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Editorial Preface

Matthias Thimm
Universität Koblenz-Landau, Germany

thimm@uni-koblenz.de

Dov Gabbay
Department of Informatics, King’s College London,

Ashkelon Academic College, Israel,
Bar Ilan University, Ramat Gan, Israel
University of Luxembourg, Luxembourg.

dov.gabbay@kcl.ac.uk

Approaches to computational argumentation have gained much attention within
Artificial Intelligence. They deal with the interaction of arguments through attacks
and how acceptable conclusions can be drawn from conflicting sets of arguments.
These approaches provide an intuitive representation of many other non-monotonic
and commonsense reasoning techniques. Research in computational argumentation
is either based on the abstract approach, which focuses on the interaction of argu-
ments and treats arguments as atomic entities, or on the structured approach, where
arguments are composed of formulas of an underlying logic and the attack relation
derives from conflict properties of this logic.

Recently, the augmentation of computational models of argument with quanti-
tative forms of uncertainty has become an active endeavor within the community.
While classical computational argumentation approaches (both abstract and struc-
tured) provide a qualitative form of defeasible reasoning, adding quantitative uncer-
tainty (either in the form of probabilities, fuzzy values, or other weights) increases
the expressiveness of the formalisms and provides a more natural way of dealing
with uncertainty.

This special issue “Probabilistic and other Quantitative Approaches to Compu-
tational Argumentation” surveys the current state of the art on integrating quantita-
tive uncertainty in computational models of argumentation. It features three works
addressing different aspects from this new field at the intersection of qualitative and
quantitative reasoning

The paper “Computing or Estimating Extension’s Probabilities over Structured
Probabilistic Argumentation Frameworks” by Bettina Fazzinga, Sergio Flesca,
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Gabbay and Thimm

Francesco Parisi, and Adriana Pietramala deals with abstract argumentation frame-
works extended by a structured account to augment this framework with proba-
bilities. Algorithms for computing and approximating probabilities in this setting
are devised and empirically evaluated. A central result is that, despite its higher
computational complexity, the exact algorithm outperforms the approximate one in
certain cases.

In “Against Narrow Optimization and Short Horizons: An Argument-based,
Path Planning, and Multiattribute Model for Decision and Risk” Ronald P. Loui in-
troduces a conceptual model for representing arguments, augmented by probabilistic
information, for the analysis of decision and risk. Through several examples it is
shown that the use of this novel framework allows a deeper and more appropriate
representation of complex decision problems involving risk assessment. The paper
provides an in-depth discussion of the issues inherent to those scenarios and brings
up some thought-provoking directions for future works in this area.

Finally, the work “Introducing Bayesian Argumentation Networks” by Dov M.
Gabbay and Odinaldo Rodriguez presents a representation of Bayesian Networks in
argumentation frameworks extended with numerical values. This translation allows
for a formal comparison between these two formalisms and, besides others, provides
an interpretation of cyclic Bayesian Networks through argumentative terms.
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Abstract
Probabilistic argumentation combines Dung’s abstract argumentation framework

with probability theory in order to model uncertainty in argumentation. In this
setting, we address the fundamental problem of computing the probability that a
set of arguments is an extension according to a given semantics over structured
probabilistic argumentation frameworks. We focus on the most popular semantics
(i.e., admissible, stable, complete, grounded, and preferred), for which the problem
of computing extension’s probabilities over structured probabilistic argumentation
frameworks was shown to be FP#P -complete. Our aim is that of experimentally
establishing when, due to the complexity of the problem and the size of the structured
probabilistic argumentation framework, estimating the extension’s probabilities is
preferable to computing it (as computing the probability cannot be done in reasonable
time). To do this, we devise two algorithms: the naive one, which computes the
extension’s probabilities, and the Monte-Carlo simulation one, which estimates the
extension’s probabilities, and evaluate both algorithms over two datasets to compare
their efficiency.

Keywords: Probabilistic Argumentation Framework, Abstract Argumentation, Exten-
sion, Semantics, Monte-Carlo Simulation
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FAZZINGA ET AL.

1 Introduction

Argumentation allows disputes to be modeled, which arise between two or more parties,
each of them providing arguments to assert their reasons. Although argumentation is
strongly related to philosophy and law, it has gained remarkable interest in AI as a rea-
soning model for representing dialogues, making decisions, and handling inconsistency and
uncertainty [9, 10, 39]. In this context, the abstract argumentation framework (AAF) [13]
has been proposed, which is a powerful but simple way for modeling disputes. An AAF
is a pair 〈A,D〉 consisting of a set A of arguments, and of a binary relation D over A,
called defeat (or, equivalently, attack) relation. Basically, an argument is an abstract entity
that may attack and/or be attacked by other arguments. Several semantics for AAFs, such as
admissible, stable, preferred, and others, have been proposed [13, 14, 7] to identify “reason-
able” sets of arguments, called extensions. Basically, each of these semantics corresponds
to some properties which “certify” whether a set of arguments can be profitably used to
support a point of view in a discussion. For instance, a set S of arguments is an extension
according to the admissible semantics if it has two properties: it is conflict-free (that is,
there is no defeat between arguments in S), and every argument (outside S) attacking an
argument in S is counterattacked by an argument in S. Intuitively enough, the fact that a set
is an extension according to the admissible semantics means that, using the arguments in S,
you do not contradict yourself, and you can rebut to anyone who uses any of the arguments
outside S to contradict yours. The complexity of the problem of verifying whether a given
set of arguments is an extension according to a semantics was addressed in [19, 17, 20].

Example 1. Consider the following scenario (inspired by an example in [27]), where the
arguments are:

a: Prescribe John diuretics since John has hypertension,

b: Prescribe John beta blockers since John has hypertension,

c: John has emphysema.

Herein, since taking both diuretics and beta blockers at the same time is generally not
recommended, argument a may attack argument b, and vice versa. Moreover, argument c
may attack b since it is generally not recommended that people affected by emphysema take
beta blockers. This scenario can be modeled by a AAF consisting of the three arguments
reported above and the defeats δ1 = (a, b), δ2 = (b, a) and δ3 = (c, b).

It is easy to see that set S = {a, c} is conflict-free and is an admissible extension, since
the attack from b to a is counterattacked from both a and c. 2

As a matter of fact, in the real world, arguments and defeats are often uncertain,
thus, several proposals have been made to model uncertainty in AAFs, by considering
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COMPUTING/ESTIMATING EXTENSIONS’ PROBABILITIES OVER STRUCTURED PRAFS

weights, preferences, or probabilities associated with arguments and/or defeats. In this
regard, [15, 30, 41, 40] have recently extended the original Dung framework in order to
achieve probabilistic abstract argumentation frameworks (PrAFs), where uncertainty of ar-
guments and defeats is modeled by exploiting probability theory. In particular, [30] pro-
posed a PrAF where both arguments and defeats are associated with probability values
and, in particular, they represent independent probabilistic events. Moreover, in [23] the
complexity of the fundamental problem of computing the probability of extensions in this
framework has been characterized.

However, in some cases it is not possible to assume that arguments are associated to
probabilistic events independent from one another. For instance, this happens in the sce-
nario described above, where arguments and defeats do not correspond to independent prob-
abilistic events, as in the PrAF model defined in [30]. For instance, the probabilistic event
associated with defeat δ1 = (a, b) is the same as that associated with δ2 = (b, a), meaning
that δ1 occurs iff δ2 occurs (i.e., they are strongly correlated).

In order to deal with a scenario like that described in Example 1, arguments and de-
feats must be considered as correlated probabilistic events, as done in several approaches
defined in the literature. In particular, in the approach defined in [41], instead of specifying
arguments’ and defeats’ probabilities, users directly specify the unique probability distribu-
tion over the set of possible worlds, where a possible world is a set of probabilistic events
corresponding to arguments and defeats. However, in this case, users may be required to
specify a huge number of probability values (one for each possible world), as the number
of possible worlds is exponential w.r.t. the number of arguments and defeats. Moreover,
it can be the case that users are not aware of the probability value that should be assigned
to a possible world, as it generally represents a complex scenario. Indeed, assigning prob-
abilities to possible worlds is generally recognized to be so hard that in [27] it is shown
that assigning probabilities to arguments and defeats is more intuitive and it is feasible in
real-life scenarios.

Example 2. Consider the AAF defined in Example 1. A corresponding PrAF will be char-
acterized by the possible worlds 1 reported in Table 1. It is easy to see that devising the
probability of each of the above-mentioned possible world is a hard task. Indeed, each pos-
sible world describes a complex scenario whose probability of occurrence is not easy to be
estimated neither by an human expert nor by exploiting statistics. 2

An alternative way of representing the probability of each possible world is that of
considering a set of independent probabilistic events (basic events) and characterize the
occurrence of each argument and defeat as a complex probabilistic event specified by means

1Observe that combinations of arguments and defeats mentioning a defeat but not mentioning its arguments
are not considered as they do not correspond to any realistic scenario.
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FAZZINGA ET AL.

PW-Name Arguments Defeats PW-Name Arguments Defeats
pw0 ∅ ∅ pw10 a, c ∅
pw1 a ∅ pw11 a, b, c (a, b)(b, a), (c, b)
pw2 b ∅ pw12 a, b, c (a, b), (b, a)
pw3 c ∅ pw13 a, b, c (a, b), (c, b)
pw4 a, b (a, b), (b, a) pw14 a, b, c (b, a), (c, b)
pw5 a, b (a, b) pw15 a, b, c (a, b)
pw6 a, b (b, a) pw16 a, b, c (b, a)
pw7 a, b ∅ pw17 a, b, c (c, b)
pw8 b, c (c, b) pw18 a, b, c ∅
pw9 b, c ∅

Table 1: Possible worlds for any PrAF corresponding to the AAF of Example 1.

of an independence choice logic [37] formula on basic events as done in the structured
probabilistic argumentation frameworks proposed in [23]. For instance, the occurrence
of argument a of Example 1 can be written as the conjunction of the probabilistic events
“John is affected by hypertension” and “Diuretics should be prescribed to people affected
by hypertension”, which clearly are independent from one another and whose marginal
probability are sufficiently easy to be estimated.

Unfortunately, as proved in [23] the problem of computing the probability of exten-
sions over structured probabilistic argumentation frameworks is FP#P -complete. Due to
the complexity of the problem, it would seem that estimating the probability of extensions
is the best thing to do, since computing it would require too much time. In this paper, we
address the problem of computing/estimating the probability of extensions over structured
probabilistic argumentation frameworks by devising a naive evaluation framework for com-
puting the probability of extensions and a Monte-Carlo simulation algorithm for estimating
it. We experimentally evaluate both the naive algorithm and the Monte-Carlo simulation
one over two datasets, in order to establish whether some cases exist in which the naive
algorithm can be profitably used instead of the Monte-Carlo one, and to identify cases in
which the Monte-Carlo estimation algorithm represents the best choice.

Plan of the paper

In Section 2, we give an overview of Dung’s abstract argumentation framework, and we
define our structured probabilistic argumentation framework in Section 3. In Section 4,
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we define the naive algorithm for computing the probability of extensions and the Monte-
Carlo simulation one for estimating it, and, in Section 5, we experimentally evaluate both
algorithms. Finally, in Section 6 we discuss the related work and in Section 7 we draw
conclusions.

2 Abstract Argumentation

In this section, we briefly overview Dung’s abstract argumentation framework. An abstract
argumentation framework [13] (AAF) is a pair 〈A,D〉, where A is a set whose elements are
referred to as arguments, and D ⊆ A × A is a binary relation over A whose elements are
referred to as defeats (or attacks). An argument is an abstract entity whose role is entirely
determined by its relationships with other arguments. Given an AAF A, we also refer to
the set of its arguments and the set of its defeats as Arg(A) and Def (A), respectively. In
the following we assume that Arg(A) is finite, though Dung’s original formulation did not
require a finite set of arguments. We assume that a (finite) argumentation framework 〈A,D〉
is given and then it is the object of discourse, unless stated otherwise.

Given arguments a, b ∈ A, we say that a defeats b iff there is (a, b) ∈ D. Similarly, a
set S ⊆ A defeats an argument b ∈ A iff there is a ∈ S such that a defeats b.

A set S ⊆ A of arguments is said to be conflict-free if there are no a, b ∈ S such that
a defeats b. An argument a is said to be acceptable w.r.t. S ⊆ A iff ∀b ∈ A such that b
defeats a, there is c ∈ S such that c defeats b.

Several semantics for AAFs have been proposed to identify “reasonable” sets of ar-
guments, called extensions. We consider the following well-known semantics: admissible
(ad), stable (st), complete (co), grounded (gr), preferred (pr) [13].
A set S ⊆ A is said to be

• an admissible extension iff S is conflict-free and all its arguments are acceptable w.r.t.
S;

• a stable extension iff S is conflict-free and S defeats each argument in A \ S;

• a complete extension iff S is admissible and S contains all the arguments that are
acceptable w.r.t. S;

• a grounded extension iff S is a minimal (w.r.t. ⊆) complete set of arguments;

• a preferred extension iff S is a maximal (w.r.t. ⊆) complete set of arguments.

All the above-mentioned semantics, except the stable semantics, admit at least one ex-
tension, and the grounded admits exactly one extension [13, 14, 11, 43].
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Example 3. Consider the AAF 〈A, D〉, where the set A of arguments is {a, b, c}, and the set
D of defeats is {δ1 = (c, a), δ2 = (c, b)}. As S = {c} is conflict-free and c is acceptable
w.r.t. S, it is the case that S is admissible. It is easy to see that ∅ is an admissible extension,
whereas the sets S′ = {a} and S′′ = {b} are not admissible since S′ (resp., S′′) does not
counterattack the attack from c to a (resp., b). Since S = {c} is conflict-free and defeats
both a and b, it is stable, complete, grounded, and preferred. 2

Example 4. Consider an AAF 〈A, D〉, where A = {a, b, c, d} and D =
{(a, b), (b, c), (c, d), (d, a)}. The admissible sets are: ∅, {a, c}, and {b, d}. The empty
set is a complete extension since no argument is acceptable in it, and both sets {a, c} and
{b, d} are complete, preferred, and stable. The empty set is the grounded extension. 2

Given an AAF A, a set S ⊆ Arg(A) of arguments, and a semantics sem ∈ {ad,
st, co, gr, pr }, we define function ext(A, sem, S) which returns true if S is an ex-
tension of A according to sem, false otherwise. For instance, for the AAF A in Exam-
ple 4, ext(A,ad, {a, c}) returns true since {a, c} is an admissible set of arguments, whereas
textitext(A,ad, {a}) returns false.

3 Structured Probabilistic Argumentation Frameworks

Structured argumentation allows us to express correlations among events associated with
arguments and defeats. Differently from other probabilistic abstract argumentation ap-
proaches, such as that proposed in [41], where expressing correlations between events asso-
ciated to arguments and defeats requires specifying a probabilistic density function (PDF)
at the level of possible worlds, our structured probabilistic argumentation framework pro-
posal aims at implicitly specifying (in a compact way) those PDFs by exploiting the notions
of basic and complex probabilistic events. As show in the following two examples, it is
often possible to model events associated to arguments and defeats as complex probabilistic
events which can be derived from basic probabilistic events that are independent from one
another.

Example 5. Continuing Example 1, we can express the probabilistic events associated with
the arguments (reported again below for the sake of readability)

a: Prescribe John diuretics since John has hypertension,

b: Prescribe John beta blockers since John has hypertension,

c: John has emphysema,

and the defeats δ1 = (a, b), δ2 = (b, a) and δ3 = (c, b), by introducing complex events
based on the following basic events:
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e1: John is affected by hypertension,

e2: Beta blockers should be prescribed to people affected by hypertension,

e3: Diuretics should be prescribed to people affected by hypertension,

e4: John is affected by emphysema,

e5: It is not recommended that people affected by emphysema take beta blockers,

e6: It is not recommended to use both diuretics and beta blockers at the same time. 2

Given a set of basic independent events, we define complex events as follows.

Definition 1 (Complex events associated with arguments and defeats). Let E be a set of
basic probabilistic events. For each argument a, the complex event xa associated with a is
of the form xa = φ, where φ is a propositional formula over the basic events in E . For each
defeat δ = (a, b), the complex event xδ associated with δ is of the form xδ = ψ ∧ xa ∧ xb,
where ψ is a propositional formula over the basic events in E , and xa and xb are the complex
events associated with the arguments a and b of δ, respectively.

Intuitively, the fact that a complex event xδ associated with a defeat δ = (a, b) includes
the conjunction of the complex events xa and xb means that the occurrence of the event xδ is
conditioned to the occurrence of both xa and xb. Note that every complex event associated
with a defeat can be written by making explicit the complex events associated with the
arguments involved in the defeat, that is, if xδ = ψ ∧ xa ∧ xb, xa = φ and xb = φ′, we can
write xδ = ψ ∧ φ ∧ φ′.

Example 6. Using the basic events introduced in Example 5, it is easy to see that the
definitions of the complex events associated with arguments a, b and c and with the defeats
δ1, δ2 and δ3 of Example 1 are as follows:

• xa = e1 ∧ e3

• xb = e1 ∧ e2

• xc = e4

• xδ1 = e6 ∧ xa ∧ xb = e6 ∧ e1 ∧ e3 ∧ e2

• xδ2 = e6 ∧ xb ∧ xa = e6 ∧ e1 ∧ e2 ∧ e3

• xδ3 = e5 ∧ xc ∧ xb = e5 ∧ e4 ∧ e1 ∧ e2 2
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Thus the approach followed in our structured probabilistic argumentation framework
is that of considering arguments and defeats associated with complex events that are in
general not independent from one another. For instance, in the example above, xa and
xb are correlated by the basic event e1. However, every complex event is expressed as a
propositional formula over basic independent events.

We now formally introduce the structured probabilistic argumentation framework and
its semantics.

Definition 2 (SF). A structured probabilistic argumentation framework is a tuple SF =
〈A,D, E , R, PE〉 where

• 〈A,D〉 is an AAF,

• E is a set of basic independent probabilistic events,

• R is a set consisting of one complex probabilistic event for each argument in A and
defeat in D, and

• PE is a function assigning a probability value to each basic probabilistic event in E .

Example 7. In examples 1, 5 and 6, we gradually introduced the structured probabilistic
argumentation framework SF = 〈A,D, E , R, PE〉 where

• A = {a, b, c} and D = {δ1 = (a, b), δ2 = (b, a), δ3 = (c, b)} are the sets of
arguments and defeats introduced in Example 1,

• E is the set of basic events of Example 5,

• R is the set of complex events of Example 6, and

• PE is any probability values assignment for the basic probabilistic events in E .

To assign probabilities to basic events, we consider the confidence of the doctors in their
own diagnoses and statistics about medical trials involving hypertensive patients and pa-
tients diagnosed with emphysema. In particular, assuming that doctors are 70% (resp.,
30%) sure that John is hypertensive, we assign PE(e1) = 0.7 (resp., PE(e4) = 0.3). Fur-
thermore, let’s assume that medical trials statistics report that (i) the percentage of hyper-
tensive patients which showed a significant health improvement after being treated with
beta blockers (resp. diuretics) is the 90% (resp., 90%), (ii) that the percentage of patients
diagnosed with emphysema which suffered some serious collateral effect after taking beta
blockers is the 80%, and (iii) that the percentage of patients exhibiting some serious col-
lateral effect after taking both beta blockers and diuretics is the 80%. Thus, we have that
PE(e2) = 0.9, PE(e3) = 0.9, PE(e5) = 0.8, and PE(e6) = 0.8. 2
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It is worth noting that in Example 7 we needed to provide only 6 probability values (one
for each basic event), while the number of probability values to be specified in Example 2
is 19 (one for each each possible scenario). Furthermore, the probability values given in
Example 7 regard basic events, and are easier to be devised w.r.t. those to be attached at the
complex scenarios represented by the possible worlds of Example 2.

The meaning of SF = 〈A,D, E , R, PE〉 is given in terms of its possible worlds, each of
them representing a scenario that may occur in reality. Specifically, a possible world for SF
is an AAF obtained using a subset of the arguments and defeats in A and D, respectively,
and such that there is a subset of the basic events in E for which all and only the complex
events associated with the arguments and defeats in the world hold.

Definition 3 (Possible world for structured probabilistic argumentation framework). Given
SF = 〈A,D, E , R, PE〉, a possible world for SF is an AAF 〈A′, D′〉 such that

(i) A′ ⊆ A and D′ ⊆ D ∩ (A′ ×A′), and

(ii) there is E ⊆ E such that

A) all and only the arguments a ∈ A′ are such that the complex events xa evaluate
to true w.r.t. E, and

B) all and only the defeats δ ∈ D′ are such that the complex events xδ evaluate to
true w.r.t. E.

In the following, we say that E ⊆ E supports world w = 〈A′, D′〉, denoted as E |= w,
iff Conditions (i) and (ii) of Definition 3 hold.

The set of the possible worlds of SF will be denoted as pw(SF).

Example 8. Consider the structured probabilistic argumentation framework SF of Exam-
ple 7. It is easy to see that the AAF w1 = 〈{a, b}, {δ1, δ2}〉 is a possible world for SF as
Condition (i) trivially holds and Condition (ii) holds too, as there existsE = {e1, e2, e3, e6}
such that all and only the arguments and defeats in w1 corresponds to events evaluating
true w.r.t. E. Differently from the case of w1, the AAF w2 = 〈{a, b}, {δ1}〉 is not a possible
world for SF as it is easy to see that for each E ⊆ E such that xδ1 evaluates to true w.r.t.
E, it is the case that xδ2 evaluates to true w.r.t. E as well. Thus, w2 is not a possible world
for SF as it contains only xδ1 . 2

Example 9. The possible worlds of SF of Example 7 are reported in Table 2, where the
right-most column shows a set of basic events supporting the world reported on the same
row. It is worth noting that a given world can be supported by different sets of basic events.
For instance, it can be easily checked that w1 is also supported by {e1, e4} and {e4, e5}. 2
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Possible world w Arguments Defeats A set E ⊆ Esupporting w
w0 ∅ ∅ ∅
w1 c ∅ e4
w2 a ∅ e1, e3
w3 a, c ∅ e1, e3, e4
w4 b ∅ e1, e2
w5 b, c ∅ e1, e2, e4
w6 b, c δ3 e1, e2, e4, e5
w7 a, b ∅ e1, e2, e3
w8 a, b δ1, δ2 e1, e2, e3, e6
w9 a, b, c ∅ e1, e2, e3, e4
w10 a, b, c δ1, δ2 e1, e2, e3, e4, e6
w11 a, b, c δ3 e1, e2, e3, e4, e5
w12 a, b, c δ1, δ2, δ3 e1, e2, e3, e4, e5, e6

Table 2: Possible worlds for the structured probabilistic argumentation framework of Ex-
ample 7.

An interpretation π for SF is a probability distribution over the set pw(SF) of the
possible worlds, which is defined starting from the probability of basic events as follows.

As basic events are pairwise independent, the probability of a set E ⊆ E of basic events
is as follows.

Pr(E) =
∏

e∈E
PE(e) ·

∏

e∈E\E
(1− PE(e)). (1)

That is, Pr(E) is given by the product of the probabilities of the events belonging to E
and the one’s complements of the probabilities of the events that are in E but not in E. For
instance, using the probability values of Example 7, Pr({e1, e3}) = PE(e1) ·PE(e3) · (1−
PE(e2)) ·(1−PE(e4)) ·(1−PE(e5)) ·(1−PE(e6)) = 0.7 ·0.9 ·0.1 ·0.7 ·0.2 ·0.2 = 0.001764.

Every possible world w = 〈A′, D′〉 of SF is associated with probability π(w) resulting
from the sum of the probabilities Pr(E) of the sets E ⊆ E supporting w, that is,

π(w) =
∑

E⊆E∧E|=w
Pr(E).

Example 10. Consider the possible world w8 = 〈A′, D′〉 = 〈{a, b}, {δ1, δ2} shown in
Table 2. As shown in Example 8, w8 is supported by the set of events E1 = {e1, e2, e3, e6}.
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It is easy to check that the only other set of events supportingw8 isE2 = {e1, e2, e3, e5, e6}.
Thus,

π(w8) = Pr(E1) + Pr(E2) = 0.31752

where Pr(E1) = PE(e1) · PE(e2) · PE(e3) · (1 − PE(e4)) · (1 − PE(e5)) · PE(e6) =
0.7 · 0.9 · 0.9 · 0.7 · 0.2 · 0.8 = 0.063504, and
Pr(E2) = PE(e1) · PE(e2) · PE(e3) · (1− PE(e4)) · PE(e5) · PE(e6) = 0.7 · 0.9 · 0.9 · 0.7 ·
0.8 · 0.8 = 0.254016. 2

The probability PrsemSF (S) that a set S of arguments is an extension according to a
given semantics sem is defined as the sum of the probabilities π(w) of the possible worlds
w where S is an extension according to sem, that is, the sum of the probabilities of the
possible worlds w for which it holds that ext(w, sem, S) = true 2.

Definition 4 (PrsemSF (S)). Given a structured probabilistic argumentation framework
SF = 〈A,D, E , R, PE〉, a set S ⊆ A of arguments, and a semantics sem, the probabil-
ity PrsemSF (S) that S is an extension according to sem is as follows

PrsemSF (S) =
∑

w ∈ pw(SF)
∧ext(w, sem, S)

π(w) =
∑

w ∈ pw(SF)
∧ext(w, sem, S)
∧E ⊆ E ∧ E |= w

Pr(E).

Example 11. To compute the probability PrprSF ({b}) that the set {b} is a preferred exten-
sion, we first identify the possible worlds w of Table 2 such that {b} is a preferred extension
in w (that is, such that ext(w,pr, {b})=true). It is easy to check that these worlds are
w4 and w8. For any other world in Table 2, function ext(w,pr, {b})=false. Indeed, for
worlds w0, w1, w2, w3, ext(w,pr, {b}) evaluates to false since these worlds do not contain
argument b; for worldsw6, w11, w12, ext(w,pr, {b})=false since these worlds contains the
defeat δ3 = (c, b); finally, for worlds w5, w7, w9, ext(w,pr, {b})=false since the set {b}
is not a maximal complete extension (argument a or c, or both, are acceptable w.r.t. {b}).
Therefore,

PrprSF ({b}) = π(w4) + π(w8),

where π(w8) is as shown in Example 10 and π(w4) is the sum of the probability of the sets of
events supporting w4, that is Pr(E1)+Pr(E2)+Pr(E3)+Pr(E4), whereE1 = {e1, e2},
E2 = {e1, e2, e5}, E3 = {e1, e2, e6}, and E4 = {e1, e2, e5, e6}. 2

We report below a result concerning the computational complexity of computing
PrsemSF ({b}). Let PROBsemSF (S) denote the problem of computing the probability PrsemSF (S).
It was shown in [23] that, for several popular semantics, PROBsemSF (S) is complete for the

2If S 6⊆ Arg(w) then ext(w, sem, S)=false for every semantics sem.
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complexity class FP#P , that is, the class of functions computable by a polynomial-time
Turing machine with a #P oracle, where #P is the complexity class of the functions f
such that f counts the number of accepting paths of a nondeterministic polynomial-time
Turing machine [42].

Fact 1. PROBsemSF (S), where sem ∈{ad, st, co, gr, pr, }, is FP#P -complete 3.

In the next section, we address the problem of computing or estimating the probability
PrsemSF (S) that a set of argument S is an extension of a structured probabilistic argumenta-
tion framework according to semantics sem ∈{ad, st, co, gr, pr}.

4 Computing or Estimating Extensions’ Probabilities

In this section we present a naive evaluation framework for computing PrsemSF (S) and a
Monte-Carlo simulation algorithm for estimating PrsemSF (S).

4.1 Computing PrsemSF (S)
We now introduce the exhaustive approach for computing PrsemSF (S).

Algorithm 1. Computing PrsemSF (S)
Input: SF = 〈A,D, E , R, PE〉; S ⊆ A; sem;
Output: PrsemSF (S)
1: PrS = 0;
2: SE = computeSubsets(E);
3: for each E ∈ SE
4: PrE = 1;
5: for each e ∈ E
6: PrE = PrE · PE(e);
7: for each e ∈ E \ E
8: PrE = PrE · (1− PE(e));
9: Arg = ∅,Def = ∅;
10: for each a ∈ A such that xa = φ ∈ R
11: if (φ evaluates to true w.r.t E)
12: Arg = Arg ∪ {a};
13: for each δ = (a, b) ∈ D such that a, b ∈ Arg and xδ = ψ ∧ xa ∧ xb ∈ R
14: if (ψ evaluates to true w.r.t E)

3In [23], the F P #P -completeness of PROBsemSF (S) was also shown for the ideal [14], semi-stable [11],
and stage [43] semantics.
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15: Def = Def ∪ {δ};
16: if ext(〈Arg,Def 〉, sem, S)
17: PrS = PrS + PrE;
18: return PrS

In brief, given a structured probabilistic argumentation framework SF =
〈A,D, E , R, PE〉, a set S, and a semantic sem, Algorithm 1 computes PrsemSF (S) by (i)
generating all the sets E of basic events obtainable from E , (ii) building all the possible
worlds of SF from the sets E, and (iii) summing the probabilities of the possible worlds in
which S is an extension according to sem. In more detail, at line 2, Algorithm 1 builds all
the subsets of E by calling function computeSubsets. Next, for each subset E, Algorithm 1
computes the probability of E as defined in Equation 1 (lines 4−8), and builds the possible
world 〈Arg,Def 〉 supporting E (lines 9− 15). Specifically, the possible world 〈Arg,Def 〉
is built by adding to Arg all the arguments a ∈ A such that the propositional formula of
its corresponding event xa is true w.r.t. E, and all the defeats (a, b) such that both a and b
belong to Arg and the propositional formula of the corresponding event xδ is true w.r.t. E.
At line 16, function ext is called to verify whether S is an extension according to sem in
〈Arg,Def 〉: if ext evaluates to true, variable PrS is incremented by the probability of E,
according to Definition 4. At the end of the outermost loop, the value of PrS is returned as
output.

4.2 Estimating PrsemSF (S)
We now introduce the Monte-Carlo approach for estimating PrsemSF (S).

Algorithm 2. Estimating PrsemSF (S)
Input: SF = 〈A,D, E , R, PE〉; S ⊆ A; sem; An error level ε; A confidence level 1− α
Output: P̂ r

sem

SF (S) s.t. PrsemSF (S) ∈ [P̂ rsemSF (S)− ε, P̂ rsemSF (S)+ ε] with confidence 1−α
1: x = n = 0;
2: do
3: E = ∅, Arg = ∅, Def = ∅;
4: for each e ∈ E
5: generate a number r in [0, 1);
6: if (r ≤ PE(e))
7: E = E ∪ {e};
8: for each a ∈ A such that xa = φ ∈ R
9: if (φ evaluates to true w.r.t E)
10: Arg = Arg ∪ {a};
11: for each δ = (a, b) ∈ D such that a, b ∈ Arg and xδ = ψ ∧ xa ∧ xb ∈ R
12: if (ψ evaluates to true w.r.t E)
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13: Def = Def ∪ {δ};
14: if ext(〈Arg,Def 〉, sem, S)
15: x=x+1;

16: n=n+1; p =
x+z2

1−α/2/2
n+z2

1−α/2
; n′ =

z2
1−α/2·p·(1−p)

ε2 − z2
1−α/2

17: while n ≤ n′
18: return x/n

Given a structured probabilistic argumentation framework SF = 〈A,D, E , R, PE〉, a
set S, a semantic sem, a confidence level 1 − α, and an error level ε, the Monte-Carlo
estimation algorithm consists of (i) generating a number n of sets E ⊆ E of basic indepen-
dent probabilistic events, each of them corresponding to a possible world w, (ii) checking
if S is extension according to sem in the generated w, (iii) returning as output the num-
ber x/n, where x is the number of possible worlds wherein S is an extension according
to sem. Specifically, given a structured probabilistic argumentation framework SF , a set
S, a semantic sem, an error level ε, and a confidence level 1 − α, the algorithm returns an
estimate P̂ r

sem

SF (S) of PrsemSF (S) such that PrsemSF (S) lies in the interval P̂ r
sem

SF (S)±ε with
a confidence level 1− α. The number n of sets of basic independent probabilistic events to
be sampled to achieve the required error level ε with confidence level 1 − α is determined
by exploiting the Agresti-Coull interval [1]. In particular, according to [1], the estimated

value p of PrsemSF (S) after x successes in n samples is p =
x+(z2

1−α/2)/2
n+z2

1−α/2
, where z1−α/2 is

the 1 − α/2 quantile of the normal distribution, and the number of samples ensuring that

the error level is ε with confidence level 1− α is n =
z2

1−α/2·p·(1−p)
ε2 − z2

1−α/2.
Each iteration of Algorithm 2 consists of the following steps. First, Algorithm 2 gen-

erates a set E of basic probabilistic events (lines 4-7), by adding to E each basic event
(belonging to E) whose probability is greater than or equal to a randomly generated num-
ber. Next, Algorithm 2 builds the possible world w = 〈Arg,Def 〉 such that E supports w
(lines 8-13) as follows. First, all the arguments of A whose propositional formula evaluates
to true w.r.t. E are added to Arg, and, next, all the defeats (a, b) such that both a and b
belong to Arg and whose propositional formula evaluates to true w.r.t. E are added to Def .
After generating a possible world w, Algorithm 2 checks if S is an extension according to
sem in w, and, if this is the case, it increments x’s value. After that, it computes the number
n′ of samples to be generated according to the Agresti-Coull interval. Finally, Algorithm 2
returns x/n as output. As stated below, Algorithm 2 is sound.

Proposition 1. Let SF = 〈A,D, E , R, PE〉, and S ⊆ A. Let ε be an error level, and
1 − α a confidence level. The estimate P̂ r

sem

SF (S) returned by Algorithm 2 is such that
PrsemSF (S) ∈ [P̂ rsemSF (S)−ε, P̂ rsemSF (S)+ε] with confidence level 1− α.
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The proof easily follows from the definition of the Agresti-Coull interval, which is ap-
plicable to our case since the underlying distribution is binomial: in fact, the probability of
success for a set (i.e., the probability that S is an extension according to sem in the possible
world corresponding to the generated set of basic probabilistic events) does not influence
the probability of success for the other sets picked by the sampler.

5 Experiments

The experimental study described in this section is aimed at assessing the efficiency of the
naive approach compared to the Monte-Carlo simulation algorithm. All the experiments
were run on an Intel(R) Core(TM) i5 CPU M520, 2.40GHz. We experimentally evaluate
both the naive and the Monte-Carlo algorithm, in order to establish whether some cases
exist in which the naive algorithm can be profitably used instead of the Monte-Carlo one,
and to identify other cases in which the Monte-Carlo estimation algorithm represents the
best choice.

5.1 Data sets

In our experimental studies we consider the two different datasets standard (named
DS1) and borderline (named DS2): the former contains input instances (of the form
〈SF , S, sem〉) for which PrsemSF (S) is different from 0 and 1, while the latter consists of in-
put instances for which PrsemSF (S) is equal to 0 or 1. Splitting the input instances into these
two datasets allows us to perform a fair comparison between Algorithm 1 and Algorithm 2,
as the latter is likely to run very fast over input instances for which PrsemSF (S) is very close
to 0 or 1, due to the intrinsic features of the Monte-Carlo approach. Hence, DS2 can be
seen as an easy test case for Algorithm 2.

Each data set consists of three subsets of structured probabilistic argumentation frame-
works which differ in the number of arguments. Specifically, the first subset contains the
frameworks consisting of 5 arguments, the second those consisting of 10 arguments and the
third those having 15 arguments. Each subset was obtained by varying the number of basic
events over the set {15, 20, 25, 30, 35, 40, 45} and by generating 10 frameworks for each
element in the set. Therefore each subset contains 70 frameworks, which means that both
DS1 and DS2 contain 210 frameworks.

5.2 Results and discussion

In this section, we evaluate the efficiency of Algorithm 1, which computes PrsemSF (S), and
Algorithm 2, which estimates PrsemSF (S), with sem ∈ {ad,co,gr,pr,st}. All the runs
of the Monte-Carlo simulation algorithm were done by setting the confidence level to 95%

191



FAZZINGA ET AL.

(a) (b)

Figure 1: Execution time vs. semantics over DS1 (a) and DS2 (b)

(a) (b)

Figure 2: Execution time vs. number of arguments over DS1 (a) and DS2 (b)

and the error level to 0.05%. Figure 1 reports both the estimation and computation times
versus the different semantics over DS1 (a) and DS2 (b), Figure 2 reports both the esti-
mation and computation times versus the number of arguments over DS1 (a) and DS2 (b),
and Figure 3 reports both the estimation and computation times versus the number of basic
events over DS1 (a) and DS2 (b). Note that y axes are in log scale.

From the experimental evaluation, it turns out that the execution times of both comput-
ing and estimating PrsemSF (S) do not depend on the semantics and the number of arguments.
Moreover, it turns out that the time required by Algorithm 1 grows exponentially with the
number of basic events, while the time required by Algorithm 2 is independent from the
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(a) (b)

Figure 3: Execution time vs. number of basic events over DS1 (a) and DS2 (b)

number of basic events. Finally, not surprisingly, it turns out that the estimating PrsemSF (S)
is faster on DS2 than on DS1.

Overall, we can draw the conclusion that computing PrsemSF (S) is efficient enough when
the number of basic events is less than or equal to 20, while in the case that the number of
basic events is larger (greater than 25) it is practically unfeasible, as on average its running
time is of more than one hour and a half. Hence, Algorithm 1 should be used in the case that
the number of basic events is less than or equal to 20, as in this case computing probabilities
is easier than estimating them, and conversely Algorithm 2 should be used in the other cases.

6 Related work

Recently, approaches for handling uncertainty in AAFs by relying on probability theory
have been proposed in [15, 30, 40, 41]. Specifically, with the aim of modeling jury-
based dispute resolutions, [15] proposed a probabilistic abstract argumentation framework
(PrAF) where uncertainty is taken into account by specifying probability distribution func-
tions (PDFs) over possible worlds and it shown how an instance of the proposed PrAF can
be obtained by specifying a probabilistic assumption-based argumentation framework (in-
troduced by themselves). Differently from the previous approach, [30] proposed a PrAF
where probabilities are directly associated with arguments and defeats, instead of being as-
sociated with possible worlds. [30] claimed that computing the probability Pr(S) that a
set S of arguments belongs to an extension requires exponential time for every semantics,
and then proposed a Monte-Carlo simulation approach to approximate Pr(S). However,
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in [22, 23] it was shown that the usage of approximation is more appropriate for those se-
mantics sem for which PROBsemF (S) is hard, while for the tractable semantics (admissible
and stable) the exact solution of PROBsemF (S) can be found in polynomial-time. Recently,
in [21] it was devised an optimized Monte-Carlo simulation approach which is able to es-
timate Prsem(S), with sem∈{co,gr,pr}, using much fewer samples than the original
approach proposed in [30], resulting in a significantly more efficient estimation technique.
Specifically, the proposed approach exploits the tractability results presented in [22, 23] for
estimating Prsem(S) as Prsem|AD(S)× Prad(S) (where Prsem|AD(S) is the conditional
probability that S is an extension according to sem given that S is an admissible extension),
given that Prad(S) can be computed efficiently. We point out that, the probabilistic argu-
mentation framework (PrAF) introduced in [30], and investigated in [22, 21, 23, 25] can be
expressed by means of a structured probabilistic argumentation framework where φ and ψ
in Definition 1 are basic events. That is, arguments are associated with basic events, and the
complex event xδ associated with a defeat δ = (a, b) is simply of the form xδ = ψ∧xa∧xb
where ψ is a basic event (this means that the occurrence of the event xδ is conditioned to
the occurrence of both xa and xb).

In [30], as well as in [15, 40] and [22, 21, 23, 25, 24], Prsem(S) is defined as the sum
of the probabilities of the possible worlds where S is an extension according to semantics
sem. [41] instead did not define a probabilistic version of a classical semantics, but intro-
duced a new probabilistic semantics. This semantics is based on p-justifiable PDFs defined
over the set of possible worlds: given an AAFA = 〈A,D〉, a PDF f is a function assigning
a probability to each possible world w of A 4, and it is said to be p-justifiable iff for each
argument a ∈ A, it holds that (i) for each argument b defeating a, the probability that a is
in an extension according to f is lower than or equal to the one’s complement of the prob-
ability that b is in an extension according to f ; (ii) the probability that a is in an extension
according to f is greater than or equal to the one’s complement of the sum, over arguments
b defeating a, of the probability that b is in an extension according to p.

In the above-cited works probability theory is recognized as a fundamental tool to model
uncertainty. In this regard, a deeper understanding of the role of probability theory in ab-
stract argumentation was developed in [26, 27], where the justification and the premise
perspectives of probabilities of arguments are introduced. According to the former perspec-
tive the probability of an argument indicates the probability that it is justified in appearing
in the argumentation system. In contrast, the premise perspective views the probability of
an argument as the probability that the argument is true based on the degrees to which the
premises supporting the argument are believed to be true. Starting from these perspectives,
in [27], a formal framework showing the connection among argumentation theory, classical

4Observe that any subset of A is considered as a possible world in [41], since defeat (a, b) ∈ D occurs if
and only if both a and b occur.
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logic, and probability theory was investigated. Furthermore, qualification of attacks is ad-
dressed in [28], where an investigation of the meaning of the uncertainty concerning defeats
in probabilistic abstract argumentation is provided.

We now discuss works [31, 40] that are closer to the structured probabilistic argumen-
tation framework addressed in this paper. Like in our framework, in these works, inde-
pendence assumption between events associated with arguments/defeats is used only in a
very limited form. In particular, an interesting step towards the integration of argumentation
frameworks and probability theory has been recently achieved by [31], where the eviden-
tial argumentation framework (EAF) [35] has been extended by assigning probabilities to
the items of support relations. This way, probabilistic evidential argumentation frameworks
(PrEAFs) are obtained, which model inter-argument dependencies by assigning conditional
probabilities between arguments and their supporting arguments. As pointed out in [31],
PrEAFs can be viewed as a generalization of PrAFs where the assumption that arguments
are mutually independent is relaxed. However, the items of the support relation are assumed
to be independent from one another, which makes the approach in [31] similar in spirit to
our structured probabilistic argumentation framework, where basic events are independent
from one another. In our framework, dependency between arguments can be expressed by
complex events in terms of FO propositional formulas of basic events. For instance, proba-
bilistic support of an argument a by argument b can be expressed using the complex event
xa = xb ∧ xs where xb is the complex event of b and xs is the probabilistic event asso-
ciated with the support (this can be generalized to the case of support provided by several
arguments). In turns, xb could be supported by other arguments, and this can be recursively
captured by its complex event. The fact that in [31] EAFs induced by a given PrEAF in-
clude only supported arguments is captured by our definition of possible world: in fact, only
arguments such that their complex events (including support events) evaluate to true can be-
long to a possible world. However, since complex events can be defined using general FO
formulas over a given set of basic events, there are dependencies among arguments/defeats
that can be expressed in our structured probabilistic argumentation framework and cannot
be expressed in PrEAFs, such as xa = (xb ∨ xc) ∧ ¬(xb ∧ xc), saying that argument a
occurs iff either argument b or c occurs. This suggests that our algorithms could be used to
compute the probability of reasonable sets of arguments in PrEAFs, but also that the simpler
structure of dependencies in PrEAFs could be exploited to modify the construction of pos-
sible worlds by exploiting the strategy proposed in [31] for finding inducible EAFs. In [29]
Probabilistic Extended Evidential Argumentation Frameworks (PrEEAFs) have been intro-
duced, which extend PrEAFs with the possibility of associating probabilities to defeats and
introduce further constructs such as defeats to defeats. As shown in [29], every PrEEAF
can be translated into an equivalent PrEAF. This fact, in turn, entails that our structured
probabilistic argumentation frameworks are more expressive than PrEEAFs. ASPIC frame-
work [38], a general abstract model of argumentation with structured arguments that has as
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a special case the assumption-based argumentation (ABA) [16], has been recently extended
in [40], where an instantiation of PrAFs with a probabilistic version of a general fragment
of ASPIC, called p-ASPIC, has been introduced. p-ASPIC allows the use of strict rules,
defeasible rules, rebutting attacks and undercutting attacks in a probabilistic context. The
approach adopted in [40] for translating their PrAFs into p-ASPIC relies on assigning prob-
abilities to the ASPIC rules and interpreting the resulting probabilistic rules as basic events
independent one from another (while arguments defined by using these rules are in general
not independent, as it happens for our complex events). It is worth noting that p-ASPIC
models can be simulated using the structured probabilistic argumentation frameworks pro-
posed in this paper. This can be done by basically replacing a p-ASPIC rule of the form
φ←p ψ with an argument a whose complex event is xa = (φ← ψ) ∧ e, where e is a basic
event whose probability is p. Hence, the algorithms proposed for computing or estimating
the probability of extensions over a structured probabilistic argumentation framework can
be easily adapted for computing or estimating the probability of extensions over a p-ASPIC
instance.

Besides the approaches that model uncertainty in AAFs by relying on probability the-
ory, many proposals have been made where uncertainty is represented by exploiting weights
or preferences on arguments and/or defeats [8, 6, 4, 33, 18, 12]. In [8] each argument is
associated with a numeric value, and a set of possible orders (preferences) among the values
is defined. Here, a defeat succeeds w.r.t. a specific value order only if the value associated
with the defeated argument is not preferred to the value associated with the defeating argu-
ment in the value order. All the semantics are extended to take into account this notion of
defeat. [6] extends [8] by introducing preferences among sets of arguments, exploiting the
values associated with the arguments. The aim is that of choosing the best set of arguments
among those satisfying a (classic) semantics. In [33] arguments can express preferences
between other arguments, determining whether defeats succeed or not, while in [4] a defeat
succeeds only if the defeated is not preferred to the attacker, on the basis of a preference
relation between arguments. [32] introduces preferences between defeats, with the aim of
finding the extensions providing best defenses for their elements. [18] associates attacks
with weights, and proposes new semantics extending the classical ones on the basis of a
threshold β. Specifically, a set S of arguments is a β-sem extension, where sem is a seman-
tics, iff S is an extension according sem in the AAF obtained by removing, from the original
set of defeats, a subset of defeats whose weights sum up at most to β. For a semantics sem,
a set S of arguments is preferred to another set S′ iff S requires a smaller value of β to
be a sem extension. A study of the computational complexity of the problem of computing
the proposed semantics is carried out. [12] extends [18] by considering other aggregation
functions over weights apart from sum.

In addition to the above-mentioned approaches, another interesting approach to repre-
sent uncertainty in argumentation is that based on using possibility theory, such as done
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in [5, 2, 3, 34]. In particular, [34] proposed an argumentation-based possibilistic decision
making framework which, though able to capture uncertain information and exceptions/de-
faults, has the nice property that argument inference is polynomial-time computable (this
feature follows from the fact that the framework is based on non-monotonic inference of
Possibilistic Well-Founded Semantics which is tractable [36]).

Although the approaches based on weights, preferences, possibilities, or probabilities
to model uncertainty have been proved to be effective in different contexts, there is no
common agreement on what kind of approach should be used in general. In this regard,
[26, 27] observed that the probability-based approaches may take advantage from relying
on a well-established and well-founded theory, whereas the approaches based on weights or
preferences do not conform to well-established theories yet.

7 Conclusions and future work

In this paper, we addressed the problem of computing/estimating the probability of exten-
sions over structured probabilistic argumentation frameworks, by devising a naive algorithm
for computing the probability of extensions and a Monte-Carlo simulation algorithm for es-
timating it. We experimentally evaluated both the naive algorithm and the Monte-Carlo one
over two datasets, and found some cases for which computing the probability results to be
more convenient than estimating it, despite the high complexity of the problem.

An interesting direction for future work is that of identifying tractable cases of the prob-
lem of computing the probability of extensions over structured probabilistic argumentation
frameworks, for instance by considering restricted forms of propositional boolean formulas
for expressing complex events.
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Abstract
This paper proposes a mathematical approach to analysis of decision and

risk that makes use of the constructive argument logics that have become com-
monplace recently in artificial intelligence.

Instead of requiring an idealized, expected utility analysis of alternatives,
in this paper, arguments appraise the desirability, comprehensiveness, and ac-
ceptability of incompletely described projections of the future. Instead of a
qualitative risk management assessment process, threats and mitigations are
represented numerically, but appraised with arguments, especially probability
arguments and mitigation arguments, not averages. Arguments are given for or
against the adequacy of commitments. Instead of using logic to derive the prop-
erties of acts that transform situations, e.g., to construct goal-satisfying plans,
in this paper, dialectical burdens are placed on demonstrating to a standard
that investments and response policies will attain each milestone on a proposed
trajectory. Trajectories are extensible and valuations are multi-attribute with
varying completeness as knowledge permits. Superior trajectory specificity will
be related to superior argument specificity.

The resulting picture of decision is a mixture of search, probability, valua-
tion, and risk management; it should superficially bear a resemblance to satisfic-
ing mixed-integer discrete time control and many recent approaches to practical
reasoning through argumentation. It is intended as an alternative to narrow
optimization, which permits easy sacrifice of externalities on the grounds that
they are hard to measure as real values. It is also intended as an alternative
to fixed horizon decision-making, which produces unsustainable extremizations.

Keywords: Argument, Decision, Risk, Planning, Risk Management, Risk Analy-
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1 Introduction

For the past few decades, a separation between two kinds of analysis of choice
has become entrenched. Everywhere, there are the disciples of decision analysis,
chiefly emanating from microeconomic and statistical disciplines. They have lotter-
ies, expected utility maximization, and preference axioms, and often call themselves
Bayesian decision theorists. Elsewhere, there are the practitioners of risk analysis,
mainly found in technology management and policy practices. They have threat
assessment, hazard severity tolerance, and event chain methods, and are often asso-
ciated with safety and reliability engineering, security, and regulation.

The entrenchment of these two fields, and the entrenchment of their separation,
has led to some anomalies. Some attacks on expected utility are famous: some kinds
of value are difficult to encode in an expected-utility model. But the anomalies this
paper is concerned with are perhaps more pernicious. These anomalies have more
to do with long-term societal distortion of values than one-shot personal contortion
of preferences to axioms.

First, there is the anomaly of narrow optimization: a difficulty measuring and
comparing value in multiple dimensions often results in important criteria simply
being excluded from the model. As a result, some kinds of costs and returns are given
precise mathematical expression, and these few are optimized at the expense of the
many, less conveniently quantified, but equally important properties that have been
excluded. Simply contrast 0-to-60 time, gigabytes per month, watts per channel,
megapixels, renminbi per capita, body mass index, per cent minority, and aviation
seating capacity, against water cleanliness, employee health care, alignment with
mission, institutional and personal values, dignity, self-respect, and social justice.
The latter will almost always disappear from the decision model, with no pressure
to provide even penumbral accounting. A few trees will be optimized at the expense
of the forest.

Second, there is an anomalous focus on attainment rather than sustainment:
a difficulty determining commitments and valuations past a convenient horizon.
This results in outcome descriptions fixed at a fictitious final time, so that long-
term future disadvantage often pays for short-term advantage. Compare the median
income after 10 years with life-long earnings; compare angioplasty to coronary artery
bypass graft; or compare the overuse of a baseball team’s bullpen staff to win one
game versus the forward-looking management of reserves.

The decision theories of Savage [61] and Jeffrey [30] do not actually prevent mod-
eling of value with long term horizons and broad perspectives on value. The objects
of value are abstract. In fact, it is Raiffa who popularizes multiple objective utility
models, with Keeney [33], and Fishburn follows suit [21, 22]. But the inconvenience
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of multiattribute models, due to nonlinear exchangeability, or worse, non-comparable
dimensions and non-exchangeability, has resulted in narrow optimizations. This es-
pecially happens to discrete-valued attributes, in so-called mixed-integer models.
This author believes that the unwillingness to model value in numerous dimensions
is the result of these theories demanding too much precision: incompleteness of in-
formation and lack of precision are the norm for most attributes (see qualitative
decision approaches to this same issue, e.g., [70] and [16]). Ethical and legal aspects
of decision, broad societal and environmental impacts, and distant future impacts,
are especially difficult to characterize precisely. Similarly, the abstract concept of
an outcome does not prevent an aggregate view over future possibilities, or even
prevent infinite future envisionment. But it strongly dissuades too much considera-
tion of the future: modeling precision correlates with short horizons. There must be
more room in the model for real persuasion based on hard-to-characterize, imprecise
aspects of decision.

Many admirable quantitative process models and semi-quantitative risk assess-
ment approaches have been suggested in the huge literature of risk analysis. This
includes the risk matrix (see [4]), goal structuring notation (see [34]), risk manage-
ment plan [12], and even the mean-maximization subject to variance-limit portfolio
methods [39]. Hundreds of articles appear in project management with similar sen-
sibilities. This paper is sympathetic to the motivations of these approaches, though
not necessarily to the logic or mathematics of their expression. These ideas have
not found their way into many decision analyses because they have lacked an ade-
quate symbolic representation. One milieux prefers process, while the other prefers
precision.

2 Argument and Deduction

The development in logic that provides a new approach is the appearance of math-
ematical frameworks for pro-con, dialectical, defeasible argument, with the formal
detail required for computation and artificial intelligence (AI).

These logics are non-deductive in the sense that demonstration is provisional: an
argument does not prove its conclusion; justification depends on what counterargu-
ments there might be. These logics determine conclusions, dependent on the state
of argument production. Over time, as search for arguments proceeds, conclusions
may be drawn, or not. They tend to be based on reasons that are defeasible, such as
policies, or rules of thumb, that yield exceptions. In the current setting, the argu-
ments are as likely to be analogical arguments from precedents, which have been of
great importance in AI and Law (e.g. [5], [54]), or statistical arguments based on im-
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perfect reference classes ([38] and [51]). No single mathematics of argument has yet
emerged as canonical; the approach of P. M. Dung is popular [17] through its con-
nection to logic programming; this author still uses his own framework [64] and [45]
partly based on J. Pollock [50] and N. Rescher [60] (see surveys of mathematical
defeasible argument [14], [56], and [10]; see also [28], [69], [53]).

Formally, a dialectical state for a proposition, p, is a set of arguments, ARGS,
constructed by subsumption under a set of defeasible reasons RULES, or analogies
to a set of precedent cases, CASES, with an evidential basis EV (facts or conditions
not subject to dispute). The use of ARGS is rule-based reasoning, while the use
of CASES is analogical reasoning, and the two can be mixed in a particular dis-
pute. ARGS contains at least one argument that derives p from EV using RULES
and/or CASES. An argument in ARGS may have intermediate conclusions; if q is
such an intermediate conclusion, then ARGS may contain counterarguments to the
arguments for q, that is, arguments for not-q. In some frameworks, the set ARGS
may also contain arguments that “undercut” application of a rule in RULES (by
exception) or (ir-)relevance of a case in CASES (by distinction), or may contain
priority meta-arguments that claim one argument defeats/dominates another. In
our framework (and many others, see [18] and [19]), defeat is based on a syntactic
criterion such as some kind of evidential or rule-based specificity (i.e., some analo-
gies are more specific than others; hence one defeats/dominates the other when
two arguments are in opposition). Usually there is a way of calculating which of
the arguments in ARGS retain their ability to justify, which retain their ability to
block justification, and which are simply defeated/dominated (and can be removed
from ARGS without changing what propositions are defeasibly justified). These
calculations bear a striking resemblance to the original TMS of [15].

A probability argument might start with a reference class for an event, and a
frequency of a property observed among that class. So 5 of 35 F ’s may have had h.
Defeasibly, 5/35, or the interval constructed around 5/35 at some confidence level
is prob(h|F). A counterargument might be that the event in question is not only
an F, but also a G. 14 of 18 G’s have exhibited h. Since an interval constructed
around 14/18 will disagree with an interval around 5/35 (i.e., since neither interval
will contain the other), all that can be said about the probability is the minimal
containing interval, unless there is some method of combination. Of course, if 7 h’s
have been seen among 11 events that are F ’s and G’s, the disagreement between
argument based on F and argument based on G is replaced with the better argument
based on the conjunction. It is important for the reader to see that probability
arguments based on different, or subsuming, conditionalization can occur in a process
of pro- and con- argument production; in a Bayesian setting, one conditions on the
totality of evidence, but there may be dispute over the conditions themselves.
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A precedent argument might start with a prior case that shares some properties
with the current case, F and G. In that prior case, perhaps not-h was decided,
such as the insufficiency with respect to a fiduciary standard, ethical standard, or
due diligence. Perhaps the prior case weighed an argument based on F (pro-h)
against an argument based on G (con-h). Absent a more specific precedent, in a
new case where F, and G hold (equal specificity), or a new case where F, G, and
E hold (increased specificity), one can argue not-h on this precedent. Moreover,
even in a new case where just G holds, one can still argue not-h, by co-opting the
argument from the prior case. There are more interesting analogies that pertain to
the relevance of properties used in rebuttals and subargument rebuttals. If E was
needed in the prior case to rebut the F -based argument, then E must be present in
the current case, if F is present, in order to draw the same conclusion. [44, 43] Also,
if not-E were decided in the prior case, the disanalogy based on E could support
counterargument.

This author has used an argument framework to address the heuristic valuation
of outcomes in decision trees [41, 40, 42], in particular to address the Savage small
worlds problem [62]. The idea was that the outcome in a decision tree, “play-tennis-
tomorrow” or “marry-the-girl” or “poach-an-egg” is often grossly underspecified:
both underspecified with respect to detail and underspecified with respect to future
commitments. Rather than insist on a single decision tree that considers various un-
certainties, defeasibility permits one tree to improve another; it permits one heuristic
evaluation to replace another. Provisional valuation of nodes was based on the prop-
erties that can be asserted with some certainty; further analysis of chance, deeper
search, and more specifically described outcomes would improve provisional values
(just as heuristic valuation permits deeper reasoning about a chess position in classic
AI; see also [13]). The use here is a more ambitious embedding of choice in dialecti-
cal argument, formalizing elements drawn from mixed-valued multiattribute utility,
AI planning, and risk mitigation.

The rest of this paper assumes that these argument frameworks will continue to
mature and become familiar to a wide audience. It is actually possible that argument
could be replaced by black-box machine learning, but that would be a very different
philosophical approach, less normative perhaps.

3 Fox and Krause, McBurney and Parsons

Two related lines of thought in AI had the early insight to embed risk analysis in
a logic of defeasible argument. John Fox and Paul Krause, in a series of papers
with co-authors relate argumentation to medical decision and risk, especially cancer
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risks. [35], [36], [37], [24], [26], [23] This line of work tends to use qualitative assess-
ments of likelihood, and anticipates further mathematical development of defeasible
argument.

“[T]here are situations in which a numerical assessment of uncertainty
is unrealistic, yet . . . some structured presentation of the case that
supports a particular assessment may still be required, and is achiev-
able. [C]haracterising risk [with] patterns of argument ... is not just an
academic exercise in the use of argument structures. A solution to the
problems outlined ... is of vital importance.” (p. 393, [36])

[49] builds on these works, applying the Dung argument framework to the prob-
lem of defeasible outcome entailment, which is crucial to the present model. However
their work formalizes argument semantics whereas this paper has more interest in
characterizing value. [68] shares an interest in multi-attribute preference and the
fundamental problem of incomplete knowledge (not precise probabilistic uncertainty,
but genuine knowledge gaps). Their work takes an axiomatic approach to defeasi-
bility and risk that is more complicated than what is envisioned here.

Meanwhile, Peter McBurney and Simon Parsons, in a second series of papers [46,
47, 48] presage much of the motivation for the formalism proposed here. They note
the difficulties of doing quantitative risk analysis, and the prospects of argument in
risk analysis:

“[E]stimating and agreeing quantitative probabilities and utilities ... is
not straightforward in most real-world domains. We are therefore moti-
vated to explore qualitative approaches to practical reasoning, and this
paper presents an application of argumentation to this end.” (p. 2, [46])
“Given the interactive nature of stakeholder involvement in risk assess-
ment and regulation decision-making, we would anticipate that any ad-
equate model of decision-making would draw on argumentation theory.”
(p. 23, [48])

These authors made clear that the qualitative arguments arising in risk analysis
could be expressed in the new mathematical models of argument.

4 Amgoud and Prade, Atkinson and Bench-Capon
Over many years these lines were further developed as argument formalisms were
applied with greater formal commitment by Amgoud and co-authors ([2], [58], [3], [1])
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and simultaneously by Atkinson and co-authors ([6], [9], [65], [7], [11]). Their work
researches argumentation and practical decision making in a way that incorporates
many risk analytic themes.

[2] starts as “a first tentative work that investigates the interest and the questions
raised by the introduction of argumentation capabilities in multiple criteria decision-
making . . . [that] remains qualitative in nature.” [58] considers arguments about
beliefs (entailments), arguments about desires (valuation), and arguments about
partial plans (mitigations, horizons). [1] later refers to these as epistemic arguments,
instrumental arguments, and explanatory arguments, noting that they can be mixed
during deliberation.

[9] starts with a practical medical problem and uses a version of Dung’s argu-
ment framework to argue “sufficient conditions,” “alternative ways to achieve a goal
G,” and “different policies and perspectives.” “Critical questions” lead to defeat of
arguments, or to revision of plans. [8] inventories sixteen different kinds of attacks
that could be represented formally in an argument formalism for a decision. Later
work integrates desirable and undesirable effects directly into the representation of
proposed actions [65] and an alternating transition system (which governs dialectic,
but could also be seen as mitigations of risk).

[52] considers similar aspects of risk analytic argument, but highlights the dia-
logical aspects that are more procedural than what is considered here. Many other
authors have put practical reasoning in a formal argument framework, but have not
been as explicit about risk analysis. [66] is an example of a paper where the cer-
tainty of the value of a subsequent state is addressed within a system of argument
for decision.

Although this paper is motivated independently from consideration of the fun-
damentals of risk analysis and decision, it can also be viewed as an extension of the
works of these authors. These later authors reinforced and refined the claims that
formal argument systems could bring practical reasoning, and some kinds of risk
mitigation, into a new logic and representation.

From the earliest work, e.g., [31] to the latest, most of the notational focus has
been on the formal argument frameworks in support of practical reasoning, plan
revision, and risk mitigation, in a way that would be appreciated by at least quali-
tative decision theorists, and in a style that would make precise the early intuitions
of philosophers like [25]. It seems this point has been made. Our departure is to find
a representation of the objects of argument, not the arguments themselves, in such a
way that multiattribute utility decision theorists and risk analysts can see a bridge
to their traditions and representations. Thus, we differ from these prior works in our
assumption that the argument notation is of less interest than the representations
of value, state, connectivity of state, and probability, about which one might argue.

207



Loui

5 Mathematical Representation
We start by defining the value space in which trajectories will be represented:

Attainment space (or achievement space, or aspiration space), A-space, is an
extensible d-dimensional product space of real-, real-interval-, discrete- and
binary-valued dimensions.

Each dimension is named, namei(A).

For example, for d=3,
name1(A) might be real-valued salary,
name2(A) might be discrete rank,
and name3(A) might be binary pre-tenure.

It would be a mistake to think that the dimension d is fixed throughout an analysis
or dialectic; the extension to other concerns as a result of inquiry is an important
dynamic. However, at any point in argument, it is useful to consider the dimen-
sionality of A-space to be fixed (but values unknown). Values in a dimension are
often measurable, mostly in the reals, but they may be discrete, and also carry
uncertainty such as 90%-chance-at-profit, likely-liable or arguably-unethical. Linear
order of values is presumed, as well as whether desirability is positive monotonic or
negative monotonic.

m@t is a milestone at a time t in A-space only if m is a partly-specified vector
v in A-space, where c components have values (the others are unspecified),
0 < c ≤ d. dim(m@t) = c, the count of components of the milestone that
have specified values.

Milestones are an analogue of utility thresholds, or satisficing levels, or goals in goal
programming.

For example, a milestone might be:
<$100k, ?, ?, Full-Professor>@2018.

Since dimensions have names, we can remove unspecified values and represent mile-
stones in projected subspace with remapped names, e.g., simply

<$100k, Full-Professor>@2018

as a useful shorthand.

v is amomentum in A-space only if v is a rate of change of prospect of a milestone
w.r.t. time.
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For real-valued dimensions, rate of change is a derivative w.r.t. time; for interval-
valued dimensions, rate of change is an interval of derivatives w.r.t. time; for quali-
tative dimensions, rate of change is a qualitative value. Momentum is most closely
allied with the ideas of persistence and inertia in AI planning (a species of default
reasoning).

A momentum might be:
<$1k/yr, Annual-Review>.

p(m@t) is a prospect of a milestone m@t only if p is a dim(m@t)-dimensional
measure of the satisfiability of m@t.

Each component of p(m@t) is either a probability measure, an interval probability
measure, a qualitative valuation of likelihood, or a characterization of the strength
of supporting argument for attainment. Prospects are the analogue of subjective
probability in DMUU and the risk matrix in risk analysis, but they also import the
idea of defeasible and probabilistic planning from AI.

A prospect of <$100k, Full-Professor>@2018 might be:
<0.625, logical-possibility>.

I is a set of investments or non-contingent commitments only if I is a set
of scheduled actions, a@t to be taken at specific times.

Actions are irreducible named entities. Investments are the closest analogue to a
plan in AI or decision in DMUU.

A set of investments might be:
{ submit-to-journal@2015, travel-to-conference@2016 }.

Sometimes the investment is measured in the same units as attainment in a
dimension, such as dollar cost; in such cases, the main difference between investments
at a time (debits) and negative attainments (credits) is that investments are not
tracked through time, while attainments are (investments occur at specific times,
while attainments are charted at each time as part of the path); in this way, the
model is more "bang-bang" control than continuous control.

CR is a set of response policies or contingent commitments only if CR is
a set of <event, I> pairs where occurrence of an event triggers the paired
(committed) investments.
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Events may be named, but also may be un-named deviations from milestones or
prospects of milestones. Events are irreducible entities. Contingent responses are
closely allied with risk response planning and reactive/dynamic planning in AI.
Events(CR) is the set of events considered in CR.

A set of response policies might be:
{ <rejected-article, resubmit-immediately>,
<slashed-university-budget, add-external-consulting>,
<negative-teaching-reviews, solicit-student-reference-letters>
}.

T is a trajectory only if T = < M, V, P, I, CR > consisting of

1. a sequence of milestones < m0, ..., mn >, each mi = m@ti (monotonic
in times ti),

2. a sequence of momenta < v0, ..., vn >,
3. a sequence of prospects, < p(m0), ..., p(mn) >,
4. a sequence of investments, < I0, ..., In >, and
5. a set of contingent response policies, CR.

Note that the dimensionality of each milestone (or momentum or prospect) can
change (usually diminish) as the sequence is extended. T has length n and tem-
poral extent tn.

A set of situational entailment arguments for (pro) a trajectory T, is a
set of arguments pro-E, where each subset pro-Ei, contains arguments for
p(mi+1) based on p(mi) and vi.

Each argument, ARGij in pro-Ei, refers to a specific dimension shared by mi and
mi+1.

If the argument refers to a reference class of instances that attained the subse-
quent target value (or range), it is a frequency argument (familiar to statistical
inference; see [51]). If the argument refers to the causal efficacy of an investment,
it is a causal argument (usually a defeasible planning argument familiar to AI
planning; see [20]). If the argument refers to the adequacy of a contingent re-
sponse, it is a mitigation argument (usually based on precedent and standard of
proof or standard of demonstration, familiar to case-based reasoning in AI and law;
see [27], [55]).
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A set of situational entailment arguments against (con) a trajectory T, is
a set of arguments con-E, with subsets, con-Eij , where each member attacks
some argument in pro-Ei.

An attainment dialectic over a trajectory is a set of situational entailment
arguments pro and con together with an appraisal of the dialectical state, i.e., de-
scribing the strength of the arguments for the trajectory’s plausibility meeting a
standard of proof/demonstration. This description includes the current judgment
pro or con, any currently persuasive arguments, and the list of effectively rebutted
and unrebutted counterarguments.

Optimality is replaced with the concept of

1. better argument
(including dialectical strength over more comprehensive events(CR); more mit-
igation equals better argument),

2. more robustly characterized milestones (greater c),

3. higher attainment returned on acceptable investment, and

4. more extended sustainment (greater n).

Clearly this is a constructive approach rather than an exhaustive search of the space
of choices. The desire to have robust envisionment in events(CR) is the crux of
risk analysis. The desire to relate attainment to investment is the basic instinct of
utility. The desire to enlarge c is the basis of multicriterion analysis. The extendable
trajectory emphasizes sustainability.

The initial construction problem is thus:

A trajectory T is justifiable to standards 〈p†(t), I†, CR†〉 w.r.t. a set of argu-
ments E-pro (surviving adversarial finding of E-con) only if the attainment
dialectic justifies the trajectory under these standards:

1. all po(m@t) ≥ p†(t), (the prospective standards, which may vary as a
function of time)

2. all Ii ≤ I†, (the investment standards) and
3. all 〈e, r〉 pairs in CR meeting the CR† standard according to precedent

(the mitigation standards).

211



Loui

Standards for prospect are allowed to decrease as distant futures are considered
because it is difficult to establish much of a guarantee. The alternative, which
is not necessarily a bad alternative, is to let future milestones be probabilities of
attainment, so that prospects are meta-probabilities, or meta-arguments, that can
meet higher standards.

These standards, together with the membership of CR, the levels of attainment
at each milestone, the specificity of each milestone (more attributes are better), and
the length of the trajectory, are the known performance measures of T.

The improvement problem is iterative:

Given a trajectory T0 justifiable to standards 〈p0(t), I0, CR0〉 with milestones
< m0, ..., mn0 >, find an alternate or extended trajectory T1 justifiable to
those same standards with superior performance measures, that is, for each
mi@ti in T0 there is a corresponding mj@tj in T1 such that mi≥ mj where
ti = tj.

Note that it may be easy to find alternatives to T0 that are arguable to non-
comparable standards or non-orderable performance measures, but improvement
requires superiority: equivalence at least in all dimensions, and superiority in at
least one. Also note that if T1 is justifiable to the standards of T0, it may yet be
justifiable to higher standards; but a ratcheting to higher standards of justification
may not be desirable in the search to improve performance measures.

As is typical in constructivist settings, search can be directed in multiple places:
either at improving E-pro, improving E-con, or finding an improvement T1 to an
existing T0. One can consider all three searches being performed in parallel, or
according to a specific protocol (including possibly randomization or some kind of
search optimality).

Arguments and precedents require additional representation. In this paper, the
claims and counterclaims of argument are given, but not their formal representation.
A formal system of argument presupposes many rules (a rule base), and arguments
from precedent require many cases (a case base). Many details can be found in
the references already provided. Here the focus is on notation for the objects of
argument, not the arguments themselves.

6 How Can This Diverse Syntax Be An Improvement?
The improvement is in the representation: a trajectory of measurable milestones
with arguable valuation, arguable entailment, arguable length, detail, and dimen-
sionality, orderable but not necessarily scalable measurements of value, and arguable
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standard of hazard mitigation. It puts a spotlight on concerns that have been miss-
ing from the entrenched models. It puts front and center many of the concerns that
are important, but get omitted because they are hard to include. It should be con-
stantly clear that the trajectory is not a final or exhaustive depiction of the situation.
It is the scorecard of an argument game aimed at uncovering hidden criteria and
constraints, forcing commitments and contingency planning, and revealing down-
stream consequences. It presupposes an adversarial process of search for improved
appraisal: search can lead to more detail, lowering of aspiration, and discussion of
hazards. It is very much what project management planning risk analysts do during
semi-quantitative risk analysis, except that here, one can write the specific argu-
ments from reference classes and precedents, and usually determine what kind of
response would suffice. It should lead risk analysts to more numerical specificity,
more plan flexibility, more transparent standards of justification, and higher levels
of aspiration.

The improvement over multicriterion decision analysis is mainly the step away
from a fiction of neatness, completeness, and precision. Anyone can draw a bad
decision tree, but even good decision trees can leave difficult questions unanswered.
Here, in the enumeration of multiple criteria, one need not produce weights, or
a nonlinear mapping, for combination and dimensionality reduction. In the enu-
meration of chance events, one need not be exhaustive, and one need not attach a
probability to each event. Decision trees grow large when chance, choice, and time
are all increasing the node count, and nodes beget more nodes.

As pointed out in the author’s earlier work, there is no place in the classic
theory for refinement of a decision tree through search; this is because the axioms of
preference over lotteries require that all nodes have a value that already summarizes
the expected value of any subtree extending from that node. This has been a lot to
ask of the decision analyst: every subtree must be perfect with respect to further
elaboration. Embedding the analysis of value (heuristic valuation of utility, like chess
configurations) in argument was the author’s earlier move, and that work suggested
the potential for arguing probability values as well.

This work takes those arguments over decision trees and replaces expected heuris-
tic utility with claims of time-indexed attainments, and the burden of arguing entail-
ments that connect milestones. It explicitly makes room for the dialectical interplay
that underlies risk analysis processes.

Probability has been removed from a discounting of value to a connection of
milestones. This is like asking that aspiration meet a probabilistic standard of
confidence or acceptability. It is possible to represent upside and downside risk dis-
counted by probability, but it is not as easy to represent as the probability argument
of attainability of one milestone from the previous milestone.
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6.1 Representing the Classic Lottery Example as a Simple, Degen-
erate Case

First, consider how a classic lottery might be represented in this notation.
A ticket can be purchased for $1 that has a 1/10 probability of paying $20. Of

course, this model requires that one be specific about the time of entry and time of
payoff in order to represent milestones.

The naïve representation shows only the milestone representing probable loss,
on a single dimension of dollar attainment:

T0= <

# milestones < <$0>@lottery-payout-time >,
# no momenta < >,
# prospects < <.9> >,
# investments { $1@lottery-entry-time },
# no events-responses { }
>

But a refinement increases the dimensionality of milestones, looking at both gain
and loss:

T1= <

# milestones < <$0, $20>@lottery-payout-time >,
# no momenta < >,
# prospects < <.9, .1> >,
# investments { $1@lottery-entry-time },
# no events-responses { }
>

and the relative desirability of this trajectory compared to the alternative of not
entering the lottery at all depends on arguments that presumably take into account
risk aversion, time value of money, and opportunity costs. That is, if the probability-
discounting of gain and loss is to be done without transformation into utility, and the
two combined to produce a dollar-expectation, that is something that is an argument
for relative desirability, or an argument for meeting a standard of attainment, not
an automatic reduction of dimensionality, time, and the serendipity of numerical
prospect. For all we know, the next argument move might be to argue that the
value of 0.1 prospect of attaining $20 is incorrect. One counterargument is thus
non-entry into the lottery,
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T2= <
# milestones < <$0, $0>@lottery-payout-time >,
# no momenta < >,
# prospects < <1, 1> >,
# investments { $0@lottery-entry-time },
# no events-responses { }
>

and a refinement of the argument to enter the lottery might be the extension of
attainment to include expected gain:

T3= <
# milestones < <$0, $20, expected$2>@lottery-payout-time >,
# no momenta < >,
# prospects < <.9, .1, 1> >,
# investments { $1@lottery-entry-time },
# no events-responses { }
>

Here, one might argue from precedent that an expected-$2 gain on $1 investment
returned over the difference in time meets the standard of fiduciary responsibility,
portfolio aspiration, prudence, or best-known-use of cash on hand, etc. Note that a
counterargument might consider the variance, not just the mean, or the nonlinearity
of dollar utility, etc.

6.2 Representing the Classic Risk Example as a Simple, Degenerate
Case

Next, consider how a classic risk analysis mitigation might be represented in this
notation.

A nuclear power plant can be built in 1985 to supply power for 50 years, but
there is a small probability of disaster.

T0= <
# milestones < <sufficient-power-for-past-50-years, huge-disaster>@2035 >,
# no momenta < >,
# prospects < <.99, .000001> >,
# investments { },
# no events-responses { }
>
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One might argue directly about the acceptability of reaching a milestone at
2035 with a 10E-6 probability of a “huge disaster,” which may actually depend on
quantifying the disaster. But an obvious refinement is to commit to a mid-term
inspection, which reduces the probability (presumably a probability argument is
given for the new conditionalization) to 10E-7:

T1= <

# milestones < <sufficient-power-for-past-50-years, huge-disaster>@2035 >,
# no momenta < >,
# prospects < <.99, .0000001> >,
# investments { inspection-and-repair@2010 },
# no events-responses { }
>

and 10E-7 might meet the standard of acceptable risk. Even better would be to
commit to adoption of any new technology safety upgrades (which may or may not
change the probabilities):

T1= <

# milestones < <sufficient-power-for-past-50-years, huge-disaster>@2035 >,
# no momenta < >,
# prospects < <.99, .0000001> >,
# investments { inspection-and-repair@2010 },
# no events-responses { <new-safety-technology, implement-it> }
>

6.3 A Larger Used Car Example

Consider the purchase of a used 2002 Toyota Highlander purchased in 2015 for $8000
with 106,000 miles on the odometer. Here, we show argument moves, not just rep-
resentation. The less-than-certain initial prospects reflect the nontrivial possibility
that the car does not meet manufacturer’s specifications. The first proposition is
that it can be driven for 10 years with no further investments.
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T0= <

# milestones
<

<$8k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 13 years old,
38.5 cu ft, 106kmi or less odo>@2015,

<$18k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 23 years old,
38.5 cu ft, 206kmi or less odo>@2025

>,
# momenta
<

< +$1k or less repair/yr, 0, 0, +1 years old/yr, 0, +10kmi or less odo/yr >,
< +$2k or less repair/yr, 0, 0, +1 years old/yr, 0, +8kmi or less odo/yr >

>

# prospects
<

<1, .95, .95, .95, 1, 1, 1>,
<.6, .85, .85, .95, 1, 1, .85>

>,
# no investments { },
# no events-responses { }
>

There might be fairly good statistical arguments that such automobiles reach
the 2025 cost, emissions, and mileage efficiency based on age and/or mileage. The
mileage number itself is prospective, so its uncertainty might be propagated in some
models. No uncertainty is attached to the momenta, though the justification of a
subsequent milestone’s prospects might depend on the justification of the momentum
values.

That is, one way to counterargue the proposition that the trajectory is justified
might be an argument against the momentum estimate. In fact, the strongest coun-
terargument to attaining the 2025 milestone, even with the low .6 prospect standard,
would be to suggest that the cost momentum grows, and could be reflected more
precisely using an intermediate milestone.

An immediate rebuttal to such counterargument might be that a major service
will be done in two years. This still changes the cost milestones, and does not require
an intermediary, but may solidify the case for prospects of entailment.

Another response might be to lower the mileage milestone, adding an inflection
point at which the miles per year are reduced (T2).
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T1= <
# milestones
<
<$8k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 13 years old,

38.5 cu ft, 106kmi or less odo>@2015,
<$21k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 23 years old,

38.5 cu ft, 206kmi or less odo>@2025
>,
# momenta
<
< +$1k or less repair cost/yr, 0, 0, +1 years old/yr, 0, +10kmi or less odo/yr >,
< +$2k or less repair cost/yr, 0, 0, +1 years old/yr, 0, +8kmi or less odo/yr >
>
# prospects
<
<1, .95, .95, .95, 1, 1, 1>,
<.8, .9, .9, .95, 1, 1, .85>
>,
# investments { major-$3k-service@2017 },
# no events-responses { }
>

T2= <
# milestones
<
<$8k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 13 years old,

38.5 cu ft, 106kmi or less odo>@2020,
<$8k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 13 years old,

38.5 cu ft, 106kmi or less odo>@2015,
<$21k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 23 years old,

38.5 cu ft, 181kmi or less odo>@2025
>,
# momenta
<
< +$1k or less repair cost/yr, 0, 0, +1 years old/yr, 0, +10kmi or less odo/yr >,
< +$1k or less repair cost/yr, 0, 0, +1 years old/yr, 0, +5kmi or less odo/yr >,
< +$2k or less repair cost/yr, 0, 0, +1 years old/yr, 0, +3kmi or less odo/yr >
>
# prospects
<
<1, .95, .95, .95, 1, 1, 1>,
<.9, .95, .95, .95, 1, 1, .95>,
<.8, .9, .9, .95, 1, 1, .85>
>,
# investments { major-$3k-service@2017, reduce-miles-per-year@2015 },
# no events-responses { }
>
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Of course, the cost of repair is not the only cost of ownership. One major hazard
for car ownership is accidental collision. This is an opportunity to have a mitigation
argument.

For the event accidental-collision, does the $500-deductible-insurance meet a
reasonable standard? Perhaps it meets the standard required by state law, or the
standard of prudence for a person of means, or a standard of erring-on-the-side-of-
caution. There might be a simple table relating mitigations to standards for this
common hazard. But there might be room for argument based on particular details,
such as the fact that the auto is an SUV-with-curb-weight-near-3500-lbs.

T3 reflects the inclusion of a preemptive commitment, where the cost of the in-
surance enters the milestone accounting and momenta, but the scenario of insurance
coverage and deductible do not, because presumably the probability estimate would
be too coarse to be meaningful at this stage. An actuary might produce a specific
probability, say .001 over ten years, for a specific damage level, but the standard of
mitigation might not be about calculable expected loss: legal requirement might be
the dominant concern, or an ethic of taking responsibility comparable to the ethic
belonging to others held in high esteem.

T3= <

# milestones
<

<8k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 13 years old, 38.5 cu
ft, 106kmi or less odo, $500-deductible-insurance>@2020,

<18.5k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 13 years old, 38.5
cu ft, 106kmi or less odo, $500-deductible-insurance>@2015,

<26k or less cost, 18-mpg or more, 494g/mi or less CO2, full-time-4wd, 23 years old, 38.5 cu
ft, 181kmi or less odo, $500-deductible-insurance>@2025

>,
# momenta
<

< +1.5k or less cost/yr, 0, 0, +1 years old/yr, 0, +10kmi or less odo/yr >,
< +1.5k or less cost/yr, 0, 0, +1 years old/yr, 0, +5kmi or less odo/yr >,
< +2.5k or less cost/yr, 0, 0, +1 years old/yr, 0, +3kmi or less odo/yr >

>

# prospects
<

<1, .95, .95, .95, 1, 1, 1>,
<.9, .95, .95, .95, 1, 1, .95>,
<.8, .9, .9, .95, 1, 1, .85>

>,
# investments { major-$3k-service@2017, reduce-miles-per-year@2015 },
# events-responses { <major-accidental-collision, file-insurance-claim>}
>
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7 Additional Discussion of Elements I: Clarifications
Attainments are different from sustainment of attainments. In each dimension, an
attainment is reported or specified in native or natural units. There is no need
to transform levels of attainment into real-valued utility because there will not be
combination with probability, nor combination across dimensions.

A-space dimensional values are used for orderability, not scalability (unless some
argument permits a rate of exchange). Probability should enter as a standard for ar-
guability of attainment. “That’s not attainable, given the investments, the momen-
tum, and the standard p† = 〈0.955, 0.95, morally-certain, preponderance-of-evidence,
from-on-point-case〉.” Expected utility may make sense when probability and utility
can be measured with precision. But when probability itself can be argued, based
on reference class disagreement, even a quantitative threshold such as 0.955 may
reek of false precision. Discrete and binary valuation might make probability even
less useful in many dimensions.

The dynamics are in the argument over meeting these standards. “On the con-
trary, it is attainable, at least to the standard p† = 〈0.85, 0.9, as-certain-as-the-
interest-rate-forecast, more-likely-than-not, from-relevant-case〉.” If that standard
seems too low, perhaps there is an alternative trajectory with better performance
measures that can be justified at that same standard or higher.

It is true that permitting extensibility of A-space and unspecified values in di-
mensions makes a milestone like a set of properties that might be proved of a resul-
tant state in an AI planning representation. But trajectories of milestones, which
are fully specified in a reduced set of dimensions are more easily visualized. Logi-
cal representations of future states may be too expressive to give the impression of
controlling motion in A-space. One of the distinctive aspects of this model is that
action might produce momentum, not just state change. The analogy to kinematics,
and physical control, while still permitting incomplete information, is fundamental.
The difference from mixed-integer control theory is that argument and justification
replace expectation and optimization.

An important role for argument is connecting the milestones, arguing that the
investments of non-contingent actions suffice to achieve the subsequent milestone
with the prospect as claimed. There is the suggestion of a Markov process here,
because situational entailment arguments are dependent on prior state, momentum,
and action, not on the path to the prior state. But this is just a suggestion, since
arguments may take into account more than prior state.

More important is the idea that situation + action does not automatically equal
a precise subsequent situation. In AI planning, this historically began as a deduc-
tive entailment: the subsequent state being named as action applied to prior state,

220



Against Narrow Optimization and Short Horizons

and the outcome properties at that state being derived. This subsequently led AI
planning research to probabilistic and defeasible approaches to description of the
outcome. In decision trees with utilities on outcomes, this connection is perhaps
taken too much for granted. If there were any uncertainty about the result of ac-
tion, the outcome state could be bifurcated by a chance event. But this still suggests
that it is easy to know the entailments of actions, and that downstream chance bi-
furcation does not actually cloud utility estimation. In this model, the problem
of arguing that situation + action, or milestone + investment, yields a particular
successor situation is central.

Perhaps the easiest argument of situational entailment is that left alone, the
momentum and time will cover the difference. Note that this presumes persistence
of momentum. An easier argument might be directly frequentist: “90% of retirement
accounts worth $500,000 by age 50, with continued contribution of 3% and 3%match,
achieved $1M by age 65.” A counterargument might be that there is a more specific
reference class of retirement accounts owned by people with young children at age
50, where the percentage that move to the next milestone is more like 50%.

A typical counterargument to entailment is derailment or deviation through haz-
ard: “What if the employer stops making matching contributions?” “Then there is
a commitment to change employers or add consulting work.” Rather than penalize
the prospect of attainment because of the contemplation of this event, a mitigation
argument is given, and a contingent commitment (like a control policy) is added to
the trajectory. Similarly, a counterargument could incur a non-contingent commit-
ment: “What if equities have substandard performance for a decade?” “There is a
non-contingent (preemptive) commitment to diversify.” Again, rather than change
the prospect of attainment, the counterargument causes the trajectory to be altered
by adding an investment. “What if the government changes the rules for tax-free
accrual?” Here, there is no response; this can be charged against the prospect of
attainment, or can lead to a low standard of CR adequacy (next paragraph).

Note that in this model, hazardous events do not have to be highly improbable,
disastrous events; they need only be potential deviations worthy of response.

In those cases where very damaging events with very low probabilities are con-
sidered, the model includes them in the membership of CR, which meets some CR†

standard that is one part of performance. The event-response pair <earthquake-
power-outage, generator-backup> is not as good as <earthquake-power-outage, four-
channel-independent-generator-backup>, though one must now argue the acceptabil-
ity of the increased cost of better mitigation. These are argued from precedents, with
standards such as minimal-liability-coverage, best-effort, meets-regulations, meets-
best-practices, meets-company-standard-for-ethical-behavior, or no-worse-than-US-
nuclear-power-safety. These arguments can be very direct from on-point precedents,
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or merely remote analogies. Obviously cost of mitigation is important. But what
we cannot do is draw a decision tree and try to estimate a very small probability
and a very large disutility, then take an expectation.

Since the standard for acceptability often resides in a domain of public or legal
appraisal of ethics or liability, arguing what standard can be met appears to match
the model to the reality. The question of having a backup plan, and allocating those
resources, is sometimes more important than pricing that backup plan when hazards
are out of scale. Having a backup plan for earthquake-power-outage and tsunami-
damage-to-generators is even better (superiority being reflected in inclusion, not
merely cardinality). Having lower-cost generators is not an immediate concern. In
the chess analogy, we are ignoring some pawn moves.

Still, the milestones in a trajectory can and should reflect the costs of invest-
ments and resources needed to meet contingent commitments. For example, if one
dimension of attainment space is cash-on-hand, and there is an investment com-
mitment of $100k in real estate funds as part of a diversification action in 2015,
then the $100k difference should be reflected in the transition from one milestone
(2015) to the next (2016), lest the prospect of entailment depend on magic. Simi-
larly, if CR contains <short-positions-called-in, cover-with-$30k-liquid-assets>, then
cash-on-hand or line-of-credit might require an increase along the trajectory. The
determination of the adequacy of a response is linked to the positions reflected in
the milestones.

Note that one could find a precedent case where more than $30k was required to
cover short positions, in which case the argument for the adequacy of the response
meets a lower CR† standard. Also, one could argue that the transition from one
milestone to the next has poor prospect if all of the commitments in CR are to be
maintained.

The important observation here is that the costs of commitments are reflected in
the milestones, but a numerical accounting of degree of mitigation, disutility under
disaster, and probability of worst cases is avoided; this critical appraisal is relocated
to the dialectic of entailment and performance standard, recognizing that much of
the information will be incomplete (whether from imperfect epistemics or vagueness
of description).

A simpler numerical case that showcases the mathematical expressiveness of this
approach might be something like counting beans that might also be eaten, with no
use of momenta.
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7.1 Bean Counting as a Simple Example of Notation

T0= <
# milestones
<
<0 counted, 10 uncounted, ? eaten>@noon,
<1 counted, 8 uncounted, 1 eaten>@dinner,
>,
# no momenta < >,
# prospects < <1, 1, ?>, <.9, .9, likely> >,
# investments { start-counting-at-3pm, eat-breakfast },
# events-responses { <fall-asleep, set-alarm> }
>

The first argument in pro-E1 is purely statistical: 90% of similar counting cases,
starting at 3pm, result in a bean counted by dinner. A second argument is quali-
tatively probabilistic, perhaps subjective: around dinner, eating one bean is likely;
eating one bean, given that breakfast was eaten, is likely. These two single-condition
(marginal) probability arguments would be defeated by a single two-condition (joint)
probability argument. The reference class might also be reduced to the subset of
hedonistic bean counters, who are likely to eat more than one bean around din-
ner. Such an argument would enter con-E12 but we would like the trajectory to be
justified at first.

As there is no cost or effort dimension, there is no place to reflect the mitigation
actions. Nevertheless, CR† might be a highly-effective standard of mitigation, and
the prospect of having counted the bean by dinner might even be argued to exceed
.9 under a Bayesian argument.

Rather than counterargue, perhaps T0 is accepted at its standard of justification,
but a new trajectory proposed as improvement:

T1= <
# milestones
<
<0 counted, 10 uncounted, ? eaten>@noon,
<2 counted, 7 uncounted, 1 eaten>@dinner,
<3 counted, 6 uncounted, ? eaten>@midnight
>,
# no momenta < >,
# prospects < <1, 1, ?>, <.9, .9, likely>, <.8, .8, ?> >,
# investments { start-counting-at-1pm, eat-breakfast },
# events-responses { <fall-asleep, set-alarm>, <lose-a-bean, buy-a-bean> }
>
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That is, by starting counting two hours earlier, one can argue the prospect of
having two beans counted by dinner to the same level of probability. Moreover, the
standard for risk mitigation is higher because a second hazard has been addressed.
It was easy to construct an improved set of milestones because there is not yet an
accounting of cost and effort. This trajectory also steps further into the future, so
it has superiority in that respect.

7.2 Retirement Cash Drawdown Example
This example refers to the planning of funds used in retirement for assisted living,
where the sale of a major asset needs to be timed well, there is an interval-valued
forecast of return on real estate, and there is high burn rate for cash.

T0= <
# milestones
<
<$200k cash on hand, $800k real estate valuation>@2014,
<$130k cash on hand, [$840k, $920k]>@2015,
<$60k cash on hand, [$848k, $924k]>@2016
>,
# momenta
<
<-$70k/yr, [+5%, +15%]>,
<$70k/yr, [+1%, +10%]>,
<-$70k/yr, [-5%, +15%]>
>,
# prospects
<
<1, 1>,
<likely, likely>,
<likely, likely>
>,
# no investments { },
# events-responses
{ <return-drops-below-3%, sell-real-estate-asset>, <cash-on-hand-below-$30k, sell-real-

estate-asset>}
>

The counterargument that might be helpful here is that the proposed asset sale as
mitigation of low cash on hand is inadequate because of illiquidity. The argument
might refer to the range of time it takes to sell property of this kind. A typical
financial decision model might consider the average time to sell, with a forecast
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average return on real estate, and try to calculate the latest time to sell based on
positive expected investment growth prior to the last-sell-date.

A better model would consider bounds at acceptable risk levels: not just the
averages, but the time to sell at an acceptable probability, and the return on real
estate lower bound at an acceptable probability. A risk analysis might sell too early,
failing to recognize that some better mitigations might permit higher attainments.
It tends to be defensive rather than generative. Here, attainments can be ratcheted
higher. For example, having an offer in hand, even below market price, might permit
cash-on-hand-below-$30k event, or having a pre-approved line of credit on the asset
might even be better, permitting a longer holding of the asset.

While optimality is not a part of this model, improvement of attainment, and
prospect of attainment, perhaps at lower cost, and for a longer time, is shared with
the utility-maximizing crowd.

8 Additional Discussion of Elements II: Comparisons

Some will want to compare this model to goal-oriented AI planning. Just as in AI
planning, much attention is given to the succession of states and the component-by-
component, possibly incomplete description of successor states.

In AI, there is a logical derivation of properties, usually with an emphasis on the
derivation from logical expression of precondition, action, and effect. This derivation
may use default rules of causal efficacy, or persistence of properties under non-
action. These are reflected in the possibility of causal entailment argument here. AI
planning may include probabilities of properties, which is like a dual of probabilistic
argument of succession, with an emphasis on the uncertainty of a Holds(p, a-applied-
to-s) relation rather than the uncertainty of a Leads-To(<p, q>, <p’, q’>) relation.
AI robotics path planning also includes Markov Decision Processes based on state
transition probabilities (see for example, [32] and [29]). The author does not know
of AI planning models that consider hazard mitigation with the same importance
it is given in risk analysis (though see [63] and other work using AI planning for
security).

In this model and AI planning, the emphasis is on achieving specified goals
by committing to action. The costs of those actions, and the relative desirability
of various partial goal satisfaction, are not normally subjected to utility analysis.
Thus, a plan that achieves three goals in five steps, using four actions, does not
receive a score that can be compared with a plan that achieves two different goals
in four steps, using eight actions.

For the same reason, it may be a mistake to think of investments as reductions
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of value. In AI planning, if an action is found that produces the desirable outcome,
the relative cost of the set of actions is rarely quantified and subtracted from the
value of its entailments. This could be a flaw in the set-up, or a failure to value
the efforts of an automaton (but not all AI planning problems are intended to be
executed by computers or robots). Or it could be a different perspective on the
interplay of attainment and commitment, where the appraisal of commitments is
based more on utilization, obligation, responsibility, or free exercise of will.

For those who routinely use utility to compare n apples to m oranges, the re-
luctance to rely on exchange rates, to price actions, time, and policy commitments,
may seem a step backwards. How can one compare high achievement at one cost
against higher achievement with an additional cost? How can one compare more
apples and fewer oranges against fewer apples and more oranges? The short answer
is that we do not attempt to. It may be the illusion of numeric exchange rates that
has distorted choice theory in the first place. In an era where aspirations are per-
sonal and experiential, like backrubs instead of widgets, where liabilities are dyadic
and contextual rather than universal, it is hard enough to describe the objects of
value, much less measure their intensity on ratio scales, and worse, to find among
the multitude of scales a projection into linear order.

For those who routinely discount utility by probability (or by time), the reluc-
tance to use probability to reduce aspiration levels by multiplication may seem an
irrational abstinence. Why not penalize the aspiration by the prospect of its at-
tainment, in proper proportion? What good is a numerical probability except to
produce an expected value?

The answer is that not all decision making takes place in casinos with exhaus-
tively known possibilities, physically-based chance mechanisms, and the law of large
numbers. Epistemic probability is a guide to belief, but might not be a good way
to reduce the levels of attainment. Subjective probability may have been too good
to be true, as “that kind of probability that permits betting on proportionally dis-
counted values.” Probability arguments, and unbounded unknown unknowns, lead
to forbearance here. The future, or its perception, may be full of uncertainty, but
that does not mean it is full of lotteries. Even Abraham does not look upon Ishmael
and see a 50% lottery on Isaac.

Risk methods often take some metrics as constraints and optimize other at-
tributes subject to the satisfaction of that constraint. Here, the constraints are
adopted on the adequacy of argument, and search for improvement of what can be
justified replaces the requirement of optimality.

What about upside risks? Risk analysis tends to look pessimistically at the
downside risks, to counter uncriticized optimism. But sometimes there is an upside
opportunity. If it can be expressed as a highly probable attainment, or even an
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arguable possibility under a weak standard, it could be put in a milestone. Many
gains however are improbable. In those cases, there is a choice of putting a proba-
bility or expectation of a gain in A-space, as a binary-valued attainment, with very
good probability. Then the evaluation of this attainment, as a part of performance,
depends on ancillary argument: perhaps there is a table directly showing cost and
expectation tradeoffs that are justifiable. Thus, the arithmetic of expected utility
can sometimes be included and can be informative and persuasive.

Another choice is to represent the upside risk as a mitigable event, where the
mitigation is actually a plan for what might be done with that gain. In cases where
utility is linear in money, where there is no penalty or reward for process, and prices
and rewards are both in dollars, the mediation of exchange through argument will
seem cumbersome. But replace the reward with something less pecuniary, such as a-
uniquely-pleasant-backrub or a-personally-guided-trip-around-the-world, and the use
of argument to mediate the cost and chance reward makes perfect sense.

8.1 A Different Argument Over a Lottery Ticket Example

Consider again the decision to buy, or not, a lottery ticket, this time for $1 with
a 1/1000 prospect at $995, tomorrow, to be drawn next week. This time, the
accumulated dollar cost of the lottery is tracked as part of the milestone:

T0= <

# milestones

< <-1 dollar, chance-at-$1000>@next-week >,

# no momenta < >,

# prospects < <1, 1> >,

# investments { buy-ticket@tomorrow },
# no events-responses { }
>

This can immediately be refined by extending the length of the trajectory:
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T1= <
# milestones
<
<-1 dollar, chance-at-$1000>@next-week,
<-1 dollar, chance-at-$1000>@next-week-and-a-day
>,
# no momenta < >,
# prospects < <1, 1>, <.999, 0> >,
# investments { buy-ticket@tomorrow },
# no events-responses { }
>

One could argue that a week’s worth of having a chance at $1000 can be traded
for $1 from some precedent argument (that argument would appear to require an
earlier milestone showing the chance-at-$1000 starts tomorrow). Presumably there
are also precedents, or rules, supporting the non-exchangeability of $5 or $10 for the
one week enjoyment of possibility. This would reflect some of the actual reasoning of
people who derive process value. Counterargument could also look at the prospect
of the lottery being unfair, or a scam, or unlikely to be payable (the current situation
with the Illinois state lottery during budget stalemate).

One could add the dimension of a specific 0.1%-chance-at-$1000, or a specific
expected-99.5-cent-win, the former representation permitting a risk-affinity (or risk
aversion). It may be hard to justify much attainment performance until the upside
risk is shown as a CR member:

T3= <
# milestones
<
<-1 dollar, 0.1%-chance-at-$1000, expected-99.5-cent-win>@tomorrow,
<-1 dollar, 0.1%-chance-at-$1000, expected-99.5-cent-win>@next-week,
<-1 dollar, 0.1%-chance-at-$1000, expected-99.5-cent-win>@next-week-and-a-day
>,
# no momenta < >,
# prospects < <1, 1, 1>, <1, 1, 1>, <.999, 0, 0> >,
# investments { buy-ticket@tomorrow },
# events-responses { <win-lottery, spend-$600-after-tax-windfall-irresponsibly-during-

three-year-payout> }
>

Now an argument about mitigation acceptability, where the mitigation is an up-
side hazard in exchange for a mediocre attainment, might be produced. Presumably,
the alternative is an envisionment of the status quo, though even that envisionment

228



Against Narrow Optimization and Short Horizons

gives a place for the time value of money at 5%, and the opportunity cost of $1 cash
on hand:

T4= <
# milestones
<
<0 dollars difference>@tomorrow,
<0.001 dollars difference>@next-week-and-a-day
>,
# momenta < <5.2% per year interest>, <5.2% per year interest> >,
# prospects
< <1>, <.95> >,
# investments { leave-dollar-in-bank@tomorrow },
# events-responses { <rare-ten-for-one-dollar-menu-sale, spend-$1> }
>

8.2 A Different Look at the Risk Analysis Example

The classic risk analysis process does not look so different in this framework. Here
is the first move in the decision to build the Clinton, IL nuclear power plant for $4B
with some operating costs, potential cost overrun, and CO2 impact represented:

T1= <
# milestones
<
<$4 billion dollar or less cost, 9250 Gwh/yr, 0 ton or more CO2 reduction>@1985,
<$54 billion dollar or less cost, 9250 Gwh/yr, 4G ton or more CO2 reduction>@2035
>,
# momenta
<
<$1B/yr, 0, 80M ton CO2 reduction/yr>,
<$1B/yr, 0, 80M ton CO2 reduction/yr>
>,
# prospects
<
<.75, .95, 1>,
<.85, .9, .9>
>,
# investments
{ build-GE-BWR-at-Clinton-IL@1975 },
# no events-responses { }
>
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At least three events are immediately contemplated: 100%-or-more-cost-overrun,
wind-energy-cost-competitive, and nuclear-meltdown. The contingent commitments
are: raise-state-taxes-1%, close-plant-early, and evacuate-Springfield-Urbana-
Normal-and-Peoria.

The adequacy of each response must take into account the relative likelihoods
as well as the severity-post-mitigation. The tax-increase scenario might meet a
business-as-usual-for-IL standard, but might actually be probable enough to raise
an expected-cost dimension, which could be added to A-space in addition to the cost
bound. The early plant closing, while improbable, might drive down the prospects
of reaching the fifty-year operating life; the prospect of 9.25 Gwh production at
2035 could be counterargued, at least forcing reference to more specific classes,
e.g., power technologies unchallenged for 50 years, yielding a weaker probability
argument. The evacuation plan might be unacceptable, and force the proposal of a
different mitigation plan, such as a different location or a different reactor design.

9 Additional Discussion of Elements III: Criticism

One obvious criticism is that milestones may not be achieved, even when their
prospects are quite good. This corresponds to the “good decision, poor outcome”
response in decision theory. Sometimes deviation from milestone values is a mitigable
event for which there is a committed response. In other cases, failure to meet the
milestones may simply be an opportunity to re-plan.

Another obvious criticism is that the requirement of iterative improvement may
be too strong, leading to local maxima, with sensitivity to starting proposals of
trajectory. There is certainly a legitimacy to consideration of multiple trajectories,
which are non-comparable with respect to the many performance measures in play.
One way of using multiple maxima would be to insist that the chosen trajectory be
one of the maxima, that is, a non-dominated solution. Then iterative improvement
could be replaced with iterative construction of non-dominated alternative trajecto-
ries. They could also be generated with Monte Carlo starts and monotonic ascent.
The problem with a reluctance to build linear orders is that a plethora of maxima
can appear. The serendipity of a specific starting point solves that problem, but
does so in an unsatisfying way.

It seems fair to assume, however, that the choice problem begins with aspiration
levels (minimum attainments), standards of justification and standards of mitigation,
and permissible expenditures (maximum costs). If we seek to put a man on the moon
within ten years with high probability, typical risk for experimental pilots, and a 4%
of federal budget spending limit, the counter proposal of putting twice as many men
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on the moon, within eight years, with added risk, and 6% of budget is perhaps not
very interesting. Finding alternative maxima does not actually produce indecision
if there is a trajectory that meets specification.

The search is to produce a more detailed refinement of the trajectory into spe-
cific milestones (thus improving prospects and refining investment commitments),
a higher standard of risk mitigation, a longer trajectory perhaps, and alternative
commitments that might achieve other desired performance. Increasing levels of
attainment is possibly the last place to search for alternatives, if it concomitantly
adds cost, impoverishes prospect, and lowers standards.

It is true that failure to find an acceptable trajectory, at willing cost and stan-
dard, will cause reductions in aspiration, and at this point multiple maxima can
appear. Then it may be better to consult the dynamics of which aspirations are
most adjustable rather than to generate mathematically unorderable alternatives
willy-nilly. Failing to find an acceptable program development plan for a 1969 moon
landing, the first question should be “which aspiration, or standard, should be first
to yield?” The alternative question, “Do you prefer 11 years at 3% federal budget
with 10% fewer mitigated hazards, or 9 years at 5% federal budget with 20% more
hazards, most of which are mitigated?” seems to be an unhelpful confusion of detail
rather than a commanding of goals.

Another criticism might be that probabilities and expectations are being calcu-
lated, but they are being hidden in the description of attainments and the evaluation
of justifying arguments. Meanwhile, estimating the prospects of hitting milestones
is just as burdensome an estimation of probability.

First, there is a lot of estimation of probabilities in the examples, and the ar-
gumentative basis for these estimates is not being given in detail. Partly this is
because the examples are trying to illustrate sample argument moves. If there is
insufficient description of data, there cannot be much nuanced probability argument.
On the other hand, if we started with a richly described data set, such as a pharma-
ceutical or hospital outcome, or a baseball team’s stats late in the year, then even
hazards such as sepsis, allergic-reaction, hit-by-pitch and pitcher-injures-arm could
be calculated without conjecture.

Furthermore, the examples here give numerical point-valued prospects to build
a bridge to decision theory. In real examples, interval-valued and discrete-valued
probabilities are more likely to appear. Argument permits continuing to work with
such inexact values. While there may be gaps in rules for constructing arguments,
there may be many hypothetical cases added, on demand, to the case base. Judg-
ment of novel and hard cases is provided by the analyst if necessary, and these serve
as bounding constraints on future cases.

Finally, with a standard in mind, such as a specific regulation, all of the numerical
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estimates of prospect could be replaced with the simple and easy meets-required-
standard.

Perhaps the most important criticism to consider is whether expenditures can be
hidden in the investments and responses. One would expect quantified
environmental-impact to appear as an attribute rather than a source of investment:
<running-out-of-gas, frack-more> is not the preferred way to justify hitting mile-
stones. One can still hide aspects of action and consequence from the performance
appraisal, but the excuse for doing so would not be “because it is hard to quan-
tify, difficult to convert to utility measure, or impossible to ascertain at the given
horizon.” Meta-argument over model formulation is also possible.

Aspiration levels are defined so that vague, hard to measure attributes can be
included. There could be an attribute for effort, inconvenience, attention, diligence,
or vigilance. It seems that enlargement of A-space might be part of the dynamics
of modeling not considered here. As events are considered during counterargument,
some responses raise the prospect of accounting for expenditures as new dimensions
in milestones.

Perhaps there are monetary investments envisioned, but there is no correspond-
ing milestone attribute accounting for cash outlays. This could be a modeling error
or weakness. But even if these aspects are not reflected in A-space, they still appear
in the prospects and I† performance measures. Philosophically, one could want the
personal sacrifices to be investments rather than attainments, if only because they
enable path connectedness.

If an investment requires skill, invention, magic, or miracle, situational entail-
ment is subject to frequency counterargument as well as causal counterargument.

If a mitigation response requires redundant infrastructure, one would usually
want it to be reflected as a cost attribute. But sometimes not. What if a laptop
really is an extra resource on hand, that can be allocated to the project with no
opportunity cost? What if an army has pre-allocated man-power, or a farm has
excess, unmarketable, crop yield not written under contract? What if a gardener is
willing to dig a better hole to improve the prospects of survival or a parent is willing
to read another book to a child to better ensure early literacy? Perhaps a strong
national effort makes a nation stronger and a strong personal effort makes a person
better. During a coronary artery bypass graft operation, backup power is routinely
at ready against a shared risk. Should all these things be measurable as incurred
costs? Perhaps some costs are better treated like standards of proof and standards
of mitigation; they are standards of feasibility, or “the cost of doing business,” and
they function as constraints, not as first-class objectives themselves.

A final criticism to be considered here is that the argument forms given in the
examples can be quite complex and may be difficult to represent formally. After
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all, the advance in argument theory that makes this framework possible is a formal
accounting of argument forms. This paper acknowledges that there may be a gap
between argument formalism and arguments hypothesized here. There might be a
small gap, or a large gap, and further investigation will reveal what work needs to
be done in argument and practical reasoning to bridge the gap.

9.1 Invasion Example
T0= <

# milestones
<
<Saddam-in-power-9, air-defenses-intact, 0%-land-control, 9-resistance, 0-losses>@March19,
<Saddam-in-power-6, air-defenses-disrupted, 0%-land-control, 9-resistance, 0-losses>

@March20,
<Saddam-in-power-5, air-defenses-decimated, 5%-land-control, 9-resistance, 0-losses>

@March22,
<Saddam-in-power-4, air-defenses-decimated, 15%-land-control, 7-resistance, 0-losses>

@March24,
<Saddam-in-power-0, air-defenses-decimated, 95%-land-control, 1-resistance, 2-losses>

@April15
>,
# momenta
<
<0, 0, 0, 0, 0>,
<-1, -1, 0, 0, 0>,
<-1, 0, +10%, -2, .1>,
<-1, 0, +10%, -2, .1>,
>,
# prospects
<
<1, 1, 1, 1, 1>@March19,
<.8, .9, 1, 1, .9>@March20,
<.8, .8, .9, .9, .6>@March22,
<.7, .9, .9, .9, .6>@March24,
<.6, .95, .5, .5, .5>@April15
>,
# investments
{
send-20-SL-cruise-missiles@March20, special-ops@March20,

airstrikes@March22, Airborne101-enter-Basra@March22
},
# events-responses
{
<SL-missiles-miss, send-20-AL-cruise-missiles>,
<US-aircraft-shot-down, ?>
}
>
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This first trajectory has some problems:

Entering only through Basra, the rate of reduction of Saddam in power (possibly
this is even a probability, so the prospect is a meta-probability) may be
optimistic, as reflected in the .8, .7, and .6 probabilities.

Entering Basra on the same day as airstrikes may put the probability of 0-losses
as low as .6. With no other investments, the milestone on April15 is not
impressively probable.

And there is no mitigation policy for the event of a lost attacking airplane. There
is only a low standard to which this trajectory can be justified.

One alternative is to lower the aspiration of 0-losses on March24, begin the
airstrikes earlier on March22 (increasing the probability of a US aircraft being shot
down), push back the milestones and the action to enter-Basra on March22, or
provide additional investments, such as a larger cruise missile strike.

There should also be a response policy for the event of a lost aircraft, or an
argument (from precedent?) that such a hazard is acceptable for this plan. The
obvious trajectory extension, a glaring omission of the current plan, and a desirable
result of improved analysis, is a milestone that describes the situation after the
removal of Saddam.

10 Conclusion
This author can actually remember when the decision models of Howard Raiffa
were first gaining popularity in his management school [59], at the same time that
Richard Wilson was first talking about risk analysis applied to the adoption of new
technologies by the nation [67]. The two views were emerging on the same campus,
both taught in the same building, Pierce Hall, and they were not yet canon in their
respective choirs. Raiffa’s early coauthor, John W. Pratt [57] surprised us when he
said that the decision trees were not supposed to be calculating devices that produced
surprising answers. They were not oracles, or crystal balls, from which the hidden
solution would tumble. They were supposed to raise “What if?” questions and help
structure those questions. The key word in “decision analysis” was the “analysis.”
This turns out to be a better description of current risk management processes than
current expected utility analysis.

Decision analysis starts with a set of choices and tries to maximize expected value
as a proxy for direct preference. Sometimes it is easier to start with preference,
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or aspirations, and determine choices. Starting with broad and sometimes vague
specifications, one can search to find choices that satisfy those specifications. Risk
analysis and AI planning start here. There is a search for a plan and a search
for a justification of the plan. With defeasible reasoning, critical appraisal might
instead be focused on the processes of search and justification. This paper relies
on formal models of argumentation for that justification, while search is left as
an unconstrained process (perhaps search is optimal in some way; perhaps it is
serendipitous; perhaps it reflects a person’s willingness to make compromises).

Argumentation is also used to manage an irreducible, partially specified, variable
multi-attribute decision model with longer trajectories that might have momentum
(default change of state). Argumentation also carries the weight of hard-to-quantify
and hard-to-know discrete and binary attributes, and the possibility of comparing
across multiple scales of attainments. Hazards and mitigations are considered iter-
atively and impact the justification.

The principal contribution is the mathematical framework that provides a place
for formal argument in the evaluation of paths and entailments; probability is used as
a standard for path coherence (not as a discount for uncertain outcome values); ac-
tions and mitigations are used to impact probability arguments, and they are used to
determine standards of justifiability. Accounting is not based on expectation, but on
meeting attainment levels, subject to commitment. Choice is not forced by optimal
achievement, but is justified by envisionment, which includes meeting and raising
standards, lengthening paths, and providing more specificity about milestones. The
framework proposes navigating an increasingly specified and plausible, defensible
path into the future, possibly deflected, but set aright.

Instead of maximizing lottery-based, expected-utility bundles for selecting opti-
mal choice under precisely measurable outcomes, consider arguing milestone-based,
standard-attaining trajectories for refining commitments when faced with poorly
predictable hazards.
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Abstract

We give a faithful interpretation of Bayesian networks into a version of nu-
merical argumentation networks based on Łukasiewicz infinite-valued logic with
product conjunction. The advantages of such a translation, beyond the theoret-
ical aspects of it, are hopefully threefold: 1) importing updating algorithms into
argumentation networks; 2) importing the handling of loops into cyclic Bayesian
networks; and 3) importing logical proof theory into Bayesian networks.

Keywords: Bayesian Networks, Argumentation Theory, Numerical Networks

1 Introduction
In this paper, we compare probabilistic argumentation with Bayesian networks and
motivate the new definition of Bayesian Argumentation Networks. We examine what
extra features are needed to extend traditional abstract argumentation frameworks
to enable the extended frameworks to simulate Bayesian networks. Once we identify
such features, then we can call the extended argumentation frameworks by the name
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Bayesian Argumentation Networks. We shall see later that the extra features are
all well-known features existing in the literature in various contexts.

In order to illustrate these ideas, consider the network 〈S,R〉 of Fig. 1. In
this figure, the arrows just indicate parenthood. If the arrows are considered as
attacks, then 〈S,R〉 is a traditional abstract argumentation framework (henceforth
a “Dung network”), and there is only one complete extension E = {X,Y, U,W}
(with A = “out”).

X Y

A

U W

Figure 1: A sample argumentation network.

The operating assumptions (which are violated in Bayesian networks) are:

1. Since there is no connection (i.e., attack) going into X and into Y , then X
and Y are “in” (intuitively meaning X = Y = >).

2. Since U and V have the same parent A, we treat U and V in the same way.

3. We do not mind having cycles, i.e., R need not be acyclic.

There are other assumptions in the case of argumentation networks, but let us
concentrate only on the ones above.

Bayesian networks do not allow for cycles (R must be acyclic) and they do not
determine the values of nodes without parents, such as X and Y . Moreover, they
are not committed to treating nodes with the same parents (such as U and W ) the
same way. Such a view is not new to argumentation. In fact such a view is shared
by Abstract Dialectical Frameworks (ADFs) [6]. In an ADF, each node α depends
on its parents, say {β1, . . . , βn} via a Boolean formula Ψα specific to α. Thus, we
have that α depends on Ψα(β1, . . . , βn) in the ADF case and we want that

α↔ Ψα(β1, . . . , βn).

In Dung’s networks, the same constraint Ψα is imposed on all nodes α, namely

α↔
n∧

i=1
¬βi
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where “∧¬” is the Peirce-Quine connective

↓ {Ei} = ∧ni=1¬Ei1

Still, we do not have many options when we treat the network of Fig. 1 as an ADF.
Since X and Y depend on the empty set, then each can be either > or ⊥. A depends
on X and Y , and these being > or ⊥ allow for A to be either > or ⊥ and similarly
for U and W . So depending on the Boolean functions Ψα employed, we can get all
possible distributions of {⊥,>} among the nodes in Fig. 1.2

If we allow source nodes such as X and Y to have arbitrary given values in
[0, 1] and are able to describe the desired dependencies between node values in
an argumentation context, then we can bridge the gap between the Bayesian and
argumentation representations and hence analyse the properties of the former under
the perspective of the latter. This can bring benefits to both areas which we will
discuss later.

We find that the probabilistic approach to argumentation is the nearest we can
get to Bayesian networks. We identify that what is missing in the probabilistic
approach is a representation of conditional probabilities, a feature which is central in
Bayesian networks. We further realise that if we define new argumentation networks
based on joint attacks defined numerically using Łukasiewicz infinite-valued logics,
we will have what we need. The integration of conditional probabilities and joint
attacks is one of the objectives of this paper.

The rest of the paper is structured as follows. We start with a description
of the probabilistic approach to argumentation in Section 2. The section is writ-
ten in a Socratic manner, leading the reader to our conclusions using examples
and semi-formal definitions. Section 3 gives the formal definitions in a systematic
manner. Section 4 contains a comprehensive example illustrating what we have
done. Section 5 deals with complexity issues. Section 6 discusses related literature
[3, 4, 9, 16, 5, 19, 20, 8, 21, 22, 24, 25, 27]. In Section 7, we conclude with a discussion
and directions for future research.

1Notice that the other boolean connectives can be defined in terms of ↓, for instance, ¬P ≡ P ↓
P .

2As pointed out by one of the referees, the reader might think that this is a shortcoming of
ADFs in the sense that initial arguments, being dependent on the empty set, can only have a fixed
value. However, there is also the possibility to consider all initial arguments A as self-looping with
acceptance condition A. In this case most semantics then yield a “guessing” value for A. We should
however be cautious in not allowing too many modifications. It is known that enough modifications
can reduce ADFs to traditional argumentation systems (see [14]).
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2 Background Discussion
This section develops in a Socratic manner the features we need to reach a proper
representation of a Bayesian network as an extension of an argumentation network.
We therefore turn to the probabilistic approach to argumentation, it being the near-
est to Bayesian networks. We need some notation before we describe it. As a
starting point, we consider the elements of S = {X,Y,A,U, V } as classical proposi-
tional atoms capable of getting the values α = > (corresponding to α is “in”) and
α = ⊥ (corresponding to α is “out”). Let us understand the term full conjunction of
literals to mean a conjunction containing for each atom α of the language (which is
assumed to be finite) either α or ¬α. Any full conjunction of literals of the form

e = ∧iα±i

can be considered a classical model m(e). We have

m(e) |= α iff e ` α

We can also associate with e a subset Se of S, Se = {α ∈ S | e ` α} (remember
that the elements of S are atoms without negation). So if we assign probability
distributions π on the modelsm(e) or on the set of full conjunctions of literals {e}, we
get a traditional probability function π on the space Ω = 22S = families of models =
2{e} = the set of all propositional well-formed formulae (wffs) built-up from the
atoms of S.

In our example, S = {X,Y,A,U, V }. 2S = all subsets of S = all models of the
language S. Ω = 22S = all possible sets of models. So π gives a value 0 ≤ π(m) ≤ 1,
for each model m of S. We have that ∑

m π(m) = 1.
According to [13], the probability π(m) for a typical conjunctive model m(e)

where e = ∧α∈Sα± can be given in two main ways.

i) The semantic way, which gives values π(m(e)) directly for each e.

ii) The syntactic way, which gives values π(α), for each α ∈ S, and then π(m(e))
is defined as the product ∏

α

π±(α)

where π+(α) = π(α) and π−(α) = 1− π(α).

So for example in Fig. 1, we either give probability directly to each model, e.g., to
e = X ∧ Y ∧ ¬A ∧ U ∧ ¬W or give probabilities to each of X, Y , A, U and W , and
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then the probability of e can be calculated as

π(X) · π(Y ) · (1− π(A)) · π(U) · (1− π(W ))3

The version of the probabilistic approach to both Dung or ADF which can be
compared with the Bayesian approach is the syntactical one, ii) above, the one
which assigns probabilities to nodes (not the one that assigns probabilities to the
subnetworks). Thus each of the nodes X, Y , A, U and V is assigned a probability
value.

The most general case of getting such probability is to regard the arguments as
atoms in a space (i.e., S = {X,Y,A,U, V }) and assign probabilities to the subsets of
S. This is a traditional probability distribution. Note that the subsets E ⊆ Ω = 22S

can also be identified with sets of models of formulas built-up using atoms from S.
We now show a connection of probabilistic argumentation with Bayesian argu-

mentation. Both Dung and ADFs would read Fig. 1 as follows. The figure suggests
the probability space being the family Ω = 22S of all subsets of S = {X,Y,A,U, V }
and the connections (arrows) in the figure suggest restriction on the probability π
on Ω. We want to consider only those probabilities which satisfy for every α ∈ S
with parents {β1, . . . , βn} the following:

π(α) = π(ψα(β1, . . . , βn))

Remember that each wff defines a set of models in which it holds, and π is a prob-
ability on sets of models. Thus π gives a number 0 ≤ π(m) ≤ 1 to each model m of
the language of S with ∑

m π(m) = 1.
Bayesian argumentation looks at the elements of S as random variables capable of

getting > or ⊥, and regards all probability functions P (α1, . . . , αn) where {αi} = S.
In our case we have probability functions P (X,Y,A,U, V ). Thus for each com-

bination of values of > or ⊥ to the variables in S, P will give a probability.
Such a combination can also be viewed as a model m for the language of S, and

so P gives probability to models. This is the same as π, but the restrictions on
P and the manipulation of P are different in this case. We have, according to the
Bayesian view, that Fig. 1 gives the dependencies of the variables on each other. Let
{β1, . . . , βn} be all the parents of α and P (α|Z) denote the conditional probability
of α given Z. We have the following equations:

P (α) = P (α | β1, . . . , βn) · P (β1, . . . , βn)

3See [13].
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If α has no parents, then P (α) must be given. If α does have parents {β1, . . . , βn},
then P (α | β1, . . . , βn) must be given. P (α | β1, . . . , βn) can be given as a function
giving a value in [0, 1] for every choice of >,⊥ to each βi.

Thus the Bayesian approach specifies a syntactical type probability on the atoms
α ∈ S, by using the graph of the network and giving conditional probabilities for
the dependencies of the graph.

So for the network of Fig. 1 we need the following values to specify a specific
Bayesian distribution P :

• Values of the probabilities of the source nodes X and Y , i.e., P (X) and P (Y ).

• A table of values v, describing the coefficients of the function P (A|X,Y ). We
use the notation FA|11 for the case A|X ∧Y , FA|10 for the case A|X ∧¬Y , etc.
We denote the transmission coefficient for each case as eFA|11 , eFA|10 , and so on:

X Y v

> > eFA|11

> ⊥ eFA|10

⊥ > eFA|01

⊥ ⊥ eFA|00

• A table for P (U |A):

A v

> eFU|1
⊥ eFU|0

• A table for P (W |A):

A v

> eFW |1
⊥ eFW |0

Note that the network of Fig. 1 actually depicts Pearl’s famous Earthquake
example [20] as described in the book “Bayesian Artificial Intelligence” by Korb and
Nicholson [17]:
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“You have a new burglar alarm installed. It reliably detects burglary,
but also responds to minor earthquakes. Two neighbors, John and Mary,
promise to call the police when they hear the alarm. John always calls
when he hears the alarm, but sometimes confuses the alarm with the
phone ringing and calls then also. On the other hand, Mary likes loud
music and sometimes doesn’t hear the alarm. Given evidence about
who has and hasn’t called, you’d like to estimate the probability of a
burglary.”

Replacing X with “Burglary”, Y with “Earthquake”, A with “Alarm”, U with
“John calls”, and W with “Mary calls”, gives the Bayesian network:

Burglary Earthquake

Alarm

John calls Mary calls

For simplicity, we will continue to use the letters X, Y , A, U and W .
Let us assume the following values. P (X) = 0.01, giving P (X = >) = 0.01, and

P (X = ⊥) = 0.99; P (Y = >) = 0.02, giving P (Y = ⊥) = 0.98; and the values
given by the tables below:

X Y v

> > eFA|11 = 0.95
> ⊥ eFA|10 = 0.94
⊥ > eFA|01 = 0.29
⊥ ⊥ eFA|00 = 0.001

A v

> eFU|1 = 0.9
⊥ eFU|0 = 0.05

A v

> eFW |1 = 0.70
⊥ eFW |0 = 0.01
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We can now compute the probabilities P (A), P (U) and P (W ).

P (A) = eFA|11 × P (X)× P (Y ) +
eFA|10 × P (X)× (1− P (Y )) +
eFA|01 × (1− P (X))× P (Y ) +
eFA|00 × (1− P (X))× (1− P (Y )).

P (W ) = eFW |1 × P (A) + eFW |0 × (1− P (A)).

P (U) = eFU|1 × P (A) + eFU|0 × (1− P (A)).

So

P (A) = 0.95× 0.01× 0.02 +
0.94× 0.01× 0.98 +
0.29× 0.99× 0.02 +
0.001× 0.99× 0.98.

= 0.00019 + 0.009212 + 0.005742 + 0.0009702
= 0.0161142 ≈ 0.016

So P (¬A) ≈ 0.984. Now for U and W , we get

P (W ) = (0.7× 0.016) + (0.01× 0.984) = 0.0112 + 0.00984 ≈ 0.021.

P (U) = (0.9× 0.016) + (0.05× 0.984) = 0.014 + 0.0492 ≈ 0.063.

Thus we can see that we have a syntactical probability distribution on S.

2.1 A Common Ground for Bayesian, Argumentation and Abstract
Dialectical Frameworks

To compare Bayesian networks with say ADFs or with traditional Dung networks, we
need to go to a common ground. First we note that with any formal system, whether
it be a logic such as classic or intuitionistic logic, or whether it be a Bayesian, ADF
or traditional argumentation network there are always two components. The first
one is the intended meaning of the system. The second is the formal mathematical
representation of the system and the mathematical machinery of handling it. When
we compare two such systems we can compare them in regard to their formal ma-
chinery or we can compare them in their intended meaning. It may be that two
systems have the same formal machineries but completely different meanings. This

248



Bayesian Argumentation Networks

happens a lot in modal logics with possible world semantics. In the case of a network
〈S,R〉, the intended meaning may impose some restrictions on the graph. In an ar-
gumentation network the arrows mean attack; the variables get values “in”, “out”
and “undecided”; and unattacked nodes must get value “in”. In Bayesian networks
the arrows represent dependencies and there is the requirement of the network being
acyclic. In addition, nodes with the same parents in Bayesian networks can behave
differently, which is not the case in the traditional argumentation but is the case in
ADFs. In ADFs the arrows represent dependencies and there is no requirement of
being acyclic. Having said all that let us now compare the systems on the basis of
their mathematical machinery which can be captured by the two points below.

a. Since Bayesian networks allow for points without parents to have an arbi-
trary probability assigned to them, Bayesian networks can agree to limit such
assignment for the sake of common grounds with argumentation and assign
probability 1, we can assume a similar sacrifice and the same property for
ADFs. If, on the other hand, we want to leave Bayesian networks as they are
(not ask them to make any limitations) but we still want to have common
ground with respect to this property with ordinary Dung networks, we can
modify Dung’s networks, and add for each node α a new node called ¬α, with
α and ¬α attacking each other. This will allow any node α which was origi-
nally unattacked to get any value in the modified network, because it will be
part of the cycle {α,¬α}.
We can also assume, for Bayesian networks, the sacrifice limitation that nodes
with the same parents behave the same (we can call these Bayesian networks
BNA nets.4 We can also add this requirement (that nodes with the same
parents behave the same way) as an additional assumption on ADFs to make
them more in line with traditional Dung networks.

b. Bayesian networks are acyclic and since ADFs and traditional Dung networks
can also be acyclic, let us accept this additional restriction on them.

So we compare acyclic probabilistic ADFs with BNA nets and see what else we need
to add to argumentation networks to be able to implement Bayesian networks in
them.

The above discussion outlined several possibilities for finding common
grounds between Bayesian networks and Dung’s networks. We made what we think
is the best choice/approach, which we now proceed to explain.

4The letters “NA” stand for “nice-to-argumentation”.
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Looking again at Fig. 1, we see that what is missing in order to do a proper
comparison is the fact that Bayesian networks have the conditional probabilities.
Let us look at Fig. 2, which is the top part of Fig. 1.

X Y

A

Figure 2: The top part of the network in Fig. 1.

What the Bayesian approach does is to give arbitrary values P (X), P (Y ) (so we
have syntactical probabilities for X and Y ), but to get P (A), it uses transmission
values as given in Fig. 3. eFA|ij

are transmission coefficients in the sense of [1, 2] and
F ij is an attack formation in the sense of [12], to be explained below and formally
defined in Section 3.

F 11 : X ∧ Y F 10 : X ∧ ¬Y F 01 : ¬X ∧ Y F 00 : ¬X ∧ ¬Y

A eFA|00

eFA|10

eFA|11

eFA|01

We have P (A) = ∑
eijP (F ij).

Figure 3: An argumentation network with attack formations, transmission coeffi-
cients and joint attacks.

So what we need to accommodate Bayesian networks are argumentation net-
works with attack formations, transmission coefficients, and joint attacks obeying
the attack formula of Fig. 3. The semantics of such networks is best given using the
equational approach [15].5

5There are several different interpretations of basic argumentation notions. In traditional Dung
networks arcs represent attacks while in ADFs they represent dependencies It is natural then to
think that ADFs are closer in meaning to Bayesian networks because certainly arcs in Bayesian
networks are not attacks but dependencies. Our reader may therefore be puzzled at our translation
of Bayesian networks into argumentation where arcs represent attacks. We even use joint attacks.
We remind the reader that ADFs can be translated into traditional argumentation networks using
joint attacks and additional nodes. The additional nodes are used to help simulate the boolean
dependencies (see [14]). It may be possible to translate Bayesian networks into ADFs, but we
would need additional points and some kind of fuzzy propagation. It therefore makes more sense to
translate directly into traditional networks with attacks. Note also that numerical values associated
with nodes can have several interpretations: 1) a fuzzy truth-value; 2) a probability value express-
ing uncertainty about argument acceptance; 3) a value obtained in the context of the equational
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We now explain the components needed.

a. Attack formations

Consider Fig. 4 (L) and Fig. 4 (R). In Fig. 4 (L), we have that α attacks β.
We have

(a) If α = “in”, then β = “out”
(b) If α = “out”, then β = “in” (unless β is attacked by something else that

is not “out”)
(c) If α = “undecided”, then β = “undecided” (unless it is attacked by

something else that is “in”, in which case β has to be “out”)

α

β

α

Xα,β

Yα,β

β

(L) (R)

Figure 4

In Fig. 4 (R), we have two intermediary points unique to the pair (α, β). We
view this as an attack formation. It does the job of Fig. 4 (L). (a), (b) and (c)
still hold for Fig. 4 (R). Fig. 4 (R) is a general replacement for Fig. 4 (L), used
by Gabbay in [14]. It allows for the implementation of higher level attacks.6

approach as the result of some calculation. 4) a Bayesian probability value. The conditions when
two of such values coincide need to be investigated. For example, we do know that for the Eqinv

equational approach the numerical values can be viewed as probabilistic values where the arguments
are mutually independent [13].

6Higher level attacks are attacks on attacks. So for example, an academic professional argument
β put forward in favour of promoting three members of staff to the rank of full professor by virtue of
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For example the attack γ → (α → β) can be implemented as γ → Yα,β. The
two additional dummy pointsXα,β and Yα,β are just two “transmitting points”,
which allow the node γ to attack the transmission by attacking the point Yα,β.
We do not need higher level attacks in this paper but it is useful to know
how useful attack formations are in translations/implementations. We use the
notation F [α, β] as in Fig. 5.

α

F [α, β] =

auxiliary points
xα,β, yα,β, . . .

appearing only in
this diamond

β

Input α

Output β

Figure 5

Attack formations can be single arguments as in Fig. 6. The argument A is
both the input and the output point of the formation.
Attack formations can attack each other, as in Fig. 7. The output point of
formation F 1 attacks the input point of formation F 2.

b. Transmission coefficients

their brilliant performance may be attacked by an argument α which says that there is not enough
money to pay their higher salaries and benefits if indeed promoted. If the claims of both arguments
are true (i.e., the individuals did perform well and indeed there is not enough money to pay for
the extra expenditure caused by the promotion, there is nothing to say except to put forward an
argument γ which says that budgetary considerations should not be arguments against promotion.
Here γ is a higher level attack on the very attack arrow α→ β. We write this as γ → (α→ β).
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input/output

A

Figure 6

input/output F 1

input/output F 2

Input 1

Output 1

Input 2

Output 2

Figure 7: An attack formation attacking another attack formation.
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β1 β2 . . . βk

α

Figure 8: A typical attack configuration in an argumentation network.

Consider Fig. 8, under the equational approach of [15]. Let β1, . . . , βk be all
of the attackers of node α. Each node has a numerical value, f(α), f(β1),
. . . , f(βk). The equational approach (under the Eqinv Equational semantics)
requires that

f(α) =
k∏

i=1
(1− f(βi)) (1)

The equational approach obtains f as a solution to the equations of type (1),
for every α ∈ S, and at least all the preferred extensions (in Dung’s sense) are
obtained via the correspondence:

(a) α = “in”, if f(α) = 1
(b) α = “out”, if f(α) = 0
(c) α = “undecided”, if 0 < f(α) < 1

Such solutions also can be seen as syntactical probability distributions for the
nodes as shown in [13]. So, if we implement Bayesian networks in argumen-
tation networks with the Eqinv interpretation, we hope to get the Bayesian
probabilities as preferred extensions.
When we have a transmission coefficient ei between the attacker βi and α,
the strength of the attack from βi is adjusted by the coefficient ei, and hence
its value is only ei × βi. Thus, we get for Fig. 9 of attacks with transmission
coefficients that

f(α) =
k∏

i=1
(1− ei × f(βi)) (2)

It is worth noting that the transmission coefficient does not change the expres-
sive power of Eqinv, since the effects of the coefficients can be implemented
through additional nodes in Eqinv.

c. Joint attacks
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β1 β2 . . . βk

α

e1 e2 ek

Figure 9: A typical attack configuration in an argumentation network with trans-
mission coefficients.

In [14], Gabbay et. al. used the notation of Fig. 10 in the context of Fibring
networks, joint attacks and disjunctive attacks. The idea of joint attacks on
its own was earlier introduced in [18]. The intended meaning of a joint attack
is that α is “out”, if all βi are “in”. In a numerical context (i.e., under an
equational approach), we can write the equation

f(α) = 1−
∏

i

f(βi)

Clearly α is “out” exactly when all of βi are “in”.

β1 . . . βk

α

Figure 10: A joint attack from β1,. . . ,βk to α.

Remark 1. Note that if we have such joint attacks (as given in [18]) under
the equational approach, we can implement products (π-attacks) with the help
of auxiliary points. For example, the value of α as the product of β1 and β2
in Fig. 11 can be implemented as Fig. 12 and vice-versa. In Fig. 12 we have
that f(x) = 1− β1 · β2 and f(α) = 1− x = β1 · β2.
Fig. 13 can be implemented as Fig. 14. In Fig. 13, we have that f(α) =
1− β1 · β2. In Fig. 14, f(y) = β1 · β2 and f(α) = 1− y = 1− β1 · β2.

For implementing Bayesian networks we need a different understanding for
joint attacks, yielding a different equation. What we need is the following
equation:

f(α) = min(1,∑j(1− f(βj))) (3)
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β1 β2

α= β1 · β2

π product

Figure 11

β1 β2

x

α

∧ joint

Figure 12

β1 β2

α

∧ joint

Figure 13

β1 β2

y

α

π product

Figure 14

From (3), one can see that only if all f(βj) = 1, do we get f(α) = 0.
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So we are using the equation below for the joint attacks of Fig. 10.

α = min(1,∑j 1− βj)

We make some comments about this equation.

(a) First, note that this equational truth-table is definable in Łukasiewicz
logic [23]. In this logic, propositions get value in [0, 1], 1 represents truth
and 0 represents falsity. The truth-tables for ¬ and → are:

¬X = 1−X
X → Y = min(1, 1−X + Y )

Therefore,
X → ¬Y = min(1, 1−X + 1− Y )

Let ϕ be a new connective operating on a non-empty list [X1, . . . , Xn]7
defined as follows.

ϕ([X1]) = ¬X1

ϕ([X1, X2]) = X2 → ϕ([X1])

By induction, assume ϕ(X1, . . . , Xn) is definable and satisfies

ϕ(X1, . . . , Xn) = min(1,
∑

i

(1−Xi))

Then

Xn+1 → ϕ(X1, . . . , Xn) = min(1, 1−Xn+1 + ϕ(X1, . . . , Xn))
= min(1,∑n+1

i=1 (1−Xi))
= ϕ(X1, . . . , Xn+1)

Note that ϕ(X1) = min(1, 1−X1) = ¬X1. So we have

ϕ(X1) = ¬X1

ϕ(X1, . . . , Xn, Xn+1) = Xn+1 → ϕ(X1, . . . , Xn)

(b) Also note that argumentation networks with a formula of the type of ϕ
just defined for joint attacks are not definable through the traditional
Dung semantics. This gives new semantics. Consider Fig. 15.
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a b

c

Figure 15

a b x d e

c

c = min(1, 1− a+ 1− b)×min(1, 1− x)×min(1, 1− d+ 1− e)
= min(1, 1− a+ 1− b)× (1− x)×min(1, 1− d+ 1− e)

Figure 16

Use only ϕ. We get a = 1
2 , b = 1

2 , c = min(1, 1
2 + 1

2) = 1. So c = “in”.
The rationale behind this semantics is as follows.
We reject c if there are joint attacks on c where all the attackers are
“in”. If some attackers are “undecided”, then so is c. However, if too
many attackers are “undecided” (and remember this is a consortium joint
attack where too many members of the consortium are undecided), then
we disregard the attack and let c = “in”.
To get a better idea of how Eqinv with Łukasiewicz joint attacks works,
compare Figures 16 and 17.
The equation in Fig. 17 is given by Eqinv, for β1 being the joint attack of
{a, b}, β2 being the attack of x, and β3 being the joint attack of {d, e}.
The joint attacks of β1 and β3 are calculated each according to Equation 3
(see page 15). So going back to Fig. 16, under the above considerations
we get

c = min(1, 1− a+ 1− b)× (1− x)×min(1, 1− d+ 1− e).
7For example conjunction is an operator that can be seen to be operating on a list, where∧

([X]) = X and
∧

([X1, . . . , Xn]) = Xn

∧
([X1, . . . , Xn−1]).
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β1 β2 β3

c

c = min(1, 1− β1)×min(1, 1− β2)×min(1, 1− β3)
= (1− β1)× (1− β2)× (1− β3)
=

∏

i

(1− βi)

Figure 17

ϕ11 ϕ10 ϕ01 ϕ00

x11 x10 x01 x00

A

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

1

Figure 18: A complex configuration of joint attacks with transmission factors.

2.2 Combining It All
Consider Fig. 18.

The equational approach will give a solution f to this configuration as

f(xij) = 1− eij × f(ϕij)

and

f(A) = min (1,∑(1− f(xij)))
f(A) = min (1,∑(1− (1− eij × f(ϕij))))
f(A) = min (1,∑ eij × f(ϕij))

Now look again at Fig. 3. If we can instantiate ϕij by an appropriate attack
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¬X X Y ¬Y

c00

¬X X Y ¬Y

c01

¬X X Y ¬Y

c10

¬X X Y ¬Y

c11

1 1

1 1

1 1

1 1

F 00[¬X,¬Y ] =

c00 = (1− P (X)) · (1− P (Y ))

F 01[¬X,Y ] =

c01 = (1− P (X)) · (1− 1 + P (Y )) = (1− P (X)) · P (Y )

F 10[X,¬Y ] =

c10 = (1− 1 + P (X)) · (1− P (Y )) = P (X) · (1− P (Y ))

F 11[X,Y ] =

c11 = (1− 1 + P (X)) · (1− 1 + P (Y )) = P (X) · P (Y )

Figure 19

formation F ij such that

f(ϕij) = f(F ij) = P±(X)× P±(Y )

then we have implemented that figure as Fig. 18.
This is easy to do. Look at Fig. 19 and remember that since X, ¬X, Y and

¬Y are end points attacking each other respectively, we can give them arbitrary
probabilities! In Fig. 19, cij is the output point (realising f(ϕij)), and X and
Y are given probabilities P (X) and P (Y ), respectively. This gives probabilities
P (¬X) = 1− P (X) and P (¬Y ) = 1− P (Y ).
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Remark 2. Note that the above implementation required two types of attacks. The
product attack of Fig. 11 and the new joint attack of Fig. 10, namely

α = min(1,∑j(1− βj)).

We know that the new joint attack can be expressed in Łukasiewicz infinite-valued
logic. Therefore in the extension of this logic with product conjunctions, namely with
the additional connective ∗:8

x ∗ y = x · y
we can implement Bayesian networks!

3 Formal Definitions
This section will describe the formal machinery of Bayesian Argumentation Networks
(BANs) and the mechanism to translate a Bayesian network into a BAN.

Definition 1 (Bayesian Argumentation Network (BAN)).

a. A BAN has the form B = 〈S,R, e〉, where S is a non-empty set of arguments,
R ⊆ (2S − ∅) × S is the attack relation between non-empty subsets of S and
an element of S. For each pair (H,x) ∈ R, such that H ⊆ S and x ∈ S, e is a
transmission function giving each h in the pair (H,x) a real value e(H,x, h) ∈
[0, 1].
We can describe this situation in Fig. 20, where (H,x) ∈ R, H = {h1, . . . , hk}
and ei = e(H,x, hi).
The general attack configuration of a node is depicted in Fig. 21, where H1 =
{h1

1, . . . , h
1
k1
}, . . . ,H i, . . . ,Hm = {hm1 , . . . , hmkm

} are all attackers of the node
x. In such configuration eij = e(H i, x, hij).

b. Let f be a function from S into [0, 1]. The equation associated with f and the
configuration of Fig. 21 is

f(x) =
m∏

j=1
min(1,

kj∑

i=1
(1− eij · f(hji ))) (4)

c. A solution to equation (4) of item b. is called an extension to B.

8See [10] for details.
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h1 . . . hk

x

e1 ek

H = {h1, . . . , hk}
(H,x, h1) = e1

(H,x, h2) = e2
...

(H,x, hk) = ek

Figure 20

H1 . . . H i . . . Hm

h1
1 h1

k1
hm1 hmkm

x

e11 e1k1 em1 emkm

Figure 21

Example 1. Consider Fig. 22. In this figure we have:

S = {a, b, c, d, e, x}
R = {({a, b}, c), ({x}, c), ({d, e}, c)}

e({a, b}, c, a) = e1

e({a, b}, c, b) = e2

e({x}, c, x) = e3

e({d, e}, c, d) = e4

e({d, e}, c, e) = e5

The equation for c is

f(c) = min(1, 1− e1 · f(a) + 1− e2 · f(b))×
min(1− e3 · f(x))×
min(1, 1− e4 · f(d) + 1− e5 · f(e))
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Take ei = 1 and compare this with Fig. 16.

a b x d e

c

e1 e2
e3
e4 e5

Figure 22

Definition 2. A Bayesian network N has the form 〈S, %,P 〉 where S is a set of
nodes, % ⊂ S × S is an acyclic dependence relation, and P gives probability distri-
butions based on (S, %) defined below. The symbol Ψx will denote the set of parents
of the node x in N , i.e., Ψx = {y | (y, x) ∈ %}.
• The elements of S are considered Boolean variables which can be in only one
of two states either true = > = 1, or false = ⊥ = 0.

• If x ∈ S is a source node, i.e., Ψx = ∅, then P (x) ∈ [0, 1] denotes the
probability that x = >. P (¬x) = 1−P (x) denotes the probability that X = ⊥.

• If Ψx 6= ∅, then P gives the conditional probability of x on Ψx = {y1, . . . , yk},
denoted by P (x|Ψx). This means the following:

a. First for each q ∈ S, consider a new atom letter denoted by ¬q. Read
q0 def= ¬q and q1 def= q.

b. For each ε ∈ 2k (a vector of numbers ε(i), 1 ≤ i ≤ k from {0,1}), we look
at the option

−→y (ε) = ∧iyε(i)i

where we read y0
i as ¬yi or yi = ⊥ and y1

i as yi or yi = >.
c. We can now state what P (x|Ψx) is. P (x|Ψx) gives values P (x,Ψx, ε) ∈

[0, 1], for each ε ∈ 2k.

• Let x be a node such that Ψx 6= ∅. Assuming that the probabilities P (yi), for
yi ∈ Ψx, are known, the probability P (x) of x can be calculated as

P (x) =
∑

ε

P (x,Ψx, ε)× P (−→y (ε))

where P (−→y (ε)) is ∏
i P (yi)ε(i) and P (yi)0 = 1− P (yi) and P (yi)1 = P (yi).

Once we know P (x), we also know P (¬x) = 1− P (x).
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Remark 3. Note that certainly P (x) ≥ 0, but also that P (x) ≤ ∑
ε P (−→y (ε)) = 1,

since all P (yi) are probabilities.

Remark 4. Note that Definition 2 is restricted to Boolean values. Variables can be
either in state 1 = true or in state 0 = false. So any conditional probability for a
variable x depending on a variable y needs to give real numbers for each state of y,
see condition c. of Definition 2. This is similar to Pearl’s definition in [19]. Note
however that we propagate values in the direction of the arrows, i.e., towards descen-
dant nodes. Pearl allows for updating of probabilities in both directions (ancestors
and descendant nodes) at any point in the network (see Section 2.2.3 of [19]). As
we are dealing with argumentation networks, the restriction to boolean variables is
more natural and we need not be concerned about it. However, the propagation of
updates in both directions is important and should be investigated not only in order
to be more faithful in translating Bayesian networks into argumentation networks
but even without any connection with Bayesian networks. Just by looking at tra-
ditional Dung networks we may wish to insist on a certain status for an argument
(i.e., “in”, “out” or “undecided”) and propagate this result in both directions. Our
work on Bayesian networks may give us ideas on how to do that, not only in the case
of Bayesian Argumentation Networks (i.e., reflecting their behaviour) but perhaps
by also taking advantage of the argumentation environment in developing an update
theory applicable in argumentation in general, and not just restricted to the context
of translated Bayesian networks. This requires extensive research and we leave it as
future work.

Example 2. In order to illustrate Definition 2, we consider the network in Fig. 1
once more, with the probability values given in Section 2. We have P (X) = 0.01, so
P (¬X) = 0.99. P (Y ) = 0.02, so P (¬Y ) = 0.98.

ΨA = {X,Y }. We have that P (A,ΨA, X ∧ Y ) = 0.95; P (A,ΨA, X ∧ ¬Y ) =
0.94; P (A,ΨA,¬X ∧ Y ) = 0.29; and P (A,ΨA,¬X ∧ ¬Y ) = 0.001. According to
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Definition 2:

P (A) = P (A,ΨA, X ∧ Y )× P (X)× P (Y ) +
P (A,ΨA, X ∧ ¬Y )× P (X)× P (¬Y ) +
P (A,ΨA,¬X ∧ Y )× P (¬X)× P (Y ) +
P (A,ΨA,¬X ∧ ¬Y )× P (¬X)× P (¬Y )

P (A) = 0.95× 0.01× 0.02 +
0.94× 0.01× 0.98 +
0.29× 0.99× 0.02 +
0.001× 0.99× 0.98

P (A) ≈ 0.016

We then get P (¬A) = 1− P (A) = 0.984. The values of P (U) (resp., P (¬U)) and
P (W ) (resp., P (¬W )) are calculated in a similar way.

Definition 3. We now translate any Bayesian network N = 〈S, %,P 〉 into a
Bayesian Argumentation Network 〈A,R, e〉.

a. Assume the elements of S to be positive atoms of the form {qi}. Let S̄ be a
new set of atoms of the form S̄ = {q̄ | q ∈ S} and let A0 = S ∪ S̄.

b. For any x ∈ S such that Ψx has k elements, define two sets of new atoms

C(x,Ψx) = {c(x,Ψx, ε) | ε ∈ 2k} and
D(x,Ψx) = {d(x,Ψx, ε) | ε ∈ 2k}

Let A = A0 ∪
⋃
x∈S (C(x,Ψx) ∪D(x,Ψx)).

c. We now define R on A.

(a) Have ({q̄}, q) and ({q}, q̄) be in R.
(b) For any x ∈ S such that Ψx has k elements, let ({c(x,Ψx, ε)}, d(x,Ψx, ε))

be in R and let ({y1−ε(i)
i }, c(x,Ψx, ε)) be in R.

(c) Let (D(x,Ψx), x) be in R.

d. We now define e. We let

e({c(x,Ψx, ε)}, d(x,Ψx, ε), c(x,Ψx, ε)) = P (x,Ψx, ε)
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Theorem 1. Let N = 〈S, %,P 〉 be a Bayesian network and let 〈A,R, e〉 be its
(argumentation) translation. Let the source nodes of N be the set Ω ⊆ S and let f
be a solution extension of (A,R, e) such that f(w) = P (w), for w ∈ Ω. Then for
every s ∈ S, f(s) = P (s) (remember that S ⊆ A).

Proof. The proof is done by induction on the distance (level) of nodes from Ω.
Level 0: nodes w ∈ Ω.
Level n+ 1: nodes s such that all nodes in Ψs are of level up to n with at least

one of them being of level n.
Every node in S has a unique level because (S, %) is acyclic. So we prove by

induction on the level of a node s that f(s) = P (s).
Consider a node s of level n+ 1, such as the one in Fig. 23. Its translation into

(A,R, e) is Fig. 24. The computation of P (s) in the Bayesian network is

P (s) =
∑

ε∈2k

P (s, ys, ε)×
∏

i

P (yi)ε(i)

Our inductive assumption is that P (yi) = f(yi). We want to show that P (s) = f(s).
Let us calculate f(s) from Fig. 24. First we have

f(yi) = P (yi)
f(¬yi) = f(y0

i ) = 1− f(yi)

Thus,

f(c(s,ys, ε) =
∏

i

(1− f(yi)1−ε(i))

=
∏

i

f(yε(i)i ) =
∏

i

P (yi)ε(i)

So

f(d(s,ys, ε) = 1− e(s, ys, c(s, ys, ε))× f(c(s, ys, ε))
= 1− P (s, ys, ε)×

∏

i

P (yi)ε(i)

Therefore,

f(s) = min(1,
∑

ε

(1− f(d(s, ys, ε))

= min(1,
∑

ε

P (s, ys, ε)×
∏

i

P (yi)ε(i))

= P (s)
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Remark 5. Note that the translation of a Bayesian network uses only a restricted
fragment of Definition 1, where each node s satisfies for all yis and for all yjs:

(yis, s) ∈ R and (yjs, s) ∈ R implies either yis and yjs are singleton sets or yis = yjs

This means that translated Bayesian networks do not have the combination of joint
attacks and single attacks such as the one in Fig. 22. Nodes either have a unique
joint attack or zero or more attacks by individual nodes.

ys : y1 . . . yk

s

Figure 23: A node of level n+ 1.

¬y1 y1 . . . y
1−ε(i)
i

. . . ¬yk yk

c(s, ys, ε)

. . . d(s, ys, ε) . . .

s

P (s, ys, ε) = e(s, ys, c(s, ys, ε))

Figure 24: A node of level n+ 1.

Remark 6. a. Note that the class of Bayesian Argumentation Networks con-
tains more networks than just translated images of original Bayesian net-
works. These are indeed a type of argumentation networks inspired by looking
at Bayesian networks. Note also that images of Bayesian networks are faithful
and can translated back into Bayesian networks.

b. Another important point to observe is that we are not imposing an argumen-
tation structure on top of a Bayesian network, thus analysing the Bayesian
network from an argumentation point of view. Such methods are common in
the argumentation community. This will be discussed further in Section 6.
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4 A Comprehensive Translation Example
In this section, we show in detail how a Bayesian network can be translated into a
Bayesian Argumentation Network. For this, we will use the network of Fig. 1 as an
example. The translation starts with the source nodes of the Bayesian network.

Consider a node α and its attackers Att(α) = {β1, . . . , βk}. Assume that the
nodes in Att(α) are all source nodes, without any attackers. When βi is a source
node, it is given an initial probability P (βi). We model this in a BAN by adding a
new node ¬βi for each βi such that βi and ¬βi attack each other. Now, in the new
network, βi can assume any initial probability P (βi) we want, with ¬βi obtaining
P (¬βi) = 1 − P (βi). In order to represent all possible conjunctive expressions of
the form

e2k−1
j=0 = ∧ijβ±ij

where β+
ij

= βij and β−ij = ¬βij , we need to create 2k intermediate points cj , whose
attackers are all βi, ¬βi, such that ej |= βi, and ej |= ¬βi, respectively. Note that
the value of each cj will now correspond to a particular product

P (cj) =
∏

ij

pij

where
pij =

{
1− P (βi), if ej |= βi
P (βi), if ej |= ¬βj

Because we also want to represent transmission values, we now need to duplicate
each intermediate point cj with a corresponding xj and have cj attack xj with
transmission factor ej .

In order to illustrate this, let us recall the Bayesian network of Fig. 1.

X Y

A

U W

Consider the node A, with attackers X and Y . We first add points ¬X and ¬Y
such that each of X and ¬X and Y and ¬Y attack each other. If we give value
P (X) to X and value P (Y ) to Y , then ¬X will get value 1 − P (X) and ¬Y will
get value 1− P (Y ).
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We now add points c00, c01, c10 and c11 corresponding to the conjunctive expres-
sions

e0 : c00 = X ∧ Y
e1 : c01 = X ∧ ¬Y
e2 : c10 = ¬X ∧ Y
e3 : c11 = ¬X ∧ ¬Y

Note that e0 |= X and e0 |= Y , so we add attacks from X and Y into c00 and do
the same for e1–e3.

X ¬X Y ¬Y

c11 c10 c01 c00

We can now see that the probabilities of cij are given as follows

P (c00) = (1− P (X)) · (1− P (Y ))
P (c01) = (1− P (X)) · (1− 1 + P (Y )) = (1− P (X)) · P (Y )
P (c10) = (1− 1 + P (X)) · (1− P (Y )) = P (X) · (1− P (Y ))
P (c11) = (1− 1 + P (X)) · (1− 1 + P (Y )) = P (X) · P (Y )

Remember the initial parameters given for this network:

P (X) = 0.01
P (¬X) = 0.99

P (Y ) = 0.02
P (¬Y ) = 0.98

This gives us

P (c00) = 0.99× 0.98 = 0.9702
P (c01) = 0.99× 0.02 = 0.0198
P (c10) = 0.01× 0.98 = 0.0098
P (c11) = 0.01× 0.02 = 0.0002

Now for each node cij , we add an additional node xij , so that we can incorporate
the transmission factors eij .
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X ¬X Y ¬Y

c11 c10 c01 c00

x11 x10 x01 x00

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

The resulting probabilities of the nodes xij are then given by the equations

P (x00) = 1− ex00|ϕ00 · c00

P (x01) = 1− ex01|ϕ01 · c01

P (x10) = 1− ex10|ϕ10 · c10

P (x11) = 1− ex11|ϕ11 · c11

With our initial parameters, we have that

ex00|ϕ00 = 0.001
ex01|ϕ01 = 0.29
ex10|ϕ10 = 0.94
ex11|ϕ11 = 0.95

and hence

P (x00) = 1− 0.001× 0.9702 = 0.9990
P (x01) = 1− 0.29× 0.0198 = 0.9942
P (x10) = 1− 0.94× 0.0098 = 0.9907
P (x11) = 1− 0.95× 0.0002 = 0.9998

The xij jointly attack A:

X ¬X Y ¬Y

c11 c10 c01 c00

x11 x10 x01 x00

A

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

1
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This finally gives us the value of the probability of node A as

P (A) = min{1,
∑

ij

(1− P (xij))}

= min{1, 0.001 + 0.0058 + 0.0093 + 0.0002}
≈ 0.016

as before. Therefore, P (¬A) ≈ 0.984.
Now to proceed to the next level all we need to do is to add a complementary

node to A, ¬A, such that A and ¬A attack each other. This will give us P (¬A) =
1 − P (A). As before, we also need new intermediate nodes wA, w¬A, uA and u¬A
to incorporate transmission factors.

The original attack of A on W is then realised by the joint attack of the new
intermediate nodes w¬A and wA and the attack of ¬A on U is realised by the joint
attack of the new intermediate nodes u¬A and uA.

X ¬X Y ¬Y

c11 c10 c01 c00

x11 x10 x01 x00

wA w¬A uA u¬A

A ¬A

W U

1 1

ew¬A|¬AewA|A eu¬A|¬AeuA|A

ex00|ϕ00ex01|ϕ01ex10|ϕ10ex11|ϕ11

1

The values of wA, w¬A, uA and u¬A are calculated as follows.

P (wA) = 1− ewA|A · P (A)

P (w¬A) = 1− ew¬A|¬A · P (¬A)

P (uA) = 1− euA|A · P (A)

P (u¬A) = 1− eu¬A|¬A · P (¬A)
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Since

ewA|A = 0.7
ew¬A|¬A = 0.01

euA|A = 0.9
eu¬A|¬A = 0.05

We get

P (wA) = 1− 0.7× 0.016 ≈ 0.988

P (w¬A) = 1− 0.01× 0.984 ≈ 0.990

P (uA) = 1− 0.9× 0.016 ≈ 0.985

P (u¬A) = 1− 0.05× 0.984 ≈ 0.950

We can finally calculate the values of W and U .

P (W ) = min{1, 1− P (w¬A) + 1− P (wA)} = min{1, 0.009 + 0.0112} ≈ 0.021

P (U) = min{1, 1− P (u¬A) + 1− P (uA)} = min{1, 0.049 + 0.0144} ≈ 0.063

These are exactly the same values we had before.

5 Complexity Discussion
We need to consider two aspects involved in the complexity arising from the trans-
lation of a Bayesian network into a Bayesian Argumentation Network. The first
one is related to the translation itself whereas the second is related to the actual
computation of the node values.

It is easy to see that the translation of a Bayesian network into a Bayesian
Argumentation Network according to Definition 3 results in the creation of many
new nodes. This addition of nodes is linear on the number of nodes of the origi-
nal Bayesian network (item a. of Definition 3) and exponential on the number of
ancestors of each node of the original Bayesian network (item b. of Definition 3).

The effect of the increase in the number of nodes in the actual computation of
node values is deceptive.

Although the translation does incur in the addition of many new nodes, the
complexity of the actual calculation of the node values remains basically the same.
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The nodes added in a Bayesian Argumentation Network simply encode explicitly
the intermediate calculations that would otherwise be implicitly done in the original
Bayesian network.

In conclusion, a Bayesian Argumentation Network simply explicitly encodes as
nodes the calculations that would have to be done anyway in the original Bayesian
network. The new nodes name key values when using the conditional probability
tables in the original calculations of the Bayesian network. Therefore there is no
significant additional cost.

6 Related Work
Let us compare with several related papers. We start with Vreeswijk’s “Argumen-
tation in bayesian belief networks” [27]. An important point to observe is that we
are not using a meta-level device of extracting/identifying arguments and a notion
of attack on the arguments from the Bayesian network and thus obtaining an argu-
mentation network as is done in [27].

Vreeswijk’s approach does not give us a direct connection/translation between
Bayesian networks and argumentation networks. It is more akin to imposing an
argumentation structure on top of a Bayesian network, thus analysing the Bayesian
network from an argumentation point of view. Indeed Vreeswijk sees his approach
[27] as

“a proposal to look at Bayesian belief networks from the perspective
of argumentation. More specifically, I propose an algorithm that enables
users to start an argumentation process within the context of an existing
Bayesian belief network. . . . with some imagination, the CPTs9 of the
above Bayesian network can be translated into the rule-base and evidence
. . . A next step towards argumentation is to chain rules into arguments.
. . .What remains to be done to obtain a full-fledged argument system,
is to define an attack relation between pairs of arguments. To this end, I
choose to define the notion of attack on the basis of two notions that are
more elementary and (therefore) fall beyond the scope of a Dung-type
argument system, viz. the notion of counterargument and the notion
of strength of an argument. First I will discuss counter-arguments, and
then I will discuss argument strength. . . .

Definition 4 (Attack). We say that argument a is attacked by argu-
ment b, written a← b, if it satisfies the following two conditions:

9Conditional Probability Tables
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1. Argument b is a counterargument of a sub-argument a′ of a.
2. Argument b is stronger than argument a′.”

Such methods are common in the argumentation community. For example, tak-
ing a logic program, forming arguments using this logic program and thus generating
an argumentation network, and then proving equivalence of the logic program with
the argumentation network (see for example [7, 28]).

The next related work we consider is the translation of various kinds of argu-
mentation networks into Bayesian networks, as is done for example in [16]. The idea
is beautifully described by the authors:

“This paper presents a technique with which instances of argument
structures in the Carneades model can be given a probabilistic semantics
by translating them into Bayesian networks. The propagation of argu-
ment applicability and statement acceptability can be expressed through
conditional probability tables. This translation suggests a way to extend
Carneades to improve its utility for decision support in the presence of
uncertainty.”

Note that [27] identifies some argumentation structure in Bayesian networks
whilst [16] uses Bayesian networks to implement certain kinds of argumentation
networks. There is similarity but the approaches are different. On the other hand,
our approach is to faithfully represent Bayesian networks inside a newly motivated
numerical argumentation network.

Finally, the approach used in [25, 24] is similar in spirit to the one used in [27].
The idea is to provide explanations of Bayesian networks in legal or medical domains
using support graphs. The nodes of the support graph can be labelled to provide
an argumentative interpretation of the Bayesian network.

7 Conclusions and Future Work
The perceptive reader from the Bayesian community may take no interest in the
translation of Bayesian networks into argumentation. They will point out justifiably,
that we are just translating the Bayesian algorithms into argumentation and then
using these same algorithms under the guise of argumentation. This may be of
interest from the abstract mathematical expressive power point of view, but that is
all.

We would like to show that there are indeed other benefits to this translation
both to the argumentation community and to the Bayesian community.
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a. By interpreting Bayesian networks in some extension of Dung’s networks and
vice-versa, the argumentation community, who also deals with updates and
change, stands to benefit from the updating algorithms in Bayesian networks.
We can add nodes and change values of nodes and use Bayesian propagation
to propagate the changes.
This needs to be studied further.

b. Bayesian networks are acyclic, they have difficulties with loops (see [26]). The
equational approach in argumentation can deal with loops without any prob-
lems (see for instance the forthcoming special issue in the Journal of Logic and
Computation on the Handling of Loops in Argumentation Networks and see
[11]). We notice that Bayesian networks can adopt the equational approach
[15] in case of loops and simply solve the equations which arise on the prob-
abilities. A solution always exists by Brouwer’s fixed-point theorem. We are
in fact surprised that this approach has never been taken (to the best of our
knowledge) by the Bayesian community. One can then use loop handling tech-
niques from argumentation to propagate updates and changes in the (cyclic)
Bayesian network by simply solving equations. By implementing Bayesian net-
works in argumentation under the equational approach we can allow for loops
in Bayesian networks and still hopefully see a way to obtain results, again, this
requires further research.

c. A third benefit to Bayesian networks is the possibility to develop proof theory
for Bayesian networks. The extension of argumentation networks which hosts
the translation of Bayesian networks is implemented in Łukasiewicz infinite-
valued logic with product.10 This Łukasiewicz logic has a proof theory (see
[10]). We can therefore hope for the same for Bayesian networks. Again this
needs to be studied.

In addition, the following needs to be investigated in detail:

a. Take an example of a cyclic Bayesian network, recognised as interesting in
the Bayesian community, and translate it into argumentation. See how argu-
mentation handles the loops and try to find suitable algorithms for handling
cycles in Bayesian networks. These algorithms should now be independent of
argumentation.

b. Develop algorithms of updating argumentation networks by looking at the
examples of updating used in the Bayesian domain and the way they implement

10This is actually shown in the current paper (see Remark 2).
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the updates. There are important papers investigating updates and revision of
argumentation networks by central figures in the argumentation community,
including [4, 22, 21, 5, 8, 3, 9]. Addressing these papers will be done in future
work.

c. Identify proof theoretic queries in Bayesian networks and import proof theory
from Łukasiewicz logic to model them.
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