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Deontic Logic and Preference Change

Johan van Benthem
University of Amsterdam and Stanford University

Fenrong Liu
Tsinghua University, Beijing, China

Abstract

The normative realm involves deontic notions such as obligation or permis-
sion, as well as information about relevant actions and states of the world. This
mixture is not static, given once and for all. Both information and normative
evaluation available to agents are subject to changes with various triggers, such
as learning new facts or accepting new laws. This paper explores models for this
setting in terms of dynamic logics for information-driven agency. Our paradigm
will be dynamic-epistemic logics for knowledge and belief, and their current ex-
tensions to the statics and dynamics of agents’ preferences. Here the link with
deontics is that moral reasoning may be viewed as involving preferences of the
acting agent as well as moral authorities such as lawgivers, one’s conscience, or
yet others. In doing so we discuss a large number of themes: primitive ‘bet-
terness’ order versus reason-based preferences (employing a model of ‘priority
graphs’), the entanglement of preference and informational attitudes such as
belief, interactive social agents, and scenarios with long-term patterns emerg-
ing over time. Specific deontic issues considered include paradoxes of deontic
reasoning, acts of changing obligations, and changing norm systems. We con-
clude with some further directions, as well as a series of pointers to related
work, including different paradigms for looking at these same phenomena.

Keywords: Deontic Logic, Preference Change, Epistemic Logic, Public Announce-
ment Logic.

This paper is an updated and revised version of a draft chapter for the Handbook of Deontic Logic,
that was written originally in 2009. Given the recent increasing interest in our central themes
of reason-based preference and preference dynamics, we are publishing the present version in the
IF-COLOG Journal at the kind suggestion of Dov Gabbay. We are grateful to Guillaume Aucher
and Davide Grossi for many useful comments and pointers, the majority of which will feed into the
final chapter version when the Handbook appears.

Vol. 1 No. 2 2014
IFCoLog Journal of Logics and their Applications



Johan van Benthem and Fenrong Liu

1 Agency, information, and preference

Agents pursue goals in this world, acting within constraints in terms of their in-
formation about what is true, as well as norms about what is right. The former
dimension typically involves acts of inference, observation, as well as communica-
tion and other forms of social interaction. The latter dimension involves evaluation
of situations and actions, ‘coloring’ the agents’ view of the world, and driving their
desires, decisions, and actions in it. A purely informational agent may be rational
in the sense of clever reasoning, but a reasonable agent is one whose actions are in
harmony with what she wants. The two dimensions are intimately related. For in-
stance, what we want is influenced by what we believe to be true as well as what we
prefer, and normally also, we only seek information to further goals that we desire.

This balance of information and evaluation is not achieved once and for all.
Agents must constantly cope with new information, either because they learn more
about the current situation, or because the world has changed. But equally well,
agents constantly undergo changes in evaluation, sometimes by intrinsic changes of
heart, but most often through events with normative impact, such as accepting a
command from an authority. These two forms of dynamics, too, are often entangled:
for instance, learning more about the facts can change my evaluation of a situation.

A third major aspect of agency is its social interactive character. Even pure
information flow is often driven by an epistemic gradient: the fact that different
agents know different things leads us to communicate, whether in cooperative inquiry
or adversarial argumentation, perhaps until a state of equilibrium is reached such as
common knowledge or common belief. But also more complex forms of interaction
occur, such as merging beliefs, where differences in informational authority may play
a crucial role. Again, very similar phenomena play on the normative side. Norms,
commitments and duties usually involve other agents, both as their source and as
their target, and whole institutions and societies are constructed in terms of social
choice, shared norms and rules of behavior.

In this chapter, we will discuss how current dynamic-epistemic logics can model
the above phenomena, both informational and preferential, and we will show what
results when this perspective is taken to normative reasoning and deontic logic.
Our treatment will be brief, and for a much more elaborate sample of this style of
thinking about the normative realm, we refer to [17]. In pursuing this specific line,
we are not denying the existence of other valid approaches to deontic dynamics, and
we will provide a number of references to other relevant literature.

2



Deontic Logic and Preference Change

2 Dynamic logics of knowledge and belief change
Before analyzing preference or related deontic notions, we first develop the ba-
sic methodology of this paper for the purely informational case, where the first
‘dynamic-epistemic logics’ arose in the study of information change.

2.1 Epistemic logic and semantic information
Dynamic logics of agency need an account of underlying of static states that can
be modified by suitable triggers: actions or events. Such states usually come from
existing systems in philosophical or computational logic whose models can serve as
static snapshots of the dynamic process. In this paper, we start with a traditional
modal base system of epistemic logic, referring to the standard literature for details
(cf. [45] and [30]).

Definition 1. Let a set of propositional variables Φ be given, as well as a set of
agents A. The epistemic language is defined by the syntax rule

ϕ := > | p | ¬ϕ | ϕ ∧ ψ | Kaϕ where p ∈ Φ, a ∈ A.

Remark: Single agents, interacting agents, and groups. For convenience, we will
focus on single agents in this paper, although this still allows us to describe interact-
ing individual agents where needed through iterations of modalities. Epistemically
important notions with groups themselves as agents, such as ‘common knowledge’
or ‘distributed knowledge’, are deferred to our discussion at the end.

Semantic models for the epistemic language encode agents’ ‘information ranges’
in the form of equivalence classes of binary uncertainty relations for each agent.1
These support a standard compositional truth definition.

Definition 2. An epistemic model is a tuple M = (W, {∼a}a∈A, V ) with W a set
of epistemically possible states (or ‘worlds’), ∼a an equivalence relation on W , and
V a valuation function from Φ to subsets of W .

Definition 3. For an epistemic model M = (W, {∼a| a ∈ A}, V ) and any world
s ∈ S, we define M, s |= ϕ (epistemic formula ϕ is true in M at s) by induction on
the structure of the formula ϕ:

1. M, s |= > always.

1The approach of this paper will also work on more general relations such as pre-orders, but we
start with this easily visualizable epistemic case for expository purposes.

3
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2. M, s |= p iff s ∈ V (p).

3. M, s |= ¬ϕ iff not M, s |= ϕ.

4. M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ.

5. M, s |= Kaϕ iff for all t with s ∼a t : M, t |= ϕ.

Using equivalence relations in our models yields the well-known modal system
S5 for each individual knowledge modality, without interaction laws for different
agents. Just for concreteness, we record this basic fact here:

Theorem 4. Basic epistemic logic is axiomatized completely by the axioms and
inference rules of the modal system S5 for each separate agent.

Few researchers see our basic modalities and the simple axioms of modal S5 as
expressing genuine properties of ‘knowledge’ – thus making earlier polemical discus-
sions of epistemic ‘omniscience’ or ‘introspection’ expressed by these axioms obsolete.
Our interpretation of the above notions is as describing the semantic information
that agents have available (cf. [13]), being a modest but useful building block in
analyzing more complex epistemic and deontic notions. We will allow ourselves the
use of the word ‘know’ occasionally, however: old habits die hard.2

Static epistemic logic describes what agents know on the basis of their current
semantic information. But information flows, and a richer story must also include
dynamics of actions that produce and modify information. We now turn to the
simplest case of this dynamics: reliable public announcements or public observations,
that shrink the current information range.

2.2 Dynamic logic of public announcement
The pilot for the methodology of this paper is ‘public announcement logic’ (PAL),
a toy system describing a combination of epistemic logic and one dynamic event,
namely, announcement of new ‘hard information’ expressed in some proposition ϕ
that is true at the actual world. The corresponding ‘update action’ !ϕ transforms
a current epistemic model M, s into its definable submodel M|ϕ, s where all worlds

2There is a fast-growing literature on more sophisticated logical analyses of genuine knowledge
(cf. [76], [27], [123]), which also seems relevant to modeling and reasoning in the deontic realm.
However, the main points to be made in this paper are orthogonal to these additional refinements
of the logical framework.

4
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that did not satisfy ϕ have been eliminated. This model update is the basic sce-
nario of obtaining information in the realm of science but also of common sense, by
shrinking one’s current epistemic range of uncertainty.3

To describe this phenomenon, the language of PAL has two levels, using both
formulas for propositions and action expressions for announcements:

ϕ := > | p | ¬ϕ | ϕ ∧ ψ | Kaϕ | [A]ϕ
A := !ϕ

The new dynamic formula [ϕ]ψ says that “after updating with the true proposi-
tion ϕ, formula ψ holds”:

M, s |= [!ϕ]ψ iff if M, s |= ϕ, then M|ϕ, s |= ψ.

This language can make characteristic assertions about knowledge change such
as [!ϕ]Kaψ, which states what agent a will know after having received the hard
information that ϕ. In particular, the knowledge change before and after an update
can be captured by so-called recursion axioms, a sort of recursion equations for
the ‘dynamical system’ of PAL, relating new knowledge to knowledge that agents
had before. Here is the complete logical system for information flow under public
announcement (two original sources are [53], [111]):

Theorem 5. PAL is axiomatized completely by the usual laws of the static epistemic
base logic plus the following recursion axioms:

1. [!ϕ]q ↔ (ϕ→ q) for atomic facts q

2. [!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)

3. [!ϕ](ψ ∧ χ)↔ ([!ϕ]ψ ∧ [!ϕ]χ)

4. [!ϕ]Kaψ ↔ (ϕ→ Ka[!ϕ]ψ)

These elegant principles analyze reasoning about epistemic effects of receiving
hard information, through observation, communication, or other reliable means. In
particular, the knowledge law reduces knowledge after new information to ‘condi-
tional knowledge’ that the agent had before, but in a subtle recursive manner. This
prudence of design for PAL is necessary since the process of information update can
change truth values of epistemic assertions. Perhaps, initially, I did not know that
p, but after the event !p, I do.

3The name ‘public announcement logic’ may be unfortunate, since the logic describes updates
with hard information from whatever source, but no consensus has emerged yet on a rebaptism.
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There are several noteworthy features to this approach. We already stressed the
recursive nature of reducing new knowledge to pre-existing knowledge, a feature that
is typical of dynamical systems. Also, the precise way in which this happens involves
breaking down the ‘postconditions’ behind the dynamic modalities [!ϕ] composition-
ally on the basis of their shape.

Next, as things stand here, repeating these steps, the stated features drive a ‘re-
duction process’ taking every formula of our dynamic-epistemic language eventually
to an equivalent formula inside the static epistemic language. In terms of seman-
tics and expressive power, this means that a current static model ‘pre-encodes’ all
information about what might happen when agents communicate what they know.
In terms of the logic, the reduction procedure means that PAL is axiomatizable and
decidable, since it inherits these features from the epistemic base logic.

However, it is also important to note that the latter sweeping dynamics-to-
statics reduction is not an inevitable feature of dynamic-epistemic analysis. In recent
versions of the semantics for PAL, the available sequences of information updates
may be constrained by global protocols that regulate available events in the current
process of inquiry. In that case, no reduction is possible to the base logic, and
the dynamic logic, though still employing recursion equations, while also remaining
axiomatizable and decidable, comes to encode a genuine new kind of ‘procedural
information’ (cf. [14]). Protocols also make sense for deontic purposes, because of
the procedural character of much normative behavior, and we will briefly return to
this perspective at the end of this chapter.

In what follows, PAL will serve as a pilot example for many other complex
cases, for example, changes in beliefs, preferences, and obligations. In each case,
the ‘triggering events’ can be different: for instance, beliefs can change by signals
of different force: hard or more ‘soft’, and obligations can change through actions
of commanding by a normative authority. In many cases, the domain of the model
does not change, but rather its ordering pattern.4 However, the general recursive
methodology of PAL will remain in force, though in each case, with new twists.

2.3 From knowledge to belief and soft information
Knowledge rests on hard information, but most of the information that we have and
act on is soft, giving rise to beliefs, that are not always true, and that can be revised
when shown inadequate. One can think of learning from error as the more creative
ability, beyond mere recording of reliable information in the agent’s environment.

4One example of this approach, even in the epistemic realm, are ‘link cutting’ versions of
updating after announcement: cf. [90], [126], [26], that will be used later on in scenarios where we
may want to return to worlds considered earlier in the process.

6
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Again we need to start with a convenient static base for our investigation. One
powerful model for soft information and belief reflects the intuition that we believe
those things that hold in the most plausible worlds in our epistemic range. I believe
that this train will take me home on time, even though I do not know that it will
not suddenly fly away from the tracks. But the worlds where it stays on track are
more plausible than those where it flies off, and among the latter, those where it
arrives on time are more plausible than those where it does not.

The long history for this way of modeling belief includes non-monotonic logic in
artificial intelligence ([124], [32], [86], [50], [51]), the semantics of natural language
(cf. [139]), as well as the philosophical literature on epistemology, and logics of
games (cf. [129], [10]).

The common intuition of relative plausibility leads to the following semantics:

Definition 6. An epistemic-doxastic model M = (W, {∼a}a∈A, {≤a}a∈A, V ) con-
sists of an epistemic model (W, {∼a}a∈A, V ) as before, while the ≤a are binary com-
parative plausibility pre-orders for agents between worlds.

Intuitively, these comparison orders might well be ternary ≤a,s xy saying that, in
world s, agent a considers world x at least as plausible as y.5 For convenience in this
chapter, however, our semantics assumes that plausibility orderings are the same for
epistemically indistinguishable worlds: that is, agents know their plausibility judge-
ments. Assuming that plausibility is a pre-order, i.e., reflexive and transitive, but
not necessarily connected, leaves room for the existence of genuinely incomparable
worlds – but much of what we say in this chapter also holds for the special case of
connected pre-orders where any two worlds are comparable.6 As with epistemic mod-
els, our logical analysis works largely independently from specific design decisions
about the ordering, important though they may be in specific applications.

One can interpret many logical languages in these comparative order structures.
In what follows, we work with modal formalisms for the usual reasons of perspicuous
formulation and low complexity (cf. [29]).

First of all, there is absolute belief as truth in all most plausible worlds:

M, s |= Baϕ iff M, t |= ϕ for all those worlds t ∼a s that are
maximal in the order ≤a xy in the ∼a-equivalence class of s.

5In particular, ternary world-dependent plausibility relations are found in the semantics of
conditional logic: cf. [89], [127], models for games: cf. [130], [13], as well as in recent logical
analyses of major paradigms in epistemology: [76].

6Connected orders are equivalent to the ‘sphere models’ of conditional logic or belief revision
theory (cf. [62], [120]) – but in these areas, too, a generalization to pre-orders has been proposed:
cf. [35], [124], [138].

7
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But the more general notion in our models is that of a conditional belief :

M, s |= Bψ
a ϕ iff M, t |= ϕ for all those worlds t ∼a s that are

maximal for ≤a xy in the set {u | s ∼a u and M, u |= ψ}.7

Conditional beliefs generalize absolute beliefs, which are now definable as B>a ϕ.
They pre-encode absolute beliefs that we will have if we learn certain things. Indeed,
the above semantics for Bψ

a ϕ is formally similar to that for conditional assertions
ψ ⇒ ϕ. This allows us to use known results from [35], [138]:

Theorem 7. The logic of Bψ
a ϕ is axiomatized by standard propositional logic plus

the laws of conditional logic over pre-orders.

Deductively stronger modal logics also exist in this area, such as the popular
system KD45 for absolute belief. The structural content of their additional axioms
can be determined through standard modal frame correspondence techniques (see
[29], [23]).

Digression: Further relevant attitudes. Modeling agency with just the notions of
knowledge and belief is mainly a tradition inherited from the literature. In a serious
study of agency the question needs to be raised afresh what is our natural repertoire
of attitudes triggered by information. As one interesting example, the following
operator has emerged recently, in between knowledge and belief qua strength. Intu-
itively, ‘safe belief’ is belief that agents have which cannot be falsified by receiving
true new information.8 Over epistemic plausibility models M, its force is as follows:

Definition 8. The modality of safe belief B+
a ϕ is interpreted as follows:

M, s |= B+
a ϕ iff for all worlds t ∼a s: if s ≤a t, then M, t |= ϕ.

Thus, the formula ϕ is to be true in all accessible worlds that are at least as
plausible as the current one. This includes the most plausible worlds, but it need
not include all epistemically accessible worlds, since the latter may include some less
plausible worlds than the current one. The logic for safe belief is just S4, since it is
in fact the simplest modality over the plausibility order.

7These intuitive maximality formulations must be modified in models allowing infinite sequences
in the plausibility ordering. Trivialization can then be avoided as follows (cf. the exposition of
plausibility semantics in [54]): M, s |= Oψϕ iff ∀t ∼ s : ∃u : (t � u and M, u |= ψ and ∀v ∼ s: (if
u � v and M, v |= ψ, then M, v |= ϕ)).

8This notion has been proposed independently in AI [125], philosophy [131], learning theory,
and game theory [8], [11].

8
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A notion like this has the conceptual advantage of making us see that agents can
have more responses to information than just knowledge and belief.9 But there is
also the technical advantage that the simple modality of safe belief can define more
complex notions such as conditional belief (see [85], [33], [13]) which can lead to
simplifications of logics for agency.

2.4 Dynamic logics of belief change
Having set up the basic attitudes, we now want to deal with explicit acts or events
that update not just knowledge, but also agents’ beliefs.10

Hard information The first obvious triggering event are the earlier public an-
nouncements of new hard information. Their complete logic of belief change can be
developed in analogy with the earlier dynamic epistemic logic PAL, again via world
elimination. Its key recursion axiom for new beliefs uses conditional beliefs:

Fact 9. The following formula is valid in our semantics:

[!ϕ]Baψ ↔ (ϕ→ Bϕ
a [!ϕ]ψ)

To keep the complete dynamic language in harmony, we then also need a recur-
sion axiom for the conditional beliefs that are essential here:

Theorem 10. The dynamic logic of conditional belief under public announcements
is axiomatized completely by

(a) any complete static logic for the model class chosen,

(b) the PAL recursion axioms for atomic facts and Boolean operations,

(c) the following recursion axiom for conditional beliefs:

[!ϕ]Bχ
aψ ↔ (ϕ→ B

ϕ∧[!ϕ]χ
a [!ϕ]ψ)

This analysis also extends to safe belief, with this recursion law:

Fact 11. The following PAL-style axiom holds for safe belief:

[!ϕ]B+
a ψ ↔ (ϕ→ B+

a (ϕ→ [!ϕ]ψ)).

9Other relevant notions include the ‘strong belief’ of [131], [10].
10For a much more extensive up-to-date treatment of logic-based belief revision, cf. the chapter

[28] in the forthcoming Handbook of Logics of Knowledge and Belief.
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Using this equivalence, which behaves more like the original central PAL axiom,
one can show that safe belief has its intuitively intended feature. Safe belief in factual
propositions (i.e., those not containing epistemic or doxastic operators) remains safe
belief after updates with hard factual information.11

Soft information But belief change also involves more interesting triggers, de-
pending on the quality of the incoming information, or the trust agents place in it.
‘Soft information upgrade’ does not eliminate worlds as what hard information does,
but rather changes the plausibility order, promoting or demoting worlds according
to their properties. Here is one widely used way in which this can happen: an act
of ‘radical’, or ‘lexicographic’ upgrade.12

Definition 12. A radical upgrade ⇑ϕ changes the current plausibility order ≤ be-
tween worlds in M, s to create a new model M⇑ϕ, s where all ϕ-worlds in M, s
become better than all ¬ϕ-worlds, while, within those two zones, the old plausibility
order ≤ remains as it was.

No worlds are eliminated here, it is the ordering pattern that adapts. There is a
matching upgrade modality for this in our dynamic language:

M, s |= [⇑ϕ]ψ iff M⇑ϕ, s |= ψ.

This supports one more dynamic completeness theorem (cf.[22]).

Theorem 13. The logic of radical upgrade is axiomatized completely by

(a) a complete axiom system for conditional belief on the static models,

(b) the following recursion axioms:

[⇑ϕ]q ↔ q, for all atomic proposition letters q
[⇑ϕ]¬ψ ↔ ¬[⇑ϕ]ψ
[⇑ϕ](ψ ∧ χ) ↔ ([⇑ϕ]ψ ∧ [⇑ϕ]χ)
[⇑ϕ]Bχψ ↔ (E(ϕ ∧ [⇑ϕ]χ) ∧Bϕ∧[⇑ϕ]χ[⇑ϕ]ψ)
∨ (¬E(ϕ ∧ [⇑ϕ]χ) ∧B[⇑ϕ]χ[⇑ϕ]ψ

11Unlike with plain belief, the latter recursion does not involve a move to an irreducible new
notion of ‘conditional safe belief’. Indeed, given a definition of conditional belief in terms of safe
belief, the more complex recursion law in Theorem 10 can be derived.

12In this section, we drop epistemic accessibility, and focus on plausibility order only.

10
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Here the operator ‘E’ is the existential epistemic modality, and we need to add
a simple recursion axiom for knowledge, that we forego here.13

There are many further policies for changing plausibility order whose dynamic
logic can be axiomatized in a similar manner. For instance, ‘conservative upgrade’
↑ϕ only puts the most plausible ϕ-worlds on top in the new model, leaving the rest in
their old positions. For general results on complete logics, see [22], [10] and [12]. In
particular, [117] is an excellent source for variety of policies in belief revision theory
that is not tied to the specific dynamic logic methodology employed in this paper.

2.5 General dynamic methodology and its applications
We have spent quite some time on the above matters because they represent a gen-
eral methodology of model transformation that works for many further phenomena,
including changes in preference, and the even richer deontic scenarios that we will
be interested in eventually.

Model transformations of relevance to agency can be much more drastic than
what we have seen here, extending the domains of available worlds and modify-
ing their relational structure accordingly. In the dynamic-epistemic logic of general
observation DEL, different agents can have different access to the current informa-
tional event, as happens in card games, communication with security restrictions, or
other social scenarios. This requires generalizing PAL as well as the above logics of
belief change, using a mechanism of ‘product update’ to create more complex new
models (cf. [9], [136], [12]).

Appropriately extended update mechanisms have been applied to many further
aspects of agency: changes in intentions ([118], [80]), trust ([75]), inference ([137]),
questions and inquiry ([19]), as well as complex scenarios in games ([105], [13]) and
social information phenomena generally ([121], [7], [66]). Yet, in this paper, we will
stick mainly with the much simpler pilot systems presented in the preceding sections.

3 Deontic logic as preference logic
Having set up the machinery for changing informational attitudes, we now turn to
our next interest, the realm of normative evaluation for worlds or actions and the
matching dynamic deontic logics. Here we will follow a perhaps not uncontroversial
track: our treatment of deontic notions and scenarios will be based on preference
structure and its changes. We believe that this is a conceptually good way of looking
at deontic notions, and at the same time, it lends itself very well to treatment by our

13As before, it is easy to extend this analysis of soft upgrade to safe belief.
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earlier methods, since at an abstract level, doxastic plausibility order and deontic
betterness order are very similar. The results that follow in the coming sections are
largely from [91], [54], and [94].14

Let us say a few more words about the connection between deontic logic and
preference, to justify our approach in this paper. Deontic logic is the logical study
of normative concepts such as obligation, prohibition, permission and commitment.
This area was initiated by von Wright in [140] who introduced the logic of absolute
obligation. As a reaction to paradoxes with this notion, conditional obligation was
then proposed in [141], [143] and [47]. Good reviews systematizing the area are
found in [3], [4].

One often thinks of deontic logic as the study of some accessibility relation from
the actual world to the set of ‘ideal worlds’, but the more sophisticated view ([67],
[48] and [81]) has models with a binary comparison relation that we may call ‘bet-
terness’.15 Such more general comparisons make sense, for instance, when talking
and reasoning about ‘the lesser of two evils’, or about ‘improvement’ of some given
situation.

Naturally, this is precisely the ordering semantics that we have already seen for
belief, and it would be tedious to indulge in formal definitions at this stage that
the reader can easily construct for herself. Our base view would be that of binary
pre-orders as before, for which we will now use the notation R to signal a change
from the earlier plausibility interpretation. As usual, imposing further constraints
on the ordering will generate deductively stronger deontic logics.

The binary relation R now interprets Oϕ (absolute obligation) as ϕ being true in
all best worlds, much like belief with respect to plausibility. Likewise, we interpret
conditional obligation Oψϕ like conditional belief: ϕ holds in the best ψ-worlds.16

For further information on deontic logic, we refer to [4] and various chapters
in the forthcoming Handbook [52]. Our emphasis in this paper will be mainly on
interfacing with this field.

As we already noted at the start of this paper, deontic ordering shows intuitive
analogies with the notion of preference. One can think of betterness as reflecting
the preferences of a moral authority or law-giver, and in the happy Kantian case

14To unclutter notation, here and henceforth, we will mostly suppress agent indices for modal
operators and their corresponding relations.

15Hansson argued that von Wright-type deontic logic can be naturally interpreted in terms of
a preference relation ‘is at least as ideal as’ among possible worlds – an ordering that we will call
‘betterness’ in what follows.

16There are also more abstract neighborhood versions of this semantics, where the current propo-
sition plays a larger role in terms of binary deontic betterness relations Rψ, where one can set
M, s |= Oψϕ iff for all t in W with sRψt,M, t |= ϕ.
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where agents’ duties coincide with their inclinations, deontic betterness is in fact
the agent’s own preference. We claim no novelty for this line of thought, which was
advocated forcefully as early as [67]. With this twist, we can then avail ourselves of
existing studies of preference structure and evaluation dynamics, a line of thinking
initiated in [134] and [135], though we now take the dynamic-epistemic road.

By way of background to what follows, we note that preference logic is a vigorous
subject with its own history. For many new ideas and results in the area, we refer
to [71] and [63]. What we will do next in this paper is survey some recent develop-
ments in the study of preference statics and dynamics, emphasizing those that are
of relevance to deontic logic, an area where we will return eventually toward the end
of this paper.17

4 Static preference logic
In the coming sections, we will discuss basic developments in modal preference logic,
starting with its statics, and then continuing with the dynamics of preference change.
Our treatment follows ideas from [33] and [65], and for the dynamics, we rely on [20]
and [26].

4.1 General modal preference logic
Our basic models are like in decision theory or game theory: there is a set of al-
ternatives (worlds, outcomes, objects) ordered by a primitive ordering that we dub
‘betterness’ to distinguish it from richer notions of preference.18

Definition 14. A modal betterness model is a tuple M = (W,�, V ) with W a set
of worlds or objects, � a reflexive and transitive relation over these, and V is a
valuation assigning truth values to proposition letters at worlds.19

The order relation in these models also induces a strict variant s ≺ t:

If s � t but not t � s, then t is strictly better than s.

17Preference logic tends to focus on describing the agents’ own preferences, rather than those of
others, but what we have to say applies equally well to multi-agent settings such as moral scenarios,
or games, where different preference orders interact in crucial ways.

18To repeat an earlier point, while each agent has her own betterness order, in what follows,
merely for technical convenience, we suppress indices wherever we can.

19As we said before, we use pre-orders since we want the generality of possibly non-total prefer-
ences. Still, total orders, the norm in areas like game theory, provide an interesting specialization
for the results in this chapter – but we will only mention it in passing.
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Here is a simple modal language that can say a lot about these structures:

Definition 15. Take any set of propositional variables Φ, with p ranging over Φ.
The modal betterness language has this inductive syntax rule:

ϕ := > | p | ¬ϕ | ϕ ∧ ψ | 〈≤〉ϕ | 〈<〉ϕ | Eϕ.

The intended reading of 〈≤〉ϕ is “ϕ is true in a world that is at least as good
as the current world”, while 〈<〉ϕ says that “ϕ is true in a world that is strictly
better than the current world. ”. In addition, the auxiliary existential modality Eϕ
says that “there is a world where ϕ is true”. As usual, we write [≤]ϕ for the defined
universal modality ¬〈≤〉¬ϕ, and we use [<] and U for the duals of 〈<〉ϕ and E,
respectively. Combinations of these modalities can capture a wide variety of binary
preference statements comparing propositions, witness the cited literature.

The interpretation of this modal language over our models is as follows:

Definition 16. Truth conditions for the atomic propositions and Boolean combina-
tions are standard. Modalities are interpreted like this:

• M, s |= 〈≤〉ϕ iff for some t wih s � t, M, t |= ϕ.

• M, s |= 〈<〉ϕ iff for some t with s ≺ t, M, t |= ϕ.

• M, s |= Eϕ iff for some world t in W , M, t |= ϕ.

The defined modalities use the obvious universal versions of these clauses. For
concreteness, we state the standard calculus to come out of this.

Theorem 17. Modal betterness logic is completely axiomatized by

1. the system S4 for the preference modality,

2. the system S5 for the universal modality,

3. the connecting law Uϕ→ [�]ϕ,

4. three axioms for the strict betterness modality: cf. [16].

4.2 Special features of preference
Next we briefly survey three special logical features of preference structure that go
beyond standard modal logic of pre-orders, and that will eventually turn out to be
of interest to deontics as well.
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Lifting to generic preferences. While betterness relates specific objects or worlds,
preference is often used generically for comparing different kinds of things. Ever since
[142], logicians have also studied preferences P (ϕ,ψ) between propositions, viewed
as properties of worlds, or of objects.

There is not one such notion, but many, that can be defined by a lift of the
betterness order among worlds to sets of worlds, cf. [65], [16], [94]. For instance,
compare your next moves in a game, identified with the set of outcomes that they
lead to. Which move is ‘better’ depends on the criterion chosen: maybe we want
the one with the highest possible outcome, or the one with the highest minimally
guaranteed outcome, etcetera.

Such options are reflected in various quantifier combinations for the lifting. In
particular, von Wright had a ∀∀-type preference between sets P,Q:
∀x ∈ P ∀y ∈ Q: x � y.

A simpler, but also useful example is the modal ∀∃-type
∀x ∈ P ∃y ∈ Q: x � y.

This says that for any P -world, there is a Q-world which is at least as good as that ψ-
world. In the earlier game setting, this stipulation would say that the most preferred
moves have the highest maximal outcomes. This ubiquitous ∀∃ generic preference
can be defined in the above modal preference language, using the universal modality
ranging over all worlds:

P ∀∃(ϕ,ψ) := U(ψ → 〈≤〉ϕ).
This generic preference Pϕψ satisfies the usual properties for preference, reflex-

ivity and transitivity: for instance, Pϕψ and Pψχ imply Pϕχ.20

Ceteris paribus clauses. Unlike plausibility, preference ordering seldom comes
in pure form: the comparison between alternatives is often entangled with other
considerations. Again, games provide an example. Usually, players do not compare
moves via the sets of all their possible outcomes, but rather, they compare the most
plausible outcomes of their moves. This is the so-called normality sense of ceteris
paribus preference: we do not compare all the ϕ and ψ-worlds, but only the ‘normal
ones’ in some relevant sense. This belief restriction, observed by many authors, will
return in our discussion of doxastic entanglement of preference in Section 8.

But there are also other natural senses of taking a ceteris paribus clause. It was
noticed already in [142] that there is also an ‘equality sense’ of preference, involving

20Other stipulationss lead to other generic preferences. This proliferation may be a problem
(e.g., ‘doing what is best’ depends on one’s stipulation as to ‘best’), but there is no consensus in
the literature. A logical approach at least helps make the options clear.
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a hidden assumption of independence. In that case, one only make comparisons
between worlds where some things or issues are held constant, in terms of giving the
same truth values to some specified set of atomic propositions, or complex formulas.
The logic of equality-based preference is axiomatized and analyzed in detail in [16].

Richer preference languages. Modal languages are just one step on a ladder
of formalisms for analyzing reasoning practices. It has been claimed that richer
languages are needed to faithfully render basic preference notions, cf. [38] on first-
order preferences among objects, [60] on first-order languages of social choice, [20]
on hybrid modal preference languages for defining backward induction solutions in
games, the hybrid modal language of ‘desire’ and ‘freedom’ for decision making in
[64], or the modal fixed-point languages for games used in [13]. Though we will
mainly use modal formalisms to make the essential points to follow, we will mention
the relevance of such richer preference formalisms occasionally.

5 World based dynamics of preference change
Now let us look at how given preferences can change. Intuitively, there are many
acts and events that can have such an effect. Perhaps the purest form is a radical
command by some moral authority to do something. This makes the worlds where
we act better than those where we do not, cf. [146]: at least, if we ‘take’ the order
as a legitimate instruction, and change our evaluation accordingly, overriding any
preferences that we ourselves might have had. Technically, this dynamics will change
a current betterness relation in a model. This can be studied entirely along the lines
already developed here for information dynamics.21

5.1 Betterness change
[26] is a first systematic study of betterness change using methods from dynamic-
epistemic logic. The running example in their approach is a weak ‘suggestion’ ]ϕ
that a proposition ϕ be the case. This relatively modest ordering change leaves the
set of worlds the same, but it removes any preferences that the agent might have
had for ¬ϕ-worlds over ϕ-worlds among these.22

The main general point to note here is that events with evaluative import can
act as triggers that change some current betterness relation on worlds. In particular,
a suggestion ]ϕ leads to the following model change:

21Of earlier treatments, we mention [135], based on [139].
22Similar operations have come up recently in logical treatments of relevant alternatives theories

in epistemology, when modeling changes in what is considered relevant to making or evaluating a
knowledge claim. Cf. [77], [24].
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Definition 18. Given any modal preference model (M, s), the suggestion upgrade
(M]ϕ, s) has the same domain, valuation, and actual world as (M, s), but the new
preference relations are now

�∗i=�i −{(s, t) |M, s |= ϕ and M, t |= ¬ϕ}
In preference models M, a matching dynamic modality is interpreted as:
(M, s) |= []ϕ]ψ iff M]ϕ, s |= ψ

Again, complete dynamic logics exist (cf. [26]). The reader will find it useful to
scrutinize the key recursion law for preferences after suggestion.23

Theorem 19. The dynamic preference logic of suggestion is completely axiomatized
by the following principles:

1. 〈]ϕ〉p ↔ p

2. 〈]ϕ〉¬ψ ↔ ¬〈]ϕ〉ψ

3. 〈]ϕ〉(ψ ∧ χ) ↔ (〈]ϕ〉ψ ∧ 〈]ϕ〉χ)

4. 〈]ϕ〉〈≤〉ψ ↔ (¬ϕ ∧ 〈≤〉〈]ϕ〉ψ) ∨ (ϕ ∧ 〈≤〉(ϕ ∧ 〈]ϕ〉ψ))

5. 〈]ϕ〉Eψ ↔ E〈]ϕ〉ψ
Similar completeness results are presented in [94] for dynamic logics that govern

many other kinds of normative action, such as the ‘strong commands’ corresponding
to our earlier radical plausibility upgrade. Following this instruction, deontically, the
agent incorporates the wish of some over-riding authority.

5.2 Deriving changes in defined preferences
This is an analysis of betterness change and modal statements about it local to
specific worlds. But it also applies to the earlier lifted generic preferences. As an
illustration, consider the ∀∃-lift defined earlier:
Fact 20. The following equivalence holds for generic ∀∃ preference:
〈]A〉P ∀∃(ϕ,ψ) iff P ∀∃(〈]A〉ϕ, 〈]A〉ψ) ∧ P ∀∃((〈]A〉ϕ ∧A), (〈]A〉ψ ∧A)).
We omit the simple calculation for this outcome. Similar results may be obtained

for other set liftings such as Von Wright’s ∀∀-version.
Finally, the recursive style of dynamic analysis presented here also applies to

various forms of ceteris paribus preference.
23Technically, the simplicity of this law reflects the clear analogy between our universal preference

modality and the earlier doxastic notion of safe belief.
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5.3 General formats for betterness change
Behind our specific examples of betterness change, there lies a much more general
theory that works for a wide class of triggering events that change betterness or
evaluation order. One widely applicable way of achieving greater generality uses
programs from propositional dynamic logic PDL.

For instance, suggesting that ϕ is defined by the program:

]ϕ(R) := (?ϕ;R; ?ϕ) ∪ (?¬ϕ;R; ?¬ϕ) ∪ (?¬ϕ;R; ?ϕ).

where R is the given input relation, while the operations ?ϕ test whether the relevant
proposition ϕ, or related ones, hold. In particular, the disjunct (?ϕ;R; ?ϕ) means
that we keep all old betterness links that run from ϕ-worlds to ϕ-worlds.

This definition is equivalent in PDL to the more compact program expression

]ϕ(R) := (?¬ϕ;R) ∪ (R; ?ϕ).

Again we keep all old R-links, except for those that ran from ϕ-worlds to ¬ϕ-worlds.
Likewise, our plausibility changers for belief revision can be defined in this for-

mat. For instance, the earlier ‘radical upgrade’ is defined by

⇑ϕ(R) := (?ϕ;R; ?ϕ) ∪ (?¬ϕ;R; ?¬ϕ) ∪ (?¬ϕ;>; ?ϕ)

Here the constant symbol > denotes the universal relation that holds between
any two worlds. This reflects the original meaning of this transformation: all ϕ-
worlds become better than all ¬ϕ-worlds, whether or not they were better before,
and within these two zones, the old ordering remains.24

Given any PDL program definition of the above sort, one can automatically
write recursion laws for the complete dynamic logic of its induced model change,
cf. [26] for the precise algorithm. As an illustration, here is the straightforward
computation for suggestions:

〈]ϕ〉〈R〉ψ ↔ 〈(?¬ϕ;R) ∪ (R; ?ϕ)〉〈]ϕ〉ψ

↔ 〈?¬ϕ;R〉〈]ϕ〉ψ ∨ 〈R; ?ϕ〉〈]ϕ〉ψ

↔ (¬ϕ ∧ 〈R〉〈]ϕ〉ψ) ∨ 〈R〉(ϕ ∧ 〈]ϕ〉ψ).

24Conservative upgrades can be dealt with in a similar way. As commands, these leave the agent
more of her original preferences: so, differences with radical commands will show up in judgments
of ‘conditional betterness’, as discussed in the literature on conditional obligation: see [67].
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For alternative general formats of ordering change supporting our sort of dynamic
logics, we refer to the ‘priority update’ with event models in [10], the order merge
perspective of [21], as well as the still more general ‘dynamic dynamic logic’ of [55].

In our view, the practical and theoretical theoretical variety of ordering changes
for plausibility and preference is not a nuisance, but a feature. It matches the wealth
of evaluative actions that we encounter in daily life.

6 Reason-based preferences

Primitive betterness relations among worlds or objects reflect what are called ‘in-
trinsic preferences’. But very often, our preferences have an underlying structure,
and we compare according to criteria: our preferences are then reason-based, or ‘ex-
trinsic’. In this section we develop the latter view, that has motivations in linguistic
Optimality Theory, cf. [112], and belief revision based on entrenchment, cf. [116].
This view also occurs in reason-based deontic logic, cf. [48], [56] and [81], as we shall
see in Section 9.

A simplest illustration of our approach, that suffices for many natural scenarios,
starts with linear orders of relevant properties that serve as criteria for determining
our evaluation of objects or worlds.

6.1 Priority based preference

The following proposal has many ancestors, among which we mention the treatment
in [49], [116]. We follow [38], that starts from a given primitive ordering among
propositions (‘priorities’ among properties of objects or worlds), and then derives a
preference among objects themselves.

Definition 21. A priority sequence is a finite linear sequence of formulas written
as follows: C1 � C2 · · · � Cn (n ∈ N), where the Cm come from a language
describing objects, with one free variable x in each Cm.

Definition 22. Given a priority sequence and objects x and y, Pref(x, y) is defined
lexicographically: at the first property Ci in the given sequence where x, y have a
different truth value, Ci(x) holds, but Ci(y) fails.

The logic of this framework is analyzed in [38], while applications to deontic logic
are developed in [25]. Still, this is only one of many ways of deriving a preference
from a priority sequence. A good overview of existing approaches is found in [36].
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6.2 Pre-orders
In general, comparison order need not be connected, and then the preceding needs
a significant generalization. This was done, in a setting of social choice and belief
merge, in the seminal paper [2], which we adapt slightly here to the notion of ‘priority
graphs’, based on the treatment in [54], [95].

The following definitions contain a free parameter for a language L that can be
interpreted in the earlier modal betterness models M. For simplicity only, we will
take this to be a simple propositional language of properties.

Definition 23. A priority graph G = 〈P,<〉 is a strictly partially ordered set of
propositions in the relevant language of properties L.

Here is how one derives a betterness order from a priority graph:

Definition 24. Let G = 〈P,<〉 be a priority graph, and M a model in which the lan-
guage L defines properties of objects. The induced betternness relation �G between
objects or worlds is defined as follows:

y �G x := ∀P∈G ((Py → Px) ∨ ∃P ′<P (P ′x ∧ ¬P ′y)).

Here, in principle, y �G x requires that x has every property in the graph that
y has. But there is a possibility of ‘compensation’: if y has P while x does not, this
is admissible, provided there is some property P ′ with higher priority in the graph
where x does better: x has P ′ while y lacks it. Clearly, this stipulation subsumes
the earlier priority sequences: linear priority graphs lead to lexicographic order.

One can think of priority graphs of propositions in many ways that are relevant to
this paper. In the informational realm, they are hierarchically ordered information
sources, structuring the evidence for agents’ beliefs. In the normative realm, they
can stand for complex hierarchies of laws, or of norm givers with relative authority.

6.3 Static logic and representation theorem
In what follows, we immediately state a crucial technical property of this framework,
cf. [49], [95].

Theorem 25. Let M = (W,�, V ) be any modal preference model, without con-
straints on its relation. The following two statements are equivalent:

(a) The relation y � x is a reflexive and transitive order,
(b) There is a priority graph G = (P,<) such that,

for all worlds x, y ∈W , y � x iff y �G x.
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This representation theorem says that the general logic of derived extrinsic bet-
terness orderings is still just that of pre-orders. But it also tells us that any intrinsic
pre-order can be rationalized as an extrinsic reason-based one by adding structure
without disturbing the base model as it is.

6.4 Priority dynamics and graph algebra
Now, we have a new locus for more fine-grained preference change: the family of un-
derlying reasons, which brings its own logical structure. For linear priority sequences,
relevant changes involve the obvious operations [+C] of adding a new proposition C
to the right, [C+] of adding C to the left, and various functions [−] dropping first,
last or intermediate elements of a priority sequence. [38] give complete dynamic
logics for these. Here is one typical valid principe:

[+C]Pref(x, y)↔ Pref(x, y) ∨ (Eq(x, y) ∧ C(x) ∧ ¬C(y))

This set of natural operations for changing preferences becomes even richer in
the realm of priority graphs, due to their possibly non-linear structure. However,
in this setting an elegant mathematical alternative arises, in terms of merely two
fundamental operations that combine arbitrary graphs:

• G1; G2 adding a graph to another in top position

• G1‖G2 adding two graphs in parallel.

One can think of this as the obvious counterparts of ‘sequential’ versus ‘parallel’
composition. Here the very special case where one of the graphs consists of just one
proposition models simple update actions.

This graph calculus has been axiomatized completely in [2] by algebraic means,
while [54] presents a further modal-style axiomatization. We display its major modal
principles here, since they express the essential recursion underlying priority graph
dynamics. Here is one case where, as mentioned earlier, a slight language extension
is helpful: in what follows, the proposition letter n is a ‘nominal’ from hybrid logic
denoting one single world.

〈G1‖G2〉≤n ↔ 〈G1〉≤n ∧ 〈G2〉≤n.
〈G1‖G2〉<n ↔ (〈G1〉<n ∧ 〈G2〉≤n) ∨ (〈G1〉≤n ∧ 〈G2〉<n).
〈G1; G2〉≤n ↔ (〈G1〉≤n ∧ 〈G2〉≤n) ∨ 〈G1〉<n.
〈G1; G2〉<n ↔ (〈G1〉≤n ∧ 〈G2〉<n) ∨ 〈G1〉<n.
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These axioms reduce complex priority relations to simple ones, after which the
whole language reduces to the modal logic of weak and strict atomic betterness
orders. In particular, this modal graph logic is decidable.

Thus, we have shown how putting reasons underneath agents’ preferences (or, for
that matter, their beliefs) admits of precise logical treatment, while still supporting
the systematic dynamics that we are after.

7 A two-level view of preference
Now we have two ways of looking at preference: one through intrinsic betterness
order on modal models, the other through priority structure inducing extrinsic bet-
terness orders. One might see this as calling for a reduction from one level to another,
but instead, combining the two perspectives seems the more attractive option, as
providing a richer modeling tool for preference-driven agency.

7.1 Harmony of world order and reasons
In many cases, the two modeling levels are in close harmony, allowing for easy
switches from one to the other (cf. [91]):

Definition 26. Let α: (G , A) → G ′, with G , G ′ priority graphs, and let A be a
new proposition. Let σ be a map from (�, A) to �′, where � and �′ are betterness
relations over worlds. We say that α induces σ, if always:

σ(�G , A) = �α(G ,A)

Here are two results that elaborate the resulting harmony between two levels for
our earlier major betterness transformers:

Fact 27. Taking a suggestion A is the map induced by the priority graph update
G ‖A. More precisely, the following diagram commutes:

〈G , <〉 ‖A //

��

〈(G ‖A), <〉

��
〈W,�〉 ]A // 〈W, ]A(�)〉

For a second telling illustration of such harmony in terms of our earlier themes,
consider a priority graph (G , <) with a new proposition A added on top. The logical
dynamics at the two levels is now correlated as follows:
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Fact 28. Placing a new proposition A on top of a priority graph (G , <) induces the
radical upgrade operation ⇑A on possible worlds ordering models. More precisely,
the following diagram commutes:

〈G , <〉 A;G //

��

〈(A; G ), <〉

��
〈W,�〉 ⇑A// 〈W,⇑ A(�)〉

Thus the two kinds of preference dynamics dovetail well: [94] has details.

7.2 Correlated dynamics
There are several advantages to working at both levels without reductions. For a
start, not all natural operations on graphs have matching betterness transformers at
all. An example from [95] is deletion of the topmost elements from a given priority
graph. This syntactic operation of removing criteria is not invariant for replacing
graph arguments by other graphs inducing the same betterness order, and hence it
is a genuine extension of preference change.

But also conversely, there is no general match. Not all PDL-definable betterness
changers from Section 5.3 are graph-definable. In particular, not all PDL transform-
ers preserve the basic order properties of reflexivity and transitivity guaranteed by
priority graphs. For a concrete illustration, consider the program

?A;R: ‘keep the old relation only from where A is true’.

This change does not preserve reflexivity of an order relation R, because the
¬A-worlds now have no outgoing relation arrows any more.25

All this argues for a more general policy of modeling both intrinsic and extrinsic
preference for agents, with reasons for the latter encoded in priority graphs that are
an explicit part of the modeling.

Still, one might think that intrinsic betterness relations merely reflect an agent’s
raw feelings or prejudices. But the intrinsic-extrinsic contrast is relative, not abso-
lute. If I obey the command of a higher moral authority, I may acquire an extrinsic
preference, whose reason is obeying a superior. But for that higher agent, the same
preference may be intrinsic: “The king’s whim is my law”. This observation suggests
a further theme: transitioning from one perspective to the other.

25Intuitively, the operation ?A;R amounts to a refusal to make betterness comparisons at worlds
that lack property A. Though idiosyncratic, this seems a bona fide mind change for an agent.
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7.3 Additional dynamics: language change
Technically, intrinsic betterness can become extrinsic through a dynamics that has
been largely outside the scope of dynamic-epistemic logic so far, that of language
change. One mechanism here is the proof of the earlier representation result stated
in Theorem 25. It partitions the given betterness pre-order into clusters, and if these
are viewed as new relevant reasons or criteria, the resulting strict order of clusters
is a priority graph inducing the given order. This may look like mere formal ratio-
nalization, but in practice, one often observes agents’ preferences between objects,
and then postulates reasons for them. A relevant source is the notion of ‘revealed
preference’ from the economics literature: cf. [79].

Thus, our richer view of preference also suggests a new kind of dynamics beyond
what we have considered so far. In general, reasons for given preferences may have
to come from some other, richer language than the one that we started with: we are
witnessing a dynamic act of language creation.26

8 Combining evaluation and information
We have now completed our exposition of information dynamics as well as pref-
erence dynamics, which brought its own further topics. What must have become
abundantly clear is that there are strong formal similarities in the logic of order
and order change in the two realms. We have not even enumerated all of these
similarities, but, for instance, all of our earlier ideas and results about reason-based
preference also make sense when analyzing evidence-based belief.

This compatibility helps with the next natural step we must take. As we said
right at the start of this paper, the major agency systems of information and eval-
uation do not live in isolation: they interact all the time. A rational agent can
process information well in the sense of proof or observation, but is also ‘reasonable’
in a broader sense of being guided by goals. This entanglement of knowledge, belief,
and preference shows in many specific settings. We will look at a few cases, and in
particular, their impact on the dynamics of preference change.27 Though we will
mainly discuss how information dynamics influences preference and deontic notions,
the opposite influence is equally real. In particular, information flow depends on
trust and authority: which are clearly deontic notions.28

26For a study of language change in the setting for belief revision, cf. [108].
27For a more general discussion, we refer to [109].
28Following Wittgenstein, Brandom (cf. [34]) has even argued that language use can only be

fully understood in terms of commitments that carry rights and obligations.
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8.1 Generic preference with knowledge
In Section 4.2, we defined one basic generic preference as follows:

Pref∀∃(ψ,ϕ) := U(ψ → 〈≤〉ϕ).
This refers to possibilities in the whole model, including even those that an agent

might know to be excluded. [26] defend this scenario in terms of ‘regret’, but still,
there is also a reasonable intuition that preference only runs among situations that
are epistemically possible.

This suggests the entangled notion that, for any ψ-world that is epistemically
accessible to agent a in the model, there is a world which is at least as good where
ϕ is true. This can be written with an epistemic modality:

Pref∀∃(ϕ,ψ) ::= Ka(ψ → 〈≤〉ϕ). (Kbett)

But this is not yet what we are after, since we want the ‘better world’ to be
epistemically accessible itself. [92] shows how this cannot be defined in a simple
combined language of knowledge and betterness, and that instead, a richer preference
formalism is needed with a new intersection modality for epistemic accessibility and
betterness. The latter entangled notion can be axiomatized, and it also supports a
dynamic logic of preference change as before.29

8.2 Generic preference with belief
Issues of entanglement become even more appealing with generic preference and
belief, where the two relational styles of modeling were very similar to begin with.
Again, we might start with a mere combination formula

Pref∀∃(ϕ,ψ) ::= Ba(ψ → 〈≤〉ϕ). (Bbett)

This says that, among the most plausible worlds for the agent, for any ψ-world,
there exists a world which is at least as good where ϕ is true.30

Again, this seems not quite right in many cases, since we often want the better
worlds relevant to preference to stay inside the most plausible part of the model,
being ‘informational realists’ in our desires. To express this, we again need a stronger

29An alternative approach would be to impose additional modal axioms that require betterness
alternatives to be epistemic alternatives via frame correspondence. However, this puts constraints
on our dynamic operations transforming models that we have not investigated. We leave this
alternative line as a topic for further investigation.

30One might also think here of using a conditional belief Bψ〈≤〉ϕ, but to us, this seems an
intuitively less plausible form of entanglement.
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merge of the two relations by intersection. The key clause for a corresponding new
modality then reads like a ‘wishful safe belief’:

M, s |= Hϕ iff for all t with both s ≤ t and s � t, M, t |= ϕ.

As before, the static and dynamic logic of this entangled notion yield to the
general dynamic-epistemic methodology explained in earlier sections.

8.3 Other entanglements of preference and normality
Entangled versions of plausibility and betterness abound in the literature. For in-
stance, [33] has models M = (W,≤P ,≤N , V ) with W a set of possible worlds, V a
valuation function and ≤P , ≤N two transitive connected relations x ≤P y (‘y is as
good as x) and x ≤N y (‘y is as normal as x). These models support an operator of
conditional ideal goal (IG):

M|=IGψϕ iff Max(≤P ,Max(≤N , Mod(ψ))) ⊆Mod(ϕ)

This says that the best of the most normal ψ worlds satisfy ϕ. Such entangled
notions are still expressible in the modal systems of this chapter.

Fact 29. IGψϕ ::= U(ψ ∧ ¬〈B<〉ψ)∧¬〈<〉(ψ ∧ ¬〈B<〉ψ)→ ϕ).31

Following up on this tradition in agency studies in computer science, the paper
[87] defines the following entangled notion of preference:

Definition 30. M |= Pref∗(ϕ,ψ) iff for all w′ ∈Max(≤N , Mod(ψ)), there exists
w ∈Max(≤N ,Mod(ϕ)) such that w′ <P w.

This reflects the earlier-mentioned ‘ceteris paribus’ sense of preference, where
one compares only the normal worlds of the relevant kinds.32 Intriguingly, a source
of similar ideas is the semantics of expressions like “want” and “desire” in natural
language, cf. [128], [74], [37].

The preceding notions are similar to our earlier one with an intersection modality,
but not quite. They only compare the two most plausible parts for each proposition.

We give no deeper analysis of all these entangled notions here, but as one small
appetizer, we note that we are still within the bounds of this paper.

Fact 31. Pref∗ is definable in a modal doxastic preference language.
31Here, B< is an earlier-mentioned modality of strong belief that we do not define.
32This makes sense in epistemic game theory, where ‘rationality’ means comparing moves by

their most plausible consequences according to the player’s beliefs and then choosing the best.
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8.4 Preference change and belief revision
As we have observed already, our treatment of the statics and dynamics of belief
and preference shows many similarities. It is an interesting test, then, if the earlier
dynamic logic methods transfer to entangled notions of preference. Intuitively, en-
tangled preferences can change because of two kinds of trigger: evaluative acts like
suggestions or commands, and informative acts changing our beliefs. As a positive
illustration, we quote one result from [91]:

Theorem 32. The dynamic logic of the above intersective preference H is axioma-
tizable, with the following essential recursion axioms:

1. 〈]A〉〈H〉ϕ↔ (A ∧ 〈H〉(A ∧ 〈]A〉ϕ)) ∨ (¬A ∧ 〈H〉〈]A〉ϕ).

2. 〈⇑A〉〈H〉ϕ↔ (A ∧ 〈H〉(A ∧ 〈⇑A〉ϕ)) ∨ (¬A ∧ 〈H〉(¬A ∧ 〈⇑A〉ϕ)) ∨
(¬A ∧ 〈bett〉(A ∧ 〈⇑A〉ϕ)).

3. 〈A!〉〈H〉ϕ↔ A ∧ 〈H〉〈A!〉ϕ.

Having intersection modalities may not be all that is needed, though, since there
may also be entangled triggering events that do not easily reduce to purely informa-
tional or purely evaluative actions.33

Trade-offs between preference change and information change. Finally, as often in
logic, distinctions can get blurred through redefinition. For instance, sometimes, the
same scenario may be modeled either in terms of preference change, or as information
change. Two concrete examples of such redescription are “Buying a House” in [38]
and “Visit by the Queen” in [88]. Important though it is, we leave the study of
precise connections between different representations of dynamic entangled scenarios
to another occasion.

9 Deontic reasoning, changing norms and obligations
Our analysis of information and preference can itself be viewed as a study of norma-
tive discourse and reasoning. However, in this section, we turn to explicit deontic
scenarios, and take a look at some major issues concerning obligations and norms
from the standpoint of dynamic systems for preference change.34

33For an analogy, see the question scenarios involving conversational triggers for parallel infor-
mation and issue change in [19].

34Our treatment largely follows the papers [25], [17].
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Perhaps the most immediate concrete task at hand is charting the large variety
of deontic actions in daily life that affect normative betterness orderings. These
normative triggers range from commands to promises and permissions. We will not
undertake such a survey here, but the examples in this paper will hopefully convince
the reader that a dynamic action perspective on deontic issues is natural, and that
much can be done with the tools presented here. Instead, we consider four general
topics that have roots in the deontic literature.

9.1 Unary and dyadic obligation on ordering models
Our static logics heavily relied on binary ordering relations. In fact, deontic logic
was first with this approach, building on observations from ethics that the deontic
notions of obligation, permission and prohibition can be naturally made sense of in
terms of an ideality ordering � on possible worlds. Here is an early quote from [101],
found in [48], p.6.

“ [...] to assert that a certain line of conduct is [...] absolutely right or
obligatory, is obviously to assert that more good or less evil will exist in
the world, if it is adopted, than if anything else be done instead.”

In this line, the pioneering study [67] interpreted dyadic obligations of the type
‘it is obligatory that ϕ under condition ψ’ on semantic models like ours, using a
notion of maximality as in our study of belief:

M, s |= O(ϕ | ψ)⇐⇒ Max(||ψ||M) ⊆ ||ϕ||M
Depending on the properties of the relation �, different deontic logics are ob-

tained here: [67] starts with a � which is only reflexive, moving then to total pre-
orders. This is of course the same idea that has also emerged in conditional logic,
belief revision, and the linguistic semantics of generic expressions.35 Variations of
this modeling have given rise to various preference-based semantics of deontic logic:
see [134] for an overview.

In this light, our paper has taken up an old idea in the semantics of deontic
reasoning, and then added some recent themes concerning preference: criterion-
based priority structure, dynamics of evaluative acts and events, and extended logical
languages making these explicit. This seems a natural continuation of deontic logic,
while also linking it up with developments in other fields.

35One deontic criticism of this account has been that it made conditional obligation lack the
property of antecedent strengthening: [132]. This, however, makes perfect sense in our view, as it
reflects precisely the non-monotonicity inherent in the dynamics of information change, where the
most ideal worlds can change during update.
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9.2 Reasons and dynamics in deontic paradoxes
The dynamic emphasis in this paper on changes and their triggering events has
thrown fresh light on the study of information and preference-based agency. Deontic
logic proves to be no exception, if we also bring in our treatment of reason-based
preference – as we shall see with a few examples.

The Gentle Murder scenario from [46], p.194, is a classic of deontic logic that
illustrates the basic problem of ‘contrary-to-duty’ obligations (CTDs).

Example 33. “Let us suppose a legal system which forbids all kinds of murder,
but which considers murdering violently to be a worse crime than murdering gently.
[. . . ] The system then captures its views about murder by means of a number of
rules, including these two:

1. It is obligatory under the law that Smith not murder Jones.

2. It is obligatory that, if Smith murders Jones, Smith [does so] gently.”

The priority format of Section 6.1, even just linear sequences, can represent this
scenario in a natural way. Recall that a linear priority sequence P1, . . . , Pn combines
bipartitions {I(pi),−I(pi)} of the domain of discourse S. Moving towards the right
direction of the sequence, ever more atoms pi are falsified. In a deontic reading,
this means that, the more we move towards the right side of the sequence, the more
violations hold of morally desirable properties.

Concretely, in the Gentle Murder scenario, the result is two classes of ideality:
one class I1 in which Smith does not murder Jones, i.e., I1 := ¬m; and another
I2 in which either Smith does not murder Jones or he murders him gently, i.e.,
I2 := ¬m ∨ (m ∧ g). The relevant priority sequence B has I2 ≺ I1. Such a sequence
orders the worlds via its induced relation �IMB in three clusters. The most ideal
states are those satisfying I1, worse but not worst states satisfy V1 := ¬I1 but at the
same time I2, and, finally, the worst states satisfy V2 := ¬I2.

With this representation, we can take the scenario one step further.

Example 34. Consider the priority sequence for Gentle Murder from the preceding
Example: B = (I1, I2). We can naturally restrict B to an occurrence of the first viola-
tion by intersecting all formulas in the sequence with V1. Then the first proposition
becomes a contradiction, distinguishing no worlds. The best among the still available
worlds are those with Max+(BV1) = I2 ∧ V1. A next interesting restriction is BV2,
which represents what the original priority sequence prescribes under the assumption
that also the CTD obligation “kill gently” has been violated. In this case we end up
in a set of states that are all equally bad.
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This brief sketch may suffice to show our approach provides a simple perspective
on the deontic robustness of norms and laws viewed as CTD structures: they can
still function when transgressions have taken place.36

Other major puzzles in the deontic literature, such as the Chisholm Paradox, are
given similar reason-based representations in [17].

9.3 Typology of change at two levels
We have shown how two-level structure of preference provides a natural medium
for modeling deontic notions. Likewise, it yields a rich account of deontic changes.
In Section 7, we developed a theory of both informational and evaluative changes,
either directly on possible world order, or on priority structure underlying such
orders. This also makes sense here.

As an illustration, we add a temporal twist to the above deontic scenario, by
‘dynamifying’ Gentle Murder.

Example 35. We start with a priority sequence B = (¬m). This current deontic
state of affairs generates a total pre-order where all ¬m-states are above all m-states:
“It is obligatory under the law that Smith not murder Jones”. Now, we refine this
order so as to introduce the sub-ideal obligation to kill gently: “it is obligatory that,
if Smith murders Jones, Smith murders Jones gently”. In other words, we want to
model the process of refining legal codes, by introducing a contrary-to-duty obligation.

Intuitively, this change can happen in one of two ways:

1. We refine the given betterness ordering ‘on the go’ by requesting a further
bipartition of the violation states, putting the m ∧ g-states above the m ∧ ¬g-
states. This can be seen as the successful execution of a command of the sort
“if you murder, then murder gently”.

2. We introduce a new law ‘from scratch’, where m→ g is now explicitly formu-
lated as a class of possibly sub-ideal states. This can be seen as the enactment
of a new priority sequence (¬m,m→ g).37

The example illustrates how a CTD sequence can be dynamically created either
by uttering a sequence of commands stating what ought to be the case in a sub-ideal
situation, or by enacting a new priority sequence.

36Representing CTD structures as finite chains of properties already occurs informally in [48].
The first formal account is in [57], where an elegant Gentzen calculus is developed for handling
formulae of the type ϕ1@ . . .@ϕn with @ a connective representing a sort of ‘sub-ideality’ relation.
It is an interesting open problem if such a proof calculus can be embedded in the modal logics of
this chapter.

37We have encountered this before, since m→ g is equivalent to ¬m ∨ (m ∧ g).
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But in this setting, Theorem 27 from Section 7 applies: in terms of betterness
among worlds, the two instructions amount to the same thing! In other words, in
this scenario, the same deontic change can be obtained both by refining the order
dictated by a given law, and by enacting a new law.

Of course, this is just a start, and not everything is smooth application. Our
discussion of two-level dynamics in Section 7.2 also suggests that some well-known
changes in laws, such as abrogation (a counterpart to the earlier operation of ‘graph
deletion’) have no obvious counterpart at the pure worlds level.

9.4 Norm change
The preceding discussion leads up to a more general theme of global dynamics. The
problem of norm change has recently gained attention from researchers in deontic
logic, legal theory, as well as multi-agent systems.

Approaches to norm change fall into two groups. In syntactic approaches—
inspired by legal practice—norm change is an operation performed directly on the
explicit provisions in the code of the normative system [58], [59], [31]. In semantic
approaches, however, norm change follows deontic preference order (cf. also [6]).
Our initial betterness dynamics on models belonged to the latter group, but our
priority methods tie it to the former.38

More drastic changes of norms and moral codes can be modeled, too, in our
framework, using the calculus of priority graphs that we have sketched in Section 6.
For details, we refer again to [17].

9.5 Entangled changes
Finally, as observed already in Section 8 on entanglement (cf. [87] for a deontic
discussion), the dynamic logic connection allows for a unified treatment of two kinds
of change that mix harmoniously in deontic reasoning: information change given a
fixed normative order, and evaluation change modifying such an order. Deontic
scenarios can have deeply intertwined combinations of obligation, knowledge and
belief (cf. [94]). Some sophisticated moral scenarios in [106] include natural dynamic
issues that we have ignored here, such as the subtle, but real difference between
‘knowing one’s duty’ versus ‘having a duty to know’.

Many further dynamic deontic themes can be analyzed along the above lines. We
refer to [25], [17] for a detailed treatment of the Chisholm Paradox, and concrete
ways in which priority graph calculus models norm change.

38The bridge here is our earlier analysis: obligations defined via ideality and maximality are
special kinds of classifications of an Andersonian-Kangerian type.
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10 Further directions
Collecting points from earlier sections, here are a few further directions where deontic
logic meets with current trends in dynamic logics of agency.

10.1 Language, speech acts, and agency
Events that drive information or preference change are often speech acts of telling,
asking, and so on. Natural language has a sophisticated repertoire of speech acts
with a deontic flavour (commanding, promising, allowing, and so on) that invite
further logical study, taking earlier studies in meta-ethics and Speech Act Theory
(cf. [119]) to the next level. In particular, such studies will also need a more
fine-grained account of the multi-agency in dynamic triggers, that has been ignored
in this chapter. For instance, things are said by someone to someone, and their
uptake depends on relations of authority or trust. Likewise, promises, commands,
or permissions are given by someone to someone, and their normative effect depends
in subtle ways on who does, and is, what. [148] is a pioneering study of this fine-
structure of normative action using dynamic-epistemic logic.

10.2 Multi-agency and groups
A conspicuous turn in studies of information dynamics has been a strong emphasis
on social scenarios with more than one agent: [12], [121], [7], [66]. After all, the
natural paradigm for language use is communication between different agents, a
major historical source for logic is argumentation between different parties, social
behaviour is kept in place by mutual expectations, and so on.

In the logics for knowledge, belief, and preference of this paper, part of this
multi-agent turn can be represented by mere iteration of single-agent modalities, as
in a’s knowing that b does, or does not, knows some fact. But the next stage is the
introduction of groups as agents, where logics have been devised for notions such as
‘common knowledge’ or ‘distributed knowledge’ in groups, and likewise for beliefs
(cf. [45], [100]), or the group-level preferences underlying Social Choice Theory
(cf. [44]). All these logics also have dynamic-epistemic extensions in the style of
this chapter, although systematic extensions to, say, social choice or judgement
aggregation remain to be developed.

The social turn is highly relevant to deontic logic. From the start, deontic notions
and morality seems all about others: my duties are usually toward other people, my
norms come from outside sources: my boss, or a lawgiver.39 In principle, the methods

39This social aspect has been clearly acknowledged by computer scientists working on multi-agent
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of this paper can deal with social multi-agent structure in deontic settings, though
much remains to be investigated. For instance, it is easy to interpret informational
iterations KaKbp, but what, for instance, is the meaning of an iterated obligation
OaObp? And beyond this, what is a group-based ‘common obligation’: is this more
like common belief, or like a demand for joint action of the group? Other relevant
issues are the entanglement of informational and evaluative acts for groups: cf. [73],
[84], [83], and [75] on morality as held together by social expectations such as trust.
An account of deontically relevant actions for groups will also have to include new
operations reminiscent of social choice, such as belief merge and preference merge,
where the priority structures of Section 6 may find a new use: this time, as a model
for institutions (cf. [61]).

10.3 Games and dependent behaviour
Multi-agency is tied together not just by social knowledge or beliefs, but also by
dependent individual and collective action. Thus, logics of agency have close con-
nections with game theory ([125], [12]) and the study of strategic behavior and its
equilibria. In deontic practice, dependent action is crucial (think of sanctions or
rewards), and games are a congenial paradigm. Many topics in this paper suggest
game-theoretic analogies. We already saw how belief-entangled set lifting is crucial
to player’s choices and their rationality, making preference logics a natural tool in
the analysis of games (cf. [118], [39], [13]). Conversely, ideas from game theory have
entered deontic logic, witness the use of game solution methods as moral deliberation
procedures in [96]. One might even argue that dependent behaviour is the source of
morality, and in that sense, games would be the really natural next stage after the
single-episode driven dynamic logics of this paper.

10.4 Temporal perspective
Games are one longer-term activity, but deontic agency involves many different
processes, some even infinite. The general logical setting here are temporal logics
(cf. [45], [110]) where new phenomena come to the fore. Deontics and morality is not
just about single episodes, but about action and interaction over time. Early work
in deontic logic already used temporal logics: cf. the pioneering dissertation [43])
where events happen in infinite histories, and obligations come and go. Likewise,
in the multi-agent community, logics have been proposed for preferences between
complete histories, and planning behaviour leading toward most desired histories
(cf. [98], [122]). Such temporal logics mesh well with dynamic-epistemic logics (cf.

systems: cf. [99], [145], and [114].
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[14]), with an interesting role for protocols as a new object of study, i.e., available
procedures that both provide and constrain available actions for reaching goals.
Plans and protocols have a clear normative dimension as well, and one would wish
to incorporate them into the preference dynamics of this paper.

10.5 Syntax and fine-structure
Most dynamic logics for agency, whether about information dynamics or evalua-
tion dynamics, are semantic in nature. The states changed by the process are
semantic models. Still, in philosophical logic, there is a continuing debate about
the right representation of information. Semantic information, though common to
many areas, including decision theory and game theory, is coarse-grained, identi-
fying logically equivalent propositions, suppressing the very act of logical analysis
as an information-producing process. Zooming in on the latter, agents engage in
many activities, such as inference, memory retrieval, introspection, or other forms
of ‘awareness management’ that require a more fine-grained notion of information,
closer to syntax. Several dynamic logics of this kind have been proposed in recent
years (cf. [18], [82], [137]).

The same issues of grain level for information make sense in the deontic realm.
For instance, our priority graphs were syntactic objects than get manipulated by
insertions, deletions, permutations, and the like. But also, deontic logic has its own
counterpart to the epistemological problem of ‘omniscience’. My moral obligations
to you cannot reasonably be based on my foreseeing every consequence of my com-
mitments. I owe you careful deliberation, not omniscience.40 Here too, there is a
need for more fine-grained dynamic representations, closer to deontic syntax.

10.6 Numerical strength
While the main theme of this chapter is qualitative approaches, there are also numer-
ical approaches to preferences, employing utilities (cf. [115], [133]) or more abstract
‘grades’ for worlds (cf. [127]). Dynamic ideas work in this setting, too, witness the
modal logic with graded modalities indicating the strength of preference in [5], which
also defines product update for numerical plausibility models. A stream-lined ver-
sion in [90] uses propositional constants qma saying that agent a assigns the current
world a value of at most m. Our earlier ordering models, both for plausibility and
for preference, now get numerical graded versions, with more finely-grained state-
ments of strength of belief and of preference. Dynamic updates can still be defined,

40Likewise, citizens are supposed to know the law, but they need not be professional lawyers in
seeing every relevant deductive consequence.
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where we assign values to actions or events, using numerical stipulations in terms
of ‘product update’ from the cited references.41 More complex numerical evaluation
uses utility as a fine-structure of preference, and its dynamics can also be dealt with
in this style: cf. [90], [93].

While the technical details of these approaches are not relevant here, systems like
this do address two issues that seem of great deontic relevance. One is the possibility
of comparing not just worlds qua preference, but also actions, making sense of the
principled distinction in ethics between outcome-oriented and deontological views of
obligations and commitments. The other major feature is that we can now study the
more quantitative logic of how much good an action does, and the extent to which
we can improve current situations by our actions.

10.7 Probability
Another obvious quantitative addition to our analysis would be probability. Probabil-
ities measure strengths of beliefs, thereby providing fine-structure to the plausibility
orderings that we have worked with. But they can also indicate information that
we have about a current process, or a reliability we assign to our observation of a
current event.42 Finally, the numerical factors in probability theory also allow us
to mix and weigh various factors in the entangled versions of preference and de-
ontic notions that we have discussed in Section 8. A striking entangled notion is
expected value in probability theory, whose definition mixes beliefs and evaluation.
A treatment of such notions in our current framework remains a desideratum.

11 Appendix: relevant strands in the literature
The themes of this paper have a long history, with many proposals in the literature
for combining and ‘dynamifying’ preferences, beliefs, and obligations. In addition
to those cited already, here are some other relevant lines of work.
Computation and agency. [99] is a pioneering study of deontics from a dynamic
viewpoint, reducing deontic logics to suitable dynamic logics. In the same tradition,
[98] takes the deontic logic/dynamic logic interface a step further, studying ‘free
choice permission’ with a new dynamic logic where preferences can hold between
actions. Completeness theorems for this enriched semantics then result for several
systems. [113] provide a dynamified logic of permission that builds action policies for

41The resulting dynamic logic of numerical evaluation can be axiomatized in the same recursive
style as the qualitative systems that we have discussed in this paper.

42See [15] for a rich dynamic-epistemic logic of reasoning with and updating probability.
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agents by adding or deleting transitions. [40] reduces an extension of van der Mey-
den’s logic to PDL, yielding an EXPTIME decision procedure, and showing how
PDL can deal with agents’ policies. Preference semantics has also been widely used
in AI tasks: e.g., [144] gives a preference-based semantics for goals in decision the-
ory. This provides criteria for verifying the design of goal-based planning strategies,
and a new framework for knowledge-level analysis of planning systems. [78] studies
commonsense normative reasoning, arguing that techniques of non-monotonic logic
provide a better framework than the usual modal treatments. The paper has appli-
cations to conflicting obligations and conditional obligations. [87] propose a logic of
desires whose semantics contains two ordering relations of preference and normality,
and then interpret “in context A, I desire B” as ‘the best among the most normal
A ∧ B worlds are preferred to the most normal A ∧ ¬B worlds’, providing a new
entanglement of preference and normality.

Semantics of natural language. In a line going back to [127], [139] presents an up-
date semantics for default rules, locating their meaning in the way in which they
modify expectation patterns. This is part of a general program of ‘update semantics’
for conditionals and other key expressions in natural language. [135] use ideas from
update semantics to formalize deontic reasoning about obligations. In their view,
the meaning of a normative sentence resides in the changes it brings about in the
‘ideality relations’ of agents to whom a norm applies. [149] uses a simple dynamic
update logic to formalize natural language imperatives of the form FIAT ϕ, which
can be used in describing the search for solutions of planning problems. [97] extends
the update semantic analysis of imperatives to include third person and past tense
imperatives, while also applying it to the notion of free choice permission. [107]
outlines a preference-based account of communication, which brings the dynamics
of changing obligations for language users to the fore. [147] distinguishes the illocu-
tionary acts of commanding from the perlocutionary acts that affect preferences of
addressees, proposes a new dynamic logic which combines preference upgrade and
deontic update, and discusses some deontic dilemmas in this setting.

Philosophical logic. The philosophical study of agency has many themes that are
relevant to this paper, often inspired by topics in epistemology or by the philosophy
of action. In a direction that is complementary to ours, with belief change as a
starting point, [70] identifies four types of changes in preference, namely revision,
contraction, addition and subtraction, and shows that they satisfy plausible postu-
lates for rational changes. The collection [63] brings together the latest approaches
on preference change from philosophy, economics and psychology. Following Hans-
son’s work, [1] defines minimal preference change in the spirit of AGM framework
and characterises minimal contraction by a set of postulates. A linear time algo-
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rithm is proposed for computing preference changes. In addition, going far beyond
what we have discussed in this paper, Hansson has written a series of seminal papers
combining ideas from preference logic and deontic logic, see e.g. [69], [68] and [72].
Rational choice theory. Preference is at the heart of decision and rational choice.
In recent work at the interface of preference logic, philosophy, and social science,
themes from our chapter such as reason-based and belief-entangled preference have
come to the fore, with further lines of their own. [42] and [41] point out that,
though existing decision theory gives a good account of how agents make choices
given their preferences, issues of where these essential preferences come from and how
they can change are rarely studied.43 The authors propose a model in which agents’
preferences are based on ‘motivationally salient properties’ of alternatives, consistent
sets of which can be compared using a ‘weighing relation’. Two intuitive axioms are
identified in this setting that precisely characterize the property-based preference
relations. Starting from similar motivations, [102] studies reason-based preference
in more complex doxastic settings, drawing on ideas from similarity-based semantics
for conditional logic. Essentially, preference results here from agents’ comparing
two worlds, one having some property and the other lacking it, close to their actual
world, and comparing these based on relevant aspects of utility. The framework
supports extensive analysis in modal logic, including illuminating results on frame
correspondence and axiomatization. [103] gives an extension of this approach to
preference in the presence of quantifiers, while [104] makes a link between these
preference models and deontic logic. A detailed comparison of the two mentioned
recent approaches with the one in this paper remains to be undertaken.

12 Conclusion
We have shown how dynamic logics of agency can deal with information, criteria,
and preference change. In doing so, we obtained a suggestive framework for the
analysis of deontic notions that connects many strands in the literature on agency.
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The Formalization of Practical Reasoning:
Problems and Prospects

Richmond H. Thomason
Philosophy Department, University of Michigan

Abstract
Deontic logic, as traditionally conceived, provides only a deductive theory

that constrains the states or possible worlds within which an agent should try to
remain. As such, it only encompasses a small part of practical reasoning, which
in general is concerned with selecting, committing to, and executing plans. In
this article I try to frame the general challenge that is presented to logical theory
by the problem of formalizing practical reasoning, and to survey the existing
resources that might contribute to the development of such a formalization. I
conclude that, while a robust, adequate logic of practical reasoning is not yet
in place, the materials for developing such a logic are now available.

Keywords: Formal Practical Reasoning, Imperative Inference, Agent Architecture,
Desires , Intentions.

1 The challenge of formalizing practical reasoning
Practical reasoning is deliberation. It is reasoning about what to do. We do it
all the time. Any day in our life will provide us with hundreds of examples of
thinking about what to do. But it has been remarkably difficult to produce a
comprehensive, adequate theory of practical reasoning. Part of the difficulty is that
the topic is studied by different disciplines, each of these has something important
to contribute, and it is unusual to find a study of practical reasoning that brings all
of these perspectives together.

I will begin by considering examples of practical reasoning. (I suspect that the
range of examples is broader than many people might imagine.) I will then propose
a rationale for classifying these examples, and canvass the disciplines that have
something useful to say about the reasoning.

A more or less comprehensive inventory of examples will provide an idea of what
an adequate account of practical reasoning might look like. In the remainder of the
paper, I try to say something about the challenges that an approach that begins to
do justice to the subject would have to address.
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1.1 Some Examples
All too many published discussions of practical reasoning — even book-length dis-
cussions — cover only a very small part of the territory. For that reason, it’s vital
to begin with a broad range of examples.

Example 1. Ordering a meal at a restaurant.

The deliberating agent sits down in a restaurant and is offered a menu. Here,
the problem is deciding what to eat and drink. Suppose that the only relevant
factors are price and preferences about food. Even for a moderately sized menu
and wine list, the number of possible combinations is over 400, 000. It would be
very unlikely for an ordinary human being to work out a total preference ordering
for each option. In fact, even though the decision will probably involve weighing
preferences about food and drink against preferences about cost, the reasoning
might well produce a decision without appealing to a general rule for reconciling
these preferences.

Example 2. Deciding what move to make in a chess game.

In chess, an individual action needs to be evaluated in the context of its con-
tinuations. There is no uncertainty about the current state or the immediate
consequences of actions, but much uncertainty about moves that the opponent
might make. The search space (i.e., the number of possible continuations) is
enormous — on the order of 1043. Determining the value of positions involves
conflicting criteria (e.g. positional advantages versus numerical strength); these
conflicts must be resolved in comparing the value of different positions. In tour-
nament chess, deliberation time is limited. These somewhat artificial constraints
combine to concentrate the reasoning on exploration of a search space. Perhaps
because of this, the reasoning involved in chess has been intensively investigated
by psychologists and computer scientists, and influenced the classical work on
search algorithms in AI; see [48].

Example 3. Savage’s omelet.

In [44][pp. 13–15], Leonard Savage describes the problem as follows.

Your wife has just broken five good eggs into a bowl when you come
in and volunteer to finish making the omelet. A sixth egg, which for
some reason must either be used for the omelet or wasted altogether,
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lies beside the bowl. You must decide what to do with the unbroken
egg. . . . you must decide between three acts only, namely, to break it
into the bowl containing the other five, to break it into a saucer for
inspection, or to throw it away without inspection.

This problem involves preferences about the desired outcomes, as well as risk,
in the form of a positive probability that the egg is spoiled. The problem is to
infer preferences over actions. The outcomes are manifest and involve only a few
variables, the preferences over them are evident, and the probabilities associating
each action with an outcome can be easily estimated. In this case, the reasoning
reduces to the calculation of an expected utility.

Example 4. Designing a house.

This example is less obviously practical; it is possible for an architect to design a
house without thinking much about the actions that will go into building it, leav-
ing this to the contractor.1 However, an architect’s design becomes the builder’s
goals, and I would maintain that inferring goals is a form of practical reasoning.
The reasoning combines constraint satisfaction and optimization, where again
conflicts between competing desiderata may need to be resolved. Any real-life
architect will also use case-based reasoning, looking in a library of known de-
signs for one that is relevant, and modifying a chosen example to suit the present
purpose.

Example 5. Deciding how to get to the airport.

This is a planning problem; the agent a has an inventory of actions, knows their
preconditions and effects, knows the relevant features of the current state, and has
as its goal a state in which a is at the airport. In its simplest form, the problem is
to find a sequence of actions that will transform the current state into a state that
satisfies the goal. Planning, or means-end reasoning, is one of the most intensively
studied forms of reasoning in AI. The earliest planning algorithms made many
simplifying assumptions about the planning situation and the conditions that a
satisfactory plan must meet; over the years, sophisticated planning algorithms
have been developed that depend on fewer of these assumptions and so can be
used in a variety of realistic settings.2

1Of course, a good design has to take into account how to build a house, in order to make sure
that the design is feasible.

2See, for instance, [39]. For the airport problem in particular, see [34].
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Example 6. Cracking an egg into a bowl.

This is a case in which most of of us do the action automatically, with hardly any
conscious reasoning. Probably most people can’t remember the circumstances
under which they learned how to do it. But the activity is complex: there are
many ways to get it wrong. This example was proposed as a benchmark problem
in the formalization of common-sense reasoning. The literature on this problem
shows that the reasoning is surprisingly complicated, and it presupposes much
common-sense knowledge; see, for instance, [45]. This example is different from
the previous ones in that the solution to the reasoning problem is acted out;
the reasoning must engage motor systems, and it depends on these systems for
grasping and manipulating objects according to plan. For obvious reasons, Savage
ignored this part of the omelet problem.

Example 7. Playing table tennis.

Unlike chess, table tennis is a game in which practical reasoning has to be on-
line; engaged in complex, real-time activities involving the perceptual and motor
systems. For a novice, the reasoning may be exhausted by the need to keep the
ball in play; experts may be able to engage in tactical reasoning. But there is no
time to spare for reflection; the reasoning needs to be thoroughly connected to
the ongoing process of play.

Example 8. Playing soccer.

Soccer is like table tennis, but with the added dimension of teamwork and the
need to recognize and execute plays. This task was selected as a benchmark
problem in robotics, and has been extensively studied. See, for instance, [54, 40,
3].

Example 9. Typing a message.

Typing an email message, composing it as you go along, starts perhaps with a
general idea of what to say. The reasoning that produced a rough idea of the con-
tent may have taken place reflectively, but once composition has begun, several
reasoning processes are engaged simultaneously, and have to be coordinated. The
general idea of what to say has to be packaged in linguistic form, and this form
has to be rendered by motor actions at the keyboard. For a skilled typist com-
posing a straightforward message, these complex, practical tasks are combined
and executed very quickly, perhaps at the rate of 70 words per minute. For this
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to happen, the interface between high-level linguistic reasoning and motor skills
has to be very robust.

Example 10. Factory scheduling.

The factory scheduler has to produce, say on a daily basis, a sequence of man-
ufacturing operations for each order to be processed that day, and a schedule
allocating times and machines to these operations. This problem is notorious for
the difficulty of the reasoning; it involves horrible combinatorics, uncertainty, lim-
ited time for reflection, and the resolution of many conflicting desiderata. Among
the goals cited by [17] are (1) meeting order dates, (2) minimizing work-in-process
time, (3) maximizing allocation of factory resources, and (4) minimizing disrup-
tion of shop activity.
Part of the interest of this example lies in the difference in scale between this
problem and Savage’s omelet problem. It is not clear that there is any way
to construct a single, coherent utility function for the task, by reconciling the
four desiderata mentioned above. Any reconciliation will leave some managers
unhappy: salesmen will favor goal (1), and production managers will favor goals
(2)–(3), perhaps giving different weights to these. Nor is it feasible to produce a
global probability function for a system with so many interacting variables.

Example 11. Ordering dessert.

Let’s return the restaurant of Example 1. The main course is over, and our
agent is offered a dessert menu and the choice of whether to order dessert. On
the one hand, there is a direct desire for dessert, perhaps even a craving. This
alternative is colored with and motivated by emotion, even if the emotion is
not overwhelming. But suppose that there is a contrary emotion. The agent is
unhappy with being overweight and has determined to eat less, and may have
told others at the table about the decision to undertake a diet. This creates a
conflict, coloring the choice of dessert with negative associations, perhaps even
shame. The chief difference between this conflict and those in Examples 2 and
4 is that this decision is emotionally “warm;” the outcome may be influenced
by a craving and the presence of the desired object. (Perhaps this is why some
restaurants invest in dessert trays.)

Example 12. An unanticipated elevator.

A man decides to visit his stockbroker in person, something he has never done.
He takes a bus to a stop near the stockbroker’s downtown address, gets off the
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bus, locates the building and enters it. He finds a bank of elevators, and sees that
the stockbroker is on the 22nd floor. This man has a strong dislike for elevators,
and is not feeling particularly energetic that day. He reconsiders his plan.

Example 13. A woman is working in her garden.

She becomes hot and tired, and decides to take a break. Or she hears the tele-
phone ringing in her house, and decides to answer it. Or she sees smoke coming
out of the window of her house, and runs for help.

Example 14. The wrath of Achilles.

In Book I of The Iliad, the hero Achilles is outraged and dishonored by his
warlord Agamemnon, who insults him and declares that he will take back, in
compensation for his own loss and Achilles’ disrespectful behavior, the captive
woman that Achilles had received as his war prize.
Homer goes on to describe Achilles’ reaction. Achilles is headstrong, but his
reaction is partly physical and partly intellectual: his heart pounds with rage,
but instead of acting immediately he asks himself a question: should he draw
his sword and kill the king? To explain his decision, the poet brings in a god:
Athena, invisible to everyone else, seizes him by the hair and persuades him to
give in and be patient.
For our purposes, we can suppose that Athena is a literary device. The outrage
leads to a direct desire to kill, but instead of acting on it, Achilles realizes that
it would be better to restrain himself.
Even though it is “hot” — strongly informed by emotion — reasoning intervenes
here between the emotional shading of the alternatives and an ensuing resolution
to act.

Example 15. Deciding what to say at a given point in a conversation.

Conversation provides many good examples of deliberative reasoning. Where
there is conscious deliberation, it is likely to be devoted to content selection. But
the reasoning that goes into deciding how to express a given content can be quite
complex.

Certainly, any adequate theory of practical reasoning must at least be compati-
ble with this broad range of cases. Better, it should be capable of saying something
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about the reasoning involved in all of them. Even better, there should be a sin-
gle architecture for practical reasoning, capable of dealing with the entire range
of reasoning phenomena.3 No doubt, there are special-purpose cognitive modules
(e.g., for managing perception, motor behavior, and some aspects of language).
But in the absence of convincing, independent psychological evidence it would be
perverse to formulate a theory of a special type of practical reasoning, such as pref-
erence generation, probability estimation, or means-end reasoning, and to postulate
a “cognitive module” that performs just this reasoning. All these types of reason-
ing can be involved in the same practical problem situation, and interact strongly.
This methodology would be likely to produce an ad hoc and piecemeal account of
practical reasoning.

1.2 Towards a classification
The examples in the previous section suggest a set of features that can be used to
classify specimens of deliberative reasoning.

1. Are only a few variables (e.g., desiderata, causal factors, initial conditions)
involved in the decision?

2. Do conflicting preferences need to be resolved in making the decision?
3. Is the time available for deliberation small compared to the time needed for

adequate reflection?
4. Is the deliberation immediate? That is, will the intentions that result from the

deliberation be carried out immediately, or postponed for future execution?
5. Is the deliberation carried out in “real time” as part of an ongoing activity

involving sensory and motor activities?
6. Does the reasoning have to interface closely with sensory and motor systems?
7. Is the activity part of a group or team?
8. Does the context provide a definite, relatively small set of actions, or is the set

of actions open-ended?
9. Is there certainty about the objective factors that bear on the decision?
10. Is the associated risk small or great?
11. Is the goal of deliberation a single action, or a sequence of actions?
12. Is continuous time involved?
13. Is the deliberation colored with emotions?
14. Is the action habitual, or automatic and unreflective?
15. Is there conscious deliberation?

3For the idea of a cognitive architecture, see [38].
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16. Are there existing plans in play to which the agent is committed or that already
are in execution?

Many of the differences marked by these features are matters of degree, so that
the boundaries between the types of reasoning that they demarcate are fluid. This
strengthens the case for a general approach to the reasoning. There is nothing wrong
with concentrating on a special case to see what can be learned from it. Chess and
decision problems that, like Savage’s omelet, involve a solution to the “small worlds
problem”4 provide good examples of cases where this methodology has paid off. But
to concentrate on these cases without paying any attention to the broad spectrum
of examples runs the risk of producing a theory that will not be contribute usefully
to something more general.

1.3 Disciplines and approaches
Many different disciplines have something to say about practical reasoning. The
main theoretical approaches belong to one of the five following areas.

1. Philosophy
2. Logic
3. Psychology
4. Decision Theory and Game Theory
5. Artificial Intelligence

Of course, there is a good deal of overlap and mixing of these approaches: AI,
for instance, is especially eclectic and has borrowed heavily from each of the other
fields. But work in each area is colored by the typical problems and methods of the
discipline, and — typically, at least — has a distinctive perspective that is inherited
from the parent discipline.

The following discussion of these five approaches is primarily interested in what
each has to contribute to the prospects for formalizing practical reasoning.

1.3.1 Philosophy

The topic of practical reasoning goes back to Aristotle. In the Twentieth Century
there was a brief revival of philosophical interest in the topic of “practical inference.”
This coincided more or less with early work on deontic and imperative logic, and

4This is the problem of framing a decision problem, concentrating only on the factors that are
relevant.
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was carried out by a group of logically minded philosophers and a smaller group of
philosophicaly minded logicians. It is a little difficult to distinguish philosophy from
logic in this work; I will more or less arbitrarily classify Kenny and some others as
philosophers for the purposes of this exposition, and von Wright as a logician.

Post-Fregean interest in imperative logic seems to have begun about the time of
World War 2, with [28, 26, 41]. Later, in the 1960s,5 some British philosophers be-
came interested in the topic. This period saw 10 or more articles relevant appearing
in journals like Analysis. Of these, [31] seems to have the most interesting things to
say about the problem of formalizing practical reasoning.6

Kenny begins with Aristotle’s practical syllogism, taking several specimens of
means-end reasoning from the Aristotelian corpus, and beginning with the following
example, based on a passage in Metaphysics 1032b19.

Example 16. A doctor prescribing.

This man is to be healed.
If his humors are balanced, he will be healed.
If he is heated, his humors will be balanced.
If he is rubbed, he will be heated.
So I’ll rub him.

The premisses of the reasoning, according to Kenny, are either (i) desires or duties,
or (ii) relevant facts. And he characterizes the conclusion as an action.7 Kenny
points out that this sort of reasoning doesn’t fit Aristotelian syllogistic, and that a
straightforward modern formalization of it would be invalid. To put it crudely, the
inference from P , Q → P , R → Q, and S → R to S is invalid.

Here, I think Kenny has indicated an important type of practical reasoning, and
pointed out a glaring problem with the propositional calculus as a formalization
medium. Unfortunately, the theory that he proposes in this paper doesn’t seem to
solve the problem of providing an account of validity that matches the reasoning.
In fact, there are many glaring problems with the crude Propositional Calculus
formalization of Example 16, involving the deductive formulation of the reasoning
as well as the faithfulness of the formalization to the language of the example.

5Judging from internal evidence, the work of Richard Hare influenced this episode of interest in
the topic. Elizabeth Anscombe [2] may also have been an influence, as well as G.H. von Wright.

6For more about this period, see [23].
7The Aristotelian texts make it pretty clear that Aristotle considered the conclusion to be an

action. But for our purposes, it would work better to think of the conclusion as an expression of
intention. In some circumstances — when the deliberation is concerned with immediate action and
the reasoning is sufficiently persuasive, there is no gap between intention and action.
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The failure of Kenny’s proposal and of similar ones at the time seems to originate
in a lack of logical resources that do justice to the problem. The Propositional
Calculus is certainly not the right tool, and deduction is certainly not the right
characterization of the reasoning. The only idea that was explored at the time was
that of providing a logic of “imperative inference.” This idea might help with one
problem: formalizing the first premiss of Example 16, which does not seem like a
straightforward declarative. But it can’t begin to address the challenge posed by
the invalidity of the argument. Besides, the idea of an imperative logic didn’t lead
to anything very new, because of another trend that was taking place at about the
same time.

This trend, which tried to absorb imperative and practical inference into some
sort of modal logic, was also underway in the 1960s. [32] provides a logic of im-
peratives that prefigures the Stit approach of [6], hence a modal approach that
brings in the idea of causing a state of affairs. And [11], recommends and develops
a reduction of imperative logic to a more standard deontic logic. This idea provides
formal systems with excellent logical properties. But it does so at the expense of
changing the subject and leaving the central problem unsolved. Reasoning in deon-
tic logic is deductive, and if you formalize typical specimens of means-end reasoning
like Example 16 in these systems, the formalizations will be invalid.

Even though the literature shows a sustained series of attempts in this period to
formalize practical inference, the work didn’t lead to anything like a consensus, and
produced no sustainable line of logical development. In retrospect, we can identify
several assumptions that rendered the formalization project unsustainable:

1. These philosophers relied too much on deductive inference, with the proposi-
tional calculus as a paradigm, and too little on models;

2. They tended to work with overly simple formal languages;
3. They didn’t bring actions into the formalization explicitly;
4. They missed the insight that means-end reasoning is more like abduction or

heuristic search than deduction.

As we will see in Section 1.3.5, more recent and quite separate developments
in computer science have yielded sophisticated logics of means-end reasoning, effec-
tively solving the formalization problem that led to an earlier philosophical impasse
in the 1960’s and 1970’s. The moral seems to be that formalization projects of this
sort can involve multiple challenges, and that it can be hard to address these chal-
lenges without a body of applications and a community of logicians committed to
formalizing the applications and mechanizing the reasoning.
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Meanwhile, philosophers seem to have drawn the conclusion that close attention
to the reasoning, and searching for formalizations, is not likely to be productive. In
the more recent philosophical work on practical reasoning, it is actually quite difficult
to find anything that bears on the formalization problem. Almost entirely, the
philosophical literature is devoted to topics that might serve to provide philosophical
foundations for the theory of practical reasoning — if there were such a theory. Even
if, as Elijah Millgram claims in [36], the driving issue in the philosophy of practical
reasoning is to determine which forms of practical reasoning are correct, philosophers
seem to pursue this inquiry with informal and very loose ideas of the reasoning itself.
In many cases — for instance, the issue of whether intentions cause actions — no
formalization of the reasoning is needed for the philosophical purposes. In other
cases, however, a formal theory of practical reasoning might help the philosophy,
refining some old issues and suggesting new ones.

Even though some philosophers maintain positions that would sharply limit the
scope of practical reasoning (reducing it, for instance, to means-end reasoning), I
don’t know of any explicit, sustained attempt in the philosophical literature to de-
lineate what the scope of practical reasoning should be. I don’t see how to do this
without considering a broad range of examples, as I try to do above in Section 1.1.
But in fact, examples of practical reasoning are thin on the ground in the philosoph-
ical literature; in [36], for instance, I counted only 12 examples of practical reasoning
in 479 pages — and many of these were brief illustrations of general points.

1.3.2 Logic

There are few departments of logic, and work in logic bearing on practical reasoning
tends to be carried out in the context of either Philosophy or Computer Science, and
to be influenced by the interests of the parent disciplines. There are, in fact, two
separate strands of logical research, one associated with Philosophy and the other
with Artificial Intelligence. These have interacted less than one might wish.

Philosophical logic. Georg Henrik von Wright was explicitly interested in prac-
tical reasoning, from both a philosophical and a logical standpoint. Most of his
writings on the topic are collected together in [56]; these were published between
1963 and 1982. Like Kenny, von Wright begins with Aristotle’s practical syllogism.
But he avoids the problem of invalidity by strengthening premisses that introduce
ways of achieving something. Von Wright’s version of Example 16 would look like
this:

I want to heal this man.
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Unless his humors are balanced, he will not be healed.
Unless he is heated, his humors will not be balanced.
Unless he is rubbed, he will not be heated.
Therefore I must rub him.

By departing from Aristotle’s formulation, von Wright makes it easier to formu-
late the inference in a deontic logic, and to see how the formalization might be valid.
At the same time, he is making it more difficult to fit the formalization to naturally
occurring reasoning. As in this example, where, for instance, there is surely more
than one way to heat the patient, the means that a deliberator chooses in typical
means-end reasoning will not be the only way to achieve the end.

This simplification makes it easier for von Wright to propose modal logic, and in
particular deontic logic, as the formalization medium for practical reasoning. Von
Wright also characterizes his version of deontic logic as a “logic of action,” but all
this seems to mean is that the atomic formulas of his language may formalize things
of the form ‘Agent A does action a.’ He has little or nothing to say about reasoning
about action.

I will not say much here about the subsequent history of deontic logic as a part of
philosophical logic. As the field developed, it acquired its own problems and issues
(such as the problem of reparational obligations), but as philosophers concentrated
on declarative formalisms and deductive logic, the relevance to practical reasoning,
and even means-end reasoning, that von Wright saw in his in early papers such as
[55], attenuated.

Although the subsequent history of deontic logic was less directly concerned
with practical reasoning, it shows a healthy tendency to concentrate on naturally
occurring problems that arise in reasoning about obligation. This work has a place
in any general theory of practical reasoning. Obligations play a role as constraints
on means-end reasoning, and reasoning about obligations has to be flexible to cope
with changing circumstances.

Also, the problem of modeling conditional obligations has produced a large liter-
ature on the relationship between modal logic and preference.8 Of course, reasoning
about preferences intrudes into practical reasoning in many ways. How to fit it in
is something I am not very clear about at the moment; part of the problem is that
so many different fields study preferences, and preferences crop in so many different
types of practical reasoning. Maybe the best thing would be to incorporate pref-
erences in a piecemeal way, and hope that a more general and coherent approach
might emerge from the pieces.

8See, for instance, [24, 27].
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The Stit approach to agency was already mentioned in Section 1.3.1. This
provides a model-theoretic account of how actions are related to consequences that
is quite different from the ones that emerged from the attempts in AI to formalize
planning. The connections of Stit theory to practical reasoning are tenuous, and I
will not have much to say about it.

Philosophy and philosophical logic have served over the years as a source of ideas
for extending the applications of logic and developing logics that are appropriate for
the extensions. One would hope that philosophy would continue to play this role.
But — at least, for areas of logic bearing on practical reasoning — the momentum
has shifted to computer science, and especially to logicist AI and knowledge repre-
sentation. This trend began around 1980, and has accelerated since. Because many
talented logicians were attracted to computer science, and because the need to re-
late theories to working implementations provided motivation and guidance of a new
kind, this change of venue was accompanied by dramatic logical developments, and
improved insights into how logic fits into the broader picture. I would very much like
to see philosophy continue to play its foundational and creative role in developing
new applications of logic, but I don’t see how this can happen in the area of prac-
tical reasoning unless philosophers study and assimilate the recent contributions of
computer scientists.

The point is illustrated by [19]. The paper is rare among contemporary papers
in urging the potential importance of a logic of practical reasoning, but — in over
100 pages — it is unable to say what a coherent, sustained research program on
the topic might be like. It does mention some important ideas, such as taking the
agent into account, as well as nonmonotonic and abductive reasoning, but offers no
explicit, articulated theories and in fact is hesitant as to whether logic has a useful
role to play, repeating some doubts on this point that have been expressed by some
roboticists and cognitive psychologists. Although it cites a few papers from the
AI literature, the citations are incidental; work on agent architectures, abductive
reasoning, and means-end reasoning goes unnoticed. Part of the problem is that the
authors seem to feel that work in “informal logic” might be useful in approaching
the problem of practical reasoning — but the ideas of informal logic are too weak
to provide any helpful guidance. If we are interested in accounting for the practical
reasoning of agents, we have to include computer programs. For this, we need formal
logic — but formal logic that is applicable.

I couldn’t agree more with Gabbay andWoods that logicians should be concerned
with practical reasoning. But to make progress in this area, we need to build on the
accomplishments of the formal AI community.
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1.3.3 Psychology

From the beginning of cognitive psychology, a great deal of labor has gone into
collecting protocols from subjects directly engaged in problem-solving, much of it
practical. Herbert Simon and Allen Newell were early and peristent practitioners of
this methodology. This material contains many useful examples; in fact, it helped
to inspire early characterizations of means-end reasoning in Artificial Intelligence.

As early as 1947, in [47], Simon had noted divergences between decision-making
in organizations and the demands of ideal rationality that are incorporated in deci-
sion theory; he elaborated the point in later work. An important later trend that
began in psychology, with the work of Amos Tversky and Daniel Kahneman, stud-
ies these differences in more detail, providing many generalizations about the way
people in fact make decisions and some theoretical models; see, for instance, [29,
53].

Tversky and Kahneman’s experimental results turned up divergences between
ideal and actual choice-making that were not obviously due, as Simon had suggested,
merely to the application of limited cognitive resources to complex, time-constrained
problems. Since their pioneering work, this has become a theme in later research.

All this raises a challenging foundational problem, one that philosophers might
be able to help with, if they gave it serious attention. What level of idealization is
appropriate in a theory of deliberation? What is the role of “rationality” in this sort
of idealization? Is there a unique sort of rationality for all practically deliberating
agents, or are there many equally reasonable ways of deliberation, depending on
the cognitive organization and deliberative style of the agent? Is the notion of
rationality of any use at all, outside the range of a very limited and highly idealized
set of decision problems? Probably it would be unwise to address these problems
before attempting to provide a more adequate formalization of practical reasoning
— that would be likely to delay work on the formalization indefinitely. But the
problems are there.

Nowadays, the cognitive psychology of decision-making has migrated into Eco-
nomics and Management Science, and is more likely to be found in economics de-
partments and schools of business than in psychology departments. This doesn’t
affect the research methods much, but it does improve the lines of communication
between researchers in behavioral economics and core areas of economics. As a re-
sult, economic theorists are becoming more willing to entertain alternatives to the
traditional theories.
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1.3.4 Decision Theory and Game Theory

The literature in these areas, of course is enormous, and most of it has to do with
practical reasoning. But traditional work in game theory and decision theory con-
centrates on problems that can be formulated in an idealized form — a form in
which the reasoning can be reduced to deriving an optimum result by calculation.9
As a result, work in this tradition tends to neglect much of the reasoning in practical
reasoning. Of course, an agent must reason to wrestle a practical problem into the
required form — to solve Savage’s “small worlds problem” — but the literature in
economics tends to assume that somehow the problem has been framed, without
saying much if anything about the reasoning that might have gone into this process.
(Work in decision analysis, of course, is the exception.) And once a problem has
been stated in a form that can be solved by calculation, there is little point in talking
about deliberative processes.

If we are concerned with the entire range of examples presented in Section 1.1,
however, we find many naturally occurring problems that don’t fit this pattern; and
some of these, at least, exhibit discursive, inferential reasoning. This is one reason
why I believe that a general theory of practical reasoning will reserve an important
place for qualitative reasoning, and especially for inferential reasoning — the sort
of reasoning that gives formalization and logic a foothold. In this respect, Aristotle
was on the right track.

At the very least, practical reasoning can involve inference and heuristic search,
as well as calculation. (Calculation, of course, is a form of reasoning, but is not
inferential, in the sense that I intend.) Any theory of practical reasoning that
emphasizes one sort of reasoning at the expense of others must sacrifice generality,
confining itself to only a small part of the territory that needs to be covered by
an adequate approach. The imperialism of some of those (mainly philosophers,
these days) who believe that there is nothing to rationality or practical reasoning
other than calculations involving probability and utility, can partly be excused by
the scarcity of theoretical alternatives. I will argue in this article that the field of
Artificial Intelligence has provided the materials for developing such alternatives.

As I said in Section 1.3.3, research in behavioral economics has made microe-

9Microeconomists and statisticians are not the only ones who have taken this quantitative,
calculational paradigm to heart. Many philosophers have accepted the paradigm as a model of
practical reasoning and rationality. See, for instance, [49], a book-length study of practical deliber-
ation, which takes the only relevant theoretical paradigms to be decision theory and game theory,
and takes them pretty much in the classical form. Skyrms’ book and the many other philosophical
studies along these lines have useful things to say; my only problem with this literature is the
pervasive assumption that practical reasoning can be comprehensively explained by quantitative
theories based on the assumption that agents have global probability and utility functions.
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conomists generally aware that, in their original and extreme form, the idealizations
of decision theory don’t account well for a broad range of naturally occuring in-
stances of practical reasoning. Attempts to mechanize decision-making led computer
scientists to much the same conclusion.

A natural way to address this problem begins with decision theory in its classical
form and attempts to relax the idealizations. Simon made some early suggestions
along these lines; other, quite different proposals can be found in [57] and [42]. And
other relaxations of decision theory have emerged in Artificial Intelligence: see the
discussion of Conditional Preference Nets below, in Section 1.3.5. Still other relax-
ations have emerged out of behavioral economics, such as Tversky and Kahneman’s
Prospect Theory; see [29].

Programs of this sort are perfectly compatible with what I will propose here.
A general account of practical reasoning has to include calculations that somehow
combine probability (represented somehow) and utility (represented somehow), in
order to estimate risk. The more adaptable these methods of calculation are to a
broad range of realistic cases, the better. I do want to insist, however, that projects
along these lines can only be part of the story. Anyone who has monitored their
own decision making must be aware that not all practical reasoning is a matter
of numerical calculation; some of it is discursive and inferential. A theory that
does justice to practical deliberation has to include both forms of reasoning. From
this point of view, the trends from within economics that aim at practicalizing game
theory and decision theory are good news. From another direction, work in Artificial
Intelligence that seeks to incorporate decision theory and game theory into means-
end reasoning is equally good news.10

In many cases of practical reasoning, conflicts need to be identified and removed
or resolved. Work by economists on value tradeoffs is relevant and useful here;
the classical reference is [30], which contains analyses of many naturally occuring
examples.

1.3.5 Computer science and artificial intelligence

For most of its existence, the field of AI has been concerned with realistic decision
problems, and compelled to formalize them. As the field matured, the AI commu-
nity looked beyond procedural formalizations in the form of programs to declarative
formulations and logical theories. Often AI researchers have had to create their

10For a survey, now getting rather old, see [7]. For an example of a more recent, more technical
paper, see [43].
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own logics for this purpose.11 Here, I will be concerned with three trends in this
work: those that I think can offer most to the formalization of practical reason-
ing. These three are: means-end reasoning, reasoning about preferences, and agent
architectures.

Dynamic logic and imperative inference. When an agent is given instructions
and intends to carry them out unquestioningly, there is still reasoning to be done, and
the reasoning is practical12 — although, as the instructions become more explicit,
the less scope there is for interesting reasoning from the human standpoint. Even so,
the case of computer programs, where explicitness has to be carried out ruthlessly,
can be instructive, because it shows how logical theory can be useful, even when the
reasoning paradigm is not deductive.

A computer program is a (possibly very large and complex) imperative, a detailed
instruction for carrying out a task. Many of its components, such as

let y be x

(“set the value of y to the current value of x”) are imperatives, although some
components, like the antecedent of the conditional instruction

if (x < y and not(x = 0)) then let z be y/x

are declarative.
Inference, in the form of proofs or a model theoretic logical consequence relation,

plays a small part in the theory of dynamic logic. Instead, execution is crucial. This
idea is realized as the series of states that the agent (an idealized computer) goes
though when, starting in a given initial state, it executes a program. Because states
can be identified with assignments to variables, there are close connections to the
familiar semantics of first-order logic.

Dynamic logic is useful because of its connection to program verification. A
program specification is a condition on what state the agent will reach if it executes
the program; if the initial state of a parsing program for an English grammar G,
for instance, describes a string of English words, the program execution should
eventually halt. Furthermore, (1) if the string is grammatical according to G, the
executor should reach a final state that describes a parse of the string, and (2) if the

11Throughout his career, John McCarthy was a strong advocate of this approach, and has done
much of the most important work himself. See [35] for an early statement of the methodology, and
a highly influential proposal about how to formalize means-end reasoning.

12See [33].
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string is not grammatical according to G it should reach a final state that records
its ungrammaticality.

Dynamic logic has led to useful applications and has made important and influen-
tial contributions to logical theory. It is instructive to compare this to the relatively
sterile philosophical debate concerning “imperative inference” that took place in the
1960s and early 1970s.13 To a certain extent, the interests of the philosophers who
debated imperative inference and the logicians who developed dynamic logic were
different. Among other things, the philosophers were interested in applications to
metaethics, and computational applications and examples didn’t occur to them.

But the differences between philosophers and theoretical computer scientists, I
think are relatively unimportant; some of the philosophers involved in the earlier
debate were good logicians, and would have recognized a worthwhile logical project
if it had occurred to them. In retrospect, three factors seem to have rendered the
earlier debate unproductive:

1. Too great a reliance on deductive paradigms of reasoning;
2. Leaving a model of the executing agent out of the theoretical picture;
3. Confining attention to simple examples.

In dynamic logic, the crucial semantic notion is the correctness of an imperative
with respect to a specification. Logically interesting examples of correctness are
not likely to present themselves without a formalized language that allows complex
imperatives to be constructed, and without examples of imperatives that are more
complicated than ‘Close the door’. (The first example that is presented in [25] is a
program for computing the greatest common divisor of two integers; the program
uses a while-loop.) And, of course, a model of the executing agent is essential to the
logical theory. In fact, what is surprising is how much logic can be accomplished
with such a simple and logically conservative agent model.

As I said, the activity of interpreting and slavishly executing totally explicit
instructions is a pretty trivial form of practical reasoning. But a logic of this activity
is at least a start. I want to suggest that, in seeking to formalize practical reasoning,
we should be mindful of these reasons for the success of dynamic logic, seeking
to preserve and develop them as we investigate more complex forms of practical
reasoning.

Planning and the formalization of means-end reasoning. Perhaps the most
important contribution of AI to practical reasoning is the formalization of means-

13See, for instance, [58, 20] as well as [31], which was discussed above, in Section 1.3.1.
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end reasoning, along with appropriate logics, and an impressive body of research
into the metamathematical properties of these logics, and their implementation in
planning systems.14

This approach to means-ends reasoning sees a planning problem as consisting of
the following components:

1. An initial state. (This might be described by a set of literals, or positive and
negative atomic formulas.)

2. Desiderata or goals. (These might consist of a set of formulas with one free
variable; a state that satisfies these formulas is a goal state.)

3. A set of actions or operators. Each action a is associated with a causal axiom,
saying that if a state s satisfies certain preconditions, then a state Result(a, s)
that results from performing a in s will satisfy certain postconditions.

Here, the fundamental logical problem is how to define the state or set of suc-
cessor states15 resulting from the performance of an action in a state. (Clearly, not
all states satisfying the postconditions of the action will qualify, since many truths
will carry over to the result by “causal inertia.”) This large and challenging prob-
lem spawned a number of subproblems, of which the best-known (and most widely
misunderstood) is the frame problem. Although no single theory has emerged from
years of work on this problem as a clear winner, the ones that have survived are
highly sophisticated formalisms that not only give intuitively correct results over a
wide range of test cases, but provide useful insights into reasoning about actions.
Especially when generalized to take into account more realistic circumstances, such
as uncertainty about the current state and concurrency or nondeterminism, these
planning formalisms deliver logical treatments of means-end reasoning that go quite
far towards solving the formalization problem for this part of practical reasoning.

I will try to say more about how these developments might contribute to the
general problem of formalizing practical reasoning below, in Section 2.3.

Reasoning about preferences. It is hard to find AI applications that don’t
involve making choices. In many cases, it’s important to align these choices with
the designer’s or a user’s preferences. Implementing such preference-informed choices
requires (i) a representation framework for preferences, (ii) an elicitation method
that yields a rich enough body of preferences to guide the choices that need to be
made, and (iii) a way of incorporating the preferences into the original algorithm.

14 [1] is a collection of early papers in the field. Both [46] and [39] describe the earlier logical
frameworks and their later generalizations; [39] also discusses implementation issues.

15Depending on whether we are working with the deterministic or the nondeterministic case.
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Any attempt to extract the utilities needed for even a moderately complex, real-
istic decision problem will provide motives for relaxing the classical economic models
of utility; but the need for workable algorithms seems to sharpen these motives. See
[22] for examples and details, and [14], which provides a wide-ranging foundational
discussion of the issues, with many references to the economics literature.

Of the relaxations of preference that have emerged in AI, Ceteris Paribus Pref-
erence Nets are one of the most widely used formalisms.16 As in multi-attribute
utility theory, the outcomes to be evaluated are characterized by a set of features. A
parent-child relation must be elicited from a human subject; this produces a graph
called a CP-net. The parents of a child feature are the features that directly influ-
ence preferences about the child. For instance, the price of wheat in the fall (high
or low) might influence a farmer’s preferences about whether to plant wheat in the
spring. If the price will be high, the farmer prefers to plant wheat; otherwise, he
prefers not to plant it. On the other hand, suppose that in the farmer’s CP-net
the price of lumber is unrelated to planting wheat. It can then be assumed that
preferences about planting wheat are independent of the price of lumber.

To complete the CP-net, a preference ranking over the values of a child feature
must be elicited for each assignment of values to each of the parent features.

Acyclic CP-nets support a variety of reasoning applications (including opti-
mization), and — combined with means-end reasoning — provide an approach to
preference-based planning.17 And in many realistic cases it is possible to extract the
information needed to construct a CP-net.

There are extensions of this formalism that allow for a limited amount of rea-
soning about the priorities of features in determining overall preferences; see [9].

The work in AI on preferences, like decision analysis, tends to concentrate on ex-
tracting preferences from a user or customer. Practical reasoning, however, produces
a different emphasis. Some of the examples in Section 1.1 — for instance, Exam-
ples 1, 4, 10, and 11 — were designed to show that preferences are not automatically
produced by the environment, by other agents, by the emotions, or by a combination
of these things. We deliberate about what is better than what, and preferences can
be the outcome of practical reasoning.18 The status of an agent trying to work out
its own preferences, and of a systems designer or decision analyst trying to work out
the preferences of a person or an organization, may be similar in some ways, but I
don’t think we can hope that they are entirely the same. Nevertheless, insights into
methods for extracting preferences from others might be helpful in thinking about
how we extract our own preferences.

16See, for instance, [13, 8].
17See [4] for details and further references.
18For some preliminary and sketchy thoughts about this, see [52].
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Agent architectures. A nonexecuting planning agent is given high-level goals by
a user, as well as the declarative information about actions and the current state of
things, as well perhaps as preferences to be applied to the planning process. With
this information, it performs means-end reasoning and passes the result along to the
user in the form of a plan.

This agent is not so different from the simple instruction-following agent postu-
lated by dynamic logic; its capabilities are limited to the execution of a planning
program, and it has little or no autonomy. But — especially in time-limited plan-
ning tasks — it may be difficult to formulate a specification, because the notion of
what counts as an optimal plan in these condition is unclear.

When the planning agent is equipped with means of gathering its own informa-
tion, perhaps by means of sensors, and is capable of performing its own actions, the
situation is more complicated, and more interesting. Now the agent is interacting
directly with its environment, and not only produces a plan, but must adopt it
and put it in to action. This has a number of important consequences. The agent
will need to perform a variety of cognitive functions, and to interleave cognitive
performances with actions and experiences.

1. Many of the agent’s original goals may be conditional, and these goals may be
activated by new information received from sensors. This is not full autonomy,
but it does provide for new goals that do not come from a second party.

2. Some of these new goals may be urgent; so the agent will need to be interrupt-
able.

3. It must commit to plans — that is, it must form intentions. These inten-
tions will constrain subsequent means-end reasoning, since conflicts between
its intentions and new plans will need to be identified and eliminated.

4. It will need to schedule the plans to which it has committed.
5. It will need to monitor the execution of its plans, to identify flaws and obstacles,

and repair them.

Recognizing such needs, some members of the AI community turned their at-
tention from inactive planners to agent architectures, capable of integrating some of
these functions. Early and influential work on agent architectures was presented in
[10]; this work stressed the importance of intentions, and the role that they play in
constraining future planning.

Any means-end reasoner needs desires (in the form of goals) and beliefs (about
the state of the world and the consequences of actions). As Bratman, Israel, and
Pollock point out, an agent that is implementing its own plans also needs to have
intentions. Because of the importance of these three attitudes in the work that
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was influenced by these ideas, architectures of this sort are often known as BDI
architectures. For an extended discussion of BDI architectures, with references to
the literature up to 2000, see [59]. See also [21].

Work in “cognitive robotics” provides a closely related, but somewhat different
approach to agent architectures. Ray Reiter, a leading figure in this area, developed
methods for integrating logical analysis with a high-level programming language
called GoLog, an extension of Prolog. Reiter’s work is continued by the Cognitive
Robotics Group at the University of Toronto.

Developments in philosophical logic and formal semantics have provided logics
and models for propositional attitudes; for instance, see [15, 16]. Using these tech-
niques, it is possible to formulate a metatheory for BDI agency. Such a metatheory
is not the architecture; the reasoning modules of a BDI agent and overall control of
reasoning has to be described procedurally. But the metatheory can provide spec-
ifications for some of the important reasoning tasks. Wooldridge’s logic of rational
agents, LORA, develops this idea; see [59].

A final word. Logicist AI has struggled to maintain a useful relation to applica-
tions, in the form of workable technology. Although the struggle has been difficult,
many impressive success stories have emerged from this work — enough to convince
the larger AI community of the potential value of this approach. The incentive to
develop working applications has, I believe, been very helpful for logic, enabling new
ideas that would not have been possible without the challenges posed by complex,
realistic reasoning tasks.

Practical reasoning is not quite the same as logicist AI, or even the logical theory
of BDI agents. But the successful use of logical techniques in this area of AI provides
encouragement for a logical approach to practical reasoning. And, of course, it
provides a model for how to proceed.

2 Towards a formalization

The challenge is this: how to bring logical techniques to bear on practical reasoning,
and how to do this in a way that is illuminating, explanatory, and useful? In the
rest of this article, I will only try to provide an agenda for addressing this challenge.
The agenda divides naturally into subprojects. Some of these subprojects can draw
on existing work, and especially on work in AI, and we can think of them as well
underway or even almost completed. Others are hardly begun.
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2.1 Relaxing the demands of formalization
Let’s return to the division between theoretical and practical reasoning.

Traditionally, domains that involve theoretical reasoning are formalized using
what Alonzo Church called the “logistic method.”19 This method aims to formulate
a formal language with an explicit syntax, a model-theoretically characterized conse-
quence relation, and perhaps a proof procedure. Traditional formalizations did not
include a model of the reasoning agent, except perhaps, in the highly abstract form
of a Turing machine — this sort of agent is guaranteed whenever the consequence
relation is recursively enumerable.

When it comes to practical reasoning, I believe that we have to be prepared to
relax Church’s picture of logical method.20

My own proposal for a relaxation is this: (1) we need to add a model of the
reasoning agent, (2) we need to identify different phases of practical reasoning in
agent deliberation, and different ways in which logic might be involved in each phase
of the reasoning, and (3) consequently, we need to be prepared to have a logical
treatment that is more pluralistic and less unified.

2.2 Agent architectures and division of logical labor
How should we model an agent that is faced with practical reasoning problems? In
Section 1.1, I suggested that we should aim at, or at least acknowledge the existence
of, a very broad range of reasoning problems. Suppose, for instance, that we classify
the types of reasoning that we may need to consider in terms of the sort of conclusion
that is reached. In view of the examples that were presented in Section 1.1, we will
need to be prepared for the agent to infer:

1. Goals, which then invoke planning processes;
2. Plans, and the subgoals or means that emerge from plans;
3. Preferences emerging from reasoning about tradeoffs and risk;
4. Intentions, commitments about what to do, and (to an extent) about when to

do it;
5. Immediate decisions about what plan to execute;

19[12][pp. 47–58].
20In fact, writing in 1956, Church was uncomfortable with semantics and model theory. He

included these topics, but in a whisper, using small type. Over 50 years later, we have become quite
comfortable with model theory and semantics, and are more likely to insist on this ingredient than
on proof procedures. And in areas where logic is applied, we have become increasingly willing to
bring the reasoning agent into the picture.
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6. Immediate, engaged adjustments of ongoing activities and plan executions,
and shifts of attention that can affect the task at hand.

The examples in Section 1.1 were chosen, in part, to illustrate these activities. These
sorts of deliberation are distinct, and all are practical. Although some of them can
be automatic, they all can involve deliberate reasoning.

These six activities comprise my (provisional) division of practical reasoning
into subtasks, and of the deliberating agent into subsystems. Each of them provides
opportunities for logical analysis and formalization. I will discuss them in turn.

2.3 Means-end reasoning
This is the best developed of the six areas. We can refer to the extensive AI literature
on planning and means-end reasoning not only for well developed logical theories,
but for ideas about how this deliberative function interacts with the products of other
deliberative subsystems — for instance, with preferences, and with plan monitoring
and execution.

2.4 The practicalization of desires
On the other hand, work in AI on means-end reasoning, and on BDI agents, has
little or nothing to say about the emotions and the origins of desires. In general, it
is assumed that these come from a user — although the goals may be conditional,
so that they are only activated in the appropriate circumstances. In principle, there
is no reason why goals couldn’t be inferred or learned. But the relevant reasoning
processes have not, as far as I know, been formalized.

In truly autonomous agents some desires — perhaps all — originate in the emo-
tions. Although a great deal has been written about the emotions, it is hard to find
work that could serve a useful logical purpose.21

However desires originate, although they may be emotionally colored, they may
not all be emotionally “hot.” And to be useful in reasoning, some desires must
be conditional, and self-knowledge about conditional desires must be robust. My
preference for white wine this evening will probably be accompanied by feelings of
pleasure when I think about the refreshing taste of white wine. But the feeling
of hypothetical pleasure is relatively mild; I am certainly not carried away by the

21Not [50], which has a chapter on “Reason and the passions,” a section on “The Rationality of
the emotions,” and a chapter on “The logic of the emotions.” Not [37], written by an author who
knows something about AI. But work on modeling artificial characters for applications in areas like
interactive fiction might be useful; see [5].
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feeling. AI systems builders are interested in obtaining a large body of conditional
preferences from users because preferences need to be brought to bear under many
different circumstances. Therefore a user’s unconditional preferences — the prefer-
ences that are activated in the actual state of affairs — will not in themselves be very
useful. Fully autonomous agents need conditional preferences as well, in planning
future actions and in contingency planning.

Perhaps — to develop the example of preference for white wine a bit further
— the only mechanism that is needed to generate conditional desires is the ability
to imagine different circumstances, together with the ability to color these circum-
stances as pleasant (to some degree), and unpleasant (to some degree). But it is
unlikely to be this simple, because pleasantness is not monotonic with respect to
information: I find the idea of a glass of white wine quite pleasant, but the idea
of a glass of white wine with a dead fly in it quite unpleasant. Also, my feelings
about some imagined situations can be mixed, with elements that I find pleasant
and elements that I find unpleasant. At this point, I might have to invoke a conflict
resolution method that has little or nothing to do with the emotions.

This leads to a further point: there is a difference between raw or immediate
desires, or wishes, and all-things-considered desires, or wants. This is because desires
can not only conflict with one another, but with beliefs. And, when they conflict
with beliefs, desires must be overridden: to do otherwise would be to indulge in
wishful thinking.

In [51], I explored the possibility of using a nonmonotonic logic to formalize this
sort of practicalization of desires. The target reasoning consisted of deliberations
such as the following. (The deliberator is a hiker who forgot her rain gear.)

1. I think it’s going to rain.
2. IIf it rains, I’ll get wet.
3. If I get wet, I’ll stay wet unless I give up and go home.
4. I wouldn’t like to stay wet.
5. I wouldn’t like to give up and go home.

The argument reaches an impasse, and a conflict needs to be addressed to resolve it.
There are two possible conclusions here, depending on how the conflict is resolved:

6. On the whole, I’d rather go home.
6.′ On the whole, I’d rather go on hiking.

The main purpose of Steps 1–5 is to identify the conflict.
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I’m not altogether happy with the theory presented in [51], but I still believe
that the practicalization of desires is an important part of practical reasoning that
provides opportunities for using logic to good advantage.

2.5 Intention formation

The product of successful means-end deliberation will be an intention, taking the
form of commitment to a plan. But the deliberation would not get started without
a goal — and I see no difference between a goal and a provisional and (perhaps very
general and sketchy) intention. Often, even in human agents, these goals come from
habits, or from compliantly accepted instructions from other agents.

But sometimes goals arise internally, as outcomes of deliberation. The hiker in
Section 2.4 provides an example. If the conclusion of the reasoning is a practicalized
desire to turn back and head for home, commitment to the conclusion will produce
an intention, which may even become a goal for means-end reasoning. (“How am I
to get home?”)

This is why practicalization can be an important component of practical reason-
ing, especially if the reasoner is an autonomous human being.

2.6 What to do now?

In the life of an autonomous agent, moments will arise when there is scope for new
activities. These opportunities need to be recognized, and an appropriate task needs
to be selected for immediate execution. A busy agent with many goals and a history
of planning may have a ready-made agenda of tasks for such occasions; but even so,
it may take reasoning to select a task that is rewarding and appropriate. I do not
know if any useful work has been done on this reasoning problem.

2.7 Scheduling, execution and engagement

Some of the examples in Section 1.1 were intended to illustrate the point that there
can be deliberation even in the execution of physically demanding, real-time tasks.
And there can be such a thing as overplanning, since the plans that an agent makes
and then performs will need to be adjusted to circumstances, and more detailed
plans will require more elaborate adjustments.

Also, not all intentions are immediate. Those that are not immediate need to be
invoked when the time and occasion are right.

There has been a great deal of useful work on these topic in AI; just one one
recent example is [18].
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2.8 Framing a practical problem

Leonard Savage’s “Small worlds problem” is replicated in the more qualitative setting
of means-end deliberation. A means-end reasoning problem requires (at least) a set
of actions, a description of the initial conditions, and a goal. But, even in complex
cases, formulations of planning problems don’t include every action an agent might
perform, or every fact about the current state of the world. Somehow, a goal (like
“getting to the airport”) has to suggest a method of distinguishing the features of
states (or “fluents”) and the actions that are relevant and appropriate.

I’m sure that ontologies would be helpful in addressing this problem, but other
than this I have very little to say about it at the moment.
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Abstract

Logical systems are often characterized as closure systems, by means of
unary operators satisfying Reflexivity, Idempotence and Monotony. In order
to capture non-monotone systems, Monotony can be replaced by Cumulativity,
namely Restricted Cut and Cautious Monotony. This short note shows that in
such a context, Restricted Cut is redundant.

Keywords: Non-Monotonic Consequence, Cumulativity.

1 Introduction

Tarski [7] introduced abtract logics, as consequence operations, later popularized by
Scott [6] in connection with consequence relations à la Gentzen [3] (see also Gabbay
[2]). The outcome is that abstract logics are often identified with closure operators
over sets of formulas of a logical language. In symbols, given a logical language
consisting of the set of formulas F , a consequence operator is any C defined over 2F

that satisfy all three axioms below:

X ⊆ C(X) (Reflexivity)
C(C(X)) = C(X) (Idempotence)
X ⊆ Y ⇒ C(X) ⊆ C(Y ) (Monotony)

In an insightful attempt to also capture logical systems failing it, the last axiom was
weakened by Makinson [5] into

X ⊆ Y ⊆ C(X)⇒ C(X) = C(Y ) (Cumulativity)
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It was soon split into two “halves” dubbed Cautious Monotony and Restricted Cut.

X ⊆ Y ⊆ C(X)⇒ C(X) ⊆ C(Y ) (Cautious Monotony)
X ⊆ Y ⊆ C(X)⇒ C(Y ) ⊆ C(X) (Restricted Cut)

It is the purpose of this note to show that, in its more natural context (Reflexivity
and Idempotence), Cumulativity is not the combination of the two “halves” but is
actually equivalent to one of them, namely Cautious Monotony.

Actually, it is shown below that if all three of Reflexivity, Idempotence, and
Cautious Monotony hold, then so does Restricted Cut. In semantical terms, it means
that f(A) ⊆ A together with f(f(A)) = f(A) and f(A) ⊆ B ⊆ A ⇒ f(B) ⊆ f(A)
give f(A) ⊆ B ⊆ A⇒ f(A) ⊆ f(B). Indeed, from f(B) ⊆ f(A) ⊆ B ⊆ A, it follows
that f(B) ⊆ f(A) ⊆ B, so f(A) = f(f(A)) ⊆ f(B).

2 The One Direction for Cumulativity

We switch to a sequent presentation (freely drawn upon Kleene [4] and Dummett
[1]) as the result is less obvious there, although no less striking. That is, we consider
a generalization of sequents

X1, . . . , Xn ` Y
such that the antecedent X1, . . . , Xn consists of countably many formulas given as
a (finite) series of sets for the sake of brevity. Thus, the rules have the following
general form where Wi, Xj , Y, Z denote countable sets of formulas and proviso is a
condition:

X1, . . . , Xn ` Y
W1, . . . ,Wm ` Z

proviso

Such a rule means that if proviso is true then W1, . . . ,Wm ` Z can be derived from
X1, . . . , Xn ` Y .
The axioms, written here as rules with no premises, are meant to encode Reflexivity
and have the following form

X ` Y (X ∩ Y 6= ∅)

As for the rules, first please observe that we cannot include Left Thinning due to
the motivation for Cumulativity. For the sake of brevity, we do not provide all rules
and we resort to a rule mixing Left Interchange and Left Contraction as follows
Merging:

W,X, Y ` Z
W,Y ` Z (X ⊆ Y )
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Idempotence:
{x | X ` x} ` Z

X ` Z
In a monotone compact logic, the effect of Idempotence is in fact obtained through
Restricted Cut. For such a logic, Idempotence is indeed an admissible rule in a
sequent system with Restricted Cut (even as an admissible rule). However, Cumu-
lativity (i.e., Restricted Cut and Cautious Monotony) was originally motivated by
non-monotone logics hence postulating Idempotence makes sense when considering
these logics.
Cautious Monotony:

X ` Z
X, Y ` Z (y ∈ Y ⇒ X ` y)

Restricted Cut:
X,Y ` Z
X ` Z (y ∈ Y ⇒ X ` y)

This formulation is intended to exhibit the fact that, under the same proviso, Cau-
tious Monotony and Restricted Cut trigger converse inferences.

Theorem: Restricted Cut is an admissible rule in any system enjoying Idempotence,
Merging and Cautious Monotony.

Proof. 1. Applying Cautious Monotony (X = Γ and Y = Θ)

Γ ` ∆
Γ,Θ ` ∆ (θ ∈ Θ⇒ Γ ` θ)

Stated otherwise, if (θ ∈ Θ⇒ Γ ` θ) then (γ ∈ {γ | Γ ` γ} ⇒ Γ,Θ ` γ).

2. Applying Cautious Monotony (X = Γ,Θ and Y = {γ | Γ ` γ})

Γ,Θ ` ∆
Γ,Θ, {γ | Γ ` γ} ` ∆ (γ ∈ {γ | Γ ` γ} ⇒ Γ,Θ ` γ)

3. In view of what we just proved in Step 1, we obtain

Γ,Θ ` ∆
Γ,Θ, {γ | Γ ` γ} ` ∆ (θ ∈ Θ⇒ Γ ` θ)
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4. Trivially, if (θ ∈ Θ ⇒ Γ ` θ) then Θ ⊆ {γ | Γ ` γ} hence applying Merging
gives

Γ,Θ ` ∆
Γ, {γ | Γ ` γ} ` ∆ (θ ∈ Θ⇒ Γ ` θ)

5. According to the axioms, Γ ⊆ {γ | Γ ` γ} hence applying Merging again gives

Γ,Θ ` ∆
{γ | Γ ` γ} ` ∆ (θ ∈ Θ⇒ Γ ` θ)

6. Lastly, applying Idempotence yields

Γ,Θ ` ∆
Γ ` ∆ (θ ∈ Θ⇒ Γ ` θ)

which is exactly Restricted Cut.

The author is aware of not being the first to figure all this out but after discussing
with various colleagues working in the field, it appears that this was largely ignored,
and unpublished to the best of his knowledge, hence it could justify a brief note such
as the present one.

3 Conclusion

Reflexivity and Idempotence are the most desirable features of a logical system. If
Monotony is to be weakened, Cumulativity conveys the attractive idea that inter-
mediate conclusions could be, as premises, freely added or freely removed without
changing the overall set of conclusions. However, we have shown that Cumulativ-
ity is, unexpectedly, captured by part of the idea, Cautious Monotony, although
the latter only imposes that intermediate conclusions could be removed from the
premises with no loss among conclusions. In other words, the other part of the idea,
Restricted Cut, is actually otiose with respect to weakening Monotony, or Full Cut
for that matter. Is there a context in which Restricted Cut would play some logical
role? (Please observe that a formal role is possible, together with Reflexivity, as
Idempotence ensues.)
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Abstract

We present a sound and complete model theory for theories of β-reduction
with or without η-expansion. The models of this paper derive from structures
of modal logic: we use ternary accessibility relations on ‘possible worlds’ to
model the action of intensional and extensional lambda-abstraction in much
the same way binary accessibility relations are used to model the box operators
of a normal multi-modal logic.

Keywords: Lambda Calculus, Reduction, Intensional Equality, Extensional Equal-
ity, Model Theory, Completeness, Kripke Frames, Possible World Semantics, Modal
Logic.

1 Introduction
We extend the method of [6] by which we interpret λ-terms compositionally on
‘possible world’ structures. The simplicity of the structures is striking, moreover,
they provide a surprising richness of interpretations of function abstraction and
application.

Our primary goal is to show how the models can differentiate between extensional
and intensional λ-equality, and provide semantic characterisation (i.e. completeness)
theorems for both. We shall then hint at how richer λ-languages can be interpreted.

We are very grateful to the input and suggestions of the referees of this journal paper and of its
previous incarnation as a conference paper at CiE 2012.

Vol. 1 No. 2 2014
IFCoLog Journal of Logics and their Applications



Gabbay and Gabbay

The key idea in this paper is a class of models, presented in Section 2.2, although
an important syntactic consideration is required first in Section 2.1. These ideas
bear some similarity to the reduction models of [18] in that they get us as far
as λ-reduction only. Then, in Section 4 we use the results of the earlier sections to
provide a characterisation theorem for λ-equality (both with and without η-equality,
i.e. extensional and intensional).

2 The models, computation, logic
2.1 The language and logic
Definition 2.1. Fix a countably infinite set of variables.

Define a language Lλ of λ-terms by: t ∶∶= x ∣ λx.t ∣ t⋅t
λx binds in λx.t. For example, x is bound (not free) in λx.x⋅y.

We write t[x/s] for the usual capture-avoiding substitution. For example,(λz.y)[y/x] = λz.x, and (λx.y)[y/x] = λz.x where z is an arbitrary fresh variable.
If x1 . . . xn is a sequence of variables and t1 . . . tn is an equally long sequence of
terms then we write t[xi/ti] for the simultaneous substitution in t of each xi by its
corresponding ti.

We write t[x∶−s] for the (unusual) non-capture avoiding substitution. For ex-
ample, (λx.x)[x∶−y] = λx.y, and (λx.y)[y∶−x] = λx.x

We now turn to λ-reduction. It is important for us to consider not merely the
relation of λ-reduction, but a relation of λ-reduction with assumptions. We therefore
need to define some basic, and familiar, rules of λ-reduction but allow for a set of
assumed additional reductions.

Remark 2.2. We shall define a basic relation on terms that follows the familiar
reduction rule of β-contraction (Definition 2.3). To help with the completeness the-
orem of Section 3 we will need to consider a conservative extension of the familiar
λ-calculus (Definition 2.5). To facilitate the proof that this extension really is con-
servative (Theorem 2.8), we present the λ-calculus in the non-axiomatic style of [12,
Def. 1.24].

Definition 2.3. Let Γ be a set of pairs of terms of Lλ. We define a reduction
relation Ð→Γ on terms of Lλ using Figure 1. A derivation is a sequence of terms
t1, . . . ,tn such that ti Ð→Γ ti+1 for each 1 ≤ i < n.

Remark 2.4. If Γ = ∅ then Ð→Γ is the familiar relation of untyped β-reduction.
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Let x occur free only once in t. Let x1 . . . xn be any sequence of variables and t1 . . . tn

be any (equally long) sequence of terms.

(β) t[x∶−(λx.s)⋅r] Ð→Γ t[x∶−s[x/r]](ass) t[x∶−s[xi/ti]] Ð→Γ t[x∶−r[xi/ti]] (⟨s, r⟩ ∈ Γ)(α) t[x∶−λy.s] Ð→Γ t[x∶−λz.s[y/z]]
The rule (ass) says that any (capture avoiding) substitution instance of s may be
replaced in any t, without worrying about variable capture, by its matching substi-
tution instance of r.1

Figure 1: λ-reduction for Lλ

Let x occur free only once in t. Let x1 . . . xn be any sequence of variables and t1 . . . tn

be any (equally long) sequence of terms.

(β) t[x∶−(λx.s)⋅r] Ô⇒Γ t[x∶−s[x/r]](ass) t[x∶−s[xi/ti]] Ô⇒Γ t[x∶−r[xi/ti]] ⟨s, r⟩ ∈ Γ(α) t[x∶−λy.s] Ô⇒Γ t[x∶−λz.s[y/z]](β∗) t[x∶−(λx.s) ∗ r] Ô⇒Γ t[x∶−s[x/r]](sub) t[x∶−s⋅r] Ô⇒Γ t[x∶−s ∗ r](η∗) t[x∶−s] Ô⇒Γ t[x∶−λy.(s ∗ y)] (y not free in t)

Figure 2: λ-reduction for L∗λ
Definition 2.5. Define L∗λ by: t ∶∶= x ∣ λx.t ∣ t⋅t ∣ t ∗ t

Definition 2.6. Let Γ be a set of pairs of terms of Lλ (not L∗λ). Define a reduction
relation Ô⇒Γ on terms of L∗λ using Figure 2. Again, a derivation is a sequence of
terms t1, . . . ,tn such that tiÔ⇒Γ ti+1 for each 1 ≤ i < n.

Remark 2.7. Notice that we do not allow terms unique to L∗λ to be assumptions
in derivations. This is because the paper is concerned with characterising reduction
and equality only in the more familiar language Lλ, and L∗λ is merely a means to
that end. Allowing assumed reductions for L∗λ causes problems for the Theorem 2.8.

Theorem 2.8. If t1 and t2 are terms of Lλ then t1 Ô⇒Γ t2 implies t1 Ð→Γ t1.
In other words Ô⇒Γ is conservative over Ð→Γ.

1So for example if ⟨x, λy.(x⋅y)⟩ ∈ Γ then Ð→Γ is a reduction relation allowing η-expansion: s
may be rewritten, inside any term t, to λy.(s⋅y) provided the lambda-operator λy does not bind in
s (although variables in s may be bound by abstractions in the wider context t.
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Proof. Suppose that t1 Ô⇒Γ t2, where t1, t2 ∈ Lλ. We argue that any such deriva-
tion can be converted into a derivation that t1 Ð→Γ t2.

We first argue that any application of (η) or (sub) can be pushed after an appli-
cation of any other rule or eliminated entirely.

• Suppose we have the following derivation segment:

t[x∶−s] (η∗)Ô⇒Γ t[x∶−λy.(s ∗ y)]Ô⇒Γ t[x∶−λy.(s′ ∗ y)]
where s′ is derived from s by an application of any rule, then we may easily
swap the rule applications:

t[x∶−s]Ô⇒Γ t[x∶−s′] (η∗)Ô⇒Γ t[x∶−λy.(s′ ∗ y)]
• The cases where t′[x∶−s] is derived from t[x∶−s] is similar. For example:

t[z∶−r[x∶−s]] (η∗)Ô⇒Γ t[z∶−r[x∶−λy.(s ∗ y)]] (ass)Ô⇒Γ t[z∶−r′[x∶−λy.(s ∗ y)]]
may be replaced, given that Γ contains only terms from Lλ,2 by:

t[z∶−r[x∶−s]] (ass)Ô⇒Γ t[z∶−r′[x∶−s]] (η∗)Ô⇒Γ t[z∶−r′[x∶−λy.(s ∗ y)]]
There are also the following three special cases:

t[x∶−s⋅r] (η∗)Ô⇒Γ t[x∶−λy.(s ∗ y)⋅r] (β)Ô⇒Γ t[x∶−s⋅r]
becomes
t[x∶−s⋅r]

t[x∶−s ∗ r] (η∗)Ô⇒Γ t[x∶−λy.(s ∗ y) ∗ r] (β∗)Ô⇒Γ t[x∶−s ∗ r]
becomes

t[x∶−s ∗ r]
t[x∶−s] (η∗)Ô⇒Γ t[x∶−λy.(s ∗ y)] (α)Ô⇒Γ t[x∶−λz.(s ∗ z)]

becomes
t[x∶−s] (η∗)Ô⇒Γ t[x∶−λz.(s ∗ z)]

2And so the application of (ass) cannot depend on the preceding application of (η∗).
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• By a similar reasoning it follows that (sub) can be pushed in front of any other
rule, with the exception of the special case of the derivation segment

t[x∶−λy.s⋅r] (sub)Ô⇒Γ t[x∶−λy.s ∗ r] (β∗)Ô⇒Γ t[x∶−s[y/r]]
which may be replaced by:

t[x∶−λy.s⋅r] (β)Ô⇒Γ t[x∶−s[y/r]]
It follows that any derivation may be replaced by a derivation where the last appli-
cation is an instance of (η) or (sub), if either appears in the derivation at all. Since(η) and (sub) introduce an instance of ∗, if t2 ∈ Lλ then no instances of (η) or (sub)
occur in the derivation. Furthermore, since t1 ∈ Lλ it follows that the derivation
contains no instances of (β∗) or occurrences of ∗. This implies that t1 Ð→Γ t2.

2.2 Frames and interpreting λ-terms

Given Theorem 2.8 we will work with L∗λ.

Definition 2.9. If W is a set, write P(W ) for the set of subsets of W .
An intensional frame F is a 4-tuple (W,●,○, H) where:

−W a set of worlds,− ● and ○ are functions from W ×W to P(W ) such that ● ⊆ ○.−H ⊆ P(W ).
Remark 2.10. Subsets of W will serve as denotations of λ-terms (Definition 2.13)
and H ⊆ P(W ) (‘H’ for ‘Henkin’) plays a similar role to the structure of Henkin
models for higher-order logic [2, 11, 19]. This makes our completeness results possible
and is a famous issue for second- and higher-order logics: powersets are too large
and for completeness results to be possible we must cut them down — at least when
we quantify. This is why in Definition 2.13, the binders restrict quantification fromP(W ) down to H.

The reader familiar with modal logic can think of ● and ○ as ternary ‘accessibility
relations’ R● and R○ such that R●w1w2w3 if and only if w3 ∈ w1 ●w2 (and similarly
for R○). We can also think of ● and ○ as non-deterministic ‘application’ operations,
but note that intensional frames are not applicative structures — an applicative
structure would map W ×W to W , whereas in the case of intensional frames, W ×W
maps to P(W ).
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Definition 2.11. Let F = (W,●,○, H) be an intensional frame and S1, S2 ⊆ W
and w ∈ W . Then the functions ● and ○ induce functions from W × P(W ) andP(W ) × P(W ) to P(W ) by: w ● S = ⋃{w ● w′ ∣ w′ ∈ S} and S1 ● S2 = ⋃{w1 ● w2 ∣
w1 ∈ S1, w2 ∈ S2} (and similarly for ○).
Definition 2.12. Suppose F = (W,●,○, H) is a frame. A valuation (to F ) is a map
from variables to sets of worlds (elements of P(W )) that are in H. v will range over
valuations.

If x is a variable, h ∈H, and v is a valuation, then write v[x ↦ h] for the valuation
mapping x to h and mapping y to v(y) for any other y.

Definition 2.13. Define an denotation of t inductively by:

[[x]]v = v(x) [[t⋅s]]v = [[t]]v ● [[s]]v [[t ∗ s]]v = [[t]]v ○ [[s]]v
[[λx.t]]v = {w ∣ w ○ h ⊆ [[t]]v[x↦h] for all h ∈H}

Remark 2.14. By elementary set theory: [[λx.t]]v = ⋂h∈H{w ∣ w ○ h ⊆ [[t]]v[x↦h]}
We are particularly interested in frames where the denotation of every λ-term is a

member of H. This is because Definition 2.13 interprets λ as a kind of quantifier over
all members of H. β-reduction is then valid analogously to universal instantiation
in first order logic (∀x.Fx ⊧ Ft),3 and so requires that every possible instantiation
(i.e. every term denotation) is a member of H.

Remark 2.15. Consider the definition of application and abstraction in a graph
model with carrier set P(A) (Scott semantics), where ↦∶ Pfin(A) × A ↦ A is an
arbitrary injective map and v ∶ V ar ↦ P(A) is an arbitrary environment:

X ● Y ={α ∣ (∃a ⊆fin A) s.t. a ↦ α ∈X and a ⊆ Y } (X, Y ⊆ A)[[λx.t]]v ={a ↦ α ∣ α ∈ [[t]]v[x↦a]} (t a lambda term)={a ↦ α ∣ (∀h ∈ P(A)){a ↦ α} ● h ⊆ [[t]]v[x↦h]}
Very roughly speaking (our construction is more general), the above definitions of
application and abstraction in graph models are abstracted in this paper as follows,
where H is a fixed subset of P(A):

● ∶H ×H ↦H =any linear map in both arguments[[λx.t]]v ={α ∣ (∀h ∈H){α} ● h ⊆ [[t]]v[x↦h]}
where v ∶ V ar ↦ H is an H-environment. This semantics is of perhaps of additional
interest because it does not codify the step functions of continuous semantics.

3Perhaps a better analogy would be ∀x.(F x → Gx) ∧ F t ⊧ Gt, where conjunctions corresponds
to ⋅ and the quantified expression corresponds to a λ-term.
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Lemma 2.16. 1. If x is not free in t, then for any h ∈H, [[t]]v = [[t]]v[x↦h].
2. [[t[x/s]]]v = [[t]]v[x↦[[s]]v ]

Proof. Both parts follow by easy inductions on t.

Definition 2.17. A frame is faithful when for every v and every t ∈ Lλ, [[t]]v ∈H.
That is, a frame is faithful when H contains the interpretation of every λ term inLλ independently of v.

Remark 2.18. Definition 2.17 is not ideal. A semantic characterisation of faith-
fulness — as a condition on H, ● and ○ — is desirable. We cannot present such a
charactersiation in this paper except in the special cases of theories of β-equality
which we defer until 5.1 of Section 5. In spite of this, the structures characterised
by 2.17 are informative because they allow us to break down λ-abstraction into a
quantification over worlds with a ternary accessibility relation; the denotations of
λ-terms then become simply sets of worlds. On this analysis the domain of quan-
tification for λ-abstraction — the actual set of denotations of λ-terms — is H, a
subset of the set of all possible denotations P(W ). This is a common pattern, for
example in topological semantics for modal logics and for intuitionistic logic the set
of denotations, the analogue of H, is the set of all open subsets of the domain rather
than the powerset itself. It is then no accident that H will reveal further signif-
icance: it will be useful later in characterising the difference between extensional
and intensional λ-calculus (see Remark 3.18). Unlike in the modal case, we offer
no general way in this paper of characterising H beyond simply saying that it must
contain [[t]]v for each valuation v and term t. For a considerably more complex
characterisation of H in topological terms see [8].

Lemma 2.19. If we interpret Ô⇒Γ as subset inclusion then all the rules of Figure 2
are sound for faithful intensional frames.

Proof. By routine calculations from the definitions. We show only (β) and (η∗) here,
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the others are equally straightforward.

[[λx.t⋅s]]v= [[λx.t]]v ● [[s]]v Definition 2.13= ⋂h∈H{w ∣ w ○ h ⊆ [[t]]v[x↦h]} ● [[s]]v Definition 2.13⊆ {w ∣ w ○ [[s]]v ⊆ [[t]]v[x↦[[s]]v]} ● [[t]]v [[s]]v ∈H⊆ {w ∣ w ● [[s]]v ⊆ [[t]]v[x↦[[s]]v]} ● [[t]]v ● ⊆ ○⊆ [[t]]v[x↦[[s]]v ] Definition 2.11= [[t[x/s]]]v Lemma 2.16

[[t]]v ⊆ ⋂h∈H{w ∣ w ○ h ⊆ [[t]]v ○ h} Definition 2.11= ⋂h∈H{w ∣ w ○ h ⊆ [[t ∗ x]]v[x↦h]} x not free in [[t]]v= [[λx.(t ∗ x)]]v Definition 2.13

2.3 Soundness
Definition 2.20. −A model M is a pair ⟨F, v⟩ where F is a faithful intensional
frame and v is a valuation on F such that v(t) ∈H ∈ F for every t.−A frame F is Γ-sensitive if [[t]]v ⊆ [[s]]v for every v and every ⟨t, s⟩ ∈ Γ.−A model ⟨F, v⟩ is Γ-sensitive if F is Γ-sensitive.

Remark 2.21. We could have defined a model as a pair ⟨F, v⟩ where F is a (possibly
not faithful) frame and v is a valuation on F such that [[t]]v ∈ H ∈ F for every t.
But since the completeness theorem 3.12 holds for the stronger notion of a model
we shall use that. Intuitively a Γ-sensitive frame or model can be thought of as
giving ⟨t, s⟩ ∈ Γ the meaning that however the variables of t and s are interpreted,
t’s denotation is a subset of s’s.

Remark 2.22. This paper approaches lambda calculus from the angle of modal
logic and so we retain the ‘normal’ practice of describing the model theory in terms
of frames and models: a frame is sufficient to fix the interpretation of the closed
terms, and a model interprets the open terms (e.g. as in [10]. This also matches the
‘normal’ practice in the model theory of first order logic of distinguishing a structure
from a model – a structure together with a variable assignment – as in [3]. This
differs from the ‘normal’ terminology for lambda calculus which would use the term
‘model’ to refer to our frames (e.g. in [1]).

Lemma 2.23. ● and ○ are monotone. That is, h1 ⊆ h2 implies h ● h1 ⊆ h ● h2 and
h1 ● h ⊆ h2 ● h for any h, and similarly for ○.
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Proof. By the pointwise definitions of ● and ○. For example:

h ● h1 = ⋃{w ●w1 ∣ w ∈ h and w1 ∈ h1} Def. 2.11⊆ ⋃{w ●w1 ∣ w ∈ h and w1 ∈ h2} if h1 ⊆ h2

Lemma 2.24. If [[s]]v ⊆ [[r]]v for all v on some faithful F , then for any v on F[[t[x∶−s]]]v ⊆ [[t[x∶−r]]]v
Proof. By induction on t.
− If t is a variable the result is easy.− If t is t1⋅t2 or t1 ∗ t2 then the result follows from the induction hypothesis and
the monotonicity of ● and ○ (Lemma 2.23).− If t is λxt′, then t[x∶−s] is λx.t′[x∶−s]. And so:

[[λx.t′[x∶−s]]]v = ⋂h∈H{w ∣ w ○ h ⊆ [[t′[x∶−s]]]v[x↦h]} Def. 2.13⊆ ⋂h∈H{w ∣ w ○ h ⊆ [[t′[x∶−r]]]v[x↦h]} Ind. Hyp= [[λx.t′[x∶−r]]]v Def. 2.13

And the argument is similar if t is λy.t′ for y ≠ x

Theorem 2.25. tÔ⇒Γ s implies [[t]]v ⊆ [[s]]v in all Γ-sensitive (faithful) models
M .

Proof. Theorem 2.19 entails that each rule of Figure 2 holds in all models, and by
definition, if ⟨t, s⟩ ∈ Γ then [[t]]v ⊆ [[s]]v for all v in any Γ-sensitive model. The
result then follows by Lemma 2.24.

3 Completeness for λ-reduction
Ultimately, we wish to show that if t /Ð→Γ s then there is a Γ-sensitive model M
(Def. 2.20) where [[t]]v /⊆ [[s]]v. We first show that t /Ô⇒Γ s implies such an M
exists if t, s ∈ Lλ, and then we appeal to Theorem 2.8.

First we form the languages Lλc ,L∗λc
by adding infinitely many new constant

symbols c1, c2 . . . to Lλ and L∗λc
. Since the language is countable we can enumerate

its terms t1, t2 . . . , which may contain the new constants, and the new constants
alone c1, c2 . . . . We describe a one-one function f from terms to constants.
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f(ti) = cj where j is the least number such that j > i and cj does not
occur in ti nor is the value under f of any tk for k < i.

Thus f is a one-one function that assigns a distinct ‘fresh’ constant to each term of
the language, so f(t) is a constant that ‘names’ t. These play the role of witness
constants in the construction of the canonical frame in Theorem 3.8. The f(t) also
help us carry out inductions on the size of λ-terms, as t[x/f(s)] is smaller than λx.t
even if t[x/s] might not be.

Definition 3.1. Define a reduction relation Ô⇒f
Γ on terms of of L∗λc

by setting
tÔ⇒f

Γ s if tÔ⇒Γ s and using the rule:

(con) t[x/s] Ô⇒f
Γ t[x/f(s)]

t[x/f(s)] Ô⇒f
Γ t[x/s]

In other words, Ô⇒f
Γ extends Ô⇒Γ with the rule (con), which makes t and its

corresponding f(t) inter-reducible.

Remark 3.2. Simply extendingÔ⇒Γ by insisting that {⟨t, f(t)⟩, ⟨f(t), t⟩} ⊆ Γ for
every t is not equivalent to defining Ô⇒f

Γ as we have done above. For example,
consider the individual variable x: if f(x) is c and ⟨x, c⟩ ∈ Γ then by (ass), tÔ⇒Γ c
for any t.

Lemma 3.3. If t Ô⇒f
Γ s and neither s nor t contain any of the new constants

c1, c2 . . . , then tÔ⇒Γ s.

Proof. f is defined in terms of an enumeration such that r always precedes f(r).
Thus if we repeatedly substituting each instance of f(r) with r in a derivation,
eventually all will be eliminated. But then instances of (con) depending on become
trivial reductions rÔ⇒f

Γ r which can be removed without affecting the rest of the
derivation. Certainly the first and final terms t and s are unaffected as they never
contained any f(r) in the first place.

Definition 3.4. If t is a term let wt = {s ∣ tÔ⇒f
Γ s}. Thus wt is the closure of t

under Ô⇒f
Γ.

Definition 3.5. Define the canonical λ-frame Fλ = ⟨Wλ,●λ,○λ, Hλ⟩:
Wλ = {wt ∣ t ∈ L∗λc

} Hλ = {{w ∣ t ∈ w} ∣ w ∈Wλ and t ∈ Lλc}
wt ●λ ws = {w ∈Wλ ∣ t⋅s ∈ w} wt ○λ ws = {w ∈Wλ ∣ t ∗ s ∈ w}
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Definition 3.6. Given Fλ = ⟨Wλ,●λ,○λ, Hλ⟩, and a term t of L∗λ, let ∥t∥ = {w ∈
Wλ ∣ t ∈ w}. Note that Hλ = {∥t∥ ∣ t ∈ Lλc}
Remark 3.7. Given (sub) it is easy to see that ●λ ⊆ ○λ. Frames where the converse
does not hold are easy to construct (for example, Figure 3).

Theorem 3.8. Let Fλ be the canonical intensional λ-frame (Definition 3.5), let
v(x) = ∥x∥ for any variable x, and extend v so that v(c) = c for any constant c.
Then for any term t ∈ Lλc, [[t]]v = ∥t∥.
Proof. By induction on t we show that w ∈ ∥t∥ (i.e. t ∈ w) iff w ∈ [[t]]v.
− t is a variable x. Then ∥x∥ = v(x) = [[x]]v by the definition of v.− t is t1⋅t2. Then t1, t2 ∈ Lλc .
Suppose t1⋅t2 ∈ w, and consider the worlds wt1 and wt2 in Wλ. If s1 ∈ wt1 and
s2 ∈ wt2 then by Definition 3.4, t1 Ô⇒f

Γ s1 and t2 Ô⇒f
Γ s2. Thus t1⋅t2 Ô⇒f

Γ s1⋅s2
and s1⋅s2 ∈ w. Then by the definition of ●λ we have that w ∈ wt1●λwt2 . Furthermore,
wt1 ∈ ∥t1∥ and so by the induction hypothesis, wt1 ∈ [[t1]]v. Similarly wt2 ∈ [[t2]]v.
Hence w ∈ [[t1⋅t2]]v by Definition 2.13.

Conversely, suppose that w ∈ [[t1⋅t2]]v. Then there are ws1 , ws2 such that ws1 ∈[[t1]]v and ws2 ∈ [[t2]]v and w ∈ ws1 ●λ ws2 . By the induction hypothesis ws1 ∈ ∥t1∥
and ws2 ∈ ∥t2∥. Then s1 Ô⇒f

Γ t1 and s2Ô⇒f
Γ t2. Furthermore, by the construction

of ●λ, s1⋅s2 ∈ w and hence by (cong) t1⋅t2 ∈ w.− t is λx.s. s ∈ Lλc .
Suppose λx.s ∈ w1. Suppose that w3 ∈ w1 ○λ w2, and that w2 ∈ h for some h ∈ Hλ,
then h = ∥r∥ for some term r. By (ζf) we have that rÔ⇒f

Γ c and cÔ⇒f
Γ r for some

c ∈ Lλc . So h = ∥c∥ and c ∈ w2. By the construction of ○λ, λx.s ∗ r ∈ w3 and so
s[x/c] ∈ w3 by (β∗), i.e. w3 ∈ ∥s[x/c]∥. Since s[x/c] ∈ Lλc , it follows by the induction
hypothesis that ∥s[x/c]∥ = [[s[x/c]]]v. Furthermore by Lemma 2.16 [[s[x/c]]]v =[[s]]v[x↦[[c]]v ]. But by the definition of v, [[c]]v = ∥c∥, and so w3 ∈ [[s]]v[x↦∥c∥]. But
h = ∥c∥ so w3 ∈ [[s]]v[x↦h]. Thus w1 ∈ {w ∣ ∀h ∈Hλ.w ○λ h ⊆ [[s]]v[x↦h]} = [[(λx.s)]]v .
Hence, ∥λx.s∥ ⊆ [[(λx.s)]]v
Conversely, suppose that λx.s ∉ wr for some r. Let y be a variable not free in r
or s and consider the worlds wy and wr∗y. If s[x/y] ∈ wr∗y then r ∗ yÔ⇒f

Γ s[x/y],
so λy.(r ∗ y) Ô⇒f

Γ λy(s[x/y]) by (ξ). But by our choice of y, (η) entails that
r Ô⇒f

Γ λy.(r ∗ y). So r Ô⇒f
Γ λy.s[x/y], which contradicts our initial supposition

that λx.s ∉ wr, therefore s[x/y] ∉ wr∗y. In other words wr∗y ∉ ∥s[x/y]∥. But
s[x/y] ∈ Lλc , so by the induction hypothesis wr⋅y ∉ [[s[x/y]]]v. Since [[y]]v = ∥y∥,
it follows by Lemma 2.16 that wr⋅y ∉ [[s]]v[x↦∥y∥]. But clearly wr∗y ∈ wr ○λ wy, so
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it follows that wr ∉ {w ∣ ∀h ∈ Hλ.w ○λ h ⊆ [[s]]v[x↦h]}. By the semantics of λy.s
this means that wr ∉ [[(λy.s)]]v . Hence, since every w ∈ Wλ is wr for some r,[[(λx.s)]]v ⊆ ∥λx.s∥.
Lemma 3.9. If v1, v2 are any valuations on a frame F that such that

1. v1(x) = v2(x) for any variable x that occurs free in t,
2. v1, v2 are extended so that v1(c) = v2(c) for any constant c that occurs in t,

then [[t]]v1 = [[t]]v2 .
Proof. By an easy induction on t.

Lemma 3.10. If there is a valuation v on a frame F such that {[[t]]v ∣ t ∈ Lλ} =H,
then F is faithful. Hence the canonical frame Fλ is faithful.
Proof. Suppose there is such a v, then we must show that for any valuation v′ and
any term t ∈ Lλ that [[t]]v′ ∈H. By the definition of a valuation, [[x]]v′ ∈H for any
variable x. So if [[t]]v′ ∉H then by Lemma 3.9

[[t]]v[x1↦[[x1]]v′ ...xn↦[[xn]]v′ ] ∉H

where x1 . . . xn are the free variables of t. Now, by assumption, v is such that every
h ∈ H is [[s]]v for some s. It follows then that we can choose s1 . . . sn such that[[si]]v = v[xi ↦ [[xi]]v′], and so:

[[t]]v[x1↦[[s1]]v ...xn↦[[sn]]v] ∉H

This entails, by Theorem 2.16 that [[t[xi/si]]]v ∉ H. But this contradicts the as-
sumption that {[[t]]v ∣ t ∈ Lλ} =H.

Lemma 3.11. Fλ is Γ-sensitive.
Proof. We must argue that for ⟨t1, t2⟩ ∈ Γ and any v, [[t1]]v ⊆ [[t2]]v. Let x1 . . . xn

be the free variables of t1 and t2. Then v(xi) is some ∥si∥ ∈Hλ.
Let v′ be a valuation extended such that v′(r) = ∥r∥ for for any variable or

constant r (i.e. v′ meets the condition of Theorem 3.8). Then:

[[t1]]v = [[t1]]v′[x1↦[[x1]]v...xn↦[[xn]]v] Lemma 3.9= [[t1]]v′[x1↦∥s1∥...xn↦∥sn∥]
= [[t1]]v′[x1↦[[s1]]v′ ...xn↦[[sn]]v′] Theorem 3.8= [[t1[xi/si]]]v′ Lemma 2.16= ∥t1[xi/si]∥ Theorem 3.8

and similarly for t2. But t1[xi/si] Ô⇒Γ t2[xi/si] by (ass), and so ∥t1[xi/si]∥ ⊆∥t2[xi/si]∥ and so [[t1]]v ⊆ [[t2]]v.
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Theorem 3.12. tÔ⇒Γ s if and only if [[t]]v ⊆ [[s]]v for all Γ-sensitive models.4

Proof. The left-right direction is Theorem 2.25.
If t /Ô⇒Γ s then s ∉ wt in Fλ. Therefore ∥t∥ /⊆ ∥s∥ and so by Theorem 3.8 there

is a valuation v such that [[t]]v /⊆ [[s]]v on the canonical frame Fλ. Furthermore, by
Lemmas 3.10 and 3.11, Fλ is faithful and Γ-sensitive.

Corollary 3.13. If t and s are terms of Lλ then t Ð→Γ s if and only if [[t]]v ⊆ [[s]]v
for all Γ-sensitive models.

Proof. Using Theorem 2.8 and the assumption that t and s are terms of Lλ we get
that t Ð→Γ s if and only if tÔ⇒Γ s

Definition 3.14. An extensional frame is an intensional frame where ● = ○, we
may define them simply as a triple ⟨W,●, H⟩. Similarly an extensional model is
a pair ⟨F, v⟩ where F is an extensional frame.

Corollary 3.15. Let Γ = {⟨x, λy.(x⋅y)⟩}. Then tÔ⇒Γ s if and only if [[t]]v ⊆ [[s]]v
for any faithful extensional model.

Proof. For the left-right direction it is a simple matter to apply the reasoning of
Theorem 2.25. For the right-left direction it is enough to note that:

t[x∶−s ∗ r] (ass)Ô⇒Γ t[x∶−λy(s⋅y) ∗ r] (β∗)Ô⇒Γ t[x∶−s⋅r]
so in the construction of the canonical frame Fλ of Theorem 3.8, ●λ = ○λ.

Remark 3.16. An extensional frame satisfies η-expansion. An intensional frame is
like an extensional frame except with an additional ‘outer’ application function ○.
We interpret λ in terms of the outer function and application in terms of the inner
function ● to block η-expansion (Definition 2.13). η-expansion will prove useful
in constructing models of λ-equality in Section 4. Other authors have also noted
reasons to include η-expansion in models [13].

Remark 3.17. Given 3.15, we can say that λ-reduction with η-expansion is complete
for extensional frames.

Remark 3.18. Notice also a crucial purpose served by H in the completeness proof.
Any subset of a frame is a potential denotation of a λ-term, and H may be seen
as listing the subsets that actually are denotations of λ-terms. We have used this
distinction to characterise intensional λ-reduction.

4Equivalently: tÔ⇒Γ s if and only if [[t]]v ⊆ [[s]]v for any valuation v on any Γ-sensitive frame.
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y

A solid arrow passing from w1 through w2 to w3 represents that w3 ∈ w1 ●w2, and
a dotted arrow represents that w3 ∈ w1 ○w2. H can be set as P(W ) and v(y) is as
indicated. Then the two worlds on the left (unfilled) both are in [[λx.(y⋅x)]]v and[[λx.(y ∗ x)]]v, but only one is in [[y]]v.
Figure 3: A counterexample to η-reduction in an intensional model where W contains
4 worlds.

We took an (intensional) set of λ-reductions Γ (in Lλ) and we extended it using ∗
to help us interpret λ (Definition 2.5 and Theorem 2.8). Then, when we constructed
the frame (Definition 3.5) for Γ we left out of H the denotations depending explicitly
on ∗. We obtained a frame which is sensitive to all the reductions of Γ, in the
original language Lλ, but where the interpretation of λ still depends on ∗ which is
not mentioned in Γ (Theorem 3.8).

As we shall see, this provides a simple characterisation of intensional and ex-
tensional λ-abstraction. Abusing notation somewhat: extensional λx.t is something
that maps objects h in the domain to t(h); intensional λx.t is something maps ob-
jects h in the domain and also some in a hidden domain to t(h). Furthermore, the
‘hidden’ objects are the denotations of terms in L∗λ that require ∗.
3.1 η-reduction

As already noted, if x is not free in t, then [[t]]v ⊆ [[λx.(t ∗ x)]]v in any intensional
frame. That is, η-expansion is satisfied by any frame, but what about η-reduction?
Figure 3 gives an example of a simple frame where [[y]]v /⊆ [[λx.(y⋅x)]]v (and since● ⊆ ○, also [[y]]v /⊆ [[λx.(y ∗ x)]]v).

We can characterise η-reduction syntactically easily enough:

Definition 3.19. Let η−η−η− = {⟨λx.(y⋅x), y⟩}.
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Then tÔ⇒η−η−η− s is the relation we want. Furthermore, we can use the complete-
ness theorem 3.12 to describe a class of models for which this relation is complete:

Definition 3.20. A frame is η-reductive when ⋂h′∈H{w ∣ w ○h′ ⊆ h●h′}⊆h for any
h.

Theorem 3.21. tÔ⇒η−η−η− s iff t ⊆ s in all η-reductive models.

Proof. It is straightforward to verify that t Ô⇒η−η−η− s implies that [[t]]v ⊆ [[s]]v in
all η-reductive models. Conversely, if t /Ô⇒η−η−η− s then [[t]]v /⊆ [[s]]v in the canonical
model for η−η−η−: ⋂

h′∈Hλ

{w ∣ w ○ h′ ⊆ ∥t∥ ● h′} = ∥λx.(t⋅x)∥ ⊆ ∥t∥
since each h ∈H is ∥t∥ for some t.

4 Equality
Definition 4.1. Let βββ = {⟨t, λx.t⋅x]⟩ ∣ t ∈ Lλ}.
Corollary 4.2. When restricted to Lλ, Ô⇒βββ is the familiar relation of (intensional)
λ-equality, and by Theorem 3.12 is complete for βββ-sensitive models.

Remark 4.3. Corollary 4.2 is itself not so significant as it only tells us half the story
about what these models look like, and does not tell us if there are any non-trivial
ones. Of course, given independent nontriviality proofs for λ-equality,5 we can use
Theorem 3.12 to conclude that there are nontrivial βββ-sensitive models. This section
is concerned with producing a purely semantic characterisation of βββ-sensitivity. In
fact, in characterising βββ-sensitivity, we can complete Definition 2.17 and provide a
semantic characterisation of faithfulness.

The strategy we shall employ is as follows. First we introduce some shorthands
to stand in for constructions involving λ-expressions, so for example K⋅z will stand
in for (λxλy.x)⋅z. This will allow us to work with certain complex λ-expressions
as if they are free of the symbol λ. Then, for each t we describe a new term [x]t,
constructible only out of application and the new shorthands (effectively the familiar
combinator abstraction of [12, p.26], but extended to a language that includes the
λ-operator). Then, with the help of the completeness theorem 3.12, we describe
conditions in which a model (or frame) entails that [[t[x/s]]]v = [[[x]t⋅s]]v. It then
turns out that [[[x]t]]v ⊆ [[λx.t]]v and we thereby obtain models of β-expansion.

5Nontriviality follows syntactically from the Church-Rosser property [12, Ch. A2], the cut-
elimination theorem of [5]; and it follows semantically from Scott’s famous model Dω [12, Ch. 16],
among others.
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Definition 4.4. Define the following shorthands:

K=λxy.x
C =λxyz.((x⋅z)⋅y))
S =λxyz.((x⋅z)⋅(y⋅z))

Definition 4.5. − Say that an instance of λ in a term t is free if it is not part of
an occurrence of K, C, S in t.−When defining or proving a property of a term t, we write ‘by induction on(l, d)’ to describe an induction on the pair (l, d), lexicographically ordered, where
d is the number of occurrences of ⋅ in t and l is the number of occurrences of λ in
t that are not free.6

Definition 4.6. For any t ∈ Lλ, define [x]t by induction on (l, d).
1. (a) [x]x is (S⋅K)⋅K

(b) [x]r is K⋅r if r is K, C, S, or any variable distinct from x.

2. [x](s⋅r) is (S⋅[x]s)⋅[x]r
3. − [x]λz.s is C⋅[z][x]s− [z]λz.s is C⋅[z][x]s, where x is distinct from z and does not occur in s.

Lemma 4.7. If t ∈ Lλ then [x]t ∈ L∗λ and (1) is well defined, (2) contains no free
instances of λ, and (3) contains no free occurrences of x.

Proof. By induction on (l, d).
− If t is atomic or of the form s⋅r or s ∗ r then the result is easily proved.− If t is λz.s then by the induction hypothesis [x]s is well defined and contains no
free occurrences of λ. So the induction hypothesis applies again and the same may
be said of [z][x]s. It then follows easily that the properties 1, 2 and 3 hold for[x]λz.s.

Lemma 4.8. Suppose t ∈ Lλ and let variable v not occur in t, then [x](t[y/v]) =([x]t)[y/v]
Proof. By induction on (l, d).

6More loosely, if we were to treat K, C, S as constants in t (i.e. not containing λ at all), then
l would be the number of occurrences of λ in t.
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− If t is x then x[y/v] = x and so

[x]x = (S⋅K⋅)K Def. 4.6= ([x]x)[y/v] y ∉ (S⋅K⋅)K
− If t is y then y[y/v] = v and [x]y =K⋅y. So:

[x]v = K⋅v Def. 4.6= (K⋅y)[y/v] y ∉K= ([x]y)[y/v]
−The case where t is K, C, S or some variable other than x or y is similar.− If t is s⋅r or s ∗ r then the result follows easily by the induction hypothesis.− If t is λz.s, then we may assume that z is not x, then

[x](t[y/v]) = C⋅[z][x](s[y/v]) Def. 4.6= C⋅([z][x]s)[y/v] ind. hyp, Lemma 4.7= (C⋅[z][x]s)[y/v] y ∉C= ([x]t)[y/v]

Theorem 4.9. If t ∈ Lλ, then for any M = ⟨F, v⟩, [[[x]t ∗ s]]v ⊆ [[t[x/s]]]v
Proof. By induction on (l, d).

We appeal to known facts about β-reduction and Theorem 3.12 (complete-
ness).
− t = x. Then [x]t ∗ s is ((S⋅K⋅)K)⋅s, and it is easy to show that that

((S⋅K⋅)K) ∗ sÔ⇒∅ s

So the result follows by Theorem 3.12.−The argument is similar for the case where t is a variable y ≠ x or K, C, S. We
appeal to the easily shown fact that:

(K⋅t) ∗ sÔ⇒∅ t

− t = t1⋅t2. Then

((S⋅[x]t1) ∗ [x]t2)⋅s Ô⇒∅ t1[x/s]⋅t2[x/s]= (t1⋅t2)[x/s]
and the result follows as above.
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−The argument is similar for the case where t = t1 ∗ t2− If t is λy.r, then choose a variable z that does not occur in r or s. Now, s and[x]s contain fewer free instances of λ than t (Lemma 4.7), so given Theorem 3.12
we may apply the induction hypothesis as follows:

[[(C⋅[y][x]r)⋅s]]v ⊆ [[λz.(((C⋅[y][x]r)⋅s) ∗ z)]]v Thrm 2.25⊆ [[λz.(([y][x]r⋅z)⋅s)]]v Thrm 3.12⊆ [[λz.([x]r[y/z]⋅s)]]v Ind. Hyp.⊆ [[λz.(t[y/z, x/s])]]v Ind. Hyp.= [[λy.(t[x/s])]]v

Definition 4.10. A frame is λ-complete when for any h1, h2, h3 ∈H

1. h1 = ([[K]]v ● h1) ● h2
2. (h1 ● h3) ● (h2 ● h3) = (([[S]]v ● h1) ● h2) ● h3
3. ⋂h∈H{w ∣ (h1 ● h) ● h2} = ([[C]]v ● h1) ● h2

A model ⟨F, v⟩ is λ-complete if F is.
Remark 4.11. Notice that no h ∈H can be empty if F is a non-trivial λ-complete
frame. For if ∅ ∈ H then for any h ∈ H, h = ([[K]]v ● h) ● ∅ = ∅, so then H = {∅}
and [[t]]v = [[s]]v = ∅ for any t, s and v.

We could have equivalently defined λ-complete frames by requiring that, for any v[[x]]v = [[(K⋅x)⋅y]]v, [[(x⋅z)⋅(y⋅z)]]v = [[((S⋅x)⋅y)⋅z]]v, [[λz.((x⋅z)⋅y)]]v = [[(C⋅x)⋅y]]v
and so on. But 4.10 is preferable as its form is less dependent on the syntax. Since
K, S and C are closed terms, we could even go further and replace [[K]]v , [[S]]v
and [[C]]v with purely semantic expressions using Definition 2.13.
Theorem 4.12. For any λ-complete ⟨F, v⟩, if t ∈ Lλ then [[t[x/s]]]v ⊆ [[[x]t⋅s]]v.
Proof. Again, we proceed by induction on (l, d).
− t = x. Then x[x/s] = s and it is not hard to see that the definition of lambda
completeness (4.10) implies that [[s]]v = [[((S⋅K)⋅K)⋅s]]v.−The argument is similar for the case where t = y ≠ x or t is K, C, S.− t = t1⋅t2. Then:
[[(t1⋅t2)[x/s]]]v = [[t1[x/s]]]v ● [[t2[x/s]]]v⊆ [[([x]t1⋅s)]]v ● [[([x]t2⋅s)]]v Ind. Hyp.= ([[[x]t1]]v ● [[s]]v) ● ([[[x]t2]]v ● [[s]]v)= (([[S]]v ● [[[x]t1]]v) ● [[[x]t2]]v) ● [[s]]v Def 4.10= [[((S⋅[x]t1)⋅[x]t2)⋅[[s]]v]]v Def. 2.13= [[([x]t1⋅t2)⋅s]]v Def. 4.6
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and the result follows as above.− Suppose t is λy.r. Let z be chosen so that it does not occur in t or s. Then using
Lemma 2.24:

[[λy.(r[x/s])]]v = [[λz.(r[y/z, x/s])]]v⊆ [[λz.([x](r[y/z])⋅s)]]v Ind. Hyp.= [[λz.(([x]r)[y/z]⋅s)]]v Lemma 4.8⊆ [[λz.(([y][x]r⋅z)⋅s)]]v Ind. Hyp.⊆ [[(C⋅[y][x]r)⋅s]]v Def. 4.10= [[([x]λy.r)⋅s]]v Def. 4.6

Corollary 4.13. If t ∈ Lλ then [[t[x/s]]]v = [[λ.xt⋅s]]v for any λ-complete model⟨F, v⟩.
Proof. Since ● ⊆ ○ we have that [[λx.t⋅s]]v ⊆ [[λx.t∗s]]v, and so Theorem 4.9 entails
that [[λx.t⋅s]]v ⊆ [[t[x/s]]]v.

And conversely:

[[t[x/s]]]v ⊆ [[[x]t⋅s]]v Thrm 4.12⊆ [[λx.([x]t ∗ x)⋅s]]v Thrm 3.12, Lemma 2.24, Lemma 4.7⊆ [[λx.t⋅s]]v Thrm 4.9

We now have a means of characterising β-equality semantically.

Corollary 4.14. If t, s ∈ Lλ then, t Ô⇒βββ s iff [[t]]v ⊆ [[s]]v for all λ-complete
models ⟨F, v⟩.
Proof. By 4.13 if ⟨t, s⟩ ∈ βββ then [[t]]v ⊆ [[s]]v in all λ-complete frames. Furthermore
if t /Ô⇒βββ s then [[t]]v /⊆ [[s]]v in the canonical model for βββ. It is not hard to verify
that the canonical frame is λ-complete.

Corollary 4.15. A frame is λ-complete iff it is βββ-sensitive

Definition 4.16. A frame is fully extensional when h = ⋂h′∈H{w ∣ w ○h′ ⊆ h ●h′}
for all h ∈H. A model ⟨F, v⟩ is fully extensional when F is.

Remark 4.17. Looking at Definition 2.13 h = [[t]]v implies ⋂h′∈H{w ∣ w ○ h′ ⊆
h ● h′} = [[λx.(t⋅x)]]v for x ∉ t. So if a frame is fully extensional then, for any t and
any v, [[t]]v = [[λx(t⋅x)]]v for x not free in t. This implies, by reasoning similar to
Corollary 3.15, that ● = ○.
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Definition 4.18. Let ηηη = {⟨λx.(y⋅x), y⟩, ⟨y, λx.(y⋅x)⟩} and let βηβηβη = βββ ∪ ηηη.

Theorem 4.19. If t, s ∈ Lλ then, tÔ⇒βηβηβη s iff [[t]]v ⊆ [[s]]v for all fully extensional
λ-complete models ⟨F, v⟩.
Proof. It is straightforward to verify (see Remark 4.17) that tÔ⇒βηβηβη s implies that[[t]]v ⊆ [[s]]v in all fully extensional, λ-complete models. Conversely, if t /Ô⇒βηβηβη s
then [[t]]v /⊆ [[s]]v in the canonical model for βηβηβη, it is not hard to show that it is
λ-complete and fully extensional.

Definition 4.20. Say that a frame is combinatorially complete when for any
h1, h2, h3 ∈H

1. h1 = ([[K]]v ● h1) ● h2
2. (h1 ● h3) ● (h2 ● h3) = (([[S]]v ● h1) ● h2) ● h3

This is the familiar notion of combinatory completeness as used in characterisa-
tions of lambda models in terms of combinatory algebras (e.g. see [12, p.228]). We
now get the following result.

Theorem 4.21. A fully extensional frame (model) is λ-complete if it is combinato-
rially complete.

Proof. Again, given Theorem 3.12 we argue partially syntactically. First note that
the first two conditions of Definition 4.10 are met if F is combinatorially complete.

Now we argue that if a frame F is combinatorially complete, then for any v,

[[(x⋅z)⋅y]]v = [[((C⋅x)⋅y)⋅z]]v
Given soundness (Theorem 2.25) and known facts about combinators (e.g. [12,
p.25]), if F is combinatorially complete then [[(x⋅z)⋅y]]v = [[((C′⋅x)⋅y)⋅z]]v for some
particular complex expression C′ given in terms of S and K.7 Moreover, since F is
fully extensional, i.e. [[λx(t⋅x)]]v = [[t]]v for any t ∈ Lλ, then

[[C′]]v = [[λxyz.((C′⋅x)⋅y)⋅z]]v = [[λxyz.((x⋅r)⋅y)]]v = [[C]]v
and so [[(x⋅z)⋅y]]v = [[((C′⋅x)⋅y)⋅z]]v = [[((C⋅x)⋅y)⋅z]]v.

So if F is combinatorially complete then:

[[λz.((x⋅z)⋅y)]]v ⊆ [[λz.(((C⋅x)⋅y)⋅z)]]v by the above⊆ [[(C⋅x)⋅y]]v as F is fully extensional

and so the third condition of 4.10 is met.
7C′ is (S⋅((B⋅B)⋅S))⋅(K⋅K)) where B is short for (S⋅(K⋅S))⋅K.
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5 Faithfulness
The completeness result 4.15 relates λ theories to faithful λ-complete frames. Faith-
fulness was defined in 2.17 partially syntactically: a faithful frame is one that has a
denotation h ∈H for every λ-term t.

It is natural to seek a characterisation of faithfulness that does not require explicit
reference to the syntax, i.e. a purely semantic one. Can we provide a description,
only in terms of H and R, of structural properties a frame must have in order that
there is an h ∈ H to be the denotation of each λ-term? The difficulty lies in the
denotation of λ-terms of the form λx.s. We might know what must hold of H for it
to include the denotation of s, but what of λx.s? λx acts like a kind of quantifier
which binds in s. So the denotation of λx.s depends not just on s but on the
denotations of s for all possible interpretations of x (assuming it is free in s).

What we have just described is an instance of the more general problem of
syntax-free interpretations of quantification and binding (and substitution). We can
solve the problem here for the the special case of a syntactic theory of λ-equality
(i.e. a βββ-sensitive, or λ-complete, theory):8

Theorem 5.1. If an intensional frame F is λ-complete and also for any S1, S2 ⊆P(W ):
1. [[K]]v, [[S]]v , [[C]]v ∈H (for some/any v),
2. if S1, S2 ∈H then S1 ● S2 ∈H.
3. if S1 ∈H then ⋂h∈H{w ∣ S ○ h ⊆ S1 ○ h} ∈H (i.e. [[λy(x ∗ y)]]v[x↦S1] ∈H),

then F is faithful.

Proof. First notice that condition (1) is independent of v as K, S and C are all closed
terms. Also note that by Definition 2.17, a frame is faithful when it guarantees an
interpretation in H for every term of Lλ (i.e. terms not containing ∗). Condition (2)
states that H is closed under ●. Condition (3) says that if [[x]]v ∈ H then so is[[λy(x ∗ y)]]v. Given closure under ● this condition (3) could be replaced by the
condition that [[λxy(x ∗ y)]]v ∈H.

We must argue that for any valuation v, [[t]]v ∈ H for all t ∈ Lλ. We do so by
induction on t.
− t is a variable x. Then [[t]]v ∈H by the definition of valuations 2.12.− t is s⋅r.Then the result follows by condition (2) and the induction hypothesis.

8The mathematical designs of this paper, combined with those of [5, 7], give rise to a more
general solution for λ-reduction in [8].
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− t is λx.s. Then by the induction hypothesis [[r]]v ∈ H for every subterm r of
s. Now [x]s contains no free occurrences of x and is a concatenation, by the ⋅
symbol, only of instances of K, S, C and subterms of s. So by conditions (1), (2)[[[x]s]]v ∈ H. But then by condition (3) and Lemma 2.16.2, [[λx.([x]s ∗ x)]]v ∈ H.
Finally, given λ-completeness we may conclude from Theorems 4.9 and 4.12.1 that[[[x]s ∗ x]]v = [[s]]v and so [[λx.s]]v ∈H

Corollary 5.2. If an extensional frame F is λ-complete and the three conditions
of 5.1 hold, then F is faithful.

Remark 5.3. It is easy to verify that the converses of 5.1 and 5.2 hold. More-
over, for the case of a fully extensional frame, we know from 4.21 that combinator
completeness implies λ-completeness. It is then not hard to see that the conditions
of 5.1 become instances of the definition of a syntax-free model of the λ-calculus.
For example [12, p.237], condition (3) corresponds to the so-called (although not by
[12]) Meyer-Scott axiom.

6 Further work
The methods used here resemble those behind the models of λ-calculus constructed
by Engeler, Meyer, Plotkin and Scott (e.g. in [4, 14] and in [1, §18-19]) which are
the basis of graph models.

The frames presented here have the components W , ● and H. Both ● and W have
an analogue in graph models, and the differences between them and their analogues
are not of great significance: it is not hard to associate each graph model with an
equivalent extensional frame (see Remark 2.15). The analogue of H in graph models
is that denotations are drawn from the powerset of the domain (the analogue of W ).
The fact that in the models and frames of this paper H can be something other
than P(W ) is significant. The completeness theorem 3.12 shows this, for it implies
that every consistent λ-theory can be associated with a frame, and yet as shown by
Salibra [17] there are λ-theories for which there are no graph models.

The models of this paper separate expansion and reduction for both β− and
η− as distinct semantic properties of a model. Interestingly, β-reduction and η-
expansion are natural features of the models (there is independent evidence that
this is natural [13]). η-expansion arises from λ-abstraction and application being
defined over the same underlying function ●. If we use two underlying functions ●
and ○ instead, where ● ⊆ ○, so that λ abstracts over ○ and application applies ●, then
we obtain models free from η-expansion.
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We could also reverse this ‘trick’ so that λ abstracts over the ● and application
applies ○, and thus obtain models free from β-reduction. This may sound perverse
but recall that meta-programming languages — languages that can suspend their
own evaluation and/or quote their own syntax — are devoted to switching off β-
reduction in a controlled manner, and the connections to modal logic have already
been noted, where possible worlds correspond to deeper or shallower levels of suspen-
sion or quoting (see MetaML [15] and CMTT [16, 9]). This suggests the possibility
of models for a variety of interacting λ-operators over a hierarchy of underlying
application relations.

Finally, further work is needed in improving the semantic characterisations, in
terms of ● and ○, of frames that are Γ-sensitive for interesting Γ. For example, can
we provide a helpful semantic characterisation of theories that contain the schema
of η-reduction? We can do it in terms of H by specifying that, for any S ∈ H,⋂h∈H{w ∣ w ○ h ⊆ S ● h} ⊆ S, but it would also be interesting to look for conditions
on ● and ○ alone that correspond to this, independently of H.
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Abstract

We propose a computer-algebraic, order-theoretic framework based on in-
tuitionistic logic for the computer-aided discovery of personality axioms from
personality-test data and their mathematical categorisation into formal per-
sonality theories in the spirit of F. Klein’s Erlanger Programm for geometrical
theories. As a result, formal personality theories can be automatically gener-
ated, diagrammatically visualised, and mathematically characterised in terms
of categories of invariant-preserving transformations in the sense of Klein and
category theory. Our personality theories and categories are induced by im-
plicational invariants that are ground instances of intuitionistic implication,
which we postulate as axioms. In our mindset, the essence of personality, and
thus mental health and illness, is its invariance. The truth of these axioms is
algorithmically extracted from histories of partially-ordered, symbolic data of
observed behaviour. The personality-test data and the personality theories are
related by a Galois-connection in our framework. As data format, we adopt the
format of the symbolic values generated by the Szondi-test, a personality test
based on L. Szondi’s unifying, depth-psychological theory of fate analysis.

Keywords: Applied Order Theory, Computational and Mathematical Depth Psy-
chology, Data Mining, Diagrammatic Reasoning, Fuzzy Implication, Intuitionistic
Logic, Logical and Visual Data Analytics, Personality Tests, Szondi.

1 Introduction
In 1872, Felix Klein, full professor of mathematics at the University of Erlangen at
age 23, presented his influential Erlanger Programm [11, 12] on the classification and
characterisation of geometrical theories by means of group theory. That is, Klein put

For the technical-report version of this article, see [13].
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forward the thesis that every geometrical theory could be characterised by an asso-
ciated group of geometrical transformations that would leave invariant the essential
properties of the geometrical objects of that theory. These essential properties are
captured by the axioms that define the theory. As a result, geometrical theories
could be classified in terms of their associated transformation groups. According to
[9], Klein’s Erlanger Programm “is regarded as one of the most influential works in
the history of geometry, and more generally mathematics, during the half-century
after its publication in 1872.”1

In this paper and in the spirit of the Erlanger Programm for geometrical theories,
we propose a computer-algebraic,2 order-theoretic framework based on intuitionistic
logic [18] for the computer-aided discovery of personality axioms from personality-
test data and their mathematical categorisation into formal personality theories.
Each one of the resulting intuitionistic personality theories is an (order-theoretic)
prime filter [4] in our framework. As our contribution, formal personality theories
can be automatically generated, diagrammatically visualised, and mathematically
characterised in terms of categories of invariant-preserving transformations in the
sense of Klein and category theory [17]. That is, inspired by and in analogy with
Klein, we put forward the thesis that every personality theory can be characterised
by an associated category of personality transformations that leave invariant the
essential properties of “the personality objects”—the people, represented by their
personality-test data—of that theory.

So, the reason for why psychologists and logicians or mathematicians should be
interested in this paper is, as for psychologists, our automatic generation and di-
agrammatic visualisation of formal personality theories and, as for logicians and
mathematicians, our mathematical characterisation of such logical theories. Of
course, our ideal readership is an interdisciplinary community of logically and math-
ematically inclined psychologists as well as psychologically inclined logicians and
mathematicians, since our methodology is mathematical (formal logical) and our
application domain psychology (personality assessment). Consider that arguably,
psychology still largely is a pre-scientific discipline: besides statistics, psychological
methodology does not employ much of mathematics. (And statistics often is not even
part of mathematics departments.) Certainly, psychology is not an exact science —
not yet. Here and now, our formal framework is meant as a contribution towards
practicing psychological research with the methods of the exact sciences, for obvious
ethical reasons, and as a contribution towards the mathematical systematisation of
the academic discipline of psychology, particularly in the area of test-based person-

1We add that in physics, the existence of certain transformation groups for mechanics and
electromagnetism led Albert Einstein to discover his theory of special relativity.

2in the sense of symbolic as opposed to numeric computation
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ality theories. Interesting psychological insights resulting from this formal practice
are the discovered personality axioms (as exemplified by Table 2 and 3; consider
also the accompanying explanations). The main logical insight is that these axioms
turn out to be intuitionistic implications, which by their very nature express invari-
ants. (In science, we are interested in laws, things that are eternally true, that is,
invariant. The goal of any scientific quest is to discover these laws.)

An important difference in our psychological context of personality theories to
Klein’s geometrical context is that actually no formal personality theory in the
strict axiomatic sense exists, whereas Klein could characterise a variety of existing,
axiomatic theories of geometry. Before being able to categorise personality theories,
we thus must first formally define them. As said, we shall do so by discovering
their defining axioms from personality-test data with the aid of computers. Our
personality theories and categories are then automatically induced by implicational
invariants that hold throughout that test data and that are ground instances of
intuitionistic implication, which we postulate as axioms. In our mindset, the essence
of personality, and thus mental health and illness, is its invariance. So for every
person, represented by her personality-test result P—the data—we automatically
generate her associated

1. personality theory {P}/ of simple implicational invariants and

2. personality category T{P}/ of theory-preserving transformations.

(We are actually able to carry out this construction for whole sets of personality-test
results, either of different people or of one and the same person.) More precisely,
the truth of these axioms is algorithmically extracted from histories of partially-
ordered, symbolic data of the person’s observed test behaviour. As an example,
Table 3 visualises as black cells all axioms that were algorithmically extracted from
Table 2 and that can be added to intuitionistic propositional logic to constitute such
an axiomatically defined theory for the person in question. These axioms are then
also enumerated as formulas and their psychological meaning explained. Of course,
any set of people with the same extracted axioms forms a natural cluster of people
with the same personality theory. Note that our axioms have an implicational form
in order to conform with the standard of Hilbert-style axiomatisations [7], which in
our order-theoretic framework can be cast as a simple closure operator. Another
difference in our context is that contrary to Klein, who worked with transformation
groups, we work with more general transformationmonoids, and thus transformation
categories. The reason is that contrary to Klein’s geometrical context, in which
transformations are invertible, transformations in the psychological context need
not be invertible.
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In our order-theoretic framework, personality-test data and personality theo-
ries are related by a Galois-connection ( . , / ) [4, Chapter 7]. As data format, we
adopt—without loss of generality—the format of the symbolic values, called Szondi
personality profiles (SPPs), generated by the Szondi-test [22], a personality test
based on L. Szondi’s unifying, depth-psychological theory of fate analysis [23]. An
SPP can be conceived as a tuple of eight, so-called signed factors whose signatures
can in turn take twelve values. We stress that our framework is independent of any
personality test. It simply operates on the result values that such tests generate.
Our choice of the result values of the Szondi-test is motivated by the fact that SPPs
just happen to have a finer structure than other personality-test values that we are
aware of, and so are perhaps best suited to play the illustrative role for which we
have chosen them here. (See also [14].)

The remaining part of this paper is structured as follows: in Section 2, we
present the part of our framework for the computer-aided discovery of personality
axioms from personality-test data, and in Section 3, the part for their mathematical
categorisation into formal personality theories.

2 Axiom discovery

In this section, we present the part of our framework for the computer-aided discov-
ery of personality axioms from personality-test data. This is the data-mining and
the logical and visual data-analytics part of our contribution.

We start with defining the format of the data on which we perform our data-
mining and data-analytics operations. As announced, it is the format of the symbolic
values, called Szondi personality profiles (SPPs), generated by the Szondi-test [22].
We operate on finite sequences thereof. In diagnostic practice, these test-result
sequences are usually composed of 10 SPPs [15].

Definition 1 (The Szondi-Test Result Space). Let us consider the Hasse-diagram
[4] in Figure 1 of the partially ordered set of Szondi’s twelve signatures [22] of human
reactions, which are:

• approval: from strong +!!! , +!! , and +! to weak + ;

• indifference/neutrality: 0 ;

• rejection: from weak − , −! , and −!! to strong −!!! ; and

• ambivalence: ±! (approval bias), ± (no bias), and ±! (rejection bias).
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+!!!

+!!

+!

+

0

−

−!

−!!

−!!!

±!

±

±!

Figure 1: Hasse-diagram of Szondi’s signatures

(Szondi calls the exclamation marks in his signatures quanta.)
Further let us call this set of signatures S, that is,

S := {−!!!,−!!,−!,−, 0,+,+!,+!!,+!!!,±!,±,±! }.

Now let us consider Szondi’s eight factors and four vectors of human personality
[22] as summarised in Table 1. (Their names are of clinical origin and need not
concern us here.) And let us call the set of factors F, that is,

F := { h, s, e, hy, k, p, d,m }.

Then,

• SPP := { ((h, s1), (s, s2), (e, s3), (hy, s4), (k, s5), (p, s6), (d, s7), (m, s8)) |
s1, . . . , s8 ∈ S }

is the set of Szondi’s personality profiles;

• 〈SPP+, ? 〉 is the free semigroup on the set SPP+ of all finite sequences of
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Vector Factor Signature
+ −

S (Id) h (love) physical love platonic love
s (attitude) (proactive) activity (receptive) passivity

P
(Super-Ego)

e (ethics) ethical behaviour unethical behaviour
hy (morality) immoral behaviour moral behaviour

Sch (Ego) k (having) having more having less
p (being) being more being less

C (Id) d (relations) unfaithfulness faithfulness
m (bindings) dependence independence

Table 1: Szondi’s factors and vectors

SPPs with ? the (associative) concatenation operation on SPP+ and

SPP+ := ⋃
n∈N\{0} SPPn

SPP1+n := SPP1 × SPPn

SPP1 := SPP ;

• ST R := 〈 SPP+,v〉 is our Szondi-Test Result Space, where the suffix partial
order v on SPP+ is defined such that for every P, P ′ ∈ SPP+, P v P ′ if and
only if P = P ′ or there is P ′′ ∈ SPP+ such that P = P ′′ ? P ′.

As an example of an SPP, consider the norm profile for the Szondi-test [22]:

((h,+), (s,+), (e,−), (hy,−), (k,−), (p,−), (d,+), (m,+))

Spelled out, the norm profile describes the personality of a human being who ap-
proves of physical love, has a proactive attitude, has unethical but moral behaviour,
wants to have and be less, and is unfaithful and dependent.

Those SPP-sequences that have been generated by a Szondi-test(ee) are our his-
tories of partially-ordered, symbolic data of observed behaviour that we announced
in the introduction. Table 2 displays an example of such an SPP-sequence: it is the
so-called foreground profile of a 49-year old, male physician and psycho-hygienist
and is composed of 10 subsequent SPPs [21, Page 182–184].

Fact 1 (Prefix closure of v). For every P, P ′, P ′′ ∈ SPP+,

P v P ′ implies P ′′ ? P v P ′
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Nr. S P Sch C
h s e hy k p d m

1 − 0 ± ± ± ± 0 +
2 − 0 + ± ± + 0 +
3 − − ± ± ± + + ±
4 − − ± + + + 0 +
5 − 0 0 + ± ± 0 +
6 − 0 ± ± ± ± + ±
7 − 0 ± ± ± + 0 +
8 − − 0 ± + + + ±
9 − 0 ± ± ± ± 0 +
10 − 0 0 ± ± + 0 +

Table 2: A Szondi-test result (say P )

Proof. By inspection of definitions.

We continue to define the closure operator by which we generate our intuitionistic
personality theories from personality-test data in the previously-defined format. Our
personality theories are intuitionistic, because such theories can be interpreted over
partially-ordered state spaces—such as our ST R—such that a sentence is true in
the current state by definition if and only if the sentence is true in all states that
are accessible from the current state by means of the partial order [16, 18]. In
other words, the truth of such sentences is forward-invariant, which is precisely the
property of sentences that we are looking for.

Definition 2 (A closure operator for intuitionistic theories). Let

A := { hs1, ss2, es3, hys4, ks5, ps6, ds7,ms8 | s1, . . . , s8 ∈ S }

be our set of atomic statements, and

L(A) 3 φ ::= A | φ ∧ φ | φ ∨ φ | ¬φ | φ→ φ for A ∈ A

our logical language over A, that is, the set of statements φ constructed from the
atomic statements A and the intuitionistic logical connectives ∧ (conjunction, pro-
nounced “and”), ∨ (disjunction, pronounced “or”), ¬ (negation, pronounced “hence-
forth not”), and → (implication, pronounced “whenever—then”). As usual, we can
macro-define falsehood as ⊥ := A ∧ ¬A and truth as > := ¬⊥ .

Further let
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Γ0 := {
• φ→ (φ′ → φ)
• (φ→ (φ′ → φ′′))→ ((φ→ φ′)→ (φ→ φ′′))
• (φ ∧ φ′)→ φ

• (φ ∧ φ′)→ φ′

• φ→ (φ′ → (φ ∧ φ′))
• φ→ (φ ∨ φ′)
• φ′ → (φ ∨ φ′)
• (φ→ φ′)→ ((φ′′ → φ′)→ ((φ ∨ φ′′)→ φ′))
• ⊥ → φ }

be our (standard) set of intuitionistic axiom schemas.
Then, Cl(∅) := ⋃

n∈N Cln(∅), where for every Γ ⊆ L(A) :

Cl0(Γ) := Γ0 ∪ Γ
Cln+1(Γ) := Cln(Γ) ∪

{φ′ | {φ, φ→ φ′} ⊆ Cln(Γ) } (modus ponens, MP)

We call Cl(∅) our base theory, and Cl(Γ) a Γ-theory for any Γ ⊆ L(A).

The following standard fact asserts that we have indeed defined a closure operator.
We merely state it as a reminder, because we shall use it in later proof developments.
The term 2Γ

finite denotes the set of all finite subsets of the set Γ.

Fact 2. The mapping Cl : 2L(A) → 2L(A) is a standard consequence operator, that
is, a substitution-invariant compact closure operator:

1. Γ ⊆ Cl(Γ) (extensivity)

2. if Γ ⊆ Γ′ then Cl(Γ) ⊆ Cl(Γ′) (monotonicity)

3. Cl(Cl(Γ)) ⊆ Cl(Γ) (idempotency)

4. Cl(Γ) = ⋃
Γ′∈2Γ

finite
Cl(Γ′) (compactness)

5. σ[Cl(Γ)] ⊆ Cl(σ[Γ]) (substitution invariance),

where σ designates an arbitrary propositional L(A)-substitution.
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h s e hy k p d m

h

→ 0 + − ±
0

+

− 10 10 10

±

→ 0 + − ±
0

+

− 10 7 10

±

→ 0 + − ±
0

+

− 7 9 10 4

±

→ 0 + − ±
0

+

− 10 8 10

±

→ 0 + − ±
0

+

− 10 8 10

±

→ 0 + − ±
0

+

− 10 4 10 6

±

→ 0 + − ±
0

+

− 7 10 10

±

→ 0 + − ±
0

+

− 10 10 7

±

s

→ 0 + − ±
0 7 7 7

+

−
±

→ 0 + − ±
0 7 7 7

+

−
±

→ 0 + − ±
0 5 6 7

+

−
±

→ 0 + − ±
0 7 6 7

+

−
±

→ 0 + − ±
0 7 7 7

+

−
±

→ 0 + − ±
0 7 4 7

+

−
±

→ 0 + − ±
0 6 7 7

+

−
±

→ 0 + − ±
0 7 7 6

+

−
±

e

→ 0 + − ±
0

+

−
± 6 6 6

→ 0 + − ±
0

+

−
± 6 4 6

→ 0 + − ±
0

+

−
± 6 6 6

→ 0 + − ±
0

+

−
± 6 5 6

→ 0 + − ±
0

+

−
± 6 5 6

→ 0 + − ±
0

+

−
± 6 6

→ 0 + − ±
0

+

−
± 4 6 6

→ 0 + − ±
0

+

−
± 6 6 4

hy

→ 0 + − ±
0

+

−
± 8 8 8

→ 0 + − ±
0

+

−
± 8 6 8

→ 0 + − ±
0

+

−
± 6 7 8

→ 0 + − ±
0

+

−
± 8 8 8

→ 0 + − ±
0

+

−
± 8 7 8

→ 0 + − ±
0

+

−
± 8 8 5

→ 0 + − ±
0

+

−
± 5 8 8

→ 0 + − ±
0

+

−
± 8 8 5

k

→ 0 + − ±
0

+

−
± 8 8 8

→ 0 + − ±
0

+

−
± 8 7 8

→ 0 + − ±
0

+

−
± 6 7 8

→ 0 + − ±
0

+

−
± 8 7 8

→ 0 + − ±
0

+

−
± 8 8 8

→ 0 + − ±
0

+

−
± 8 4 8 4

→ 0 + − ±
0

+

−
± 6 8 8

→ 0 + − ±
0

+

−
± 8 8 6

p

→ 0 + − ±
0

+ 6 6 6

−
± 4 4 4

→ 0 + − ±
0

+ 6 6

−
± 4 4 4

→ 0 + − ±
0

+ 4 5 6

−
± 4 4

→ 0 + − ±
0

+ 6 5 6

−
± 4 4

→ 0 + − ±
0

+ 6 4 6

−
± 4 4 4

→ 0 + − ±
0

+ 6 6 6

−
± 4 4 4

→ 0 + − ±
0

+ 4 6 6

−
± 4 4

→ 0 + − ±
0

+ 6 6 4

−
± 4 4

d

→ 0 + − ±
0 7 7 7

+

−
±

→ 0 + − ±
0 7 6 7

+

−
±

→ 0 + − ±
0 5 6 7

+

−
±

→ 0 + − ±
0 7 5 7

+

−
±

→ 0 + − ±
0 7 6 7

+

−
±

→ 0 + − ±
0 7 7 4

+

−
±

→ 0 + − ±
0 7 7 7

+

−
±

→ 0 + − ±
0 7 7 7

+

−
±

m

→ 0 + − ±
0

+ 7 7 7

−
±

→ 0 + − ±
0

+ 7 6 7

−
±

→ 0 + − ±
0

+ 5 6 7

−
±

→ 0 + − ±
0

+ 7 5 7

−
±

→ 0 + − ±
0

+ 7 6 7

−
±

→ 0 + − ±
0

+ 7 7 4

−
±

→ 0 + − ±
0

+ 7 7 7

−
±

→ 0 + − ±
0

+ 7 7 7

−
±

Table 3: The diagram of I(P ) as extracted from the P in Table 2

Proof. For (1) to (4), inspect the inductive definition of Cl. And (5) follows from
our definitional use of axiom schemas.3

Note that in the sequel, “:iff” abbreviates “by definition, if and only if,” and

Φ `Γ φ :iff Φ ⊆ Cl(Γ) implies φ ∈ Cl(Γ)
`Γ φ :iff ∅ `Γ φ .

3Alternatively to axiom schemas, we could have used axioms together with an additional
substitution-rule set {σ[φ] | φ ∈ Cln(Γ)} in the definiens of Cln+1(Γ).
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We continue to define what we mean by our simple implicational invariants
announced in the introduction. As announced there, these invariants are ground
instances of intuitionistic implication, by which we mean that they are of the visually
tractable, diagrammatic form A → A′ rather than being of the more general, not
generally visually tractable form φ → φ′. As an example of what we mean by
visually tractable, diagrammatic form, consider Table 3. For a given SPP-sequence
P , we postulate the algorithmically extracted set I(P ) of these invariants that hold
throughout P (see Definition 3) as the axioms of the personality theory Cl(I(P ))
that we associate with P . These axioms thus capture those logical dependencies
between signed factors that are invariant in P in the sense of holding throughout P .
The algorithm for this axiom extraction and visualisation is displayed in Listing 1
and will be explained shortly. Note that given that these invariants hold throughout
a sequence that has been generated by an iterated procedure, that is, an iterated
execution of the Szondi-test, they can also be understood as loop invariants, which
is a core concept in the science of computer programming [6]. So our algorithm for
finding psychological invariants can actually also be understood and even be used as
a method for inferring loop invariants from program execution traces in computer
science.

Definition 3 (Simple implicational invariants). Let the mapping p : SPP → L(A)
be such that

p(((h, s1), (s, s2), (e, s3), (hy, s4), (k, s5), (p, s6), (d, s7), (m, s8))) =
hs1 ∧ ss2 ∧ es3 ∧ hys4 ∧ ks5 ∧ ps6 ∧ ds7 ∧ms8 .

Then, define the mapping I : SPP+ → 2L(A) of simple implicational invariants
such that for every P ∈ SPP+,

I(P ) := {A→ A′ | for every P ′ ∈ SPP+, if P v P ′
then p(π1(P ′)) `∅ A→ A′

} ,

where π1 : SPP+ → SPP is projection onto the first SPP component.

Notice the three implications “if—then,” `, and→ of different logical level, and note
that we use “if—then” and “implies” synonymously. This definition can be cast into
an algorithm of linear complexity in the length of P , for example as described by
the Java-program displayed in Listing 1, and the result I(P ) of its computation
diagrammatically displayed as in Table 3. The on-line Szondi-test [15] also uses this
program as a subroutine. Lines starting with “// ” are comments. Notice that every
loop in the program has fixed complexity, and that we simply process the head of
P—the first profile in P—in Line 2–30 and then recur on the tail of the remaining
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1 public void update ( Vector<Signature [] > p r o f i l e s ) {
2 // 1 . CALCULATION OF MATERIAL IMPLICATIONS
3 // in the f i r s t p r o f i l e
4 Signature [ ] f s t p = p r o f i l e s . f i r s tE l ement ( ) ;
5 // consequent−o r i en t ed p ro c e s s i ng ( consequent loop ) ,
6 // round−rob in treatment o f each f a c t o r as consequent
7 for ( int c=0; c<8; c++) {
8 Signature cmodq = moduloQuanta ( f s t p [ c ] ) ;
9 // 1 .1 EVERYTHING IMPLIES TRUTH ( antecedent loop ) ,

10 // round−rob in treatment o f each f a c t o r as antecedent
11 for ( int a=0; a<8; a++) {
12 // s ignature−value loop
13 for ( int v=0; v<4; v++) {
14 // d i scount cor re spond ing tab le−c e l l va lue
15 ( f a c t o r s [ a ] [ c ] ) . s i g na tu r e s [ v ] [ code (cmodq)]−−;
16 }
17 }
18 // 1 .2 FALSEHOOD IMPLIES EVERYTHING−−−ALSO FALSEHOOD;
19 // everyth ing i s : a l l o ther consequent s i gna tu r e s
20 for ( S ignature cc : coSet ( cmodq ) ) {
21 // round−rob in treatment o f each f a c t o r as antecedent
22 for ( int a=0; a<8; a++) {
23 // f a l s e i s : a l l o ther antecedent s i gna tu r e s
24 for ( S ignature ca : coSet (moduloQuanta ( f s t p [ a ] ) ) ) {
25 // d i scount cor re spond ing tab le−c e l l va lue
26 ( f a c t o r s [ a ] [ c ] ) . s i g na tu r e s [ code ( ca ) ] [ code ( cc )]−−;
27 }
28 }
29 }
30 }
31 // 2 . CALCULATION OF INTUITIONISTIC IMPLICATIONS:
32 // forward inva r i anc e o f mate r i a l imp l i c a t i o n s
33 i f ( p r o f i l e s . s i z e ()>1) {
34 // garbage−c o l l e c t the proce s sed p r o f i l e
35 p r o f i l e s . remove ( 0 ) ;
36 // r e c u r s i v e l y descend on the remaining p r o f i l e s
37 update ( p r o f i l e s ) ;
38 }
39 }

Listing 1: Update algorithm
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A A′ A ⊃ A′
1. false false true
2. false true true
3. true false false
4. true true true

Table 4: Material implication ⊃

profiles in P in Line 31–38. The loop-nesting depth is four. The program updates a
table—called factors in Listing 1—of eight times eight subtables—called signatures
in Listing 1—of four times four content cells as displayed in Table 3, each of whose
cells is initialised with a value equal to the length of P (e.g., 10). To update this table
means to discount the initial value of its cells according to the following strategy
inspired by Kripke’s model-theoretic interpretation of intuitionistic implication as
forward invariance of material implication [16, 18] and adapted to our setting in
Definition 3:

1. Calculate all material implications in the first profile in P , called profiles in
Listing 1, according to the definition of material implication recalled in Table 4.
There, Line 1, 2, and 4 can be summarised by the slogan “Everything implies
truth” and Line 1 and 2 by the slogan “Falsehood implies everything.” In
Listing 1, these well-known slogans correspond to the meaning of our code
in Line 9–17 and Line 18–29, respectively. There, the function moduloQuanta
simply returns its argument signature without quanta for graphical tractability,
the function code the subtable line number of its argument, and the function
coSet the set of all plain signatures (those signatures without quanta) minus
the argument signature. For example, applying

• moduloQuanta to the signature +!!! returns the signature +,
• code to the signature + returns the line number 1, and
• coSet to the signature + returns the set of signatures {−, 0,±}.

2. Then calculate those material implications that are actually even intuitionistic
implications by recurring on the tail of P .

On termination of program execution, each table cell that corresponds to an intu-
itionistic implication will contain the number 0 and be painted black. Cells contain-
ing the number 1 will be painted red (and correspond to intuitionistic implications
of the tail of P ), those containing the number 2 will be painted orange, and those
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containing the number 3 yellow. Table cells containing other numbers will not be
painted for lack of relevance and thus will just display the number of missing dis-
counts as distance to count as intuitionistic implications.

Observe in Table 3 that the whole diagonal from the top left corner down to
the bottom right corner is painted black. This state of affairs reflects the reflexivity
property `Γ φ→ φ of intuitionistic implication. Similarly, if both a cell representing
some formula A → A′ as well as another cell representing some formula A′ → A′′

are painted black then the cell representing the formula A→ A′′ will also be painted
black. Consider the following four example triples:

• e+→ s0, s0→ k±, and e+→ k± ;

• k+→ s−, s− → p+, and k+→ p+ ;

• p± → s0, s0→ k±, and p± → k± ;

• m± → d+, d+→ hy±, and m± → hy± .

This state of affairs reflects the transitivity property of intuitionistic implication,
which for general formulas φ and φ′ is:

if `Γ φ→ φ′ and `Γ φ
′ → φ′′ then `Γ φ→ φ′′.

Of course, reflexivity and transitivity are two logical properties, which will show up
in the diagram of any I(P ). (In so far, these properties also reflect an axiomatic
redundancy of I(P ), which however is not our concern here.)

In contrast, the following properties displayed in Table 3 are psychological in
that they are proper to the personality profile displayed in Table 2, from which they
have been extracted, namely:

Vacuous implications This class of intuitionistic implications is visually charac-
terised by a horizontal or vertical line of black cells throughout the whole
diagram width and diagram height, respectively. In the diagram displayed in
Table 3, there is a single vertical line of such implications, which says:

Whenever something is true then h− is true.

This simply holds because h− is true throughout the whole test result in
Table 2, and thus the logical slogan “Everything implies truth” applies.
The other, that is, the horizontal lines of vacuous intuitionistic implications
hold due to the other logical slogan “Falsehood implies everything.”
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Non-vacuous implications This class of intuitionistic implications is visually
characterised by isolated black cells. They are the psychologically truly in-
teresting implications. They are, from the top left to the bottom right of the
diagram in Table 3, and together with their rough psychological meaning in
Szondi’s system (recall Table 1 and, if need be, consult [22]):

1. s0 → k± . Whenever the testee is inactive (externally) then he has in-
ternal compulsive behaviour (e.g., is experiencing a dilemma). See for
example the below Item 3 and 6, where these two implicationally related
reactions also appear conjunctively.

2. s− → p+ . Whenever the testee is receptively passive (e.g., masochism)
then he wants to be more than he actually is (e.g., megalomania). See
for example the below Item 5, where these two implicationally related
reactions also appear conjunctively.

3. e+→ (s0 ∧ hy± ∧ k± ∧ p+ ∧ d0 ∧m+) : Whenever the testee has ethical
behaviour then he
(a) is inactive (s0). That is, inactivity is a necessary condition for the

testee’s ethical behaviour, and thus his ethical behaviour is in a be-
havioural (not logical) sense vacuous.

(b) is morally ambivalent (hy±). Thus the testee’s ethical behaviour need
not be moral. Indeed, inactivity need not be moral.

(c) has internal compulsive behaviour (k±). Maybe the testee’s inactiv-
ity is due to an internally experienced dilemma?

(d) wants to be more than he is (p+). The testee’s inactivity may not
be conducive to the fulfilment of his desire, but his desire may well
be co-determined by his inactivity.

(e) is faithfully indifferent (d0). Indeed, faithfulness (in a general sense)
and ethics may be experienced as orthogonal issues.

(f) approves of bindings in his relationships (m+). Thus for the testee,
bindings but not necessarily their faithfulness are ethical.

4. hy+→ (d0 ∧m+) : Whenever the testee has immoral behaviour then he
(a) is faithfully indifferent (d0).
(b) approves of bindings in his relationships (m+).
Thus the testee’s faithfulness indifference as well as his binding attitude
is stable with respect to ethics and immorality.

5. k+ → (s− ∧ p+) : Whenever the testee wants to have more than he has
then he
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(a) is receptively passive (s−).
(b) wants to be more than he is (p+).
Again, the testee’s receptive passivity may not be conducive to the ful-
filment of his desires, but his desires may well be co-determined by his
receptive passivity.

6. p± → (s0∧k±) : Whenever the testee is ambivalent with respect to being
more or less than he is then he
(a) is inactive (s0). The testee’s ambivalence may well be a deeper

dilemma that is the cause of his activity blockage.
(b) has internal compulsive behaviour (k±). This could be a confirmation

of the testee’s suspected dilemma.
7. d0→ m+ . Whenever the testee is faithfully indifferent then he approves

of bindings in his relationships. See for example the above Item 3 and
4, where these two implicationally related reactions also appear conjunc-
tively.

8. d+→ hy± . Whenever the testee is unfaithful then he is morally ambiva-
lent. See for example the below Item 10, where these two implicationally
related reactions also appear conjunctively.

9. m+→ d0 . Whenever the testee approves of bindings in his relationships
then he is faithfully indifferent. For example see Item 3 and 4, where
these two implicationally related reactions also appear conjunctively.

10. m± → (hy± ∧ d+) : Whenever the testee is ambivalent in his attitude
towards bindings in his relationships then he
(a) is morally ambivalent (hy±).
(b) is unfaithful (d+).

Observe that from the above invariants in the given P , we can deduce that:

`I(P ) (e+ ∨ s0 ∨ p±)→ k±
`I(P ) (e+ ∨ s− ∨ k+)→ p+
`I(P ) (e+ ∨ hy+)→ (d0 ∧m+)
`I(P ) (e+ ∨ hy+ ∨m+)→ d0
`I(P ) (e+ ∨ hy+ ∨ d0)→ m+
`I(P ) (e+ ∨ p±)→ s0
`I(P ) (e+ ∨ d+ ∨m±)→ hy±
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From our diagrammatic reasonings, it becomes clear that the signed factor e+ and
to a lesser extent the signed factor hy+ are the two most important causal factors
in P—and thus for the testee represented by P—in the following sense:

1. these factors are non-vacuously implied by no other signed factor, but

2. they individually and non-vacuously imply most other signed factors.

Thus the testee’s personality is determined to a large extent by these two signed
factors, in spite of the fact that they only occur in P once and twice, respectively!

Diagrammatic reasoning in a couple Given two (or more) SPP-sequences P
and P ′, we can compute their axiom bases I(P ) and I(P ′), and visualise them as di-
agrams. We can then graphically compute the join and the meet of P and P ′, that is,
the union and the intersection of I(P ) and I(P ′), respectively, by simply superpos-
ing the two diagrams as printed on overhead-projector foils, and then adding their
cells and pinpointing their common cells on a third and fourth superimposed foil,
respectively. Of course, this graphical computation can instead also be programmed
on a computer (e.g., for studying groups).

Conjunctive implicational invariants As indicated, our algorithmically ex-
tracted implicational invariants A→ A′ are simple in that they have a single atomic
antecedent A and a single atomic consequent A′. An interesting generalisation of
these simple implicational invariants is to allow finite conjunctions A1 ∧ . . . ∧An of
atomic formulas A1, . . . , An ∈ A as antecedents. This generalisation, though graphi-
cally not generally tractable in two dimensions, is interesting because with it, signed
personality factors, represented by atomic formulas, can be analysed in terms of
their individually necessary and jointly sufficient conditions, and thus logically char-
acterised in terms of each other. More precisely, we mean by this characterisation
that from

1. `I(P ) (A1 ∧ . . .∧An)→ A′, that is, the atomic formulas A1, . . . , An are jointly
sufficient conditions for the atomic formula A′, and

2. `I(P ) (A′ → A1) ∧ . . . ∧ (A′ → An), that is, the atomic formulas A1, . . . , An

are individually necessary conditions for the atomic formula A′,

we can deduce the following equivalence characterisation of A′ :

`I(P ) (A1 ∧ . . . ∧An)↔ A′.
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Obviously, the truth of Item 2 can be ascertained graphically with our automatic
procedure, and Item 1 can be ascertained interactively with the following semi-
automatic procedure, involving a standard, efficient database query language:

1. Transcribe the given P (e.g., Table 2) into non-recursive Datalog [1];

2. Formulate and then query the resulting database with the jointly sufficient
conditions that you suspect to be true.

Proposition 1 (Suffix closure of I). For every P, P ′ ∈ SPP+,

1. I(P ? P ′) ⊆ I(P ′)

2. P v P ′ implies I(P ) ⊆ I(P ′)

Proof. For (1), consider:

1. P, P ′ ∈ SPP+ hypothesis

2. φ ∈ I(P ? P ′) hypothesis

3. there are A,A′ ∈ A such that φ = A→ A′ and
for every P ′′ ∈ SPP+, P ? P ′ v P ′′ implies p(π1(P ′′)) ` φ 2

4. φ = A→ A′ and for every P ′′ ∈ SPP+,
P ? P ′ v P ′′ implies p(π1(P ′′)) ` φ hypothesis

5. P ′′ ∈ SPP+ hypothesis

6. P ′ v P ′′ hypothesis

7. P ? P ′ v P ′′ 6, Fact 1

8. p(π1(P ′′)) ` φ 4, 5, 7

9. P ′ v P ′′ implies p(π1(P ′′)) ` φ 6–8

10. for every P ′′ ∈ SPP+, P ′ v P ′′ implies p(π1(P ′′)) ` φ 5–9

11. φ = A→ A′ and for every P ′′ ∈ SPP+,
P ′ v P ′′ implies p(π1(P ′′)) ` φ 4, 10

12. there are A,A′ ∈ A such that φ = A→ A′ and
for every P ′′ ∈ SPP+, P ′ v P ′′ implies p(π1(P ′′)) ` φ 11

13. φ ∈ I(P ′) 12

14. φ ∈ I(P ′) 3, 4–13

15. I(P ? P ′) ⊆ I(P ′) 2–14
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16. for every P, P ′ ∈ SPP+, I(P ? P ′) ⊆ I(P ′) 1–15.

For (2), consider:

1. P, P ′ ∈ SPP+ hypothesis

2. P v P ′ hypothesis

3. P = P ′ or there is P ′′ ∈ SPP+ such that P = P ′′ ? P ′ 2

4. P = P ′ implies {P}/ ⊆ {P ′}/ equality law

5. there is P ′′ ∈ SPP+ such that P = P ′′ ? P ′ hypothesis

6. P ′′ ∈ SPP+ and P = P ′′ ? P ′ hypothesis

7. φ ∈ I(P ) hypothesis

8. φ ∈ I(P ′′ ? P ′) 6, 7

9. I(P ′′ ? P ′) ⊆ I(P ′) 1, Propostion 1.1

10. φ ∈ I(P ′) 8, 9

11. I(P ) ⊆ I(P ′) 7–10

12. I(P ) ⊆ I(P ′) 5, 6–11

13. there is P ′′ ∈ SPP+ such that P = P ′′ ? P ′

implies I(P ) ⊆ I(P ′) 5–12

14. I(P ) ⊆ I(P ′) 3, 4, 13

15. P v P ′ implies I(P ) ⊆ I(P ′) 2–14

16. for every P, P ′ ∈ SPP+, P v P ′ implies I(P ) ⊆ I(P ′) 1–15.

Proposition 2.

1. `I(P ?P ′) φ implies `I(P ′) φ

2. If P v P ′ and `I(P ) φ then `I(P ′) φ .

Proof. Combine Fact 2.2 with Proposition 1.1 and Proposition 1.2, respectively.

The following property means that our personality theories have the desired
prime-filter property (see Proposition 3), as announced in the introduction.
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Theorem 1 (Disjunction Property).

If `I(P ) φ ∨ φ′ then `I(P ) φ or `I(P ) φ
′.

Proof. Our proof strategy is to adapt de Jongh’s strategy in [5] to our simpler setting,
thanks to which our proof reduces to Gödel’s proof of the disjunction property of
a basic intuitionistic theory [8] such as our Cl(∅): So suppose that `I(P ) φ ∨ φ′.
Adapting an observation from [5], we can assert that `I(P ) φ ∨ φ′ if and only if
`∅

∧ I(P ) → (φ ∨ φ′). Thus `∅
∧ I(P ) → (φ ∨ φ′). Hence `∅ (∧ I(P ) → φ) ∨

(∧ I(P ) → φ′). Hence `∅ (∧ I(P ) → φ) or `∅ (∧ I(P ) → φ′) by Gödel’s proof.
Hence `I(P ) φ or `I(P ) φ

′ again by de Jongh’s observation.

3 Personality categorisation
In this section, we present the part of our framework for the mathematical categori-
sation of personality axioms into formal personality theories, as these axioms might
have been discovered with the methodology presented in the previous section. As
announced in the introduction, personality theories and personality-test data are re-
lated by a Galois-connection [4, Chapter 7]. We start with defining this connection
and the two personality (powerset) spaces that it connects.

Definition 4 (Personality algebras). Let the mappings . : 2L(A) → 2SPP+ , called
right polarity, and / : 2SPP+ → 2L(A), called left polarity, be such that

• Φ. := {P ∈ SPP+ | for every φ ∈ Φ, `I(P ) φ } and

• P/ := {φ ∈ L(A) | for every P ∈ P, `I(P ) φ } .

Further let ≡ ⊆ 2L(A) × 2L(A) and ≡ ⊆ 2SPP+ × 2SPP+ be their kernels, that is,
for every Φ,Φ′ ∈ 2L(A), Φ ≡ Φ′ by definition if and only if Φ. = Φ′. and for every
P,P ′ ∈ 2SPP+ , P ≡ P ′ by definition if and only if P/ = P ′/, respectively.

Then, for each one of the two (inclusion-ordered, Boolean) powerset algebras

〈 2L(A), ∅,∩,∪,L(A), · ,⊆〉 .
GGGGBFGGGG

/
〈 2SPP+

, ∅,∩,∪, SPP+, · ,⊆〉 ,

define its (ordered) quotient join semi-lattice with bottom (and thus idempotent com-
mutative monoid) modulo its kernel as in Table 5.

Note that our focus is on the powerset and not on the quotient algebras. The
purpose of the quotient algebras is simply to indicate the maximally definable al-
gebraic structure in our context. As a matter of fact, only the join- but not the
meet-operation is well-defined in the quotient algebra (see Corollary 1).
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Statements Test results
> := [L(A)]≡ > := [SPP+]≡

[Φ]≡ t [Φ′]≡ := [Φ ∪ Φ′]≡ [P]≡ t [P ′]≡ := [P ∪ P ′]≡
⊥ := [∅]≡ ⊥ := [∅]≡

[Φ]≡ v [Φ′]≡ :iff [Φ]≡ t [Φ′]≡ = [Φ′]≡ [P]≡ v [P ′]≡ :iff [P]≡ t [P ′]≡ = [P ′]≡

Table 5: Quotient algebras

Proposition 3 (Basic properties of personality theories).

1. {P}/ = (Cl ◦ I)(P ) (generalisation to sets)

2. P v P ′ implies {P}/ ⊆ {P ′}/ (monotonicity)

3. prime filter properties:

(a) if φ ∈ {P}/ and φ′ ∈ {P}/ then φ ∧ φ′ ∈ {P}/ (and vice versa)
(b) if φ ∈ {P}/ and φ′ ∈ L(A) and φ `I(P ) φ

′ then φ′ ∈ {P}/

(c) if φ ∨ φ′ ∈ {P}/ then φ ∈ {P}/ or φ′ ∈ {P}/ (and vice versa)

({P}/ is an intuitionistic theory.)

4. for every φ, φ′, φ′′ ∈ L(A),

if φ ∨ φ′, φ ∨ φ′′ ∈
⋂

P∈P
{P}/ then φ ∨ (φ′ ∧ φ′′) ∈

⋂

P∈P
{P}/

(⋂P∈P {P}/ is a distributive filter.)

Proof. For (1), consider that

{P}/ = {φ ∈ L(A) | for every P ′ ∈ {P}, `I(P ′) φ }
= {φ ∈ L(A) | `I(P ) φ }
= {φ ∈ L(A) | φ ∈ Cl(I(P )) }
= Cl(I(P ))
= (Cl ◦ I)(P )

For (2), suppose that P v P ′. Hence I(P ) ⊆ I(P ′) by Proposition 1.2. Hence
Cl(I(P )) ⊆ Cl(I(P ′)) by Fact 2.2. Thus {P}/ ⊆ {P ′}/ by (1). (3.a) follows from
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the fact that (φ → (φ′ → (φ ∧ φ′)) ∈ Cl(∅) (and ((φ ∧ φ′) → φ), ((φ ∧ φ′) → φ′) ∈
Cl(∅)), Fact 2.2, and (1). For (3.b), inspect definitions, and for (3.c), Theorem 1,
definitions, and (1). For (4), consider (3) and recall that intersections of prime filters
are distributive filters [4, Exercise 10.9].

Now note the two macro-definitions ./ := . ◦ / and /. := / ◦ . with ◦ being
function composition, as usual (from right to left, as usual too).

Lemma 1 (Some useful properties of . and /).

1. if Φ ⊆ Φ′ then Φ′. ⊆ Φ. ( . is antitone)

2. if P ⊆ P ′ then P ′/ ⊆ P/ ( / is antitone)

3. P ⊆ (P/). ( ./ is extensive)

4. Φ ⊆ (Φ.)/ ( /. is extensive)

5. ((P/).)/ = P/

6. ((Φ.)/). = Φ.

7. (((P/).)/). = (P/). ( ./ is idempotent)

8. (((Φ.)/).)/ = (Φ.)/ ( /. is idempotent)

9. if P ⊆ P ′ then (P/). ⊆ (P/). ( ./ is monotone)

10. if Φ ⊆ Φ′ then (Φ.)/ ⊆ (Φ′.)/ ( /. is monotone)

Proof. For (1), suppose that Φ ⊆ Φ′. Further suppose that P ∈ Φ′.. That is,
Φ′ ⊆ Cl(I(P )). Now suppose that φ ∈ Φ. Hence φ ∈ Φ′. Hence φ ∈ Cl(I(P )).
Thus Φ ⊆ Cl(I(P )). That is, P ∈ Φ.. Thus Φ′. ⊆ Φ.. For (2), suppose that
P ⊆ P ′. Further suppose that φ ∈ P ′/. That is, for every P ∈ P ′, φ ∈ Cl(I(P )).
Now suppose that P ∈ P. Hence P ∈ P ′. Hence φ ∈ Cl(I(P )). Thus for every
P ∈ P, φ ∈ Cl(I(P )). That is, φ ∈ P/. Thus P ′/ ⊆ P/. For (3), suppose that
P ∈ P. Further suppose that φ ∈ P/. That is, for every P ∈ P, φ ∈ Cl(I(P )).
Hence φ ∈ Cl(I(P )). Thus P/ ⊆ Cl(I(P )). That is, P ∈ (P/).. Thus P ⊆ (P/)..
For (4), suppose that φ ∈ Φ. Further suppose that P ∈ Φ.. That is, Φ ⊆ Cl(I(P )).
Hence φ ∈ Cl(I(P )). Thus for every P ∈ Φ., φ ∈ Cl(I(P )). That is, φ ∈ (Φ.)/.
Thus Φ ⊆ (Φ.)/. For (5), consider that P/ ⊆ ((P/).)/ is an instance of (4), and that
((P/).)/ ⊆ P/ by the application of (2) to (3). For (6), consider that Φ. ⊆ ((Φ.)/).

is an instance of (3), and that ((Φ.)/). ⊆ Φ. by the application of (1) to (4). For
(7) and (8), substitute P / for Φ in (6), and Φ. for P in (5), respectively. For (9)
and (10), transitively apply (1) to (2) and (2) to (1), respectively.
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Notice that Lemma 1.3, 1.7, and 1.9 together with Lemma 1.4, 1.8, and 1.10 mean
that /. and ./ are closure operators, which is a fact relevant to Theorem 3.

Theorem 2 (The Galois-connection property of ( . , / )). The ordered pair ( ., / ) is
an antitone or order-reversing Galois-connection between the powerset algebras in
Definition 4. That is, for every Φ ∈ 2L(A) and P ∈ 2SPP+,

P ⊆ Φ. if and only if Φ ⊆ P/.

Proof. Let Φ ∈ 2L(A) and P ∈ 2SPP+ and suppose that P ⊆ Φ.. Hence (Φ.)/ ⊆ P/

by Lemma 1.2. Further, Φ ⊆ (Φ.)/ by Lemma 1.4. Hence Φ ⊆ P/ by transitivity.
Conversely suppose that Φ ⊆ P/. Hence (P/). ⊆ Φ. by Lemma 1.1. Further,
P ⊆ (P/). by Lemma 1.3. Hence P ⊆ Φ..

Galois-connections are connected to residuated mappings [2].

Theorem 3 (De-Morgan like laws).

1. (P ∪ P ′)/ = P/ ∩ P ′/ = ((P/ ∩ P ′/).)/ ⊆
P/ ∪ P ′/ ⊆ ((P/ ∪ P ′/).)/ ⊆ (P ∩ P ′)/

2. (Φ ∪ Φ′). = Φ. ∩ Φ′. = ((Φ. ∩ Φ′.)/). ⊆
Φ. ∪ Φ′. ⊆ ((Φ. ∪ Φ′.)/). ⊆ (Φ ∩ Φ′).

Proof. For (P ∪ P ′)/ = P/ ∩ P ′/ (join becomes meet) in (1), let φ ∈ L(A), and
consider that φ ∈ (P ∪ P ′)/ if and only if (for every P ∈ P ∪ P ′, φ ∈ Cl(I(P ))) if
and only if [for every P , (P ∈ P or P ∈ P ′) implies φ ∈ Cl(I(P ))] if and only if [for
every P , (P ∈ P implies φ ∈ Cl(I(P ))) and (P ∈ P ′ implies φ ∈ Cl(I(P )))] if and
only if [(for every P ∈ P, φ ∈ Cl(I(P ))) and (for every P ∈ P ′, φ ∈ Cl(I(P )))] if and
only if (φ ∈ P/ and φ ∈ P ′/) if and only if φ ∈ P/ ∩P ′/. Then, P/ ∩P ′/ ⊆ P/ ∪P ′/
by elementary set theory. For later use of P/ ∪ P ′/ ⊆ (P ∩ P ′)/ in (1) consider:

1. φ ∈ P/ ∪ P ′/ hypothesis
2. φ ∈ P/ or φ ∈ P ′/ 1
3. φ ∈ P/ hypothesis
4. P ∈ P ∩ P ′ hypothesis
5. P ∈ P and P ∈ P ′ 4
6. P ∈ P 5
7. {P} ⊆ P 6
8. P/ ⊆ {P}/ 7, Lemma 1.2
9. φ ∈ {P}/ 3, 8
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10. φ ∈ Cl(I(P )) 9
11. for every P ∈ P ∩ P ′, φ ∈ Cl(I(P )) 4–10
12. φ ∈ (P ∩ P ′)/ 11
13. if φ ∈ P/ then φ ∈ (P ∩ P ′)/ 3–12
14. if φ ∈ P ′/ then φ ∈ (P ∩ P ′)/ similarly to 3–12 for 13
15. φ ∈ (P ∩ P ′)/ 2, 13, 14
16. P/ ∪ P ′/ ⊆ (P ∩ P ′)/ 1–15.

For ((P/ ∪ P ′/).)/ ⊆ (P ∩ P ′)/ in (1), consider the previously proved property that
P/ ∪ P ′/ ⊆ (P ∩ P ′)/. Hence (P ∩ P ′) ⊆ (P/ ∪ P ′/). by Theorem 2. Hence
((P/ ∪ P ′/).)/ ⊆ (P ∩ P ′)/ by Lemma 1.2. Then, P/ ∪ P ′/ ⊆ ((P/ ∪ P ′/).)/ in
(1) is an instance of Lemma 1.4. For P/ ∩ P ′/ = ((P/ ∩ P ′/).)/ in (1), con-
sider that ((P/ ∩ P ′/).)/ = (((P ∪ P ′)/).)/ by the previously proved property that
P/ ∩ P ′/ = (P ∪ P ′)/. But (((P ∪ P ′)/).)/ = (P ∪ P ′)/ by Lemma 1.5. Hence
((P/ ∩ P ′/).)/ = P/ ∩ P ′/.

For (Φ ∪ Φ′). = Φ.∩Φ′. (join becomes meet) in (2), let P ∈ SPP+, and consider
that P ∈ (Φ ∪ Φ′). if and only if (for every φ ∈ Φ ∪ Φ′, φ ∈ Cl(I(P ))) if and only
if [for every φ, (φ ∈ Φ or φ ∈ Φ′) implies φ ∈ Cl(I(P ))] if and only if [for every φ,
(φ ∈ Φ implies φ ∈ Cl(I(P ))) and (φ ∈ Φ′ implies φ ∈ Cl(I(P )))] if and only if [(for
every φ ∈ Φ, φ ∈ Cl(I(P ))) and (for every φ ∈ Φ′, φ ∈ Cl(I(P )))] if and only if
(P ∈ Φ. and P ∈ Φ′.) if and only if P ∈ Φ. ∩ Φ′.. Then, Φ. ∩ Φ′. ⊆ Φ. ∪ Φ′. by
elementary set theory. For later use of Φ. ∪ Φ′. ⊆ (Φ ∩ Φ′). in (2) consider:

1. P ∈ Φ. ∪ Φ′. hypothesis
2. P ∈ Φ. or P ∈ Φ′. 1
3. P ∈ Φ. hypothesis
4. φ ∈ Φ ∩ Φ′ hypothesis
5. φ ∈ Φ and φ ∈ Φ′ 4
6. φ ∈ Φ 5
7. {φ} ⊆ Φ 6
8. Φ. ⊆ {φ}. 7, Lemma 1.1
9. P ∈ {φ}. 3, 8
10. φ ∈ Cl(I(P )) 9
11. for every φ ∈ Φ ∩ Φ′, φ ∈ Cl(I(P )) 4–10
12. P ∈ (Φ ∩ Φ′). 11
13. if P ∈ Φ. then P ∈ (Φ ∩ Φ′). 3–12
14. if P ∈ Φ′. then P ∈ (Φ ∩ Φ′). similarly to 3–12 for 13
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15. P ∈ (Φ ∩ Φ′). 2, 13, 14
16. Φ. ∪ Φ′. ⊆ (Φ ∩ Φ′). 1–15.

For ((Φ. ∪ Φ′.)/). ⊆ (Φ ∩ Φ′). in (2), consider the previously proved property
that Φ. ∪ Φ′. ⊆ (Φ ∩ Φ′).. Hence (Φ ∩ Φ′) ⊆ (Φ. ∪ Φ′.)/ by Theorem 2. Hence
((Φ. ∪ Φ′.)/). ⊆ (Φ ∩ Φ′). by Lemma 1.1. Then, Φ. ∪ Φ′. ⊆ ((Φ. ∪ Φ′.)/). in
(2) is an instance of Lemma 1.3. For Φ. ∩ Φ′. = ((Φ. ∩ Φ′.)/). in (2), con-
sider that ((Φ. ∩ Φ′.)/). = (((Φ ∪ Φ′).)/). by the previously proved property that
Φ. ∩ Φ′. = (Φ ∪ Φ′).. But (((Φ ∪ Φ′).)/). = (Φ ∪ Φ′). by Lemma 1.6. Hence
((Φ. ∩ Φ′.)/). = Φ. ∩ Φ′..

Corollary 1. The quotient algebras in Table 5 are well-defined, that is, the equiva-
lence relations ≡ ⊆ 2L(A) × 2L(A) and ≡ ⊆ 2SPP+ × 2SPP+ are congruences:

1. if Φ ≡ Φ′ and Φ′′ ≡ Φ′′′ then Φ ∪ Φ′′ ≡ Φ′ ∪ Φ′′′;

2. if P ≡ P ′ and P ′′ ≡ P ′′′ then P ∪ P ′′ ≡ P ′ ∪ P ′′′.

Proof. By the De-Morgan like laws (Φ ∪ Φ′). = Φ. ∩Φ′. and (P ∪ P ′)/ = P/ ∩ P ′/,
respectively (see Theorem 3).

We are finally ready for defining our announced personality categories, and this
by means of our previously-defined Galois-connection.

Definition 5 (Personality categories). Let P ∈ 2SPP+ and Φ ∈ 2L(A), and let

• TΦ := { τ : 2SPP+ → 2SPP+ | for every P ∈ 2SPP+ and φ ∈ Φ,
φ ∈ P/ implies φ ∈ τ(P)/ } and

• TP := { τ : 2L(A) → 2L(A) | for every Φ ∈ 2L(A) and P ∈ P,
P ∈ Φ. implies P ∈ τ(Φ). } .

Then, define the categories (monoids)

TΦ := 〈TΦ, id,◦〉 and TP := 〈TP , id,◦〉

of Φ- and P-preserving transformations, respectively.

Proposition 4 (Antitonicity properties of personality categories).

1. Φ ⊆ Φ′ implies TΦ′ ⊆ TΦ

2. P ⊆ P ′ implies TP ′ ⊆ TP
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3. P v P ′ implies T{P ′}/ ⊆ T{P}/

4. TΦ∪Φ′ ⊆ TΦ ⊆ TΦ∩Φ′

5. TP∪P ′ ⊆ TP ⊆ TP∩P ′

Proof. (1) and (2) follow straightforwardly from their respective definition, and (4)
and (5) from (1) and (2), respectively. (3) follows from Proposition 3.2 and (1) by
transitivity.

Proposition 5 (Preservation properties of personality transformations).

1. τ ∈ TΦ. implies Φ. ⊆ τ(Φ).

2. τ ∈ TP/ implies P/ ⊆ τ(P)/

3. τ ∈ T(Φ∩Φ′). implies (Φ. ⊆ τ(Φ). and Φ′. ⊆ τ(Φ′).)

4. τ ∈ T(P∩P ′)/ implies (P/ ⊆ τ(P)/ and P ′/ ⊆ τ(P ′)/)

Proof. (1) and (2) follow by expansion of definitions. For (3) suppose that τ ∈
T(Φ∩Φ′). . But by Theorem 3.2, Φ. ∪ Φ′. ⊆ (Φ ∩ Φ′).. Hence T(Φ∩Φ′). ⊆ TΦ.∪Φ′. by
Proposition 4.1. Hence τ ∈ TΦ.∪Φ′. . Hence τ ∈ TΦ. and τ ∈ TΦ′. by Proposition 4.4.
Hence Φ. ⊆ τ(Φ). and Φ′. ⊆ τ(Φ′). by (1). For (4) suppose that τ ∈ T(P∩P ′)/ . But
by Theorem 3.1, P/∪P ′/ ⊆ (P ∩ P ′)/. Hence T(P∩P ′)/ ⊆ TP/∪P ′/ by Proposition 4.2.
Hence τ ∈ TP/∪P ′/ . Hence τ ∈ TP/ and τ ∈ TP ′/ by Proposition 4.5. Hence
P/ ⊆ τ(P)/ and P ′/ ⊆ τ(P ′)/ by (2).

Typically, there are many invariant-preserving transformations of a person’s per-
sonality as represented by their personality-test result, such as Table 2. For example,
the replacement of any (∀) row j by any (∀) row i for 1 ≤ i ≤ j ≤ 10 in Table 2
is one (∃) such invariant-preserving transformation, as can be seen by inspecting
our algorithm in Listing 1 (discounting distance to invariance). Such a replacement
cannot not discount distance to invariance, and thus can never violate an invariant
(not reach 0) that held before the replacement.

4 Conclusions
We have provided a formal framework for the computer-aided discovery and cate-
gorisation of personality axioms as summarised in the abstract of this paper. Our
framework is meant as a contribution towards practicing psychological research with
the methods of the exact sciences, for obvious ethical reasons. Psychology workers
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(psychologists, psychiatrists, etc.) can now apply our visual framework in their own
field (of) studies in order to discover personality theories and categories of their own
interest. Our hope is that these field studies will lead to a mathematical systemati-
sation of the academic discipline of psychology in the area of test-based personality
theories with the help of our framework.

As future work on our current synchronic data analytics approach, which in-
fers perfect implicational correlations (between human reactions) at a given time
point (within a Szondi personality profile, an SPP) from their invariance across
time (within an SPP-sequence, a Szondi-test result), approximate implicational cor-
relations can be studied and a diachronic data analytics approach can be taken.
Actually, our implicational diagrams such as Table 3 already contain such approx-
imate implicational correlations in the form of cell values greater than 0, which as
explained on Page 13 indicate the distance to invariance and thus the approximation
to the perfection in question. This notion of approximate implicational correlation
can be understood and further studied as a notion of fuzzy implication [10]. Then,
a diachronic approach would mine correlations between different time points, typi-
cally one or several past or present and one or several future, in order to forecast and
predict future reactions of the person in question, such as can be done with Bayesian
inference [19] and time series analysis and forecasting [20]. Actually, Table 2 is such
a time series.

Last but not least, we mention the only piece of related work [3] that we are
aware of. There, the author develops a framework similarly motivated by invariance
as ours, but with quite different setup, outcomes, and results. The author’s setup on
the invariants side is a set of relations over a finite domain closed under the Boolean
operations, whereas our corresponding setup is an intuitionistic theory, a certain
set of propositional formulas, as induced by a data sequence (as exemplified by one
produced by a personality test). On the transformations side, the author’s setup is
a system of injective total functions, whereas our corresponding setup is a system
of total functions tout court.

Acknowledgements The LATEX-packages Listings and TikZ were helpful.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] T.S. Blyth. Lattices and Ordered Algebraic Structures. Springer, 2005.
[3] L. Burigana. Invariant relations in a finite domain. Mathématiques et sciences hu-

maines, 169, 2005.

132



Discovery and Categorisation of Personality Axioms

[4] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge Uni-
versity Press, 2nd edition, 1990 (2002).

[5] D. de Jongh. The disjunction property according to Kreisel and Putnam, 2009.
[6] C.A. Furia, B. Meyer, and S. Velder. Loop invariants: Analysis, classification, and

examples. ACM Computing Surveys, 46(3), 2014.
[7] D.M. Gabbay, editor. What Is a Logical System? Number 4 in Studies in Logic and

Computation. Oxford University Press, 1995.
[8] K. Gödel. Kurt Gödel: Collected Works, volume I, chapter On the intuitionistic propo-

sitional calculus. Oxford University Press, 1986.
[9] T. Hawkings. The Erlanger programm of Felix Klein: reflections on its place in the

history of mathematics. Historia Mathematica, 11, 1984.
[10] B. Jayaram and M. Baczyński. Fuzzy Implications. Springer, 2008.
[11] F. Klein. Vergleichende Betrachtungen über neuere geometrische Forschungen.

Reprinted with additional footnotes in Mathematische Annalen, 43 (1893), 1872.
[12] F. Klein. Elementary Mathematics from an Advanced Standpoint: Geometry. Dover

Publications, 2004.
[13] S. Kramer. Computer-aided discovery and categorisation of personality axioms. Tech-

nical Report 1403.6048, arXiv, 2014. http://arxiv.org/abs/1403.6048.
[14] S. Kramer. A Galois-connection between Myers-Briggs’ Type Indicators and Szondi’s

Personality Profiles. Technical Report 1403.2000, arXiv, 2014. http://arxiv.org/
abs/1403.2000.

[15] S. Kramer. www.szondi-test.ch. forthcoming.
[16] S.A. Kripke. Formal Systems and Recursive Functions, volume 40 of Studies in Logic

and the Foundations of Mathematics, chapter Semantical Analysis of Intuitionistic Logic
I. Elsevier, 1965.

[17] Jean-Pierre Marquis. Category theory. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2013 edition, 2013.

[18] J. Moschovakis. Intuitionistic logic. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Summer 2010 edition, 2010.

[19] J. Pearl. Causality. Cambridge University Press, 2nd edition, 2009.
[20] J.C. Sprott. Chaos and Time-Series Analysis. Oxford University Press, 2003.
[21] L. Szondi. Triebpathologie. Teil A: Dialektische Trieblehre und dialektische Methodik

der Testanalyse, volume 1. Hans Huber, 2nd edition, 1952 (1977).
[22] L. Szondi. Lehrbuch der Experimentellen Triebdiagnostik, volume I: Text-Band. Hans

Huber, 3rd edition, 1972.
[23] L. Szondi. Ich-Analyse: Die Grundlage zur Vereinigung der Tiefenpsycholo-

gie. Hans Huber, 1999. English translation: https://sites.google.com/site/
ajohnstontranslationsofszondi/.

Received March 2014133




