B4)

¬(ϕ→¬ψ)→(ϕ→ψ) (conv. B1)

(¬ϕ→¬ψ)→(ϕ→¬ψ) (Trans→)

This equivalence does not conform with the standard meanings of sufficiency
and necessity.

• render negation ambiguous, certainly an undesired effect.

• render negation disharmonious (see (4.41) below), also undesired if Proof-
Theoretic Semantics (PTS) is adhered to, as I believe should be the case. See
more on this in Section 4.

Therefore, I “split” the negation into two2 negations, ‘¬l’ and ‘¬r’, each separately
responsible to one of the Ai and two of the Bis, reformulated as formal theorems in
terms of the two negations.

Below, all those characteristics are shown as formal theorems either of the ND-system
N¬r or of N¬l .

When viewed from a model-theoretic perspective, neither of those negations here
is a contradiction-forming operator, except when applied to atomic propositions
(justified below in Section 2.3). Rather, both are sub-contrariety formers (in two
different ways). They play two separate roles for compound statements of the form
α→β, distinguished as described below. Recall that a generic implication α→β can
be read in two ways.

• α is sufficient for β.

• β is necessary for α.

The two negations negate those two readings in the way described below.
1I thank Heinrich Wansing for this observation.
2Note that while I use the same technical term, split negation here is unrelated to the split

negation in e.g., [19], the latter resulting from non-commutativity of the logic.
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• From the NL point of view, ‘¬r’ is a “corrective negation”, expressing disagree-
ment about sufficiency of the condition α, taking it sufficient for ¬β instead
of being sufficient for β.

• From the NL point of view, ‘¬l’ too is a “corrective negation”, expressing
disagreement about necessity of the condition β for α, taking instead β as
necessary for ¬α.

Thus, the Ais express the impossibility of ϕ to be either necessary or sufficient
for its own negation. If necessity and sufficiency are endowed a non-truth-functional
meaning, one based on contents, then this interpretation of implication and negation
expresses relationships between sentential meanings transcending the simple classical
truth-functionality of implication and negation.

In the sequel, I consider a propositional fragment containing, in addition to atomic
propositions, implication and negation only.

2 Natural language motivation

2.1 Negating implications

The point of departure is the following schematic dialog D between two partici-
pants A and B using two compound formulas (i.e., non-atomic, headed by a generic
implication ‘→’) α, β in the following way:

D :: A : α
B : No! β (2.4)

Here α is ϕ→ψ (for some ϕ,ψ), while β is either (¬ϕ)→ψ or ϕ→¬(ψ). At this stage
‘¬’ is also considered a generic negation, to be made specific below.

The intended reading of the dialog D is characterised by the following two charac-
teristics:

1. Participant B, by using No, partially disagrees with A about α by “negating”
the latter.
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2. Participant B offers β as the negated α expressing3 the disagreement and
“correcting” it.

Note that the “corrections” express consent about one argument of ‘→’, while negat-
ing the other argument of ‘→’. I will refer to the arguments of ‘→’s the left and
right arguments, which explains the labels of the two negations. Clearly, this way of
negating, not by contradicting, excludes the intuitionistic way of defining negation
as implying ⊥, absurdity.

I also consider a kind of a dual dialog, in which one of the arguments of ‘→’ is
already negated. That is, α is (¬ϕ)→ψ or ϕ→¬(ψ) (for some ϕ,ψ), while β is,
respectively, ϕ→ψ. This suggest that double-negation elimination is employed in
the “correction”.

In the sequel, ‘`’ refers to derivability in the natural-deduction system N¬r and
N¬l , to be presented below, and a` to mutual derivability. The context determines
which proof-system is intended.

Metavariables ϕ, ψ range over compound formulas of some object language, and p, q
over atomic propositions. I will first consider the negation of compound formulas,
deferring to Section 2.3 the definition of negating an atomic proposition, using just
¬p (unsubscripted) for its expression.

The ND-system N¬r and N¬l below induce the following mutual derivabilities,
which can be interpreted as manifesting the sub-contrariness formation by the two
negations.

¬l(ϕ→ψ) a` ¬lϕ→ψ ¬r(ϕ→ψ) a` ϕ→¬rψ (2.5)

The inspiration from the natural language dialog D pertains more to the first-degree
case (without nesting of implications), but the incorporation of the generalisation
with unrestricted nesting into the object language is needed in order to obtain a
logic.

Before turning to a general theory, I will consider in some detail some instances of the
dialog D, to get a better intuition about what is involved in partial disagreements

3In a naturally occurring dialog of the type D, a certain focal stress might be required. I ignore
here such matters.
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of the intended type. In Section 2.2 I correlate the D-dialogs to Ramsey’s test and
a newly considered dual of this test.

Example 2.1. The first example I consider features an interaction between negation
and a conditional, studied in detail by Cantwell in [3] under the name of ‘conditional
negation’. Cantwell’s motivation is completely different. His intention is to remove
the feature of the material implication of yielding a truth-value (actually, yielding
the value ‘true’) in case the antecedent of the conditional yields a truth-value ‘false’.
The central feature of the interaction between negation and the conditional is the
satisfaction of the following relation

¬(ϕ→ψ) ` ϕ→¬ψ (2.6)

This reflects a common view that the truth of an antecedent of a conditional is a
presupposition of asserting that conditional. It remains a presupposition also of the
assertion of the negated conditional.

I will strengthen this relation, in accord with (2.5), into

¬(ϕ→ψ) a` ϕ→¬ψ (2.7)

below. Such a relationship, with a biconditional instead of mutual provability, is
essential to the modal connexive logic introduced by Wansing (see [20, p. 371]).

The way the connectives are defined by Cantwell and made to satisfy (2.6) is via a
model theory based on a certain three valued logic. Without being aware, he uses
the same three-valued truth-tables for implication and negation as does [4].

His exemplary dialog featuring this interaction (not structured asD) is the following.
Anne: If Oswald didn’t kill Kennedy, Jack Ruby did.
Bill: No! You’re wrong.
Here is what Cantwell says ([3, p. 246]) about this exchange:

When Bill denies the conditional asserted by Anne, he neither asserts nor
denies that Oswald did the killing (he can continue, “If Oswald didn’t
kill Kennedy, Castro did”); his denial seemingly amounts to no more
than the assertion that if Oswald didn’t shoot Kennedy then neither did
Jack Ruby. This kind of “conditional denial” seems to be a basic move in
the language game; conditional negation is the sentential operator that
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corresponds to this form of conditional denial: “It is not the case that if
Oswald didn’t shoot Kennedy, Jack Ruby did.”

Not mentioned by Cantwell, this interaction between a conditional and a negation
is one of the characteristics of connexive logics mentioned above. Yet another use of
this way of negating an implication, not related to connexivity, is that by Dummett
[6], confining it to negating a subjunctive conditional.

As I stated above, I want to approach the whole topic proof-theoretically, with no
reference to truth-values, neither two nor any other number of them, or to relational
frame semantics.

The examples below all use negated atomic propositions only, their negation under-
stood informally by now (to be presented in more detail in Section 2.3).

Example 2.2. Let us now consider a dialog structured as D, featuring a negated
conditional. Suppose participants A and B are fans of the same soccer team T , but
have opposing opinions as to how well T is prepared to play in a bad weather.

D1 :: A : If it rains, T will win
B : No! If it rains, T will not win (2.8)

That is, B consents about it raining, but disagrees as to what is raining a sufficient
condition for. Considering (2.6) as reflecting this instance of D is best presented as

¬r(p→q) a` p→¬rq (2.9)

In the dual dialog, we have

D̂1 :: B : If it rains, T will not win
A : No! If it rains, T will win (2.10)

represented as
¬r(p→¬rq) a` p→q (2.11)

Here the effect of double negation elimination is manifested.

Example 2.3. Similar arguments, motivated by the way implication and negation
interact, are put forward in [4].
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Consider another instance of D between the same participants, the fans of team T .

D2 :: A : If it rains, T will win
B : No! If it does not rain, T will win (2.12)

Here B consents to team T winning, but disagrees about what the sufficient condition
for that is. This can be modelled by4

¬l(p→q) a` ¬lp→q (2.13)

Again, in the dual dialog, we have

D̂2 :: B : If it does not rain, T will win
A : No! If it rains, T will win (2.14)

represented as
¬l(¬lp→q) a` p→q (2.15)

Here too is the effect of double negation elimination manifested.

In both the examples above, No expresses a way of negating a conditional different
from the standard way of negating the material implication.

2.2 Ramsey’s test and a dual test

In [17, p. 155], Ramsey proposes the following argument (quoted below with a
slight modification of notation to fit the current presentation) as an interpretation
of negating the conditional in NL.

If two people are arguing ‘If ϕ will ψ?’ and are both in doubt as to
ϕ, they are adding ϕ hypothetically to their stock of knowledge and
arguing on that basis about ψ; so that in a sense ‘If ϕ, ψ’ and ‘If ϕ, ¬ψ’
are contradictories.

4This kind of conditional is not considered by Cantwell.
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The scenario described in the above paragraph fits the structure of the argument
between participants A and B in dialog D1 (cf. (2.8)) used to motivate ¬r. It
exactly reflects an argument as to what is ϕ sufficient for: ψ or ¬ψ.

The connection to Ramsey’s test was noted also by Ferguson [7].

I suggest a dual test with a scenario fitting the argument D2 (cf. (2.12)), used to
motivate ¬l, that reflects an argument between A and B as to for which of ϕ, ¬ϕ
is ψ necessary for.

A dual Ramsey test:

If two people are arguing ‘If ϕ will ψ?’ and are both in doubt as to
ϕ, they are adding ¬ϕ hypothetically to their stock of knowledge and
arguing on that basis about ψ; so that in a sense ‘If ϕ, ψ’ and ‘If ¬ϕ, ψ’
are contradictories.

This dual test exactly reflects an argument as to what is ψ necessary for, ϕ or ¬ϕ.

2.3 Negating atomic propositions

Since atomic propositions are not implications, considerations like distinguishing
between focus on sufficient conditions and necessary conditions do not apply to
them and cannot drive the definition of their negation.

Consider a dialogue D̂, structured similarly to D (cf. 2.4)),where α and β are both
atomic propositions.

Example 2.4 (atomic dialog:).

D̂ :: A : T will win
B : No! T will not win

Here participant B plainly disagrees with participant A’s assessment about the out-
come of a game involving team T , not involving any conditionality. Here B’s correc-
tion of A’s statement (following his NO!) is just a claim of the opposite proposition,
clearly attempting to contradict A.
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This example exemplifies the idea behind defining

¬lp = ¬rp = ¬p (2.16)

(where ¬ is classical negation). This will lead to the ND-rules for atomic proposition
in Section 3 to coincide with the classical ones.

3 The natural-deduction system N ¬r and N ¬l

The design of the ND-systems N¬r and N¬l in Figures 1 and 2, respectively, is
based on the following principles.

1. Both negations, as mentioned above, are not contradiction-forming, except
when applied to atomic propositions. Rather, both ¬r(ϕ→ψ) and ¬l(ϕ→ψ)
are sub-contraries of ϕ→ψ. This behaviour is very similar to what is known in
the semantics of natural language as ‘neg raising’ (see [10] for discussion and
references).

2. The negations and the implication are not independent, and have to be under-
stood together. Technically, this means that the I/E-rules for the implication
are not pure (i.e., refer to more than one operator) [6]. In the model-theory
in Section 5, the dependence between negations and implication results in a
non-compositionality in the assignment of truth-value.

3. Negations here are non-uniform, their (I/E)-rules depending on the negated
formula. There are no rules that might be seen as ‘(¬rI)’ and ‘(¬lI)’ by which
¬rϕ and ¬lϕ can be introduced for a “bare” compound ϕ. The negations
¬r, ¬l can only be introduced for an implication, and this can be done in two
ways. Accordingly, the two negated implications are eliminated differently.
This is a major need for splitting the negation, as will become even clearer in
Section 4.
One result of this non-uniformity of negation is that both the ND-systems in-
troduced below do not admit the rule of uniform substitution. Atomic propo-
sitions are not propositional variables. This is also reflected in the definition
of assignments in the model theory (see Definition 5.4).

4. The two systems N¬r and N¬l cannot conveniently be amalgamated into one
combined system. There is an issue of how to propagate negation to the
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appropriate argument of the implication. Suppose one considers (in an alleged
combined system) ¬r(ϕ→ψ) by negating ψ. Which nested negation should
be employed? In principle, both ways can do, leading both to ϕ→¬lψ and
ϕ→¬rψ. A similar situation pertains to ¬l(ϕ→ψ), leading either to ¬rϕ→ψ or
to ¬lϕ→ψ. This does not lead to a coherent interpretation of the Ais and Bis,
that should relate to one and the same negation each. This reinterpretation of
the Ais and Bis is seen clearly in the separate systems.

5. While iterating the same negation makes, giving rise to two forms of double
negation, both eliminable, the iterations

¬r¬lϕ, ¬l¬rϕ (3.17)

do not seem to have an obvious interpretation. Those iterations are not well-
formed if separation of systems is kept.

Additional remarks about the I/E-rules:

1. Classically, the double-negation I/E-rules are related to the reversing of truth
value associated with a contradiction-forming operator. Here, they originate
from a different source. As negations are associated with disagreement about
one of the arguments of ‘→’, when applied to an already negated argument, a
negation finds, so to speak, nothing (that is, no implication) to disagree about,
so it cancels the disagreement when eliminated. When introduced, it can be
seen, so to speak, as retracting the disagreement that would have been formed
by negating once only.

2. Note that the ‘(dni)’ rules are primitive, in contrast to classical ‘(dni)’, which
is derivable in classical logic; this is again an effect of the current negations not
being contradiction-forming, blocking the usual classical derivation of ‘(dni)’.

A methodological remark: In what sense can ¬r and ¬l “deserve” to be con-
sidered as negations? First, both are involutive, as is common for several other
negations. Secondly, they are formed by a tool not used before in proof-theory:
negating a rule (in contrast to the usual notion of negating a proposition). Here
the rule classical/intuitionistic (→I), introducing an implication, is negated in two
ways:

1. Negating the discharged assumption of the premise.
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[ϕ]i
...
ψ

ϕ→ψ (→Ii)
ϕ→ψ ϕ

ψ
(→E) (3.18)

[ϕ]i
...
¬rψ

¬r(ϕ→ψ) (¬r→Ii)
¬r(ϕ→ψ) ϕ

¬rψ
(¬r→E) (3.19)

[p]i
...
q

[p]i
...¬rq

¬rp (At¬rI
i)

p ¬rp
ϕ (At¬rE) (3.20)

¬r¬rϕ
ϕ (dner) ϕ

¬r¬rϕ
(dnir) (3.21)

Figure 1: The I/E-rules of N¬r

2. Negating the conclusion of the sub-derivation forming the premise.

As for (→E), it is negated either by negating its minor premise or by negating its
conclusion. Similar rules, but in a sequent calculus L/R-rules form, appear in [11],
but are not viewed as negating the standard L/R rules for implication.

Note that both N¬r and N¬l are paraconsistent, invalidating explosion (cf. Example
5.7). Neither one of ϕ,¬rϕ ` ψ and ϕ,¬lϕ ` ψ holds (except for an atomic ϕ). This
is typical to sub-contrariety forming operators [2].

3.1 The ND-system N ¬r

Derivations (tree-shaped) are defined recursively as usual.

Proposition 3.1 (closure under composition). Derivations in N¬r are closed
under composition of derivations.
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The proof is standard and omitted.

Corollary 1. The mutual derivability ¬r(ϕ→ψ) a` ϕ→¬rψ (cf. (2.5)) holds.

Proof: The derivations are as follows.
ϕ→¬rψ [ϕ]1

¬rψ
(→E)

¬r(ϕ→ψ) (¬rI
1)

¬r(ϕ→ψ) [ϕ]1
¬rψ

(¬r→E)

ϕ→¬rψ
(¬r→I1) (3.22)

3.1.1 Some properties of N¬r

In this section, I show some of the properties of the N¬r system, justifying its being
connexive.

Proposition 3.2 (Aristotle’s ¬r-thesis).

` ¬r(ϕ→¬rϕ) (3.23)

Proof: The derivation of is as follows.
[ϕ]1
¬r¬rϕ

[(dnir)
¬r(ϕ→¬rϕ) (¬r→I1)

Proposition 3.3 (Boethius’ ¬r-theses).

(B1) ` (ϕ→ψ)→¬r(ϕ→¬rψ)

(B2) ` (ϕ→¬rψ)→¬r(ϕ→ψ)
(3.24)

Proof: The derivation of (B1) is as follows.

[ϕ→ψ]2 [ϕ]1
ψ

(→E)

¬r¬rψ
(dnir)

¬r(ϕ→¬rψ) (¬r→I1)

(ϕ→ψ)→¬r(ϕ→¬rψ) (→I2) (3.25)
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The derivation of (B2) is as follows.

[ϕ→¬rψ]2 [ϕ]1
¬rψ

(→E)

¬r(ϕ→ψ) (¬r→I1
2 )

(ϕ→¬rψ)→¬r(ϕ→ψ) (→I2) (3.26)

Example 3.5.
¬r(ϕ→(ψ→χ))`(ϕ→(ψ→¬rχ))

The derivation is
¬r(ϕ→(ψ→χ))
(ϕ→¬r(ψ→χ)) (2.5)

(ϕ→(ψ→¬rχ)) (2.5)

3.2 The natural-deduction system N ¬l

The design of the ND-system N¬l in Figure 2 is based on analogous principles to
those driving N¬r .. Derivations (tree-shaped) are once again defined recursively
as usual.

Proposition 3.4 (closure under composition). Derivations of N¬l are closed
under composition of derivations.

Again, the proof is standard and omitted.

Corollary 2. The mutual derivability ¬l(ϕ→ψ) a` ¬lϕ→ψ (cf. (2.5)) holds.

Proof: The derivations are as follows.
¬lϕ→ψ [¬lϕ]1

ψ
(→E)

¬l(ϕ→ψ) (¬l→I1)

¬l(ϕ→ψ) [¬lϕ]1
ψ

(¬l→E)

¬lϕ→ψ (→I1) (3.31)

3.2.1 Some properties of N¬l

In this section, I show some of the properties of the system, justifying its being
connexive.
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[ϕ]i
...
ψ

ϕ→ψ (→Ii)
ϕ→ψ ϕ

ψ
(→E) (3.27)

[¬lϕ]i
...
ψ

¬l(ϕ→ψ) (¬l→Ii)
¬l(ϕ→ψ) ¬lϕ

ψ
(¬l→E) (3.28)

[p]i
...
q

[p]i
...¬lq

¬lp (At¬lI
i)

p ¬lp
ϕ (At¬lE) (3.29)

¬l¬lϕ
ϕ (dnel)

ϕ
¬l¬lϕ

(dnil) (3.30)

Figure 2: The I/E-rules of N¬l

Proposition 3.5 (Aristotle’s ¬l-thesis).

` ¬l(¬lϕ→ϕ) (3.32)

Proof: The derivation is as follows.

[¬l¬lϕ]1
ϕ [(dnel)

¬l(¬lϕ→ϕ) (¬l→I1)

Proposition 3.6 (Boethius’ ¬l-theses).

(B3) ` (ϕ→ψ)→¬l(¬lϕ→ψ)

(B4) ` (¬lϕ→ψ)→¬l(ϕ→ψ)

(3.33)
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Proof: The derivation of (B3) is as follows.

[ϕ→ψ]2
[¬l¬lϕ]1

ϕ (dnel)
ψ

(→E)

¬l(¬lϕ→ψ) (¬l→I1
1 )

(ϕ→ψ)→¬l(¬lϕ→ψ) (→I2) (3.34)

The derivation of (B4) is as follows.
[¬lϕ→ψ]2 [¬lϕ]1

ψ
(→E)

¬l(ϕ→ψ) (¬l→I1)

(¬lϕ→ψ)→¬l(ϕ→ψ) (→I2) (3.35)

4 Qualification of N ¬r and N ¬l as meaning conferring

According to the proof-theoretic semantics (PTS) programme (see [18] for a survey
and [8] for a detailed presentation), meaning is determined by canonical derivability
conditions in a meaning-conferring proof systems. Those conditions are based on
grounds for assertion. This theory of meaning constitutes an alternative to model-
theoretic semantics (MTS), identifying meaning as truth-conditions (in models of a
suitable form).

As is well known, not every ND-system qualifies as meaning-conferring. One promi-
nent criterion for such qualification requires a certain balance between the I-rules
and the E-rules, none of those groups of rules out-powers the other. Technically,
this balance is known as the conditions of harmony and stability [6].

4.1 Harmony

One of the formalisation of harmony is by means of the property of local-soundness
[14],[5].
Definition 4.1 (maximal formula). An occurrence of a formula ϕ in a derivation
D is maximal iff it is the result of an application of an I-rule and a major premise
of an E-rule.
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Definition 4.2 (local-soundness). An ND-system N is locally-sound iff every
N -derivation D that has an occurrence of a maximal formula can be transformed
into an equivalent derivation D′ (i.e., having the same, or less, assumptions and the
same conclusion) in which the maximal ϕ doe not occur. Such a transformation is
called a reduction.

Failure of local-soundness, i.e., the presence of a non-reducible maximal formula
ϕ, indicates that the I-rules are too strong compared to the E-rules, yielding a
conclusion not derivable without introducing ϕ.

To present reductions, the following notations are used. For a derivation D1 having
an assumption ϕ, and a derivation D2 having a conclusion ϕ, the notation D ::
D1[ϕ :=

D2
ϕ ] indicates the tree obtaining by replacing every leaf labeled ϕ in D1

by the tree D2 (identifying that leaf of D1 with the root of D2). D is a derivation
whenever N is closed under derivation composition.

Proposition 4.7 (local-soundness of N¬r and N¬l). N¬r and N¬l are locally-
sound.

Proof: Below are the reductions establishing local-soundness. They are listed ac-
cording to the I-rule generating a maximal formula. All the reductions are well-
defined by Proposition 3.1.

(→I): This is the standard reduction for implication [15].

[ϕ]i
D1
ψ

ϕ→ψ (→Ii) D2
ϕ

ψ
(→E)

;r

D1[ϕ :=
D2
ϕ ]

ψ (4.36)

(¬l→I): This is similar to the standard reduction for implication.

[¬lϕ]i
D1
ψ

¬l(ϕ→ψ) (¬l→Ii) D2¬lϕ

ψ
(¬l→E)

;r

D1[¬lϕ :=
D2¬lϕ]

ψ (4.37)
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(¬r→I): This is also similar the standard reduction for implication.

[ϕ]i
D1
¬rψ

¬r(ϕ→ψ) (¬r→Ii) D2
ϕ

¬rψ
(¬r→E)

;r

D1[ϕ :=
D2
ϕ ]

¬rψ (4.38)

At¬lI:

[p]1
D1
q

[p]1
D2¬lq

¬lp (At¬lI
1) D3

p
ϕ (At¬lE) ;

[p]1
D1
q

[p]1
D2¬lq

ϕ (At¬lE) (4.39)

(dnil):
D1
ϕ
¬l¬lϕ

(dnil)
ϕ (dnel) ;

D1
ϕ (4.40)

(dnir): Similar.

Remark: Here one can realise why negation had to be split. If we had just one ‘¬’,
but with

• two ¬→I-rules, one like ¬l→I and one like ¬r→I

• and two ¬→E-rules, one like ¬l→E and one like ¬r→E

then the following derivation would be irreducible. It introduces like ¬l but elimi-
nates like ¬r.

[¬ϕ]1
D1
ψ

¬(ϕ→ψ) (¬→I2) D2
ϕ

¬ψ (¬→E2) (4.41)

Such a system would be bluntly disharmonious.
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4.2 Stability

This property constitutes the other “half” of the required balance between the I/E-
rules for qualifying as meaning conferring. It is formalised (to a certain approxima-
tion) by local-completeness [14],[5].

Definition 4.3 (local-completeness). An ND-system N is locally-complete iff
every N -derivation Dϕ can be transformed to an equivalent derivation decomposing ϕ
by E-rules and recomposing by I-rules. Such a transformation is called an expansion.

Failure of local-completeness, i.e., the presence of a non-expandable derivation of
some ϕ, indicates that the I-rules are too weak compared to the E-rules, yielding a
conclusion not derivable without eliminating ϕ.

Proposition 4.8 (local-completeness of N¬r and N¬l). N¬r and N¬l are
locally-complete.

Proof: Below are the required expansions.

ϕ→ψ: This is again a standard expansion for implication [15].

D
ϕ→ψ ;e

D
ϕ→ψ [ϕ]1

ψ
(→E)

ϕ→ψ (→I1) (4.42)

¬l(ϕ→ψ):

D
¬l(ϕ→ψ) ;e

D
¬l(ϕ→ψ) [¬lϕ]1

ψ
(¬l→E)

¬l(ϕ→ψ) (¬l→I1) (4.43)

¬r(ϕ→ψ):

D
¬r(ϕ→ψ) ;e

D
¬r(ϕ→ψ) [ϕ]1

¬rψ
(¬r→E)

¬r(ϕ→ψ) (¬r→I1) (4.44)
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¬r¬rϕ:

D¬r¬rϕ ;e

D¬r¬rϕ
ϕ (dnir)E

¬r¬rϕ
(dner)I (4.45)

¬l¬lϕ: Similar.

For an extensive discussion about the meaning determined by a qualified meaning-
conferring ND-system see [9].

5 Model-theory for N ¬r and N ¬l

In this section, I present a model-theory for the two ND proof-systems N¬r and
N¬l presented above. Let me stress again that I do not intend this model-theory
to serve as a semantics for the induced logic. As I stated before, I see the ND-
systems as meaning-conferring, a definitional tool. The role of the model-theory is
merely a tool for establishing indirectly some properties of the ND-systems, such as
non-derivability.

The model theory of both systems is based on a four-valued system, having the
values {0, 1, 2, 3}. As an intuitive handle to the interpretation of those values,
one can think of them as binary representations of ordered pairs of classical truth
values {0, 1}. Let the designated values be D = {0, 1, 3}. Let me mention that
this model-theory is not related to the ND-systems N¬r and N¬l in accordance to
a general pattern relating multi-valued logics to their corresponding ND-system as
specified in [1].

The characteristic fact of the definition of the two negations is their non-
compositionality: they are not truth-functional in that the value of a negated impli-
cation does not depend on the value of the implication itself; rather, it depends on
the values of both the antecedent and the consequent of the implication, coded as an
ordered pair of classical values. Thus, the value 2, coding 〈1, 0〉, is the falsity in this
system, coding the value of an implication with a true antecedent and a false conse-
quent. In that, the model-theory reflects the non-purity of the negated-implication
rules in both systems. The other values are variants of classical truth, recording in
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p ¬rp ¬lp
−− −− −−
2 3 3
−− −− −−
3 2 3

ϕ ¬rϕ ¬lϕ
−− −− −−
3 1 2
−− −− −−
2 0 3
−− −− −−
1 3 0
−− −− −−
0 2 1

Figure 3: The truth-tables for ¬r and ¬l

virtue of which combination of values for the consequent and the antecedent is the
implication true.

When considering truth-assignments, atomic propositions differ from compound
propositions (implications): the former are assigned only {2, 3}, rendering them
contradictory.

Definition 5.4 (assignment). An assignment σ is a mapping satisfying
{
σ[[p]] ∈ {2, 3} atomic

σ[[ϕ]] ∈ {0, 1, 2, 3} compound

Thus, neither of the logics is closed under the rule of uniform substitution. This
reflects an intuition coming from natural language, that the generators of the object
language are atomic propositions, having unspecified fixed contents, and not propo-
sitional variables! A similar phenomenon, similarly justified, takes place also in the
system of [4].

The truth tables for the two negations are presented in Figure 3. The truth-table
of the implication is presented in Figure 4. The line marked with (∗) are the falsity
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ϕ ψ ϕ→ψ
−− −− −−
3 3 3
−− −− −−
3 2 2 (∗)
−− −− −−
3 1 3
−− −− −−
3 0 3
−− −− −−
2 3 1
−− −− −−
2 2 0
−− −− −−
2 1 1
−− −− −−
2 0 1
−− −− −−
1 3 3
−− −− −−
1 2 2 (∗)
−− −− −−
1 1 3
−− −− −−
1 0 3
−− −− −−
0 3 3
−− −− −−
0 2 2 (∗)
−− −− −−
0 1 3
−− −− −−
0 0 3

Figure 4: The truth-table for →

lines, yielding false for a false consequent and the various ways the antecedent can
be true (designated).
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Definition 5.5 (equivalence). Let ϕ ≡ ψ iff for every assignment σ: σ[[ϕ]] = σ[[ψ]].

In those systems, soundness of a rule means that for every assignment σ: if the
premises of the rule are assigned a designated value under σ, so does the conclusion.
A simple case analysis establishes the following proposition.

Proposition 5.9 (soundness). N¬r and N¬l are sound w.r.t. the model-theory.

The proof is by case analysis. As an example, consider the rule (¬l→I) (in Figure
2). In order to lead from a designated value for ¬lϕ to a designated value of ψ, the
possible values of ϕ are {1, 0, 2} and the possible values of ψ are {0, 1, 3}. For
each combination of the above, the value of ¬l(ϕ→ψ) is 0, designated too.

Similarly, the following equivalences (identical truth-tables) justify (2.5).

¬r(ϕ→ψ) ≡ ϕ→¬rψ ¬l(ϕ→ψ) ≡ ¬lϕ→ψ

Example 5.6 (non-derivability of contraposition). As an example of non-
derivability, both negations invalidate contraposition (as might be expected).

¬r: Consider the assignment σ′ under which σ′[[ψ]] = 2 and σ′[[ϕ]] = 3. Hence,
σ′[[¬rψ]] = 3 and σ′[[¬rϕ]] = 2. Therefore, σ′[[¬rψ→¬rϕ]] = 2 (false!), while
σ′[[ϕ→ψ]] = 3 (true!).

¬l: Consider the assignment σ′′ under which σ′′[[ψ]]i = 1 and σ′′[[ϕ]] = 0. Hence,
σ′′[[¬lψ]] = 3 and σ′′[[¬lϕ = 2]]. Therefore, σ′′[[¬lψ→¬lϕ]] = 2 (false!), while
σ′′[[ϕ→ψ]] = 3 (true!).

Contraposition does hold for atomic sentences, for which such assignments are in-
admissible. The same situation obtains also in the system of [4].

As another example, I show non-explosion.

Example 5.7 (non-explosiveness). Consider an assignment σ∗ s.t. σ∗[[ϕ]] =
σ∗[[ψ]] = 3. Thus, both σ∗[[¬l(ϕ→ψ)]] [= σ∗[[¬lϕ→ψ]] ] = 3 (truth!), and σ∗[[ϕ→ψ]] =
3 (truth), but an arbitrary ξ can certainly have σ∗[[ξ]] = 2 (falsity!). Thus,

¬l(ϕ→ψ), (ϕ→ψ) 6 |=ξ

A similar argument applies to ‘¬r’.
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Example 5.8 (Modus Tollens). Neither of the two versions of the modus tollens
rule are validated.

ϕ→ψ ¬rψ
¬rϕ

(MTr) ϕ→ψ ¬lψ
¬lϕ

(MTl) (5.46)

• A counter example for (MTr): consider an assignment σ with σ[[ϕ]] = 0 and
σ[[ψ]] = 3. Therefore, σ[[ϕ→ψ]] = 3 (designated), and σ[[¬rψ]] = 1 (designated);
however, σ[[¬rϕ]] = 2 (non-designated).

• A counter example for (MTl): consider an assignment σ with σ[[ϕ]] = 3 and
σ[[ψ]] = 1. Therefore, σ[[ϕ→ψ]] = 3 (designated), and σ[[¬lψ]] = 0 (designated);
however, σ[[¬lϕ]] = 2 (non-designated).

6 Conclusions

In this paper, I have introduced two negations, interacting with implication in a
manner similar to the interaction in some known Connexive Logics. This interaction
is inspired by a similar interaction present in some natural language dialogs, where
negation is used to disagree about sufficiency or necessity of conditions, “correcting”
the negated proposition by an alternative proposition, in which either the antecedent
or the consequent of the negated implication are negated themselves.

Two ND proof-systems are proposed for the resulting logics, viewed as meaning-
conferring, in accordance with the proof-theoretic semantics programme. In addi-
tion, a four-valued model-theory is developed as a tool for establishing non-
derivability.

An interesting alternative for capturing the same intuition might be keeping one
negation, but splitting the implication. I leave this for further research. Also left
for future development is the extension by adding other connectives, where again
negation applies by negating one argument of a binary connective. For conjunction
and disjunction, this would produce an invalidation of De Morgan’s rules. Negating
quantified propositions by such negations is, of course, of interest too.
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Abstract

The present note examines an unusual formula studied by Nissim Francez.
More specifically, a variant of Nelson’s logic is introduced along the lines of
the connexive logic C of Heinrich Wansing, and some basic results including
soundness and completeness results are observed.

1 Introduction
In a recent paper [3], Nissim Francez introduces a system in which an unusual
(even from connexivists’ perspective!) formula ∼(A→B)↔(∼A→B) is derivable.
Francez’s idea behind this formula is to express disagreement about the necessity
of the succedent for the antecedent instead of the negated antecedent of a condi-
tional. Although I must confess that I’m not very convinced about the motivation
of Francez, the suggested formula itself is of great interest from a purely technical
perspective, especially in view of an understanding of connexive logics suggested by
Heinrich Wansing (see [6] for an application of Wansing’s idea to the basic relevant
logic BD). Based on these, the aim of this note is to examine the concerned formula
in the light of Nelson’s logic N4 (cf. [7, 4]) by introducing a variant of N4, and
compare this system with the connexive logic C introduced by Wansing in [8].
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2 Semantics and proof theory
The language L consists of a finite set {∼,∧,∨,→} of propositional connectives
and a countable set Prop of propositional variables which we denote by p, q, etc.
Furthermore, we denote by Form the set of formulas defined as usual in L. We
denote a formula of L by A, B, C, etc. and a set of formulas of L by Γ, ∆, Σ, etc.

2.1 Semantics
The following semantics is obtained by making a simple change to the standard
semantics for Nelson’s logic N4.

Definition 1. A model for the language L is a triple 〈W,≤, V 〉, where W is a
non-empty set (of states); ≤ is a partial order on W ; and V : W × Prop −→
{∅, {0}, {1}, {0, 1}} is an assignment of truth values to state-variable pairs with the
condition that i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for all p ∈ Prop, all
w1, w2 ∈ W and i ∈ {0, 1}. Valuations V are then extended to interpretations I to
state-formula pairs by the following conditions:

• I(w, p) = V (w, p),
• 1 ∈ I(w,∼A) iff 0 ∈ I(w, A),
• 0 ∈ I(w,∼A) iff 1 ∈ I(w, A),
• 1 ∈ I(w, A ∧B) iff 1 ∈ I(w, A) and 1 ∈ I(w, B),
• 0 ∈ I(w, A ∧B) iff 0 ∈ I(w, A) or 0 ∈ I(w, B),
• 1 ∈ I(w, A ∨B) iff 1 ∈ I(w, A) or 1 ∈ I(w, B),
• 0 ∈ I(w, A ∨B) iff 0 ∈ I(w, A) and 0 ∈ I(w, B),
• 1 ∈ I(w, A→B) iff for all x ∈W : if w ≤ x and 1 ∈ I(x, A) then 1 ∈ I(x, B),
• 0 ∈ I(w, A→B) iff for all x ∈W : if w ≤ x and 0 ∈ I(x, A) then 1 ∈ I(x, B).

Finally, the semantic consequence is now defined as follows: Σ |= A iff for all models
〈W,≤, I〉, and for all w∈W : 1∈I(w, A) if 1∈I(w, B) for all B∈Σ.

Remark 2. Note that Nelson’s logic N4 is obtained by replacing the falsity condi-
tion for implication by the following condition.

0 ∈ I(w, A→B) iff 1 ∈ I(w, A) and 0 ∈ I(w, B).

Moreover, Wansing’s connexive logic C is obtained by replacing the falsity condition
for implication by the following condition.

0 ∈ I(w, A→B) iff for all x ∈W : if w ≤ x and 1 ∈ I(x, A) then 0 ∈ I(x, B).
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2.2 Proof Theory
We now turn to the proof theory. Since Wansing’s connexive logic C is presented in
terms of a Hilbert-style calculus, we follow the same strategy.

Definition 3. The system N consists of the following axiom schemata and a rule
of inference where A↔B abbreviates (A→B) ∧ (B→A):

A→(B→A)(Ax1)
(A→(B→C))→((A→B)→(A→C))(Ax2)

(A ∧B)→A(Ax3)
(A ∧B)→B(Ax4)

(C→A)→((C→B)→(C→(A∧B)))(Ax5)
A→(A ∨B)(Ax6)
B→(A ∨B)(Ax7)

(A→C)→((B→C)→((A∨B)→C))(Ax8)

∼∼A↔A(Ax9)
∼(A ∧B)↔(∼A ∨ ∼B)(Ax10)
∼(A ∨B)↔(∼A ∧ ∼B)(Ax11)
∼(A→B)↔(∼A→B)(Ax12)

A A→B

B
(MP)

Finally, we write Γ ` A if there is a sequence of formulas B1, . . . , Bn, A, n ≥ 0, such
that every formula in the sequence B1, . . . , Bn, A either (i) belongs to Γ; (ii) is an
axiom of N ; (iii) is obtained by (MP) from formulas preceding it in sequence.

Remark 4. Note that if we replace (Ax12) by ‘∼(A→B)↔(A∧∼B)’, then we obtain
an axiomatization of Nelson’s logic N4. Moreover, compared to the system C of
Wansing, the only difference is again the axiom (Ax12). More specifically, (Ax12)
is replaced by ‘∼(A→B)↔(A→∼B)’.

Before turning to the soundness and completeness proofs, we note that the de-
duction theorem is provable.

Proposition 1. For any Γ ∪ {A, B} ⊆ Form, Γ, A ` B iff Γ ` A→B.

Proof. It can be proved in the usual manner in the presence of axioms (Ax1) and
(Ax2), given that (MP) is the sole rule of inference.

3 Soundness and completeness
As usual, the soundness part is rather straightforward.

Theorem 1 (Soundness). For Γ ∪ {A} ⊆ Form, if Γ ` A then Γ |= A.

Proof. By induction on the length of the proof.
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For the completeness proof, we first introduce some standard notions.

Definition 5. A set of formulas, Σ, is deductively closed iff if Σ ` A then A ∈ Σ.
And Σ is prime iff A ∨ B ∈ Σ implies A ∈ Σ or B ∈ Σ. Moreover, Σ is prime
deductively closed (pdc) if it is both. Finally, Σ is non-trivial if A 6∈ Σ for some A.

The following two lemmas are well-known, and thus the proofs are omitted. We
only note in passing that the deduction theorem is the key for the second lemma.

Lemma 1. If Σ 6` A then there is a non-trivial pdc, ∆, such that Σ ⊆ ∆ and ∆ 6` A.

Lemma 2. If Σ is pdc and A→B 6∈ Σ, there is a non-trivial pdc Θ such that Σ ⊆ Θ,
A ∈ Θ and B 6∈ Θ.

Now, we are ready to prove the completeness.

Theorem 2 (Completeness). For Γ ∪ {A} ⊆ Form, if Γ |= A then Γ ` A.

Proof. We prove the contrapositive. Suppose that Γ 6` A. Then by Lemma 1, there
is a Π ⊇ Γ such that Π is a pdc and A 6∈ Π. Define the model A = 〈X,≤, I〉, where
X = {∆ : ∆ is a non-trivial pdc}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus. For every
state, Σ and propositional parameter, p:

1 ∈ I(Σ, p) iff p ∈ Σ and 0 ∈ I(Σ, p) iff ∼p ∈ Σ

We show that this condition holds for any arbitrary formula, B:

(∗) 1 ∈ I(Σ, B) iff B ∈ Σ and 0 ∈ I(Σ, B) iff ∼B ∈ Σ

It then follows that A is a counter-model for the inference, and hence that Γ 6|= A.
The proof of (∗) is by a simultaneous induction on the complexity of B with respect
to the positive and the negative clause.
For negation: We begin with the positive clause.

1 ∈ I(Σ,∼C) iff 0 ∈ I(Σ, C)
iff ∼C ∈ Σ IH

The negative clause is also straightforward.

0 ∈ I(Σ,∼C) iff 1 ∈ I(Σ, C)
iff C ∈ Σ IH
iff ∼∼C ∈ Σ (Ax9)
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For disjunction: We begin with the positive clause.

1 ∈ I(Σ, C ∨D) iff 1 ∈ I(Σ, C) or 1 ∈ I(Σ, D)
iff C ∈ Σ or D ∈ Σ IH
iff C ∨D ∈ Σ Σ is a prime theory

The negative clause is also straightforward.

0 ∈ I(Σ, C ∨D) iff 0 ∈ I(Σ, C) and 0 ∈ I(Σ, D)
iff ∼C ∈ Σ and ∼D ∈ Σ IH
iff ∼C ∧ ∼D ∈ Σ Σ is a theory
iff ∼(C ∨D) ∈ Σ (Ax11)

For conjunction: Similar to the case for disjunction.
For implication: We begin with the positive clause.

1 ∈ I(Σ, C→D) iff for all ∆ s.t. Σ ⊆ ∆, if 1 ∈ I(∆, C) then 1 ∈ I(∆, D)
iff for all ∆ s.t. Σ ⊆ ∆, if C ∈ ∆ then D ∈ ∆ IH
iff C→D ∈ Σ (?)

For the last equivalence (?), assume C→D ∈ Σ and C ∈ ∆ for any ∆ such that
Σ ⊆ ∆. Then by Σ ⊆ ∆ and C→D ∈ Σ, we obtain C→D ∈ ∆. Therefore, we have
∆ ` C→D, so by (MP), we obtain ∆ ` D, i.e. D ∈ ∆, as desired. On the other
hand, suppose C→D 6∈ Σ. Then by Lemma 2, there is a Σ′ ⊇ Σ such that C ∈ Σ′,
D 6∈ Σ′ and Σ′ is a pdc. Furthermore, non-triviality of Σ′ is obvious by D 6∈ Σ′.

As for the negative clause, it is similar to the positive case.

0 ∈ I(Σ, C→D) iff for all ∆ s.t. Σ ⊆ ∆, if 0 ∈ I(∆, C) then 1 ∈ I(∆, D)
iff for all ∆ s.t. Σ ⊆ ∆, if ∼C ∈ ∆ then D ∈ ∆ IH
iff ∼C→D ∈ Σ (†)
iff ∼(C→D) ∈ Σ (Ax12)

For the equivalence (†), the proof runs exactly the same with the equivalence (?) in
the positive case. Thus, we obtain the desired result.

4 Basic observations
Let us now briefly examine the system N .
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Proposition 2. N is inconsistent. That is, both A→(A→A) and ∼(A→(A→A))
are provable in N .

Proof. Just note that the second formula is equivalent to ∼A→(A→A).

Remark 6. As noted by Wansing, C is also inconsistent at the level of propositional
logic. For example, both (A ∧ ∼A)→(A ∨ ∼A) and its negation are provable in C.

Proposition 3. The extension of N by A ∨ ∼A (LEM hereafter) is trivial.

Proof. If we have LEM, then we have ((A→(A→A))→B) ∨ ∼((A→(A→A))→B).
In view of (Ax12), we obtain ((A→(A→A))→B) ∨ (∼(A→(A→A))→B). Since
A→(A→A) and ∼(A→(A→A)) are both provable in N by the previous proposition,
we obtain B ∨B, and thus B. Therefore, the extension under concern is trivial.

Remark 7. Compare this with N4 and C. In the former case, the addition of LEM
results in a three-valued logic known as CLuNs (without bottom element) in the
literature (cf. [2] for a detailed study). In particular, the constructive implication
collapses into the classical material implication. In the latter case, we obtain an
intermediate logic with a connexive flavor, and this remains to be explored.

Proposition 4. The extension of N by Peirce’s law, i.e. ((A→B)→A)→A, is
sound and complete with respect to the semantics induced by the following matrix
with t and b as designated values.

A ∼A
t f
b b
n n
f t

A ∧B t b n f
t t b n f
b b b f f
n n f n f
f f f f f

A ∨B t b n f
t t t t t
b t b t b
n t t n n
f t b n f

A→B t b n f
t b b f f
b b b n n
n b b b b
f b b t t

Proof. Just consider the model with only one state.

Remark 8. Compare this again with N4 and C. In the former case, the addition of
Peirce’s law results in a four-valued logic, called HBe in [1], induced by the matrix
obtained by replacing the truth table for implication as follows:

A→B t b n f
t t b n f
b t b n f
n t t t t
f t t t t
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In the latter case, the addition of Peirce’s law results in a four-valued logic, called
material connexive logic in [9], induced by the matrix obtained by replacing the
truth table for implication as follows:

A→B t b n f
t t b n f
b t b n f
n b b b b
f b b b b

An expansion of the material connexive logic, obtained by adding the Boolean com-
plement, is introduced and examined in [5].

Proposition 5. Aristotle’s theses are provable in N , but Boethius’ theses are not.

Proof. For the Aristotle’s theses, Just note that ∼(A→∼A) and ∼(∼A→A) are
equivalent to ∼A→∼A and ∼∼A→A respectively. For the Boethius’ theses, for the
non-derivability of (A→B)→∼(A→∼B), just assign b and t to A and B respectively
in the above truth table, and for the non-derivability of (A→∼B)→∼(A→B), assign
b and f to A and B respectively in the above truth table.

Remark 9. If one takes Boethius’ theses to be indispensable for connexive logics,
then N is disqualified to be a connexive logic in view of the above proposition. In
other words, Boethius’ theses are independent of Aristotle’s theses in general. This
is the reason why I referred to the axiom (Ax12), due to Francez, as half-connexive
in the title of this note.
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