
The IfCoLog
Journal of Logics
and their Applications
Volume 2 Issue 2 October 2015

V
o
lu

m
e
 2

 Is

s
u
e
 2

 O

c
to

b
e
r 2

0
1
5

The IfColog Journal of Logics and their applications

ISSN PRINT 2055-3706
ISSN ONLINE 2055-3714

Contents

Gödel’s Master Argument: What is it,
and what can it do?
David Makinson 1

Cut-Free Proof Systems for Geach Logics
Melvin Fitting 17

Retalis Language for Information Engineering
in Autonomous Robot Software
Pouyan Ziafatia, Mehdi Dastanib, John-Jules
Meyer, Leendert van der Torre and Holger Voos 65

Going Forth and Drawing Back: An Intensional
Approach in Nonmonotonic Inference
Yi Mao, Beihai Zhou and Beishui Liao 127

The IfCoLog
Journal of Logics
and their Applications
Volume 2 Issue 2 October 2015

V
o
lu

m
e
 2

 Is

s
u
e
 2

 O

c
to

b
e
r 2

0
1
5

The IfColog Journal of Logics and their applications

ISSN PRINT 2055-3706
ISSN ONLINE 2055-3714

Contents

Gödel’s Master Argument: What is it,
and what can it do?
David Makinson 1

Cut-Free Proof Systems for Geach Logics
Melvin Fitting 17

Retalis Language for Information Engineering
in Autonomous Robot Software
Pouyan Ziafatia, Mehdi Dastanib, John-Jules
Meyer, Leendert van der Torre and Holger Voos 65

Going Forth and Drawing Back: An Intensional
Approach in Nonmonotonic Inference
Yi Mao, Beihai Zhou and Beishui Liao 127

IFCoLog Journal of Logic and its

Applications

Volume 2, Number 2

October 2015

Disclaimer
Statements of fact and opinion in the articles in IfCoLog Journal of Logics and their Applications

are those of the respective authors and contributors and not of the IfCoLog Journal of Logics and

their Applications or of College Publications. Neither College Publications nor the IfCoLog Journal

of Logics and their Applications make any representation, express or implied, in respect of the

accuracy of the material in this journal and cannot accept any legal responsibility or liability for

any errors or omissions that may be made. The reader should make his/her own evaluation as to

the appropriateness or otherwise of any experimental technique described.

c© Individual authors and College Publications 2015
All rights reserved.

ISBN 978-1-84890-189-6
ISSN (E) 2055-3714
ISSN (P) 2055 3706

College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

http://www.collegepublications.co.uk

Editorial Board

Editors-in-Chief
Dov M. Gabbay and Jörg Siekmann

Marcello D’Agostino
Natasha Alechina
Sandra Alves
Arnon Avron
Jan Broersen
Martin Caminada
Balder ten Cate
Agata Ciabttoni
Robin Cooper
Luis Farinas del Cerro
Esther David
Didier Dubois
PM Dung
Amy Felty
David Fernandez Duque
Jan van Eijck

Melvin Fitting
Michael Gabbay
Murdoch Gabbay
Thomas F. Gordon
Wesley H. Holliday
Sara Kalvala
Shalom Lappin
Beishui Liao
David Makinson
George Metcalfe
Claudia Nalon
Valeria de Paiva
David Pearce
Brigitte Pientka
Elaine Pimentel

Henri Prade
David Pym
Ruy de Queiroz
Ram Ramanujam
Chrtian Retoré
Ulrike Sattler
Jörg Siekmann
Jane Spurr
Kaile Su
Leon van der Torre
Yde Venema
Rineke Verbrugge
Heinrich Wansing
Jef Wijsen
John Woods
Michael Wooldridge

iii

iv

Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.

v

jane.spurr@kcl.ac.uk

vi

Contents

ARTICLES

Gödel’s Master Argument: What is it, and what can it do? 1
David Makinson

Cut-Free Proof Systems for Geach Logics . 17
Melvin Fitting

Retalis Language for Information Engineering in Autonomous Robot Software 65
Pouyan Ziafatia, Mehdi Dastanib, John-Jules Meyer, Leendert van der Torre and
Holger Voos

Going Forth and Drawing Back: An Intensional Approach in Nonmonotonic
Inference . 127
Yi Mao, Beihai Zhou and Beishui Liao

vii

viii

Gödel’s Master Argument: What is it, and
what can it do?

David Makinson
Department of Philosophy Logic and Scientific Method, London School of

Economics

Abstract
This text is expository. We explain Gödel’s ‘Master Argument’ for incom-

pleteness as distinguished from the ‘official’ proof of his 1931 paper, highlight
its attractions and limitations, and explain how some of the limitations may be
transcended by putting it in a more abstract form that makes no reference to
truth.

Keywords: Gödel, Master Argument, Incompleteness.

1 Introduction
Gödel’s ‘Master Argument’ is sketched in his brief correspondence with Zermelo in
late 1931. It is discussed in an influential 1984 article of Feferman [2], and may be
found in books by several authors, most accessibly [8] and its website spin-off [9]
. However, the argument is not as widely known as it should be, and its strengths
and shortcomings compared to the ‘official’ proof appear not to have received much
discussion. Moreover, an interesting abstraction on the Master Argument that over-
comes some of the shortcomings, can be found only deep within the pages of special-
ist presentations such as [10] and [3], difficult to untangle from other material. The
present article may thus be useful for those with limited time and energy but still
wishing to have a proper understanding of what is going on in the Master Argument.

We begin by recalling the 1931 exchange of letters between Zermelo and Gödel,
and itemize the background needed to continue reading. The Master Argument is
then presented in its simplest available form, followed by a discussion balancing its
attractions and limitations as well as an alleged philosophical weakness. We finally
give a more abstract and powerful, but still easy, version of the Master Argument
in which arbitrary ‘oracles’ take the place of ‘truth in the intended model’, thus
transcending some of its limitations.
The author wishes to thank Jon Burton and Peter Smith for remarks on an ancestor of this text.

Vol. 2 No. 2 2015
IFCoLog Journal of Logic and its Applications

David Makinson

2 Autumn 1931
Gödel announced his incompleteness results in an abstract of 1930 and published
them with proofs in his celebrated paper of 1931. Ernst Zermelo, already famous
for his work on the axiom of choice and what we now call the Zermelo-Fraenkel
axiomatization of set theory, read the 1931 paper and heard Gödel speak on it at a
conference that summer. But he saw it as fatally flawed and ultimately not of great
significance.

Both views appear to have stemmed from his disinterest in studying axiomatic
systems that are formulated in finitary languages, a fortiori in doing so only by
finitary means. Roughly speaking, Zermelo believed that we should be studying
systems that embody broad swathes of mathematics, and that we should feel free
to use any of the resources of mathematics in doing so. Both the formal systems
studied and the reasoning used in that study could be infinitary along lines that he
hoped, in the letters, to make precise at a later date.

This perspective evidently contrasts with that of Hilbert, which was adopted by
Gödel in his published paper. The formal object-language that Gödel examines is
defined by finite means and the investigation, conducted in a distinct and rather
informal language, uses only finitary and constructive reasoning.

To be sure, in following decades logicians began relaxing these restrictions. Some
investigated languages that are in one way or another infinitary, while others used
free-wheeling methods with infinite sets, transfinite ordinals and the axiom of choice
even when studying finitely generated systems. But in all cases they, like Hilbert
and Gödel, continued to maintain a clear distinction between the system that is
under study, formulated in an ‘object-language’, and the means used to study it,
expressed in a (usually less formal) ‘metalanguage’.

In contrast, Zermelo was unable or unwilling to make the distinction between
object and metalanguage, and it seems to be that which led him to believe that
Gödel’s proofs harboured paradox. On 21 September 1931 he wrote to Gödel, hint-
ing at his own general perspectives and outlining explicitly a contradiction that he
claimed to have discovered in the paper.

Gödel replied on 12 October. He did not comment on the differences in general
perspective, but responded in detail to the specific claim of paradox, carefully show-
ing why his proof did not generate the contradiction that Zermelo thought he had
found. At the same time, in an effort to help Zermelo see what was going on, he
outlined the essence of his argument in a manner quite different from that of the
version published earlier in the year. He did this again in an address in Princeton in
1934, but never elaborated it in print. After his death in 1978, the three letters con-
stituting the Zermelo/Gödel exchange were found, published and translated. The

2

Gödel’s Master Argument

proof there sketched came to be known as ‘the Master Argument’.1

3 Background needed
We assume that the reader is familiar with the notation of first-order logic, and
has seen the standard first-order axiomatization of the arithmetic of the natural
numbers. We write PA (Peano Arithmetic) for the axiomatization, LPA for its
formal language, N for the set of all natural numbers themselves.

On the semantic level, we presume familiarity with the notion of a model for a
first-order theory, the recursive definition of satisfaction/truth in a model, and the
concepts of soundness and completeness of a given theory with respect to a given
model. On the syntactic level, the concepts whose definitions should already be
familiar are those of a sentence (closed formula) of the language, free and bound
variables, the consistency and negation-completeness of an arbitrary first-order the-
ory and, for the particular case of PA, the notion of ω-consistency. With that basis,
the reader will be able to verify from the definitions the easy parts of Figure 1 (all
of them for PA and some for arbitrary first-order theories) namely the three vertical
arrows and, given them, the following interrelations between the arrows:

• The diagonal full arrow follows from the top one,
• The diagonal dotted arrow follows from the diagonal full one,
• The bottom arrow follows from the diagonal dotted one,
• Conversely (and a little less obviously), the diagonal dotted arrow follows from
the bottom one (the verification of this will be recalled in Section 4).

4 The Master Argument
The Master Argument has two parts: an Inexpressibility Lemma and an Express-
ibility Lemma; its conclusion arises from the collision of the two.

1Who coined the term ‘Gödel’s Master Argument’? The author has not been able to determine
this with certainty. It is used as if familiar in [8], and already appeared tentatively in the first
edition of that book (2007). In response an inquiry from the present author, Smith recalled that he
had been using the phrase for some time in lectures in Cambridge, but could not remember whether
he devised it himself or took it from another source. Of course, the term ‘master argument’ had
already been used for certain other celebrated, although highly contested, demonstrations. It was
applied in Greek antiquity to an argument of Diodorus Cronos about future and necessity, and since
1974 has been used to highlight one of Berkeley’s arguments about existence and the mind (see the
relevant Wikipedia articles).

3

David Makinson

• •

•

• •Consistent

Sound Incomplete

ω-Consistent

Negation-Incomplete
Rosser’s Sharpened Argument

Göd
el’s

Offi
cial

Arg
um

ent

Co
rol
lar
y o

f M
ast
er
Ar
gu
me
nt

Gödel’s Master Argument

Figure 1: Gödel’s first incompleteness theorem for PA

Definition 4.1. A set S ⊆ N is said to be expressible in LPA iff there is a formula
ϕ(x) of that language, with one free variable x, such that for all n ∈ N ,

n ∈ S iff ϕ(n) is true in the intended model for PA

where n is the LPA numeral for n.

Fix any enumeration ϕ1, ϕ2, . . . , ϕi, . . . , (i < ω) of all the formulae in LPA whose
sole free variable is x. Put D+ to be the set of all natural numbers n such that ϕn(n)
is true in the intended model for PA, and let D− be the set of all n such that ϕn(n)
is not true (i.e. false) in the same model. Clearly these two sets are complements of
each other wrt. N , that is, D− = N\D+ and D+ = N\D−.

Lemma 4.2 (Inexpressibility Lemma2). Neither D− nor D+ is expressible in the
language of PA.

2The formulation of the Inexpressibility Lemma 4.2 that is given here differs slightly from that
sketched by Gödel in his letter to Zermelo, which has been followed in later presentations (e.g.
Feferman, Smullyan, Fitting, Smith). On those accounts the lemma states the inexpressibility
of truth itself (in other words, is exactly Tarski’s Theorem), while on our account it states the
inexpressibility of the sets D+, D−. Our formulation has the advantage that it simplifies the proof
of the Inexpressibility Lemma 4.2, at the cost of then having to derive Tarski’s Theorem from it

4

Gödel’s Master Argument

Proof. For D−, suppose for reductio that it is expressible in LPA. Then by the
definition of expressibility 4.1, there is a formula ϕ(x) with x as sole free variable
such that for all n ∈ N,n ∈ D− iff ϕ(n) is true in the intended model. Now,
ϕ(x) = ϕk(x) for some k ∈ N . So, instantiating n to k we have: k ∈ D− iff ϕk(k) is
true in the intended model. But by the definition of D−, we also have that k ∈ D−
iff ϕk(k) is not true in that model, giving a contradiction. Turning to D+, it suffices
to note that if D+ is expressed by formula ϕ(x) then D− is expressed by ¬ϕ(x).

The second part of the Master Argument is a contrasting Expressibility Lemma.
The sets D+, D− were defined using the notion of truth in the intended model of
PA. We may also consider what happens if in the definitions we replace that notion
by provability in the axiom system PA. Fix separate numberings of all formulae of
LPA with just one free variable x, and of all derivations of PA. For brevity, write
|PA| for the set of all sentences that are theorems of PA. Put D+

|P A| to be the set of
all natural numbers n such that ϕn(n) is provable in PA, and let D−|P A| be the set
of all n such that ϕn(n) is not provable in PA. Again these sets are complements of
each other, so that one of them is expressible in the language of PA iff the other one
is. But their behaviour is different from that of D+, D−. Indeed, as Gödel showed:

Lemma 4.3 (Expressibility Lemma). If PA is sound wrt. its intended model, then
both D+

|P A| and D
−
|P A| are expressible in the language of PA.

Proof. (sketch) It suffices to show this for D+
|P A|. Consider the relation that holds

between a derivation δm and a formula ϕn(x) with just one free variable x iff the
former is a derivation of ϕn(n). Then (as outlined by Gödel with more detailed
verifications in later presentations, e.g. [9]), assuming that the enumerations are in
a certain technical sense ‘acceptable’, this relation is primitive recursive and so is
captured in PA by some formulae ψ(y, x) in the following sense: for all m,n ∈ N ,

1. if δm stands in the relation to ϕn(x) then ψ(m,n) ∈ |PA| and
2. if δm does not stand in the relation to ϕn(x) then ¬ψ(m,n) ∈ |PA|.

Now suppose that PA is sound wrt. its intended model. We want to show that the
formula ∃yψ(y, x) expresses D+

|P A|. That is, we need to check that for all n ∈ N ,

n ∈ D+
|P A| iff ∃yψ(y, n) is true in the intended model.

as is done in Section 5 point iii. The more common formulation eliminates any need for the latter
derivation, but at the cost of a more complex proof of inexpressibility. This is a small matter of
trade-offs.

5

David Makinson

Left to right: Suppose n ∈ D+
|P A|. Then by definition, ϕn(n) ∈ |PA|. Hence

there is a derivation δm of ϕn(n), so δm stands in the relation to ϕn(x) so, by (1),
ψ(m,n) ∈ |PA|, so by first-order logic ∃yψ(y, n) ∈ |PA|. Thus by the supposition of
soundness, ∃yψ(y, n) is true in the intended model as desired.

Right to left: Suppose n 6∈ D+
|P A|. Then by definition, ϕn(n) 6∈ |PA|. Hence

there is no derivation δm of ϕn(n), so no δm stands in the relation to ϕn(x) so, by
(2), ¬ψ(m,n) ∈ |PA| for all m ∈ N . Thus by soundness, ¬ψ(m,n) is true in the
intended model for each m ∈ N , hence ∀y¬ψ(y, n) is true in the intended model, so
∃yψ(y, n) is not true in the intended model, as required.

The semantic incompleteness of PA emerges immediately from the collision be-
tween these two Lemmas.

Theorem 4.4 (Gödel’s First Incompleteness Theorem (semantic version)). If PA
is sound wrt. its intended model then it is incomplete (wrt. the same).

Proof. It is immediate from the two results that the set of all sentences of PA that
are true in the intended model is not the same as the set of all provable sentences
of PA. Recall that soundness means that the latter set is included in the former;
completeness is the converse. Thus if PA is sound, it is not complete.

Corollary 4.5. If PA is sound with respect to its intended model then it is negation-
incomplete.

Proof. This is simply an application to PA of the fact, mentioned in the last bullet
point of Section 3, that for arbitrary first-order theories and intended models, the
bottom arrow of the diagram implies the diagonal dotted one. Details: Suppose PA
is sound wrt. its intended model. Then by incompleteness there is a sentence ϕ of
LPA such that ϕ is true in the intended model of the theory but is not derivable
in the theory. Hence ¬ϕ is false in the intended model, so by soundness it is not
derivable in the theory. Thus neither ϕ nor ¬ϕ is derivable in the theory, which is
to say that it is negation-incomplete.

5 Three attractions
We articulate three important attractions of the Master Argument, before looking
at shortcomings in the following section.

i. A striking feature of the Argument is the way that it decomposes the proof
of the incompleteness theorem into two contrasting lemmas, thus providing a

6

Gödel’s Master Argument

simple overall architecture. Moreover the diagonal argument for the first, ‘neg-
ative’ lemma is (in the present formulation) of the utmost simplicity, almost
equal to that of Cantor’s theorem in set theory. It is true that the second, ‘posi-
tive’ lemma remains long and tedious to check out in full detail, but at least the
tedium is localized. Overall, one can say that the Master is the simplest and
most transparent argument available for the semantic incompleteness, given
soundness, of systems such as PA.

ii. Another feature of the proof is the prominent place that it gives to the notion
of expressibility of subsets of N in the language LPA of Peano arithmetic,
alongside the quite distinct notion of derivability of sentences from the axioms
of PA. Since the formulation of the incompleteness theorem for PA speaks only
of truth and provability, students easily assume that that is all it is about. Yet
there are less expressive sub-languages of PA (indeed quite interesting ones)
for which complete (and natural) axiomatizations are available. A well-known
example is the sub-language in which zero, successor and addition remain but
multiplication is absent.

Expressive power and derivational power are thus two quite different capacities
and can run in opposite directions. The former concerns the language alone
and has nothing to do with provability from axioms; the latter is about which
sentences, among those available in the language, are provable. The distinction
is easily obscured by loose talk of the ‘strength’ of a system where it is left
vague what kind of strength is meant. The salience that the Master Argument
accords to the notion of expressibility has the merit of putting it on a par with
that of provability.

iii. A third advantage of the Master Argument is that it reveals the close con-
nection between Gödel’s first incompleteness results and another celebrated
theorem of mathematical logic: Tarski’s 1933 theorem [11] on the indefinabil-
ity of the notion of truth in LPA (or more expressive systems). We can state
it (for LPA) as follows.

Consider any enumeration ψ1, ψ2, . . . , ψi, . . . , (i < ω) of all sentences (formulae
with no free variables) of LPA, and let T (the ‘truth set’) be the set of allm ∈ N
such that ψm is true in the intended model of PA. Then:

Theorem 5.1 (Tarski’s Theorem). T is not expressible in LPA.

Proof. (sketch)

7

David Makinson

We apply the Inexpressibility Lemma 4.2. By definition, n ∈ D+ iff ϕn(n)
is true in the intended model for PA, which holds iff there is an m with
ψm = ϕn(n) and m ∈ T . Now, it is not difficult (though tedious) to show
that the relation that holds between n and m iff ψm = ϕn(n), is expressible in
LPA, so if T is also expressible in LPA then D+ must also be so, contrary to
the Inexpressibility Lemma 4.2. Thus T is not expressible in LPA.

6 Two limitations
However, as presented above the Master Argument has two important limitations.

i. It yields only the semantic version of Gödel’s first incompleteness theorem
(soundness implies incompleteness and thus also negation-incompleteness).
It does not give us Gödel’s stronger syntactic version (ω-consistency implies
negation-incompleteness); nor the yet stronger syntactic version obtained by
Rosser (plain consistency implies negation-incompleteness); nor again Gödel’s
second incompleteness theorem (to the effect that if PA is consistent then its
consistency cannot be proven by means executable within the system itself).
However this ceiling on content can be raised. In the next section we formulate
a more powerful version of the Inexpressibility Lemma 4.2, in which ‘truth in
the intended model’ is replaced by an arbitrarily chosen ‘oracle’, and show
how this, when combined with a corresponding variant of the Expressibility
Lemma 4.3, gives us Gödel’s syntactic version of the incompleteness result (the
diagonal full arrow in the diagram) by a proof just as short and transparent
as before.
Nevertheless, it must be conceded that there is no visible way of using such
oracles to obtain a similar proof of the Rosser version (top arrow), nor of
Gödel’s second theorem (not in the diagram), so there still remains a ceiling,
albeit rather higher, on what the argument can achieve.

ii. This limitation is related to the fact that The Master Argument is not con-
structive. As Gödel put it in his letter of 12 October 1931, “it furnishes no
construction of the undecidable statement”. That is to say, it does not exhibit
a specific sentence of LPA that is both true in the intended model and under-
ivable from the axioms of PA (under the supposition of soundness). Nor does
it give us a recipe for constructing such a sentence – it merely guarantees that
there must be one. In contrast, the proof in the 1931 paper is constructive in
every detail.

8

Gödel’s Master Argument

Assessment of this feature will vary with one’s philosophy of mathematics.
Doctrinal constructivists take the view that non-constructive proofs are in-
valid: they fail to show existence and at best can be taken as heuristic encour-
agements for devising properly constructive proofs of their results. There are
few mathematicians and philosophers who would take such a position, but any
who do must see the Master Argument as incorrect, with the real proof being
the considerably more complex constructive one.
On the other hand, one may be constructively inclined without being doctrinal
about it. There are results that most logicians are quite happy to establish non-
constructively, for example the completeness of classical first-order (or even
propositional) logic using the Lindenbaum-Henkin method of maxi-consistent
sets of formulae. Since the 1930s mathematicians and logicians have gradually
become more comfortable working with explicitly non-constructive principles,
in particular the axiom of choice.
So a less radical view of the situation is that non-constructive proofs are per-
fectly valid, but give less information than their constructive counterparts
when the latter are available. If one sees the additional information as im-
portant for one’s purposes – as will often be the case in computer science –
then one might describe oneself as a ‘light constructivist’. While granting that
non-constructive arguments are valid and frequently shorter and more trans-
parent than constructive ones, the light constructivist is happy to put up with
additional complexity in constructive reasoning to get further information.
In the present instance, the additional information that can be provided by
a constructive proof appears to be needed for going on to Rosser’s improved
version of the completeness theorem, and likewise for Gödel’s second incom-
pleteness theorem. Its absence from the Master Argument is thus an important
limitation. However, it may be said that the non-constructive proof still de-
serves a place alongside constructive ones because of the attractions mentioned
above – simplicity and transparency of architecture, salient role of the notion of
expressibility, and close connection to Tarski’s theorem. In the author’s opin-
ion, it is the version to teach to non-specialists seeking a good understanding
within a limited time-frame.

7 A philosophical weakness?
A further shortcoming, or at least potential one, was mentioned by Gödel in his
letter to Zermelo: unlike the published proof, the Master Argument is “not intu-
itionistically unobjectionable”.

9

David Makinson

Of course, non-constructivity is already objectionable to intuitionists, but the
Master has a further feature that they do not accept: its use of the notions of truth
and falsehood in mathematics. Intuitionists baulk at the idea that mathematical
propositions have an objective truth-value beyond our ability to give intuitively
satisfying demonstrations or refutations of them. For this reason, they do not accept
in their full generality certain principles of classical propositional (and first-order)
logic, most conspicuously the law of excluded middle, double negation elimination
and one half of contraposition. But the very notion of expressibility, which features
essentially in both lemmas for the Master Argument, is defined in terms of truth
and falsehood in an intended model, and the law of excluded middle is implicit in
e.g. the last sentence of the proof of the Inexpressibility Lemma 4.2.

In the early 1930s, intuitionism was a live option as a philosophy of mathematics,
and its perspectives influenced the way in which Gödel presented his official proof
of the incompleteness theorems. This is clear from a famous “crossed-out passage
in an unsent reply” (Feferman’s memorable phrase) written on 27 May 1970 to
graduate student Yossef Balas. There Gödel said: “However in consequence of the
philosophical prejudices of our time . . . a concept of objective mathematical truth as
opposed to demonstrability was viewed with greatest suspicion and widely rejected
as meaningless.” As Feferman observes in his paper of 1984, it is clear that when
establishing his incompleteness result Gödel did not himself share that suspicion.
But he nevertheless refrained from using the notions of mathematical truth and
intended model out of an abundance of caution or, to put it more plainly, from fear
of adverse reception by the mathematical community of the time.

Today intuitionistic logic is more an object of study than a code to live by.
Few logicians and fewer mathematicians have any qualms about using the law of
excluded middle or double negation elimination. Should we still retain any suspicions
about the notion of truth in the intended model of a first-order theory? This is a
philosophical question, and it would be rash to think that only one answer is possible.
But many feel that there is no intrinsic difficulty with this concept. On the one hand,
we can define the domain of the intended model, and the values to be given to the
primitive operations of successor, addition and multiplication, within the confines
of a quite small fragment of set theory; on the other hand we can define the truth-
values of complex formulae, in that model, by recursion in the manner that was
articulated by Tarski and is now standard.

On this view, there are really only two shortcomings to the Master Argument:
a ceiling on what it shows and its non-constructivity. The canvassed philosophical
weakness of relying on the notion of ‘truth in the intended model of PA’, is not a
ground for serious concern.

Nevertheless, it is interesting to see that the Master Argument may be re-run

10

Gödel’s Master Argument

on a purely syntactic plane without any reference to truth in the intended model.
Thus, even if one has residual worries about that notion, they become irrelevant.
The re-run has, moreover, a technical benefit: it can be done in such a way as to yield
Gödel’s syntactic version of the first incompleteness theorem (ω-consistency implies
negation-incompleteness), thus raising somewhat the ceiling on content although
remaining non-constructive. While a little more abstract than the basic version of
the Master Argument, it is no more complex. We turn to it now.

8 The Master Argument without truth
We begin by generalizing the definition of expressibility. The definition in Section 4
took a set S ⊆ N to be expressible in the language of PA iff there is a formula
ϕ(x) with one free variable x, such that for all n ∈ N , n ∈ S iff ϕ(n) ∈ T where,
we recall, T stands for the set of sentences that are true in the intended model for
PA. Evidently, this definition continues to make sense if we replace T by another
set of sentences of LPA; we can indeed generalize from T to an arbitrary set X of
sentences, as follows.

Definition 8.1. Let X be any set of sentences in the language of PA; we call it an
‘oracle’. We say that that a set S ⊆ N is expressible according to (the oracle) X iff
there is a formula ϕ(x) with one free variable x in LPA such that for all n ∈ N ,

n ∈ S iff ϕ(n) ∈ X.

In particular, S is expressible according to the oracle T iff it is expressible tout
court. The generalized definition 8.1 allows us to formulate a syntactic version of
the Master Argument, using lemmas that follow the originals but with certain small
changes.

As before, fix an enumeration of all formulae in the language of PA with just
one free variable x. Generalize the definitions of D− and D+ thus: for any set
X of sentences in the language of PA, put D−X (resp. D+

X) to be the set of all
natural numbers n such that ϕn(n) 6∈ X (resp. ∈ X). Clearly these two sets are
complements of each other wrt. N , and as particular cases we have D−T = D− and
D+

T = D+.
The Inexpressibility Lemma modulo an oracle 8.2 for D−X is formulated just as

for D−, but for D+
X we need the hypothesis that X is well-behaved wrt. negation,

in the sense that for every sentence ϕ in the language of PA, exactly one of ϕ,¬ϕ is
in X. To appreciate the force of that hypothesis, note that one half of it (at least
one of ϕ,¬ϕ is in X) is just negation-completeness, while the other half (at least one

11

David Makinson

of ϕ,¬ϕ is not in X) is immediately implied by consistency. Indeed, if one assumes
that X is closed under classical consequence, then the second half is equivalent to
consistency. We have no need to make that assumption, but doing so would cause
no harm to the argument.

Lemma 8.2 (Inexpressibility Lemma (modulo an oracle)). Let X be any set of sen-
tences in the language of PA. Then D−X is not expressible according to the oracle X.
Moreover, if X is well-behaved wrt. negation, then D+

X is not expressible according
to X.

Proof. For D−X , we argue exactly as before with X in place of T . Suppose for
reductio that it is expressible according toX. Then by the definition of expressibility
according to X, there is a formula ϕ(x) with x as the sole free variable such that
for all n ∈ N , n ∈ D−X iff ϕ(n) ∈ X. Now ϕ(x) = ϕk(x) for some k ∈ N . So,
instantiating n to k we have in particular k ∈ D−X iff ϕk(k) ∈ X. But by the
definition of D−X we have k ∈ D−X iff ϕk(k) 6∈ X, giving a contradiction.

For D+
X , suppose for reductio that it is expressible according to X by a formula

ϕ(x) and that X is well-behaved wrt. negation. Then for all n ∈ N , n ∈ D+
X iff

ϕ(n) ∈ X iff ¬ϕ(n) 6∈ X. But then n ∈ D−X iff n 6∈ D+
X iff ¬ϕ(n) ∈ X, so that D−X

is expressed by the formula ¬ϕ(x) according to X, contrary to what we have just
shown.

The Expressibility Lemma modulo an oracle 8.3 runs parallel to its unmodulated
counterpart, with D+

|P A| replacing D
+ = D+

|T | and expressibility according to the
oracle |PA| replacing expressibility tout court. This forces two rejigs. Since truth is
no longer involved, the lemma requires the condition of ω-consistency rather than
soundness in the intended model; since expressibility of a set S ⊆ N according to the
oracle |PA| does not in general follow immediately from the same for its complement
N\S, the lemma covers only D+

|P A| and not D−|P A|.
As before, we fix separate acceptable numberings of all formulae with just one

free variable x and of all derivations of PA.

Lemma 8.3 (Expressibility Lemma (modulo an oracle)). If PA is ω-consistent,
then D+

|P A| is expressible according to the oracle |PA|.

Proof. As in the proof of the Expressibility Lemma 4.3, consider the relation that
holds between a derivation δm and a formula ϕn(x) with just one free variable x iff
the former is a derivation of ϕn(n), and recall that this relation is captured in PA
by some formulae ψ(y, x) in the sense that for all m,n ∈ N ,

1. if δm stands in the relation to ϕn(x) then ψ(m,n) ∈ |PA| and

12

Gödel’s Master Argument

2. if δm does not stand in the relation to ϕn(x) then ¬ψ(m,n) ∈ |PA|.
Now suppose that PA is ω-consistent. We want to show that the formula ∃yψ(y, x)
expresses D+

|P A| according to the oracle |PA|; that is: for all n ∈ N , n ∈ D+
|P A| iff

∃yψ(y, n) ∈ |PA|.
Left to right: Suppose n ∈ D+

|P A|. Then by definition, ϕn(n) ∈ |PA|. Hence
there is a derivation δm of ϕn(n), so δm stands in the relation to ϕn(x) so, by (1),
ψ(m,n) ∈ |PA|, so by classical logic ∃yψ(y, n) ∈ |PA| as desired.

Right to left: Suppose n 6∈ D+
|P A|. Then by definition, ϕn(n) 6∈ |PA|. Hence

there is no derivation δm of ϕn(n), so no δm bears the relation to ϕn(x) so, by (2),
¬ψ(m,n) ∈ |PA| for all m ∈ N . Thus by the ω-consistency of PA, ∃yψ(y, n) 6∈ |PA|
as desired.

Those who relish fine detail may compare the verifications contained in the last
two paragraphs with their counterparts in the Expressibility Lemma 4.3. Both
directions have indeed become a little simpler as a result of dealing with the oracle
|PA| rather than the truth-set T : in the left to right direction, we could simply omit
the last sentence of the previous version; in the converse direction, the last sentence
brings ω-consistency into play in lieu of soundness modulo PA.

The syntactic version of Gödel’s first incompleteness theorem appears immedi-
ately from the collision between the two oracular lemmas.

Theorem 8.4 (Gödel’s First Incompleteness Theorem (syntactic version)). If PA
is ω-consistent then it is negation-incomplete.

Proof. Suppose for reductio that PA is ω-consistent and negation-complete. Using
ω-consistency, the Expressibility Lemma modulo an oracle 8.3 tells us that D+

|P A| is
expressible according to |PA|. But ω-consistency immediately implies consistency
so, combining that with negation-completeness, |PA| is well-behaved wrt. negation.
So the second part of the Inexpressibility Lemma modulo an oracle 8.2 tells us that
D+
|P A| is not expressible according to |PA|, giving a contradiction.

It is also possible to put Tarski’s theorem on the undefinability of truth into a
form that is no longer about truth in the intended model, but about an arbitrary or-
acle satisfying certain syntactic conditions. However, the details of both formulation
and proof are a little more complex than we wish to handle here. We have gone only
so far as is needed to render the Master Argument immune to the criticism that it
uses the general notions of truth and falsehood of sentences of PA, and to raise the
ceiling on its content to cover the syntactic version of Gödel’s first incompleteness
theorem. Readers who would like to see ‘oracular’ versions of Tarski’s Theorem are
directed to the texts of Smullyan and Fitting in the list of resources that follows.

13

David Makinson

References

[1] Hans-Dieter Ebbinghaus. Ernst Zermelo: An Approach to his Life and Work. Berlin:
Springer, 2010. The correspondence with Gödel is discussed in section 4.10.

[2] Solomon Feferman. Kurt Gödel: conviction and caution. Philosophia Naturalis, 21:546–
562, 1984. This influential paper was republished with minor additions as chapter 7 of
the same author’s book In the Light of Logic, Oxford: Oxford University Press 1998.
Its theme is Gödel’s outer caution about using the notion of truth in mathematics, as
contrasted with his inner confidence in its meaningfulness.

[3] Melvin Fitting. Incompleteness in the Land of Sets. London: College Publications,
2007. An abstract form of the Master Argument is given in section 8.5. Also contains
an abstract form of Tarski’s Theorem.

[4] Kurt Gödel. Uber formal unentscheidbare Sätze der Principia Mathematica und Ver-
wandter Systeme I. Monatshefte für Mathematik und Physics, 38:173–198, 1931. The
‘official’ version in its German original. A number of English translations are available,
notably in Volume 1 of Gödel’s collected works.

[5] Kurt Gödel. Collected Works, volume 1-5. Oxford: Clarendon Press, 1986-2003. The
definitive, dual-language, collection. The letters are in volumes 5 and 6, ordered al-
phabetically by correspondent. Readers are urged to examine for themselves Zermelo’s
letter, Gödel’s reply, and the response of Zermelo that ended the correspondence.

[6] Ivor Grattan-Guinness. In memoriam Kurt Gödel: his 1931 correspondence with Zer-
melo on his incompletability theorem. Historia Mathematica, 6:294–304, 1979. The
first publication (in German) of Gödel’s reply to Zermelo, dated 12 October 1931, and
the latter’s response of 29 October. The initial letter of Zermelo, of 21 September, was
found later by John Dawson in Gödel’s Nachlass and first published (in German) in his
note ‘Completing the Gödel-Zermelo correspondence’ Historia Mathematica 12 (1985):
66-70.

[7] Roman Murawski. Undefinability of truth. the problem of priority: Tarski vs Gödel.
History and Philosophy of Logic, 19:153–160, 1998. Discusses the historical relationship
between Gödel’s work on incompleteness and Tarski’s work on the undefinability of
truth.

[8] Peter Smith. An Introduction to Gödel’s Theorems. Cambridge: Cambridge University
Press, 2nd edition, 2013. The Master Argument is sketched in section 27.5, but without
abstraction to a version without truth.

[9] Peter Smith. Gödel without (too many) tears. version of 20 February 2015. The text is
based on Smith 2013, but is more selective, concise and lively. It is perhaps the most
readable among accounts that go deeply into the machinery of Gödel’s incompleteness
theorems. The Master Argument is in a box in section 50.

[10] Raymond Smullyan. Diagonalization and Self-Reference. New York: Oxford University
Press, 1994. Seeks maximum generality; not to be tackled lightly. Abstract versions of
the Master Argument appear several times, beginning with Theorem 2.2. Also contains
an abstract version of Tarski’s Theorem.

14

Gödel’s Master Argument

[11] Alfred Tarski. Pojęcie prawdy w językach nauk dedukcynjnych. Nakladem Towarzysta
Naukowego Warszawskiego: Warsaw. An English translation, ‘The concept of truth
in formalized languages’, may be found in pp. 152-278 of the same author’s collection
Logic, Semantics Metamathematics, Oxford: Clarendon Press.

Received March 201515

16

Cut-Free Proof Systems for Geach Logics

Melvin Fitting
melvinfitting.org

melvin.fitting@gmail.edu

Abstract
Prefixed tableaus for modal logics have been around since the early 1970s,

and are quite familiar by now. Rather recently it was found that they were
dual to nested sequents, which have a complicated history but which also trace
back to the 1970’s. Both have provided very natural proof systems for the most
common modal logics, including those in the so-called modal cube. In this
paper we add some simple machinery to both prefixed tableaus and to nested
sequents, producing cut-free proof systems for all logics axiomatized by Geach
formulas, that is, by axiom schemes of the form ♦k�lX ⊃ �m♦nX. This again
provides proof mechanisms for the modal cube, but mechanisms of a different
nature than usual. But further, it provides proof mechanisms for an infinite
family of modal logics, and does so in a modular way with a clear separation
between logical and structural rules. The version of nested sequents presented
here has a direct relationship with the formal machinery of [23], and can be
thought of as a notational variant of a natural and interesting fragment of what
can be handled using that methodology.

1 Introduction
Over the years, sequent calculi and tableau systems for modal logics have evolved
into many forms. In appearance some have been elegant, some perhaps a bit ornate.
Some formalisms turned out to be embeddable in others, sometimes unexpectedly.
In this paper we add yet more species to the genus: tableau and sequent calculi
specifically for logics in the Geach family, also known as the Scott-Lemmon logics.

Definition 1.1 (Geach family). A Geach formula scheme is of the form ♦k�lX ⊃
�m♦nX, where k, l,m, n ≥ 0. (These are also known in the literature as Lemmon-
Scott axioms.) Following [6], this scheme is denoted Gk,l,m,n. Scheme Gk,l,m,n is
axiomatically sound and complete (indeed, canonical) with respect to frames meeting

Thank an anonymous referee for the comments that led to section 11.

Vol. 2 No. 2 2015
IFCoLog Journal of Logic and its Applications

Melvin Fitting

the condition: if w1Rkw2 and w1Rmw3 then for some w4, w2Rlw4 and w3Rnw4, a
kind of diamond property. We overload the notation Gk,l,m,n to mean: a Geach for-
mula scheme, or the corresponding semantic condition, or the corresponding tableau
rule (Section 3), or the corresponding nested sequent rule (Section 8). Context can
adequately sort things out. We systematically use Geach for a set of Gk,l,m,n, as
formulas, or semantic conditions, or tableau rules, or nested sequent rules, and we
call Geach a Geach logic.

Many of the most common modal logics, T, K4, S4, S5, among others, are Geach
logics. There are infinitely many different logics in the Geach family. We give new
versions of prefixed tableaus and of nested sequents appropriate for all Geach logics,
though at the cost of additional machinery added to the common versions. Our
systems make a clear distinction between logical rules and structural rules. Logical
rules are common to all the modal logics we treat; differences are reflected entirely
in structural rules.

In [4] Brünnler proposed “structural modal rules,” and conjectured the existence
of modular systems using these rules. An attempt to prove the conjecture was
made in [5] but there was a flaw in the argument; the conjecture is not true in
general. In [20] the error was fixed and a truly modular version was created, capable
of handling not only all 15 logics in the classical S5 cube, but of providing distinct
modular systems corresponding to distinct, though equivalent, axiomatizations. The
machinery in the present paper also does this using different, but related, machinery.
It goes beyond the earlier work in that it handles the entire Geach family, which is
infinite.

We note that [17] already studies nested sequent rules for a restricted class of
Geach logics, Gk,l,m,n where either l = 1 and n = 0 or else l = 0 and n = 1. This in
turn is based on display calculi for Geach logics (among others), in [19]. Also [20]
provides a nested sequent calculus for the S5 modal cube. All these examine issues
of constructive cut elimination and other important properties of proofs that we do
not consider here. The advantages of the systems given here are these: simple and
natural additions to the usual prefixed tableau or nested sequent machinery provide
proof systems covering all Geach logics in a uniform and (relatively) uncomplicated
way.

A few words about how things evolved may not be inappropriate, though this is
not meant to be a proper history. (Some details can be found in [10].) Axiomatic
proofs display nothing but formulas. Gentzen added the comma (with a context
dependent interpretation) and the arrow, obtaining proof systems for classical and
intuitionistic logic that provided special insights. The earliest sequent calculi for
modal logics followed Gentzen’s format. Several common modal logics can be han-

18

Cut-Free Proof Systems for Geach Logics

dled this way, but even S5 is a problem. The earliest tableau systems were analogous,
and can be thought of as dual to sequent calculi.

As time went on, additional machinery was added to both tableau and sequent
calculi. This machinery fell into two categories. On the one hand, the language
itself might be enlarged. If this route is taken, any additional machinery is governed
directly by logical rules, proof schemes, axioms, etc. Hybrid logics take this route.
Nominals are added to the language, naming possible worlds. With nominals avail-
able, a much wider variety of logics have natural tableau and sequent proof systems,
[2]. Perhaps the farthest reaching work along language expansion lines is somewhat
intermediate, enlarging the language used in proofs while primary interest centers in
formulas not involving the enhanced machinery, [23]. Possible worlds and an accessi-
bility relation in effect become primitives of a formal language. The resulting general
machinery, labelled sequent calculi, will be related to the present work in Section 11.
In a different direction, prefixed tableaus, [8, 9, 16, 21], and more generally labeled
deductive systems, [14], add machinery to a basic sequent or tableau calculus, but
like Gentzen’s arrow and comma this machinery is not part of the formula language
itself. The additional machinery is not manipulated as part of an expanded logic,
but syntactically and from the outside of the language, so to speak. We follow this
second path here, and we should say a little about our motivation.

Justification logics originated with an explicit counterpart of the modal logic
S4, [1]. A justification logic contains explicit justification terms instead of a modal
operator. These justification terms reflect the underlying reasoning and logical de-
pendence inherent in a modal theorem. Each theorem of S4 has a provable coun-
terpart in the justification logic LP, a connection called a Realization Theorem. The
range of modal logics having justification counterparts gradually grew beyond S4
and closely related logics. Recently, in unpublished work, I found that all logics in
the Geach family have justification counterparts—an infinite family. My proof of
Realization for these logics is non-constructive. Constructive proofs of Realization
always make use of so-called cut free proof systems. The real point is, proof systems
are needed that have the subformula property and preserve subformula polarity.
Gentzen style sequents have been used to prove constructive Realization results,
and so have Smullyan style tableaus, hypersequents, prefixed tableaus, and nested
sequents. So far, at least, proof methods that make use of expanded languages have
not been used successfully for Realization proofs. It is plausible that if we could
produce a cut-free proof system for Geach logics without expanding the underlying
language, it might be possible to give a constructive Realization proof uniformly for
all Geach logics. This is the hope, and the present paper is intended to be a step in
this direction.

19

Melvin Fitting

2 Prefixed Tableaus
It will be useful to sketch standard prefixed tableaus before moving on to our mod-
ifications. There are some minor novelties in our presentation, and these need some
mention as well.

It is convenient for us to make use of signed formulas and uniform notation.
We begin by briefly sketching what all this means. Formulas are built up from
propositional letters using propositional connectives ∧, ∨, ⊃, ¬, and modal operators
� and ♦. (It is useful to allow > to appear in tableau proofs, and we do so. It serves
as a place-holder and will not appear as part of a more complex formula. When we
come to nested sequents, the empty sequent plays a similar role.) A signed formula is
T X or F X, where X is a formula. (Unsigned formulas could have been used as well.
It makes no essential difference. Using signed formulas makes certain things easier.)
Signed formulas involving a binary connective are grouped into categories, those
that behave conjunctively (α) and those that behave disjunctively (β). Similarly
signed modal formulas are grouped into those behaving like necessity (ν) and those
behaving like possibility (π). This is what is referred to as uniform notation. Details
are given in the following tables, which also define components for each of these
signed formulas.

α α1 α2
T X ∧ Y T X T Y
F X ∨ Y F X F Y
F X ⊃ Y T X F Y

β β1 β2
F X ∧ Y F X F Y
T X ∨ Y T X T Y
T X ⊃ Y F X T Y

ν ν0
T �X T X
F ♦X F X

π π0
F �X F X
T ♦X T X

Informally, one reads T X as asserting that X is true (in some particular circum-
stance), and F X as asserting that X is false. Each α is then equivalent to the
informal conjunction of α1 and α2, while β cases act disjunctively. Similarly a
ν signed formula informally holds at a possible world if ν0 holds at all accessible
worlds, while a π signed formula holds if π0 holds at some accessible world.

Definition 2.1 (Path Sequences). A path sequence is a finite sequence of positive
integers, such as 1.3.2.5. A period is customarily used as a separator. A path
sequence can be empty; denoted by ε. A prefixed, signed formula is an expression of
the form σ Z, where σ is a path sequence and Z is a signed formula. Throughout,
we systematically use σ to represent an arbitrary path sequence and Z to represent
an arbitrary signed formula.

20

Cut-Free Proof Systems for Geach Logics

Prefixed signed (or unsigned) formulas are used in prefixed tableau systems for
many common modal logics. Such proof systems have been around for many years
and are described in a number of sources—[10] for instance. Commonly the empty
path sequence is not allowed and path sequences start with 1, but these are minor
points. Nothing basic is affected by our small modifications, but making them
now fits better with the new machinery to be introduced shortly. Informally, a
prefix names a possible world, and σ Z says that Z is so in the world named by
σ. The structure of sequences is supposed to provide a syntactic representation
of accessibility: informally σ.n names a world accessible from σ. For the example
1.3.2.5 mentioned in Definition 2.1, ε names an arbitrary world, 1 names a successor
of this world (2 would name a different one), 1.3 names a successor of the world
named by 1, and so on.

Finally we introduce some special terminology and machinery for working with
prefixed tableaus.

Definition 2.2 (Path Sequence Terminology). If σ is a path sequence and n is a
positive integer, by σ.n we mean the result of adding n to the end of path sequence
σ. We will also need n.σ, which is the result of adding n to the beginning of σ.

Prefixed tableaus have prefixed signed formulas at tableau nodes. We say a path
sequence σ occurs on a tableau branch if σ Z is on the branch for some signed formula
Z.

A positive integer n is new in a tableau if it does not appear in any path sequence
occurring on any branch in the tableau. A path sequence σ is not new on a tableau
branch if σ Z occurs on the branch for some Z.

Remark There are some differences in terminology between items in the definition
above and what is common in the literature. Usually one requires newness of a prefix,
and not just of an integer, in certain tableau rules. Our requirements are stronger
(but imply the usual ones). The stronger version makes it simpler to describe a
translation from our new kind of tableaus into our new kind of nested sequents, but
it makes no real difference for tableau soundness or completeness. Also, note that
our condition for not newness is still for entire prefixes.

As an example, we now describe a prefixed tableau system for the weakest nor-
mal modal logic, K. A prefixed tableau proof of a modal formula X begins with the
single prefixed signed formula ε F X, where ε is the empty path sequence. Infor-
mally, beginning with ε F X amounts to supposing X could be false at some world,
corresponding to ε, in some model. Tableau expansion rules are then applied until
a closed tableau, which is formally a tree, is produced (or not). A closed tableau

21

Melvin Fitting

informally means the supposition that X could be false somewhere is impossible.
Here are the rules and conditions for doing this.

Prefixed Tableau Closure A tableau branch is closed if it contains σ T X and
σ F X, for some formula X and some path sequence σ. If X is atomic, the branch
is atomically closed. If all branches of a tableau are (atomically) closed, the tableau
is (atomically) closed.

Next we have rules for expanding a tableau, stated using uniform notation.

Classical Prefixed Tableau Rules

σ α

σ α1
σ α2

σ β

σ β1 | σ β2

σ T ¬X
σ F X

σ F ¬X
σ T X

Modal Prefixed Tableau Rules

σ ν

σ.n ν0
where σ.n is

not new on the branch

σ π

σ.n π0
where n is

new in the tableau

Example 2.3. Here is a very simple prefixed K tableau proof, of �(P ⊃ Q) ⊃
(�P ⊃ �Q).

ε F �(P ⊃ Q) ⊃ (�P ⊃ �Q) 1.
ε T �(P ⊃ Q) 2.
ε F �P ⊃ �Q 3.
ε T �P 4.
ε F �Q 5.
1F Q 6.
1T P 7.
1T P ⊃ Q 8.

�
�
�

1F P 9.

@
@
@
1T Q 10.

In this, 2 and 3 are from 1 by Classical α, as are 4 and 5 from 3; 6 is from 5 by
Modal π (integer 1 is new on the branch at this point, and we write ε.1 simply as
1); 7 is from 4 and 8 is from 2 by Modal ν (prefix 1 is not new on the branch now);
9 and 10 are from 8 by Classical β. Closure is by 7 and 9, and by 6 and 10.

22

Cut-Free Proof Systems for Geach Logics

Single-use conditions can be imposed. All rules except Modal ν can be restricted
to a single application to a given prefixed signed formula on a branch. Likewise
atomic closure conditions can be imposed. All closure of branches must be atomic.
Soundness and completeness can be proved with these conditions in place.

Several other modal logics can be captured by adding additional rules to those
above. For instance, adding the following yields K4.

σ ν

σ.n ν
where σ.n is

not new on the branch

Our new machinery will provide quite different rules for logics like K4, so we do not
pursue this further here.

3 Set Prefixed Tableaus
A key point about tableaus as described in Section 2 is that these are appropriate for
logics for which tree models suffice. In a tree there is a unique path from the origin
to each node, so it is really ambiguous whether prefixes designate paths or nodes—it
doesn’t matter. Frames that are trees are not sufficient for Geach formulas generally.
For instance, ♦�X ⊃ �♦X is complete for frames having the confluence property: if
w1Rw2 and w1Rw3 then for some w4, w2Rw4 and w3Rw4. This involves two paths
from w1 to w4, and so we are not dealing with a frame having a tree structure.

We now specifically want to think of a path sequence as representing a path in
a frame, and not a node. With this understanding it is natural to start with the
empty sequence, and we have done so. Integers represent edges.

If integer sequences represent paths, we still need a representation for the possible
worlds of frames. We take these to be sets of sequences. Then, for example, the set
{1.2.3, 1.4} intuitively represents a node in a frame such that there are (at least)
two paths leading to it, starting from some arbitrary node represented by the set
containing the empty sequence {ε}. Using this path/set of paths representation, we
introduce tableau systems of a new kind, for all Geach logics. In particular, this
provides new tableau systems for some familiar logics, T, K4, S4, S5 among them,
and also for S4.2, and an infinite family of other logics as well. We call these set
prefixed tableaus.

There are connections between prefixed tableaus and tableaus for hybrid logic.
The present work is related to that presented in [3]. As noted earlier, the essential
difference is that the hybrid approach is uniform across a wide range of logics, but

23

Melvin Fitting

it requires expansion of the usual modal language, while the set prefixed approach
works with the original language, though it expands the machinery allowed in formal
proofs. There may also be useful relationships with [22], but this remains to be
examined.

Definition 3.1 (Path Sets). A path set is a finite, non-empty set of path sequences
(Definition 2.1). A set prefixed signed formula is ΣZ where Σ is a path set and Z
is a signed formula. We systematically use Σ to represent an arbitrary path set.

It is useful to think of ΣZ as shorthand for {σ Z | σ ∈ Σ}. This motivates some
of the terminology that follows.

Definition 3.2 (Path set terminology). If Σ is a path set and n is a positive integer,
by Σ.n we mean the result of adding n to the end of every path sequence in Σ. That
is, Σ.n = {σ.n | σ ∈ Σ}.

Set prefixed tableaus will have set prefixed signed formulas at nodes. We say
a path set Σ occurs on a tableau branch if ΣZ is on the branch for some signed
formula Z. We say a path sequence σ occurs on a branch if σ ∈ Σ where Σ is a path
set that occurs on the branch. If ΣZ occurs on a tableau branch and σ ∈ Σ, we say
σ Z occurs on the branch too.

A positive integer n is new on a tableau branch if it does not appear in any path
sequence occurring on the branch. It is new in the tableau if it is new on every
branch. When working with a particular tableau branch, we write Σ1 → Σ2 if both
path sets Σ1 and Σ2 occur on the branch and σ ∈ Σ1, σ.n ∈ Σ2 for some σ and n.

Note that, speaking very informally, Σ1 → Σ2 tells us there is an edge from the
node named by Σ1 to the node named by Σ2.

We now present tableau rules that make use of set prefixed signed formulas. A
set prefixed tableau proof of a modal formula X begins with the single set prefixed
signed formula {ε}F X, where ε is the empty path sequence. Beginning with {ε}F X
informally amounts to supposing X could be false at some world, corresponding
to {ε}, in some model. Tableau expansion rules are then applied. As usual, a
closed tableau informally means the supposition that X could be false somewhere is
impossible. Here are the rules and conditions for doing this. Not surprisingly, they
resemble those from Section 2, at least for a while.

Set Prefixed Closure A tableau branch is closed if it contains both ΣT X and
ΣF X, for some formula X and some path set Σ. If X is atomic, the branch is
atomically closed. If all branches of a tableau are (atomically) closed, the tableau is
(atomically) closed.

24

Cut-Free Proof Systems for Geach Logics

Next we have versions of the usual propositional and modal rules, once again
stated using uniform notation.

Classical Set Prefixed Tableau Rules
Σα

Σα1
Σα2

Σβ

Σβ1 | Σβ2

ΣT ¬X
ΣF X

ΣF ¬X
ΣT X

Classical Set Prefixed Modal Rules

Σ1 ν
Σ2 ν0

where Σ1 → Σ2

Σπ

Σ.n π0
where n is

new in the tableau

As far as we have gone in rule presentation, a tableau construction beginning
with {ε}F X can only involve set prefixed signed formulas with singleton sets as
prefixes. Machinery for something more complex has not yet been introduced. If we
temporarily identify {σ} with σ, at this point we have the usual prefixed tableau
rules for the modal logic K, from Section 2, in disguise. We move on to rules that
deal specifically with the internal structure of path sets, and it is now that more
complex sets enter the picture.

If two path sets appear on a branch and some path sequence is common to both,
it must be that the node of the frame that the two path sets informally designate is
the same, since both allow getting to the node by the same path and paths lead to
unique nodes. In this case the two path sets can be merged.

Set Prefix Union
Σ1 Z

(Σ1 ∪ Σ2)Z
provided Σ2 on branch

and Σ1 ∩ Σ2 6= ∅
If edge n leads from one node in a frame to another, any path leading to the

first node continues to the second via n. This motivates the following rule, in which
the premise is that σ.nZ occurs on a tableau branch, according to Definition 3.2.

Set Prefix Continuation
σ.nZ

Σ.nZ
provided Σ on branch

and σ ∈ Σ

25

Melvin Fitting

We need some special notation before introducing the Geach rule (or properly,
rule scheme). Note that > is now allowed to appear on a tableau branch. It serves
as a place-holder—we can’t have a set prefix with no signed formula that it prefixes.

Notation and Terminology
P is the set of positive integers, and Pn = {〈k1, . . . , kn〉 | ki ∈ P}. We call each ki a
component of ~t = 〈k1, . . . , kn〉.

We say ~t ∈ Pn is new in a tableau if each component is new and no two com-
ponents are the same. If also ~u ∈ Pm, we say ~t and ~u don’t overlap if they do not
share a component.

Suppose ~t ∈ Pn, say ~t = 〈k1, . . . , kn〉. For a path sequence σ, we write σ.~t as
short for σ.k1.k2. · · · .kn. For a path set Σ, we write Σ.~t as short for {σ.~t | σ ∈ Σ}.
And finally, we write (Σ⊕ init(~t))T > as short for the sequence:

Σ.k1 T >
Σ.k1.k2 T >
...
Σ.k1.k2. · · · .kn−1 T >

Now, here is our central new tableau construct. Note that it is entirely about
manipulation of set prefixes—signed formulas play no essential role.

Set Prefixed Geach Rule Scheme for Gk,l,m,n

σ.~t ∈ Σ1 on branch,~t ∈ Pk

σ.~u ∈ Σ2 on branch, ~u ∈ Pm

(Σ1 ⊕ init(~v))T >
(Σ2 ⊕ init(~w))T >
(Σ1.~v ∪ Σ2. ~w)T >

where
~v ∈ Pl is new
~w ∈ Pn is new

and ~v and ~w don’t overlap

This rule scheme mimics the semantic conditions for Gk,l,m,n as given in Defini-
tion 1.1. Informally, the premises that σ.~t and σ.~u are on a branch say that from a
single possible world (reachable via path σ) one can follow paths of lengths k and
m. The semantic conditions tell us that from these positions things can be brought
back together via continuation paths of lengths l and n. These paths, except for
the final common node, are represented by (Σ1⊕ init(~v))T > and (Σ2⊕ init(~w))T >,

26

Cut-Free Proof Systems for Geach Logics

and they are brought together at (Σ1.~v ∪ Σ2. ~w)T >, completing the diamond. The
newness and non-overlapping conditions are analogous to the newness condition of
the usual existential instantiation rule. They play a central role in the soundness
argument in Section 5.

In Section 2 we noted that certain single-use conditions could be imposed on
prefixed tableaus. The same is true for set prefixed tableaus. The Classical Rules
and the Modal π rule can be restricted to a single application to any particular
set prefixed signed formula on a branch. Our completeness proof works with this
restriction imposed. It also works with closure required to be atomic. This completes
the presentation of the tableau rules. Examples are in the next section.

4 Set Prefixed Tableau Examples

We give several examples of Geach style tableau rules for common modal logics. It
should be noted that rules for transitivity, symmetry, and so on are quite different
from those familiar with standard prefixed tableau systems.

Example 4.1. Geach Rule for G0,1,2,0

Axiomatically, G0,1,2,0 is the familiar scheme �X ⊃ ��X. The corresponding Geach
Rule is the following.

σ ∈ Σ1 on branch
σ.a.b ∈ Σ2 on branch

(Σ1.c ∪ Σ2)T >
where c is new

Incidentally, the dual version of �X ⊃ ��X is ♦♦X ⊃ ♦X and it is also a
Geach scheme, G2,0,0,1. It leads to the same rule as above, but with the roles of
Σ1 and Σ2 switched around. We will not mention this duality phenomenon when
discussing additional examples below. We continue by showing this rule in use.

27

Melvin Fitting

Proof of �♦♦P ⊃ �♦P in K4

{ε} F �♦♦P ⊃ �♦P 1.
{ε} T �♦♦P 2.
{ε} F �♦P 3.
{1} F ♦P 4.
{1} T ♦♦P 5.
{1.2} T ♦P 6.
{1.2.3} T P 7.
{1.4, 1.2.3}T > 8.
{1.4, 1.2.3}F P 9.
{1.4, 1.2.3}T P 10.

The reasons are as follows. Recall that ε is the empty path sequence. 2 and 3 are
from 1 by Classical α; 4 is from 3 by Modal π; 5 is from 2 by Modal ν; 6 is from 5
and 7 is from 6 by Modal π; 8 is from 4 (or 5), and 7, by G0,1,2,0; 9 is from 4 by
Modal ν; and 10 is from 7 and 8 (or 9) by Prefix Union. Closure is from 9 and 10,
and happens to be atomic.

Example 4.2. Geach Rule for G0,1,0,0

The Geach axiom scheme is, of course, �X ⊃ X. The corresponding Geach Rule is
the following.

σ ∈ Σ1 on branch
σ ∈ Σ2 on branch
(Σ1.a ∪ Σ2)T >
where a is new

In this rule the premises say that Σ1 and Σ2 overlap. Since we have the Prefix
Union Rule, without loss of generality we can simply take the sets to be the same.

Derived Geach Rule for G0,1,0,0

Σ on branch
(Σ.a ∪ Σ)T >
where a is new

Example 4.3. Geach Rule for G1,1,0,0

The Geach axiom scheme is ♦�X ⊃ X, and the Geach rule is the following.

σ.a ∈ Σ1 on branch
σ ∈ Σ2 on branch
(Σ1.b ∪ Σ2)T >
where b is new

28

Cut-Free Proof Systems for Geach Logics

By combining G0,1,2,0 and G0,1,0,0 we have a tableau system for S4. It can be extended
to one for S5 using either ♦�X ⊃ �X or ♦�X ⊃ X. We have given the Geach
Rule for the second of these. The first version then becomes provable.

Proof of ♦�P ⊃ �P using G1,1,0,0 and G0,1,2,0

{ε} F ♦�P ⊃ �P 1.
{ε} T ♦�P 2.
{ε} F �P 3.
{1} T �P 4.
{1.2, ε} T > 5.
{3} F P 6.
{1.2.3, 3} F P 7.
{1.4, 1.2.3, 3}T > 8.
{1.4, 1.2.3, 3}T P 9.
{1.4, 1.2.3, 3}F P 10.

In this 2 and 3 are from 1 by Classical α; 4 is from 2 by Modal π; 5 is from 3 and 4
by Geach Rule G1,1,0,0 where Σ1 = {1}, Σ2 = {ε} σ = ε, a = 1, and b = 2; 6 is from
3 by Modal π; 7 is from 5 and 6 by Prefix Continuation where Σ = {1.2, ε}, σ = ε,
and a = 3; 8 is from 4 and 7 by Geach Rule G0,1,2,0 where Σ1 = {1}, Σ2 = {1.2.3, 3},
σ = 1, a = 2, b = 3, and c = 4; 9 is from 4 and 8 by Modal ν; 10 is from 7 and 9 by
Prefix Union where Σ1 = {1.2.3, 3} and Σ2 = {1.4, 1.2.3, 3}; closure is by 9 and 10.

Example 4.4. Geach Rule for G1,1,1,1

Axiomatically G1,1,1,1 is the scheme ♦�X ⊃ �♦X. It is the archetypical Geach
scheme. When combined with S4 we have the logic S4.2. The rule is the following.

σ.a ∈ Σ1 on branch
σ.b ∈ Σ2 on branch
(Σ1.c ∪ Σ2.d)T >

where
c and d are new and distinct

29

Melvin Fitting

Proof of (♦�P ∧ ♦�Q) ⊃ ♦(P ∧Q) using G1,1,1,1 and G0,1,2,0

{ε} F (♦�P ∧ ♦�Q) ⊃ ♦(P ∧Q) 1.
{ε} T ♦�P ∧ ♦�Q 2.
{ε} F ♦(P ∧Q) 3.
{ε} T ♦�P 4.
{ε} T ♦�Q 5.
{1} T �P 6.
{2} T �Q 7.
{1.3, 2.4} T > 8.
{5, 1.3, 2.4}T > 9.
{5, 1.3, 2.4}T P 10.
{5, 1.3, 2.4}T Q 11.
{5, 1.3, 2.4}F P ∧Q 12.

�
�
�
�

{5, 1.3, 2.4}F P 13.

@
@
@
@

{5, 1.3, 2.4}F Q 14.

Here 2 and 3 are from 1 by Classical α, as are 4 and 5 from 2; 6 is from 4 and 7
from 5 by Modal π; 8 is from 6 and 7 by G1,1,1,1; 9 is from 1 and 8 by G0,1,2,0; 10,
11, and 12 are from 6, 7, and 3 by Modal ν; 13 and 14 are from 12 by Classical β.

Example 4.5. Geach Rule for G1,2,1,2 The Geach axiom scheme is ♦��X ⊃
�♦♦X. The rule is as follows.

σ.a ∈ Σ1 on branch
σ.b ∈ Σ2 on branch

Σ1.c T >
Σ2.e T >

(Σ1.c.d ∪ Σ2.e.f)T >
where c, d, e, f are
new and distinct

30

Cut-Free Proof Systems for Geach Logics

Proof of (♦��P ∧ ♦��Q) ⊃ ♦♦♦(P ∧Q) using G1,2,1,2

{ε}F (♦��P ∧ ♦��Q) ⊃ ♦♦♦(P ∧Q) 1.
{ε}T ♦��P ∧ ♦��Q 2.
{ε}F ♦♦♦(P ∧Q) 3.
{ε}T ♦��P 4.
{ε}T ♦��Q 5.
{1}T ��P 6.
{2}T ��Q 7.
{1}F ♦♦(P ∧Q) 8.
{1.3}T > 9.
{2.5}T > 10.
{1.3.4, 2.5.6}T > 11.
{1.3}T �P 12.
{2.5}T �Q 13.
{1.3}F ♦(P ∧Q) 14.
{1.3.4, 2.5.6}T P 15.
{1.3.4, 2.5.6}T Q 16.
{1.3.4, 2.5.6}F P ∧Q 17.

�
�
�
�

{1.3.4, 2.5.6}F P 18.

@
@
@
@

{1.3.4, 2.5.6}F Q 19.

2 and 3 are from 1 by Classical α, as are 4 and 5 from 2; 6 is from 4 and 7 is from 5
by Modal π; 8 is from 3 by Modal ν; 9, 10, and 11 are from 6 and 7 by G1,2,1,2; 12,
13, and 14 are from 6, 7, and 8 by Modal ν; 15, 16, and 17 are from 12, 13, and 14
also by Modal ν; 18 and 19 are from 17 by Classical β.

5 Tableau Soundness
We show soundness for a set prefixed tableau system containing a set Geach of Geach
Rules. Throughout this section M = 〈G,R,V〉 is a Kripke model with possible
worlds G, accessibility relation R, and valuation V. We assume the frame meets the
semantic conditions for the members of Geach. We writeM, w X to indicate that
formula X is true at world w of modelM. We extend notation to signed formulas,
writingM, w T X ifM, w X, andM, w F X ifM, w 6 X. We often choose
a particular possible world w0 and call it the actual world. The choice of an actual
world is arbitrary, and the terminology is for convenience.

31

Melvin Fitting

Definition 5.1 (Satisfiability). The frame of Kripke model M is a directed graph.
Let θ be a mapping from a set P of positive integers to edges of this directed graph.
We call θ an edge mapping. Assume a possible world w0 has been designated as
actual world. Further, suppose B is a branch of a set prefixed tableau. We say θ
satisfies B inM with respect to w0 if the following conditions are met.

1. The domain P of θ consists of those positive integers that appear in path se-
quences on branch B.

2. If σ = n0.n1.n2.nk is a path sequence appearing on B then θ(n0), θ(n1),
θ(n2), . . . , θ(nk) is a path in 〈G,R〉 beginning at w0. We denote this path by
θ(σ) and its terminal node (possible world) by T (θ(σ)). Then θ(σ) is a path
in 〈G,R〉 from the designated actual world to T (θ(σ)).

3. If Σ is a path set that occurs on branch B then T (θ(σ)) is the same for all
path sequences σ appearing in Σ. We refer to this common node as T (θ(Σ)).

4. If ΣZ occurs on branch B, where Z is a signed formula, thenM, T (θ(Σ)) Z.

We say a branch B of a set prefixed tableau is satisfiable if there is some Kripke
model M, some choice of actual world w0 of M, and some edge assignment θ so
that θ satisfies B inM with respect to w0. A tableau is satisfiable if some branch is
satisfiable.

Theorem 5.2. Suppose we have a set prefixed tableau, allowing rules from the set
Geach, and it is satisfiable in a modelM meeting the semantic conditions for mem-
bers of Geach. If a tableau rule is applied, the resulting tableau is again satisfiable
inM.

Proof. The proof of this is along the lines usual with modal tableaus. Suppose we
have a satisfiable tableau and a tableau rule is applied on branch B of it. If a branch
of the tableau other than B was satisfiable, it still is after a rule application on
B—this is a trivial case. Now suppose it is B that is satisfiable. There are many
cases to be checked, one for each tableau rule. We check three cases and leave the
rest to the reader. For each case assume tableau branch B is satisfiable in modelM
using edge mapping θ with respect to actual world w0, and B has a rule applied on
it.

Set Prefix Union Rule. Suppose Σ1 Z is on B, Σ2 occurs on B, Σ1 ∩ Σ2 6= ∅,
and we add (Σ1 ∪ Σ2)Z to B. The set of positive integers appearing in path
sequences on B has not changed, so θ still meets condition 1 from Definition 5.1
for the extension of B. Similarly for condition 2. Since T (θ(τ)) is the same

32

Cut-Free Proof Systems for Geach Logics

for all path sequences τ in Σ1, and similarly for Σ2, and since some path
sequence appears in both, then T (θ(τ)) is the same for all τ in Σ1 ∪Σ2; hence
condition 3. Since Σ1 Z is on B, by the induction hypothesisM, T (θ(Σ1)) Z.
ThenM, T (θ(Σ1 ∪ Σ2)) Z, using condition 3, and hence we have condition
4.

Set Prefix Continuation Rule. Suppose path set Σ occurs on B, σ ∈ Σ, σ.aZ is
on B, and we add Σ.a Z to B. The conditions on θ ensure that edge θ(a) goes
from T (θ(Σ)) to T (θ(Σ.a)), and this is enough to confirm condition 3 for the
extended branch. The other conditions are straightforward.

Geach Rule for Gk,l,m,n. AssumeM meets the frame conditions corresponding to
Gk,l,m,n, and an application of tableau Geach Rule Gk,l,m,n is made, extending
B. More specifically, suppose path sets Σ1 and Σ2 occur on B, σ.~t ∈ Σ1,
σ.~u ∈ Σ2 (~t ∈ Pk, ~u ∈ Pm), and we add the members of (Σ1 ⊕ init(~v))T >, the
members of (Σ2⊕init(~w))T >, and (Σ1.~v∪Σ2. ~w)T > to B (~v ∈ Pl, ~w ∈ Pn, both
new, and not overlapping). We must show the resulting branch is satisfiable.
We know that before B was extended, θ satisfied B. Then there is a path,
θ(~t), of length k from T (θ(σ)) to T (θ(σ.~t)) = T (θ(Σ1)), and a path, θ(~u), of
length m from T (θ(σ)) to T (θ(σ.~u)) = T (θ(Σ2)). By the semantic condition
for Gk,l,m,n there is a possible world, call it w ∈ G, with a path from T (θ(Σ1))
to w of length l, and a path from T (θ(Σ2)) to w of length n. We extend θ
to a mapping θ′ by defining it on the positive integers that occur in ~v and ~w.
Since these are new and don’t overlap, we can do this freely. Let θ′ assign to
the successive positive integers in ~v the edges on the path from T (θ(Σ1)) to w.
Likewise let θ′ assign to the positive integers in ~w the edges on the path from
T (θ(Σ2)) to w. It is now straightforward to check that the branch extending
B is satisfiable using θ′. We omit the details.

Theorem 5.3 (Soundness). If formula X is provable using the general set prefixed
tableau rules and a set Geach of Geach Rules, all from Section 3, then X is true
at every possible world of every Kripke model meeting the semantic conditions for
members of Geach.

Proof. Suppose X is provable, but is false in modelM = 〈G,R,V〉 at possible world
w0, where the tableau proof uses members of Geach and M meets the semantic
conditions for Geach. We derive a contradiction.

Use w0 as the actual world. The initial tableau has a single branch, containing a
single entry, {ε}F X, and this branch is satisfiable inM using for edge assignment

33

Melvin Fitting

the mapping with empty domain. Then by Theorem 5.1, all subsequent steps in the
tableau construction are satisfiable. But since X is provable, a closed tableau can
be reached. This is a contradiction since a closed tableau cannot be satisfiable.

6 Tableau Completeness
Throughout this section we assume we are using the set prefixed tableau rules allow-
ing a set Geach of the Geach Rule schemes. We will show completeness with respect
to Kripke models whose frames meet the semantic conditions for Geach.

It is possible to specify a systematic and fair tableau construction procedure
(with a single-use restriction and requiring atomic closure). Fairness simply means
that any applicable rule is eventually applied. We omit details of such a construc-
tion procedure. Now suppose we follow a fair construction procedure, and it does
not produce a closed tableau. This tableau must have an open branch. (Of course
the construction may not terminate, in which case an infinite tableau will be gen-
erated. Such a tableau will have an infinite branch by König’s Lemma, and this
branch will be open, or we would have stopped applying rules to it at a finite stage.)
Completeness is a consequence of the following.

Theorem 6.1. Let B be an open branch of a set prefixed tableau, using rules from
Geach, where the tableau has been constructed using a fair procedure (following a
single-use restriction and requiring atomic closure). The collection of set prefixed,
signed formulas on B is a satisfiable set, satisfiable in a Kripke model meeting the
semantic conditions for Geach.

Proof. We use B to construct a modelM. Details of the construction are introduced
and facts are established one item at a time. Justification of facts follows their
statement, when necessary.

1. Call two path sequences σ1 and σ2 equivalent, written σ1 ∼ σ2, if there is
some path set Σ that occurs on branch B with both as members. This is an
equivalence relation on the set of path sequences. We denote the equivalence
class containing path sequence σ by [σ].

In verifying that we have an equivalence relation, reflexivity and symmetry are
trivial. For transitivity, suppose σ1 ∼ σ2 and σ2 ∼ σ3; say σ1, σ2 ∈ Σ1, and σ2, σ3 ∈
Σ2, where both Σ1 and Σ2 occur on B. Since σ2 belongs to both, Σ1 ∩ Σ2 6= ∅,
so using the Set Prefix Union Rule (and the fairness of the tableau construction),
Σ1 ∪ Σ2 also occurs on B. It contains σ1 and σ3, so σ1 ∼ σ3.

34

Cut-Free Proof Systems for Geach Logics

2. The set G of possible worlds of the modelM that we are constructing is the
set of equivalence classes of path sequences, using the equivalence relation ∼.

3. If σ1 ∼ σ2 and σ1.a occurs on B then σ1.a ∼ σ2.a.

We verify item 3. Assume σ1 ∼ σ2; say both σ1 and σ2 are in path set Σ, on B.
Also assume σ1.a occurs on B, say in the prefixed signed formula σ1.a Z. By the
Set Prefix Continuation Rule and the fairness of the tableau construction, Σ.a Z also
occurs on B. Since both σ1 and σ2 are in Σ, both σ1.a and σ2.a will be in Σ.a, hence
σ1.a ∼ σ2.a.

4. An accessibility relationR is defined on G as follows. [σ1]R[σ2] if σ1.a ∈ [σ2] for
some positive integer a. An equivalent simpler version is: [σ]R[σ.a], provided
σ.a appears on B.

Note that item 4 does not depend on the particular representative chosen for [σ1]
because of 3. There is an important consequence of this, which will be needed below
in item 9. Suppose [σ1]R[σ2]R[σ3]. Then σ1.a.b ∈ [σ3] for some a and b, by the
following argument. Since [σ1]R[σ2], then σ1.a ∈ [σ2] for some a. Since [σ2]R[σ3],
σ2.b ∈ [σ3] for some b. But σ1.a ∼ σ2, so by 3, σ1.a.b ∼ σ2.b, and hence σ1.a.b ∈ [σ3].
Of course this can be continued to longer chains of accessibility.

5. If σ1 ∼ σ2, and σ1 Z occurs on branch B for signed formula Z, so does σ2 Z.

We verify item 5. Assume σ1 ∼ σ2; say σ1, σ2 ∈ Σ1, where Σ1 occurs on B. Also
assume σ1 Z occurs on B; say σ1 ∈ Σ2 where Σ2 Z occurs on B. Then Σ1 and Σ2
overlap, on σ1, so by the Prefix Union Rule, (Σ1 ∪Σ2)Z is on B. Since σ2 ∈ Σ1, σ2 Z
is on B.

More can be obtained by a similar argument.

6. Suppose σ T X and σ F X occur on B. Then B is closed. More generally, we
have closure if σ1 T X and σ2 F X are on B, where σ1 ∼ σ2.

We verify the first part of 6; the second part then follows using 5. Assume σ T X
and σ F X occur on B; say σ ∈ Σ1 where Σ1 T X is on B and σ ∈ Σ2 where Σ2 F X
is on B. Since Σ1 and Σ2 overlap, using the Prefix Union Rule (Σ1 ∪ Σ2)T X and
(Σ1 ∪ Σ2)F X are on B, and this satisfies the closure definition.

7. The valuation V of our model is defined as follows. For a propositional letter
P , V(P) = {[σ] | σ T P occurs on B}. (Item 5 is relevant here.) We have
finished construction of our model,M = 〈G,R,V〉.

35

Melvin Fitting

8. Truth Lemma. If σ Z occurs on B thenM, [σ] Z.

The proof of item 8 is by induction on the complexity of signed formula Z.
We begin with the atomic case. If Z = T P , the result is by valuation definition.

Next we show that σ F P on B and M, [σ] P together lead to a contradiction.
Well, suppose we had both. By the second item [σ] ∈ V(P) so by 7 σ T P occurs on
B, but then by 6, B would be closed. Notice that only atomic closure of the tableau
construction is needed here.

For the induction steps, assume the result is known for signed formulas simpler
than Z. There are several cases. The propositional connective cases are virtually
the same as in every tableau completeness proof. We leave these cases to the reader.
We cover the modal cases involving � in more detail. Those involving ♦ are similar
and are omitted.

Suppose σ T �X occurs on B. A possible world in G accessible from [σ] must
be of the form [σ.a] for some positive integer a where σ.a occurs on B. Say σ ∈ Σ1
where Σ1 T �X is on B, and σ.a ∈ Σ2, which is also on B. By Modal Rule ν, Σ2 T X
must be on B (since Σ1 → Σ2), so σ.a T X is on B. By the induction hypothesis,
M, [σ.a] X. And since a was arbitrary, we have this for any accessible world, and
henceM, [σ] �X.

Finally, suppose σ F �X occurs on B, say σ ∈ Σ and ΣF �X is on B. By
Modal Rule π (even single-use), Σ.n F X is on B for some n. Then σ.nF X is on
B. [σ.n] ∈ G and [σ]R[σ.n]. By the induction hypothesis, M, [σ.n] 6 X, and so
M, [σ] 6 �X.

This completes the argument for 8.

9. The frame of modelM = 〈G,R,V〉 satisfies the semantic conditions of Geach.

We verify 9. Assume we use Geach Rule Gk,l,m,n in the tableau construction. We
show the corresponding semantic condition from Definition 1.1 holds inM.

Suppose [σ1], [σ2], [σ3] ∈ G and [σ1]Rk[σ2] and [σ1]Rm[σ3]. By repeated use of
the definition of R from 4 (and the comments immediately following that definition)
there must be some ~t ∈ Pk so that σ1.~t ∈ [σ2] and hence [σ2] = [σ1.~t]. Similarly there
is some ~u ∈ Pm so that [σ3] = [σ1.~u]. Then there are path sets Σ1 and Σ2 on B with
σ1.~t ∈ Σ1 and σ1.~u ∈ Σ2. By the Geach Rule for Gk,l,m,n there are ~v ∈ Pl and ~w ∈ Pn

so that (Σ1.~v ∪Σ2. ~w)T > is on B. Then σ1.~t.~v ∼ σ1.~u.~w, so [σ1.~t.~v] = [σ1.~u.~w] ∈ G.
Finally, it is easy to see that [σ1.~t]Rl[σ1.~t.~v] and [σ1.~u]Rn[σ1.~u.~w].

Now all the pieces of completeness are in place. If X is not provable, there is
no closed tableau starting with {ε}F X. A fair tableau construction will produce
a tableau with an open branch, B, to which the items above can be applied. A

36

Cut-Free Proof Systems for Geach Logics

modelM = 〈G,R,V〉 will be produced, and by 9 it will satisfy the Geach semantic
conditions. In this, [ε] will be a possible world and, since {ε}F X is on B, by 8,
M, [ε] 6 X, and thus X is not valid.

7 Nested Sequent Systems
Tableau systems and sequent calculi generally go together. Roughly speaking, one
is the other upside-down. Smullyan style tableaus and Gentzen style sequent calculi
correspond in this way, and this extends to destructive modal tableaus and sequent
calculi. In [11] it was shown that prefixed modal tableaus and nested sequents
correspond. In [18] it was further shown that nested sequents correspond to the
subclass of labelled sequents called labelled tree sequents. There are certain ideas
that keep recurring in various forms—an argument for naturalness. Starting in
Section 8 we present indexed nested sequents, which (mostly) correspond to set
prefixed modal tableaus in a similar way. But first, in this section we sketch the
basics of ordinary nested sequents, presenting a system just for modal K.

Nested sequents are sequent calculi that allow certain kinds of deep reasoning.
The machinery to manage this consists of allowing sequents to appear inside se-
quents, which can appear inside sequents, etc. Rules apply at any level of nesting.
All sequents are one-sided here. One sided sequents can be defined using sequences,
multi-sets, or sets. To keep things simple, we have opted for a set-based approach.
Sometimes the empty sequent is disallowed. Here it is allowed. Also we use signed
formulas, while formulas without signs are commonly used in the literature on nested
sequents.

Definition 7.1. A nested sequent is a finite set of signed formulas and nested
sequents.

There are standard conventions for writing nested sequents, and we follow them.
At the top level all enclosing curly brackets are omitted. At deeper levels, a
nested sequent that is a member of another nested sequent is represented by list-
ing its members in square brackets, and is called a boxed sequent. For example,
{A,B, {C, {D,E}, {F,G}}} is a nested sequent (where the letters stand for signed
formulas). This is usually written as A,B, [C, [D,E], [F,G]].

When presenting nested sequent rules, one makes use of a notion of hole. Think
of { } as a peculiar way of writing a special propositional letter. It is allowed
to appear at most once in a nested sequent, but not as part of a more complex
formula. For instance, T A∧B, [F C, [T D ∨E, { }]] is a nested sequent with a hole.
Schematically, it is abbreviated as Γ{ } and is referred to as a context. The result

37

Melvin Fitting

of ‘filling’ the hole with a specific signed formula, say Z, is written as Γ{Z}. In our
example we get T A ∧ B, [F C, [T D ∨ E,Z]]. More generally, a hole may be filled
with multiple signed formulas, one or more nested sequents, or some combination
of these. One can even allow filling with a nested sequent having a hole of its own,
though we won’t need such a complication.

We now give nested sequent rules for K. As with prefixed tableaus, we use signed
formulas, and do not require negation normal form. Again, this is a minor point. In
the following, Γ{ } is an arbitrary context; this will not be repeated each time.

Nested Sequent Axioms A nested sequent axiom is Γ{T X,F X}. IfX is atomic,
we say the axiom is atomic. It is common to make this a requirement.

Nested sequent proofs begin with axioms and end with a sequent containing only
T X, where X is the formula being proved. In between, the following rules can be
used.

Classical Nested Sequent Rules

Γ{α1} Γ{α2}
Γ{α}

Γ{β1, β2}
Γ{β}

Γ{F X}
Γ{T ¬X}

Γ{T X}
Γ{F ¬X}

Modal Nested Sequent Rules

Γ{[ν0]}
Γ{ν}

Γ{π, [π0, . . .]}
Γ{π, [. . .]}

In Example 2.3 we gave an instance of a prefixed tableau proof. Here is a
corresponding nested sequent proof of the same formula. Think of the comma as
disjunction and nested boxes as being necessitated. The connection between Exam-
ple 2.3 and Example 7.2 is that one is the other turned over, with the roles of T
and F reversed, and with nesting corresponding to prefix extension. Details can be
found in [11].

Example 7.2.
F �(P ⊃ Q,F �P, [T P, F P, T Q] F �(P ⊃ Q), F �P, [F Q,F P, T Q]

F �(P ⊃ Q), F �P, [F P ⊃ Q,F P, T Q]
α

F �(P ⊃ Q), F �P, [F P, T Q]
π

F �(P ⊃ Q), F �P, [T Q]
π

F �(P ⊃ Q), F �P, T �Q ν

F �(P ⊃ Q), T �P ⊃ �Q β

T �(P ⊃ Q) ⊃ (�P ⊃ �Q) β

38

Cut-Free Proof Systems for Geach Logics

The nested sequent system for K, described above, can be turned into systems
for other common modal logics with the addition of various rules. For instance,
adding the following produces K4.

Γ{π, [π, . . .]}
Γ{π, [. . .]}

We follow a very different route here.

8 Indexed Nested Sequents
We now create an indexed version of nested sequents that will correspond to most
set prefixed systems. There is a still more elaborate version that can handle all of
them, and we discuss this briefly in Section 14. We begin with an explanation of
why there are two versions.

Geach formulas semantically correspond to confluence properties. The iconic
case is G1,1,1,1 which, semantically, is simply a diamond condition. The problems
come with the trivial cases, since the Geach parameters are allowed to be 0. Speaking
loosely, Gk,l,m,n says, about a frame, that a k length move and an m length move
from the same starting point can be brought back together with an l length move
and an n length move. But if both l and n are 0, we are not actually making
any further moves. We are already at a single point, without doing anything more.
If there were a fresh move to be made, we could place constraints on it. But if no
move is to be made, we discover that constraints already exist, and so any notational
representation we already have must be modified. It is this need to modify previously
existing formal representations that forces us to more complex machinery. We avoid
the complexity until after we have dealt with the simpler situations. Specifically,
for the time being we do not allow both l and n to be 0 in Gk,l,m,n, which covers
most cases, and certainly all the standard ones. A more general approach will be
discussed in Section 14.

We use nested sequents as sketched in Section 7, but instead of one kind of
nested sequent we need a family of them. Each boxed sequent has an index, a
non-negative integer, assigned to it using a notation convention illustrated by the

following example:
3[
T A,F B, T C

3]
is a boxed sequent with index 3. A top level

sequent is not nested, but by convention we give it an index of 0 which does not
turn up explicitly in the notation. We refer to the sequent calculi introduced here
as indexed nested sequents.

Here is some informal motivation. With conventional nested sequents, and with
the version here as well, a move from a sequent to a boxed sequent contained in

39

Melvin Fitting

it corresponds to a semantic move from a possible world to an accessible possible
world. Loosely speaking, the overall sequent nesting structure represents edges in
a directed graph or Kripke frame, with each nested sequent representing a possible
world. But now the indexing machinery has the following function: all sequents with
the same index represent the same possible world. Thus the tree structure inherent
in nesting is supplemented to allow for multiple paths to the same world.

We now give the indexed sequent rules. Many of them have the same appearance
as with ordinary nested sequents, except that sequent indexes are now present. We
repeat rules here for convenience, even if they appear unchanged.

Indexed Nested Sequent Axioms An indexed nested sequent axiom is any se-
quent of the form Γ{T X,F X}. If X is atomic, the axiom is atomic..

Classical Indexed Nested Sequent Rules

Γ{α1} Γ{α2}
Γ{α}

Γ{β1, β2}
Γ{β}

Γ{F X}
Γ{T ¬X}

Γ{T X}
Γ{F ¬X}

Modal Indexed Nested Sequent Rules

Γ{
a[
ν0

a]}
Γ{ν}

provided index a does
not appear in the consequent

Γ{π,
a[
π0, . . .

a]}
Γ{π,

a[
. . .

a]}

Next we have analogs of the tableau Set Prefix Union and Set Prefix Continuation
Rules. These are most easily stated in words rather than symbolically. The first is
a counterpart to the Set Prefix Union Rule.

Formula Contraction, FC If a signed formula occurs more than once in sequents
with the same index, one occurrence can be deleted.

Here are two examples of the Formula Contraction Rule in use. The first reduces
sequent size, eliminating an occurrence of T C, which appears in two boxed sequents
with index 1. The second reduces a boxed sequent to empty—for this example,
recall that the top level has index 0.

T A,F B,
1[
T C, F D

1]
,

2[
T E,

1[
T C,F G

1]2]

T A,F B,
1[
T C, F D

1]
,

2[
T E,

1[
F G

1]2]

40

Cut-Free Proof Systems for Geach Logics

T A,F B,
1[
T C, F D,

0[
T A

0]1]

T A,F B,
1[
T C, F D,

0[0]1]

Motivation for the Formula Contraction Rule is straightforward. In effect, no informa-
tion is lost in deleting one signed formula occurrence, because the same information
was recorded twice and so can be recovered in principle.

Sequent Contraction, SC If two boxed sequents with the same index, one empty
a[a]

and one not necessarily empty
a[· · ·

a]
, occur in sequents with the same index,

a[a]

can be deleted.

The Sequent Contraction Rule (which is a counterpart of the Set Prefix Continua-
tion Rule) is somewhat more complex. As noted earlier, a sequent can be thought of
as designating a possible world. The formulas it contains are true at that possible
world. Nesting structure of sequents corresponds to accessibility. Sameness of index
for two sequents tells us they designate the same possible world. Of course infor-
mation about formula truth is non-existent for an empty indexed sequent; nesting
structure and index are all that matter for it. But in the premise of the Sequent
Contraction Rule, information about nesting structure for an empty boxed sequent is
postulated to be represented elsewhere, so information can be safely removed. Here
is an example of the Sequent Contraction Rule. Two boxed sequents have index 1,
and both occur in sequents with index 0 (recall, the top level sequent has index 0
by convention).

T A,
1[
T B,F C

1]
,

0[
T D,

1[1]0]

T A,
1[
T B,F C

1]
,

0[
T D

0]

The Geach Scheme we give is not a rule, but a rule generator. It creates rules
for all of Gk,l,m,n where k, l,m, n ≥ 0 but not both l and n can be 0. Direct notation
for an arbitrary nested sequent can be quite cluttered. To avoid this problem we
introduce some special notation in order to simplify presentation of the general form
of the Geach Rule. In Section 9 we generate some instances of particular interest
and present examples of the rules being used. When we come to specific cases, the
special notation will no longer be needed.

Special Notation and Terminology Suppose Γ{ } is a context with a hole. We
associate an index with this, which we refer to as the index of the context. If the

41

Melvin Fitting

hole is at the top level, the index of the context is 0. Otherwise the index is that of
the boxed sequent in which the hole directly appears.

We use N for the set of non-negative integers, and Nn for the set of n-tuples over
N. Similarly, S is the set of indexed sequents (including the empty sequent) and
Sn is the set of n-tuples of indexed sequents. We allow n to be 0, where the only
member of N0 or S0 is 〈 〉. We use ε to denote the empty sequent. It is understood
that if S is a sequent, the sequent S, ε is the same as S.

For each n ∈ N we inductively define a mapping SEQ from Nn × Sn to sequents
as follows.

SEQ(〈 〉, 〈 〉) = ε

SEQ(〈a1, a2, . . . , an〉, 〈S1, S2, . . . , Sn〉) =
a1[
S1,SEQ(〈a2, . . . , an〉, 〈S2, . . . , Sn〉)

a1]

The following example should make the notation rather obvious. Suppose a, b ∈
N and A,B ∈ S—non-negative integers, and sequents. Then:

SEQ(〈a, b〉, 〈A,B〉) =
a[
A,SEQ(〈b〉, 〈B〉)

a]

=
a[
A,

b[
B, SEQ(〈 〉, 〈 〉)

b]a]

=
a[
A,

b[
B, ε

b]a]

=
a[
A,

b[
B

b]a]

Now we can give the general form of the Geach Scheme, in a reasonably readable
way.

Indexed Nested Sequent Geach Scheme for Gk,l,m,n where not both l and n are
0.

Γ{SEQ(〈a1, ..., ak, c1, ..., cl〉, 〈A1, ..., Ak, ε, ..., ε〉), SEQ(〈b1, ..., bm, d1, ..., dn〉, 〈B1, ..., Bm, ε, ..., ε〉)}
Γ{SEQ(〈a1, ..., ak〉, 〈A1, ..., Ak〉), SEQ(〈b1, ..., bm〉, 〈B1, ..., Bm〉)}

The following conditions must be met.

1. (Distinctness Condition) All members of c1, . . . , cl must be distinct, and simi-
larly for all members of d1, . . . , dn.

2. (Confluence and Newness Conditions) if both of 〈a1, . . . , ak, c1, . . . , cl〉 and
〈b1, . . . , bm, d1, . . . , dn〉 are non-empty, they must have the same last terms,
and apart from last terms, c1, . . . , cl and d1, . . . , dn must not overlap, nor may
any ci or di appear in the consequent (below the line).

42

Cut-Free Proof Systems for Geach Logics

3. (Degenerate Confluence and Newness Conditions) If one of 〈a1, ..., ak, c1, ..., cl〉
and 〈b1, ..., bm, d1, ..., dn〉 is empty, the last term of the non-empty one must
be the index of the context. No ci or di may appear in the consequent, except
for the index of the context. (Not both sequences can be empty because not
both l and n can be 0.)

9 Indexed Nested Sequent Examples

We give several specific examples of the Geach Scheme Gk,l,m,n, and illustrate their
use.

Example 9.1. Geach Rule for G0,1,0,0, �X ⊃ X Since only l > 0 we are in a
very simple version of case 3 of the Geach Scheme. It reduces to the following.

Γ{SEQ(〈c1〉, 〈ε〉), SEQ(〈 〉, 〈 〉)}
Γ{SEQ(〈 〉, 〈 〉),SEQ(〈 〉, 〈 〉)}

where c1 is the index of the context. Expanding this, the rule is

Γ{
c1[c1] }

Γ{ }

where c1 is the index of the context Γ{ }.

Example 9.2. Geach Rule for G0,1,2,0, �X ⊃ ��X. Now l = 1 and m = 2 with
k = n = 0, so we are in case 2. The rule is the following.

Γ{SEQ(〈c1〉, 〈ε〉), SEQ(〈b1, b2〉, 〈B1, B2〉)}
Γ{SEQ(〈 〉, 〈 〉), SEQ(〈b1, b2〉, 〈B1, B2〉)}

where we must have c1 = b2. Writing b2 for both, this gives us the following.

Γ{
b2[b2]

,
b1[
B1,

b2[
B2

b2] b1] }

Γ{
b1[
B1,

b2[
B2

b2] b1] }

43

Melvin Fitting

Proof of �♦♦P ⊃ �♦P using Geach G0,1,2,0 This corresponds to set prefixed
tableau Example 4.1.

F �♦♦P,
1[
T ♦P,

3[
T P, F P

3]
,

2[3[
F P

3]2]1]

F �♦♦P,
1[
T ♦P,

3[
T P

3]
,

2[3[
F P

3]2]1] FC

F �♦♦P,
1[
T ♦P,

3[3]
,

2[3[
F P

3]2]1]
π

F �♦♦P,
1[
T ♦P,

2[3[
F P

3]2]1] G0,1,2,0

F �♦♦P,
1[
T ♦P,

2[
F ♦P

2]1]
ν

F �♦♦P,
1[
T ♦P, F ♦♦P

1]
ν

F �♦♦P,
1[
T ♦P

1]
π

F �♦♦P, T �♦P ν

T �♦♦P ⊃ �♦P β

Example 9.3. Geach Rule for G1,1,0,0, ♦�X ⊃ X The rule scheme with k = 1,
l = 1 and m = n = 0 is in case 3 and is the following, where c1 is the index of the
context.

Γ{SEQ(〈a1, c1〉, 〈A1, ε〉), SEQ(〈 〉, 〈 〉)}
Γ{SEQ(〈a1〉, 〈A1〉), SEQ(〈 〉, 〈 〉)}

Writing this in conventional form, we have the following rule.

Γ{
a1[
A1,

c1[c1] a1] }
Γ{

a1[
A1

a1] }

where c1 is the index of the context.

44

Cut-Free Proof Systems for Geach Logics

Proof of ♦�P ⊃ �P using Geach G0,1,2,0 and G1,1,0,0 This corresponds to Set
Prefixed Example 4.3.

1[
F �P,

0[2[2]0]
,

2[
F P, T P

2]1]
,

2[
T P

2]

1[
F �P,

0[2[2]0]
,

2[
F P

2]1]
,

2[
T P

2] FC

1[
F �P,

0[2[2]0]
,

2[2]1]
,

2[
T P

2]
π

1[
F �P,

0[2[2]0]1]
,

2[
T P

2] G0,1,2,0

1[
F �P,

0[0]1]
,

2[
T P

2] FC

T �P,
1[
F �P,

0[0]1]
ν

T �P,
1[
F �P

1] G1,1,0,0

F ♦�P, T �P ν

T ♦�P ⊃ �P β

Example 9.4. Geach Rule for G1,1,1,1, ♦�X ⊃ �♦X We are in case 2, and the
rule scheme is the following, where c1 = d1, and may not occur in the consequent.

Γ{SEQ(〈a1, c1〉, 〈A1, ε〉), SEQ(〈b1, d1〉, 〈B1, ε〉)}
Γ{SEQ(〈a1〉, 〈A1〉),SEQ(〈b1〉, 〈B1〉)}

Writing c1 for both c1 and d1 we have the following.

Γ{
a1[
A1,

c1[c1] a1]
,

b1[
B1,

c1[c1] b1] }

Γ{
a1[
A1

a1]
,

b1[
B1

b1] }

where c1 does not occur in the consequent. In Example 4.4 we gave a set prefixed
tableau proof of (♦�P ∧ ♦�Q) ⊃ ♦(P ∧ Q) using Geach G0,1,2,0 and G1,1,1,1 rules.
That corresponds to an indexed nested sequent proof, but it is rather long, so we
omit it. Constructing it is a good exercise.

10 Design Decisions
Set prefixed tableaus and indexed nested sequents can be translated into each other,
but in both directions some extra work needs to be done beyond a line for line

45

Melvin Fitting

translation. This is because we have made differing decisions in formulating the
two systems. We have, in a sense, made tableau rules more maximal while allowing
sequent rules to be more minimal, and this needs some comment.

A set prefixed tableau branch is closed if it contains ΣT X and ΣF X for some
path set Σ and some formulaX. As item 6 in the proof of Theorem 6.1 shows, instead
of involving an entire path set Σ, it would have been sufficient to say we have closure
when σ T X and σ F X both occur on the branch, for some path sequence σ. We
could even have broadened things to allow closure if σ1 T X and σ2 F X both occur
on the branch, where σ1 ∼ σ2, using the equivalence relation defined in item 1 of the
proof of Theorem 6.1. Since a path sequence corresponds to a nesting pattern, the
first alternative is our indexed nested sequent axiom condition, which amounts to
requiring that both T X and F X appear in the same nested sequent. The alternative
involving the equivalence relation corresponds to requiring that both T X and F X
occur in nested sequents having the same index, which is more generous than we
have allowed. A sequent condition more directly corresponding to tableau branch
closure would be a requirement that T X and F X both occur in every nested sequent
having a given index, and this is more restrictive than we have required.

The comments we just made about our choices for tableau branch closure and
sequent axioms have analogs for other rules as well. Design decisions were made.
Why did we make the choices we did? Admittedly our choices were somewhat
arbitrary, but some of our motivation was this. For tableaus, the most extreme
version of rules would have involved bringing in the equivalence relation ∼. This
can get complicated when constructing a tableau. Instead we thought of the set
prefix itself as the place where information about ∼ could be explicitly stored, and
wrote the tableau rules accordingly. On the other hand, when working with nested
sequents the ∼ relation turns into, simply, having the same index, and this is an
easy thing to recognize. Our actual choices were along these lines, but we did not
take the extreme positions.

11 On Proving Completeness and Soundness

One can prove completeness for a proof system S1 directly, or by showing some
other system S2, known to be complete, embeds into it. Similarly for soundness,
though now the embedding is the other way around. If each of S1 and S2 embeds
into the other in some direct way the two are, in some sense, notational variants
of each other. In this sense Smullyan style tableaus and Gentzen sequents, for
classical logic, are notational variants. Prefixed tableaus as in Section 2 and nested
sequents as in Section 7 are notational variants—shown in [11]. Here we have chosen

46

Cut-Free Proof Systems for Geach Logics

a mixed strategy. We show completeness of an indexed nested sequent system by
showing that the corresponding set prefixed tableau system embeds into it. It is
possible to show an embedding the other way around, establishing soundness, but it
is complicated by the fact that more than one set prefixed signed formula corresponds
to an indexed nested sequent, and so proofs cannot be translated line by line but
must be handled globally. The same issue came up in [11], and was dealt with. Here,
with an already long paper, we avoid the problem by showing soundness directly.

An anonymous referee for this paper pointed out a significant different direction
that could be taken. Indexed nested sequents can be translated into a subsystem
of a labelled sequent calculus of [23], G3K with appropriate rules added. We have
decided not to make use of this here, for two reasons. The first is to keep the
present paper self-contained. The second is that [23] is heavily proof-theoretic in
nature, while we prefer a more semantic approach. Nonetheless, it is an important
observation for which I thank the referee. I briefly sketch the idea in this section.
I assume familiarity with [23], though in order to minimize inessentials I assume
labeled sequents have been reformulated in a one-sided version, rather than the
two-sided one that appears in that paper.

A labeled sequent consists of relational atoms of the form xRy where x and y
are variables, and labeled formulas of the form x:A, where x is a variable and A is
a modal formula. Intuitively, variables represent possible worlds. One can translate
an indexed nested sequent to a labeled sequent as follows. First assign to each non-
negative integer n a unique variable xn—do this once and for all. Then, for a given
indexed nested sequent, we build up a labeled sequent in the following way. If a
boxed subsequent with index j occurs directly inside a subsequent with index i, add
the relational atom xiRxj . And if signed formula Z occurs directly in a subsequent
with index i, add xi:Z∗, where (T X)∗ = X and (F X)∗ = ¬X.

Consider Example 9.4, which gives the indexed nested sequent rule for G1,1,1,1. To
simplify things we assume the context Γ{ } is empty, and we omit some subscripts.
The upper and lower indexed nested sequents appearing in the rule translate as
follows.

a[
A,

c[c]a]
,

b[
B,

c[c]b]
becomes x0Rxa, xaRxc, x0Rxb, xbRxc, xa:A∗, xb:B∗

a[
A

a]
,

b[
B

b]
becomes x0Rxa, x0Rxb, xa:A∗, xb:B∗

47

Melvin Fitting

Now the indexed nested sequent rule instance

a[
A,

c[c]a]
,

b[
B,

c[c]b]

a[
A

a]
,

b[
B

b]

c not in consequent

becomes
x0Rxa, xaRxc, x0Rxb, xbRxc, xa:A∗, xb:B∗

x0Rxa, x0Rxb, xa:A∗, xb:B∗
xc not in consequent

Except for the shift to one-sided sequents, this is the rule for Directedness from [23].
We do not follow this direction any further here, but the labeled sequents corre-

sponding to indexed nested sequents clearly constitute a natural class, as do those
corresponding to nested sequents without indexes.

12 Translating Tableaus to Sequents: Sequent
Completeness

We prove completeness for indexed nested sequents by showing that set prefixed
tableaus translate into them. In [11] we showed that ordinary prefixed tableau
systems embedded into ordinary nested sequent systems. That work applies here as
well, with a few additions and modifications to take care of indexes. Throughout
this section we assume we have a set prefixed tableau system with some designated
group Geach of Geach Rules, and a corresponding indexed nested sequent calculus
with sequent counterparts of Geach. Exact details don’t matter, except that in the
tableau and sequent Geach Rules for Gk,l,m,n it is assumed that not both l and n
are 0.

It is probably easiest to follow the tableau to sequent translation if we begin
with an example. The example is small, and does not illustrate some of the compli-
cations that can arise. We discuss these complications afterwards. We have chosen
Example 4.1, which contains a set prefixed tableau proof of �♦♦P ⊃ �♦P using
G0,1,2,0. For convenience, we repeat the tableau here. In it 2 and 3 are from 1 by
Classical α; 4 is from 3 by Modal π; 5 is from 2 by Modal ν; 6 is from 5 and 7 is from
6 by Modal π; 8 is from 4 and 7 by G0,1,2,0; 9 is from 4 by Modal ν; and 10 is from

48

Cut-Free Proof Systems for Geach Logics

7 and 8 by Set Prefix Union.

{ε} F �♦♦P ⊃ �♦P 1.
{ε} T �♦♦P 2.
{ε} F �♦P 3.
{1} F ♦P 4.
{1} T ♦♦P 5.
{1.2} T ♦P 6.
{1.2.3} T P 7.
{1.4, 1.2.3}T > 8.
{1.4, 1.2.3}F P 9.
{1.4, 1.2.3}T P 10.

(1)

Tableaus are backward reasoning systems while sequents are forward reasoning.
The first step in our translation is to turn the tableau proof over and reverse the
signs, turning it into a kind of forward reasoning proof. Many tableau rules are
single-use, and once these are applied we can think of the set prefixed signed formula
to which they are applied as being removed from the tableau branch. For instance,
Σα generates Σα1 and Σα2, and having been used, we can think of Σα as no longer
available. When turning a tableau over and reversing signs, α becomes β, with α1
and α2 becoming β1 and β2. Now we can think of Σβ1 and Σβ2 as generating Σβ,
which was not present before (corresponding to single-use Σα becoming unavailable
for further use). Of course this does not apply to tableau rules that are not single-
use. Here are a few of the inverted tableau rules as examples. We omit the rest,
which are straightforward.

Σα1 Σα2
Σα

Σβ1,Σβ2
Σβ

Σ.n ν0
Σ ν

n not in consequent

Σπ,Σ.n π0
Σπ

Σ.n in consequent

After applying this inversion process to (1) we get (2), where we have numbered
lines so they correspond to the numbering in the tableau. This is a proof in a
forward reasoning system which we call dual tableaus. Formulas on tableau branches
act conjunctively—all set prefixed formulas on a branch are understood as holding
simultaneously. Lines in dual tableau (2) act disjunctively—at least one of the set
prefixed formulas on a line holds. Tableaus close if a branch contains both ΣT A
and ΣF A—9 and 10 in (1). In (2) an axiom is a line containing both ΣF A and
ΣT A. And so on. A fuller discussion of the analogous step for ordinary prefixed

49

Melvin Fitting

tableaus can be found in Section 4 of [11].

{ε}F �♦♦P, {1.2.3}F P, {1}T ♦P, {1.4, 1.2.3}F >, {1.4, 1.2.3}T P, {1.4, 1.2.3}F P 〈10〉
{ε}F �♦♦P, {1.2.3}F P, {1}T ♦P, {1.4, 1.2.3}F >, {1.4, 1.2.3}T P 〈9〉

{ε}F �♦♦P, {1.2.3}F P, {1}T ♦P, {1.4, 1.2.3}F > 〈8〉
{ε}F �♦♦P, {1.2.3}F P, {1}T ♦P 〈7〉
{ε}F �♦♦P, {1.2}F ♦P, {1}T ♦P 〈6〉
{ε}F �♦♦P, {1}F ♦♦P, {1}T ♦P 〈5〉

{ε}F �♦♦P, {1}T ♦P 〈4〉
{ε}F �♦♦P, {ε}T �♦P 〈2, 3〉
{ε}T �♦♦P ⊃ �♦P 〈1〉

(2)
The next step is to convert each line of a dual tableau from a collection of set

prefixed signed formulas into an indexed nested sequent. This is basically simple,
though a formal description is somewhat technical. The following is a variant of a
similar translation from [11], except that now we must take sets and indexes into
account.

Definition 12.1. Let P be a set of prefixed signed formulas (note, not set prefixed,
but prefixed by a path sequence in the traditional sense).

1. For each n let Pn = {σ Z | n.σ Z ∈ P}. (Recall that n.σ is the prefix σ with n
added at the beginning.)

2. Let P ◦ = {Z | ε Z ∈ P} ∪
{n[

(Pn)◦
n] | Pn 6= ∅

}
. (In

n[· · ·
n]
here, the n is not

actually a proper index—indexes will come later. Call it a pseudo-index.)

For a set prefixed signed formula, ΣZ, the flattening of it is {σ Z | σ ∈ Σ}. If
S is a collection of set prefixed signed formulas, the flattening of S is the union of
the flattenings of its members.

Finally, for a collection S of set prefixed signed formulas, by S◦ we mean P ◦,
where P is the flattening of S, but with all occurrences of F > deleted from P ◦.

For example, suppose S = {{ε}F �♦♦P, {1.2.3}F P, {1}T ♦P, {1.4, 1.2.3}F >},
item 〈8〉 in (2). The flattening of S is

P = {ε F �♦♦P, 1.2.3F P, 1T ♦P, 1.4F >, 1.2.3F >}.

50

Cut-Free Proof Systems for Geach Logics

Then:

P ◦ = F �♦♦P,
1[{2.3F P, ε T ♦P, 4F >, 2.3F >}◦

1]

= F �♦♦P,
1[
T ♦P,

2[{3F P, 3F >}◦
2]
,

4[{ε F >}◦
4]1]

= F �♦♦P,
1[
T ♦P,

2[3[{ε F P, ε F >}◦
3]2]
,

4[
F >

4]1]

= F �♦♦P,
1[
T ♦P,

2[3[
F P, F >

3]2]
,

4[
F >

4]1]

Removing occurrences of F >, we have the following.

S◦ = F �♦♦P,
1[
T ♦P,

2[3[
F P

3]2]
,

4[4]1]

The last step is to replace the pseudo-indexes by real indexes. We find it useful to
do this as a two-step process. Note that pseudo-index 2 occurs in S◦ inside brackets
having pseudo-index 1. We replace 2 with 1.2 to make this observation explicit, and
we do something similar for each pseudo-index. We get the following.

F �♦♦P,
1[
T ♦P,

1.2[1.2.3[
F P

1.2.3] 1.2]
,

1.4[1.4] 1]
(3)

For path sequences appearing in tableau (1), let us write σ1 ∼ σ2 if σ1 and σ2 appear
in the same path set, and let ∼∗ be the transitive closure of ∼. In this example ∼∗
is the same as ∼, but it may not happen generally. The relation ∼ is essentially the
same as the one introduced in item 1 of the proof of Theorem 6.1. However, that
relation was an equivalence relation because we were working with tableaus in which
all possible rule applications were made. We are not making this assumption now
since proofs may terminate before everything possible has been done, so transitive
closure must be added explicitly.

Inspection of (1) shows the relation ∼∗ has 4 equivalences classes: {ε}, {1},
{1.2}, and {1.4, 1.2.3}. We assign non-negative integers to these classes, making
sure to assign 0 to the class containing ε, though otherwise things are arbitrary. Say
we make the following assignment.

{ε} → 0
{1} → 1
{1.2} → 2

{1.4, 1.2.3} → 3

51

Melvin Fitting

We make this replacement in (3), getting the following nested sequent.

F �♦♦P,
1[
T ♦P,

2[3[
F P

3]2]
,

3[3]1]
(4)

We began with the set S = {{ε}F �♦♦P, {1.2.3}F P, {1}T ♦P, {1.4, 1.2.3}F >},
and wound up with (4). We call (4) the translate of S, and write it as T (S). (The
assignment of integers to equivalence classes is an implicit parameter of T and is
assumed to be held constant throughout the translation of an entire proof.)

Now, apply translation T to every line of dual tableau (2). We get the following.

F �♦♦P,
1[2[3[
F P, T P

3]2]
, T ♦P,

3[
T P, F P

3]1] 〈10〉

F �♦♦P,
1[2[3[
F P, T P

3]2]
, T ♦P,

3[
T P

3]1] 〈9〉
FC

F �♦♦P,
1[2[3[
F P

3]2]
, T ♦P,

3[3]1] 〈8〉
π + FC

F �♦♦P,
1[2[3[
F P

3]2]
, T ♦P

1] 〈7〉
G0.1.2.0

F �♦♦P,
1[2[
F ♦P

2]
, T ♦P

1] 〈6〉
ν

F �♦♦P,
1[
F ♦♦P, T ♦P

1] 〈5〉
ν

F �♦♦P,
1[
T ♦P

1] 〈4〉
π

F �♦♦P, T �♦P 〈2, 3〉 ν

T �♦♦P ⊃ �♦P 〈1〉 β

(5)

As it stands (5) is not quite an indexed nested sequent proof, but it is close.
Line 〈10〉 in (5) is overkill as an axiom, but it is required by the translation we
have chosen. The passage from 〈10〉 to 〈9〉 is justified by Formula Contraction, the
counterpart of the tableau Prefix Union rule which served to justify 10 in (1). The
problem comes with the passage from 〈9〉 to 〈8〉, which is not justified as it stands
since the π rule for sequents only eliminates π0 from a single sequent, and not from
a family of sequents having the same index. But we can achieve this effect by first
using Formula Contraction and then the π rule, as shown below.

F �♦♦P,
1[2[3[
F P, T P

3]2]
, T ♦P,

3[
T P

3]1] 〈9〉

F �♦♦P,
1[2[3[
F P

3]2]
, T ♦P,

3[
T P

3]1] FC

F �♦♦P,
1[2[3[
F P

3]2]
, T ♦P,

3[3]1] 〈8〉
π

52

Cut-Free Proof Systems for Geach Logics

Now that we have seen an example, a general discussion is already partly moti-
vated. Each Set Prefixed Tableau Rule application converts to an Indexed Nested
Sequent Rule application, or sometimes to a series of them. Most rules fall into a
similar, simple pattern, and we discuss these rules first. Consider the Set Prefixed
α Rule: replace Σα with Σα1 and Σα2 on a tableau branch. We invert, and switch
T and F signs. The sign switch turns α signed formulas into β signed formulas.
Next, for the dual tableau stage, we have a rule: replace Σβ1,Σβ2 with Σβ. When
we turn this into an indexed nested sequent step, using the translation of Defini-
tion 12.1, each path sequence in Σ gives rise to a nested sequent but each nested
sequent has the same index since all come from members of the same set Σ. So the
schematic form of the result is the following.

i[· · · , β1, β2
i]
, . . . ,

i[· · · , β1, β2
i]

i[· · · , β
i]
, . . . ,

i[· · · , β
i]

This is not, directly, an allowed step in an indexed nested sequent proof, but it can
obviously be replaced with a series of steps, each involving a single β rule application,
one for each of the nested sequents displayed above the line.

Our discussion of the Set Prefixed α Tableau Rule applies just as well to all
the Classical Set Prefixed Rules, and to the Set Prefixed ν Rule. The π rule is
different, however. It replaces Σπ on a tableau branch with Σ.n π0, where n is new.
When creating the dual tableau this becomes the following: Σ.n ν0 can be replaced
with Σ ν, provided n does not occur in the conclusion. When converting to nested
sequents, Σ becomes a collection of nested sequents with the same index, and Σ.n
becomes a collection of nested sequents appearing directly inside those, again with
the same index. We thus have the following general form.

i[· · · ,
j[
ν0

j]i]
, . . . ,

i[· · · ,
j[
ν0

j]i]
i[· · · , ν

i]
, . . . ,

i[· · · , ν
i]

Unlike the cases discussed above, this cannot be replaced with multiple applications
of the Set Prefixed ν Rule because of the requirement that index j not occur in the
consequent. To get around this we make use of a familiar structural result. The
proof is a straightforward induction on sequent proof length, and is omitted.

Theorem 12.2 (Weakening). If Γ is a provable indexed nested sequent, and Γ′ is
like Γ but with signed formula Z added to some subsequent, then Γ′ is also provable.

53

Melvin Fitting

With weakening available, we can proceed as follows. Using Theorem 12.2, if
there is a proof of the indexed sequent

i[· · · ,
j[
ν0

j]i]
, . . . ,

i[· · · ,
j[
ν0

j]i]

then there is also a proof of the following.

i[· · · , ν,
j[
ν0

j]i]
, . . . ,

i[· · · , ν,
j[
ν0

j]i]

From this, using iterated applications of Formula Contraction, we derive

i[· · · , ν,
j[
ν0

j]i]
, . . . ,

i[· · · , ν,
j[j]i]

where only a single occurrence of ν0 in a j indexed boxed sequent remains. Next
using iterated applications of Sequent Contraction, we derive

i[· · · , ν,
j[
ν0

j]i]
, . . . ,

i[· · · , ν
i]

where
j[
ν0

j]
in the leftmost boxed sequent is the only nested sequent indexed with j.

Finally, using the Indexed Nested Sequent ν Rule we get the desired sequent.

i[· · · , ν
i]
, . . . ,

i[· · · , ν
i]

Rather like the α rule discussed above, the Set Prefix Union Rule converts to
iterated applications of Indexed Nested Sequent Formula Contraction, and Set Prefix
Continuation to Indexed Nested Sequent Formula Contraction, followed by Indexed
Nested Sequent Contraction.

The last item to discuss is Set Prefixed Geach Rules, which bring certain compli-
cations of their own. In order to keep notation down we again work with a specific
rule example, G1,1,1,1, but it should be sufficiently representative. For convenience,
we restate the tableau rule here.

σ.a ∈ Σ1 on branch
σ.b ∈ Σ2 on branch
(Σ1.c ∪ Σ2.d)T >

where
c and d are new and distinct

54

Cut-Free Proof Systems for Geach Logics

We translate this rule into an indexed nested sequent step, which will then need
some amending. Using Definition 12.1, each path sequence is turned into a nested
sequent with indexes assigned using equivalence classes, as outlined above. All
nested sequents arising from path sequents in Σ1.c ∪ Σ2.d receive the same index,
and similarly for path sequents in Σ1 and Σ2 themselves. Let us say nested sequents
coming from path sequences in Σ1 have index p, those coming from Σ2 have index q,
and those coming from Σ1.c∪Σ2.d have index r. It is important to note that, since
c and d are new and distinct, no path sequence in Σ1.c ∪ Σ2.d can already appear
on the tableau branch at this point, and so under translation only nested sequents
corresponding to members of Σ1.c ∪ Σ2.d will have index r at this point, and all
of these nested sequents will be empty since during translation T > becomes F >
which is omitted.

We can think of σ as corresponding to the context for this rule application. Since
the rule is inverted when translating from tableaus to sequents, this step becomes
the removal of sequent items arising from (Σ1.c ∪ Σ2.d)T >. Since σ.a ∈ Σ1 and
σ.b ∈ Σ2, before the inverted sequent rule is applied we must have nested sequents
corresponding to path sequents σ.a.c and σ.b.d present, both empty, and with index

r. That is, we must have
p[· · · ,

r[r]p]
and

q[· · · ,
r[r]q]

. But Σ1 and Σ2 may have members
besides σ.a and σ.b, so the sequent translate of (Σ1.c∪Σ2.d)T >may involve multiple

occurrences of
r[r]

besides the ones just displayed. Some of these sequents come from

Σ1.c T >, and look like
p[· · · ,

r[r]p]
where index p derives from Σ1 and the index

r derives from Σ1.c which is part of Σ1.c ∪ Σ2.d. The other sequents come from

Σ2.d T > and look like
q[· · · ,

r[r]q]
. Thus the tableau rule application translates into

the following sequent step.

Γ{
p[· · · ,

r[r]p]
,

q[· · · ,
r[r]q]}

various other occurrences of
p[· · · ,

r[r]p]

various other occurrences of
q[· · · ,

r[r]q]

Γ{
p[· · ·

p]
,

q[· · ·
q]}

various other occurrences of
p[· · ·

p]

various other occurrences of
q[· · ·

q]

This is not quite an application of the Indexed Sequent G1,1,1,1 rule, because
of the possible presence of the other occurrences of

r[r]
, but it can be turned into

55

Melvin Fitting

a correct series of steps. First using the Sequent Contraction Rule, one by one,
eliminate the other occurrences of

r[r]
occurring in p indexed boxed sequents, but

keeping the occurrence in the p indexed sequent in context Γ{ }. Next, do the same

with occurrences of
r[r]

occurring in q indexed sequents. This leaves us with the
following.

Γ{
p[· · · ,

r[r]p]
,

q[· · · ,
r[r]q]}

various other occurrences of
p[· · ·

p]

various other occurrences of
q[· · ·

q]

Finally, apply the sequent rule for G1, 1, 1, 1, and the desired conclusion is attained.

This completes discussion of the translation from tableaus to sequents, and es-
tablishes sequent completeness.

13 Sequent Soundness
We have shown that tableaus translate into sequents, and hence we have sequent
completeness. Sequent soundness could be proved by providing a translation in the
other direction, and then relying on tableau soundness. As we noted earlier, this is
somewhat complex and we do not do it. In [4] the soundness proof for nested (but
not indexed) sequents makes use of a translation from sequents into formulas called
corresponding formulas. We do not follow this route either because the appropriate
version of corresponding formula for indexed sequents involves nominals, and hybrid
logics come into the picture, [3]. This is too much of a detour for present purposes.
We have chosen to transfer our soundness proof from tableaus to sequents, which is
an easier thing to describe than translating individual proofs. The analogy of the
present soundness proof to that of Section 5 should be relatively clear.

For the following, recall we have extended the notion of truth at possible worlds
to allow signed formulas; specifically,M,Γ T X ifM,Γ X, andM,Γ F X if
M,Γ 6 X.

Definition 13.1 (Structural Mappings). Let S be an indexed nested sequent. We
write S∗ for the collection consisting of the top level sequent S itself, and all boxed
subsequents. For each Γ ∈ S∗, we write i(Γ) for the index of Γ, and I(S) for
{i(Γ) | Γ ∈ S∗}.

LetM = 〈G,R,V〉 be a Kripke model, as in Section 5. A mapping s : I(S)→ G
is a structural mapping of S intoM provided that, for all Γ,∆ ∈ S∗, if ∆ ∈ Γ then

56

Cut-Free Proof Systems for Geach Logics

s(i(Γ))Rs(i(∆)).
Suppose s is a structural mapping of S into M. For Γ ∈ S∗, we say signed

formula Z ∈ Γ is true under s ifM, s(i(Γ)) Z. We say Γ itself is true under s if
some signed formula belonging to Γ is true under s, or else some boxed sequent ∆
belonging to Γ is true under s. We say Γ is false under s if it is not true under s.

The definition of truth for an indexed nested sequent is recursive. Speaking
loosely, an indexed nested sequent S will be true under a structural mapping s if it
has a true signed formula member, or it has a true boxed sequent member, where
this boxed sequent member will be true if it has a true signed formula member, or
it has a true boxed sequent member, and so on. Then an alternate characterization
is, S is true under s if some subsequent contains a true signed formula. Likewise S
is false under s if every subsequent contains only false signed formulas.

Soundness will be an easy consequence of the following three Lemmas.

Lemma 13.2. Assume s is a structural mapping of S intoM.

α Case: Suppose S = Γ{α}. Then Γ{α} is true under s if and only if both Γ{α1}
and Γ{α2} are true under s.

β Case: Suppose S = Γ{β}. Then Γ{β} is true under s if and only if Γ{β1, β2} is
true under s.

T ¬ Case: Suppose S = Γ{T ¬X}. Then Γ{T ¬X} is true under s if and only if
Γ{F X} is true under s.

F ¬ Case: Suppose S = Γ{F ¬X}. Then Γ{F ¬X} is true under s if and only if
Γ{T X} is true under s.

π Case: Suppose S = Γ{π,
a[
. . .

a]}. Then Γ{π,
a[
. . .

a]} is true under s if and only if

Γ{π,
a[
π0, . . .

a]} is true under s.

FC Case: Suppose S follows from S ′ using the Formula Contraction Rule. Then S
is true under s if and only if S ′ is true under s.

SC Case: Suppose S follows from S ′ using the Sequent Contraction Rule. Then S
is true under s if and only if S ′ is true under s.

Proof. We discuss the β case in some detail, the SC case briefly, and omit discussion
of the rest. The remaining cases are similar and can be left to the reader.

First, note that if s is a structural mapping for Γ{β}, it is also a structural
mapping for Γ{β1, β2}, since both of these indexed nested sequents have the same

57

Melvin Fitting

indexes and the same pattern of nesting. Similar observations apply to the other
cases as well, though the SC case requires a bit more of an argument. For SC, the
premise and consequent of a Sequent Contraction Rule application have the same
indexes, but the nesting pattern changes a bit because the premise contains both
a[a]

and
a[· · ·

a]
while the consequent contains

a[· · ·
a]
but not

a[a]
. But SC requires that

both
a[· · ·

a]
and

a[a]
appear in sequents having the same index, and this is enough to

ensure that any structural mapping for the consequent of an SC rule application is
also a structural mapping for the premise.

Suppose Γ{β1, β2} is true under s. We show Γ{β} is also true under s. By our
assumption, some subsequent of Γ{β1, β2} contains a signed formula that is true
under s. If this signed formula is not one of β1 or β2, the same signed formula will
also be present in Γ{β}, and so Γ{β} will be true under s. If one of β1 or β2 is true
under s then β is also true, and so again Γ{β} will be true under s. The converse
direction is similar.

Lemma 13.3 (ν Case). Suppose S1 and S2 are indexed nested sequents and S2
follows from S1 using the ν Rule. If there is a structural mapping of S2 into M
under which S2 is false, it can be extended to a structural mapping of S1 into M
under which S1 is false.

Proof. Let S1 = Γ{
a[
ν0

a]} and S2 = Γ{ν}, where a does not occur in S2, so that S2
follows from S1 using the ν Rule. Assume s2 is a structural mapping of Γ{ν} into
M under which Γ{ν} is false. We define a mapping s1 as follows. We know that

a does not occur in Γ{ν} but apart from a, Γ{ν} has the same indexes as Γ{
a[
ν0

a]},
and with the same nesting pattern. On these indexes, let s1 agree with s2. Say
the index of the context in Γ{ } is b. Since Γ{ν} is false under s2 every subsequent
contains only false signed formulas, so in particular, M, s2(b) 6 ν. Then there is
some possible world w of M so that s2(b)Rw and M, w 6 ν0. Set s1(a) = w. It

is straightforward to check that s1 is a structural mapping of Γ{
a[
ν0

a]} intoM, and

Γ{
a[
ν0

a]} is false under s1.

Lemma 13.4 (Gk,l,m,n Case). Suppose S1 and S2 are indexed nested sequents and
S2 follows from S1 using Geach rule Gk,l,m,n, where not both l and n are 0. Let
M be a Kripke model that meets the semantic condition for Gk,l,m,n. If there is a
structural mapping s2 of S2 into M, it can be extended to a structural mapping s1
of S1 intoM so that S1 is true under s1 if and only if S2 is true under s2.

58

Cut-Free Proof Systems for Geach Logics

Proof. Let us say that Γ{ } is a context with index e,

S1 = Γ{SEQ(〈a1, . . . , ak, c1, . . . , cl〉, 〈A1, . . . , Ak, ε, . . . , ε〉),
SEQ(〈b1, . . . , bm, d1, . . . , dn〉, 〈B1, . . . , Bm, ε, . . . , ε〉)}

S2 = Γ{SEQ(〈a1, . . . , ak〉, 〈A1, . . . , Ak〉),SEQ(〈b1, . . . , bm〉, 〈B1, . . . , Bm〉)}

and s2 is a structural mapping of S2 into M, where M meets Geach condition
Gk,l,m,n (with at least one of l or n non-zero). We construct a structural mapping
s1.

By the Geach Rule conditions, no members of either {c1, . . . , cl} or {d1, . . . , dn}
may appear in S2. All other indexes are common to both S1 and S2 and with the
same nesting pattern involved. On these other indexes let s1 agree with s2.

At least one of {c1, . . . , cl} and {d1, . . . , dn} is non-empty. To keep the language
simple in the following discussion, we will talk as if both sets were non-empty.
Obvious modifications cover the cases where one is empty.

Recall that the index of the context in Γ{ } is e. By the definition of SEQ from
Section 8, in S2 there is a nested tower of boxed sequents with indices a1, . . . , ak, all
contained in a sequent whose index is e. Likewise there is another nested tower of
boxed sequents with indices b1, . . . , bm, also contained in the same sequent with index
is e. Since s2 is a structural mapping, inM there is a path of possible worlds, s2(e),
s2(a1), . . . , s2(ak), with each accessible from its predecessor (this is a path with k
edges). There is a similar path with m edges, whose nodes are s2(e), s2(b1), . . . ,
s2(bm). (Note that by our s1 definition so far, s1 and s2 agree on each ai and bi, and
on e.) SinceM meets the semantic condition for Gk,l,m,n, there are paths of length l
and n, starting at s2(ak) and s2(bm) respectively and ending at a common possible
world, let us call it ω. By conditions on the Geach Rule, members of {c1, . . . , cl}
must be distinct, and similarly for members of {d1, . . . , dn}; cl and dn must be the
same, and otherwise {c1, . . . , cl} and {d1, . . . , dn} must not overlap. This is enough
to allow us to define s1 on c1, . . . , cl to be the possible worlds (after the first) on the
path from s2(ak) = s1(ak) to ω, and likewise to define s1 on d1, . . . , dn to be the
possible worlds on the path from s2(bm) = s1(bm) to ω. We have now defined s1 on
all indexes in S1.

We leave it to the reader to verify that s1 is a structural mapping from
S1 into M. Now, in SEQ(〈a1, . . . , ak, c1, . . . , cl〉, 〈A1, . . . , Ak, ε, . . . , ε〉), the boxed
subsequents with indexes c1, . . . , cl contain no signed formulas. Likewise in
SEQ(〈b1, . . . , bm, d1, . . . , dn〉, 〈B1, . . . , Bm, ε, . . . , ε〉), boxed subsequents with indexes
d1, . . . , dn contain no signed formulas. It follows that S1 and S2 contain the same
signed formulas, and these occur in subsequents having the same indexes in both
S1 and S2, and s1 and s2 agree on these indexes. Then if either of S1 or S2 had

59

Melvin Fitting

a subsequent with a true signed formula, both would have such, and so S1 and S2
must evaluate to the same truth value under s1 and s2 respectively.

Theorem 13.5 (Soundness). Assume we have an indexed nested sequent system
with a set Geach of rules Gk,l,m,n with not both l and n being 0. Let K be the class of
Kripke models whose frames satisfy the semantic conditions for Geach. If formula
X has a sequent proof, X is true at every possible world of every model in K.
Proof. Suppose X has a sequent proof but in modelM of K, X is false at possible
world w. We derive a contradiction.

Since X hasM as a counter-model, we haveM, w 6 X and henceM, w 6 T X.
A sequent proof of X is a tree of indexed nested sequents with axioms at the leaves
and just T X at the root—the last line of the proof. This root is an indexed nested
sequent whose index is 0. Let s be a mapping with domain {0} such that s(0) = w.
This is a structural mapping of the root sequent of the proof intoM, and under it
the root sequent is false.

Using Lemmas 13.2, 13.3, and 13.4 we see that if there is a structural mapping
from some line of a nested sequent proof into Kripke modelM under which that line
is false, the same will be the case for at least one of the premises of that proof line.
Since this is the case for the root, we can trace this upward and conclude that for
at least one of the leaves of the proof tree, it is falsified by some structural mapping
intoM. But leaves are axioms, and it is easy to see these are not falsifiable.

14 The Missing Rules
We did not give nested sequent systems corresponding to all Geach formulas,
♦k�lX ⊃ �m♦nX. We imposed a requirement that not both l and n could be
0. At the start of Section 8 we briefly discussed why such a restriction was needed.
Essentially it comes down to this. In the nested sequent cases we allowed, no nested
sequent already introduced in a proof ever needed its index modified. For the miss-
ing cases, modification is needed. We briefly sketch an idea for dealing with this,
but we do not fully develop it here. (It may be that additional structural rules are
needed to ensure completeness.) What is presented are suggestions, not conclusions.
We hope others will find the proposal of enough interest to carry the investigation
further.

For a more general indexed nested sequent system than those discussed earlier,
allow sequents to have multiple indexes, or more properly, sets as indexes. For
example,

{0,2,3}[
A,B,C

{0,2,3}]

60

Cut-Free Proof Systems for Geach Logics

is what we will call a set indexed sequent. We say {0, 2, 3} is the index of this, while
2 is an index, as are 0 and 3. Think of all members of the set as names for the same
possible world. In Section 11 we noted a connection with indexed nested sequents
and labeled sequents. In fact, in the labelled sequent approach the machinery that
must be added to treat the cases where both l and n are 0 is equality. Our use of
sets as indexes clearly amounts to a version of equality. When using {0, 2, 3}, the
possible worlds named by 0, 2, and 3 are equal.

As usual, a proof of X is a proof of the sequent consisting of only T X. We still
assume that 0 is an index of the top level sequent. Axioms and propositional rules
have the same form as before. Modal rules are almost the same. They are as follows.

Modal Set Indexed Nested Sequent Rules

Γ{
{a}[
ν0
{a}] }

Γ{ν}
provided a does

not appear in the consequent

Γ{π,
s[
π0, . . .

s]}
Γ{π,

s[
. . .

s]}
where s is any

set index

Formula Contraction and Sequent Contraction have the same form as before, but
“same index” should be interpreted to mean that set indexes share a member. And
finally, using notation introduced in Section 8, we have the following, where the ai

and bi are set indexes.

Set Indexed Nested Sequent Geach Scheme for Gk,0,m,0, ♦kX ⊃ �mX

Γ{SEQ(〈a1, . . . , ak−1, ak ∪ bm〉, 〈A1, . . . , Ak〉), SEQ(〈b1, . . . , bm−1, ak ∪ bm〉, 〈B1, . . . , Bm〉)}
Γ{SEQ(〈a1, . . . , ak〉, 〈A1, . . . , Ak〉), SEQ(〈b1, . . . , bm〉, 〈B1, . . . , Bm〉)}

Here is an example using G2,0,0,0 (with axiom scheme ♦♦X ⊃ X) and G3,0,0,0

(with axiom scheme ♦♦♦X ⊃ X). For these, the Geach Rules are as follows.

Γ
{

a1[· · · ,
a2∪b[· · ·

a2∪b] a1]
}

Γ
{a1[· · · ,

a2[· · ·
a2] a1] }

where b is the
index of the context

Γ
{

a1[· · · ,
a2[· · · ,

a3∪b[· · ·
a3∪b] a2] a1]

}

Γ
{a1[· · · ,

a2[· · · ,
a3[· · ·

a3] a2] a1] }

where b is the
index of the context

Using these rules, here is a sequent proof of (♦♦A ∧ ♦X) ⊃ X.

61

Melvin Fitting

{1}[{0,2}[
F A,

{0,3}[
F X, T X

{0,3}] {0,2}] {1}]
, F ♦X,T X

{1}[{0,2}[
F A,

{0,3}[
F X

{0,3}] {0,2}] {1}]
, F ♦X,T X

FC

{1}[{0,2}[
F A,

{3}[
F X

{3}] {0,2}] {1}]
, F ♦X,T X

G3,0,0,0

{1}[{0,2}[
F A,F ♦X

{0,2}] {1}]
, F ♦X,T X

ν

{1}[{0,2}[
F A

{0,2}] {1}]
, F ♦X,T X

FC

{1}[{2}[
F A

{2}] {1}]
, F ♦X,T X

G2,0,0,0

{1}[
F ♦A

{1}]
, F ♦X,T X

ν

F ♦♦A,F ♦X,T X ν

F ♦♦A ∧ ♦X,T X β

T (♦♦A ∧ ♦X) ⊃ X β

Since modal logics involving Gn,0,0,0 are relatively rare, we conclude with a sketch
of an axiomatic proof of (♦♦A∧♦X) ⊃ X using axiom schemes G2,0,0,0 and G3,0,0,0.

¬X ⊃ ���¬X
(♦♦A ∧ ¬X) ⊃ (♦♦A ∧���¬X)

⊃ ♦♦(A ∧�¬X)
⊃ (A ∧�¬X)
⊃ �¬X

dual of G3,0,0,0

using (♦U ∧�V) ⊃ ♦(U ∧ V)
using G2,0,0,0

We thus have (♦♦A ∧ ¬X) ⊃ �¬X, from which (♦♦A ∧ ♦X) ⊃ X follows easily.

15 Conclusion
We noted at the beginning of this paper that other approaches already provide
tableau systems for the Geach logics. Then what might be gained from the ap-
proach introduced here? The key, we hope, lies in the fact that the tableau systems
presented here do not expand the language. From this we have at least the possibility
of two interesting consequences.

62

Cut-Free Proof Systems for Geach Logics

In [13] it is shown how ordinary prefixed tableaus and nested sequents can be
used to prove interpolation constructively, in a uniform way, for all the propositional
modal logics in the S5 modal cube. There is reason to hope that this can be pushed
further using set prefixed tableaus, or indexed nested sequents, or the corresponding
fragment of labeled sequent systems. Unlike [3], set prefixed tableaus and indexed
nested systems do not expand the language of the logic itself, though they do expand
the machinery used in formal proofs. It is possible that an investigation along present
lines might give some proof-theoretic insights into which logics admit interpolation,
and why.

Second, in unpublished work that builds on [12] we have shown that all logics in
the Geach family have justification logic counterparts, with Realization Theorems
connecting justification and modal versions. (See [1] for more on justification log-
ics.) The proof is non-constructive. A number of modal logics have constructively
proven Realization Theorems. One constructive approach, in [15], makes use of
standard prefixed tableaus (and their equivalent, nested sequents) for the logics in
the S5 modal cube. It is at least possible that set prefixed tableaus could allow a
constructive proof of realization for the Geach family.

References
[1] Sergei Artemov and Melvin Fitting. Justification logic. In Edward N. Zalta, editor,

The Stanford Encyclopedia of Philosophy. Fall 2012 edition, 2012.
[2] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Tracts in Theo-

retical Computer Science. Cambridge University Press, Cambridge, UK, 2001.
[3] Patrick Blackburn and Baldur ten Cate. Beyond pure axioms: Node creating rules

in hybrid tableaux. In M. Marx, C. Areces, P. Blackburn, and U. Sattler, editors,
Proceedings of the 4th Workshop on Hybrid Logics (HyLo 2002), pages 21–35, 2002.

[4] Kai Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic,
48(6):551–577, 2009.

[5] Kau Brünnler and Luts Straßburger. Modular sequent systems for modal logic. In
Martin Giese and Arild Waaler, editors, Automated Reasoning with Analytic Tableaux
and Related Methods, volume 5607 of Lecture Notes in Artificial Intelligence, pages
152–166. Springer, 2009.

[6] Brian F. Chellas. Modal Logic, an introduction. Cambridge University Press, 1980.
[7] Marcello D’Agostino, Dov Gabbay, Reiner Hähnle, and Joachim Posegga, editors.

Handbook of Tableau Methods. Kluwer, Dordrecht, 1999.
[8] Melvin C. Fitting. Tableau methods of proof for modal logics. Notre Dame Journal of

Formal Logic, 13:237–247, 1972.
[9] Melvin C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Pub-

lishing Co., Dordrecht, 1983.

63

Melvin Fitting

[10] Melvin C. Fitting. Modal proof theory. In Patrick Blackburn, Johan van Benthem,
and Frank Wolter, editors, Handbook of Modal Logic, chapter 2, pages 85–138. Elsevier,
2007.

[11] Melvin C. Fitting. Prefixed tableaus and nested sequents. Annals
of Pure and Applied Logic, 163:291–313, 2012. Available on-line at
http://dx.doi.org/10.1016/j.apal.2011.09.004.

[12] Melvin C. Fitting. Justification logics and realization. Technical Re-
port TR-2014004, CUNY Ph.D. Program in Computer Science, March 2014.
http://www.cs.gc.cuny.edu/tr/.

[13] Melvin C. Fitting and Roman Kuznets. Modal interpolation via nested sequents. Annals
of Pure and Applied Logic, 166:274–305, 2015.

[14] Dov M. Gabbay. Labelled Deductive Systems, volume I of Oxford Logic Guides, 33.
Clarendon Press, 1996.

[15] Remo Goetschi and Roman Kuznets. Realization for justification logics via nested
sequents: Modularity through embedding. Annals of Pure and Applied Logic,
163(9):1271–1298, September 2012.

[16] Rajeev Goré. Tableau methods for modal and temporal logics, pages 297–396, in [7].
[17] Rajeev Gore, Linda Postniece, and Alwen F Tiu. On the correspondence between

display postulates and deep inference in nested sequent calculi for tense logics. Logical
Methods in Computer Science, 7:1–38, 2011.

[18] Rajeev Goré and Revantha Ramanayake. Labelled tree sequents, tree hypersequents
and nested (deep) sequents. In Thomas Bolander, Torben Braüner, Silvio Ghilardi, and
Lawrence Moss, editors, Advances in Modal Logic, volume 9, pages 279–299. College
Publications, 2012.

[19] Marcus Kracht. Power and weakness of the modal display calculus. In HeinrichWansing,
editor, Proof Theory of Modal Logics, pages 92–121. Kluwer, 1996.

[20] Sonia Marin and Lutz Straßburger. Label-free modular systems for classical and in-
tuitionistic modal logics. In Rajeev Goré, Barteld Kooi, and Agi Kurucz, editors,
Advances in Modal Logic, volume 10, pages 387–406. Advances in Modal Logic, College
Publications, 2014.

[21] Fabio Massacci. Strongly analytic tableaux for normal modal logics. In Alan Bundy,
editor, Proceedings of CADE 12, volume 814 of Lecture Notes in Artificial Intelligence,
pages 723–737, Berlin, 1994. Springer-Verlag.

[22] Claudia Nalon, João Marcos, and Clare Dixon. Clausal resolution for modal logics of
confluence. In IJCAR 2014, pages 322–336, 2014.

[23] Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34:507–544,
2005.

Received May 201564

Retalis Language for Information
Engineering in Autonomous Robot Software

Pouyan Ziafatia,b∗, Mehdi Dastanib, John-Jules Meyerb,
Leendert van der Torrea,c and Holger Voosa

aCentre for Security, Reliability and Trust (SnT), University of Luxembourg
bIntelligent Systems Group, Utrecht University

cComputer Science and Communications Research Unit, University of Luxembourg
{Pouyan.Ziafati, Leon.Vandertorre, Holger.Voos}@uni.lu

{M.M.Dastani, J.J.C.Meyer}@uu.nl

Abstract
Robotic information engineering is the processing and management of data

to create knowledge of the robot’s environment. It is an essential robotic tech-
nique to apply AI methods such as situation awareness, task-level planning and
knowledge-intensive task execution. Consequently, information engineering has
been identified as a major challenge to make robotic systems more responsive
to real-world situations. The Retalis language integrates ELE and SLR, two
logic-based languages. Retalis is used to develop information engineering com-
ponents of autonomous robots. In such a component, ELE is used for temporal
and logical reasoning, and data transformation in flows of data. SLR is used
to implement a knowledge base maintaining a history of events. SLR supports
state-based representation of knowledge built upon discrete sensory data, man-
agement of sensory data in active memories and synchronization of queries over
asynchronous sensory data. In this paper, we introduce eight requirements for
robotic information engineering, and we show how Retalis unifies and advances
the state-of-the-art research on robotic information engineering. Moreover, we
evaluate the efficiency of Retalis by implementing an application for a NAO
robot. Retalis receives events about the positions of objects with respect to the
top camera of NAO robot, the transformation among the coordinate frames of

We would like to thank three anonymous reviewers for their valuable comments and suggestions to
improve the quality of this paper. We would like to thank also Yehia El Rakaiby, Sergio Sousa, and
Marc van Zee for their contributions in implementation or preparing the previous presentations of
this work.
∗Sponsored by Fonds National de la Recherche Luxembourg (FNR).

Vol. 2 No. 2 2015
IFCoLog Journal of Logic and its Applications

Ziafati, Dastani, Meyer, van der Torre and Voos

NAO robot, and the location of the NAO robot in the environment. About
one thousand and nine hundreds events per second are processed in real-time
to calculate the positions of objects in the environment.

1 Introduction
Robotic information engineering is the processing and management of data to create
knowledge of the robot’s environment. In artificial intelligence (AI), knowledge of
the environment is typically represented in symbolic form. Symbolic representation
of knowledge is essential for robots with AI capabilities such as situation aware-
ness, task-level planning, knowledge-intensive task execution and human interac-
tion [66, 14, 81, 72, 50]. Challenges of robotic information engineering include the
processing and management of incremental, discrete and asynchronous sensory data
such as recognized faces1 [25], objects2 [9], gestures [69] and behaviors [59]. Data
processing includes applying logical, temporal, spatial and probabilistic reasoning
techniques [71, 41, 16, 50, 46, 30, 65].

Both on-demand and on-flow processing of sensory data are necessary for a
timely extraction and dissemination of information in robot software. On-demand
processing is the modeling and management of data in different memory profiles
such as short, episodic and semantic memories [79, 80, 65, 70]. Memory profiles are
accessed and processed when required. For example, a plan execution component
requests the location of a previously observed object in order to find it. On-flow
processing is the processing of sensory data on the fly in order to extract information
about the environment. An example is the monitoring of smoke and temperature
sensor readings in order to detect fire. A fire alarm should be generated if there is
smoke and the temperature is high, observed by sensors in close proximity within
a given time interval. A notification about fire detection is sent, for instance, to a
plan execution component to react on it. We refer to receivers of the notifications
as consumers.

On-demand processing includes the following requirements.
1. Memorizing: data should be recorded selectively to avoid overloading memory.
2. Forgetting: outdated data should be pruned to bound the amount of recorded

data in memory.
3. Active memory: memory should notify consumers when it is updated with

relevant information. In this way, consumers can access the information at
their time of convenience.

1http://wiki.ROS.org/face_recognition
2http://wiki.ROS.org/object_recognition

66

Retalis Language for Robotic Information Engineering

4. State-based representation: knowledge about the state of the robot’s environ-
ment should be derived from discrete observations.

On-flow processing includes the following requirements.
1. Even-driven and incremental processing: on-flow processing requires a real-

time event-driven processing model. Relevant information should be derived
as soon as it can be inferred from the sensory data received so far. Therefore,
sensory data should be processed and reasoned about as soon as they are
received by the system. Moreover, real-time processing of sensory data requires
incremental processing techniques.

2. Temporal pattern detection and transformation: on-flow processing requires
detecting temporal patterns in flow of data and transforming data into suit-
able representations. The detection and transformation of data patterns are
required to correlate and aggregate sensory data and detect high-level events
occurring in the robot’s environment.

3. Subscription: information derived from on-flow processing of data should be
disseminated selectively. This is needed, for instance, not to overload a plan
execution component with irrelevant events.

4. Garbage collection: records of data should be kept as far as they can contribute
to derive relevant information and pruned afterwards. In the fire alarm ex-
ample, a detection of smoke needs to be kept for a specified time period. If a
relevant sensor detects a high temperature during this period, a fire alarm is
generated. The record of the detected smoke is disregarded afterwards.

The aim of this paper is to support robotic information engineering. A key
concern to develop affordable, maintainable and reliable robot software is the sup-
port of re-usability in development [19, 20, 35]. Support of information engineering
includes identifying the requirements and providing re-usable solutions to require-
ments. Re-usability advances robot software by reducing development, maintenance
and benchmarking costs [35, 54, 55, 42, 13, 37]. A robotic language should support
information engineering as follows. First, it should support implementation at a
suitable level of abstraction. This includes a qualitative representation of temporal
relations among events as opposed to specifying such relations by occurrence times
of events. Second, it should support efficient implementation, because an incre-
mental processing and management of sensory data requires specialized algorithms
and implementation care. Third, it should have clear semantics to support the cor-
rectness of implementation. In particular, the language semantics should take the
asynchronicity of data into account. Fourth, it should support AI reasoning tech-
niques as its built-in functionalities or by integration of relevant tools and libraries.
For instance, logical and spatial reasoning capabilities are often necessary to rea-

67

Ziafati, Dastani, Meyer, van der Torre and Voos

son about the domain and common-sense knowledge, and spatial relations among
objects.

Current systems do not support both on-flow and on-demand processing. The
following examples illustrate the need to combine on-flow and on-demand processing.
First, active memories generate events when the contents of their memories change.
It is desirable that a consumer is able to subscribe for notification when a pattern of
such changes occurs [80]. This requires an on-flow processing mechanism to process
the memory events to detect relevant patterns of memory updates. Second, on-flow
processing is needed for transforming data to a compact and suitable representation
before recording it in memory. Third, simpler and more efficient implementation of
some on-flow processing tasks can be achieved by mixing on-flow pattern recognition
with on-demand querying of data in memory. In addition, on-flow and on-demand
processing support of existing systems is limited. Open-source robotic software
such as ROS [61] only facilitate flows of data among components. A state-of-the-art
system is DyKnow [42, 38], which integrates multiple tools such as C-SPARQL [12] to
support on-flow processing [27, 44, 39]. C-SPARQL does not support the expression
of qualitative temporal relations among data or the filtering of data patterns based
on their durations. Such capabilities are desirable, if not necessary, to capture
complex data patterns [4]. In addition, on-flow processing in DyKnow requires
semantic annotation of flows of data. Such semantic annotation is not provided
in ROS software, widely used by the community, inducing programming overhead.
Moreover, DyKnow is not available as open-source. Current on-demand processing
systems often support either logical reasoning or active memory, but not both. An
exception is the logic-based knowledge management system ORO [50, 49]. ORO
supports active memory, but its support for the following on-demand requirements
are limited. First, ORO does not support selectively memorizing data. All input
data is recorded. Second, forgetting is limited to fixed memory profiles. It is not
possible to specify forgetting policies based on types of data. Third, due to the
open world assumption, representing and reasoning about dynamics of the robot’s
environment is difficult in ORO.

This paper introduces Retalis (ETALIS3 [6, 5, 3] for Robotics) to supports on-
flow and on-demand logical and temporal reasoning over sensory data and the state
of robot’s environment. Retalis is open source4 and has been integrated in ROS.
Retalis integrates the Etalis language for events (ELE)5 for on-flow and develops
the Synchronized Logical Reasoning language (SLR) [83] for on-demand processing.

3Event TrAnsaction Logic Inference System, http://code.google.com/p/etalis/
4https://github.com/procrob/Retalis
5ETALIS provides also the Event Processing SPARQL language (EP-SPARQL) [4] for event

processing in Semantic Web applications.

68

Retalis Language for Robotic Information Engineering

By a seamless integration of these languages, Retalis supports the implementation
of both on-flow and on-demand functionalities in one program.

The remainder of this paper is organized as follows. Section 2 presents a running
example. Section 3 gives an overview of Retalis. Section 4 discusses on-flow pro-
cessing requirements and describes ELE. Section 5 discusses on-demand processing
requirements and presents SLR. Section 6 provides an evaluation of Retalis. Finally,
Section 7 presents future work and concludes the paper.

2 Running Example
This section presents an example to illustrate the concepts and functionalities of
Retalis. A robot is situated in a dynamic environment informing a person about
the objects around it. The environment is described by a set of entities e1, e2,
These include the moving base of the robot, the pan-tilt 3D camera cam of the robot
mounted on the base, a set of tables table1, table2, ..., a set of objects o1, o2, ..., a set
of people f1, f2, ..., a set of attributes and a reference coordination frame rcf.

Figure 1 presents the robot’s software components and their interactions. This
figure should be read as follows. Directed arrows visualize asynchronous flows of
data and two-way arrows represents request-response service calls. Asynchronous
communications among the components are in the form of events. An event is a
time-stamped piece of data formally defined in Section 4.1.

Figure 1: Robot’s software components

The robot software includes the following components.

faceRec component: processes images from the camera, outputting face(fi, pj)t
events. A face(fi, pj)t event represents the recognition of the face of fi with
confidence value pj in a picture taken at time t.

69

Ziafati, Dastani, Meyer, van der Torre and Voos

segRec component: uses a real-time algorithm to process images from the camera
into 3D point cloud data segments corresponding to individual objects. Such
an algorithm is presented by Uckermann et al. [74]. The segRec component
outputs seg(oi, cj , pk, lg,pclh)t events. Such an event represents the recognition
of object oi, with color cj , with probability pk, with relative position lg to the
cam, with the 3D point cloud data segment pclh recognized from a picture
taken at time t. For events of the recognition of the same object segment over
time, a unique identifier oi is assigned using an anchoring and data association
algorithm. Such an algorithm is presented by Elfring et al. [30].

objRec component: processes 3D point cloud data segments, outputting events of
the form obj(oi,otj , pk)t. Such an event represents the recognition of object
type otj with probability pk for object oi recognized from a picture taken at
time t.

stateRec component: localizes the robot. It outputs two types of events. A
tf(rcf,base, lk)t event represents the relative position between the reference co-
ordination frame and the robot base at time t. A tf(base,cam, lk)t event rep-
resents the relative position between the robot base and its camera at time t.

camCtrl and baseCtrl components: receive events of type pos_goal(l), each con-
taining a position l to point the camera toward l or move the robot base to l,
respectively.

IEC component: processes and manages events from faceRec, segRec, stateRec
components. It detects reliable recognition of faces and objects and their
movements to inform the mainCtrl component. Moreover, it positions objects
in the reference coordination frame. In addition, it sends point cloud data of
some objects to the objRec components to have their types recognized. The
IEC component receives recognized types of objects from objRec as events
and maintains the history of recognized faces and objects. It also controls the
camera’s position to follow a specific entity by sending perceived positions of
the entity to camCtrl.

mainCtrl component: is responsible for interacting with the user. It moves the
robot base by sending commands to the baseCtrl component. It receives events
from IEC about the movements of objects to inform the user. The mainCtrl
component queries IEC to answer the questions of the user.

70

Retalis Language for Robotic Information Engineering

3 Architectural Overview of Retalis
Retalis is a language for implementing Information Engineering Components (IECs)
of autonomous robot systems. IECs are software components implementing a vari-
ety of information processing and management functionalities. IEC s are distributed
independent components operating with other software components in parallel. Re-
talis does not impose any restriction on how components are structured in robot
software.

Retalis represents and manipulates data as events. Events are time-stamped dis-
crete pieces of data whose syntax is the same as Prolog ground terms [23, 53]. Events
contain perceptual information such as a robot’s position at a time or recognized
objects in a picture. The meaning of events is domain-specific. The time-stamp of
an event is a time point or a time interval referring to the occurrence time of the
event. Events are time-stamped by the components generating them. 6 For exam-
ple, the event face(‘Neda’,70)28 could mean a recognition of Neda’s face with 70%
confidence in a picture taken at time 28 and the event observed(‘Neda’)〈28,49〉 could
mean a frequent recognition of Neda’s face in pictures taken during time interval
[28,49]. An event containing information from processing of sensory data is usually
time-stamped with the time at which the sensory data is acquired. This is usually
different from the time point when the processing of the data is finished. A compos-
ite event generated from an occurrence of a pattern of other events is time-stamped
based on the occurrence times of its composing events.

Retalis comprises two logic-based languages. The ELE language [6, 5, 3] sup-
ports on-flow processing and the SLR language [83] supports on-demand processing
of data. In the Retalis program of an IEC, ELE generates composite events by
detecting event patterns of interest in the input flow of events to the IEC. SLR is
used to implement a knowledge base maintaining the history of some events. The
knowledge base contains domain knowledge, including rules to reason about the
recorded history. The flow of events processed by the IEC includes its input events
and the composite events it generates. This means that composite events can in turn
be used to detect other events. The robot software presented in Figure 1 includes
one IEC component. Robot software can include a number of IEC components in
order to modularize different information engineering tasks and to use distributed
and parallel computing resources.

Figure 2 depicts the architecture of an IEC, including its logical components im-
plemented in Retalis. This figure must be read as follows. Directed arrows visualize

6We assume all components share a central clock which is usually the clock of the computer
running the components. If there is a network of computers running the components, time should
be synchronized among them.

71

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 2: IEC architecture

asynchronous flows of events. Two-way arrows represent queries to SLR by ELE
and external components.

Retalis supports the implementation of both synchronous and asynchronous in-
terfaces among IEC s and other components. Asynchronous interaction is realized
as follows. The IEC subscribes to events provided by provider 1, .., provider n.
Moreover, consumer 1, .., consumer n subscribe to the IEC for types of events. The
Retalis execution is event-driven. Input events are processed as they are received by
the IEC to derive new events. When an event is processed, the event and resulting
composite events are sent to interested consumers. The history of the input and de-
rived events is also recorded in memory according to the SLR specification. Retalis
specifications can be reconfigured at runtime. This includes the composite events to
be detected, the producers the IEC is subscribed to, the subscriptions of consumers
to the IEC, and the history of events maintained in memory.

Synchronous interactions between the IEC and other components are as follows.
Components can query the domain knowledge and history of events in the SLR
knowledge base. Retalis provides a request-response service to query SLR. SLR is
a Prolog-based language, presented in Section 5.1 . The evaluation of a SLR query
determines whether the query can be inferred from the knowledge base. The query
evaluation may result in a variable substitution. The IEC can also access the func-
tionalities of other software libraries or components. Function calls are supported
both when answering queries and detecting composite events. To integrate external
functionalities in Retalis, the corresponding software libraries should be interfaced
with Prolog.

The interactions between ELE and SLR are as follows. On the one hand, ELE
generates composite events. These events constitute the input flow of events to

72

Retalis Language for Robotic Information Engineering

SLR. SLR selectively records these events in its knowledge base. On the other
hand, changes in the SLR knowledge base trigger corresponding input events for
ELE. ELE can be used, for instance, to detect a pattern of such changes to inform
the interested components. In addition, the specification of event patterns of interest
in ELE can include queries to SLR. Queries are used to reason about the domain
knowledge and history of events in SLR.

An ELE program, described in Section 4.1, contains two types of rules. The
rules that include the ← symbol are event rules, specifying patterns of events to
derive new events. The rules that include the :- symbol are static rules, constituting
a Prolog program. The specification of the pattern of events in an event rule can
include a query to the Prolog program defined by the static rules. Retalis programs
are similar to ELE programs. The main difference is that the static rules in Retalis
are SLR rules, constituting a SLR program which can be queries from the event
rules.

Listing 1 presents an example of how ELE and SLR are used together in a
Retalis program. This program records the position of the object segment o1 when-
ever the position is changed by more than a meter. This program is read as fol-
lows. Capital letters represent variables. The body of the first and third rules
are executed when the program is initialized. c_mem(m1,loc(o1,L),∞,∞) is a SLR
clause creating memory m1 recording the history of loc(o1,L)T events. The second
rule is an ELE clause querying SLR, as written in its WHERE clause. For each
seg(o1,C,P,L,PCL)T input event, the prev clause queries memory container m1 for
the last position of o1 before time T . If the position has changed by more than a me-
ter, the corresponding loc(o1,L) event is generated and recorded in memory m1. In
addition, consumer moving_objects is notified by the corresponding event obj(o1)T .
This is specified by the third rule, which is read as follows. The subscription s1
subscribes consumer moving_objects to loc(O,L) events with the output template
obj(O) from time 0. Details of the ELE and SLR languages are given in Sections
4.1 and 5.1.

1 onProgramStart :− c_mem(m1 , l o c (o1 ,L)T ,∞ ,∞) .
2
3 l o c (o1 ,L)T <− seg (o1 ,C,P,L ,PCL)T
4 WHERE(
5 prev (m1 , l o c (o1 ,Lprev)Tprev ,T)
6 d i s t (L ,Lprev ,D) ,
7 D > 1
8) .
9

73

Ziafati, Dastani, Meyer, van der Torre and Voos

10 onProgramStart :− sub (s1 , moving_objects , l o c (O,L) , obj (O) ,0) .

Listing 1: Retalis Program Example

A Retalis program is parsed and executed by a Prolog execution system and
is provided a C++ interface for communication with external components. This
makes the Retalis language framework-independent, because its core depends only
on a Prolog execution system. We use SWI-Prolog7 [78] as the Retalis execution
system and use the SWI-Prolog C++ interface8 to interface the SWI-Prolog with
C++. Retalis can be interfaced with existing robotic frameworks mapping its syn-
chronous and asynchronous interfaces to their service-based and publish-subscribe
communication mechanisms.

We have developed an interface to integrate Retalis with the ROS framework [61],
the current de-facto standard in open-source robotics. In the ROS architecture, each
IEC is a ROS component9 [61]. Asynchronous and synchronous communications in
ROS are realized using topics and services, respectively. By subscribing to a topic,
a component receives the messages other components publish on that topic. A
component invokes a service by sending a request message and receiving a response
message.

Figure 3 presents an IEC in a ROS architecture. IEC is subscribed to Topics I1
and I2 receiving messages published by the components C2 and C3. IEC publishes
events on topics O1 and O2 to which other components are subscribed.

To subscribe an IEC to a topic, the Retalis-ROS interface requires the name and
message type of the topic. This is set in an XML configuration file, as in line 4-6
of Listing 2. The Retalis-ROS interface offers a number of services to reconfigure
the IEC at runtime. These include services to subscribe the IEC to a topic, to un-
subscribe from a topic and to subscribe a topic to events from the IEC. To publish
an event on a ROS topic, the Retalis-ROS interface needs to know the message type
of that topic. This can be set by the program, as in lines 7-9 of Listing 2, or at
runtime.

7http://www.swi-prolog.org
8http://www.swi-prolog.org/pldoc/package/pl2cpp.html
9http://wiki.ROS.org/Nodes

74

Retalis Language for Robotic Information Engineering

Figure 3: An IEC in ROS architecture

1 <?XML version=" 1 .0 " ?>
2 <publ i sh_subscr ibe>
3
4 <subscr ibe_to name=" /ar_pose_marker "
5 msg_type=" ar_pose/ARMarkers "
6 />
7 <publ ish_to name=" robot_marker_pos "
8 msg_type=" geometry_msgs/Transform "
9 />
10 <publ ish_to name=" gazeContro l "
11 msg_type=" headTurn/GazeControl "
12 />
13
14 </publ i sh_subscr ibe>

Listing 2: Retalis-ROS XML configuration file

The conversion among ROS messages and Retalis events is performed automati-
cally by the Retalis-ROS interface. This may be described by an example. Table 1,
consisting of five columns, depicts five standard ROS message types. The first row
in each column is the name of a unique message type. The other rows presents the
fields of data that the message type contains. Each field of a message contains a sin-
gle datum or a list of data, whose type is a basic type such as Integer, Float, String,
or it is a ROS message type. For example, a geometry_msgs/Point message contains
three float values and a geometry_msgs/Pose message has a geometry_msgs/Point
message as its first field of data.

75

Ziafati, Dastani, Meyer, van der Torre and Voos

geometry_msgs/PoseStamped std_msgs/Header
std_msgs/Header header uint32 seq
geometry_msgs/Pose pose time stamp

string frame_id

geometry_msgs/Pose
geometry_msgs/Point p
geometry_msgs/Quaternion o

geometry_msgs/Point geometry_msgs/Quaternion
float64 x float64 x
float64 y float64 y
float64 z float64 z

float64 w

Table 1: ROS message examples

Listing 3 presents the conversion of the geometry_msgs/PoseStamped ROS mes-
sage type to its corresponding Retalis event. The conversion maps each ROS message
to a Prolog compound term where the functor symbol of the term is the name of
the message type and its arguments are the data fields of the message. Data of
basic types such as Integer and Floats are represented by their values. Strings are
wrapped by single quotes represented as Prolog Strings. Lists of data are represented
as Prolog lists. Time in ROS is a basic data type expressed by two Integer values
represented in a Retalis event as a list of two numbers.

When converting a ROS message to a Retalis event, the event is time-stamped
with the time-stamp of the header of the message. If the message does not have a
header, the event is time-stamped with the system current time. When converting a
Retalis event to a ROS message, the time-stamp of the event is ignored. However, the
Retalis language provides direct references to time-stamp of events. This can be used
to set the stamp in the std_msgs____header(seq,stamp,frame_id) argument of an
event and hence in the header of its corresponding ROS message. ROS messages
from different topics can be of the same type and need to be distinguished. Therefore,
we encode topic names as main functor symbols of corresponding Retalis events.
For example, if the event pn(t1, .., tn)z is received from the topic x, the event is
represented as x(pn(t1, .., tn))z.

76

Retalis Language for Robotic Information Engineering

1 geometry_msgs____PoseStamped (
2 std_msgs____Header (seq , stamp , frame_id) ,
3 geometry_msgs____Pose (
4 geometry_msgs____Point (x , y , z) ,
5 geometry_msgs____Quaternion (x , y

, z ,w)
6)
7) stamp

Listing 3: Retalis event format corresponding to geometry_msgs/PoseStamped
ROS message type

4 On-Flow Information Processing

This section discusses on-flow processing requirements of robotic information engi-
neering. It suggests the information flow processing systems [26], and in particular
the ELE event-processing language [6, 5, 3], as suitable technologies to address the
requirements. On-flow processing of data is widespread in large areas of robot soft-
ware. As examples, we discuss in this section four robotic situations where on-flow
processing of data is very useful.

The first situation is decoupling components interacting in robot software. This
is usually supported by a publish-subscribe communication mechanism [31] based
on an indirect addressing style [20, 80, 61, 42]. The publish-subscribe mechanism
organizes robot software in a data-driven manner where components continuously
process data generated by the other components. However, due to limited resources
of a robot, sensory data needs to be processed selectively. This requires filtering
of data passed among components. Data should be filtered based on the robot’s
operational context, such as its focus of attention. One way to support the filtering
of data is to write complex software components whose processes can be reconfigured
at runtime. However, such a reconfiguration might not be supported by the available
components. The publish-subscribe support in most existing robotic frameworks is
limited to topic-based interactions. Providers publish data items on topics, which
are received by subscribers to those topics. In these frameworks, a component is
usually subscribed to a fixed set of topics. More flexible and context-dependent
interaction requires subscribers being able to specify their data of interest based
on data patterns and policies [80, 42, 54]. Consider a robot looking for reliable
recognition of yellow objects. The object segments sent to the object recognition
component should be filtered to include only the yellow and reliably recognized
object segments. Another example is the selective processing of new perceptions

77

Ziafati, Dastani, Meyer, van der Torre and Voos

of object segments by the object recognition component. A new perception of an
object should be processed only when the object was perceived at a new location
and this location did not change for a given time period.

The second situation is anchoring [24], creating symbolic representation of ob-
jects perceived from sensory data. The symbols and the data continuously sensed
about the objects should be correlated. In an anchoring process, sensory data is in-
terpreted into a set of hypotheses about recognized objects. For example, in a traffic
monitoring scenario [42], images from color and thermal cameras are processed into
a set of hypotheses about objects. The object hypotheses need to be correlated over
time to deal with the data association problem [11]. There may be false positive
and negative percepts, temporal occlusions of objects and visually similar objects in
the environment. One can reason also about the hypotheses based on, for instance,
the normative characteristics of the physical objects they represent [40, 30]. For ex-
ample, in the traffic monitoring scenario, one can consider the positions and speeds
of objects perceived over time and the layout of the road network. This can be used
to reason about stationary and moving objects and their types. For instance, when
a car is observed again after a temporary occlusion, it should be assigned the same
symbol which was assigned to it previously.

The third situation pertains to flexible plan execution and monitoring in noisy
and dynamic environments. The execution of actions/plans are to be driven, mon-
itored and controlled by various conditions [76, 29, 81]. Conditions are monitored
by low-level implementations of actions/behaviors to detect their success or failure.
However, control and monitoring of plan execution via observation of various con-
ditions at system-level is necessary. The advantages of system level plan execution
control and monitoring are to use data provided by different perception components
to achieve system’s goals, to avoid complicating implementation of actions and to
avoid duplicating monitoring functionalities. Depending on an application, condi-
tions to be monitored can be as simple as monitoring an object for being attached
to the manipulator. They can be also complex logical, temporal and numerical
conditions.

The fourth situation is high-level event recognition to recognize and react in real-
time to situations in the environment. One example is detecting traffic violations
such as reckless driving by observing qualitative spatial relations among cars [43].
Another example is detecting situations and events such as “successful pass”, “suc-
cessful tackle” and “goal scoring” in football simulation or “washing hand before
examination” and “basic clinical examinations carried out in time” in hospital simu-
lations from lower level events [62]. The last example is recognizing human activities
such as “cooking”, “eating” and “watching TV” in smart homes [58, 66]. Detecting
such situations of the environment requires correlating and aggregating sensory data

78

Retalis Language for Robotic Information Engineering

about changes of the environment based on their temporal and logical relations.
What all these situations have in common is a need for processing sensory data

flow to extract new knowledge as soon as the relevant data becomes available with-
out requiring persistent storage of data. Supporting on-flow processing requires an
expressive and efficient language for real-time processing of data flows based on
complex relations among the data items within the flows. On-flow processing is an
important requirement in various application domains [26]. In environment moni-
toring, sensory data is processed to acquire information about the observed world,
detect anomalies, or predict disasters. Financial applications analyze stock data to
identify trends. Banking fraud detection and network intrusion detection require
continuous processing of credit card transactions and network traffic, respectively.
RFID-based inventory management requires continuous analysis of RFID readings.
Manufacturing control systems often require observing system behavior to detect
anomalies. As the result of many years of research from different research commu-
nities on such application domains, a large number of “information flow processing
systems” have been developed to support on-flow processing of data [26].

An extensive survey of information flow processing systems [26] shows that the
functionalities of these systems are converging to a set of operations and processing
policies for on-flow filtering, combining and transformation of data, indicating uni-
versal usability of such functionalities for on-flow processing of data. This makes
the existing information flow processing systems amenable to support on-flow infor-
mation processing in robot software.

Current information flow processing research has led to two competing classes
of systems [26], Data Stream Management Systems (DSMSs) and Complex Event-
Processing Systems” (CEPSs). DSMSs functionalities resemble database manage-
ment systems. They process generic flow of data through a sequence of transforma-
tions based on common SQL operators like selections, aggregates and joins. Being
an extension of database systems, DSMSs focus on producing query answers, which
are continuously updated to adapt to the constantly changing contents of their input
data. In contrast, CEPSs see flowing data items as notification of events happening
in the external world. These events should be filtered and combined to detect oc-
currences of particular patterns of events representing higher level events. CEPSs
are rooted in publish-subscribe model. They increase the expressive power of sub-
scribing language in traditional publish-subscribe systems with the ability to specify
complex event patterns.

Both DSMSs and CEPSs have their own merits and the recent proposals at-
tempt to combine the best of both classes of systems [26]. However, at this stage,
the CEPSs are more suitable to support robotic on-flow processing due to the fol-
lowing reasons. First, the semantics given in CEPSs to data items as being event

79

Ziafati, Dastani, Meyer, van der Torre and Voos

notifications naturally corresponds to time-stamped sensory data being observa-
tions of the environment by the robot perception components. Second, CEPSs put
great emphasis on detection and notification of complex patterns of events involving
sequence and ordering relations which constitutes a large number of robotic on-
flow information engineering problems which is usually out of the scope of DSMSs.
The rest of this section introduces ELE, a state-of-the-art CEPS, and discusses its
suitability for robotic on-flow information engineering through its comparison with
related work.

4.1 ETALIS Language for Events (ELE)
ELE10 [6, 5, 3] is an expressive and efficient language with formal declarative se-
mantics for realizing complex event-processing functionalities. ELE advances the
state-of-the-art CEPSs by allowing logical reasoning about domain knowledge in
the specification of complex event patterns. Logical reasoning can be used to relate
events, accomplish complex filtering and classification of events and enrich events
on the fly with relevant background knowledge.

Event-processing functionalities in the ELE language are implemented by pro-
gramming a set of static rules, encoding the domain knowledge and a set of event
rules, specifying event patterns of interest to be detected in flow of data. The de-
tected events can themselves match other event patterns, providing a flexible way
of composing events in various steps of a hierarchy.

Definition 1 (ELE Signature [6]). A signature 〈C, V, Fn, P sn, P en〉 for ELE lan-
guage consists of:
• The set C of constant symbols.
• The set V of variables.
• For n ∈ N sets Fn of function symbols of arity n.
• For n ∈ N sets P sn of static predicate symbols of arity n.
• For n ∈ N sets P en of event predicate symbols of arity n with typical elements pen,
disjoint from P sn.

Based on the ELE signature, the following notions are defined.

Definition 2 (Term [6]). A term t ::= c | v | fn(t1, ..., tn) | psn(t1, ..., tn).

Definition 3 (Atom [6]). An static/event atom a ::= p
s/e
n (t1, ...tn) where ps/en is

a static/event predicate symbol and t1, ..., tn are terms.

10http://code.google.com/p/etalis/

80

Retalis Language for Robotic Information Engineering

For example, the face(Fi,Pj) event atom is a template for observations of people’s
faces generated by the faceRec component.

Definition 4 (Event [6]). An event is a ground event atom time-stamped with an
occurrence time.

• An atomic event refers to an instantaneous occurrence of interest.

• A complex event refers to an occurrence with duration.

For example, the occurrence time of the atomic event face(’Neda’,70)28 is time 28
and the occurrence time of the complex event observed(’Neda’)〈28,49〉 is time interval
[28, 49].

Definition 5 (ELE Rule [6]). An ELE rule is a static rule rs or an event rule re.

• A static rule is a Horn clause a :- a1, ..., an where a, a1, ..., an are static atoms.
Static rules are used to encode the static knowledge of a domain.

• An event rule is a formula of the type pe(t1, .., tn) ← cp where cp is an event
pattern containing all variables occurring in pe(t1, .., tn). An event rule specifies
a complex event to be detected based on a temporal pattern of the occurrence
of other events and the static knowledge.

Definition 6 (Event Pattern [6]). The language P of event patterns is

P ::= pe(t1, ..., tn) | P WHERE t | q | (P).q | P BIN P | not(P).[P, P]

where pe is an n-array event predicate, ti denote terms, t is a term of type boolean,
q is a non-negative rational number, and BIN is one of the binary operators SEQ,
AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES.

4.2 ELE Semantics
As opposed to most CEPSs, ELE has formal declarative semantics. The input to
an ELE program is modeled as an event stream, a flow of events. The input event
stream specifies that each atomic event occurs at a specific instance of time.

Definition 7 (Event Stream [6]). An event stream ε : Grounde → 2Q+ is a map-
ping from ground event atoms to sets of non-negative rational numbers.

For example, ε(obj(o, c, p)) = {1, 3} means among all events received by ELE as its
input over its lifetime, the time points at which the event objRec(o, c, p) occurs are
1 and 3.

81

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 4: ELE event-processing operator examples, re-produced from [6]

Definition 8 (ELE semantics [6]). Given an ELE program with a set R of ELE
rules, an event stream ε, an event atom a and two non-negative rational numbers
q1 and q2, the ELE semantics determines whether an event a〈q1,q2〉, representing
the occurrence of a with the duration [q1, q2], can be inferred from R and ε (i.e.
ε, R |= a〈q1,q2〉).

Figure 4 informally introduces the ELE semantics. It provides examples of
how ELE operators are used to specify complex events in terms of simpler ones.
The first three lines show occurrences of the instances of events P1, P2 and P3
during time interval [0,10]. The vertical dashed lines represent units of system time
and horizontal bars represent detected complex events for the given patterns. The
presented patterns are read as follows:

1. P2 AND P3: occurrence of both P2 and P3.

2. (P1).3 : occurrence of P1 within an interval of length 3 time units.

3. P1 SEQ P3 : occurrence of P3 after occurrence of P1.

4. P1 PAR P2: occurrence of both P1 and P2 with non-zero overlap.

82

Retalis Language for Robotic Information Engineering

5. P2 OR P3: occurrence of P2 or occurrence of P3

6. P1 DURING (1 seq 6): occurrence of P1 during time interval [1,6]

7. P3 STARTS P1: occurrence of P3 and P1 both starting at the same time and
P3 ending earlier than P1.

8. P1 EQUALS P3: occurrence of P2 and P3 both at the same time interval

9. not(P3).[P1, P1] : occurrence of P1 after occurrence of another P1 where there
is no occurrence of P3 in between, during the end of the first P1 and before
the start of the second P1.

10. P3 FINISHES P2: occurrence of P3 and P2 both ending at the same time and
P3 starting later than P2.

11. P2 MEETS P3: occurrence of P2 and P3, P3 starting at the exact time P2 is
ending.

For an example, consider the detection of fire from smoke and high temperature
sensor readings. This task is implemented using the following ELE rule.

fireAlam←
smoke(S1) AND high_temperature(S2)
WHERE (nearby(S1, S2)).

This rule is read as follows. S1 and S2 are variables. When smoke is detected by
a sensor S1 and high temprature is detected by a sensor S2, a fire alarm event is
generated, if these sensors are located nearby. If P2 and P3 in figure 4 represent
smoke and high-temperature events from sensors located nearby, then a fire alarm
is generated four times during the time interval [0,10].

The static atom nearby(S1,S2) presents an example of logical reasoning in ELE.
Given an ontology of sensors and their locations, this term specifies whether the
sensors are located in the same area. Static atoms can be used to implement arbi-
trary functionalities in Prolog. In addition, they can be used as interface to foreign
languages, for instance, to integrate libraries for spatial reasoning. In Retalis, ELE
static terms are replaced by SLR queries to, in addition, reason about histories of
events.

Complex events are time stamped based on the temporal patterns they represent.
For example in Figure 4, the occurrence times of the first instances of P2 and P3
events are the intervals [1,3] and [3,4], respectively. According to ELE semantics, a

83

Ziafati, Dastani, Meyer, van der Torre and Voos

fire alarm detected from these events is time stamped with time interval [1,4]. The
time stamp of detected patterns can be used to filter the patterns. For example, a
fire alarm should be generated, only if both smoke and high temperature are detected
within 300 seconds. This condition is added to the fire alarm pattern as follows.

fireAlam←
(
smoke(S1) AND high_temperature(S2)
WHERE (nearby(S1, S2))
).300.

Filters on time intervals of event patterns are important for garbage collection. If the
fire alarm pattern does not contain the timing condition, a detection of smoke should
be recorded forever in order to generate an alarm whenever a high-temperature is
sensed. When the pattern includes the timing condition, the record is deleted after
300 seconds. After this time, the detection of smoke is no longer relevant, even if a
high temperature is detected. Irrelevant records of events are automatically deleted
by ELE garbage collection mechanisms.

ELE is free of operational side-effects, including the order among event rules and
delayed or out of order arrival of input events. For example, the sequence pattern
in Figure 4 detects three events during the time interval [0,10], no matter the order
in which ELE receives P1 and P3 events.

Listing 4 presents an ELE program to illustrate the modeling capabilities of
the ELE language. In this program, the robot detects an event whenever a person
moves an object. Such an event is detected when a person’s face is observed while
the object is moved.

The program is read piece by piece. The first clause generates a see(f) event for
every two immediate consecutive recognitions of a face f , occurring with confidence
values over fifty within half a second. The variable F is used to group the recognitions
of faces in the event pattern and to pass information to generated events. The
rule also explicitly encodes the start and end times of the sequence in content of
the generated event by Ts and Te variables.11 The second clause detects reliable
recognition of objects, when recognized three times within half a second with average
confidence value over sixty. pos_avg is a static atom computing position of the object
by averaging from its perceived positions. The third clause detects cases when an
object is moved over five centimetres within a second. The fourth clause combines

11This is implemented by adding the CHECK(t1(Ts), t2(Te)) clause which, for brevity, has been
omitted.

84

Retalis Language for Robotic Information Engineering

each two overlapping movement events of an object into a new one with a longer
occurrence time. The fifth clause combines two time periods of observing a person
if they occur within three seconds after each other. Finally, the last clause detects
when an object is moved during the time period a person is being observed.

1 s ee (F , Ts , Te) <−
2 (
3 NOT(f a c e (F , P3)) . [f a c e (F , P1) , f a c e (F , P2)]
4 WHERE(P1 > 50 , P2 > 50)
5) . 0 . 5 s .
6
7 r e l S eg (O,L) <−
8 (
9 seg (O,C,P1 , L1 ,X1) SEQ seg (O,C,P2 , L2 ,X2)

10 SEQ seg (O,C,P3 , L3 ,X3)
11 WHERE(pos_avg ([L1 , L2 , L3] , L) , avg ([P1 , P2 , P3] ,P) , P>60)
12) . 0 . 5 s .
13
14 mov(O, L1 , L2 , Ts , Te) <−
15 (
16 r e l S eg (O, L1) AND re lS eg (O, L2)
17 WHERE(d i s t ([L_2 ,L_1] , L) , L>0 . 05)
18) . 1 s .
19
20 mov(O, L1 , L4 ,T1 ,T4) <−
21 mov(O, L1 , L2 ,T1 ,T2) PAR mov(O, L3 , L4 ,T3 ,T4)
22 WHERE(T3>T1) .
23
24 s ee (F ,T1 ,T4) <−
25 (s ee (F ,T1 ,T2) SEQ see (F ,T3 ,T4))
26 OR
27 (s ee (F ,T1 ,T2) MEETS see (F ,T3 ,T4))
28 WHERE(T3−T2<3) .
29
30 movBy(O,F , L2 ,T2) <−
31 mov(O, L1 , L2 ,T1 ,T2) DURING see (F ,T1 ,T2) .

Listing 4: An ELE program for monitoring objects moved by humans

85

Ziafati, Dastani, Meyer, van der Torre and Voos

Assume an object has moved while the robot was seeing a face of a person.
If the robot continues to see the face, the above rules generate more and more
events indicating the person has moved the object, but one of such events might be
sufficient for an application. Each time a new event occurs, the event along with
the past events can match the pattern of a rule in several ways.

The ELE language offers various consumption policies to filter our repetitive
rule firings. These includes policies to select a particular pattern among possible
matches and to limit the use of an event to fire a rule more than once. While such
policies are not aligned with declarative semantics of ELE, they are widely adopted
in CEPSs for practical reasons. ELE also supports adding or deleting ELE rules at
runtime allowing flexible reconfiguration of event-processing functionalities.

4.3 Runtime Subscription in Retalis

The ELE interface facilitates programming a fixed set of output channels to deliver
certain types of events to consumers. Retalis extends this functionality enabling
robot software components to subscribe to Retalis for their events of interest at
run-time. The events are sent to subscribers asynchronously as soon as they are
processed by Retalis.

A component subscribes to Retalis by sending a subscription request using a
ROS service that the Retalis interface provides. A subscription is of the form
subscribe(Topic,Q, Tmpl, Ts, Te). The process of the request by Retalis results in
subscribing Topic to events matching the query pattern Q that have occurred during
time interval [Ts, Te]. A query pattern Q is a tuple 〈e, Cond〉, where e is an event
atom and Cond is a set of conditions on variables which are arguments of e. An
event P matches a query pattern Q when there is a substitution which can unify p
and e and makes the conditions in Cond true (i.e. ∃θ(p = qθ)).

When a subscription is registered, every event matching the subscription is asyn-
chronously sent to the corresponding topic as the event is read from the Retalis input
or generated by ELE rules. Events are first converted to the template form Tmpl be-
fore being sent to the topic. If a component does not know in advance the end time of
its subscription, it can subscribe to its events of interest using sub(Id, C,Q, Tmpl, Ts)
and unsubscribe from them at any time using unsub(Id, Te). Id is a unique identifier
of such a subscription.

Example 1. When the robot is asked to follow the object segment seg11, the
control component sets the target location for the Gaze component to the loca-
tion of seg11 by sending the following subscription command to the Information-

86

Retalis Language for Robotic Information Engineering

Engineering Component.

sub(100, ‘camCtrl’, 〈relObj(‘seg11’, L), 〈〉〉, pos_goal(L), ‘now’)

Consequently, every time IEC processes an event relObj(‘seg11’, L), it sends the
location L of seg11 to the Gaze in the pos_goal(L) format. To unsubscribe, the
control component sends the unsub(100, ‘now’) command to IEC.

4.4 Discussion

Previous robotic research is concerned with on-flow processing for specific research
tasks such as component interaction, anchoring, monitoring and event-recognition.
The consequence is the narrow scope of related robotic research reducing the commu-
nity collaboration in supporting on-flow processing in robotic software. For instance,
on-flow processing support of open-source robotic software such as ROS is limited
to fixed publish-subscribe flow of data among components.

In parallel to this research, the DyKnow [42, 38] framework has been extended
with a number of tools that are relevant to on-flow processing [27, 44, 39]. The main
feature of the work is the annotation of data streams and transformation processes
with semantic descriptions. The semantic descriptions are used for automatic con-
struction of streams of data. The C-SPARQL [12] language has been integrated to
support the querying of flows of data. C-SPARQL belongs to the DSMSs category
of on-flow processing systems. The advantages of ELE over C-SPARQL is its sup-
port for capturing complex data patterns. In contrast, the Retalis does not support
an automatic discovery of flows of data, for instance, required to detect a complex
event. The input and output subscriptions of Information-Engineering Components
and the event patterns they process are reconfigurable at runtime. However, such
reconfigurations are not made automatic.

The literature does not contain a comparison between the expressive power of
information flow processing systems. ELE is one of the most expressive systems as
it supports most of the existing information flow processing operations listed in [26].
In particular, ELE supports the representation of all possible thirteen temporal
relations between time interval occurrence times of two events as defined in Allen’s
interval algebra [2], non-occurrence of an event between the occurrence of two other
events, and iterative and aggregating patterns. Furthermore, arbitrary processes can
be applied on events through the use of static atoms in ELE syntax, provided that
such processes are interfaced with the Prolog language. An example is interfacing
spatial reasoning functionalities with Prolog presented in [72].

87

Ziafati, Dastani, Meyer, van der Torre and Voos

Logic-based approaches such as Chronicle Recognition [33] and Event Calcu-
lus [47, 67] have received considerable attention for event representation and recog-
nition due to their merits, including expressiveness, formal and declarative semantics
and being supported by machine learning tools to automate the construction and
refinement of event recognition rules [8, 6]. However, the query-response execution
mode and scalability of classic logic-based systems limits their usability for on-flow
information processing. The query-response execution means detecting an event
at runtime requires frequently querying the system for that event. Moreover, the
event is detected only when the next time the system is queried for that event. In
addition, efficient evaluation of such queries requires caching mechanisms not to re-
evaluate queries over all historic data [22]. ELE bridges the gap between CEPSs
and logic-based event-recognition systems by offering a logic-based CEPS with an
event-driven, incremental and efficient execution model.

The IDA [80, 55] and CAST [37, 36] are robotic frameworks supporting the sub-
scription of components to their events of interest based on the type and content
of events. Using XML data format in IDA, a subscriber can register for informa-
tion items containing specific field of data. IDA also provides few types of event
filters such as the Frequency filter, which outputs only every n-th received notifi-
cation. Retalis provides a general framework to address a much wider variety of
event processing requirements, including temporal and spatial reasoning over events
to detect complex event patterns. Moreover, the subscription mechanisms of IDA
and CAST are tightly built over their underlying middleware. In contrast, Retalis
is framework-independent and has been interfaced with ROS which is widely used
by robotic community.

The use of CEPSs for detecting high-level events in agent research has been
proposed before. Buford et al. [22] extend the BDI architecture with situation
management components for event correlation in distributed large-scale systems.
Ranathunga et al. [23] utilize the ESPER12 event-processing language to detect high-
level events in second life virtual environments.13 However this work is not concerned
with the robotic on-flow information-processing problem, it does not provide a formal
account of event processing and does not support run-time subscription. Other
related work includes various approaches for high-level event recognition, anchoring
and monitoring, for instance, using Chronicle recognition, constraint satisfaction or
variants of temporal logic [42, 58, 43, 28]. Such approaches do not satisfy all on-
flow information processing requirements. For instance, the Chronicle recognition
or constrained satisfaction approaches based on simple temporal networks cannot

12Esper Reference, Esper Team and EsperTech Inc, accessible at
http://esper.codehaus.org/esper-4.9.0/doc/reference/en-US/html_single/

13http://secondlife.com

88

Retalis Language for Robotic Information Engineering

express atemporal constraints, and temporal logic based approaches do not support
transformation of information.

5 On-Demand Information Processing
On-demand information processing corresponds to managing data in memory or
knowledge base to be queried and reasoned upon on request. This section presents
the SLR language14 to address on-demand processing requirements related to dis-
creteness, asynchronicity and continuity of robotic sensory data that are not sat-
isfactorily supported by existing systems. After a short introduction of these re-
quirements, the SLR syntax and semantics are presented and the usability of the
language and its relation with existing works is discussed.

Building robot knowledge based on discrete observations is not always a straight-
forward task, since events contain various information types that should be rep-
resented and treated differently. For example, to accurately calculate the robot
position at a time point, one needs to interpolate its value based on the discrete
observations of its value in time. One also needs to deal with the persistence of
knowledge and its temporal validity. For example, it might be reasonable to assume
that the color of an object remains the same until a new observation is made in-
dicating the change of color. In some other cases, it may not be safe to infer an
information, such as the location of an object, based on an observation that is made
in distant past. Building robot knowledge of its environment upon sensory events
requires language support to simplify reasoning about the state of the environment
at a time based on discrete observations of the environment.

A network of distributed and parallel components process robot sensory data
and send the resulting events to the knowledge base. Due to processing times of the
perception components and possible network delay, the knowledge base may receive
the events with some delays and not necessarily in the order of their occurrence. For
example, the event indicating the recognition of an object in a 3D image is generated
by the object recognition component sometime after the actual time at which the
object is observed, because of object recognition processing time. Another example
is when data is generated or needs to be verified by an external source with arbitrary
operating time. Therefore, when the knowledge base is queried, correct evaluation
of the query may require waiting for the perception components to finish processing
of sensory data to ensure that all data necessary to evaluate the query is present in
the knowledge base. For example, the query, “how many cups are on the table at
time t?” should not be answered immediately at time t, but answering the query

14An earlier version of SLR is appeared in a technical report before [83].

89

Ziafati, Dastani, Meyer, van der Torre and Voos

should be delayed until after completing the processing of pictures of the table by the
object recognition component and the reception of the results by the knowledge base.
Dealing with asynchronicity of sensory data requires supporting the implementation
of synchronization mechanisms to assure evaluating queries when relevant data to
queries are available in the knowledge base.

Robot perception components continuously send their observations to the knowl-
edge base, leading to a growth of memory required to store and maintain the robot
knowledge. The unlimited growth of the event history leads to a degradation of the
efficiency of query evaluation and may even lead to memory exhaustion. Bounding
the growth of memory requires supporting the implementation of mechanisms to
prune outdated data.

5.1 SLR Language for Event Management and Querying

Synchronized Logical Reasoning language (SLR) is a knowledge management and
querying language for robotic software enabling the high-level representation, query-
ing and maintenance of robot knowledge. In particular, SLR aims at simplifying
the representation of robot knowledge based on its discrete and asynchronous ob-
servations and improving efficiency and accuracy of query evaluation by providing
synchronization and event-history management mechanisms. These mechanisms fa-
cilitate ensuring that all data necessary to answer a query is gathered before the
query is answered and that outdated and unnecessary data is removed from mem-
ory.

In an Information-Engineering Component programmed in Retalis, the input to
SLR is the stream of events processed by ELE. This consists of the input stream
of events to the IEC, time-stamped by the perception components and the events
generated and time-stamped by ELE. The SLR language bears close resemblance
to logic programming and is both in syntax and semantics very similar to Prolog.
Therefore, we first review the main elements of Prolog upon which we define the
SLR language.

In Prolog syntax, a term is an expression of the form p(t1, . . . , tn), where p is a
functor symbol and t1, . . . , tn are constants, variables or terms. A term is ground if
it contains no variables. A Horn clause is of the form a1 ∧ . . . ∧ an → a, where
a is a term called the Head of the clause, and a1, . . . , an is called the Body where ai
are terms or negation of terms. a ← true is called a fact and usually written as a.
A Prolog program P is a finite set of Horn clauses.

One executes a logic program by asking it a query. Prolog employs the SLDNF
resolution method [7] to determine whether or not a query follows from the program.
Given a goal, SLDNF tries to prove the goal using the rules and facts of the program.

90

Retalis Language for Robotic Information Engineering

A goal is proved if there is a variable substitution by applying which the goal matches
a fact, or matches the head of a rule and the goals in body of the rule can be proved
from left to right. Goals are resolved by trying the facts and rules in the order they
appear in the program. A query may result in a substitution of free variables. We
use P `SLDNF Qθ to denote a query Q on a program P , resulting in a substitution
θ.

5.1.1 SLR Syntax

An SLR signature includes constant symbols, Floating-point numbers, variables,
time points, and two types of functor symbols. Some functor symbols are ordinary
Prolog functor symbols called static functor symbols, while the others are called
event functor symbols.

Definition 9 (SLR Signature). A signature S = 〈C,R, V, Z, P s, P e〉 for SLR lan-
guage consists of:
• A set C of constant symbols.
• A set R ⊆ R of real numbers.
• A set V of variables.
• A set Z ⊆ Rr≥0 ∪ V of time points
• P s, a set of P sn of static functor symbols of arity n for n ∈ N.
• P e, a set of P en of event functor symbols of arity n for n ∈ Nn≥2, disjoint with P sn.

Definition 10 (Term). A static/event term is of the form
t ::= psn(t1, ..., tn)/pen(t1, ..., tn−2, z1, z2) where psn ∈ P sn and pen ∈ P en are static/event
functor symbols, ti are constant symbols, real numbers, variables or terms themselves
and z1, z2 are time points such that z1 ≤ z2.

For the sake of readability, an event term is denoted as pn(t1, . . . , tn−2)[z1,z2]. More-
over, an event term whose z1 and z2 are identical is denoted as pn(t1, . . . , tn−2)z.

Definition 11 (Event). An event is a ground event term pn(t1, ...tn)[z1,z2], where
z1 is called the start time of the event and z2 is called its end time. The functor
symbol pn of an event is called its event type.15

We introduce two types of static terms, next and prev which respectively refer to
occurrence of an event of a certain type observed right after and right before a time

15The representation of events in SLR and ELE is similar, but the SLR signature is defined in
a way to be close to Prolog.

91

Ziafati, Dastani, Meyer, van der Torre and Voos

point, if such an event exists. In the next section we provide the semantics. In this
section, we restrict ourselves to the syntax of SLR.

Definition 12 (Next Term). Given a signature S, a next term of the form
next(pn(t1, ...tn)[z1,z2], zs, ze) has an pn(t1, ...tn)[z1,z2] event term and two time points
zs, ze representing a time interval [zs, ze] as its arguments.

Definition 13 (Previous Term). Given a signature S, a previous term of the
form prev(pn(t1, ...tn)[z1,z2], zs) has an event term pn(t1, ...tn)[z1,z2] and a time point
zs as its arguments.

Definition 14 (SLR Program). Given a signature S, an SLR programD consists
of a finite set of Horn clauses of the form a1 ∧ . . .∧ an → a built from the signature
S, where next and prev terms can only appear in the body of rules and the program
excludes event facts (i.e. events).

5.1.2 SLR Operational Semantics

An SLR knowledge base is modeled as an SLR program and an input stream of
events. In order to limit the scope of queries on a SLR knowledge base, we introduce
a notion of an event stream view, which contains all events occurring up to a certain
time point.

Definition 15 (Event Stream). An event stream ε is a (possibly infinite) set of
events.

Definition 16 (Event Stream View). An event stream view ε(z) is the maxi-
mum subset of event stream ε such that events in ε(z) have their end time before or
at time point z, i.e. ε(z) = {pn(t1, . . . , tn−2)[z1,z2] ∈ ε | z2 ≤ z}.

Definition 17 (Knowledge Base). Given a signature S, a knowledge base k is a
tuple 〈D, ε〉 where D is an SLR program and ε is an event stream defined upon S.

Definition 18 (SLR Query). Given a signature S, an SLR query 〈Q, z〉 on an
SLR knowledge base k consists of a regular Prolog query Q built from the signature
S and a time point z. We write k `SLR 〈Q, z〉θ to denote an SLR query 〈Q, z〉 on a
knowledge base k, resulting in a substitution θ.

The operational semantics of SLR for query evaluation follows the standard
Prolog operational semantics (i.e. unification, resolution and backtracking) [7] as
follows: The evaluation of a query 〈Q, z〉 given an SLR knowledge base k = 〈D, ε〉

92

Retalis Language for Robotic Information Engineering

consists in performing a depth-first search to find a variable binding that enables
derivation of Q from the rules and static facts in D, and events in ε. The result is a
set of substitutions (i.e. variable bindings) θ such that D ∪ ε `SLDNF Qθ under the
condition that event terms which are not arguments of next and prev terms can be
unified with events that belonging to ε(z).

The event stream models observations made by robot perception components.
Events are added to the SLR knowledge base in the form of facts when new obser-
vations are made. The z parameter of a query sets the scope of the query to set
of observations made up until time z. This means that the query 〈Q, z〉 cannot be
evaluated before time z, since SLR would not have received the robot’s observations
necessary to evaluate Q and the query can be evaluated as soon as all observa-
tions up to time z is in place. The only exceptions are the prev and next clauses
whose evaluation might need observations made after time z. A query 〈Q, z〉 can
be posted to SLR long after time z, in which case the SLR knowledge base contains
observations made after time z. In order to have a clear semantics of queries, SLR
evaluates a query 〈Q, z〉 by only taking into account the event facts in ε(z). Regard-
less of the z parameters of queries, the next or prev clauses are evaluated based on
their declarative definitions as follows.

Definition 19 (Previous Term Semantics). A prev(pn(t1, ...tn)[z1,z2], zs) term
unifies pn(t1, ...tn)[z1,z2] with an event pn(t′1, ...t′n)[z′1,z′2] in ε(zs) such that there is no
other such event in ε(zs) that has its end time later than z′2. If such a unification is
found, the prev clause succeeds and fails otherwise.

prev(pn(t1, ...tn)[z1,z2], zs) :

θ ∃pn(t′1, ...t′n)[z′
1,z

′
2] ∈ ε(zs)|

∃θ((pn(t1, ...tn)[z1,z2])θ = (pn(t′1, ...t′n)[z′
1,z

′
2])θ)

∧ 6 ∃pn(t”1, ...t”n)[z”1,z”2] ∈ ε(zs)|
z”2 > z′

2 ∧
∃γ((pn(t1, ...tn)[z1,z2]) γ=

(pn(t”1, ...t”n)[z”1,z”2])),
fails otherwise

By definition, the variable zs should be already instantiated when a prev clause is
evaluated and an error is generated otherwise. It is also worth noting that a prev
clause can be evaluated only after time zs when all relevant events with end time
earlier or equal to zs have been received by and stored in the SLR knowledge base.

Definition 20 (Next Term Semantics). A next(pn(t1, ...tn)[z1,z2], zs, ze) term
unifies pn(t1, ...tn)[z1,z2] with an event pn(t′1, ...t′n)[z′1,z′2] in ε(ze) such that zs ≤ z′2 ≤ ze
and there is no other such event in ε that has its end time earlier than z′2. If such a

93

Ziafati, Dastani, Meyer, van der Torre and Voos

unification is found, the next clause succeeds and fails otherwise.

next(pn(t1, ...tn)[z1,z2], zs, ze) :

θ ∃pn(t′1, ...t′n)[z′
1,z

′
2] ∈ ε(ze)|

z′
2 ≥ zs∧
∃θ((pn(t1, ...tn)[z1,z2])θ = (pn(t′1, ...t′n)[z′

1,z
′
2])θ)

∧ 6 ∃pn(t”1, ...t”n)[z”1,z”2] ∈ ε(ze)|
zs ≤ z”2 < z′

2∧
∃γ((pn(t1, ...tn)[z1,z2]) γ=

(pn(t”1, ...t”n)[z”1,z”2])),
fails otherwise

By definition, the variables zs and ze should be instantiated when a next clause is
evaluated and an error is generated otherwise. A next clause can only be evaluated
after time ze when all relevant events with end time earlier or equal to ze have been
received and stored in the SLR knowledge base. However, if we assume that events
of the same type (i.e. with same functor symbol and arity) are received by SLR
in the order of their end times, the next clause can be evaluated as soon as SLR
receives the first event with the end time equal or later than zs which is unifiable
with pn(t1, ...tn)[z1,z2], not to unnecessarily postpone queries.

The next and prev clauses can be implemented by the following two Prolog rules
in which the ¬ symbol represents Negation as failure. However, we take advantage
of the fact that SLR usually receives events of the same type in the order of their
end times. SLR maintains the sorted list of events of each type ordered by their
end times whose maintenance usually only requiring the assertion of events by the
asserta Prolog built-in predicate. In this way, finding a previous/next event of a type
occurring before/after a time point requires examining only a part of the history of
those events.

prev(pn(t1, ...tn)[z1,z2], zs):-pn(t1, ...tn)[z1,z2], z2 ≤ zs,
¬(pn(t1”, ...tn”)[z1”,z2”], z2” ≤ zs, z2” > z2). (1)

next(pn(t1, ...tn)[z1,z2], zs, ze):-pn(t1, ...tn)[z1,z2], zs ≤ z2 ≤ ze,
¬(pn(t1”, ...tn”)[z1”,z2”], zs ≤ z2” ≤ ze, z2” < z2). (2)

5.1.3 State-Based Knowledge Representation

SLR aims at simplifying the transformation of events into a state-based represen-
tation of knowledge, using derived facts. The following paragraphs presents some
typical cases where a state-based representation is more suitable and how it is real-
ized in SLR.

94

Retalis Language for Robotic Information Engineering

Persistent Knowledge Persistent knowledge refers to information that is as-
sumed not to change over time.

Example 2. The following rule specifies that the color of an object at a time T is
the color that the object was perceived to have at its last observation.

color(O,C)T :- prev(obj(O,,C)Z , T). (3)

Persistence with Temporal Validity The temporal validity of persistence refers
to the period when it is assumed that information derived from an observation
remains valid.

Example 3. To pick up an object O, its location should be determined and sent to
a planner to produce a trajectory for the manipulator to perform the action. This
task can be naively presented as the sequence of actions: determine the object’s
location L, compute a manipulation trajectory Trj, and perform the manipulation.
However, due to environment dynamics and interleaving in task execution, the robot
needs to check that the object’s location has not been changed and the computed
trajectory is still valid before executing the actual manipulation task. The following
three rules can be used to determine the location of an object and its validity as
follows. If the last observation of the object is within the last five seconds, the
object location is set to the location at which the object was seen last time. If the
last observation was made longer than five seconds ago, the second rule specifies
that the location is outdated. The third rule sets the location to “never-observed”,
if the robot has never observed such an object. The symbol ! represents Prolog cut
operator and locations are assumed to be absolute.

location(O,L)T :- prev(seg(O,L)Z , T), T − Z ≤ 5, !. (4)
location(O, “outdated”)T :- prev(seg(O,L)Z , T), T − Z > 5, !. (5)
location(O, “never-observed”)T . (6)

Continuous Knowledge Continuous knowledge refers to information from a con-
tinuous domain.

Example 4. The following rule calculates the camera to base relative position L at
a time T . It interpolates from the last observation L1 before T to the first observation
L2 after T . est is a user defined term performing the actual interpolation.

tf(cam, base,L)T :- prev(tf(cam, base, L1)T1 , T),
next(tf(cam, base, L2)T2 , [T,∞]), est([L, T], [L1, T1], [L2, T2]). (7)

95

Ziafati, Dastani, Meyer, van der Torre and Voos

The following rule similarly interpolates the base to world relative position L at
a time T . However, if the position is not observed within a second after time T ,
the position is assumed without change and is set to its last observed value. The →
symbol represents Prolog “If-Then-Else” choice operator.

tf(base, rcf, L)T :- prev(tf(base, rcf, L1)T1 , T),
(next(tf(base, rcf, L2)T2 , T, T + 1)→ est([L, T], [L1, L2], [L2, T2]) ; L is L1). (8)

The following ELE rule concerns recognition of an object O at a position Lo−c
relative to the camera at a time T . It generates a corresponding segR event. It
calculates the object position in the reference coordination frame by querying the
SLR knowledge base. The camera to base and base to world relative positions at
time T are estimated by rules (7) and (8).

segR(O,L)← seg(O,Lo−c)T WHERE(tf(cam, base, Lc−b)T ,
tf(base, rcf, Lb−rcf)T ,
mul([Lo−c, Lc−b, Lb−rcf], L)). (9)

5.1.4 Active Memory

SLR supports selective recording and maintenance of data in knowledge bases using
memory instances.

Definition 21 (Memory Instance). A memory instance with an id Id, a query
Q and a policy 〈L,N〉 keeps the record of a subset of input events to SLR: the
events that match the query Q such that at each time T , the memory instance only
contains the events which have their end times within the last L seconds and only
includes the recent N number of such events ordered by their end time. An id is
a ground term and a query is of the form 〈e, Cond〉, where e is an event atom and
Cond is a set of conditions on variables that are arguments of e. An event P matches
a query pattern Q when there is a substitution that can unify p and e and makes
the conditions in Cond true (i.e. ∃θ(p = qθ)).

Memory instances are created by executing queries of the form c_mem(Id,Q,N,L)
on the SLR knowledge base in initialization of the SLR program. They can also be
created at runtime by ELE rules or by external components using a ROS service
the IEC provides. Similarly, memory instances are deleted at runtime by executing
queries of the form d_mem(Id) each deleting all memory instances whose idi match
the term Id (i.e. ∃θ(id = Idθ)).

96

Retalis Language for Robotic Information Engineering

Example 5. The c_mem(tf, 〈tf(X,Y, Z), 〈〉〉,∞, 300) query creates a memory in-
stance to keep the history of tf(X,Y,Z)T events from the stateRec component for 300
seconds. In the rule (9), we saw that the SLR knowledge base is queried to position
object segments in the reference coordination frame. If we assume that the IEC
receives data of object segments within 300 seconds since they appear in front of the
camera, then we only need to keep the history of tf events for 300 seconds. In another
example, for each object oi in segR(O,L) events, the ELE rule (10) generates a mem-
ory instance with the corresponding id of obj(oi). A memory instance is generated,
if it does not already exist. This is checked using the ¬exist_mem(monitor(O))
clause. Each memory instance obj(oi) keeps the last occurrence of segR(oi, L) events
at which oi is located on the floor, checked by the onF loor Prolog term implementing
the required spatial inference. The use of DO clause is another way of performing
SLR queries in ELE syntax.

Do(c_mem(obj(O), 〈segR(X,L), 〈X == O, onF loor(L)〉〉, 1,∞))←
segR(O,L)WHERE(¬exist_mem(obj(O))). (10)

The histories of events maintained in memory instances are accessed in the SLR
program using the following static terms.

Definition 22 (Memory Term Semantics). Amem(Id,X) term unifiesX with
an event pn(t1, .., tn−2)[z1,z2] that belongs to a memory instance whose id matches
the term Id (i.e. ∃θ(id = Idθ)). When backtracking over a mem(Id,X) term in
evaluating an SLR query, the possible unification of X is checked against all events
recorded in all such memory instances.

Definition 23 (Previous_Memory Term Semantics). A term of the form
prev(Id,X,Zs), where Id is a ground term, unifies X with an event which has the
latest occurrence time among the events that belong to the memory instance Id, are
unifiable with X and have their end time before or equal to Zs. The term fails if
such a unification is not found.

Definition 24 (Next_Memory Term Semantics). A next(Id,X, zs, ze) term,
where Id is a ground term, unifies X with an event which has the earliest occurrence
time among the events that belong to the memory instance Id, are unifiable with
X and have their end time within time interval [Zs, Ze]. The term fails if such a
unification is not found.

Example 6. The rule (11) re-writes the rule (8) by querying the previous event of
the form tf (base,rcf,L) occurring before T and the next tf (base,rcf,L) event occurring

97

Ziafati, Dastani, Meyer, van der Torre and Voos

during [T, T + 1] from the memory instance tf, defined in the previous example
to keep the history of tf events for 300 seconds. Another example is the query
f indAll(X, mem(obj(O),X), List) which queries all obj(O) memory instances created
by the rule (10) for their records of segR(X,L) events using the mem(obj(O), X)
template and put the list of results in the variable List.

tf(base, rcf, L)T :- prev(tf, tf(base, rcf, L1)T1 , T),
(next(tf, tf(base, rcf, L2)T2 , T, T + 1)→
est([L, T], [L1, L2], [L2, T2]) ; L is L1). (11)

SLR generates events when memory instances are created, deleted or updated.
Memory events are fed to ELE as input. Consequently, patterns of memory events
can be captured by ELE to notify external components with information about
changes of memory. Memory events are also used internally to keep track of the
latest update time of memory instances. This mechanism is used to synchronized
queries, discussed in Section 5.1.5.

This mechanism can be used to generate all sorts of events related to changes
of the memory such as the addition or deletion of memory instances or even the
addition or deletion of events to/from memory instances.

5.1.5 Synchronizing Queries over Asynchronous Events

SLR supports the synchronization of queries to deal with the delayed and out of
order reception of sensory data to the knowledge base.

Definition 25 (Event Process Time). The process time (i.e. tp(e)) of an event
e is the time at which the event is received by and added to the SLR knowledge
base (i.e. processed by IEC).

Definition 26 (Event Delay Time). The delay time (td(e)) of an event e is the
difference between its process time and its end time (i.e. td(p[z1,z2]) = tp(p[z1,z2])−
z2).

A query should be evaluated after all events relevant to the query have been
already received by the SLR knowledge base. The parameter z of a query 〈goal, z〉
limits the scope of the query to observations made up until time z. To evaluate the
goal, a number of memory instances are queried. Therefore, all relevant events to
these memory instances occurring up to time z should have been received by SLR
before performing the query.

98

Retalis Language for Robotic Information Engineering

Definition 27 (History Availability). The history of events of a type pn up to
a time z is available at a time t when at this time the SLR has received all events
of type pn occurring by time z (having end time earlier or equal to z).

Moreover, all previous and next memory terms should be correctly evaluated accord-
ing to their definitions. Finding the previous event of type pn(t1, .., tn) occurring up
to time zs requires having received all pn(t1, .., tn) events occurring up until time
zs. If we assume events of each type are received by SLR in the order of their end
times, then finding the next event of type pn(t1, .., tn) occurring within time interval
[zs, ze] requires having received the first pn(t1, .., tn) event which has its end time
equal or more than zs, or make sure that no pn(t1, .., tn) event has occurred during
[zs, ze]. SLR postpones an individual query16 when necessary until it is achievable,
as defined below.

Definition 28 (Dynamic Goal Set of Query). The dynamic goal set of a query
〈goal, z〉 for an SLR program D is the set of all mem(Id,X), prev(Id, Zs) and
next(Id, Zs, Ze) predicates that can possibly be queried when evaluating the goal
on the knowledge base. The dynamic goal set can be determined by going through
all rules in D using which the goal could be possibly proven and gathering all
mem(Id,X), prev(Id, Zs) and next(Id, Zs, Ze) terms appearing in bodies of those
rules.

Definition 29 (Query Achievability). A query 〈goal, z〉 is achievable when three
conditions are met. First, the histories of all relevant events to memory instances
in dynamic goal set of the query are available up to time z. Second, for each
prev(Id, Zs) term in the dynamic goal set of the query, the history of all relevant
events up to time Zs is available. Third, for each next(Id, Zs, Ze) term in the
dynamic goal set of the query, a relevant event has been received or the history of
all relevant events up to time ze is available.

To determine when the history of events of a type pn up to a time z is available,
SLR can be programmed in two complementary ways. One way is to set a maximum
delay time (i.e. tdmax) for events of each type. When the system time passes tdmax(pn)
seconds after z, SLR assumes that the history of events of type pn up to time z
is available. The maximum delay times of events depends on the runtime of the
components generating them and need to be approximated. The maximum delay
times can be set the system developer. It can also be approximated by SLR as
follows. Whenever an event of type pn is processed, SLR checks its delay, the

16Postponing one query does not delay the others.

99

Ziafati, Dastani, Meyer, van der Torre and Voos

difference between its end time and the current system time, and sets the tdmax(pn)
to the maximum delay time of pn events encountered so far. When smaller maximum
delay times of events are assumed, queries are evaluated sooner and hence the overall
system works in more real-time fashion, but there is more chance of answering a
query when the complete history of events asked by the query is not in place yet.
When larger maximum delay times of events are assumed, there is a higher chance
to have all sensory data up to the time specified by the query already processed by
the corresponding components and their results received by SLR when the query is
evaluated. However, queries are performed with more delays.

The other way that SLR can ensure to have received the full history of events of
a type pn up to a time z in its knowledge base is by being told so by a component
generating such events using special updated(pn)z events. Whenever SLR receives
such an event, it assumes that the history of events of the type pn up to time z is
available.

The query synchronization is often required for a query that interpolates the
value of an attribute at a given time using next and prev term. The value can be
interpolated as soon as the first relevant event after that time is received. SLR
monitors memory events, discussed in Section 5.1.4, and evaluates the postponed
queries as soon as necessary events are received.

Example 7. When the position of an object O in the world coordination frame
at a time T is queried by the rule (9), the query can be answered as soon as
both camera to base and base to world relative positions at time T can be eval-
uated by rules (7) and (8). The former can be evaluated (i.e. interpolated) as
soon as SLR receives the first tf(‘cam’, ‘base’, P) event with a start time equal or
later than T . The latter can be evaluated as soon as the SLR receives the first
tf(‘base’, ‘world’, P) event with the start time equal or later than T , or when it can
ensure that no tf(‘base’, ‘world’, P) event has occurred within [T, T+1]. If we assume
tdmax(tf(‘base’, ‘world’, P)) is set to 0.5 second, SLR has to wait 1.5 second after T
to ensure this.

Example 8. The robot is asked about the objects it sees on table1. To answer the
question, the robot takes a number of pictures from the table starting at time t1
and finishing by time t2 and then the SLR knowledge base is queried by 〈goal, t2〉
where the goal is

100

Retalis Language for Robotic Information Engineering

findall(obj(O, Type, L),
(mem(obj(O), segR(O,L)Tx), t1 ≤ Tx ≤ t2, prev(obj(O, Type, P)Ty , t2)),
List) (12)

The query result is the list List of terms of the form obj(O,Type,L) matching
the template specified by the second argument of the findall term. This includes all
object segments recorded as segR(O,L)Tx events in obj(O) memory instances recog-
nized during [t1, t2]. The type of each object segment oi is recognized by querying
the last obj(oi,Type,P) event occurring before or at time t2. To list all the objects,
SLR makes sure to evaluate the query after the histories of both segR(O,L) and
obj(O,Type,L) events up to time t2 are available. A signaling mechanism to realize
this is as follows. After finishing the processing of each image taken at a time t
and outputting the recognized object segments, the segRec component sends out
the event updated(segR)t. The IEC receives these events sending object segments
whose type is not known and the updated(segR)t events to the objRec component.
We assume events of each type are communicated among the components in order.
The objRec component receives some object segments recognized at a time t, pro-
cesses them in the order it receives them and sends the recognized types back to
the IEC. Whenever the objRec processes an updated(segR)t event, it realizes that it
has finished processing of the object segments recognized up to time t and generates
an updated(obj)t event. Receiving updated(segR)t and updated(obj)t events, SLR is
notified when the histories of both types of events up to time t2 are available and
then evaluates the query.

5.2 Discussion
The use of memory in existing research includes collecting data from various sources
and in time, mediating as a shared resource for component interaction (i.e. black-
board architectural pattern [77]), refining data by various processes, and integrating
various reasoning capabilities to maintain and query the robot’s knowledge of the
environment for task execution, human interaction and learning [13, 80, 65, 37, 36,
71, 72, 50, 49, 52, 56]. A large set of on-demand information processing requirements
have been discussed elsewhere [49, 80].

A main concern in supporting on-demand information processing is the choice
of language for representing and storing data. The choice of language and its execu-
tion system largely determines the extent to which various on-demand information
processing requirements along data, process, memory and access dimensions are

101

Ziafati, Dastani, Meyer, van der Torre and Voos

supported, perhaps the most important ones being knowledge modelling and rea-
soning. The advantage of non logic-based data representations, for example, using
programming data structures in CAST [36, 71] and GSM [56], is the flexibility and
efficiency in the representation and manipulation of amodal data such as image data
and probability distributions. However the expressiveness of queries for information
maintained by such systems is limited. An interesting approach is the XML data
representation by IDA [80, 65] supporting Xpath queries [15], for example, to re-
trieve data of objects recognized with confidence of more than a threshold. The
data representation in non-logic based systems is usually tightly related to the data
representation used in their underlying framework and does not support logical rea-
soning. In Retalis, binary data is represented as String. This requires encoding
binary data to the Prolog String format when importing a ROS message to Retalis
and decoding it when the data is sent back to ROS, which is time consuming. How-
ever, one can maintain the actual binary objects in c++ and manipulate handlers
to the objects in Retalis.

A recent survey of existing robotic information management systems [49] shows
that most systems rely on logical formalisms, mainly including declarative languages
such as the OWL17 language [57] based on Description logics [10] and/or rule-based
languages such as the SWRL18 language [45] for rule-based reasoning in OWL and
Prolog. In particular, OWL is a popular choice to define ontologies of various types
of knowledge such as knowledge of space, objects, actions and robot capabilities
used, for instance, in ORO [50, 49], KnowRob [72, 71] and OUR-K [52]. Defining
ontologies are necessary to integrate various sources of knowledge such as the domain
and common sense knowledge as performed by the aforementioned systems and for
sharing robots’ knowledge, for instance, in the cloud [73]. While we did not address
modeling of knowledge, existing ontologies can be directly used in Retalis as OWL
ontologies can be represented and reasoned upon in Prolog. For example, KnowRob
offers one of the most comprehensive robotic ontologies and uses the Prolog Semantic
Web Library19 [60] for loading and storing RDF 20 [21] triples and the Thea21 OWL
parser library [75] for OWL reasoning on top of this representation.

The use of Prolog as the underlying technology for maintaining robotic OWL
knowledge has a few practical advantages for inference compared to the use of ex-
isting description logic reasoners such as the Pellet22 reasoner [68] used in ORO.

17http://www.w3.org/TR/2004/REC-owl-ref-20040210/
18http://www.w3.org/Submission/SWRL/
19http://www.swi-prolog.org/pldoc/package/semweb.html
20http://www.w3.org/RDF/
21http://www.semanticweb.gr/thea/
22http://clarkparsia.com/pellet/

102

Retalis Language for Robotic Information Engineering

Those reasoners keep a classified version of the knowledge base in memory specify-
ing each individual belonging to which classes. Therefore continuous changes of the
knowledge base through acquiring sensory data requires frequent re-classification of
the whole knowledge which can be costly [72]. This problem can be partially ad-
dressed by optimizing this operation using an incremental updating technique [34].
The more important advantage is related to the open world assumption in Descrip-
tion Logics versus the closed world assumption in Prolog, and the monotonicity of
description logics versus supporting a form of non-monotonicity in Prolog by the
negation as failure inference rule within the closed world assumption. In the closed
world assumption, representations can be more compact as ‘a fact not being true’
does not need to be described but it can be inferred by not being able to prove
the fact. Moreover, the open world assumption and monotonicity of Description
Logic makes the representation and reasoning on dynamics of the environment (i.e.
changes and actions) difficult requiring to handle such aspects externally [84, 49],
but, for instance, KnowRob implements a predicate to return an object’s location
at a time by searching for the last observation of the object’s location before that
time. Reasoning about changes and actions has been extensively studied in various
knowledge formalisms such as Situation Calculus [51] and Event Calculus [47, 67].
The SLR language provides a practical and efficient solution for representing robot
knowledge based on discrete observations, providing a means to deal with the tem-
poral validity of data and representation of continuous domains which is not the
focus of such formalisms. Compared to the KnowRob approach of, for instance, im-
plementing a predicate to represent an object’s location at a time, SLR simplifies the
definition of such predicates in general and increases the efficiency of their computa-
tions by maintaining the sorted list of events based on their occurrence times. Prolog
provides a flexible support for access to external data or reasoning functionalities
while reasoning on knowledge through procedural attachments to the Prolog terms.
This feature is used in KnowRob, for instance, to compute spatial relations between
objects and in Retalis to integrate OpenGL Mathematics23 (GLM) for arithmetic
operations.

To the best of our knowledge the SLR support for synchronization of queries on
knowledge built upon asynchronous data is not presented elsewhere. However, sim-
ilar synchronization mechanisms as found in SLR are implemented in other robotic
software in a more limited context. One example is the DyKnow framework [38]
that synchronizes data received from streams of data based on different policies to
generate new ones. Another example is the tf library [32] widely used in ROS for
querying position transformation between robot’s coordination frames over time.

23http://glm.g-truc.net/0.9.5/index.html

103

Ziafati, Dastani, Meyer, van der Torre and Voos

When a relative position at a time is queried, the query is not answered until re-
ceiving the first observation of that position at or after that time. The tf library
only supports interpolation of data similar to the SLR rule (7). Therefore, even
if a position is constant in time, its value needs to be continuously published to
ROS consuming the network bandwidth. Moreover, sometimes a component such
as AMCL in ROS provides updates in a slow rate but they are precise enough to be
used until the next update is made available. In order to not delay the processing
of data until availability of the next update, this component stamps its updates in
the future.24 Apart from being semantically confusing, time stamping updates in
future can result in using old data even if new data is already available. With the
SLR extrapolation approach, for instance, implemented by the rule (8), if a position
transformation is static, its value does not need to be published being extrapolated
from its last observed value. In addition, the time bound of the next predicate in
SLR allows to specify how long SLR needs to wait to see whether a value has been
changed, assuming after each relevant change a notification is received.

Except a few, most information management systems leave pruning data from
the memory to external components. In ORO, knowledge is stored in different
memory profiles, each keeping data for a certain period of time. In IDA, scripts
are activated periodically or in response to events of memory changes to perform
garbage collection. In SLR, flexible garbage collection functionalities are blended
in the syntax of the language. In addition, a subtle difference between SLR and
other systems is that in the existing systems, external components store the data
in memory. In SLR, memory instances are declaratively defined which selectively
store data from the input flow of events to the SLR. The storage of data in SLR is
similar to active memories such as the ones of IDA and CAST as data is recorded in
memory instances with unique identifiers, however SLR supports logical reasoning
over the contents of memory instances. This approach supports having different
memory profiles for different pieces of data and a flexible way of selecting the data
that are to be reasoned about as a whole, thus allowing to reason about a part of
knowledge that could be inconsistent with other part of the knowledge maintained
in the memory. Furthermore, active memories allow external components to update
the contents of memory instances. As such, suitable error handling and locking
mechanisms are necessary to synchronize the parallel access to memory. In contrast,
the modeling of the input as a stream of events and clear semantics of memory
instances in SLR removes much of the problems related to the parallel access of
data. For an example, consider two components processing object segment events
to recognize the orientation and type of objects. In our approach, this can be

24http://wiki.ros.org/tf/FAQ

104

Retalis Language for Robotic Information Engineering

implemented as follows: an object segment event is sent to both components, these
components perform their processes and generate their uniquely typed events. Then
an ELE rule receives events from these components, synchronizes them based on
their object identifiers and occurrence times and produces new events of recognized
objects with their types and orientations. In a naive approach, object segments
are recorded in the memory and are processed and updated by both components in
parallel which could re-write each other results.

SLR supports notifying external components when memory instances are added
or deleted to the memory. This can be easily extended to also generate corresponding
notifications when events are added or deleted from memory instances. However,
the input flow of events to SLR is processed by ELE. Therefore external components
can subscribe to Retalis to be notified when the data of interest is being fed to SLR.
While notifying changes of the memory is a main functionality in active memories,
it is less common in logic-based knowledge management systems. An exception is
ORO to which one can subscribe to receive a notification, whenever a fact can be
inferred by the ORO knowledge base. However it is not described whether or not
this includes the knowledge that can be derived by SWRL rules. Moreover, it not
described whether this functionality is implemented by continuously querying the
knowledge base for such a fact, or it is efficiently realized by an incremental and
event-driven algorithm such as backward chaining rules in ELE [6, 5, 3].

6 Evaluation
This section evaluates the performance of Retalis by demonstrating the implemen-
tation of an application for a NAO robot. NAO is a small programmable humanoid
robot offered by Aldebaran Robotics25, equipped with advanced sensors such as cam-
eras, touch sensors and microphones. In the application, NAO observes objects in
the environment, perceiving their relative positions to its camera, and computes the
position of objects in the environment. Figure 5 presents software components26 of
the NAO application, operating as follows. The NAO nodes27 component provides
an interface to acquire sensory data and to command the NAO robot. It publishes
images generated by the top camera of the robot. It also publishes events about the
transformation among the robot’s coordinate frames. Each of these events contains
a set of transformations where each transformation specifies the relative position

25http://www.aldebaran.com/en
26The software includes also a face recognition component which is not discussed for brevity.
27http://wiki.ros.org/nao_robot

105

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 5: NAO’s software components

among two coordinate frames. The ar_pose28 component processes the images to
recognize objects and calculates the position of objects with respect to the camera.
Each event from ar_pose contains data of a set of observed objects. The local-
izer component calculates the robot’s position in the world. The IEC component
is subscribed to information about objects’ positions, robot’s location and coordi-
nate transformations. It calculates the position of objects in the world from the
transformation among the following pairs of coordinate frames, (world, base_link),
(base_link, torso), (torso, neck), (neck, camera) and (camera, object). The arith-
metic operations are performed using the OpenGL Mathematics29 (GLM) library
which has been integrated in Retalis. The rviz30 component visualizes the objects
in the environment. The IEC communication with other nodes is realized by the
Retalis-ROS interface component. This component converts ROS messages to Re-
talis events and vice versa. The IEC and the Retalis-ROS interface components are
implemented in Retalis.

6.1 Basic setup
For a first test implementation, all software components run remotely on an XPS
Intel Core i7 CPU@ 2.1 GHz x 4 laptop running ubuntu 12.04 LTS, connected to
the NAO robot. After the evaluation phase, the software will be implemented in the
NAO robot itself. NAO comes with an Intel Atom CPU@1.6 GHz running Linux.
The performance is evaluated by measuring the CPU time, the amount of time of a
CPU of the computer that is used by the Retalis program. We measure the CPU time

28http://wiki.ros.org/ar_pose
29http://glm.g-truc.net/0.9.5/index.html
30http://wiki.ros.org/rviz

106

Retalis Language for Robotic Information Engineering

as the percentage of the CPU’s capacity (i.e. CPU usage percentage) computed by
the operating system. In the following graphs, the vertical axis represents the CPU
usage percentage and the horizontal axis represents the running time in seconds.
The CPU time is logged every second and is plotted using "gnuplot smooth bezier".

The NAO application includes the following tasks:

• On-flow processing: events from ar_pose and NAO nodes are split into re-
spective events such that each event contains data of a single object or the
transformation among a single pair of coordinate frames. The transformation
data among pairs of coordinate frames are published with frequencies from 8
to 50 hertz. There are in average 7 objects perceived per second. In total,
Retalis processes about 1900 events per second.

• Memorizing and forgetting: there are 5 memory instances observing the events.
They record and maintain the last 30 seconds histories of the transformation
among the pairs of coordination frames used to calculate the transformation
among world and camera.

• Querying memory instances: for each observed object, SLR is queried for the
world-to-camera transformation. The transformation among a pair of coor-
dinate frames at a time is calculated by interpolation, as performed by the
rule (11). Each interpolation requires accessing a memory instance twice, once
using a prev term and once using a next term. To calculate the position of all
objects, memory instances are accessed 70 times per second.

• Synchronization: a query is delayed in case any of the necessary transforma-
tions can not be interpolated from the data received so far. Retalis monitors
the incoming events and performs the delayed queries as soon as all data nec-
essary for their evaluations are available.

• Subscription: there are 8 distinct objects in the environment and consequently
8 subscriptions to publish recognized objects to distinct ROS topics. The rviz
component is subscribed to these topics to visualize the position of objects.

Figure 6 shows the CPU time used by the Retalis and Retalis-ROS-converter
nodes when running the NAO application. The Retalis node calculates the position
of objects in real-time. It processes about 1900 events, memorizes 130 new events
and prunes 130 outdated events per second. It also queries memory instances, 70
times per second. These tasks are performed using about 18 percent of the CPU
time. In this experience, the Retalis node has been directly subscribed to ROS
messages containing information about coordinate transformations and recognized

107

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 6: NAO application

objects. The Retalis-ROS-converter, consuming about 5 percent of CPU time, only
subscribes Retalis to the recognized faces and converts and publishes events about
objects’ positions to ROS topics.

As we saw in Section 3, Retalis provides an easy way to subscribe to ROS topics
and automatically convert ROS messages to events. This is implemented by the
Retalis-ROS-converter node. The implementation is in Python and is realized by
inspecting classes and objects at runtime and therefore is expensive. Figure 7 shows
the CPU time used by the Retalis and Retalis-ROS-converter nodes for the NAO
application, when the Retalis-ROS-converter is used to convert all ROS messages
to Retalis events. In the previous configuration, the conversion from ROS messages,
containing information about coordinate transformations and recognized objects, to
events was performed by a manually written c++ code, rather than using the Re-
talis automatic conversion functionality written in Python. We observe that in the
new configuration, the Retalis node consumes a few percent less, but the Retalis-
ROS-converter node consumes about forty percent more CPU time, comparing to
the previous configuration. These results show that while the automatic conversion
among messages and events are desirable in a prototyping phase, the final applica-
tion should implement it in C++ for performance reasons. We will investigate the
possibility to optimize and re-implement the Retalis-ROS-converter node in C++.

Metric evaluation of languages and systems like Retalis, in general, is challenging
for the following reasons[49, 48, 56]. Experiments often involve many other mod-
ules running in parallel and building repeatable experiments for robots in dynamic
environments is challenging. In addition, very few existing systems report metric
evaluations and the lack of standard API s and differences in functionalities makes
it hard to compare these systems. The rest of this section evaluates main Retalis
functionalities. We report a number of experiments using data from the NAO ap-
plication, recorded by rosbag.31 Using rosbag, data can be played in a simulation,
as if it is played in real-time. While single performance results in the following ex-

31http://wiki.ros.org/rosbag

108

Retalis Language for Robotic Information Engineering

Figure 7: NAO application with automatic conversion of messages and events

periments depend on the NAO application, a series of experiments is presented for
each functionality, allowing us to make a number of general observations about the
performance of Retalis functionalities.

6.2 Forgetting and Memorizing
This section evaluates the performance of the memorizing and forgetting function-
alities. We measure the CPU time for various runs of the NAO application where
the numbers and types of memory instances are varied. We discuss the performance
of memory instances by comparing the CPU time usages in different runs.

When an event is processed, updating memory instances includes the following
costs:

• Unification: finding which memory instances match the event.

• Assertion: asserting the event in the database for each matched memory in-
stance.

• Retraction: retracting old events from memory instances that reached their
size limit.

Figure 8 shows the CPU time for a number of runs where up to 160 mem-
ory instances are added to the NAO application. These memory instances record
a(X,Y,Z,W) events. Among the events processed by Retalis, there are no such
events. The results show that the increase in CPU time is negligible. This shows
that a memory instance consumes CPU time only if the input stream of events con-
tains events whose type matches the type of events the memory instance records.

In Figure 9, the green and blue lines show the CPU time for cases where 20
memory instances of type tf(X,Y,V,Q) are added to the NAO application. These

109

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 8: Irrelevant memory instances

memory instances match all tf events, about 1900 of such is processed every second.
The size of memory instances for the green line is 2500. These memory instances
reach their size limit in two seconds. After this time, the CPU time usage is constant
over time and includes the costs of unification, assertion and retraction for updating
20 memory instances with 1900 events per second. The size of memory instances
for the blue line is 150,000. It takes about 80 seconds for this memory instances to
reach their size limit. Consequently, the CPU time before the time 80 only includes
the costs of unification and assertion, but not the costs of retraction. After the time
100, the CPU usages of both runs are equal. This shows that the cost of a memory
instance does not depend on its size.

The purple line shows the CPU time for the case where similarly there are 20
memory instances of type tf(X,Y,V,Q). However, these memory instances record
events until they reach their size limit. We added a condition for these memory
instances such that after reaching their size limit, they perform no operation when
receiving new events. After the time 100, the CPU time is constant about 23 percent,
being 5 percent more than the CPU time of the NAO application, represented by
the red line. This 5 percent increase represents the unification cost. This also shows
that the costs of about 38000 assertions and 38000 retractions per second is about
30 percent of CPU time. In other words, 2500 memory updates (i.e. assertions or
retractions) are processed using one percent of CPU time.

Figure 10 shows the CPU time for a number of runs where up to 40 memory
instances of type tf(X,Y,Z,W) and size 2500 are added to the NAO application. The
red line at the bottom shows the CPU time for the NAO application. We make the
following observations. Adding first 10 memory instances to the NAO application
increases the CPU time about 20 percent. After that, adding each set of 10 memory
instances increases the CPU time about 13 percents. This shows that the cost grows
less than linearly. The implementation of memory instances is in a way that the
cost of an assertion or a retraction can be assumed constant. This means that the
unification cost for the first set of memory instances is the highest. In other words,

110

Retalis Language for Robotic Information Engineering

Figure 9: tf(X,Y,V,Q) memory instances (1)

Figure 10: tf(X,Y,V,Q) memory instances (2)

the unification cost per memory instance decreases when the number of memory
instances are increased. The reason relates to the way that the underlying SWI-
Prolog engine searches and unifies terms which is not investigated here.

Figure 11 shows the CPU time for a number of runs where up to 640 memory
instances of type tf(head,camera,Z,W) and size 2500 are added to the NAO applica-

111

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 11: tf(head,cam,V,Q) memory instances

tion. The events matching these memory instances are received with the frequency
of 50 Hz. We make the following observations. First, it takes 50 seconds for these
memory instances to reach their size limit. After 50 seconds, these memory instances
reach their maximum CPU usages, as the costs of retraction is added. Second, each
memory instance filters 1900 events per second recording about two percent of them.
The cost of 640 memory instances is about 35 percent of CPU time. Third, the unifi-
cation cost per memory instance is decreased when the number of memory instances
are increased.

Figure 12 compares the costs of different types of memory instances. The purple
line shows the CPU time for the case where there are 10 memory instances of type
tf(X,Y,V,Q). The green line shows the CPU time for the case where there are 320
memory instances of type tf(head,cam,V,Q). We observe that the costs of both cases
are equal. The memory instances in the former case record 19,000 events per second
(i.e. 10*1900). The memory instances in the latter case filter 1900 events per seconds
for tf(head,cam,V,Q) events, recording 16000 events per second (i.e. 320*50). The
results show the efficiency of the filtering mechanism.

The brown line shows the CPU time for the case where there are 10 memory
instances of type tf(X,Y,V,Q) and 320 memory instances of type tf(head,cam,V,Q).
Comparing it with the green and purple lines shows that the CPU time usage of
these memory instances is less than sum of the CPU usages by 10 tf(X,Y,V,Q)
memory instances and 320 tf(head,cam,V,Q) memory instances. This shows that
the unification cost per memory instance is decreased when the number of memory
instances are increased, even when the memory instances are not of the same type.

112

Retalis Language for Robotic Information Engineering

Figure 12: Memory instances of different types

These experiments show that Retalis is able to maintain a history of a large vol-
ume of data. Memorizing and forgetting functionalities of SLR have been optimized
as follows. A memory instance memorizes an event by creating an event record
containing the event and the identifier of the memory instance. The event record is
asserted as the top fact in the database. This operation takes a constant time. Event
records of a memory instance are numbered in order of the event occurrence times.
SLR generates a hash key for each event record, based on the respective identifier
and the record number. Event records are indexed on their hash keys. Consequently,
accessing an event record takes a constant time SLR keeps track of the number of the
oldest event record of each memory instance. Therefore, forgetting takes a constant
time, irrelevant of the size of memory instances.

6.3 Querying

Retalis queries are Prolog-like queries executed by the SWI-Prolog system. The
following evaluates the performance of next and prev terms and the synchronization
mechanism which are specific to Retalis. The performance of next and prev terms
are important because the sensory data recorded by Retalis is queries using these
terms. Not only does Retalis extend the Prolog language with these built-in terms
to provide easier syntax for querying history of data, but also to make querying of
data more efficient.

113

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 13: Next and prev terms (1)

Querying Memory Instances

This section evaluates the performance of prev and next terms used to access event
records in memory instances. Retalis optimizes the evaluation of these terms as
follows. It keeps track of the number of event records in each memory instance. The
prev and next terms are evaluated by a binary search on event records. An access to
an event record by its number takes a constant time. Consequently, the evaluation
of prev and next is done in logarithmic time on the size of the respective memory
instance. In Figures 13, 14 and 15 below, the red line visualizes the CPU time of
the NAO application.

The green line in Figure 13 visualizes the CPU time of the NAO application
adapted as follows. There is an additional tf(head,cam,V,Q) memory instance of
size 128. This memory instance is queried by 1000 next terms for each recognition
of an object. In average, 7000 next terms are evaluated per second. The blue line
visualize the CPU time of a similar program in which 7000 prev terms are evaluated
per seconds. The figure shows that the costs of the evaluations of prev and next
terms are similar. The purple line shows the CPU time of the case where 14,000
next terms are evaluated per second. We observe that the cost grows linearly.

The blue line in Figure 14 visualizes the CPU time of the case where 7000 next
terms are evaluated per second. The green line visualizes the CPU time of the case
where there are 320 tf(head,cam,V,Q) memory instances added to the NAO appli-
cation. The purple line visualizes the CPU time of the case where 7000 next terms
are evaluated per second and there are 320 tf(head,cam,V,Q) memory instances. We
observe that the cost of accessing a memory instance does not depend on existence

114

Retalis Language for Robotic Information Engineering

Figure 14: Next and prev terms (2)

Figure 15: Next and prev terms (3)

of other memory instances.
The green line in Figure 15 visualizes the CPU time of evaluating 7000 next

terms per second on a memory instance of size 128. The blue linevisualizes the CPU
time of evaluating 7000 next terms per second on a memory instance of size 16384.
The size of the memory instance in the latter case is the power of two of the size of
the memory instance in the former case. The increase in the CPU time for the latter
case, with respect to the NAO application, is less than two times of the increase in
the CPU time for the former case.

The prev and next terms provide efficient ways of accessing records of events.
Otherwise, all event records should be read, for instance, to find the latest position
of an object. For example, an experiment is reported for the KnowRob knowledge

115

Ziafati, Dastani, Meyer, van der Torre and Voos

Figure 16: Synchronization with no delay

base where there are 65,000 records of events about the location of an object. It
takes 11 seconds to find the latest location [72].

Synchronization

The synchronization mechanism is implemented as follows. Before evaluating a
query, memory instances are checked whether they are up-to-date with respect to
the query (i.e. the query is achievable as defined in Section 5.1.5). If the query cannot
be evaluated, it is recorded as a postponed query. For each postponed query, Retalis
generates a set of monitors. Monitors observe memory update events. As soon as
all necessary events are in place in memory instances, the query is performed. The
implementation of monitors are similar to the implementation of memory instances.

The red line in Figure 16 visualizes the CPU time of the NAO application where
in each second, 1000 next queries on a memory instance of size 2500 are evaluated.
In addition, for each next query, a new event is generated. The green line visualizes
the CPU time of a similar case where the next queries are synchronized. This
experiment is conducted in a way that no query needs to be delayed. Comparing
these two cases shows that when queries are not delayed, the synchronization cost
is negligible.

Figure 17 shows the CPU time of four cases. In all these cases, 1000 synchronized
next queries are evaluated and 1000 events are generated in each second. The red
line visualizes the case where no query is delayed. The green line visualizes the case
where queries are delayed for 5 seconds. In this case, the memory instance queried by
a next term has not yet received the data necessary to evaluate the query. The query
is performed as soon as the memory instance is updated with relevant information.
There are 1000 queries per seconds, each delayed for 5 seconds. This means there
exist 5000 monitors at each time. These monitors observe 1900 events processed by
Retalis per second. We observe that for such a large number of monitors observing
such a high-frequency input stream of events, the increase in CPU time is less than
30 percent.

116

Retalis Language for Robotic Information Engineering

Figure 17: Synchronization with delays

6.4 On-Flow Processing
On-flow processing functionalities in Retalis are implemented using ELE. ELE exe-
cution model is based on decomposition of complex event patterns into intermediate
binary event patterns (goals) and the compilation of goals into goal-directed event-
driven Prolog rules. As relevant events occur, these rules are executed deriving
corresponding goals progressing toward detecting complex event patterns.

Information flow processing systems such as ELE are designed for applications
that require a real-time processing of a large volume of data flow. We refer the reader
to the evaluation of the performance of ELE presented elsewhere [6, 3]. While the ex-
ecution system of ELE is Prolog, the evaluation shows that in terms of performance,
ELE is competitive with respect to the state-of-the-art information processing sys-
tems.

6.5 Subscription
The implementation of the subscriptions is similar to the implementation of memory
instances. The only difference is that an event matching a memory instance is as-
serted to the knowledge base for that memory instance, and an old event is retracted
if the memory instance is full, but an event matching a subscription is delivered to

117

Ziafati, Dastani, Meyer, van der Torre and Voos

the respective subscriber. Consequently, the costs of subscriptions include the uni-
fication cost, discussed in section 6.2, and the costs to publish events to subscribed
ROS topics. The latter comprises the costs for converting events to ROS messages
and the costs of message transportation within the ROS framework.

7 Conclusion

Retalis is introduced in this paper to develop information engineering components
of autonomous robots. Consequently it is used for the processing and management
of data to create knowledge about the robot’s environment. Information engineering
is an essential robotic technique to apply AI methods such as situation awareness,
task-level planning and knowledge-intensive task execution. Consequently, Retalis
addresses a major challenge to make robotic systems more responsive to real-world
situations.

The Retalis language integrates ELE and SLR, two logic-based languages for on-
demand and on-flow processing, respectively. ELE is used for temporal and logical
reasoning, and data transformation in flow of data. SLR is used to implement
a knowledge base maintaining history of some events. SLR supports state-based
representation of knowledge built upon discrete sensory data, management of sensory
data in active memories and synchronization of queries over asynchronous sensory
data.

Retalis addresses all eight requirements discussed in the introduction. In partic-
ular, ELE addresses the requirements of on-flow processing, like event-driven and
incremental processing, temporal pattern detection and transformation, subscription
and garbage collection. SLR addresses the requirements of on-demand processing
like memorizing, forgetting, active memory and state-based representation. In this
way, Retalis unifies and advances the state-of-the-art research on robotic information
engineering.

The contribution of this paper is threefold. The first contribution is the de-
velopment of SLR language. SLR advances the state-of-the-art robotic on-demand
processing systems by providing an active logic-based knowledge base. It combines
the benefits of both knowledge base and active memory systems. SLR provides
programming constructs to facilitate a high-level and efficient implementation of
robotic on-demand processing functionalities. However, SLR, is a logic-based lan-
guage based on Prolog. Therefore, a knowledge of Prolog is necessary to use SLR.

The second contribution is the integration of the ELE and SLR languages con-
cerning three issues. The first issue is to process flows of sensory data on the fly by
ELE to extract relevant knowledge for its compact storage in SLR. The second issue

118

Retalis Language for Robotic Information Engineering

is to query SLR for the knowledge built upon sensory data while processing flows
of data. The third issue is to process events of changes of SLR memory by ELE to
notify external components with patterns of changes that are of their interest.

The third contribution of the declarative Retalis language is a semantics based
on a model of sensory data taking into account their occurrence times. This may
be contrasted to alternative semantics based on processing times. In this way, the
model captures and handles various issues related to asynchronous processing of
data in robot software.

Moreover, Retalis is an open-source and framework-independent software library.
Therefore, it can be used to empower the existing robotic frameworks with its wide
range of functionalities as opposed to, for instance, robotic active memories which
are usually tightly integrated with specific robotic frameworks. Retalis has been
integrated in ROS and used to implement few proof-of-concept tasks for NAO robot,
including data transformation, runtime subscription and high-level event detection.

A future work is to apply the machinery developed in this paper to support
AI-based robotics. For example, AI research on task-level planning has developed
a number of agent programming languages [17] to support the implementation of
autonomous behavior based on the BDI (Belief-Desire-Intention) model of practical
reasoning [18, 64, 63]. However, these languages do not support event-driven and
incremental reasoning on their input data. Therefore, the sensory input process-
ing support of these languages is not suitable for on-flow processing of data [82].
The lack of on-flow processing support reduces the reactivity and limits the appli-
cation of these languages in robotics [82, 81]. Moreover, there are concerns about
the performance of these languages in robotic applications. For instance, there is a
performance issue caused by the repetition of queries on knowledge base. An ap-
proach to increase performance is to cache query results [1]. By caching, a query
is re-evaluated only if the knowledge base has been updated with relevant facts.
To implement such a caching mechanism when the agent and the knowledge base
components are separated, active memory functionalities are required to inform the
agent program about the changes of the knowledge base.

Other future work is to further support on-flow and on-demand processing. A
work is to support the representation and reasoning about uncertain data. Very
few current information engineering systems address uncertainty. This can be due
to scalability issues and the training time required to learn the transition proba-
bilities of a domain. Another work is to extend consumption, and memorizing and
forgetting policies in on-flow and on-demand processing, respectively. Another work
is to further support reasoning on temporally qualified knowledge. Supporting the
implementation of episodic-like memories [70] is another direction of research.

119

Ziafati, Dastani, Meyer, van der Torre and Voos

References
[1] Natasha Alechina, Tristan Behrens, Mehdi Dastani, Koen Hindriks, Koen Hubner, Fred

Jomi, Brian Logan, Hai H. Nguyen, and Marc van Zee. Multi-cycle query caching in
agent programming. In Twenty-Seventh AAAI Conference on Artificial Intelligence
(AAAI-13), July 2013.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, November 1983.

[3] Darko Anicic. Event Processing and Stream Reasoning with ETALIS. PhD Thesis,
Karlsruher Institute of Technology, 2011.

[4] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-sparql: A
unified language for event processing and stream reasoning. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, pages 635–644, New York,
NY, USA, 2011. ACM.

[5] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic, and
Rudi Studer. A Rule-Based Language for Complex Event Processing and Reasoning. In
Pascal Hitzler and Thomas Lukasiewicz, editors, Web Reasoning and Rule Systems SE
- 5, volume 6333 of Lecture Notes in Computer Science, pages 42–57. Springer Berlin
Heidelberg, 2010.

[6] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Real-time com-
plex event recognition and reasoning - a logic programming approach. Applied Artificial
Intelligence, 26(1-2):6–57, 2012.

[7] Krzysztof R Apt and M H van Emden. Contributions to the Theory of Logic Program-
ming. J. ACM, 29(3):841–862, July 1982.

[8] Alexander Artikis, Georgios Paliouras, François Portet, and Anastasios Skarlatidis.
Logic-based representation, reasoning and machine learning for event recognition. In
Proceedings of the Fourth ACM International Conference on Distributed Event-Based
Systems - DEBS ’10, page 282, New York, New York, USA, 2010. ACM Press.

[9] Carlos Astua, Ramon Barber, Jonathan Crespo, and Alberto Jardon. Object detection
techniques applied on mobile robot semantic navigation. Sensors, 14(4):6734–6757,
2014.

[10] Franz Baader, Ian Horrocks, and Ulrike Sattler. Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence. Elsevier, 2008.

[11] Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and Data Association. Aca-
demic Press Professional, Inc, 1988.

[12] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. Querying rdf streams with c-sparql. SIGMOD Rec., 39(1):20–
26, September 2010.

[13] C. Bauckhage, S. Wachsmuth, M. Hanheide, S. Wrede, G. Sagerer, G. Heidemann, and
H. Ritter. The visual active memory perspective on integrated recognition systems.
Image and Vision Computing, 26(1):5–14, January 2008.

[14] Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. CRAM - A Cognitive

120

Retalis Language for Robotic Information Engineering

Robot Abstract Machine for everyday manipulation in human environments. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1012–
1017. IEEE, October 2010.

[15] Mark Birbeck. Professional XML. Wrox Press, 2001.
[16] Nico Blodow, Dominik Jain, Zoltan-Csaba Marton, and Michael Beetz. Perception

and probabilistic anchoring for dynamic world state logging. 2010 10th IEEE-RAS
International Conference on Humanoid Robots, pages 160–166, December 2010.

[17] Rafael H Bordini, Lars Braubach, Jorge J Gomez-sanz, Gregory O Hare, Alexander
Pokahr, and Alessandro Ricci. A survey of programming languages and platforms for
multi-agent systems. INFORMATICA, 30:33–44, 2006.

[18] Michael E Bratman. Intention, Plans, and Practical Reason. Cambridge University
Press, March 1999.

[19] Davide Brugali and Patrizia Scandurra. Component-based Robotic Engineering Part
I : Reusable building blocks. IEEE ROBOTICS AND AUTOMATION MAGAZINE,
XX(4):1–12, 2009.

[20] Davide Brugali and Azamat Shakhimardanov. Component-based Robotic Engineering
Part II : Systems and Models. IEEE ROBOTICS AND AUTOMATION MAGAZINE,
XX(1):1–12, 2010.

[21] K. Selçuk Candan, Huan Liu, and Reshma Suvarna. Resource description framework:
Metadata and its applications. SIGKDD Explor. Newsl., 3(1):6–19, July 2001.

[22] L. Chittaro and A. Montanari. Efficient temporal reasoning in the cached event calculus.
Computational Intelligence, 12(3):359–382, August 1996.

[23] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Berlin-New York: Springer-
Verlag, 2003.

[24] Silvia Coradeschi and Alessandro Saffiotti. An introduction to the anchoring problem.
Robotics and Autonomous Systems, 43(2-3):85–96, May 2003.

[25] Claudia Cruz, Luis Enrique Sucar, and Eduardo F Morales. Real-time face recognition
for human-robot interaction. In Automatic Face & Gesture Recognition, 2008. FG’08.
8th IEEE International Conference on, pages 1–6. IEEE, 2008.

[26] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys (CSUR), V(i):1–
70, 2012.

[27] Daniel de Leng and Fredrik Heintz. Towards on-demand semantic event processing for
stream reasoning. In Information Fusion (FUSION), 2014 17th International Confer-
ence on, pages 1–8. IEEE, 2014.

[28] Patrick Doherty, Fredrik Heintz, and Jonas Kvarnström. Robotics, Temporal Logic
and Stream Reasoning. International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR-19), pages 42–51, 2014.

[29] Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A temporal logic-based plan-
ning and execution monitoring framework for unmanned aircraft systems. Autonomous
Agents and Multi-Agent Systems, 19(3):332–377, February 2009.

121

Ziafati, Dastani, Meyer, van der Torre and Voos

[30] J. Elfring, S. van den Dries, M.J.G. van de Molengraft, and M. Steinbuch. Seman-
tic world modeling using probabilistic multiple hypothesis anchoring. Robotics and
Autonomous Systems, 61(2):95–105, December 2012.

[31] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131, June
2003.

[32] Tully Foote. tf: The transform library. In Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on, Open-Source Software workshop,
pages 1–6, April 2013.

[33] Malik Ghallab. On Chronicles: Representation, On-line Recognition and Learning. In
Proceedings of the Fifth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’96), pages 597–606, 1996.

[34] Christian Halashek-Wiener, Bijan Parsia, and Evren Sirin. Description Logic Reasoning
with Syntactic Updates. In Robert Meersman and Zahir Tari, editors, On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, volume 4275
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

[35] Nick Hawes. Building for the Future: Architectures for the Next Generation of Intelli-
gent Robots. Proceedings of a Symposium held in Honour of Aaron Sloman, 2011.

[36] Nick Hawes, Aaron Sloman, and Jeremy Wyatt. Towards an integrated robot with
multiple cognitive functions. Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence (AAAI 2008), AAAI Press, pages 1548–1553, 2008.

[37] Nick Hawes and Jeremy Wyatt. Engineering intelligent information-processing systems
with CAST. Advanced Engineering Informatics, 24(1):27–39, 2010.

[38] Fredrik Heintz. DyKnow: A Stream-Based Knowledge Processing Middleware Frame-
work. PhD thesis, Linköping Studies in Science and Technology. Dissertations #1240.
Linköping University Electronic Press. 258 Pages., 2009.

[39] Fredrik Heintz. Semantically grounded stream reasoning integrated with ROS. Intelli-
gent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
5935–5942, 2013.

[40] Fredrik Heintz, J Kvarnström, and Patrick Doherty. Stream-Based Reasoning Support
for Autonomous Systems. European Conference on Artificial Intelligence (ECAI), 2010.

[41] Fredrik Heintz, Jonas Kvarnstrom, and Patrick Doherty. A stream-based hierarchi-
cal anchoring framework. In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5254–5260. IEEE, October 2009.

[42] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Bridging the sense-reasoning
gap: DyKnow - Stream-based middleware for knowledge processing. Advanced Engi-
neering Informatics, 24(1):14–26, January 2010.

[43] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Stream-Based Hierarchical
Anchoring. KI - Künstliche Intelligenz, 27(2):119–128, March 2013.

[44] Fredrik Heintz and D De Leng. Semantic information integration with transformations

122

Retalis Language for Robotic Information Engineering

for stream reasoning. International Conference on Information Fusion (FUSION 2013),
2013.

[45] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
Technical report, W3C, 2004.

[46] Dominik Jain, Lorenz Mosenlechner, and Michael Beetz. Equipping robot control pro-
grams with first-order probabilistic reasoning capabilities. In 2009 IEEE International
Conference on Robotics and Automation, pages 3626–3631. IEEE, May 2009.

[47] Robert Kowalski and Marek Sergot. A logic-based calculus of events. In Foundations
of knowledge base management, pages 23–55. Springer, 1989.

[48] Pat Langley, John E. Laird, and Seth Rogers. Cognitive architectures: Research issues
and challenges. Cognitive Systems Research, 10(2):141–160, June 2009.

[49] Séverin Lemaignan. Grounding the Interaction: Knowledge Management for Interactive
Robots. PhD Thesis, Laboratoire d’Analyse et d’Architecture des Systèmes (CNRS) -
Technische Universität München, 2012.

[50] Séverin Lemaignan, Raquel Ros, E. Akin Sisbot, Rachid Alami, and Michael Beetz.
Grounding the Interaction: Anchoring Situated Discourse in Everyday Human-Robot
Interaction. International Journal of Social Robotics, 4(2):181–199, November 2011.

[51] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situation calculus.
Linköping Electronic Articles in Computer and Information Science, 3(18), 1998.

[52] Gi Hyun Lim, Il Hong Suh, and Hyowon Suh. Ontology-Based Unified Robot Knowledge
for Service Robots in Indoor Environments. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 41(3):492–509, May 2011.

[53] J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc. New
York, NY, USA, November 1984.

[54] I Lütkebohle. Facilitating re-use by design: A filtering, transformation, and selection
architecture for robotic software systems. ICRA’09 Workshop on Software Engineering
for Robotics IV, (section III), 2009.

[55] I Lütkebohle, R Philippsen, V Pradeep, E Marder-Eppstein, and S Wachsmuth. Generic
middleware support for coordinating robot software components: The Task-State-
Pattern. Journal of Software Engineering for Robotics (JOSER), 2(1):20–39.

[56] Nikolaos Mavridis and Deb Roy. Grounded Situation Models for Robots: Where words
and percepts meet. In 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4690–4697. IEEE, October 2006.

[57] Sean Bechhofer Frank van Harmelen James Hendler Ian Horrocks Deborah L. McGuin-
ness Peter F. Patel-Schneider Mike Dean, Guus Schreiber and Lynn Andrea Stein.
OWL Web Ontology Language Reference. Technical report, W3C, 2004.

[58] Federico Pecora, Marcello Cirillo, Francesca Dell Osa, Jonas Ullberg, and Alessandro
Saffiotti. A constraint-based approach for proactive, context-aware human support.
Journal of Ambient Intelligence and Smart Environments, 4:347–367, 2012.

[59] Christian Peters, Thomas Hermann, and Sven Wachsmuth. User Behavior Recognition

123

Ziafati, Dastani, Meyer, van der Torre and Voos

For An Automatic Prompting System - A Structured Approach based on Task Analysis.
Proceedings of the 1st Int. Conf. on Pattern Recognition Applications and Methods
(ICPRAM), 2:171, 2012.

[60] Axel Polleres, David Pearce, Stijn Heymans, and Edna Ruckhaus, editors. Proceedings
of the ICLP’07 Workshop on Applications of Logic Programming to the Web, Semantic
Web and Semantic Web Services, ALPSWS 2007, Porto, Portugal, September 13th,
2007, volume 287 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[61] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating system. Open
Source Software Workshop of IEEE International Conference on Robotics and Automa-
tion (ICRA), 2009, 2009.

[62] Surangika Ranathunga, Stephen Cranefield, and Martin Purvis. Identifying Events
Taking Place in Second Life Virtual Environments. Applied Artificial Intelligence, 26(1-
2):137–181, January 2012.

[63] Anand S Rao and Michael P Georgeff. Modeling Rational Agents within a BDI-
Architecture. In James Allen, Richard Fikes, and Erik Sandewall, editors, Proceedings
of the 2nd International Conference on Principles of Knowledge Representation and
Reasoning (KR’91), pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA, 1991.

[64] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to practice. In
Proceedings of the first international conference on multi-agent systems (ICMAS-95),
pages 312–319, 1995.

[65] C Bauckhage S. Wrede, M. Hanheide, Sagerer, and G. An active memory as a model
for information fusion. International Conference on Information Fusion, Stockholm,
Sweden, 1:198–205, 2004.

[66] L. Sabri, A. Chibani, Y. Amirat, and G. P. Zarri. Narrative reasoning for cognitive
ubiquitous robots. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2011), 2011.

[67] Murray Shanahan. The event calculus explained. In Artificial intelligence today, pages
409–430. Springer, 1999.

[68] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

[69] Yale Song, David Demirdjian, and Randall Davis. Continuous body and hand gesture
recognition for natural human-computer interaction. ACM Transactions on Interactive
Intelligent Systems, 2(1):1–28, March 2012.

[70] Dennis Stachowicz and Geert-Jan M Kruijff. Episodic-Like Memory for Cognitive
Robots. IEEE Transactions on Autonomous Mental Development, 4(1):1–16, March
2012.

[71] Mori Tenorth and Michael Beetz. KNOWROB - knowledge processing for autonomous
personal robots. In 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4261–4266. IEEE, October 2009.

124

Retalis Language for Robotic Information Engineering

[72] Moritz Tenorth and Michael Beetz. Knowledge Processing for Autonomous Robot
Control. Proceedings of the AAAI Spring Symposium on Designing Intelligent Robots:
Reintegrating AI. Stanford, CA: AAAI Press, 2012, 2012.

[73] Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz, and Michael Beetz. The
RoboEarth language: Representing and exchanging knowledge about actions, objects,
and environments. 2012 IEEE International Conference on Robotics and Automation,
(3):1284–1289, May 2012.

[74] André Ückermann, Robert Haschke, and Helge Ritter. Real-Time 3D Segmentation
of Cluttered Scenes for Robot Grasping. IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids 2012), Osaka, Japan, 2012.

[75] Vangelis Vassiliadis, Jan Wielemaker, and Chris Mungall. Processing OWL2 ontologies
using Thea: An application of logic programming. In OWLED, volume 529, 2009.

[76] V Verma and A Jónsson. Universal executive and PLEXIL: Engine and language
for robust spacecraft control and operations. American Institute of Aeronautics and
Astronautics Space Conference, pages 1–19, 2006.

[77] David E. Watson. Book review: Blackboard Architectures and Applications Edited
by V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum (Academic Press).
ACM SIGART Bulletin, 1(3):19–20, October 1990.

[78] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

[79] R. Wood, P. Baxter, and T. Belpaeme. A review of long-term memory in natural and
synthetic systems. Adaptive Behavior, 20(2):81–103, December 2011.

[80] S Wrede. An information-driven architecture for cognitive systems research. Ph.D.
dissertation, Faculty of Technology - Bielefeld University, 2009.

[81] Pouyan Ziafati, Mehdi Dastani, John-Jules Meyer, and Leendert van der Torre. Agent
Programming Languages Requirements for Programming Autonomous Robots. Pro-
MAS 2012, Springer, Heidelberg, LNAI 7837:35–53, 2013.

[82] Pouyan Ziafati, Mehdi Dastani, John-Jules Meyer, and Leendert van der Torre. Event-
Processing in Autonomous Robot Programming. Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems, pages 95–102, 2013.

[83] Pouyan Ziafati, Yehia Elrakaiby, Mehdi Dastani, Leendert van der Torre, Marc van Zee,
John-Jules Meyer, and Holger Voos. Reasoning on Robot Knowledge from Discrete and
Asynchronous Observations. AAAI Spring Symposium on Knowledge Representation
and Reasoning in Robotics, Stanford, 2014, 2014.

[84] Pouyan Ziafati, Fulvio Mastrogiovanni, and Antonio Sgorbissa. Fast Prototyping and
Deployment of Context-Aware Smart Outdoor Environments. 2011 Seventh Interna-
tional Conference on Intelligent Environments, pages 206–213, July 2011.

Received June 2015125

126

Going Forth and Drawing Back: An
Intensional Approach in Nonmonotonic

Inference

Yi Mao
atsec Information Security Corporation

9130 Jollyville Road, Suite 260, Austin, TX78759, USA

Beihai Zhou
Department of Philosophy, Peking University Beijing, 100871, P.R. China

Beishui Liao∗
Center for the Study of Language and Cognition/Department of Philosophy,

Zhejiang University, Hangzhou, 310028, P.R. China
University of Luxembourg, L-1359, Luxembourg

baiseliao@zju.edu.cn

Abstract
We decompose a nonmonotonic inference Γ |∼ α into two stages: going forth

to deduce all default conclusions in a logic system named DC (short for De-
fault Conclusions), and drawing back less preferable conclusions in the face of
conflicting default conclusions, based on a binary “more preferable” relation de-
fined on those subformulas of Γ that are also its deductive consequences. Under
the possible-world semantics framework, we construct a set selection function
and build up a theory of semantics, as a variant of traditional selection func-
tion semantics. We prove that the underlying logic system DC is sound and
complete with respect to set selection function semantics. Using this two-layer
mechanism, we account for benchmark examples including the Nixon Diamond
and the Penguin Principle.

Keywords: nonmonotonic inference, defaults, possible world semantics,

The research reported in this article was financially supported by the National Social Science Foun-
dation Major Project of China under grant No.11&ZD088 and No.12&ZD119, and the National
Natural Science Foundation of China under grant No.61175058.
∗Corresponding author.

Vol. 2 No. 2 2015
IFCoLog Journal of Logic and its Applications

Mao, Zhou and Liao

1 Introduction
Our knowledge about the world in which we live consists mostly of statements like
“Birds fly”, “Potatoes contain vitamin C”, etc. These are often called default state-
ments or defaults. People observe regularities in the world and codify them in
defaults to express their law-like nature. The defaults enable people to predict what
the future is about to bring based on the observed regularities, and then people act
on these predictions accordingly. For instance, suppose that Tweety is a bird. Since
we know that birds fly, we predict that Tweety flies. In order to prevent Tweety
from flying away, the cage to keep it should have a lid. The reasoning involved to
infer “Tweety flies” from “Birds fly” and “Tweety is a bird” is usually called default
reasoning or defeasible reasoning. The term “defeasible reasoning” indicates that
any conclusions derived from defaults can be invalidated by providing new evidence.
In the example, if we later learn that Tweety is a penguin, then we should withdraw
the previous conclusion and claim instead that Tweety does not fly. Now, it is not
necessary for Tweety’s cage to have a lid. As the growth of the premises may cause
the retraction of previously drawn conclusions, nonmonotonicity is intimately con-
nected with defeasibility. This type of reasoning only warrants conclusions, but does
not guarantee their truth. Researchers have produced intensive work in this area,
although their approaches vary. We shall very briefly review some major existing
theories of defeasible reasoning and position our theory in the coarse road map of
this research area.

Regardless of the diversity of approaches that researchers take to characterize
reasoning with defaults, they all aim to account for the following benchmark exam-
ples:

(1) If it rains, the ground gets wet. It rains. / The ground gets wet.

(2) Birds fly. Tweety is a bird. / Tweety flies.

(3) Birds fly. Tweety is a bird. Tweety does not fly. / Tweety does not fly.

(4) Whales are mammals. Marine creatures normally are not mammals. Willy is
a whale. Willy is a marine creature. / Willy is a mammal.

(5) If it rains, the ground gets wet. It rains and the wind blows. / The ground
gets wet.

(6) Quakers are pacifists. Republicans are not pacifists. Nixon is a Quaker. /
Nixon is a pacifist.

128

Going Forth and Drawing Back in Nonmonotonic Inference

(7) Quakers are pacifists. Republicans are not pacifists. Nixon is a Quaker. Nixon
is a republican. / Nixon is a pacifist?? Nixon is not a pacifist??

(8) Birds fly. Penguins do not fly. Tweety is a bird. Tweety is a penguin. / Tweety
flies?? Tweety does not fly??

(9) Penguins are birds. Birds fly. Penguins do not fly. Tweety is a bird. Tweety
is a penguin. / Tweety does not fly.

(10) College students are adults. Adults can drive. John is a college student. /
John can drive.

(11) College students are adults. Adults are employed. John is a college student.
/ John is employed ??

In the above examples, sentences appearing before the slash symbol “/” are
premises, and those after the slash marks are conclusions. Conclusions marked by
“??” are not commonly accepted. (1) and (2) show that people use default Modus
Ponens to detach the consequents of defaults. Let us call the obtained conclusions
default conclusions. (3) indicates that factual statements have higher priority to be
conclusions than those obtained by applying default Modus Ponens. We call this the
fact-first principle. (4) reflects the intuition that deductively-derived conclusions are
more trustworthy than default conclusions. Default conclusions should always yield
to deductive ones in case of conflict. The application of default Modus Ponens in (5)
and (6) are not affected by some irrelevant fact(s) or default(s). The premises in (7)
are not contradictory, but putting them together causes incompatible conclusions,
none of which are acceptable for the entire set of premises. This inference pattern
is known as the Nixon Diamond. (8) is in the same form as (7). One who has
strong inclination to use an additional implicit premise “penguins are birds” could
actually conduct the reasoning as in (9). The increase of premises from (6) to (7) has
blocked a previously-drawn conclusion, while adding one more premise from (8) to
(9) helps to lead to a conclusion that would otherwise not be possible. (9) is known
as the Penguin Principle. It shows that each premise in a default reasoning does not
weight equally. People tend to give higher priority to premises carrying more specific
information and prefer arguments based on the most specific defaults. This tendency
is called specificity. In artificial intelligence, the specificity principle is regarded by
many as a very important general principle of commonsense reasoning. (10) and
(11) suggest that pointwise transitivity should not be completely abandoned, nor
should it be accepted without any restriction.

Based upon the examples analyzed, we summarize five distinct but closely related
basic features regarding default reasoning.

129

Mao, Zhou and Liao

First, it is not required to derive true conclusions from true premises. Instead,
it is only expected to derive acceptable conclusions from true premises. Unlike
conclusions drawn from the classical logic, conclusions from default reasoning can
be revised or retracted in the face of new information.

Second, being nonmonotonic to the increase of premises, a conclusion deduced
from a part of premises may no longer be a conclusion of all premises. All premises
must be taken into account when a conclusion of a default reasoning is under exami-
nation. It is very important to respect this feature when we deal with nonmonotonic
reasoning. Hidden premises should not be allowed, as the conclusions may differ
with or without them. Those who tend to conclude that Tweety does not fly from
example (8) are actually conducting an inference based on (9). If they use pattern
(8) to express their premises, they have hidden the premise “Penguins are birds”,
which is the trigger to invoke the specificity. Without this information, the inference
falls into the pattern of the Nixon Diamond, from which nothing can be concluded.

Third, it could be the case that all of the premises are compatible, but different
parts of the premises may imply contradictory conclusions. As contradiction is not
acceptable, contradictory conclusions from some parts of the premises (let us call
them local conclusions) cannot sustain to be conclusions for the entire premise set
(let us call them global conclusions).

Fourth, certain tendencies such as fact-first principle and specificity hidden in
background knowledge tip the balance between contradictory local conclusions and
determine which local conclusions can be global conclusions for a given premise set,
and which ones must be given up.

Finally, corresponding to two types of conclusions (i.e., local vs. global), there
are two kinds of inferences. One infers a local conclusion from a certain part of the
premises, while the other infers a global conclusion from the entire premise set. To
differentiate them, we call the first kind of inference local inference, and the second
one global inference. When the inference in question is monotonic, these two notions
coincide.

Among various theories, there are basically two approaches to formulate defaults.
One approach is like Reiter’s default logic ([28]), in which defaults are expressed as
domain-specific inference rules. These rules have the form A:B

C , where A, B, and C
are ordinary first-order formulas. “Bird fly” is informally read as “If it is provable
that x is a bird, and it is not provable that x does not fly, then we may infer that
x flies”. We can apply the default rule to Tweety and derive that Tweety flies. The
defeasibility stems from the consistency check for applying the default rule. With
more premises, that Tweety does not fly may become provable and the default rule
fails to apply. It is worth noting that in this approach, what is provable is determined
by what is not provable. Provability is defined in terms of a fixed-point, to avoid

130

Going Forth and Drawing Back in Nonmonotonic Inference

circularity.
The other approach is to formalize defaults as statements, rather than rules.

This again can be classified into two subcategories. Theories like preferential entail-
ment (e.g., [29, 16]) and circumscription (e.g., [21, 17]) deploy material implications
to express defaults. To reflect that the consequent of a default can only be defea-
sibly derived from its antecedent, an extra “normality condition” is added into the
antecedent of a default as in ∀x(bird(x) ∧ ¬ab(x) → fly(x)). It is assumed that
things are as normal as possible, unless otherwise stated. The inference is based on
first-order logic and Modus Ponens in particular. The defeasibility of this kind of
inference can be shown by adding a later discovery that something in question is
not as normal as assumed, e.g., “Tweety is abnormal”, to the premises.

The intensional approach (e.g., [8, 9, 3, 23, 2]) uses conditionals in the form
α > β as the logical representation of defaults. The defeasibility of defaults is
intrinsic to the modal operator >, which is interpreted in a possible-world semantics
via a selection function that selects normal worlds for truth evaluation of defaults.
Roughly, α > β is true if β is true in all normal worlds where α is true. The Modus
Ponens for > (i.e., α ∧ (α > β)→ β) is not valid for such conditionals, because the
actual world may not always be a normal world. Deducing β from α ∧ (α > β)
depends on the assumption that the actual world is as normal as possible.

These approaches demand a consistency check before applying a default rule or
Modus Ponens to infer a certain conclusion, to ensure that the opposite conclusion
cannot be inferred. The first occurrence of “infer” is a global inference that infers
a conclusion from the entire premise set, while the second one is a local inference
that infers the opposite conclusion from some premises. To block potential opposite
conclusions that might otherwise be locally inferred, all premises must be taken into
consideration against the consistency check. In nonmonotonic reasoning, some local
conclusions are admitted to be global conclusions only if they pass the consistency
check. Though conducting consistency checks and taking all premises into account
during every step of inference are theoretically possible, to carry out this task is
computationally expensive.

We intend to propose a solution based on the idea of conducting nonmonotonic
inference in two layers. Rather than handling inconsitency at each time to apply
a certain inference rule (domain-dependent default rule or classical modus ponens),
we my delay the inconsistency handling to the very end when partially inferable
conclusions are all derived. The defeasible inference is broken down into two phases.
The first phase allows to get all local conclusions. This phase of inference is sup-
ported by a logic which is similar to the classical logic in spirit. Default conclusions
could well be contradictory. For instance, we get “Tweety flies” from “Tweety is a
bird” and “Birds fly”. Also, we may get “Tweety does not fly” from “Tweety is a

131

Mao, Zhou and Liao

penguin” and “Penguins do not fly”. The local inference captured by this logic is
actually monotonic. The second phase is to deal with inconsistent local conclusions.
A local conclusion may not be a global conclusion of the entire premise set. Some
standards like the specificity rule that people tend to follow in commonsense rea-
soning could tip the balance between conflicting local conclusions in favour of, say,
the conclusion that Tweety does not fly as a penguin. The overall inference will be
nonmonotonic. The proposed solution defers the management of inconsistency to
the very end, when local conclusions are all deduced, rather than handling inconsis-
tency at each application of a certain inference rule (domain-dependent default rule
or classical Modus Ponens).

For the purpose of obtaining all local conclusions during the first phase, we
develop a formal logic system DC (short for Default Conclusions), which particu-
larly facilitates the deduction of default conclusions. We formalize the defaults as
statements. Furthermore, default statements are not represented by material im-
plications but by default implications to reflect their intensionality. We made these
two decisions based on the reasons argued by Pelletier and Asher ([26]).

The major difference between our system DC and other intensional approach
systems (e.g., [8, 9, 3, 23, 2]) is that we make a weak version of Modus Ponens
(α ∧ (α > β)) > β to be an axiom. We name it Default Modus Ponens. It
is the core of the inference engine that detaches the consequents of defaults and
“produces” default conclusions. In the classical logic, this follows so naturally that
any system validates Modus Ponens. It is the backbone on which a monotonic
inference relies. Unfortunately, the Default Modus Ponens is not similarly widely
accepted and has not yet drawn enough attention. The Default Modus Ponens is
not provable in Delgrande’s systems, nor is it validated by the semantics of Asher
and his coauthors.

Without Default Modus Ponens, the consequents of defaults are indirectly ob-
tainable under classical Modus Ponens via various forms of transformation ([2]) or
extension ([9]) or normalization ([3]). The idea behind these sophisticated proce-
dures is rather simple — treating the default implication α > β as if the material
implication α → β whenever possible. However, checking the satisfaction of the
condition “whenever possible” amounts to a consistency check, which is not so sim-
ple. Their formal logic systems are mostly used as background logics against which
consistency checking can be done. With Default Modus Ponens, default conclu-
sions can now be directly inferred. The complexity of managing the assumption of
normality or assumption of relevance as in [9] is avoided.

Although it is tempting to accept Default Modus Ponens and let it lead to
default conclusions in nonmonotonic inference, there are technical difficulties that
must be addressed. As Default Modus Ponens has the embedded > operator,

132

Going Forth and Drawing Back in Nonmonotonic Inference

its characterizing frame condition looks cumbersome in the widely-accepted modal
conditional semantics (e.g., [24, 25]) and can hardly make any use of it. We not
only argue that the Default Modus Ponens should play an equally crucial role in
nonmonotonic reasoning as Modus Ponens in monotonic reasoning, but also improve
the semantics by lifting the selection function to a higher level so that we overcome
the characterization difficulty. The details of the intuition towards the acceptance
of Default Modus Ponens and its semantic characterization will be discussed in later
sections.

Our work presented in this paper is twofold: First, we provide an underlying
logic in which all default conclusions of given premises can be derived. Second,
we provide a method to handle inconsistent default conclusions by comparing the
strength of the premise sets that support them. Our goal is to show that the two-
phase intensional approach not only complements existing theories by providing a
new perspective to tackle the problem, it also offers advantages.

2 The Logic DC of Default Conclusions

2.1 Logical Preliminaries

The language L> contains a denumerable set of propositional variables P = {p0, p1,
. . . }, truth-functional connectives ¬ and →, and a binary operator >. Formulas
are defined as usual. p, q, r, etc. will be used for atomic sentences, α, β, γ etc. for
formulas, Fla for the set of all formulas, Γ, ∆, Θ, etc. for sets of formulas. ∨, ∧, ↔
and ≯ are introduced as abbreviations. α ≯ β abbreviates ¬(α > β).

Precedence order is assumed from the strongest to the weakest among connectives
like this: ¬, ∧, ∨, >, →, ↔. For instance, α > β ∧ γ → α > β should be read
as (α > (β ∧ γ)) → (α > β). If the context is not ambiguous, some parentheses
may be omitted. Note that > having a higher precedence than → should not be
understood as the > operator is stronger than the material implication → in the
sense that (α > β)→ (α→ β). In the system DC, neither (α > β)→ (α→ β) nor
(α→ β)→ (α > β) is valid.

2.2 Key Axioms of System DC

Before we formally lay out the system DC, we give some explanations on the selection
of its key axioms.

133

Mao, Zhou and Liao

2.2.1 Default Modus Ponens

In the underlying logic, we expect to get all default conclusions. Ideally, a formula φ
is a default conclusion of a finite premise set Γ iff ∧Γ > φ is provable in the system.
Since at this level, we do not plan to handle conflicting default conclusions, “being a
default conclusion” is actually a monotonic relation in the sense that if φ is a default
conclusion of Γ then φ is a default conclusion of all supersets of Γ. The core of
inferring default conclusions from premises containing defaults is how to detach the
consequents of defaults. In the classical logic, formula (α ∧ (α→ β))→ β describes
the Modus Ponens for the material implication →. This does not apply to defaults,
as we formulate them as conditionals in the form of α > β rather than α → β. A
simple-minded transplantation of Modus Ponens to defaults like (α ∧ (α > β))→ β
does not work, because this formula contradicts the exception tolerance feature of
the default α > β. For example, it is compatible to claim that Tweety is a bird
and birds fly, but that Tweety does not fly. This is to say that {α > β, α,¬β} is
consistent. But (α ∧ (α > β))→ β leaves no room for this kind of exceptional case.

Considering that α > β is read as “if α then normally β”, the operator > is to
capture the “normally follow” relationship. Suppose that we accept the default if
α then normally β, and further suppose that we are in a situation where α is true.
Then, normally, β should be true under this situation. To formulate what has just
been said, we have (α ∧ (α > β)) > β, which delineates a similar Modus Ponens for
the > operator. As we mentioned earlier, we label this formula as Default Modus
Ponens. Boutilier ([7]) proves it as a theorem of the system C4TO, but we will take it
as a very basic axiom of the system DC that is designed to obtain default conclusions.
The Default Modus Ponens plays an important role to detach the consequent of a
default when its antecedent is present. It makes the defaults participate in the
inference of obtaining default conclusions in a rather direct way, but it does not
exaggerate the certainty of these conclusions as (α∧ (α > β))→ β would have done.
Using the > operator as the main connective in the Default Modus Ponens indicates
that they are default conclusions. This differentiates them from other conclusions
that can be classically implied from the antecedent, say, (α ∧ (α > β))→ α.

2.2.2 Restricted Pointwise Transitivity

Let us look at two examples:

(1a) If the ground gets wet, then roads are slippery.
(1b) If it rains, then the ground gets wet.
(1c) It is raining.
(1d) Roads are slippery.

134

Going Forth and Drawing Back in Nonmonotonic Inference

(2a) If it rains, then crop harvest is expected.
(2b) If hurricane comes, then it rains.
(2c) Hurricane comes.
(2d) Crop harvest is expected.

Both examples illustrate the use of pointwise transitivity:

PTran (α ∧ (α > β) ∧ (β > γ)) > γ

However, there is a difference between the examples. We can accept conclusion (1d)
inferred from (1a)-(1c), but we tend to object obtaining (2d) from (2a)-(2c). Before
we hear (2b), we may accept (2a) without any reservation. After we hear (2b),
we are inclined to rescind our approval to (2a). The conditions we use to evaluate
(2a) before we hear (2b) seem not to be the same as those we use to evaluate (2a)
after we hear (2b). Once we hear (2b), we begin to think in terms of rain caused
by hurricane, and we see that the argument explicitly requires abnormal rain cases
that disjoint the normal rain cases considered in (2a). This explains our change of
mind concerning the acceptance of (2a). Instead of (2a), what is actually used in
the argument is (2a’):

(2a’) If hurricane comes and it rains, then crop harvest is expected.

(2a’) is a false statement, and thus the argument fails. The success of the argument
expressed in example 1 is due to the truth of (1a’):

(1a’) If it rains and the ground gets wet, then roads are slippery.

The formalization of unrestricted pointwise transitivity PTran does not reflect
implicitly-used premises (1a’) and (2a’), and will mistakenly admit the argument for
(2d). Thus, we reject unrestricted PTran in favor of restricted pointwise transi-
tivity RPT:

RPT ((α ∧ β) > γ)→ (α ∧ (α > β) ∧ (β > γ)) > γ

RPT precisely differentiates example 1 from example 2. While example 1 is a valid
argument justified by RPT, example 2 is blocked. We want our system to support
RPT, and take it as an axiom.

Transitivity is also often expressed in this version:

Tran ((α > β) ∧ (β > γ))→ (α > γ)
The following invalid argument shows that Tran fails, since (3c) is false.

135

Mao, Zhou and Liao

(3a) College students are adults.
(3b) Adults are employed.
(3c) College students are employed.

However, we do quite often deploy Tran in default reasoning:

(4a) College students are adults.
(4b) Adults know how to drive.
(4c) College students know how to drive.

In the first example, normal conditions we employ in evaluating (3a) are not
the same as conditions we employ in evaluating (3b). Although college students are
adults, they are exceptional adults with regard to consideration of their status of
employment. It seems that we evaluated the wrong conditional when we evaluate
(3b). What really should be evaluated is the new premise:

(3b’) Adult college students are employed.
However, this new premise is false. Thus, the conclusion (3c) is not acceptable.

In the second example, normal conditions where college students are adults are
also normal conditions where adults know how to drive. Regarding driving capabil-
ity, college students are as normal as other classes of adults. The new premise (4b’)
that is really evaluated is true in this case.

(4b’) Adult college students know how to drive.
This might explain why we are inclined to approve the transitivity in example 4,
but rescind such an approval in example 3. It appears that a certain degree of tran-
sitivity in default reasoning should be granted, but something like example 3 should
not be allowed. For this purpose, Nute proposed restricted transitivity:

RT ((α ∧ β) > γ)→ ((α > β)→ (α > γ))
It seems that our system should support RT as well. If not, it should at least

support a weaker version RT′:

RT′ ((α ∧ β) > γ)→ ((α > β) ∧ (β > γ)→ (α > γ))
Nevertheless, our system supports neither RT nor RT′. Taking RT or RT′ as an

axiom would imply PTran in our system, which we would like to avoid. We decide
not to include RT or RT′. The strong side of our system is that it gives a good
capture of Default Modus Ponens. RPT can be viewed as transitive Modus Ponens.
It shows how Default Modus Ponens interacts with transitivity. We take it as an
axiom to complete our characterization of Default Modus Ponens. The weak side
of our system is that it leaves out the consideration of restricted transitivity.

136

Going Forth and Drawing Back in Nonmonotonic Inference

2.3 The System DC
The system DC is designed to catch all default conclusions that “normally follow”
from the antecedents of defaults. It is the smallest logic that contains the proposi-
tional calculus (PC) and is closed under the following axiom schemata and rules of
inference.

Axiom schemata:

Ck (α > (β → γ))→ ((α > β)→ (α > γ))
Dmp (α ∧ (α > β)) > β
Id α > α
RPT ((α ∧ β) > γ)→ ((α ∧ (α > β) ∧ (β > γ)) > γ)

Axiom Ck in system DC is in parallel to axiom K in modal logic. As we take the
conditional modal logic approach to deal with defaults, we would like to have it in
our system. The name “Ck” indicates that it is a variant of axiom K in conditional
logic setting. α > α asserts that every premise is also a default conclusion of itself.
It is widely accepted by many authors (e.g., Delgrande, Asher etc.) as an axiom
known as identity axiom. We adopt this axiom and use a short name “Id” to refer
to it.

Rules of inference:
Mp From α and α→ β, infer β
Req From β ↔ γ and α, infer α[γ/β],

where β is a subformula of α
Rn From β, infer α > β
Rm From α > β, infer (α ∧ γ) > β

All these rules of inferences except Rm sound familiar to a modal logic system.
Rm is designated to deal with augmented additional information towards defaults
that have been established as theorems of DC. We know that the “normally follow”
relationship > is not monotonic to its antecedent. That is, Mon below should not
be a valid form:

Mon (α > β)→ ((α ∧ γ) > β)
Rm is much weaker than Mon. Only for those (α > β) that are provable in DC,
adding more information γ will have no impact on the derivation of default con-
clusion β. From an example, as (α ∧ (α > β)) > β is an axiom of DC, it seems
reasonable to accept (γ ∧ α ∧ (α > β)) > β in DC to show that the default conclu-
sions are monotonic to additional information. In case where γ is actually ¬β, which
causes inconsistency, the conflicting default conclusions will be resolved in the next
stage. β will be blocked, and ¬β will be the global conclusion instead. Because
system DC is intended to provide us all possible default conclusions, we take Rm as

137

Mao, Zhou and Liao

an inference rule of DC. The consideration of consistency check-up among candidate
default conclusions is left to the second stage in our two-phase process.

With such a specified system DC, we can get the following derived rules:
Ric From α→ (β > γ), infer (α ∧ β) > γ
Rck From β1 ∧ ... ∧ βn → β,

infer (α > β1) ∧ ... ∧ (α > βn)→ (α > β),
for any n > 1

Ram From α→ β and β > γ, infer α > γ
Rin From α→ β infer α > β

Proof. For Ric, suppose that ` α→ (β > γ). Then ` α↔ (α ∧ (β > γ)), and also
` (α∧β)↔ (α∧β∧ (β > γ)), by PC. By axiom Dmp, we have ` (β∧ (β > γ)) > γ.
By Rm, ` (α ∧ (β ∧ (β > γ))) > γ. Then by Req, ` (α ∧ β) > γ.

For Rck, suppose that ` (β1∧...∧βn)→ β. By Rn, we have ` α > (β1∧...∧βn →
β). By Ck and Mp, we have ` (α > (β1 ∧ ... ∧ βn)) → (α > β). By Cc (proved
in a theorem below), we have ` (α > β1) ∧ ... ∧ (α > βn) → (α > (β1 ∧ ... ∧ βn)).
Hence, by PC, we have ` (α > β1) ∧ ... ∧ (α > βn)→ (α > β).

For Ram, suppose that ` α→ β and ` β > γ. By Rm, ` (α∧ β) > γ. By Req,
` (α ∧ (α→ β)) > γ. Since ` α→ β, ` (α ∧ (α→ β))↔ α. By Req, ` α > γ.

For Rin, by rule Rck, we can, from α → β, infer (α > α) → (α > β). Since
α > α is an axiom, we have α > β.

Theorem 1. The following formulas are theorems of the system DC.

ThDC1 (Cr) (α > (β ∧ γ))→ ((α > β) ∧ (α > γ))

ThDC2 (Cc) ((α > β) ∧ (α > γ))→ (α > (β ∧ γ))

ThDC3 (γ ∧ α ∧ (α > β)) > β

ThDC4 (((α ∧ β) > γ) ∧ α ∧ (α > β) ∧ (β > γ)) > γ

Proof. ThDC1:

(1) (β ∧ γ)→ β PC
(2) α > ((β ∧ γ)→ β) (1),Rn
(3) (α > (β ∧ γ))→ (α > β) (2),Ck,Mp
(4) (β ∧ γ)→ γ PC
(5) α > (β ∧ γ → γ) (4),Rn
(6) (α > (β ∧ γ))→ (α > γ) (5),Ck,Mp
(7) (α > (β ∧ γ))→ ((α > β) ∧ (α > γ)) (3),(6),PC

138

Going Forth and Drawing Back in Nonmonotonic Inference

Proof. ThDC2:

(1) β → (γ → (β ∧ γ)) PC
(2) α > (β → (γ → (β ∧ γ))) (1),Rn
(3) (α > β)→ α > (γ → (β ∧ γ)) (2),Ck,Mp
(4) (α > (γ → (β ∧ γ)))→ ((α > γ)→ α > (β ∧ γ))) Ck
(5) (α > β)→ ((α > γ)→ α > (β ∧ γ)) (3),(4),PC
(6) ((α > β) ∧ (α > γ))→ (α > (β ∧ γ)) (5),PC

ThDC3 follows from axiom Dmp and rule Rm. ThDC4 can be obtained from
axiom RPT and rule Ric.

In system DC, we can prove PTran from RT or RT′, as we discussed in section
2.2.2. We repeat them below:

RT ((α ∧ β) > γ)→ ((α > β)→ (α > γ))
RT′ ((α ∧ β) > γ))→ ((α > β) ∧ (β > γ)→ (α > γ))
PTran (α ∧ (α > β) ∧ (β > γ)) > γ
From RT, we can get RTran by Rm and Mp:

RTran If ` β > γ, then ` (α > β)→ (α > γ)
From RTran, we can get PTran as shown below:

Proof.

(1) (β ∧ (β > γ)) > γ Dmp
(2) ((α ∧ (α > β) ∧ (β > γ)) > (β ∧ (β > γ)))→

((α ∧ (α > β) ∧ (β > γ)) > γ) (1),RTran
(3) (α ∧ (α > β)) > β Dmp
(4) (α ∧ (α > β) ∧ (β > γ)) > β (3),Rm
(5) (β > γ) > (β > γ) Id
(6) (α ∧ (α > β) ∧ (β > γ)) > (β > γ) (5),Rm
(7) (α ∧ (α > β) ∧ (β > γ)) > (β ∧ (β > γ)) (5),(6),Cc
(8) ((α ∧ (α > β) ∧ (β > γ)) > γ) (2),(7),Mp

FromRT′, we can get RTran′:

RTran′ If ` β > γ, then ` (α > β) ∧ (β > γ)→ (α > γ)
If ` β > γ, then ` (α > β) ↔ (α > β) ∧ (β > γ). So, RTran′ is equivalent to

RTran. Thus, PTran can also be derived from RT′ via RTran.
Based on the several formally-proved theorems of the system DC, we have ex-

plored a variety form of transitivity of the > operator and their interaction with

139

Mao, Zhou and Liao

Dmp. As we design our system with a focus on the detachment of a default con-
sequent from a default, we leave RT and RT′ out of our consideration in favor of
RPT.

From the proofs that we have constructed, Dmp is frequently used to show some
properties of >. This is one advantage of introducing Dmp as an axiom. We
can now study the properties of > as an operator that is independent of the →
operator. For us, the > operator is not only important to represent defaults, but
also equally important to capture the “normally follow” behavior of these defaults
appearing in inferences. The→ operator in the classical logic is used to formalize the
material implication “if...then” on the one hand, and also to mirror our monotonic
inference on the other hand. These two things are bridged via the deduction theorem
in the classical logic. On the contrary, the > operator has long been used only
for representing defaults in the intentional approach. As far as the inference is
concerned, the formulas connected by the > operator like α > β are transformed
or converted to something more or less like α → β, in order to make the classical
Modus Ponens applicable. At the end, the inferences with the >-formulas involved
are reduced to applying Modus Ponens. The > operator was rarely linked to
representing features of nonmonotonicity that stem from “normally follow” in a
direct manner. For instance, we may ask a question like this: will there be some
logic system S(L) about> such that `S(L) α > β iff α |∼S(L) β. Although results in
Mao ([19]) indicate that the link between the representation of defaults and inference
features of > is not as straightforward as it is for the material implication →, Dmp
is the first step to making that link, and it frees inferences with defaults from being
peripheral to classical ones.

3 Semantics
3.1 Set Selection Function
Since we take (α ∧ (α > β)) > β as an axiom to grant the detachment of the
consequents of >-formulas, the semantics to be developed should validate it. Let us
start with the existing selection function semantics for conditional logics that is re-
used by Delgrande, Asher and Morreau for default statements. Think back to what
the selection function provides: if α > β is true at w, then ∗(w, ‖α‖M) ⊆ ‖β‖M1, and
vice versa. This applies to all possible worlds. Choosing another possible world
w′, again, α > β is true at w′ if and only if ∗(w′, ‖α‖M) ⊆ ‖β‖M. What matters
is not that it is a particular possible world that validates α > β. Rather, it is the

1We adopt here Asher and Morreau’s symbolism of selection function.

140

Going Forth and Drawing Back in Nonmonotonic Inference

“meaning” of α > β, which can be expressed as a proposition ‖α > β‖M (i.e., a set
of possible worlds where α > β is true). It inspires the idea that the first argument
of ∗ might be lifted to a proposition as well. Denoting the new selection function as
~, lifting ∗ to ~ makes the latter to be a function from ℘(W)×℘(W) to ℘(W). To
differentiate the new selection function from what is used in the literature by Nute,
Stalnaker, Delgrande, Asher, Morreau, etc. (i.e., ∗: W ×℘(W)→ ℘(W)), let us call
the new one the set selection function and theirs the point selection function.
~(‖α > β‖M , ‖α‖M) ⊆ ‖β‖M suggests a reading that in all worlds where α > β

“applies” to α, β is true. In other words, applying default rule α > β onto its
antecedent α, we can get its consequent β. This fits our intuitive meaning of α > β
very well. Unfortunately, we cannot use it as a truth condition; e.g., α > β is true
at w iff w ∈ ‖α > β‖M where ~(‖α > β‖M , ‖α‖M) ⊆ ‖β‖M. Otherwise, we will
find ourselves in a circular situation in which the truth value of α > β depends on
the value of ~ function, which in fact takes the overall truth value of α > β in all
of the possible worlds as input. The best we can do to avoid this circularity is to
make ~(‖α > β‖M , ‖α‖M) ⊆ ‖β‖M the provable property naturally falling out of
the truth condition for α > β via the ~ function. We propose that

‖α > β‖M =
⋃
{X ⊆W | ~(X, ‖α‖M) ⊆ ‖β‖M},

imaging that every X satisfying ~(X, ‖α‖M) ⊆ ‖β‖M is an “area” where α > β
should have been committed. Intuitively, ‖α > β‖M “collects” all “areas” where
α > β is true, and sets up the largest boundary possible for α > β being true.
In order to prove ~(‖α > β‖M , ‖α‖M) ⊆ ‖β‖M, we need to make sure that set
{X ⊆ W | ~(X, ‖α‖M) ⊆ ‖β‖M} is closed under union. This will require some
frame constraints on the ~ function. The details of the semantics will be worked
out in the next section.

To have a better understanding of the lifted selection function ~, we may draw
an analogy with the ternary relation used in Meyer and Routley’s semantics for
relevance logic. Meyer and Routley explain the intuition behind the use of Rw1w2w3
in this way (cf., [4], p164)2: Relative to the laws in w1, Rw1w2w3 means that w3
is accessible from w2; i.e., if the antecedent of w1-law is realized in w2, then its
consequent is realized in w3. This is to say that if a relevance implication α 7→ β
is true at w1 and its antecedent α is true at w2 then its consequent β must be true
at w3. The function ~ can be converted to a ternary relation R~: ~(X,Y) ⊆ Z
iff R~XY Z. We may phrase the following reading for R~XY Z: if a default law
α > β is true at all worlds in X, and its antecedent α is true at all worlds in Y , then

2a, b and c in their original writings are replaced with w1, w2 and w3 respectively, to stand for
the possible worlds.

141

Mao, Zhou and Liao

its consequent β is true at all worlds in Z. Given any formula ϕ and any proposition
X, if X exactly contains those possible worlds where ϕ is true, then we say that
ϕ expresses X. A proposition X is expressible if there is a formula ϕ such that
ϕ expresses X. If X, Y and Z, arguments in the relation R~XY Z, are seen not
only literally as sets of possible worlds, but also propositions that are expressible by
particular formulas, then R~XY Z can be understood as this: if X is a proposition
expressible by a default law α > β and Y expressible by α, then the proposition that
β expresses must be included in Z. The combination of the information regarding
a default law and its antecedent brings about the corresponding consequent. This
is how we apply a default law to the places where its antecedent is realized. The
“applying” procedure to combine a default law to its antecedent may take various
forms; one of them can simply be that α > β and α are true in the same world. In
that case, we can adopt the following as a frame constraint:

For all Z ⊆W , if~ (X,Y) ⊆ Z, then~ (W,X ∩ Y) ⊆ Z.
Since X ∩ Y holds the combined information regarding the default law α > β
and its antecedent α, no more additional information is needed elsewhere. Thus,
the first argument of ~ in the “then” clause is trivialized to W (where no specific
information is held). This constraint validates (α ∧ (α > β)) > β. A detailed
proof will be shown in the next section. Using the ~ function, the frame condition
for (α ∧ (α > β)) > β is quite simple. In addition, there is also a clear intuition
backing up this constraint. Recall the distinction made by Delgrande between
defaults (considered as background knowledge) and contingent facts (considered as
evidence). The constraint blurs the distinction by allowing to merge some defaults
into facts (since they are expressed by sentences just as facts are). There is a clear
increase in expressive power offered by such a conflation, for it allows one to achieve
a degree of interaction between the two components that is otherwise unobtainable.
Besides various putative advantages of the set selection function ~ may bring to us,
its main contribution is to remove the distinction between background and evidence
at this logical level.

If we do not lift ∗ to ~ and just take over the original interpretation of >,
(α ∧ (α > β)) > β is not valid without some frame constraints. A simple frame
condition like if w ∈ S then w ∈ ∗(w, S) together with facticity (i.e., ∗(w, S) ⊆ S)
could validate (α∧(α > β)) > β3. However, this frame condition will make (α∧(α >

3Here is a proof for (α ∧ (α > β)) > β being valid under the frame condition if w ∈ S
then w ∈ ∗(w, S). For any w, w′, suppose that w′ ∈ ∗(w, ‖α ∧ (α > β)‖). By the facticity,
w′ ∈ ‖α ∧ (α > β)‖ = ‖α‖ ∩ ‖α > β‖. Since w′ ∈ ‖α > β‖, ∗(w′, ‖α‖) ⊆ ‖β‖. Since w′ ∈ ‖α‖,
w′ ∈ ∗(w′, ‖α‖) ⊆ ‖β‖. Therefore, ∗(w, ‖α ∧ (α > β)‖) ⊆ ‖β‖. Hence, w ∈ ‖(α ∧ (α > β)) > β‖.

142

Going Forth and Drawing Back in Nonmonotonic Inference

β)) ∧ ¬β incompatible4 in the meantime. It does not seem to be straightforward
to find a frame condition in the original semantics that validates (α ∧ (α > β)) > β
but still makes (α ∧ (α > β)) ∧ ¬β compatible. It is even harder to require the
frame condition of the point selection semantics to match the intuition of “normally
follow” as our ~-based semantics does.

In terms of set selection function, the frame condition for Identity axiom α > α
is ~(X,Y) ⊆ Y . Considering

⋃
{Z ⊆W | ~(Z,X) ⊆ Y } (denoted by [X,Y]) as the

proposition that states a default of which the antecedent proposition is X and the
consequent proposition is Y , the frame condition for RPT can be expressed by this
if-then clause: If ~(X,Y ∩ Y ′) ⊆ Z, then ~(X,Y ∩ [Y, Y ′] ∩ [Y ′, Z]) ⊆ Z. We will
give formal definitions and proofs in detail in the section to come.

3.2 L>-Frames and Models
Formulas of L> are interpreted in L>-models, each of which consists of an L>-frame
and a truth value assignment function. An L>-frame is an ordered pair of a set of
possible worlds and a set selection function (i.e., ~: ℘(W)×℘(W)→ ℘(W)) defined
upon it.

Definition 1. ~ is a set selection function defined on a set of possible worlds W :
℘(W)× ℘(W)→ ℘(W).

Definition 2. Given any X,Y ⊆W , let [X,Y] =
⋃
{Z ⊆W | ~(Z,X) ⊆ Y }.

Definition 3. An L>-frame is an ordered pair F = 〈W,~〉 where

1. W is a non-empty set of possible worlds;

2. ~ is a set selection function defined on W satisfying:

(a) If X ⊆ X ′, then ~(X,Y) ⊆ ~(X ′, Y);
(b) If ~({w}, Y) ⊆ Z for every w ∈ X, then ~(X,Y) ⊆ Z;
(c) If ~(X,Y) ⊆ Z, then ~(W,X ∩ Y) ⊆ Z;
(d) ~(X,Y) ⊆ Y ;
(e) If ~(X,Y ∩ Y ′) ⊆ Z, then ~(X,Y ∩ [Y, Y ′] ∩ [Y ′, Z]) ⊆ Z.

4A proof for (α ∧ (α > β)) ∧ ¬β being incompatible, under the frame condition if w ∈ S then
w ∈ ∗(w, S), can be constructed like this: For any w, suppose w ∈ ‖(α ∧ (α > β))‖ = ‖α‖∩‖α > β‖.
Then, since w ∈ ‖α > β‖, ∗(w, ‖α‖) ⊆ ‖β‖. Since w ∈ ‖α‖, w ∈ ∗(w, ‖α‖) ⊆ ‖β‖. Therefore,
‖α ∧ (α > β)‖ ⊆ ‖β‖. Hence, ‖(α ∧ (α > β)) ∧ ¬β‖ = ‖α ∧ (α > β)‖ ∩ ‖¬β‖ = ∅.

143

Mao, Zhou and Liao

Let I be a set of indexes. From the frame conditions 2(a) and 2(b) listed above,
it is not difficult to see that the following condition is satisfied on an L>-frame:

~(
⋃
{Xi : i ∈ I}, Y) ⊆

⋃
{~(Xi, Y) : i ∈ I} (Frame Condition (b’))

The set selection function~ employed here is closely related to the point selection
function. Given a point selection function ∗ on W : W × ℘(W) → ℘(W), we can
convert it into a set selection function ~∗ as follows:

~∗(X,Y) =
⋃

w∈X
∗(w, Y)

This set selection function obtained from conversion will automatically satisfy
the frame condition 2(a) and 2(b) in Definition 3.

Conversely, given a set selection function ~, we can convert it into a point
selection function ∗~ as well:

∗~(w, Y) = ~({w}, Y)

The conversion from ~ to ∗~ loses some information. ∗~ is ~ restricted on
singleton sets as its first argument. As a result, the flexibility provided by the
first argument of ~ disappears in ∗~, and hence the counterpart of some simple
condition for ~ will look quite awkward in terms of ∗~. For example, condition
~(W,X ∩ Y) ⊆ ~(X,Y) for ~ becomes its counterpart below for ∗~:

⋃

w∈W
∗~({w}, X ∩ Y) ⊆

⋃

w∈X
∗~({w}, Y)

We have shown that ~ is a more general function than ∗ in the sense that the
former accommodates the latter as a special case. This enhanced power facilitates
spelling out the frame condition 2(c), which as we will see shortly, validates (α∧(α >
β)) > β.

Frame conditions 2(d) and 2(e) validate the Id and RPT, respectively.

Definition 4. An L>-model is an ordered pair M = 〈F, σ〉 where

1. F is an L>-frame, and

2. σ is a truth value assignment function from P to ℘(W).

We can also write M as a triple 〈W,~, σ〉. Given M, we use WM,~M and σM
to denote three components of M, respectively.

144

Going Forth and Drawing Back in Nonmonotonic Inference

Definition 5. For any formula α, the symbolism ‖α‖M is used to stand for the set
of worlds in M in which α is true, satisfying:

1. ‖p‖M = σ(p)

2. ‖¬α‖M = W − ‖α‖M

3. ‖α→ β‖M = (W − ‖α‖M) ∪ ‖β‖M

4. ‖α > β‖M = ⋃{X ⊆W | ~(X, ‖α‖M) ⊆ ‖β‖M}

Items 1-3 in the above definition are straightforward. Item 4 needs some ex-
planation. The Frame Condition (b’), which is provable from Definition 3-2(a)
and 2(b), guarantees that ~(‖α > β‖M, ‖α‖M) ⊆ ⋃{~(X, ‖α‖M) | ~(X, ‖α‖M) ⊆
‖β‖M} ⊆ ‖β‖M. The equation in item 4 actually says that ‖α > β‖M is the largest
set X such that ~(X, ‖α‖M) ⊆ ‖β‖M. Any set X ′ satisfying ~(X ′, ‖α‖M) ⊆ ‖β‖M
should be a subset of ‖α > β‖M; that is, α > β is true on X ′. The intuition behind
this is that if β is true in all selected possible worlds relative to the proposition α
by function ~ from the point of view of X ′, then α > β is a default that holds on
X ′. On the other hand, for any X ′ ⊆ ‖α > β‖M, we have ~(X ′, ‖α‖M) ⊆ ‖β‖M
due to the first property of ~ (see Definition 3-2(a)). This is to say: if α > β is a
default that holds on X, then “applying” the default α > β onto α will get us back
the conclusion β. With ‖α > β‖M so defined, it has two important properties:

~(‖α > β‖M , ‖α‖M) ⊆ ‖β‖M (‖α > β‖M property 1)
X ⊆ ‖α > β‖M iff ~ (X, ‖α‖M) ⊆ ‖β‖M (‖α > β‖M property 2)

This may be a good place to explain and highlight the advantage of using a set
selection function instead of a point selection function. The first parameter of the
set selection function is intended to capture the set of possible worlds where α > β is
true. It makes sense to take the intersection of two arguments X and Y of function
~, which are now two sets. Thinking of X and Y in terms of propositions, if X
and Y are places where α > β and α are true respectively, then X ∩ Y represents
the place where (α > β)∧ α is true. This is not possible when X is not a set but a
single possible world.

The set selection function makes it easy to express the third frame condition
~(W,X ∩ Y) ⊆ ~(X,Y) (see Definition 3-2(c)). ~(W,X ∩ Y) ⊆ ~(X,Y) is equiv-
alent to, for all Z, if ~(X,Y) ⊆ Z then ~(W,X ∩ Y) ⊆ Z. When X, Y and Z
are propositions of α > β, α and β (i.e., X = ‖α > β‖, Y = ‖α‖ and Z = ‖β‖)
in particular, this condition says that W ⊆ ‖((α > β) ∧ α) > β‖. This means that

145

Mao, Zhou and Liao

((α > β) ∧ α) > β is true everywhere. It is not surprising that the third frame
condition validates ((α > β) ∧ α) > β. Using a point selection function whose first
argument is a single possible world, this idea cannot be spelled out so easily.

Conceptually, we are convinced that the axiom Dmp should be introduced to
investigate the type of “normally follow” inferences. Technically, we have improved
the traditional selection function and do not encounter any more the problem of
having awkward semantic characterization for Dmp. In fact, the frame condition
of Dmp using set selection function appears quite natural, and it supports, from
the semantic point of view, our choice of Dmp as an axiom. We will complete the
presentation of a formal semantics in the next section and then prove some meta
properties of the system DC (soundness and completeness) to show that the formal
semantics characterizes the system DC.

3.3 Satisfiability and Validity
The symbolism M �X α is introduced to assert that α is true at the set of worlds
X in the model M.

Definition 6. Let M be an L>-model, X be a non-empty subset of WM and α be a
formula. M �X α iff X ⊆ ‖α‖M.

Proposition 1. The following holds due to the definition of M �X α, where X in
3, 4 is {w} for some w ∈WM and in 1, 2, 5 is any non-empty subset of WM.

1. M �X ¬α iff X ∩ ‖α‖M = ∅.

2. M �X α ∧ β iff M �X α and M �X β.

3. M �X α ∨ β iff M �X α or M �X β.

4. M �X α→ β iff if M �X α then M �X β.

5. M �X α > β iff ~(X, ‖α‖M) ⊆ ‖β‖M.

Here is a proof for item 5. The rest of the items are left to the reader.

Proof. (“if” part): Suppose that M �X α > β. By Definition 6, X ⊆ ‖α > β‖M .
By ‖α > β‖M property 2, ~(X, ‖α‖M) ⊆ ‖β‖M .

(“only if” part): Suppose that ~(X, ‖α‖M) ⊆ ‖β‖M . By Definition 5(4), X ⊆
‖α > β‖M . By Definition 6, M �X α > β.

Proposition 2. For each X ⊆ WM, M �X α → β iff X ∩ ‖α‖M ⊆ ‖β‖M. In
particular, M �WM

α→ β iff ‖α‖M ⊆ ‖β‖M.

146

Going Forth and Drawing Back in Nonmonotonic Inference

Proposition 3. M �WM
α iff M �{w} α for all w ∈WM.

Definition 7. (Validity) Given a formula α, we say that α is valid (written as � α)
if and only if α is true at every world in all models (i.e., M �WM

α, for all M).

Definition 8. (Satisfiability) Given a formula α, α is satisfiable if and only if ¬α
is not valid.

The theorem below shows the validity of some >-formulas.

Theorem 2. The following statements hold:

1. (α > (β → γ))→ ((α > β)→ (α > γ)) is valid;

2. (α ∧ (α > β)) > β is valid;

3. α > α is valid;

4. ((α ∧ β) > γ)→ ((α ∧ (α > β) ∧ (β > γ)) > γ) is valid.

Neither (α > β)→ (α→ β) nor (α→ β)→ (α > β) is valid. This is because the
reference world where α → β is evaluated does not have to be one of the selected
(normal) worlds, let alone the only normal world to be selected. If the current
world had to be one of the normal worlds, then the defaults would not tolerate any
exceptions. If the current world were the only normal world to be selected, then the
notion of normality would collapse and the intensionality of defaults would vaporize.
Notice that the requirement of validating (α→ β)→ (α > β) is much stronger than
that of preserving the validity from α→ β to α > β. The latter is supposed to be
the job of the derived rule Rin. The soundness of the system that will be proved
shortly guarantees that Rin does preserve validity.

4 Soundness and Completeness of DC
The system DC is sound and complete with respect to the semantics laid out in
Section 3.2. The results are stated in the next two theorems.

Theorem 3. (Soundness) Given any formula α, if `DC α then � α.

The proof for soundness is routine: each of axiom schemata is valid under the
semantics and each of the inference rules preserves validity. The former is stated in
Theorem 2. It is easy to show that the rules of inference (i.e., Mp, Req, Rn, Rm)
preserve validity. The proof is omitted.

147

Mao, Zhou and Liao

Theorem 4. (Completeness) Given any formula α, if 0DC α then 2 α.

Completeness of DC is proved by constructing a canonical structure
〈WDC , ~DC〉 and a small (finite) model 〈WΓ,~Γ ,σΓ〉 with Γ = {¬α}, where
α is a given formula not provable in DC. Then ¬α is true at some world in WΓ.

We define ~DC merely on those expressible subsets of possible worlds WDC .
〈WDC , ~DC〉 is called a canonical structure, but not yet a canonical frame. We will
show that all of the frame conditions required in Definition 3 are satisfied in such a
structure for all expressible subsets ofWDC . We then further construct a small model
by coercing the big canonical structure into a finite frame via a homomorphism so
that each subset of possible worlds in the small model is expressible. The requested
frame conditions hold on the small model. The construction of the small model
depends on the given unprovable formula α. When α varies, the small model to
falsify it changes accordingly.

The decidability of the system DC comes out as a side product of this complete-
ness proof. Since we can construct a finite model to satisfy any unprovable formula
α of the system DC, the system DC is decidable.

In what follows, we will sketch the main definitions, lemmas, propositions and
intermediate theorems that lead to the proof of completeness theorem. |α|DC will
be used to stand for the class of maximally-consistent sets of DC containing α.

Definition 9. The canonical structure SDC = 〈WDC ,~DC〉 of DC is defined as
follows:

1. WDC = {w | w is a DC maximally consistent set of formulas},

2. ~DC(X, |α|DC) =
⋂
{|β|DC | X ⊆ |α > β|DC} where |α|DC = {w | (w ∈

WDC) ∧ (α ∈ w)}.

Note that ~DC is not a total function defined on ℘(WDC) × ℘(WDC). SDC is
not a frame. We refer it as canonical structure.

Lemma 1. If Γ is a consistent set of formulas of L> that contains the formula
α ≯ β, then {γ | α > γ ∈ Γ} ∪ {¬β} is consistent.

Proof. Let Λ = {γ | α > γ ∈ Γ} and assume that Λ∪{¬β} is not consistent. So there
are β1, ... , βn of Λ such that ` ¬(β1∧...∧βn∧¬β). So, by the classical propositional
logic, ` β1 ∧ ... ∧ βn → β. By Rck, we have ` α > β1 ∧ ... ∧ α > βn → α > β.
So, ` ¬(α > β1 ∧ ... ∧ α > βn ∧ (α ≯ β)). This means that {α > β1, ... , α > βn,
α ≯ β} is not consistent, which contradicts the premise that Λ ∪ {(α ≯ β)} ⊆ Γ is
consistent.

148

Going Forth and Drawing Back in Nonmonotonic Inference

Theorem 5. Let SDC = 〈WDC ,~DC〉 be the canonical structure of DC. Then for
each α > β ∈ L> and each X ⊆WDC , ~DC(X, |α|DC) ⊆ |β|DC iff X ⊆ |α > β|DC .

Proof. Assume that X ⊆ |α > β|DC . ~DC(X, |α|DC) ⊆ |β|DC , by the definition of
~DC .

Conversely suppose that X * |α > β|DC . Then there is w ∈ X and w /∈
|α > β|DC . Since w is maximally consistent, (α ≯ β) ∈ w. By Lemma 1, {γ |
α > γ ∈ w} ∪ {¬β} is consistent. Since w ∈ X, {γ | X ⊆ |α > γ|DC} ⊆ {γ |
w ∈ |α > γ|DC} = {γ | α > γ ∈ w}. Thus, {γ | X ⊆ |α > γ|DC} ∪ {¬β} is
consistent as well. By the Lindenbaum’s lemma, it has a maximally consistent
extension w1 such that {γ | X ⊆ |α > γ|DC} ⊆ w1 and ¬β ∈ w1. By the definition
of ~DC , w1 ∈ ~DC(X, |α|DC). Nevertheless, since ¬β ∈ w1, w1 /∈ |β|DC . Thus,
~DC(X, |α|DC) * |β|DC .

Theorem 6. [|α|DC , |β|DC]DC = |α > β|DC
Proof. According to Definition 2, [|α|DC , |β|DC]DC =

⋃
{X ⊆WDC |

~DC(X, |α|DC) ⊆ |β|DC}. By Theorem 5, for any X ⊆ WDC , if X ⊆ |α > β|DC ,
then ~DC(X, |α|DC) ⊆ |β|DC . Hence, X ⊆ [|α|DC , |β|DC]DC . Therefore, |α > β|DC
⊆ [|α|DC , |β|DC]DC .

To show the other direction of the inclusion, let us take any arbitrary w ∈WDC

such that w ∈ [|α|DC , |β|DC]DC . There must be an X ⊆WDC such that w ∈ X and
~DC(X, |α|DC) ⊆ |β|DC . By Theorem 5, X ⊆ |α > β|DC . So, w ∈ |α > β|DC .

Theorem 7. The canonical structure SDC = 〈WDC ,~DC〉 satisfies:

1. If X ⊆ X ′ ⊆WDC , then ~DC(X, |α|DC) ⊆ ~DC(X ′, |α|DC);

2. If ~({w}, |α|DC) ⊆ |β|DC for every w ∈ X ⊆ WDC , then ~(X, |α|DC) ⊆
|β|DC ;

3. If ~DC(|γ|DC , |α|DC) ⊆ |β|DC then ~DC(WDC , |γ|DC ∩ |α|DC) ⊆ |β|DC ;

4. ~DC(X, |α|DC) ⊆ |α|DC ;

5. If ~DC(X, |α|DC ∩ |β|DC) ⊆ |γ|DC , then ~DC(X, |α|DC ∩ |α > β|DC ∩
|β > γ|DC) ⊆ |γ|DC .

Proof. 1: Suppose that X ⊆ X ′, and w ∈ ~DC(X, |α|DC). Let X ′ ⊆ |α > β|DC ,
where β is an arbitrary formula. Since X ⊆ X ′, X ⊆ |α > β|DC . Since w ∈
~DC(X, |α|DC), by Definition 9(2), β ∈ w. Thus, {β | X ′ ⊆ |α > β|DC} ⊆ w. By
Definition 9(2), w ∈ ~DC(X ′, |α|DC).

149

Mao, Zhou and Liao

2: Suppose that ~({w}, |α|DC) ⊆ |β|DC for every w ∈ X ⊆ WDC and that
~(X, |α|DC) * |β|DC . There must be some w0 ∈ X such that w0 /∈ |α > β|DC (that
is, {w0} * |α > β|DC). By Theorem 5, ~({w0}, |α|DC) * |β|DC , which contradicts
our assumption.

3: Suppose that ~DC(|γ|DC , |α|DC) ⊆ |β|DC and that w ∈ ~DC(WDC , |γ|DC ∩
|α|DC). By Theorem 5, |γ|DC ⊆ |α > β|DC . Then |γ|DC = |γ|DC ∩ |α > β|DC .
Then |γ ∧ α|DC = |γ|DC∩|α|DC = |γ|DC∩|α > β|DC∩|α|DC = |α ∧ (α > β) ∧ γ|DC .
Since (α ∧ (α > β)) > β is an axiom of DC, by the rule Rm, (α ∧ (α > β) ∧ γ) > β
is a theorem of DC. Thus, WDC ⊆ |((α ∧ (α > β) ∧ γ)) > β|DC = |(γ ∧ α) > β|DC .
By Definition 9(2), β ∈ w since w ∈ ~DC(WDC , |γ|DC ∩ |α|DC).

4: Suppose that w ∈ ~DC(X, |α|DC). Since α > α is an axiom of DC, X ⊆
|α > α|DC = WDC . Thus, α ∈ w, and hence w ∈ |α|DC .

5: |(α ∧ β) > γ|DC ⊆ |(α ∧ (α > β) ∧ (β > γ)) > γ|DC , due to the axiom RPT.
Thus, for any X ⊆WDC , if X ⊆ |(α ∧ β) > γ|DC , we have X ⊆
|(α ∧ (α > β) ∧ (β > γ)) > γ|DC . By Theorem 5, this is to say, if ~DC(X, |α|DC ∩
|β|DC) ⊆ |γ|DC then ~DC(X, |α|DC ∩ |α > β|DC ∩ |β > γ|DC) ⊆ |γ|DC .

This theorem states that all frame conditions required in Definition 3 are satisfied
in the canonical structure for those subsets ofWDC that are expressible by formulas.
This is a good result, but it is not strong enough to justify the completeness theorem
that we seek. Next, we will construct a finite model based on the canonical structure
and preserve this good result to the finite model where all subsets of its possible
worlds are expressible.

Definition 10. (closed under single negation) Given a formula α, ∼ α is defined
as the following formula:

∼ α =
{
β , if α is of the form ¬β,
¬α, otherwise

A set Γ of formulas is closed under single negation if ∼ α belongs to Γ whenever
α ∈ Γ.

Definition 11. (component closure) Given a set Γ of formulas, the component
closure of Γ, written as CCL(Γ), is the smallest set of formulas containing Γ that is
closed under subformulas and single negation.

It is crucial to note that if Γ is finite, then so is CCL(Γ).

Definition 12. (restricted MCS) Let Γ be a set of formulas. A restricted maximally
consistent set A over Γ is

150

Going Forth and Drawing Back in Nonmonotonic Inference

1. a subset of CCL(Γ);

2. a consistent set;

3. if A ⊆ B ⊆ CCL(Γ) then A = B.

Let WΓ denote the set containing all restricted maximally consistent sets over
Γ. When Γ is finite, so are WΓ and each element of WΓ. It is worth noting that
for any A ∈WΓ and α ∈ CCL(Γ), α ∈ A or ∼ α ∈ A.

Definition 13. Given any α ∈ CCL(Γ), let |α|Γ denote all restricted maximally
consistent sets over Γ that contain α. That is, |α|Γ = {A ∈WΓ | α ∈ A}.

An analogy of Lindenbaum’s Lemma holds:

Proposition 4. Given any α ∈ CCL(Γ), if α is consistent then there exists some
A ∈WΓ such that α ∈ A.

Proposition 5. For each α ∈ CCL(Γ) and each α→ β ∈ CCL(Γ), we have

1. |¬α|Γ = WΓ − |α|Γ
2. |α→ β|Γ = (WΓ − |α|Γ) ∪ |β|Γ

Definition 14. Let Γ be a set of formulas. Given any A ∈ WΓ, we define that
ϕA = α1 ∧ α2 ∧ ... ∧ αn, where A = {α1, α2, ... , αn}.

Definition 15. Let Γ be a set of formulas. Given any X ⊆ WΓ, we define that
ϕX = ϕA1 ∨ ϕA2 ∨ ... ∨ ϕAm, where X = {A1, A2, ... , Am}.

Proposition 6. According to Definition 15 above, we have:

1. for any X, Y ⊆WΓ, if X ⊆ Y then |ϕX |DC ⊆ |ϕY |DC ;

2. for each α ∈ CCL(Γ),
∣∣∣ϕ|α|Γ

∣∣∣
DC

= |α|DC .

Definition 16. Let Γ be a set of formulas. Define a mapping f : WDC −→ WΓ,
satisfying, for each wDC ∈WDC , f(wDC) = wΓ if wΓ ⊆ wDC .

Definition 17. Let g be a mapping ℘(WDC) −→ ℘(WΓ) such that, for any XDC ∈
℘(WDC), g(XDC) = {f(wDC) | wDC ∈ XDC}.

Definition 18. : Let g∗ be a mapping ℘(WΓ) −→ ℘(WDC), such that, for any
XΓ ∈ ℘(WΓ), g∗(XΓ) = {wDC ∈WDC | ∃xΓ ∈ XΓ(f(wDC) = xΓ)}.

151

Mao, Zhou and Liao

It is clear that f , g, g∗ are functions. As a matter of fact, f and g are surjections,
and g∗ is an injection.

Proposition 7. Here are some properties of functions g and g∗:

1. For any XDC , X ′DC ⊆WDC , if XDC ⊆ X ′DC then g(XDC) ⊆ g(X ′DC)

2a. For any XΓ, X ′Γ ⊆WΓ, if XΓ ⊆ X ′Γ then g∗(XΓ) ⊆ g∗(X ′Γ)

3a. For each XΓ ⊆WΓ, g(g∗(XΓ)) ⊆ XΓ

2b. For any XΓ, X ′Γ ⊆WΓ, if g∗(XΓ) ⊆ g∗(X ′Γ) then XΓ ⊆ X ′Γ
3b. For each XΓ ⊆WΓ, XΓ ⊆ g(g∗(XΓ))

2. For any XΓ, X ′Γ ⊆WΓ, XΓ ⊆ X ′Γ iff g∗(XΓ) ⊆ g∗(X ′Γ)

3. For each XΓ ⊆WΓ, g(g∗(XΓ)) = XΓ

4. For each XDC ⊆WDC , XDC ⊆ g∗(g(XDC))

5. For any XΓ, X ′Γ ⊆WΓ, g∗(XΓ ∩X ′Γ) = g∗(XΓ) ∩ g∗(X ′Γ)

6. For each XΓ ⊆WΓ, g∗(XΓ) =
∣∣∣ϕXΓ

∣∣∣
DC

7. For each XΓ ⊆WΓ, g(|ϕXΓ |DC) = g(g∗(XΓ)) = XΓ

8. WDC = g∗(WΓ) = |ϕWΓ |DC
9. For any XΓ, X ′Γ ⊆WΓ, |ϕXΓ |DC ∩ |ϕYΓ |DC = |ϕXΓ∩YΓ |DC

10. For each α ∈ CCL(Γ), g∗(|α|Γ) =
∣∣∣ϕ|α|Γ

∣∣∣
DC

= |α|DC

11. For each α ∈ CCL(Γ), g(|α|DC) = |α|Γ
12. For each α ∈ CCL(Γ), g∗(g(|α|DC)) = |α|DC

Proof. 1: Suppose that wΓ ∈ g(XDC) for an arbitrary wΓ ∈ WΓ. By the definition
of g, there must be some wDC ∈ XDC such that f(wDC) = wΓ. Since XDC ⊆ X ′DC ,
wDC ∈ X ′DC . By the definition of g again, wΓ ∈ g(X ′DC) and hence g(XDC) ⊆
g(X ′DC).

2a: Suppose that XΓ ⊆ X ′Γ and wDC ∈ g∗(XΓ) for an arbitrary wDC ∈ WDC .
By the definition of g∗, there must be some wΓ ∈ XΓ such that f(wDC) = wΓ.

152

Going Forth and Drawing Back in Nonmonotonic Inference

Since XΓ ⊆ X ′Γ, wΓ ∈ X ′Γ. By the definition of g∗ again, wDC ∈ g∗(X ′Γ) and hence
g∗(XΓ) ⊆ g∗(X ′Γ).

3a: Suppose that wΓ ∈ g(g∗(XΓ)) for an arbitrary wΓ ∈ WΓ. By the definition
of g, there must be some wDC ∈ g∗(XΓ) such that f(wDC) = wΓ. Then, by the
definition of g∗, wΓ ∈ XΓ. So, g(g∗(XΓ)) ⊆ XΓ.

2b: Suppose that g∗(XΓ) ⊆ g∗(X ′Γ) and wΓ ∈ XΓ for an arbitrary wΓ ∈ WΓ.
Since {wΓ} ⊆ XΓ, according to 2a, g∗({wΓ}) ⊆ g∗(XΓ). Thus, g∗({wΓ}) ⊆ g∗(X ′Γ).
By the item 1, g(g∗({wΓ})) ⊆ g(g∗(X ′Γ)). By the definition of g∗, g∗({wΓ}) =
{wDC ∈WDC | f(wDC) = wΓ}. Then, g(g∗({wΓ})) = {wΓ}. In addition, g(g∗(X ′Γ))
⊆ X ′Γ, by 3a. So, {wΓ} ⊆ X ′Γ and hence wΓ ∈ X ′Γ.

3b: Suppose that wΓ ∈ XΓ. By the definition of g∗, g∗({wΓ}) = {wDC ∈
WDC | f(wDC) = wΓ}. Thus, g(g∗({wΓ})) = {wΓ}. Since {wΓ} ⊆ XΓ, according
to the item 1 and 2a, g(g∗({wΓ})) ⊆ g(g∗(XΓ)). So, {wΓ} ⊆ g(g∗(XΓ)) and hence
wΓ ∈ g(g∗(XΓ)). Thus, XΓ ⊆ g(g∗(XΓ)).

2 can be obtained from 2a and 2b.
3 can be obtained from 3a and 3b.
4: Suppose that wDC ∈ XDC . Then, f(wDC) ∈ g(XDC). By the definition of g∗,

g∗({f(wDC)}) = {w′DC ∈ WDC | f(w′DC) = f(wDC)}. Thus,wDC ∈ g∗({f(wDC)}).
Since {f(wDC)} ⊆ g(XDC), according to item 2, g∗({f(wDC)}) ⊆ g∗(g(XDC)). So,
wDC ⊆ g∗(g(XDC)) and hence XDC ⊆ g∗(g(XDC)).

5: Since (XΓ∩X ′Γ) ⊆ XΓ and (XΓ∩X ′Γ) ⊆ X ′Γ, according to item 2, g∗(XΓ∩X ′Γ) ⊆
g∗(XΓ) and g∗(XΓ ∩X ′Γ) ⊆ g∗(X ′Γ). Then, g∗(XΓ ∩X ′Γ) ⊆ g∗(XΓ) ∩ g∗(X ′Γ).

Suppose that wDC ∈ g∗(XΓ) ∩ g∗(X ′Γ) for an arbitrary wDC ∈ WDC . By the
definition of g∗, there must be some xΓ ∈ XΓ such that f(wDC) = xΓ and x′Γ ∈ X ′Γ
such that f(wDC) = x′Γ . Since f is a function, xΓ = x′Γ and xΓ ∈ XΓ ∩X ′Γ. By the
definition of g∗ again, wDC ∈ g∗(XΓ ∩X ′Γ). So, g∗(XΓ) ∩ g∗(X ′Γ) ⊆ g∗(XΓ ∩X ′Γ).

6: Suppose that wDC ∈ g∗(XΓ) for an arbitrary wDC ∈WDC . By the definition
of g∗, there must be some xΓ ∈ XΓ such that f(wDC) = xΓ. By the definition of f ,
xΓ ⊆ wDC . Since wDC is a maximally consistent set of DC, ϕxΓ

∈ wDC . Hence,
ϕXΓ

∈ wDC . So, g∗(XΓ) ⊆
∣∣∣ϕXΓ

∣∣∣
DC

.

Suppose that wDC ∈
∣∣∣ϕXΓ

∣∣∣
DC

for an arbitrary wDC ∈WDC . Then ϕXΓ
∈ wDC .

Since wDC is a maximally consistent set of DC, there must be some xΓ ∈ XΓ such
that ϕxΓ

∈ wDC . Hence, xΓ ⊆ wDC and f(wDC) = xΓ. Thus wDC ∈ g∗(XΓ). So,∣∣∣ϕXΓ

∣∣∣
DC
⊆ g∗(XΓ).

7: It follows from item 3 and 6.
8: By the definition of g∗, it is trivially true that g∗(WΓ) ⊆WDC . On the other

hand, by definition of f , g(WDC) ⊆ WΓ. By item 2, g∗(g(WDC)) ⊆ g∗(WΓ). By

153

Mao, Zhou and Liao

item 4, WDC ⊆ g∗(g(WDC)). Thus, WDC ⊆ g∗(WΓ).
g∗(WΓ) = |ϕWΓ |DC follows from item 6.
9: It follows from item 5 and 6.
10: Let XΓ = |α|Γ. By Proposition 6(2),

∣∣∣ϕ|α|Γ
∣∣∣
DC

= |α|DC . Thus,
∣∣∣ϕXΓ

∣∣∣
DC

=

|α|DC . By item 6, g∗(XΓ) =
∣∣∣ϕXΓ

∣∣∣
DC

. So, g∗(|α|Γ) = |α|DC . g∗(|α|Γ) =
∣∣∣ϕ|α|Γ

∣∣∣
DC

=
|α|DC .

11: By item 10, g(|α|DC) = g(g∗(|α|Γ)). By item 3, g(g∗(|α|Γ)) = |α|Γ. So,
g(|α|DC) = |α|Γ.

12: By item 11, g∗(g(|α|DC)) = g∗(|α|Γ). By item 10, g∗(|α|Γ) = |α|DC . So,
g∗(g(|α|DC)) = |α|DC .

Definition 19. Given a set Γ of formulas, we can construct a frame FΓ = 〈WΓ,~Γ〉,
where ~Γ is a function ℘(WΓ)×℘(WΓ) −→ ℘(WΓ), satisfying: for any XΓ, YΓ ⊆WΓ,
~Γ(XΓ, YΓ) = g(~DC(|ϕXΓ |DC , |ϕYΓ |DC)).

Lemma 2. [XΓ, YΓ]Γ = g([|ϕXΓ |DC , |ϕYΓ |DC]DC)

Proof. Show [XΓ, YΓ]Γ ⊆ g([|ϕXΓ |DC , |ϕYΓ |DC]DC). For an arbitrary wΓ ∈ [XΓ,
YΓ]Γ, there exists ZΓ such that wΓ ∈ ZΓ and ~Γ(ZΓ, XΓ) ⊆ YΓ. Thus, ~Γ({wΓ}, XΓ)
⊆ ~Γ(ZΓ, XΓ) ⊆ YΓ. g(~DC(

∣∣∣ϕ{wΓ}
∣∣∣
DC

, |ϕXΓ |DC)) ⊆ YΓ, by definition of ~Γ. By

Proposition 7(2,4,10), ~DC(
∣∣∣ϕ{wΓ}

∣∣∣
DC

, |ϕXΓ |DC) ⊆ g∗(g(~DC(
∣∣∣ϕ{wΓ}

∣∣∣
DC

,

|ϕXΓ |DC))) ⊆ g∗(YΓ) = |ϕYΓ |DC . By Theorem 5,
∣∣∣ϕ{wΓ}

∣∣∣
DC
⊆ |ϕXΓ > ϕYΓ |DC . By

Theorem 6,
∣∣∣ϕ{wΓ}

∣∣∣
DC
⊆ [|ϕXΓ |DC , |ϕYΓ |DC]DC . By Proposition 7(1), g(

∣∣∣ϕ{wΓ}
∣∣∣
DC

)

⊆ g([|ϕXΓ |DC , |ϕYΓ |DC]DC). By Proposition 7(11), wΓ ∈ g(
∣∣∣ϕ{wΓ}

∣∣∣
DC

) ⊆
g([|ϕXΓ |DC , |ϕYΓ |DC]DC).

Show g([|ϕXΓ |DC , |ϕYΓ |DC]DC) ⊆ [XΓ, YΓ]Γ. For any wΓ, if wΓ is an element
of g([|ϕXΓ |DC , |ϕYΓ |DC]DC), then there exists ZDC ⊆ WDC such that ~DC(ZDC ,
|ϕXΓ |DC) ⊆ |ϕYΓ |DC and wΓ ∈ g(ZDC). By Proposition 7(1, 11), g(~DC(ZDC ,
|ϕXΓ |DC)) ⊆ g(|ϕYΓ |DC) = YΓ. By definition of ~Γ, ~Γ(g(ZDC), XΓ) =
g(~DC(ZDC , |ϕXΓ |DC)) ⊆ YΓ. Since wΓ ∈ g(ZDC), ~Γ({wΓ}, XΓ) ⊆ ~Γ(g(ZDC),
XΓ) ⊆ YΓ. By definition of [XΓ, YΓ]Γ, {wΓ} ⊆ [XΓ, YΓ]Γ. Hence, wΓ ∈ [XΓ, YΓ]Γ.

Lemma 3.
∣∣∣ϕ[XΓ,YΓ]Γ

∣∣∣
DC

= |ϕXΓ > ϕYΓ |DC

Proof. By Lemma 2, [XΓ, YΓ]Γ = g([|ϕXΓ |DC , |ϕYΓ |DC]DC). By Theorem 6,
[|ϕXΓ |DC , |ϕYΓ |DC]DC = |ϕXΓ > ϕYΓ |DC . g∗([XΓ, YΓ]Γ) =
g∗(g([|ϕXΓ |DC , |ϕYΓ |DC]DC)) = g∗(g(|ϕXΓ > ϕYΓ |DC)). g∗([XΓ, YΓ]Γ) =

154

Going Forth and Drawing Back in Nonmonotonic Inference

∣∣∣ϕ[XΓ,YΓ]Γ

∣∣∣
DC

and g∗(g(|ϕXΓ > ϕYΓ |DC)) = |ϕXΓ > ϕYΓ |DC , by Proposition 7(10,12).

Therefore,
∣∣∣ϕ[XΓ,YΓ]Γ

∣∣∣
DC

= |ϕXΓ > ϕYΓ |DC .

Theorem 8. ~Γ satisfies conditions 2(a)-2(e) in Definition 3.

Proof. 2(a): Let us show that, for any XΓ, X ′Γ, YΓ ⊆ WΓ, if XΓ ⊆ X ′Γ then
~Γ(XΓ, YΓ) ⊆ ~Γ(X ′Γ, YΓ). Suppose that XΓ ⊆ X ′Γ. Then |ϕXΓ |DC ⊆

∣∣∣ϕX′Γ
∣∣∣
DC

.

By Theorem 7(1), ~DC(|ϕXΓ |DC , |ϕYΓ |DC) ⊆ ~DC(
∣∣∣ϕX′Γ

∣∣∣
DC

, |ϕYΓ |DC).

g(~DC(|ϕXΓ |DC ,|ϕYΓ |DC)) ⊆ g(~DC(
∣∣∣ϕX′Γ

∣∣∣
DC

, |ϕYΓ |DC)), by Proposition 7(1).
Then, ~Γ(XΓ, YΓ) ⊆ ~Γ(X ′Γ, YΓ), by the definition of ~Γ.

2(b): We show that, for any XΓ, YΓ, ZΓ ⊆ WΓ, if ~Γ({wΓ}, YΓ) ⊆ ZΓ for
every wΓ ∈ XΓ, then ~Γ(XΓ, YΓ) ⊆ ZΓ. Suppose that ~Γ({wΓ},YΓ) ⊆ ZΓ for
every wΓ ∈ XΓ. By the definition of ~Γ and Proposition 7(2), g∗(~Γ({wΓ},YΓ))
⊆ g∗(ZΓ) for every wΓ ∈ XΓ. By the definition of ~Γ and Proposition 7(4,6), for
every wΓ ∈ XΓ, ~DC(

∣∣∣ϕ{wΓ}
∣∣∣
DC

, |ϕYΓ |DC) ⊆ g∗(g(~DC(
∣∣∣ϕ{wΓ}

∣∣∣
DC

, |ϕYΓ |DC))) =
g∗(~Γ({wΓ},YΓ)) ⊆ g∗(ZΓ) = |ϕZΓ |DC . For any wDC ∈ |ϕXΓ |DC , there must be
some w′Γ ∈ XΓ such that wDC ∈

∣∣∣ϕ{w′Γ}
∣∣∣
DC

. By Theorem 7(1), ~DC({wDC},
|ϕYΓ |DC) ⊆ ~DC(

∣∣∣ϕ{wΓ′}
∣∣∣
DC

, |ϕYΓ |DC) ⊆ |ϕZΓ |DC . By Theorem 7(2), we have
~DC(|ϕXΓ |DC , |ϕYΓ |DC) ⊆ |ϕZΓ |DC . g(~DC(|ϕXΓ |DC ,|ϕYΓ |DC)) ⊆ g(|ϕZΓ |DC] =
g(g∗(ZΓ)), by Proposition 7(1). ~Γ(XΓ, YΓ) ⊆ ZΓ, by the definition of ~Γ and
Proposition 7(3).

2(c): It can be shown that, for any XΓ, YΓ, ZΓ ⊆ WΓ, if ~Γ(XΓ, YΓ) ⊆ ZΓ
then ~Γ(WΓ, XΓ ∩ YΓ) ⊆ ZΓ. Suppose that ~Γ(XΓ, YΓ) ⊆ ZΓ. ~DC(|ϕXΓ |DC ,
|ϕYΓ |DC) ⊆ |ϕZΓ |DC , by the definition of ~Γ and Proposition 7(2,4,6). By The-
orem 7(3), we have ~DC(WDC , |ϕXΓ |DC ∩ |ϕYΓ |DC) ⊆ |ϕZΓ |DC . Since WDC =
|ϕWΓ |DC and |ϕXΓ |DC∩|ϕYΓ |DC = |ϕXΓ∩YΓ |DC , we have~DC(|ϕWΓ |DC , |ϕXΓ∩YΓ |DC)
⊆ g∗(ZΓ). By the definition of ~Γ and Proposition 7(3,1), ~Γ(WΓ, XΓ ∩ YΓ) ⊆ ZΓ.

2(d): Given any XΓ, YΓ ⊆WΓ, ~DC(|ϕXΓ |DC ,|ϕYΓ |DC) ⊆ |ϕYΓ |DC , by Theorem
7(4). By Proposition 7(1,7), g(~DC(|ϕXΓ |DC ,|ϕYΓ |DC)) ⊆ g(|ϕYΓ |DC) = g(g∗(YΓ))
= YΓ. By the definition of ~Γ, ~Γ(XΓ,YΓ) ⊆ YΓ.

2(e): Given any XΓ, YΓ, Y ′Γ, ZΓ ⊆ WΓ, suppose that ~Γ(XΓ,YΓ ∩ Y ′Γ) ⊆ ZΓ.
According to the definition of ~Γ, we have g(~DC(|ϕXΓ |DC ,

∣∣∣ϕYΓ∩Y ′Γ

∣∣∣
DC

)) ⊆ ZΓ.

By Proposition 7(2,4,6,9), ~DC(|ϕXΓ |DC ,
∣∣∣ϕYΓ∩Y ′Γ

∣∣∣
DC

) = ~DC(|ϕXΓ |DC , |ϕYΓ |DC ∩∣∣∣ϕY ′Γ
∣∣∣
DC

) ⊆ |ϕZΓ |DC . Then, ~DC(|ϕXΓ |DC , |ϕYΓ |DC ∩∣∣∣ϕYΓ > ϕY ′Γ

∣∣∣
DC
∩
∣∣∣ϕY ′Γ > ϕZΓ

∣∣∣
DC

) ⊆ |ϕZΓ |DC , by Theorem 7(5). ~DC(|ϕXΓ |DC ,

155

Mao, Zhou and Liao

∣∣∣ϕYΓ∩[YΓ,Y ′Γ]∩[Y ′Γ,ZΓ]
∣∣∣
DC

) ⊆ |ϕZΓ |DC , by Lemma 3. g(~DC(|ϕXΓ |DC , |ϕYΓ |DC ∩∣∣∣ϕ[YΓ,Y ′Γ]
∣∣∣
DC
∩
∣∣∣ϕ[Y ′Γ,ZΓ]

∣∣∣
DC

)) ⊆ g(|ϕZΓ |DC), by Proposition 7(1,9). By Definition
the definition of ~Γ and Proposition 7(7), ~Γ(XΓ,YΓ ∩ [YΓ, Y

′
Γ]∩ [Y ′Γ, ZΓ]) ⊆ ZΓ.

Lemma 4. Given any finite set Γ of formulas, formulas α and β, and XΓ ⊆ WΓ,
~Γ(XΓ,|α|Γ) ⊆ |β|Γ iff ~DC(|ϕXΓ |DC ,

∣∣∣ϕ|α|Γ
∣∣∣
DC

) ⊆ |β|DC .

Proof. Suppose that ~Γ(XΓ,|α|Γ) ⊆ |β|Γ. g(~DC(|ϕXΓ |DC ,
∣∣∣ϕ|α|Γ

∣∣∣
DC

)) ⊆ |β|Γ, by
Definition 19. Then g∗(g(~DC(|ϕXΓ |DC ,

∣∣∣ϕ|α|Γ
∣∣∣
DC

))) ⊆ g∗(|β|Γ), by Proposition
7 (2). Then g∗(g(~DC(|ϕXΓ |DC ,|α|DC))) ⊆ |β|DC , by Proposition 7 (10). Then
~DC(|ϕXΓ |DC ,|α|DC) ⊆ |β|DC , by Proposition 7 (4).

To prove the other direction of inclusion, suppose that ~DC(|ϕXΓ |DC , |α|DC)
⊆ |β|DC . By Proposition 7 (1), g(~DC(|ϕXΓ |DC ,

∣∣∣ϕ|α|Γ
∣∣∣
DC

)) ⊆ g(|β|DC). Then
~Γ(XΓ,|α|Γ) ⊆ |β|Γ, by Definition 19 and Proposition 7 (10,11).

Lemma 5. Given any finite set Γ of formulas, formulas α and β, and XΓ ⊆ WΓ,
|ϕXΓ |DC ⊆ |α > β|DC iff g(|ϕXΓ |DC) ⊆ g(|α > β|DC).

Proof. By Proposition 7 (2), g(|ϕXΓ |DC) ⊆ g(|α > β|DC) if and only if
g∗(g(|ϕXΓ |DC) ⊆ g∗(g(|α > β|DC)). By Proposition 7 (12), g∗(g(|ϕXΓ |DC)) =
|ϕXΓ |DC and g∗(g(|α > β|DC)) = |α > β|DC . It follows that g∗(g(|ϕXΓ |DC)) ⊆
g∗(g(|α > β|DC)) iff |ϕXΓ |DC ⊆ |α > β|DC . Therefore, |ϕXΓ |DC ⊆ |α > β|DC iff
g(|ϕXΓ |DC) ⊆ g(|α > β|DC).

Theorem 9. Given a set Γ of formulas, we can construct a model MΓ =〈WΓ,~ΓσΓ〉,
where σΓ is an assignment function satisfying: for each propositional variable p,
σΓ(p) = {wΓ ∈ WΓ | p ∈ wΓ}. Then, for each ϕ ∈ CCL(Γ), we have ‖ϕ‖MΓ = |ϕ|Γ.
That is, for each XΓ ⊆WΓ, MΓ �XΓ ϕ iff XΓ ⊆ |ϕ|Γ.

Proof. We prove this theorem by induction on ϕ.
Case 1: ϕ is a propositional variable p. By the definition of ‖ϕ‖MΓ , σΓ(p) and

|ϕ|Γ, ‖ϕ‖MΓ = ‖p‖Γ = σΓ(p) = |p|Γ.
Case 2: ϕ is in the form of ¬α. ‖ϕ‖MΓ = ‖¬α‖Γ = WΓ−‖α‖Γ. By the induction

hypothesis, ‖ϕ‖MΓ = WΓ − |α|Γ. By Proposition 5(1), ‖ϕ‖MΓ = |¬α|Γ = |ϕ|Γ.
Case 3: ϕ is in the form of α→ β. ‖ϕ‖MΓ = ‖α→ β‖Γ = (WΓ − ‖α‖Γ) ∪ ‖β‖Γ.

By the induction hypothesis, ‖ϕ‖MΓ = (WΓ − |α|Γ) ∪ |β|Γ. By Proposition 5(2),
‖ϕ‖MΓ = |α→ β|Γ = |ϕ|Γ.

156

Going Forth and Drawing Back in Nonmonotonic Inference

Case 4: ϕ is in the form of α > β. ‖ϕ‖MΓ = ‖α > β‖Γ = ⋃{XΓ ⊆ WΓ |
~Γ(XΓ, ‖α‖Γ) ⊆ ‖β‖Γ}. By the induction hypothesis, ‖ϕ‖MΓ = ⋃{XΓ ⊆ WΓ |
~Γ(XΓ, |α|Γ) ⊆ |β|Γ}. By Lemma 4, ‖ϕ‖MΓ = ⋃{XΓ ⊆WΓ | ~DC(|ϕXΓ |DC , |α|DC)
⊆ |β|DC}. By Theorem 5, ‖ϕ‖MΓ = ⋃{XΓ ⊆ WΓ | |ϕXΓ |DC ⊆ |α > β|DC}. By
Lemma 5, ‖ϕ‖MΓ = ⋃{XΓ ⊆ WΓ | g(|ϕXΓ |DC) ⊆ g(|α > β|DC)} = ⋃{XΓ ⊆ WΓ |
XΓ ⊆ |α > β|Γ} = |α > β|Γ = |ϕ|Γ.

The completeness theorem (Theorem 4) follows from the above Theorem 8 and
Theorem 9.

What we have proved is the frame-completeness. That is, the system DC is
complete with respect to the class of all L>-frames. This result is stronger than
the model-completeness that was often proved for some systems of defaults like
in Delgrande’s work ([8]). Since the small model we construct to falsify a given
unprovable formula is finite, the finite model property and decidability of the system
DC naturally follow.

5 What to give up
Given a premise set Γ, the system DC enables us to deduce all default conclusions
of Γ. These default conclusions are intermediate conclusions of Γ, and are not yet
warranted. When a set Γ of premises is not itself inconsistent, its default conclusions
may be contradictory. To avoid contradictions to be warranted as conclusions of
Γ, we will have to give up some default conclusions while retaining more preferable
ones. In this section we discuss which default conclusions to give up in face of
contradiction, in order to obtain warranted conclusions.

5.1 Definition of |∼
Definition 20. Given a set Γ of formulas, �Γ denotes a transitive binary relation
on Γ. Let α �Γ β (α, β ∈ Γ) be an abbreviation for (α �Γ β) and ¬(β �Γ α).

It is easy to see that �Γ is irreflexive, asymmetric and transitive. �Γ can be
understood as a relation of “more preferable than”. When the domain Γ of the
relation �Γ has been clearly stated in a context and no confusion will arise, the
subscript may be omitted.

Definition 21. Given a set Γ of formulas and a relation � defined on it, let D be
a binary relation on ℘(Γ), satisfying: ∀∆,Θ ⊆ Γ, ∆ D Θ iff ∃δ∃θ((δ ∈ ∆) ∧ (θ ∈
Θ) ∧ (δ � θ)). If ∆ D Θ and Θ 4 ∆, then we say that ∆ is more preferable than Θ
and denote this relation by ∆ B Θ.

157

Mao, Zhou and Liao

In daily life, people naturally tend to have preferences among statements. For
example, scientific announcement is more trustworthy than folk gossip. Thus, the
initial preference relation is defined among formulas as in Definition 20. However,
an argument often has more than one premise. When the underlying logic remains
the same, the strength of an argument is determined by the strength of its premises.
To compare the strength of two arguments, it is insufficient to compare only one
premise from each side. Rather, their entire premise sets have to be compared
for the overall preference. Due to this consideration, the initial preference relation
among formulas has to be extended to cover the preference relation among sets of
formulas. Definition 21 serves this purpose. The defined relation B of “more
preferable than” among sets of premises is asymmetric.

Proposition 8. Let B be a binary relation defined on ℘(Γ), as stated in Definition
21. For all ∀∆,Θ ⊆ Γ, if ∆ B Θ then Θ 7 ∆.

For a default conclusion α, it could be the case that it is simultaneously supported
by several local arguments. Similarly, there may also be several arguments locally
supporting its rival conclusion ¬α. In order to determine which default conclusion
should eventually come out as the global conclusion, two groups of arguments have
to be compared for their strength. This can be done through comparing two groups
of premise sets, with everything else being equal. Thus, there is a need to further
define a preference relation m among sets of premise sets in terms of B. The domain
of the relation m is now ℘(℘(Γ)), which is on a higher level than ℘(Γ).

Definition 22. Given a binary relation B defined on ℘(Γ) via �Γ, let m be a binary
relation on ℘(℘(Γ)), satisfying: ∀Φ,Ψ ⊆ ℘(Γ), ΦmΨ iff ∀Θ((Θ ∈ Ψ) → ∃∆((∆ ∈
Φ) ∧ (∆ B Θ))). If ΦmΨ and Ψ 6 mΦ, then we say that Φ is more preferable than Ψ
and denote this relation by ΦmΨ.

The relation m so defined is asymmetric, as stated in the Proposition 9.

Proposition 9. Let m be a binary relation defined on ℘(℘(Γ)) as stated in Definition
22. For all ∀Φ,Ψ ⊆ ℘(Γ), if ΦmΨ then Ψ 6 mΦ.

From a mathematical point of view, there are many ways of obtaining an ordering
over ℘(Γ) and ℘(℘(Γ)) on the basis of an ordering over Γ. Thus, it is not immediately
obvious which among them are the most appropriate for these purposes. Our choice
of the definitions is guided and corrected in our trials by seeing their results.

Definition 23. Let Γ be a set of formulas. We say that Γ is consistent iff there is
no formula α such that α ∈ Γ and ¬α ∈ Γ.

158

Going Forth and Drawing Back in Nonmonotonic Inference

Definition 24. Let ∆ = {α1, α2, ..., αn} be a non-empty finite set of formulas.
∧∆ = α1 ∧ α2 ∧ ... ∧ αn, n > 1

Definition 25. Given a finite set ∆ of formulas and a formal logic system S(L),
Cn(∆) = {α |`S(L) (∧∆) > α}, and

CN (∆) =
{
Cn(∆), if Cn(∆) is consistent
∅, otherwise .

Definition 26. Given a set Γ of formulas and a formal logic system S(L), CM (Γ) =
{α | ∃∆ ⊆ Γ, `S(L) (∧∆)→ α}.

The elements of CM (Γ) are called deductive consequences of Γ. If the Deduction
Theorem holds in S(L) (i.e., `S(L) (∧∆) → α iff ∧∆ `S(L) α), then CM (Γ) is
the deductive closure of Γ in logic S(L). The operation of deductive closure is
idempotent, that is, CM (Γ) = CM (CM (Γ)). Moreover, for any Γ ⊆ Γ′ ⊆ CM (Γ),
CM (Γ) = CM (Γ′).

Definition 27. Given a set Γ of formulas, let CCLM (Γ) = CCL(Γ) ∩ CM (Γ).
CCLM (Γ) is the set of all components of Γ that are also deductive consequences
of Γ.

It is easy to see that Γ ⊆ CCLM (Γ) ⊆ CM (Γ). If Γ is finite, so is CCLM (Γ).
The intention of defining CCLM (Γ) is to have a finite version of some “relevant”
deductive consequences of Γ. For instance, all theorems of S(L) will be included
in CM (Γ), but they are not relevant to Γ in the sense that they are derivable in
S(L) with or without Γ. On the other hand, if α,α → β ∈ Γ, we would like to
have β ∈ CCLM (Γ). Putting it in metaphorical words, CCLM (Γ) disassembles Γ
into its components, catches those that are previously embedded as consequents of
material implications in Γ, and then brings them to the surface for future use. The
set CCLM (Γ) retains “useful” deductive consequences of Γ like β to our task. In the
meantime, the size of CCLM (Γ) is cut down to finite. This makes CCLM (Γ) more
manageable than CM (Γ) for future use.

Definition 28. Given a set ∆ of formulas and a formula α, ∆ is called a simplest
premise set of α with respect to the >-inference, if

1. α ∈ CN (∆), and

2. for any Θ ⊂ CCLM (∆), α /∈ CN (Θ).

The first clause of the definition above ensures that ∆ is a premise set of α
with respect to the >-inference. The second clause requires ∆ to be as simple as

159

Mao, Zhou and Liao

possible. The requirement of being the simplest places restrictions on ∆ in two
dimensions. One is that ∆ does not contain more premises than needed. The type
of inference based on “normally follows”, unlike the material implication →, can
be influenced by additional premises. The notion of the simplest premise set is to
rule out those premises that have no contribution to obtaining α in a >-inference.
The other dimension is that each premise must be in a simple form like atomic
formulas, their negations, and >-formulas. This is to prevent additional premises
from hiding in complex formulas like→-formulas and disjunctions. For example, let
∆ = {p > r, p > r → q > ¬r, q}. ¬r ∈ CN (∆), but ∆ is not a simplest premise set
of α. ∆ is equivalent to ∆′ = {p > r, q > ¬r, q}. In ∆′, p > r is an extra premise
for the default conclusion ¬r. Let Θ = {q > ¬r, q} ⊂ CCLM (∆). Θ is a simplest
premise set of ¬r.

For the → related inference, there is no need to talk about the simplest premise
set, since →-inference is monotonic and does not “fear” additional premises. For
simplicity, we will hereafter omit the phrase of “with respect to the >-inference”,
and just say “∆ is a simplest premise set of α” or “∆ is not a simplest premise set
of α”.

Definition 29. For any formula α, a set Γ of formulas, and a formal logic system
S(L), let SPSΓ(α) = {∆ | ∆ is a simplest premise set of α, and ∆ ⊆ CCLM (Γ) }
denote all Γ-relevant simplest premise sets of α.

SPSΓ(α) is the set of all simplest premise sets of α that consist of deductive
consequences of Γ.

Definition 30. Given a finite set Γof formulas and a transitive binary relation �
on CCLM (Γ), and a formula α,

Γ |∼S(L),� α iff

1. α ∈ CM (Γ), or

2. the following three conditions are satisfied:

(2a) ¬α /∈ CM (Γ);
(2b) SPSΓ(α) 6= ∅;
(2c) if SPSΓ(¬α) 6= ∅, then SPSΓ(α)m SPSΓ(¬α).

Let CN(Γ) = {α | Γ |∼S(L),� α}. CN(Γ) denotes the set of all global conclusions
of Γ with respect to S(L) and �.

160

Going Forth and Drawing Back in Nonmonotonic Inference

The first disjunct in the above definition includes all deductive consequences
of Γ as its global conclusions. Logicians are inclined to give higher preference to
deductive conclusions than to default conclusions. By and large, they require if
Γ ` α then Γ |∼ α, but not vice versa. As ` and |∼ are defined with respect to a
certain logic system, there could be variations of this requirement. For example,
anything that can be deductively inferred by Γ in PC (or in First Order Logic, or in
the same logic upon which |∼ is defined) should also be nonmonotonically inferred.
Definition 30 guarantees that CM (Γ) ⊆ CN(Γ).

The second disjunct expands the boundary of CN(Γ) to include some of default
conclusions as well. There are three conditions a default conclusion α must satisfy
in order to be included in CN(Γ) as a global conclusion. First, α does not conflict
with a deductive consequence of Γ. Second, there exists some simplest premise
set of α that infers it as a default conclusion. At last, if there are premise sets
that infer ¬α, then the group of premise sets of α must have higher rank than
the group of premise sets of ¬α. The last condition lays out the criterion for
resolving conflicting default conclusions. A default conclusion α may well be a local
conclusion of several simplest premise sets respectively. Similarly, its rival ¬α may
also be backed up by a number of simplest premise sets from different aspects. To
determine which one of the conflicting default conclusions should be kept as a global
conclusion, comparing one premise set from each side will not be sufficient. Instead,
the entire groups of the simplest premise sets from both sides should be compared
for preference. Namely, the default conclusion that is overall supported by the more
preferable reasons should win the battle. That is why the initial preference relation
among premises has been lifted two levels high up via Definition 21 and Definition
22. The derived preference relation among groups of premise sets is needed for
conflict resolution in this definition.

The first condition reflects the deductive-consequence-first principle. Recall that
the characterizing feature of reasoning with defaults is that the conclusions are de-
feasible. When should a default conclusion be retracted? The most straightforward
answer is “in the light of new evidence”. It is often said that if new evidence con-
flicts with the previous conclusion, then the new evidence wins out and the previous
conclusion should be discarded. This describes people’s preference for firm facts
over “soft” default conclusions. We tend to yield the latter to the former. On
the one hand, given facts are deductive consequences of their own. On the other
hand, deductive consequences of given facts are as reliable as facts themselves. The
deductive-consequence-first principle, covering fact-first principle, is a more broad
principle.

In the second and third conditions, the notion of simplest premise set is used.
The requirement of simplest premise sets is to eliminate side effects from additional

161

Mao, Zhou and Liao

premises. These premises may block α to be inferred as a global conclusion by
altering the preference relation between two premise sets ∆ and Θ. For example,
suppose that Γ = {p, p > q, r, r > ¬q, s}, and that �= {〈p, r〉, 〈s, p〉}. Let ∆ =
{p, p > q} and Θ = {r, r > ¬q}, and they are simplest premise sets. Then, q ∈
CN (∆), ¬q ∈ CN (Θ), and ∆ B Θ. So, q ∈ CN(Γ). If it were not required that
Θ must be a simplest premise set, then Θ could be {r, r > ¬q, s}. As a result,
∆ 7 Θ, and now q /∈ CN(Γ). This blocking effect caused by irrelevant premises
is unwelcome and must be excluded. The requirement of simplest premise sets
matches with the two-phase framework. The phase of inferring default conclusions
only focuses on needed premises. This phase should not be distracted by additional
premises. The defeasibility of default conclusions caused by additional premises is
to be managed in the second phase via preference relations.

Definition 30 uses the relation � that is defined on CCLM (Γ). Note that it is
defined neither on Γ nor on CM (Γ). There are two reasons for constructing an
intermediate set CCLM (Γ) and taking its preference relation in Definition 30. One
reason is to manage examples like this: Let Γ = {p, q, s, s → p > q, p > ¬r, q > r}.
Then ask whether ¬r ∈ CN(Γ). Γ is very similar to the premise set of the Tweety
bird example (example (9) in Section 1), except that p > q ∈ CCLM (Γ) but p > q /∈
Γ. That is why we must make use of the preference relation on CCLM (Γ). Another
reason is that CCLM (Γ) is finite, while CM (Γ) is not. The check-up of condition (2c)
in Definition 30 can be well under control if the preference relation is defined on the
finite set CCLM (Γ).

Theorem 10. If CM (Γ) is consistent, then CN(Γ) is consistent.

Proof. Suppose that there is a formula α0 such that both α0 ∈ CN(Γ) and ¬α0 ∈
CN(Γ). In the case that α0 ∈ CN(Γ) because α0 ∈ CM (Γ): Since CM (Γ) is
consistent, ¬α0 /∈ CM (Γ); Also, ¬α0 cannot be a member of CN(Γ) by going
through the second disjunct of Definition 30 because condition (2a) is not satis-
fied. Thus, ¬α0 /∈ CN(Γ). Similarly, in the case that ¬α0 ∈ CN(Γ) because
¬α0 ∈ CM (Γ), α0 /∈ CN(Γ). Now let us consider the case where both α0 /∈ CM (Γ)
and ¬α0 /∈ CM (Γ). By Definition 30, there are simplest premise sets for α0 and
¬α0, respectively. That is, SPSΓ(α) 6= ∅ and SPSΓ(¬α) 6= ∅. In addition, Defini-
tion 30 also requires that SPSΓ(α)m SPSΓ(¬α) and SPSΓ(¬α)m SPSΓ(α), which
contradicts Proposition 9.

Any non-empty CN (∆) represents default conclusions of Γ that are locally in-
ferred by a logic system S(L) from a subset ∆ of Γ. CN(Γ) is the set of all global
conclusions of Γ. It contains no more contradictory default conclusions that may
come from a couple of different CN (∆). The definition of |∼ is parameterized by

162

Going Forth and Drawing Back in Nonmonotonic Inference

two factors: the underlying logic system S(L) and the binary relation �. Besides
deriving deductive conclusions of Γ, the system S(L) is also the engine to generate
candidates of default conclusions for global conclusions of Γ, and provides power
to push the inference going forward. These candidates will have to go through a
check-up step. Some of them will be filtered out if their opposites can be inferred
from a strictly more preferable set of the simplest premise sets. The mechanism to
filter out conflicting default conclusions depends on the relation � over CCLM (Γ).
Different constraints imposed on the binary relation � will affect the ways that con-
flicts get resolved, and hence will result in different global conclusions. System S(L)
is orthogonal to the relation �. We view that a nonmonotonic inference consists of
two steps. The first step is to boldly get all default conclusions. This is handled
by the system S(L). The second step is to check and maintain consistency, to give
up less preferable default conclusions in case of conflicts. This is done based on
preferable relation � (and also �) over CCLM (Γ).

According to the definitions given above, a check-up and settlement is needed
only when there are conflicting default conclusions from some CN (∆1) and CN (∆2),
and they compete to get into the global conclusion set CN(Γ). The focus of our
method is on the conflicting conclusions, but not on the incompatible arguments.
This strategy is in contrast with Dung’s argumentation systems ([10]) and inheri-
tance semantic networks developed by Horty et al. ([14]).

Those theories pay attention to the construction of arguments and comparison
between arguments. That an argument path is permitted is defined in terms of
its initial segments being permitted together with some other conditions. It seems
to us that this is an attempt to inductively construct a global argument that uses
all premises from some local arguments. Such an attempt inevitably leads to a
complex sequence of finding out when an argument is defeated, and when a defeated
argument can be re-instated, and when a re-instated argument is defeated again.
One of the basic features that we summarized at the very beginning of this paper
is that the complete premise set must be taken into account when a conclusion of a
default reasoning is under examination. Locally inferred conclusions do not compose
globally-inferable conclusions in a manageable and predictable way. Mastering the
relation between the set of locally-inferred default conclusions and the set of global
conclusions amounts to the tough task of managing the nonmonotonicity itself.

Makinson and Schlechta ([18]) points out that some inheritance nets suffer prob-
lems of zombie paths and floating conclusions. Zombie paths, which are not permit-
ted by their nets, are in a dilemma situation: they should not be completely dead
and do nothing to other paths, but whatever power that they retain to counteract
other paths seems too strong in some scenarios. The truth may lie in the fact that
the status of a partial argument (defeated or permitted) does not really matter to

163

Mao, Zhou and Liao

the whole argument for a global conclusion. A floating conclusion is one that can
be reached by two conflicting and equally strong arguments. Though researchers
may have different intuition on the acceptance of floating conclusions (e.g., [15, 27]),
we second the position advocated by scholars like Prakken, Makinson and Schlechta
that a good theory on nonmonotonic reasoning should accept floating conclusions.
Some argumentation systems that share similar notions with inheritance nets also
have difficulties respecting the expected activity of zombie paths and accommodat-
ing floating conclusions.

In the two-phase treatment of default reasoning that we propose, we allow and,
as a matter of fact, invite the existence of competing arguments for conflicting de-
fault conclusions. An argument will not be abandoned half way simply because it
reaches a statement that conflicts with other information with a higher priority. All
arguments for default conclusions are welcomed and supported in the system DC,
regardless of the possibility that they may lead to conflicting default conclusions.
This is very different from the inductive view of default reasoning, which attempts
to get everything right in the first place in a stepwise construction of a global argu-
ment. In [20], we analyzed the root causes for zombie paths and floating conclusions
and concluded that the inductive approach has pushed the analogy between default
reasoning and classical deduction too far.

Inspired by [1], we guarantee the consistency of the set of final global conclusions
via choosing between alternative premise sets. We think that the center of our
attention should be conclusions themselves, rather than arguments that lead to
them. We use the preference relation on the premise sets to measure the importance
of the conclusions and to resolve the conflicts. We let the underlying system DC
provide arguments for default conclusions, but do not bother to trace them in a
stepwise manner. Since we encapsulate the complexity of argument paths, the
zombie path problem does not apply to our method. Our strategy of drawing back
incompatible conclusions always takes into account the negative impact from the
default conclusions deduced by system DC, including those that are supported by
zombie paths.

As to floating conclusions, we are not bothered by the tension produced when
some intermediate results fall on incompatible argument paths. The question of
what to give up is relevant only in the face of conflicting default conclusions. Though
floating conclusions are supported by different arguments, and these arguments may
use incompatible information in their intermediate steps, there are no opposite con-
clusions fighting against them. From this perspective, we think that floating con-
clusions should be accepted, and our definition of global conclusions reflects our
position on this issue.

164

Going Forth and Drawing Back in Nonmonotonic Inference

5.2 Specificity as a Preference Relation

In the previous sections, we developed system DC, which will be a particular S(L)
in Definition 30. The preference relation has not yet been specified in our general
discussion, other than as a transitive binary relation over CCLM (Γ). There are
principles that bias our choices for final global conclusions for a given premise set
in commonsense entailment. Among them, the most frequently discussed in the
literature are fact-first principle and specificity. We extend the fact-first principle
to be the deductive-consequence-first principle. The extended principle expresses
the view that all deductive consequences of facts (including facts themselves) are
as firm as facts in defeating default conclusions. We have taken into account the
priority of deductive consequences in Definition 30.

Specificity is a principle often used to settle conflicting information. It is exem-
plified in the Tweety bird example (example (9) in Section 1). Imagine that we are
in a situation in which we do not have directly observed evidence either showing
that Tweety flies, or showing that Tweety does not fly. We must infer one way
or the other from the five given premises: Penguins are birds; Birds fly; Penguins
do not fly; Tweety is a bird; Tweety is a penguin. The consensus seems to be that
we should conclude “Tweety does not fly” from this scenario. If one asks why, the
answer is probably that “Tweety is a penguin” is more specific than “Tweety is a
bird”, since penguins are birds, and Tweety should follow penguins’ properties more
closely than those of birds in case of conflicts. This intuition can be abstracted as
a principle stating that the default about the more specific information has a higher
priority. Given that “Penguins are birds”, “Penguins do not fly” is more preferable
than “Birds fly”.

The priority rank among defaults is expected to be understood in the context of
breaking conflicts. Without the proper context, sometimes it does not make much
sense to claim one default has a higher priority than another. For instance, given
that “Penguins are birds”, one may question in which sense “Penguins are funny
animals” should have a higher priority than “Birds fly”? We need to come up with
a story to get an appropriate context against which the comparison of the priority
between two defaults will start to make sense. Suppose that we are given two more
premises: “Funny animals are fat”; “Flying animals are not fat”. Is Tweety, as
both a penguin and a bird, fat or not? It seems that we would like to conclude that
Tweety is fat. That is because in this particular context, we give a higher priority
to “Penguins are funny animals” than to “Birds fly”.

The preference order among defaults that is introduced by the specificity prin-
ciple is determined by the specificity of antecedents of defaults to be ordered. If
“Penguins are birds” were not known, “Penguins do not fly” and “Birds fly” would

165

Mao, Zhou and Liao

not be comparable on preferability. The formal characterization of the specificity
principle that we give below will and must refer to the specificity of antecedents,
while intuition may suggest that it is not necessary in some circumstances. For
example, even if “Penguins are birds” is not explicitly stated as a premise, as in
example (8) in Section 1, some people may feel unable to resist following “Pen-
guins do not fly” and reaching the conclusion that “Tweety does not fly.” This does
not exhibit that the prerequisite of the specificity of antecedents is not necessary.
Rather, it exhibits that we let a hidden premise “Penguins are birds” that exists in
our background knowledge sneak into the inference. To exempt this kind of hidden
premise, let us consider a modified example. We write down all premises that we
are given: “Totos do not fly”; “Tutus fly”; “Tweety is a toto”; “Tweety is a tutu”. In
this case, our background knowledge contains neither “totos are tutus” nor “tutus
are totos”. Without an assertion on the specificity between totos and tutus, we truly
do not know what to infer. This example has the pattern of the Nixon Diamond. It
illustrates that information about the specificity of antecedents is necessary in order
to determine the preference order among defaults. The function of the specificity
criterion is to break conflicts.

There are other relevant principles besides fact-first and specificity. The author-
ity level of the information source may affect the trustworthiness of the information.
Conflicting information from different sources could have different weights in infer-
ences. Here is an example of this type: The company payroll office told John that
his salary was deposited to his bank account. The bank officer told John that they
did not have the deposit record of his salary. Was the money in John’s account?
John would probably believe that the money was not in his account and he had
to find out what happened to that money. On warning of some natural disasters
like earthquakes or tornadoes, the government often urges people to evacuate their
residencies. The decision reflects the tendency to be over protective than under
protective. In situations like launching a space shuttle, where the price for even
a very slim chance of failure is extremely high, system design decisions must favor
over estimating the difficulties and dangers of the task. Legal documents explicitly
state which set of rules and regulations take precedence in case of conflicts. All these
examples suggest that information is not treated equally. The laws that guide peo-
ple’s preferences for information are empirical. They are quite different from logical
laws. They are used as criteria for resolving conflicts between inferences, but not as
inference rules that can actually infer something. We tend to believe that this level
of principles is not suited to be axiomatized into logic systems. Instead of encoding
them into our logic system as an axiom or a rule of inference, we encode them into
the preference relations over premises in the second phase of our two-phase frame-
work. The separation of this level of principles from the underlying logic makes the

166

Going Forth and Drawing Back in Nonmonotonic Inference

core logic more stable. New principles to resolve conflicts can simply be adopted in
the second phase. Changes will not ripple down to the underlying logic system.

The principles discussed above will shape � to be an appropriate relation so
that no more and no less than our intuitively-expected conclusions will emerge. To
exemplify our second phase, we encode the most salient specificity into the binary
relation � on CCLM (Γ), and label it as specificity preferable relation �s. However,
this is not meant to be the only principle that guides our preference over premises.
Here is the formal definition of �s.

Definition 31. Given a set Γ of formulas, a specificity preference relation �sover
CCLM (Γ) is the smallest transitive closure satisfying: if α > β, α > γ, β > δ ∈
CCLM (Γ), then (α > γ) �s (β > δ).

The above definition of �s ensures that the default with the more specific an-
tecedent takes precedence. The requirement that �s must be closed under transi-
tivity is to treat the nested Penguin Principle.

5.3 Examples Re-visited
In this section, we re-visit the examples that were set forth in Section 1. Now we
can provide formal analysis of these examples based on the notion of nonmonotonic
inference relation that has been precisely defined. Given a finite set Γ of formulas
and a formula α, Γ |∼ α abbreviates Γ |∼DC,�s

α in the following justifications
to simplify the notation. Also, except (4), in the examples below, CCLM (Γ) = Γ.
Hence, the relation �s on CCLM (Γ) is the same as if it is on Γ.

(1) If it rains, then the ground gets wet. It rains. / The ground gets wet.
(2) Birds fly. Tweety is a bird. / Tweety flies.
The premise sets of examples (1) and (2) can be formalized as Γ12 = {p, p > q}.

Let ∆ = Γ12, and thus q ∈ CN (∆). There is no Θ ⊆ Γ12 such that ¬q ∈ CN (Θ).
Therefore, Γ12 |∼ q.

(3) Birds fly. Tweety is a bird. Tweety does not fly. / Tweety does not fly.
Γ3 = {¬q, p, p > q} represents the premise set of example (3). ¬q ∈ CM (Γ3), so

Γ3 |∼ ¬q. Since, CM (Γ3) is consistent, according to the Theorem 10, Γ3 6|∼ q.
(4) Whales are mammals. Marine creatures normally are not mammals. Willy

is a whale. Willy is a marine creature. / Willy is a mammal.
Γ4 = {p → q, r > ¬q, p, r} is the premise set of example (4). q ∈ CM (Γ4).

Therefore, Γ4 |∼ q. Since, CM (Γ3) is consistent, by 10, Γ4 6|∼ ¬q.
The analysis correctly predicts that the deductively derivable conclusion “Willy

is a mammal” is retained to be the global conclusion. In this example, CCLM (Γ4) =
{p → q, r > ¬q, p, r, q} 6= Γ4, and �s on CCLM (Γ4) × CCLM (Γ4) is ∅. Though the

167

Mao, Zhou and Liao

preference relation �s on CCLM (Γ4) is not used to justify Γ4 |∼ q here, it shows that
sometimes CCLM (Γ) could be different from Γ.

(5) If it rains, the ground gets wet. It rains and the wind blows. / The ground
gets wet.

(6) Quakers are pacifists. Republicans are not pacifists. Nixon is a Quaker. /
Nixon is a pacifist.

Examples (5) and (6) demonstrate that the additional irrelevant information does
not hurt the previously drawn conclusion. The minor difference between examples
(5) and (6) is that the additional information in example (5) is a fact, while in (6),
it is a default. The premise set Γ5 is {r, p, p > q} and Γ6 is {r > s, p, p > q}. Let
∆ = {p, p > q}. q ∈ CN (∆). There is no Θ ⊆ Γ5 (or Γ6) such that ¬q ∈ CN (Θ).
Therefore, Γ5 |∼ q (or Γ6 |∼ q).

(7) Quakers are pacifists. Republicans are not pacifists. Nixon is a Quaker.
Nixon is a republican. / Nixon is a pacifist?? Nixon is not a pacifist??

(8) Birds fly. Penguins do not fly. Tweety is a bird. Tweety is a penguin. /
Tweety flies?? Tweety does not fly??

Examples (7) and (8) reflect the nonmonotonic inference pattern known as the
Nixon Diamond. Their premise set Γ78 is {p, q, p > ¬r, q > r}, and �s on Γ78×Γ78
is ∅. Let ∆ = {p, p > ¬r} and Θ = {q, q > r}. We have ¬r ∈ CN (∆) and
r ∈ CN (Θ). Since �s= ∅, neither ∆ B Θ nor Θ B ∆. Then, Γ78 6|∼ ¬r, and
Γ78 6|∼ r, either.

(9) Penguins are birds. Birds fly. Penguins do not fly. Tweety is a bird. Tweety
is a penguin. / Tweety does not fly.

This example is the famous Penguin Principle. It shows that the common
tendency to favor more specific information tips the balance of the tie observed in
the Nixon Diamond. Consequently, the default conclusion from the more specific
default sustains to be the global conclusion. The premise set Γ9 of example (9) is
{p, q, p > q, p > ¬r, q > r}. �s on Γ9×Γ9 is {〈p > ¬r, q > r〉}. Let ∆ = {p, p > ¬r}.
Thus, ¬r ∈ CN (∆). Even though there is Θ = {q, q > r} such that r ∈ CN (Θ),
∆ B Θ because 〈p > ¬r, q > r〉 is in �s. As a matter of fact, for any Θ ⊆ Γ9 such
that r ∈ CN (Θ), Θ must contain q > r and hence ∆ B Θ. Therefore, Γ9 |∼ ¬r but
not Γ9 |∼ r.

The proof can be applied to the extended Penguin Principle with n iterations,
and the result holds. Let the premise set Γ′9 be {pi, pi > pi+1, p2k−1 > ¬r, p2k >
r | 1 6 i, k 6 n}. �son Γ′9 × Γ′9 is the transitive closure of {〈p2k−1 > ¬r, p2k > r〉,
〈p2k−1 > ¬r, p2k+1 > ¬r〉, 〈p2k > r, p2k+1 > ¬r〉, 〈p2k > r, p2k+2 > r〉 | 1 6 k 6 n}.
This is to say that �s= {〈p2k−1 > ¬r, p2j > r〉, 〈p2k−1 > ¬r, p2j−1 > ¬r〉,
〈p2k > r, p2j+1 > ¬r〉, 〈p2k > r, p2j > r〉 | 1 6 k, j 6 n, and k < j}. Let ∆ =
{p1, p1 > ¬r}. Thus, ¬r ∈ CN (∆). For any Θ ⊆ Γ′9 such that r ∈ CN (Θ), Θ must

168

Going Forth and Drawing Back in Nonmonotonic Inference

contain some pm > r where 1 < m. ∆ B Θ because 〈p1 > ¬r, pm > r〉 ∈ �s and
also 〈pm > r, p1 > ¬r〉 /∈�s. Thus, SPSΓ(¬r)m SPSΓ(r). Therefore, Γ9′ |∼ ¬r but
not Γ9′ |∼ r.

Our approach of “going forth and drawing back” demonstrates its advantage of
managing the nested Penguin Principle with ease, regardless of its complexity.

(10) College students are adults. Adults can drive. John is a college student. /
John can drive.

(11) College students are adults. Adults are employed. John is a college student.
/ John is employed ??

Example (10) illustrates the successful use of pointwise transitivity, while ex-
ample (11) shows a failed application if it is used outside the restricted condition.
There is an implicitly used premise in the form of ((α ∧ β) > γ) that causes the
difference between success and failure. The actual premise set Γ10 used in these
two examples is {(p ∧ q) > r, p, p > q, q > r}. �s on Γ10 × Γ10 is ∅. The premise
((α ∧ β) > γ) is true in example (10), but not true in example (11). Let ∆ = Γ10.
According to ThDC4, r ∈ CN (∆). There is no Θ ⊆ Γ10 such that ¬r ∈ CN (Θ).
Therefore, Γ10 |∼ r.

In addition, we can verify that our framework supports the Double Diamond
defeasible inference pattern that generates floating conclusions. In particular, we
will be able to nonmonotonically infer that Nixon is politically extreme from the
premises: Nixon is both a Quaker and a Republican. Nixon is likely a dove if he
is a Quaker, a hawk if he is a Republican. Nixon is likely to be politically extreme
if he is either a dove or a hawk. If Nixon is a dove then he is not a hawk, and
vice versa. The formal representation of the premise set is Γ = {q, r, q > d, r >
h, (d∨h) > e, d→ ¬h, h→ ¬d}. CCLM (Γ) = Γ. �son Γ×Γ is ∅. There is a subset
∆ = {q, q > d, (d∨h) > e} of Γ such that e ∈ CN (∆). There is no Θ ⊆ Γ such that
¬e ∈ CN (Θ). Therefore, Γ |∼ e.

We have shown that system DC together with �s are sufficient to successfully
account for all the benchmark examples listed in Section 1. The advantages of
endorsing Dmp are appealing. The deployment of Dmp turns the inference of default
conclusions from an appromixation of monotonic inference using Modus Ponens to
an independent type of inference. Establishing a proof of a certain default conclusion
does not involve any stepwise consistency check. Reasoners can focus more on what
to infer, rather than how to infer (i.e., license the inference to go forward at every
step based on the current consistency status). The consistency check needs to be
done only once at the very end when a default conclusion is about to be accepted
as a global conclusion.

We advocate our two-phase approach to treat defeasible reasoning, as this ap-
proach matches with the basic features of the type of inference that we have summa-

169

Mao, Zhou and Liao

rized. The results that we presented in this paper are based on the minimal setup
of the two-phase framework under which benchmark examples are tested. Future
extensions could be done in two directions.

One direction is to strengthen the underlying logic by adding more axioms of the
“normally follow” operator >. For example, we may add an Antecedent Disjunction
(AD) axiom ((α > γ)∧ (β > γ))→ ((α∨β) > γ). Another extension direction is to
enrich the preference relation by adopting more principles to shape the ordering of
premises. There are other empirical principles that influence information preference.
If we would like to encode the preference of the information from a higher authority,
our framework can be properly extended to reflect this principle.

6 Conclusions

We have taken the modal conditional approach to formalize defaults, and investi-
gated the kind of inference involving defaults. We observed several fundamental fea-
tures of such defeasible inference. Roughly speaking, a defeasible inference takes the
entire premise set into account and warrants those conclusions that are most prefer-
able in the face of conflicts. Conclusions that can be obtained from some premises
are considered locally-inferred default conclusions. The final global conclusions that
can be warranted from all of the given premises are selected from default conclusions
according to some criteria rooted in the preference relation among premises. Based
on this analysis, we intended to capture the defeasible feature of such inference in
a two-phase structure. First is the “going forth” phase, in which all candidate con-
clusions can be deduced from a formal system. Second is the “drawing back” phase,
in which conflicting candidates are resolved by giving up less preferable ones and
retaining the rest.

A logic system DC has been developed to power the local inference. Just as in
the classical logic, the process of deriving conclusions for given premises in DC is
monotonic. The management of conflicting default conclusions that can be obtained
from DC is left for the next stage. The system DC has Default Modus Ponens as an
axiom to detach the consequent of the “normally follow” connective. The capability
of detachment is enhanced by the restricted pointwise transitivity axiom. The system
DC is interpreted in set selection function semantics, which is a variant of selection
function semantics. It is proved that system DC is sound and complete with respect
to the corresponding semantics.

With a formal logic system providing a common ground to draw default conclu-
sions, determining which default conclusions can sustain to be global conclusions for
a given premise set means determining which subsets of premises are preferable. A

170

Going Forth and Drawing Back in Nonmonotonic Inference

general discussion has been given on how to construct a preference relation on sets
of formulas from a preference relation on formulas that is initially given. This step
bridges the gap between the commonly referred preference relation among informa-
tion (like the specificity principle) and a preference relation on sets of premises that
we need in the second phase of the framework. The nonmonotonic inference relation
is defined with respect to an underlying logic system and a preference ordering for re-
solving conflicting default conclusions. As the less preferable conflicting conclusions
will be filtered out during the drawing back phase, we have shown that the global
conclusion set is consistent. Under our approach, the consistency check is done only
once in the drawing back phase to determine if there are conflicts. Comparison of
the priority of premise sets happens in a finite domain, so the process of choosing
between conflicting default conclusions, if needed, is indeed manageable. The sys-
tem DC and a preference relation �s coded from specificity are used to exemplify
the use of the two-phase structure to justify the benchmark problems.

Unlike traditional characterization of nonmonotonic inference in which the in-
ference step is mingled with the consistency check, we propose a clear separation
into two phases. The underlying logic system is orthogonal to the top level filtering
mechanism built from preference relation. They can be configured and extended
independently. Principles regarding how to detach default conclusions from de-
faults can be expressed in the underlying logic as its axioms or rules of inference.
The general tendency to overweigh a specific group of information can be coded
into the preference relation. Putting two phases together can capture the notion
of nonmonotonic inference we intend to address. The system DC and the prefer-
ence relation �s we defined are particular instances, the combination of which is
proved to be sufficient to account for a list of benchmark examples. The two-phase
structure we proposed is a general framework in which stronger systems may be
developed and more restrictive relations may be defined. Consequently, a larger set
of examples could be accounted for, if desired.

Last but not least, the position of two-layers inference presented in this paper
also has connections to the recent development of argument systems (e.g., [10, 5, 22,
6, 30, 11]) that formalize the construction, comparison and evaluation of arguments
for and against certain conclusions. We have a similar view to theirs that there
are competing arguments that lead to conflicting default conclusions, as opposed to
getting everything right in the first place in only one argument for a final expected
conclusion.

Compared to existing argument systems, our intentional approach has the fol-
lowing properties.

(1) The logical system DC not only provides a natural formalism to represent

171

Mao, Zhou and Liao

defaults, but also has a formal semantics, based on which the soundness and
completeness of the logical system could be proved. Such property does not
belong to existing argument systems. On the one hand, for a rule-based argu-
ment system (e.g., [13, 11]), although defaults could be naturally represented
by defeasible rules, there is no formal semantics. As a result, the completeness
of the system could not be verified. On the other hand, for a system based
on first-order logic [12], to express a default by a material implication is not a
natural way.

(2) As all arguments for default conclusions share the same inference engine pro-
vided by the system DC, the comparison of the strength of arguments is re-
duced to the comparison of the strength of alternative premise sets that sup-
port alternative default conclusions. Thus, the problems caused by zombie
paths [18] do not apply to our methodology.

References

[1] Alchourrón C. E. and Makinson, D. Hierarchies of regulations and their logic. In R.
Hilpinen (Ed.), New Studies in Deontic Logic, pages 125–148, D. Reidel, Dordrecht,
1981.

[2] Asher, N., and Mao, Y. Negated defaults in commonsense entailment. Bulletin of the
Section of Logic, 30(1):41–60, 2001.

[3] Asher, N. and Morreau, M. Commonsense entailment: A modal theory of nonmonotonic
reasoning. In J. Mylopoulos and R. Reiter (Eds), Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, pages 387–392, Morgan Kauffman,
Los Altos, California, 1991.

[4] Anderson, A.R., Belnap, N.D., and Dunn, J.M. Entailment: the logic of relevance and
necessity, vol II. Princeton University Press, 1992.

[5] Baroni, P., Caminada, M., and Giacomin, M. An introduction to argumentation se-
mantics, 26. The Knowledge Engineering Review 26:365–410, 2011.

[6] Besnard, P., and Hunter, A. Constructing argument graphs with deductive arguments:
a tutorial. Argument & Computation, 5:5–30, 2014.

[7] Boutilier, C. Conditional logics of normality: A modal approach. Artificial Intelligence,
68:87–154, 1994.

[8] Delgrande, J. A First-Order Conditional Logic for Prototypical Properties. Artificial
Intelligence, 33:105–130, 1987.

[9] Delgrande, J. An Approach to Default Reasoning Based on a First-Order Conditional
Logic. (Revised report) Artificial Intelligence, 36:63–90, 1988.

172

Going Forth and Drawing Back in Nonmonotonic Inference

[10] Dung, P.M. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–
357, 1995.

[11] García, A.J. and Simari G.R. Defeasible logic programming: DeLP-servers, contextual
queries, and explanations for answers. Argument & Computation, 5:63–88, 2014.

[12] Gorogiannis, N. and Hunter H. Instantiating Abstract Argumentation with Classical
Logic Arguments: Postulates and Properties. Artificial Intelligence, 175:1479–1497,
2011.

[13] Governatori, G., Maher, M.J., Antoniou G., and Billington, D. Argumentation Seman-
tics for Defeasible Logic. Journal of Logic and Computation, 14:675–702, 2004.

[14] Horty, J. F., Thomason, R. H., and Touretzky, D. S. A skeptical theory of inheritance
in nonmonotonic semantic networks. Artificial Intelligence, 42:311–348, 1990.

[15] Horty, J. F. Skepticism and floating conclusions. Artificial Intelligence, 135:55 - 72,
2002.

[16] Kraus, S., Lehmann, D., and Magidor, M. Nonmonotonic reasoning, preferential mod-
els, and cumulative logics. Artificial Intelligence, 44:167–207, 1990.

[17] Lifschitz, V. On the satisfiability of circumscription. Artificial Intelligence, 28:17–27,
1986.

[18] Makinson, D., and Schlechta, K. Floating conclusions and zombie paths: two deep
difficulties in the ‘directly sceptical’ approach to inheritance nets. Artificial Intelligence,
48:199–209, 1991.

[19] Mao, Y. A Formalism for Nonmonotonic Reasoning Encoded Generics. Dissertation,
University of Texas at Austin, 2003.

[20] Mao, Y., and Zhou, B.(2007, January) The Cause and Treatments of Floating Conclu-
sions and Zombie Paths. (Paper presented at The Seventh IJCAI International Work-
shop on Nonmontonic Reasoning, Action and Change, India)

[21] McCarthy, J. Circumscription—a form of non-monotonic reasoning. Artificial Intelli-
gence, 13:27–39, 1980.

[22] Modgil, S., and Prakken, H. A general account of argumentation with preferences.
Artificial Intelligence, 195:361–397, 2013.

[23] Morreau, M. Allowed arguments. In J. Mylopoulos and R. Reith (Eds), Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence, pages 1466–1472.
Morgan Kaufmann, Los Altos, California, 1995.

[24] Nute, D. Conditional Logic. In D.M. Gabbay and F. Guenthner (Eds), Handbook of
Philosophical Logic, VII, pages 387–439, Kluwer Academic Publishers, Dordrecht, 1994.

[25] Nute, D. Topics in Conditinal Logic. Reidel, Dordrecht, 1980.
[26] Pelletier, F. J., and Asher, N. Generics and defaults. In J. van Benthem and A. ter

Meulen (Eds), Handbook of Logic and Language, pages 1125–1177. The MIT Press,
Cambridge, MA, 1997.

[27] Prakken, H. Intuitions and the modelling of defeasible reasoning: some case stud-
ies. Proceedings of the Ninth International Workshop on Non-monotonic Reasoning,

173

Mao, Zhou and Liao

Toulouse, pages 91–99, 2002.
[28] Reiter, R. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
[29] Shoham, Y. Reasoning about Change. The MIT Press, Cambridge, Massachusetts,

1988.
[30] Toni, F. A tutorial on assumption-based argumentation. Argument & Computation,

5:89–117, 2014.

Received May 2015174

