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Preface

We are pleased to present the joint proceedings of the Third International
Workshop on Logics for New-Generation Artificial Intelligence (LNGAI2023)
and the International Workshop on Logic, AI and Law (LAIL2023), which were
respectively held on September 8–9 and 11–12, 2023, at Zhejiang University in
Hangzhou, China. Both workshops are associated with a national key project
titled “Research on Logics for New Generation Artificial Intelligence (LNGAI)”
(2021-2025). The main objectives of the LNGAI project are to develop theories
and techniques of non-monotonic logics and formal argumentation and apply
them to causal reasoning, knowledge graph reasoning, and reasoning about
norms and values, in an open, dynamic, and real environment. The papers
included in this volume of joint proceedings nicely reflect some advances in the
interdisciplinary research direction of logic, AI and law.

In the part of LNGAI2023, we received 15 submissions, of which 11 were
accepted, including 7 full papers and 4 extended abstracts. Each paper was re-
viewed by at least two reviewers. In addition, the proceedings include 1 invited
paper, “Advanced Intelligent Systems and Reasoning: Standardization, Exper-
imentation, Explanation”. In this paper, Pere Pardo, Leendert van der Torre,
and Liuwen Yu offer a perspective on advanced intelligent systems and reason-
ing using morally-decisive robots as an example. The 11 accepted papers cover a
diverse range of topics and applications. Shuwhen Wu and Ming Hsiung discuss
some self-referential paradoxes induced from cellular automata. Huayu Guo,
Dongheng Chen, and Bruno Bentzen give a mechanized proof of completeness
in Henkin-style for intuitionistic propositional logic. Aleks Knoks and Leendert
van der Torre propose a fresh viewpoint on the concept of weighing normative
reasons by considering the interaction between them as a form of inference
pattern called “titular reason-based detachment”. Yini Huang contends that
focusing solely on the epistemological interpretation of “ought to know” fails
to consider the deontic issues that can arise from beliefs and knowledge and
discusses questions of formalization. Dongheng Chen, Muyun Shao, and Dov
Gabbay introduce a new method for defeasible description logic reasoning using
abstract syntax graphs employing argumentation theory-based models for com-
puting consistent sets of formulas in the graph. Yiheng Wang, Zhe Lin, Shier Ju
examine a De Morgan multi-modal logic that aims to represent the open world
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model and investigate some of its properties. Zhizheng Zhang develops a logic
programming paradigm developed as a knowledge representation and reasoning
tool for designing intelligent agents capable of performing the framework. Yulin
Chen, Beishui Liao, Bruno Bentzen, Bo Yuan, Zelai Yao, Haixiao Chi, and Dov
Gabbay propose an interpretable method designed to help users understand the
internal recognition logic of name entity recognition tasks based on Talmudic
Public Announcement Logic. Sheng Wei and Beishui Liao merge two different
kinds of biosignals to obtain a more comprehensive information representation
with enhanced interpretability. Xiaotong Fang describes the design and im-
plementation of a legal question-answering robot along with its corresponding
human-computer interaction system. Zhe Lin and Xinshu Wang study modal
Lambek calculus with primary assumptions, proving its decidability and show-
ing that categorial grammars based on it with transitive primary assumptions
are context-free. We would like to thank the LNGAI2023 program committee
members for their invaluable contributions to the workshop: Fengkui Ju, Zhe
Yu, Pietro Baroni, Emil Weydert, Kaibo Xie, Huimin Dong, Mehdi Dastani,
Jiachao Wu, Guillermo Simari, Valeria de Paiva, Giuseppe Contissa, Alexan-
der Bochman, Christoph Benzmüller, Jinsheng Chen, Olivier Roy, Leon van
der Torre, and Réka Markovich.

In the part of LAIL2023, we received 9 submissions in this workshop, each
of which was reviewed by 3 reviewers. After careful evaluation, we accepted
5 submissions as full papers. All these works bring insights to the role that
logic can play in deepening the intersection of AI and Law. On one hand,
impressive moves have been made to address the difficult challenges in mod-
eling legal reasoning of different kinds. Wenjing Du and Zihan Niu proposed
a coupling of logical requirements, calculation methods and rational standards
to ensure the accuracy of initial probabilities in Bayesian reasoning. Cecillia Di
Florio, Xinghan Liu, Emiliano Lorini, Antonino Rotolo, and Giovanni Sartor
constructed a novel logical approach to the fundamental problem of identifying
factors in case-based reasoning, on the basis of binary classifier and counterfac-
tual reasoning. Tianwen Xu considered the problem of multi-criteria coherence
ranking of legal theories as a preference aggregation problem, providing a new
angle for its solution. On the other hand, there are meaningful attempts to
deal with some practical issues in computational law. Xiang Li, Xin Sun,
and Xingchi Su proposed a more abstract formalization of conditional digital
signatures and a constructive method to find valid signatures. Ava Thomas
Wright by answer set programming implemented a deontic logic that can re-
solve conflicts between legal obligations. We would like to thank all authors
and invited speakers for their contribution to LAIL2023. Special thanks go to
the LAIL2023 program committee members for their thorough reviews: Katie
Atkinson, Le Cheng, Huimin Dong, Enrico Francesconi, Ming Hu, Fengkui Ju,
Davide Liga, Emiliano Lorini, Juliano Maranhão, Olivier Roy, and Xin Sun.
This workshop is sponsored by the Academy of Humanities and Social Sciences,
Zhejiang University.
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We are also indebted to the local organizers, Bruno Bentzen, Davide Fassio,
Jie Gao, Chonghui Li, Jieting Luo, Bin Wei, and Tianwen Xu, for their excellent
work in organizing these events.

Finally, as satellite events of the Zhejiang University Logic and AI Summit
(ZJULogAI2023), LNGAI2023 and LAIL2023 are partially supported by the
Shen Shanhong Fund of Zhejiang University Education Foundation.

Bruno Bentzen
Beishui Liao
Davide Liga

Réka Markovich
Bin Wei

Minghui Xiong
Tianwen Xu

Hangzhou, China,
August 16, 2023
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Advanced Intelligent Systems and Reasoning:
Standardization, Experimentation, Explanation

Pere Pardo1 Leendert van der Torre1,2 Liuwen Yu1

1University of Luxembourg, Luxembourg
2Zhejiang University, China

Abstract

We offer a perspective on advanced intelligent systems and reasoning, using as an
example morally-decisive robots, as proposed in machine ethics. Given that norms often
conflict, formal methods are necessary to resolve these conflicts in order to make morally
acceptable or optimal decisions. The underlying basis of current algorithms spans
from logical representation and reasoning to machine learning algorithms. We explore
multiple methodologies including deontic ASP for standardizing normative reasoning,
LogiKEy for testing ethical and legal reasoners, and formal argumentation for achieving
explanatory transparency. Our vision is demonstrated using the argumentation-based
Jiminy moral advisor. We also hint at future work that situates ‘real-world’ dialogue
exchanges as the forum for discussing moral decisions, and we discuss the development
of a platform for experimental user studies at the Zhejiang University – University of
Luxembourg Joint Lab on Advanced Intelligent Systems and REasoning (ZLAIRE).

Keywords: Artificial intelligence, knowledge representation and reasoning, logic,
formal argumentation, deontic answer set programming, LogiKEy, normative
multiagent systems, machine ethics

1 Introduction

Our future, as much as it is a projection of the present, is also a reflection of the
narratives we create, especially those crafted in the realm of science fiction. This
genre, an intriguing amalgamation of philosophy and speculative thinking, serves
as a canvas for portraying potential advancements in technology. A paramount
example of such advancements is the development of advanced intelligent reason-
ers, artificial intelligence (AI) systems that encapsulate philosophical concepts
such as rationalism and empiricism.

Standardization plays a fundamental role in the development of these AI
systems. By ensuring consistency and predictability, it enables meaningful
scientific experiments and allows us to gather empirical data. This process
enriches our understanding of these advanced systems, and it expands our
comprehension of reality, creating parallels with speculative narratives of science
fiction.
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2 Advanced Intelligent Systems and Reasoning:Standardization, Experimentation, Explanation

Historically, the collective imagination has often cast AI in the mold of
robotics. However, the reality in the coming years will deviate from this norm.
While the world will not teem with robots as science fiction might suggest,
we will witness the marked presence of AI. This visibility will not be in the
form of physical machines but rather the rapid evolution and maturation of
AI software. In a few years, core fields like computer vision, machine learning
and human-machine interaction will have matured and will become integral to
computer science technology.

The coming decade is set to mark a significant shift in the focus of AI.
After conquering basic aspects of animal and infant intelligence, attention will
turn towards adult-level human intelligence. This new focus will entail an
understanding of knowledge representation, interaction with other agents, and
grappling with ethical, legal, and social systems. These advances will bring to
the fore two main challenges: individual reasoning and collective reasoning.

Individual reasoning involves theoretical and practical reasoning, whereas
collective reasoning delves into multiagent dialogues and collaborations. Navi-
gating the balance and interplay between these two types of reasoning will be
of central concern.

The Zhejiang University – University of Luxembourg Joint Lab on Advanced
Intelligent Systems and REasoning (ZLAIRE) is taking a leadership role in
this journey. ZLAIRE is pioneering the development of advanced intelligent
reasoners. Two of its key objectives are to explore the ethical and philosophical
implications of AI and develop systems capable of moral reasoning and decision-
making.

The task of piecing together this complex puzzle of AI development, standard-
ization, experimentation, and philosophy falls upon the concept of explanation.
Explanation acts as a bridge that connects these diverse elements, breaking
down complexities, demystifying processes, and helping us to understand both
real and imagined worlds.

ZLAIRE’s focus will pivot sharply towards harnessing logic for AI reasoning,
a step that promises to revolutionize a variety of disciplines, from philosophy to
computer science. Our lab is committed to enhancing the reasoning capabilities
of these advanced systems, laying the groundwork for a future where AI reasoning
will play an increasingly central role in our lives.

Structure of this paper. Section 2 introduces the role of standardization,
experimentation and explanation. Section 3 presents examples of intelligent
reasoners, such as the Jiminy moral advisor [26], a multiagent deontic argu-
mentation system, and new perspectives on balancing in decision-making and
dialogues for moral persuasion. Section 4 concludes the article with some
observations on creating a platform for experimental user studies for AI ethics
and explainable AI.

2 Standardisation, Experimentation and Explanation

In this section, we discuss methodologies that address three key challenges in
advanced intelligent systems and reasoning: standardization, experimentation

4



Pardo, van der Torre and Yu 3

and explanation.

2.1 Standardization: Deontic ASP

Answer set programming (ASP) is a prominent paradigm for knowledge repre-
sentation and reasoning, known for its wide range of applications and efficient
tools like clingo and DLV. ASP’s success is attributed to its solid theoretical
foundations, including its logical characterization based on equilibrium logic.

Answer set programming plays a crucial role in the standardization of AI
reasoners by providing a well-defined and expressive formalism for knowledge
representation and reasoning. Its ability to handle complex and nonmonotonic
reasoning tasks, along with its solid theoretical foundations based on equilibrium
logic, makes ASP an essential candidate for standardization efforts in the AI
community. By offering a standardized framework, ASP enables researchers
and developers to build interoperable reasoning systems, promotes the sharing
and exchange of knowledge representation models, and fosters the development
of efficient and powerful reasoning tools. The standardization of AI reasoners
through ASP facilitates collaboration, advances the field, and contributes to
the broader adoption of AI technologies in various domains.

Deontic logic is commonly combined with nonmonotonic reasoning techniques
to represent and reason about norms. Some tools for defeasible deontic logic
have been introduced, but standardization and flexibility are still lacking. In a
recent paper, Cabalar, Ciabattoni, and Van der Torre [13] presented a deontic
extension of equilibrium logic, focusing on reasoning about literals with explicit
negation (“classical” negation in ASP). This extension is encoded in ASP while
maintaining the same computational complexity.

2.1.1 Logic Programs

We recall the definition of answer sets for propositional logic programs with
explicit negation. We start from a propositional signature, a set of atoms At,
and define an explicit literal as any p ∈ At or its explicit negation ¬p. A
default literal is any explicit literal L or its default negation ∼L. A rule is an
implication of the form:

H1 ∨ · · · ∨Hn ← B1 ∧ · · · ∧Bm (1)

where n,m ≥ 0 and all Hi and Bj are default literals. The disjunction H1 ∨
· · · ∨ Hn in (1) is called the rule head. When n = 0, the head is the empty
disjunction ⊥, and the rule is said to be a constraint.

The conjunction B1 ∧ · · · ∧Bm in (1) is called the rule body. When m = 0, it
corresponds to the empty conjunction ⊤ and, when this happens, we normally
omit both the body ⊤ and the ← symbol. Moreover, if m = 0, n = 1, and the
head consists of a unique explicit literal H1 (no default negation), we say that
the rule is a fact. A logic program is a set of rules. For the sake of simplicity,
this paper deals with finite programs which we sometimes represent as the
conjunction of their rules. Logic programs may contain variables, but they
are understood as an abbreviation of all their possible ground instances (for
simplicity, we do not allow function symbols).

5



4 Advanced Intelligent Systems and Reasoning:Standardization, Experimentation, Explanation

A propositional interpretation T for a signature At is any set of explicit
literals that is consistent, i.e., it contains no pair of literals p and ¬p for the
same atom p ∈ At. Given any rule r like (1) containing no default negation,
we say that an interpretation satisfies r if there is some head explicit literal
Hi ∈ T whenever all body literals Bj ∈ T . The reduct of a logic program Π
with respect to an interpretation T , written ΠT , is the result of: (1) removing
all rules with a default literal ∼L in the body such that L ∈ T , (2) removing all
rules with a default literal ∼L in the head such that L ̸∈ T , and (3) removing
the rest of the default literals. An interpretation T is an answer set of a logic
program Π if it is ⊆-minimal among all the interpretations satisfying all the
rules of ΠT .

2.1.2 Deontic Logic Programs

Following a minimalist approach, Cabalar et al. [13] extended ASP with two new
types of propositions to handle atomic obligations Op (read as “p is obligatory”)
and atomic prohibitions Fp (“p is forbidden”), for any atom p ∈ At. In many
deontic logics, a prohibition Fp can be defined as an obligation O¬p. However,
deontic ASP refrains from reading O and F as real operators, seeing them as
prefixes for new ASP atoms called “Op” and “Fp” in the signature. Keeping p,
Op and Fp separate as three independent propositions makes sense since, for
instance, there is no established connection between Op and p, as one may have
the obligation to do p but p may not hold (i.e., the obligation is not fulfilled),
and similarly for prohibitions. In addition, under certain conditions, Cabalar et
al. [13] allow Op and Fp to hold together.

2.2 Experimentation: LogiKEy

The Logic and Knowledge Engineering Framework and Methodology
(LogiKEy) [6,7] offers a framework and methodology for utilizing normative
theories and deontic logics to create explicit ethico-legal control and governance
mechanisms for intelligent autonomous systems. The formalization results
of their ongoing work can be found publicly on the LogiKEy repository at
www.logikey.org.

LogiKEy’s cohesive formal framework is grounded in shallow semantical
embeddings (SSEs) of deontic logics, combinations of logics, and ethico-legal
domain theories within an expressive classic higher-order logic (HOL). To
corroborate our approach, we have incorporated the primary strands of current
deontic logic within HOL, and have been testing this approach for several years.

2.2.1 Three Layers

The methodology of LogiKEy assists logic and knowledge engineers in the con-
current development of three layers: L1 consists of logics and their combinations,
L2 is concerned with ethico-legal domain theories, and L3 contains concrete
examples and applications.

These three levels are related as follows. Normative governance applications,
developed at layer L3, are reliant on ethico-legal domain theories drawn from
layer L2. These theories are in turn formalized within a specific logic or logic

6
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combination provided at layer L1.
The engineering process across these layers includes points for backtracking

and may require several iterations. Higher layers may also demand modifications
to the lower layers. Such potential requests, unlike most other methods, may also
involve significant modifications to the logical foundations engineered at layer
L1. These changes at the logic layer are flexibly facilitated in our meta-logical
approach.

2.2.2 Experimentation

This meta-logical strategy provides robust tool support. Existing theorem
provers and model finders for HOL help the LogiKEy designer to create ethi-
cally intelligent agents, offering the flexibility to experiment with foundational
logics and their combinations, ethico-legal domain theories and specific exam-
ples simultaneously. Continuous enhancements of these ready-made provers
inadvertently boost reasoning performance within LogiKEy.

The availability of powerful systems like Isabelle/HOL [32] and Leo-III [39]
allows us to transform formal ethics along the line of our approach. Although
adopting HOL might be a paradigm shift for ethical reasoning, this insight is
already well established in formal deduction. While deontic logic representation
in HOL isn’t straightforward, once achieved, minor changes and their effects
become much more manageable. This aligns perfectly with how our approach
aids the design of normative theories for ethico-legal reasoning. The ease
with which users can modify and adapt existing theories makes the design of
normative theories accessible to non-specialist users and developers.

2.3 Explanation: Three Faces of Argumentation

As AI systems increasingly permeate our daily lives, the way in which they
explain themselves to and interact with humans becomes an increasingly critical
research area. Formal argumentation, as understood in AI, can provide a gen-
eral, unifying framework for explanations, combining aspects from knowledge
representation and reasoning, and human-computer interaction. Formal argu-
mentation has developed into a rich and multidimensional field that encompasses
various perspectives and approaches to the study of reasoning, persuasion, and
decision-making. In formal argumentation, different branches have emerged.
Argumentation as inference includes abstract and structured argumentation
(Dung, 1995; Modgil et al., 2014; Toni and Tamma, 2014), offering a systematic
framework for analyzing and evaluating arguments, taking into account their
logical structure. Argumentation as dialogue (Arisaka et al., 2022) explores
multiagent systems and strategic interactions, focusing on the dynamics of
various kinds of dialogues. Argumentation as balancing (Gordon and Walton,
2007) addresses the need to strike a balance between conflicting viewpoints and
has found applications in domains such as law and ethics.

2.3.1 Argumentation as Inference

Argumentation as inference fosters clarity and systematic understanding of
arguments. It helps make reasoning systems capable of formulating coherent

7



6 Advanced Intelligent Systems and Reasoning:Standardization, Experimentation, Explanation

and logical conclusions. One of the strengths of the abstract argumentation
framework is its powerful generality. Its process of transforming a knowledge
base into an argumentation graph and obtaining a set of acceptable conclusions
for that knowledge base has been dubbed “the argumentation pipeline” [23]. In
more detail, the argumentation pipeline takes input from a knowledge base in a
formal language that specifies how arguments are constructed from a premise set
as well as a number of inference rules. Premises are formulas in a given formal
language. They represent the evidence or information on which arguments
are based. Rules are used to infer new formulas from others. Arguments
are thus considered to be the result of applying inference rules to premises
and, possibly, chaining such applications. As a second step, attack relations
are established between the arguments, taking various considerations about
the arguments into account (such as their syntactic form, their strength, and
so on). Argumentation semantics are then used to obtain sets of acceptable
arguments based on the argumentation graph constructed in the previous step.
Finally, sets of acceptable conclusions are obtained on the basis of the sets
of acceptable arguments. Such a knowledge base can be used to model, for
example, default reasoning [43], logic programming with negation as failure [18],
and autoepistemic reasoning [11]. In this regard, one potential future direction
for research is causal argumentation [10], particularly due to the limitations
of existing rule-based systems in representing causal knowledge. Another
critical aspect that requires attention is the identification and exploration of
specific argument types associated with causality, such as those incorporating
counterfactual statements. There are three central approaches that correspond
to this line of research: logic-based deductive methods [8,1,9], assumption-based
argumentation systems [11,41], and ASPIC systems [30].

One important development is the study of rationality postulates as intro-
duced by Caminada and Amgoud [14,15] and later extended by Caminada et
al. [19] and Wu and Podlaszewski [42]. They proposed several properties that
any argumentation system should fulfil. These properties are meant to ensure
that argumentation-based inferences make sense from a logical point of view,
i.e., that the graph-based selection is sensible from the perspective of the logical
language that was used to construct the argument graph. The choice of attack
relation (e.g., unrestricted versus restricted rebut) can have a major impact on
the satisfaction of the rationality postulate.

2.3.2 Argumentation as Dialogue

Argumentation dialogues, where the role of agents is on the central stage, have
been significantly applied to the fields of AI and law and multiagent systems
since the 1990s (see Prakken [3, Chap. 2]). In the early days, Lorenzen and
Lorenz [28] developed formal dialogue systems for argumentation using a game
formulation of disputes among agents. The acceptance of an argument provided
by an agent depends on several aspects, such as trust [37,24], and voting in
social choice [20,25,2,17]. In 2011, Rienstra et al. [38] proposed multi-sorted
argumentation, where each agent owns a part of the framework and may locally

8
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adopt different semantics. Multiagent systems can be roughly grouped into
two categories: cooperative and non-cooperative [22]. In cooperative systems,
agents share a common goal and fully cooperate to achieve it. Agents can
form coalitions to improve their performance, i.e., pooling their efforts and
resources to achieve particular tasks at hand more efficiently [21]. In a non-
cooperative system, each agent has its own desires and preferences, which may
conflict with those of other agents. Multiagent argumentation takes inspiration
from several disciplines such as game theory, and it can be further developed
towards coalitional game theory by introducing the notion of coalition and
associate arguments of (sets of) agents. An alternative approach to multiagent
argumentation takes its inspiration from voting theory, and more generally from
social choice.

2.3.3 Argumentation as Balancing

In Chapter 3 of the Handbook of Formal Argumentation, Thomas Gordon
proposed an alternative definition of argumentation highlighting the importance
of argumentation for making justified decisions [3, Chap.3]. Argumentation
is thus not only important when resolving conflicts of opinion in persuasion
dialogues, but also when deciding courses of action in deliberation dialogues [3,
Chap.3]. He then gave a new definition of argumentation: argumentation is
a rational process, typically in dialogues, for making and justifying decisions
about various kinds of issues. In this application, pro and con arguments provide
alternative resolutions of the issues, so that the options (or positions) are put
forward, evaluated, resolved and balanced. Argumentation as balancing finds
significant applications in the realms of law and ethics. In these domains, the
objective is not merely to assess the validity or strength of individual arguments
but to strike a balance between conflicting viewpoints or interests. Balancing
involves weighing different considerations, evaluating the relative importance of
arguments, and reaching decisions that are ethically sound and legally justifiable.

3 Examples of Advanced Intelligent Reasoners

This section reviews some recent examples of advanced intelligent systems and
future research lines in this area.

3.1 The Jiminy Moral Advisor

Autonomous agents such as self-driving cars and smart speakers are aware of
a range of possible actions they can take in a given situation. As some of
these actions might affect people nearby (drivers, passengers, pedestrians and
resp. household members), these agents’ behavior should adjust to some given
moral regulation. Next, we describe our recent work [26] in this research area,
based on deontic argumentation.

Machine ethics can be tackled in two different ways [31]. So-called morally
implicit agents are provided with contextual rules for their ethical labeling of
actions —with only actions labeled as good being permitted. Morally explicit
agents, on the other hand, make moral judgments, or are given guidelines or
examples they can extrapolate from about good and bad actions.

9
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For a given agent, relevant stakeholders are (types of) human beings poten-
tially affected by that agent. It has been argued that all these types of people
should be given a voice in the regulation of this agent [5]. (The alternative is
regulation by a single stakeholder, who might be tempted to look after their
own particular interests.) A natural way of letting these voices be heard is a
normative system. Observe that, in contrast to Section 2.1, no explicit use of
obligation or permission modalities is made in the language.

Definition 3.1 A normative system of stakeholder s is a tuple Ns = (L, ,̄Rs)
where:

• L is a logical language over a set of atoms Var ;

• ¯ : L 7→ 2L is a (partial) contrariness function φ = {ψ1, . . . , ψk} that extends
logical negation ¬φ ∈ φ;

• Rτ
s is a set of norms ϕ1, . . . , ϕn ⇒τ

s ϕ where τ ∈ {r, c, p} denotes a regulative,
constitutive and resp. permissive norm; we also write Rs = Rr

s ∪Rc
s ∪Rp

s .

Given a set of facts K, the argumentation theory of stakeholder s is the tuple
abusively denoted Ns = (L, ,̄Rs). For a set of stakeholders S = {s1, . . . , sn},
the argumentation theory is the tuple NS = (L, ,̄RS ,K) defined by RS =
Rs1 ∪ · · · ∪ Rsn .

Note that elements L, ,̄K are shared among all the stakeholders. While
K is a collection of brute facts, institutional facts can be detached from brute
facts and constitutive norms in Rc. Institutional facts describe high-level facts
(such as legal claims) in the scenario (whether an utterance is a threat, whether
a bike counts as a vehicle, etc.).

Example 3.2 A smart speaker scenario involves three stakeholders: L = law,
H = human users and M = manufacturer. The norms and facts are:

RL =

{
D is made by M ⇒r

L M is law compliant ,

M is a business in Norway ⇒r
L comply with the GDPR

}

RH =

{
D collects data ⇒r

H protect privacy ,

D finds a threat ⇒r
H report threat

}

RM =

{
D finds a threat ⇒r

M collect data w.o. permission,

M is registered in Norway ⇒c
M M is a business in Norway

}

K =

{
D is made by M , D collects data,

D finds a threat , M is registered in Norway

}

Let Rs = {S1, S2} for each stakeholder s. Contrary formulas (omitted here)
give rise to the next conflicts between norms, expressed with arrows:

L1 ⇋ H1 H1 → H2 H1 ⇋M1 M1 → L1 L2 ⇋M1

Following [34], a priority relation between rules is designed with moral
recommendations in mind. First, deontic detachment (the chaining of regulative
norms) is not considered for the detachment of remote obligations. Secondly,

10
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where there is conflict, (1) permission norms are understood as exceptions to
(and hence preferred to) regulative norms, and (2) current facts in K also take
preference over regulative norms. Finally, for hard cases, we can endow the
Jiminy advisor with a specific set of contextual preferences over stakeholders,
the latter judged as better or worse normative sources in particular scenarios.

Definition 3.3 A priority relation ⪯ is defined as follows: first, it applies both
ways between any pair of rules of the same τ -type; secondly, its strict fragment
≺=⪯ ∩ ̸⪰ applies to regulative rather than permissive or constitutive norms (or
facts). In sum, for any stakeholders s, s′ and norm type τ ̸= p, 1 More precisely,
the priority relation consists of the following three sets:

Rτ
s ×Rτ

s′ ⊆⪯ Rr
s ×Rp

s′ ⊆≺ Rr
s ×Rc

s′ ⊆≺ .
Two semantics for these normative systems can be given: first in terms of

norm extensions, i.e., from consistent sets of norms, and secondly as ASPIC+
style arguments.

• A norm extension E is (the heads of) a maximally consistent set of norms
built with a priority order for facts and permissions in its construction.

• An argument extension E is a set of arguments defined by one of the common
Dung semantics: admissible, complete, preferred, grounded, or stable.

From norm extensions (or argument extensions), one can detach the cor-
responding obligations using brute or institutional facts. Figure 1 shows the
argumentation approach with a schematic illustration of the arguments gener-
ated from the norms and facts listed in Example 3.2.

Example 3.4 Continuing with the smart speaker example, the following con-
sistent sets of obligations are detached from two norm extensions E1, E2:

Obl(E1) = {protect privacy , comply with the GDPR}
Obl(E2) = {report threat , collect data w.o. permission}.

For the argumentation approach, arguments {A1, . . . , A8} are generated by
combining facts and norms of stakeholders; see also Figures 1 and 2 below.

Definition 3.5 Given a collection C of semantic extensions, a moral conflict
in C is a pair of contrary obligations φ ∈ ψ within C:

φ ∈ Obl(E1), ψ ∈ Obl(E2) for some E1, E2 ∈ C.
In argumentation semantics, a more fine-grained distinction of conflicts can

be made between direct attacks, where the priority relation ⪯ suffices to defeat,
and indirect attacks, which requires a strict priority ≻ for the attacked argument
to become the defeater. The two semantics are related as follows:

i. (complete, preferred, grounded, stable): any argument extension satisfies the
rationality postulates [16];

1 Contrary permissions, say for p and ¬p, do not give rise to a deontic conflict. We enforce
this property through the absence of a ⪯-priority between the corresponding permission rules.

11
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A1

A4

A5

NH

NL NM

law collect

business

protect report

A2 A3

(a) Level 1. Individ-
ual frameworks

A1

A4

A5

A2 A3

EH

EL EM

(b) A preferred exten-
sion

A1

A4

A5

E1

A2 A3

(c) Level 2. Com-
bined framework

A1

A4

A5

E2

A2 A3

(d) Level 2. Com-
bined framework

Fig. 1. Obligation and institutional arguments are represented as circles and triangles
respectively, and are labeled with their conclusions. (a) individual frameworks for
NL,NM ,NH ; (b) the preferred extension (in gray) of each framework; thick lines
denote moral dilemmas; (c)–(d) the combined framework (Level 2) with a preferred
extension in each subfigure.

ii. (complete, preferred, grounded, stable): any argument extension E extends
into a norm extension E, e.g., E ⊆ E; (stable): for the stable semantics, we
moreover have E = E;

iii. (complete, preferred, grounded): under a symmetric contrariness function ,̄
any norm extension E extends some argument extension E , i.e., E ⊇ E ;

iv. (naive): the set of norm extensions E corresponds exactly to the set of
argument extensions E under naive semantics.

The Jiminy moral advisor identifies moral dilemmas at four different levels,
and proceeds to resolve them by moving to the next level.

1. Individual frameworks. Each stakeholder builds its own argumentation
framework using only its own norms.

2. Combined framework. All arguments from level 1 are put together.

3. Integrated framework All the stakeholders’ norms can combine into ar-
guments.

4. Reduced framework Jiminy’s specific preferences between stakeholders
are added. Jiminy arguments can revise the defeat relation.

Figures 1–2 illustrate the four levels and the identification and resolution of
moral dilemmas in each level.

Definition 3.6 A Jiminy preference norm is an expression of the form
φ1, . . . , φn ⇒ s ≻ s′ where s ̸= s′ are stakeholders. This reads as: in sit-
uations where φ1, . . . , φn hold, Rs-norms take priority over Rs′-norms.

Example 3.7 The Jiminy preference norms are the following:

RJ =





D collects data ⇒ L ≻M,
D finds a threat ⇒ L ≻ H,
¬D finds a threat ⇒ H ≻ L





12
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A1

A4

A5

E1

A2 A3

A6

gdpr

(a) Level 3. Inte-
grated framework

A1

A4

A5

E2

A2 A3

A6

(b) Level 3. Inte-
grated framework

L

M

M

H H

LM

A7

A7

A8

(c) Level 4. Reduced
framework

A1

A4

A5

A2 A3

A6

(d) A compatible ex-
tension

Fig. 2. (a) the integrated framework (Level 3) with one preferred extension E1; note
the new argument for gdpr ; (b) another extension E2; (c) the reduced framework
(Level 4) with the introduction of preference norms; a comparison of arrows with
(a)–(b) shows how arguments A7, A8 revise the defeat relation; (d) extension E1; it is
compatible with the revised defeat, while E2 is not (not shown).

The defeat relation between two arguments can be revised based on a
comparison of the stakeholders’ contribution to the norms of each argument.

Levels 1–3 apply Dung semantics as usual over the corresponding argumen-
tation framework. The reduced framework, following Brewka [12], introduces a
two-step procedure where: (1) extensions are computed, including arguments
expressing Jiminy preferences; the accepted Jiminy arguments revise the original
defeat relation, and so (2) one checks if the original extension is still an extension
under the new defeat; if so, we say that the extension is compatible with the
defeat induced. Moral dilemmas are checked in the compatible extensions.

Example 3.8 Three extensions exist for the integrated framework (Level 3),
two of which are shown in Figure 2 as E1 and E2. At the reduced framework,
only one compatible extension remains: E+1 = E1 ∪ {A7, A8}, and so all moral
dilemmas have been resolved at Level 4. The Jiminy returns the obligations:

Obl(E+1 ) = {M is law compliant , comply with the GDPR, report threat}.
In the next section, we discuss several limitations of this centralized approach

to multi-agent deontic argumentation. The Jiminy advisor we have just described
will be called Autonomous Jiminy from now on.

3.2 Dialogues for Machine Ethics

As described in the previous section, the Autonomous Jiminy (AJ) moral advisor
combines norms into arguments, identifies their conflicts as moral dilemmas,
and evaluates the arguments to resolve each dilemma (whenever possible). One
weakness of this approach is that stakeholders have no control over how their
norms will be used to pass a moral recommendation to the agent. A research
line to be explored in the future is letting the stakeholders’ avatars participate
directly in discussions about moral recommendations for the agent. These two
approaches illustrate the distinction between argumentation as logic (Sec. 2.3.1)

13
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Fig. 3. The Dialogue Jiminy, the agent and the stakeholders.

and argumentation as dialogue (Sec. 2.3.2); see also Prakken [4, Ch. 2].
A Dialogue Jiminy (DJ) for machine ethics (ME) can resolve an agent’s

moral dilemmas through a persuasion dialogue between the avatars. In contrast
to an AJ, a DJ will preserve the stakeholders’ autonomy by letting the avatars
choose strategies in the dialogue about recommending moral choices. The DJ
can also feature a bidirectional language interface to facilitate the normative
programming of its avatar and provide it with explanations (see Figure 3).

DJ can thus be seen as a first step in an overarching research programme on
ME focusing on avatar dialogues and a natural language interface. Case studies
can be used to estimate the effects of endowing agents with the DJ dialogue
system. Our approach is to adapt or redesign current theories on persuasion
dialogues while applying existing large language models (LLMs) to norm mining
and explanation generation in the language interface for stakeholders. 2 The
design of DJ involves the integration of two different developments:

Dialogues and avatars. Generalise and transform the Autonomous Jiminy
moral advisor into an interactive Dialogue Jiminy by replacing argumentation
as inference with argumentation as dialogue. Create a communication lan-
guage and a protocol for persuasion dialogues on moral dilemmas (see [35]).
Study strategic aspects of these dialogues for the participants, as in [40].

Norm mining and explanation synthesis. Create a natural language in-
terface between the Dialogue Jiminy and the stakeholders (or the general
public). Use machine learning to construct two language modules: (1) use
NLP to transform the stakeholders’ informal norms into the avatars’ formal
rules; (2) use natural language generation to synthesise formal dialogues into
explanations (in plain language) of why a particular decision was passed as a
moral recommendation to the agent.

One can expect to advance the theory of argumentation-as-dialogue in
ethical domains and the practical aspects of argumentation-as-inference. On
the practical side, we also aim to improve the state of the art in text mining
and explainability in AI (XAI) for norms and decisions through a combination
of symbolic AI (Dialogue Jiminy) and sub-symbolic or data-driven methods
(LLMs). To this end, on needs to:

2 We are thankful to Davide Liga for his insights on the natural language interface sketched
in the present section.
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Speech acts Attacks Surrenders
claim C why C concede C
C since R why D (for some D in R) concede D (D in R)

not C since R′ concede C
why C C since R retract C
concede C
retract C

Fig. 4. Persuasion dialogues consist of speech acts (left), listed together with corre-
sponding moves that attack them or surrender.

• identify the speech acts needed for persuasion in ethical decision-making and
contrast them with those studied for legal reasoning (see Figure 4);

• design a protocol for persuasion dialogues [36] for ethical domains that
complies with the desiderata for formal inter-agent dialogues [29];

• define the avatars, their normative systems, and possible strategies for them;

• study the properties of dialogues and strategies, in line with [33] and [40].

The overall theory will set the stage for next generation dialogue-based moral
advisors which stakeholders can substantially contribute to via their avatars.
For the language interface, we envisage three key objectives:

• extract relevant norms from natural language (norm mining),

• convert these norms into a formalized language (norm formalization), and

• explain the DJ’s output decision (decision explanation).

We will assess the capacity of both generative LLMs (Generative Pre-training
Transformer (GPT) or the like) and non-generative LLMs (Bidirectional Encoder
Representations from Transformers (BERT) or the like) to fulfill these tasks.

The explanation for the recommended option will be of the form: these
avatars a, . . . , a′ successfully convinced all opponents of arguments A, . . . , Z,
so they retracted their attacks A′, . . . , Z ′. Non-generative methods in turn
will be used for norm classification by converting our textual data into vector
representations, following the positive results obtained, for example, in [27].
This methodology involves retrieving all crucial normative information from
classification tasks by recognizing obligation, permission and constitutive rules.
Besides the use of available language models, the project will also employ
transfer learning techniques to fine-tune these LLMs on all downstream tasks
(mining, classification, generation). Transfer learning will allow us to provide
LLMs with annotated data and thus create our own specialized, fine-tuned
LLMs. These techniques will thus benefit all the tasks related to the language
interface described above.

In summary, we aim to make substantial contributions to formal ethics and
AI ethics (with the persuasion dialogues), to agent architectures (with the moral
council and language interface), and to XAI and human-computer interactions
(with the dialogues, argumentation semantics, and again the language interface).

15



14 Advanced Intelligent Systems and Reasoning:Standardization, Experimentation, Explanation

3.3 Balancing for Stakeholders

We now delve into the compelling application of multi-criteria decision-making
(MCDM) within the context of autonomous systems that interact with a wide
array of stakeholders, each harboring distinct moral interests. In the swiftly
advancing landscape of autonomous systems, exemplified by smart speakers
and self-driving cars, these entities are assuming progressively pivotal roles
within society. As they navigate diverse environments, the intricate nature of
their interactions inevitably exposes them to complex scenarios where their
actions may have profound implications for drivers, passengers, pedestrians, and
household members. Each of these stakeholders, guided by their distinct ethical
values and preferences, contribute to a diverse tapestry of moral interests that
demand astute attention.

In addressing these moral dilemmas, an intriguing and fruitful approach
is to integrate two fundamental methodologies: balancing pros and cons, and
case-based reasoning. By carefully weighing the pros and cons of potential
actions, the decision-making process can discern the most optimal course of
action that aligns with the varied ethical considerations inherent in the given
situation. Moreover, leveraging case-based reasoning empowers autonomous
systems to learn from past ethical experiences and apply analogous solutions
to novel contexts, providing invaluable guidance when confronted with novel
moral quandaries.

Incorporating the balancing of pros and cons fosters holistic evaluation of
the ethical landscape, enabling the system to navigate delicate trade-offs and
prioritize the wellbeing of diverse stakeholders. By systematically quantifying
and assigning weights to different ethical criteria, the agent can achieve an
equilibrium between competing interests, thus manifesting a thoughtful and
morally defensible approach.

At the same time, case-based reasoning endows the autonomous system
with the capacity to draw upon an extensive database of historical ethical cases,
each capturing the intricacies of distinct moral dilemmas and their resolutions.
Armed with this wealth of ethical knowledge, the system can adapt principles
from prior cases to novel situations, thereby exhibiting a more contextually
attuned ethical acumen.

To further advance this framework, future research could focus on refining
the methodology for balancing pros and cons, potentially incorporating adaptive
algorithms to dynamically adjust the weights of ethical criteria based on contex-
tual factors. Additionally, delving into the development of more sophisticated
case-based reasoning systems, perhaps integrating machine learning techniques
to enhance the identification of relevant past cases, presents an enticing avenue
to bolster the ethical decision-making capabilities of autonomous systems.

Combining Morally Implicit and Explicit Approaches. The current
research area distinguishes between morally implicit agents, who rely on prede-
fined contextual rules for the ethical labeling of actions, and morally explicit
agents, who possess the ability to make moral judgments based on guidelines or
examples. We propose to explore a hybrid approach that combines elements
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of both methodologies. By using morally implicit rules as a foundation, au-
tonomous agents can ensure compliance with basic ethical norms. However,
when confronted with novel or ambiguous situations, agents can utilize morally
explicit reasoning to extrapolate from previous experiences and apply moral
guidelines to unique contexts. This combination may lead to more nuanced and
contextually appropriate moral decisions by the agents.

Incorporating Multi-Stakeholder Normative Systems. As the impact of
autonomous agents extends to various stakeholders, it is essential to consider the
perspectives and preferences of all relevant human beings potentially affected by
these agents. To achieve this, we propose to investigate the integration of multi-
stakeholder normative systems. These systems allow stakeholders to contribute
to the ethical regulation of the agent by expressing their values, beliefs, and
ethical norms. By aggregating and reconciling these diverse viewpoints, the
agent can behave so as to consider the interests of all affected parties.

Dynamic Ethical Learning and Adaptation. Finally, to ensure the ongoing
ethical competence of autonomous agents, we suggest that methods for dynamic
ethical learning and adaptation should be explored. As ethical norms evolve over
time and new moral considerations arise, agents should be able to update their
knowledge base and reasoning mechanisms. By continuously learning from new
ethical cases and integrating emerging ethical guidelines, agents can maintain
their relevance and effectiveness in adhering to morally-regulated behavior.

In conclusion, by synergistically embracing balancing pros and cons and case-
based reasoning, autonomous systems can effectively tackle moral dilemmas
stemming from diverse stakeholder perspectives. The integration of these
methodologies not only enables agents to navigate intricate ethical landscapes
with adeptness but also exhibits a promising direction for advancing ethically
competent autonomous agents that conscientiously engage with the complex
ethical dimensions of their actions within society.

4 A Platform for User Experiments

We conclude this paper with some observations about the development of a
platform for experimental user studies for AI ethics and explainable AI.

4.1 Architecture

The platform for user experiments comprises a logic engine based on Deontic
ASP and a chatbot underpinned by a foundation model.

Interoperability between these two components allows seamless exchange
of data, enhancing their collective functionality. The logic engine, with its
deontic reasoning capabilities, can parse and process complex logical queries.
These results are then communicated effectively to the chatbot, which uses its
foundation model to generate user-friendly responses.

In terms of use cases, this system is ideal for situations requiring intricate
problem-solving. It could be utilized in customer service, where the logic engine
dissects complicated user issues and the chatbot provides easy-to-understand
solutions. Or it could be applied in an educational context, helping students to
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understand complex theories through interactive dialogue.
For user experience, this amalgamation is beneficial. The deontic ASP-

based logic engine’s advanced reasoning capabilities combined with the natural
language processing power of the chatbot results in a system that solves intricate
problems and communicates solutions in an accessible and intuitive manner.
This ultimately leads to a more satisfying and enriching user experience.

4.2 AI Ethics and Explainable AI

The experimental platform is designed to further AI ethics and explainable
AI. It combines: formal methodologies like deontic ASP to create standard
knowledge bases and normative systems, LogiKEy for experimentation, and
formal argumentation to ensure explanatory clarity. These tools promote
a more profound comprehension of moral decision-making within intelligent
systems. The platform’s objective is to offer a regulated setting for researchers
to investigate and scrutinize the ethical consequences of AI-driven decisions.

Logic engines and foundation models, including chatbots, should be viewed
as distinct but interconnected components. The logic engines tackle the intricate
task of reasoning about ethics, providing systematic and formalized approaches
for encapsulating, interpreting and addressing ethical quandaries. On the
other hand, chatbots act as the user-facing interface for this logical reasoning,
converting highly formal logical outcomes into easy-to-understand, natural
language discussions that users can interact with.

A platform that merges these elements can provide a unique path for AI
ethics and explainable AI. In this setup, logic engines like deontic ASP would
be utilized to map the ethical problem landscape, resolving conflicting norms
and reaching ethically optimal solutions. The chatbots, driven by foundation
models, would then convey these decisions and the related reasoning to users in
an easily comprehendible format, fostering a more interactive, intuitive, and
transparent exploration of AI ethics.

4.3 Application Examples

The platform could be utilized to develop ethical AI frameworks. These frame-
works would ensure that AI technologies are integrated into society in a way
that maximizes their benefits and minimizes their potential harm.

Within the realm of social robotics, the platform could be used to develop
intelligent systems that improve human-robot interactions, fostering social
connections and enhancing overall quality of life.

The platform could facilitate computational creativity, helping to develop
AI systems capable of innovative thinking. This could revolutionize industries
and expand the limits of human imagination.

Within healthcare, the platform could be leveraged to optimize AI imple-
mentations, improving patient care, enhancing overall wellbeing, and addressing
pressing global health issues.

Finally, the platform could be used to develop explainable AI systems. These
systems would ensure transparency and accountability in AI decision-making,
thereby promoting ethical and responsible AI usage.
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Abstract

Cellular automata give rise to many undecidability problems that can be linked to
self-referential statements. A recent study by M. Hsiung (J. Log. Comput. 30:
745–763, 2020) established a connection between elementary cellular automata and
such statements in terms of their evolution processes. In this work, we extend this
relationship to higher-dimensional cellular automata and self-referential statements.
Specifically, we analyze a class of two-dimensional von Neumann-type cellular au-
tomata with totalistic rules, and associate each element of this class with a set of
self-referential sentences. We describe a procedure to determine the fixed points (if
any) of these cellular automata and classify them based on their (in)stability char-
acteristics of their evolution processes. We also discuss some specific self-referential
paradoxes induced from these automata. Finally, we present a general result on the
base form of totalistic rule cellular automata, which is based on this classification.

Keywords: Totalistic Cellular Automata, Fixed Point, Paradox, Revision Sequence,
Self-reference.

Cellular automata (CA) are dynamical systems that are both temporally
and spatially discrete, characterized by local interactions and parallel evolution.
The concept of cellular automata originated from von Neumann’s proposal of
a two-dimensional self-replicating automaton system in his well-known work
[14] “The General and Logical Theory of Automata.” Just from the title of
the paper, it is apparent that there is a close relationship between automata
and logic. In fact, the foundation for theoretically building von Neumann’s
automata is the fixed point theorem (or recursion theorem) in the computability

1 wwushuwen@163.com
2 mingshone@163.com
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2 Totalistic Cellular Automata and Self-referential Sentences

theory. From then on, people have extensively studied the universality and
(un)decidability of automata (see for instance [3] and [10]).

Since the undecidability of formal systems is closely related to the self-
referential statements 3 , many researchers turn their attention to the correla-
tion between the self-replication mechanism of cellular automata and the self-
referential phenomenon in logic. In this respect, a link of cellular automata with
the self-referential statements is established in [9]. The basic idea is that every
cellular automaton can be associated with a set of self-referential statements
such that the evolution process of cellular automaton is essentially identical to
the revision process of the corresponding self-referential statements. Here, the
revision process of self-referential statements, proposed by [6] and [8], 4 belongs
to the field of formal theories of truth. Through the above connection, we can
classify cellular automata based on the logical features of self-referential state-
ments. On the other hand, we can also generate various types of self-referential
paradoxes from cellular automata.

The paper [9] mainly focuses on elementary cellular automata and their
associated self-referential statements. The present paper extends the meth-
ods proposed in [9] to more complex cellular automata. We will study two-
dimensional totalistic cellular automata (2D-TCA for short), especially a kind
of cellular automata called “Von Neumann two-dimensional totalistic cellular
automata”. It can be seen that the characteristics of totalistic provides us
with lots of convenience for studying two-dimensional cellular automata. We,
following the tree diagram method proposed in [9], provide an algorithm for
searching for fixed points of this type of cellular automata and give a classifi-
cation of them based on the fixed-point features. Then, we discuss a type of
paradoxes generated by this type of cellular automata, which can be regarded
as a generalized form of the Curry paradox.

The notations used in this paper are standard. For example, we will use
C, with certain subscripts, to denote a cell of cellular automaton. Accordingly,
it also is used to denote a statement (or a sentence). We use T to denote
the truth predicate “be true”, so that T ⌜C⌝ denotes the sentence “C” is true.
More notations will be introduced later.

The structure of this paper is as follows: Section 1 explains how the 2D-TCA
are associated with the self-referential statements. Section 2 gives an effective
method by which we can find the fixed points (if any) for the evolution process
of 2D-TCA. Then, in Section 3 we will analyze the self-referential statements
generated from 2D-TCA and determine particularly which ones are paradoxical.
Section 4 is a generalization of our analysis to TCA with other dimensions.
Finally, We close our discussion in Section 5.

This paper is an extension of our paper [12]. We retain the main results

3 Broadly speaking, self-reference is used to denote a statement that refers to itself or its
own referent. The self-referential sentence of the present paper refer more to the functiorial
self-reference of the recursion theorem than to the formal linguistic self-reference of the kind
used by Gödel. See [13] for more details.
4 See also [1] and [7].
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of [12], but completely rewrite the whole paper. For instance, in Section 1, we
redefined the evolution process of 2D-TCA and presented a more general pro-
cess for inducing self-referential statements from 2D-TCA. This sets the stage
for the generalization in Section 4 (an entirely new section). The presentation
of algorithm in Section 2 is also more formal and concise.

1 2D-TCA and Self-referential Sentences
As mentioned above, the cellular automata that we will study are a special
kind of two-dimensional ones. It is named after Von Neumann because each
cell is attached to its above, below, left and right cells, which are known as the
von Neumann neighborhood 5 . Moreover, it is “totalistic” because the state (0
or 1) of any cell at a step (in an evolution process) is determined by the total
of the states of the cells in a neighborhood at the previous step, we denote
this rule of cellular automate by TCA. And so, the rule of any Von Neumann
two-dimensional totalistic cellular automaton, according to Wolfram [15], can
be given by a table like the one shown in Figure 1 6 .

Fig. 1. A rule for 2D-TCA

More specifically, we use Ci,j to denote the cells, where i and j are integers.
And so, Ci,j+1, Ci,j−1, Ci−1,j , and Ci+1,j are the above, below, left and right
neighbors of Ci,j respectively. So the rule in Table 1 says that for 0 ≤ k ≤ 5,
whenever the sum of the values of Ci,j , Ci,j+1, Ci,j−1, Ci−1,j , and Ci+1,j is i
at some step, the value of Ci,j at the next step is tk. For instance, we show in
the square T1 of Figure (1) that in case the sum of the present values of Ci,j ,
Ci,j+1, Ci,j−1, Ci−1,j , and Ci+1,j is 1, then the value of Ci,j at the next step
is t1.

Wolfram uses the number b5 ·25+b4 ·24+ ...+b0 ·20 to code the rule in Table
1). It is called the Wolfram number of this rule. A rule of the Wolfram number

5 Besides von Neumann neighborhoods, another typical neighborhood in two dimensions is
the Moore neighborhood, which has been widely employed in various applications, such as
the famous Conway’s Game of Life. See [11] for more details.
6 All such rule diagrams are drawn with the computer software Wolfram Mathematica 12,
and will not be individually explained.
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4 Totalistic Cellular Automata and Self-referential Sentences

n is denoted by Rn, which also denotes TCA with the Wolfram number n. It
is clear that there are 26 rules for 2D-TCA.

Let Ci,j(t) be the state of Ci,j at step t. Let n = b5 ·25+ b4 ·24+ ...+ b0 ·20.
Then Rn can be represented as the following algebraic expression:

Ci,j(t+ 1) = b (Ci,j(t) + Ci,j+1(t) + Ci,j−1(t) + Ci−1,j(t) + Ci+1,j(t)) (1)

where b is a function on {i ∈ N | 0 ≤ i ≤ 5} such that b(i) = bi.
In order to give the self-referential sentences corresponding to 2D-TCA, we

must translate the algebraic expressions of 2D-TCA into logical expressions.
To this end, we first introduce some special normal Boolean formulas. In the
following, θ, with or without subscripts, is always a Boolean value, that is, θ is
either 0 or 1. We stipulate that ¬θC is ¬C, if θ = 1; it is C, if θ = 0. Let C0,
…, Cm be the Boolean variables (m ≥ 0). For k ≤ m, we define

βk
∨(C0, . . . , Cm) =

∨
θ0+...+θm=k

∧
0≤i≤k

¬1−θiCi

βk
∧(C0, . . . , Cm) =

∧
θ0+...+θm=k

∨
0≤i≤k

¬θiCi

For any function b from {k | 0 ≤ k ≤ m} to {0, 1}, we define two formulas
as follows:

τ b(C0, . . . , Cm) = b(C0 + . . .+ Cm) (2)
βb
∨(C0, . . . , Cm) =

∨
b(k)=1

βk
∨(C0, . . . , Cm) (3)

βb
∧(C0, . . . , Cm) =

∧
b(k)=0

βk
∧(C0, . . . , Cm) (4)

Proposition 1.1 τ b, βb
∨, and βb

∧ are defined as above. Then τ b = βb
∨ = βb

∧.
Proof. Suppose {k | b(k) = 1} = {k1, . . . , kl}. It means that

τ b(C0, . . . , Cm) = 1, iff C0 + . . .+ Cm = k1, …, or l. (5)

By the Boolean logic, we can easily see that

βk
∨(C0, . . . , Cm) = 1, iff C0 + . . .+ Cm = k. (6)

Hence, it follows immediately

βb
∨(C0, . . . , Cm) = 1, iff C0 + . . .+ Cm = k1, …, or l. (7)

By (5) and (7), we obtain τ b = βb
∨. τ b = βb

∧ can be proved dually. 2

Equation (1) can be also expressed as follows:

Ci,j(t+ 1) = τ b (Ci,j(t), Ci,j+1(t), Ci,j−1(t), Ci−1,j(t), Ci+1,j(t)) . (8)

We will say that τ b is the update function, which can also be used to pin down
a 2D-TCA.

By Proposition 1.1, the algebraic expression (8) can be equivalently trans-
lated into one of the following logical expressions:
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Ci,j(t+ 1) = βb
∨ (Ci,j(t), Ci,j+1(t), Ci,j−1(t), Ci−1,j(t), Ci+1,j(t)) . (9)

Ci,j(t+ 1) = βb
∧ (Ci,j(t), Ci,j+1(t), Ci,j−1(t), Ci−1,j(t), Ci+1,j(t)) . (10)

To sum up, 2D-TCA with the coding number n = b5 ·25+b4 ·24+ ...+b0 ·20
is the one with the update function τ b as given in Eq. (2). Corresponding to
one of 2D-TCA, we can define a set of sentences, say {Ci,j | i, j ∈ Z}, in which
for any i, j ∈ Z,

Ci,j ≡ βb
∨ (T ⌜Ci,j⌝, T ⌜Ci,j+1⌝, T ⌜Ci,j−1⌝, T ⌜Ci−1,j⌝, T ⌜Ci+1,j⌝) . (11)

Informally, Ci,j is a sentence which declares the sentences, among Ci,j itself,
Ci,j+1, Ci,j−1, Ci−1,j , and Ci+1,j , are true or untrue in some combinatorial way.
Note that Ci,j is a self-referential sentence in the sense that what Ci,j declares
is relevant to itself. See [9] for more details.

A different but equivalent formulation of the above set of sentences is to use
βb
∧ instead of βb

∨. In this way, we have associated every 2D-TCA with a set of
self-referentical sentences.

In the end of this section, we introduce the evolution process for 2D-TCA
and revision process for self-referential sentences. First, as usual, we define the
evolution processes for 2D-TCA by their evolution sequences. We do this in
terms of the algebraic expressions of 2D-TCA.
Definition 1.2 Let Rn be one of 2D-TCA whose algebraic expression is given
by Eq. (1) or (8) and C(0) is an infinite matrix of Boolean values, whose
i, j entry is denoted by (Ci,j(0))i,j≥0. For any (discrete) t ≥ 1, we define
the infinite matrix (Ci,j(t))i,j≥0 of Boolean values by Eq. (8). The evolution
sequence starting from C(0) for Rn is the infinite sequence C(0), C(1), …, C(t),
…(t ≥ 0).

The revision process we present below is a logical tool developed by philoso-
phers H. G. Herzberger and A. Gupta (see [6], [8] and [7]) in response to the
need to analyze self-referential sentences (and, more generally, circular defini-
tions). To avoid a roundabout introduction, we follow the line set up in [9, pp.
750-751] and define straightforwardly the revision process for the self-referential
sentences associated with 2D-TCA. For convenience, we say a function is a val-
uation function, if it is a function whose values are the Boolean values.
Definition 1.3 Let {Ci,j |i, j ∈ Z} be a set of sentences given by Eq. (11) and
h0 be a valuation function on the set {Ci,j |i, j ∈ Z}. For any n ≥ 1, we can
define a valuation function hn recursively by the following equation:

hn+1(Ci,j) = βb
∨ (hn (Ci,j) , hn (Ci,j+1) , hn (Ci,j−1) , hn (Ci−1,j) , hn (Ci+1,j)) . (12)

As for {Ci,j |i, j ∈ Z}, the revision sequence starting from h0 is the sequence of
functions h0, h1, …, hn, …(n ≥ 0).

The evolution sequence and the revision sequence are the main tools that
we study the properties of 2D-TCA, and self-referential sentences. We will
establish their connection by these two sequences.
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6 Totalistic Cellular Automata and Self-referential Sentences

2 Fixed points for 2D-TCA
This section will give a classification of 2D-TCA by the properties of their fixes
points (if any). To this end, we first give the following definition.
Definition 2.1 Let {Ci,j |i, j ∈ Z} be the set of sentences as given in Definition
1.3 and hn (n ≥ 0) be its revision sequence starting from h0. If there is a number
m such that for any n ≥ m, hm(Ci,j) = hn(Ci,j) holds for any i, j ∈ N, we say
hn is a fixed point of the above revision sequence.

Under this definition for the 2D-TCA, we will take R31 cellular automa-
ton as an example to deal with the fixed point of the totalistic rule cellular
automata. As we prove before, we have the logical formulae that express R31

cellular automata:

Ci,j(k) = ¬T ⌜Ci,j⌝ ∨ ¬T ⌜Ci,j+1⌝ ∨ ¬T ⌜Ci,j−1⌝ ∨ ¬T ⌜Ci−1,j⌝ ∨ ¬T ⌜Ci+1,j⌝. (13)

Supposed hn is one of the fixed point of R31 cellular automata, according to
the Definition 2.1, for any n ≥ m, we have:

hn(Ci,j) = hm(Ci,j) (14)
Now, we try to find out all possible value of Ci,j(k) in the two-dimensional
space. Through fixing the value of Ci,j(k)(0 or 1), we can use the tree diagram
to search all possible cells’ states of the fixed point accroding to the rules of
R31, as shown:

Fig. 2. Seeking the fixed point for R31

In Figure 2, we will find that there are not any sub-rules can maintain the
states of 0 for Ci,j(k), according the property of fixed point. And if Ci,j(k) = 1,
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by the rule of R31, there must be one of the neighborhood cells is 0, then there
is not the fixed points also. Hence, according to Figure 2, whether the value
of Ci,j(k) is 0 or 1, no branch can obtain a fixed point. That is, Figure 2
illustrates the fact that there not any open branches in the tree diagram of
R31. Meanwhile, it means that the R31 cellular automata do not have any
fixed points. Moreover, we can find that the fixed point of other totalistic rules
cellular automata can also be determined by this method. In this way, we will
find that except R31, only R1 does not have any fixed point. In what follows
R1 will be further discussed. We summarize our results in a definition:
Definition 2.2 For any 2D-TCA, its evolution sequence has no fixed point, iff
the (fully developped) branches in its tree diagram of the 2D-TCA are closed.

As we have seen in the Definition 2.2, it is not difficult to determine which
cellular automata haven’t any the fixed points. Now, we look at the complex
situation, that is, for those cellular automata with fixed points, how their fixed
points are constructed. In order to obtain a fixed point, according to the
properties of totalistic rules, we can definition a global condition firstly, and
then constructing the fixed point by the global condition to correspond to each
2D-TCA:
Definition 2.3 Define the global condition. If the tree diagram of one 2D-
TCA can construct a loop state from 1 to 0, we call the 2D-TCA satisfies the
global condition of loop states; if the tree diagram constructing a nested state
with 1 and 0, it is satisfying the global condition of nested states.

Next, according to the Definition 2.3, we will show that how to construct
the fixed point. And then, we find that the fixed point of 2D-TCA which by
using the way to construct is not unique.
Proposition 2.4 If the tree diagram of one 2D-TCA satisfies the global con-
dition, then we can construct the fixed points correspond to the 2D-TCA.

Proof. We start with a proof for the global condition of loop states. And we
give a R3 as an example to prove. According to the rules of R3, we have the
tree diagram Figure 3.

In Figure 3, we will find that it is different from Figure 2, in which some
branch still continues. And the fixed point of valuing 1 (e.g. C(k) = 1) that
we want, can only obtain by applying to sub-rules T1. Then, the center cell,
according to T1, can obtain the states of cells in its neighborhoods, and they all
have a value of 0. We now suppose C(k) = 0. In Figure 3, we have found that
the state value 0 can be obtain through the sub-rules T4, T3 and T2. However,
under the sub-rules T3 and T2, the neighborhood cells with a state value 0
cannot obtain themselves by satisfying any sub-rules. According to Figure 3,
if C(k) = 1, the state values of its neighborhood cells must be 0. Hence, this
contradicts the situation which under T3 and T2.

Therefore, when one wants to obtain C(k) = 0, it has to follow the sub-rule
T4 or T2. And under the sub-rule T4, the states of neighborhoods cells of the
objective cell must all be 1. Then, we find that the neighborhoods cells will
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8 Totalistic Cellular Automata and Self-referential Sentences

Fig. 3. Seeking the fixed point for R3

get into the situation of C(k) = 1. Hence, we say that the cellular automata
satisfies the global condition of loop states.

It is now to apply the loop states under sub-rules T1 and T4 we can obtain
the fixed point which state 0 alternates with state 1. That is, if the tree diagram
has the loop states, then we at least can obtain a fixed point which satisfies the
condition of global states. Finally, we obtain the fixed point of R3 by applying
the global condition of loop states of T1 − T4, as show in the Figure 5. Since
the objective cell is not fixed, we can construct multiple fixed points of R3 in
this way.

Fig. 4. Seeking the fixed point for R8

Similarly, we give a R8 cellular automata as an example to prove the global
condition of nested states. First, we need to construct a tree diagram of R8

cellular automata, as show in Figure 4.
In Figure 4, we find that the state value of tree diagram has the overlap
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part. Then we can use the corresponding nested for the overlap part, that is the
column of state 0 and the column of state 1, in the tree diagram. By nesting
the part in the overlap states of the tree diagram of R8, that is, some columns
of state 1 and two columns of state 0 arranged freely, can construct the global
states of the fixed point. Similarly, there is a combination condition T3 → 1
and T2 → 0 such that the fixed point can be constructed by some columns
of state 1 and one column of state 0 arranged freely. Then, We can use the
ideas above to construct a fixed point of R8, shown as Figure 5. Note also that
according to the global condition of nested states, there are many fixed points
in the R8 cellular automata.

Fig. 5. The fixed points for R3(left) and R8(right) respectively

2

Fig. 6. Satisfy the global conditions of loop states

The applicability of the global condition of loop states, we can find that
there is not only the R3 cellular automata satisfies the loop states of T1 → 1
and T4 → 0, and specific automata will be summarized by the following Table
1. Meanwhile, by the properties of the global condition, we can find another
loop states with T2 → 1 and T3 → 0, as show in Figure 6. Similarly, for our
global condition of nested states, we can find more nested states like T4 → 1 and
T1 → 0, T4 → 1 and T2 → 0. And the specific automata also be summarized
by the following Table 1.
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10 Totalistic Cellular Automata and Self-referential Sentences

Table 1
Combination conditions for obtaining fixed points.

Tn = 0

Rn Tn = 1
T1 T2 T3 T4

T1 ×

8 9 12 13 24
25 28 29 40 41
44 45 56 57 60

61

16 17 20 21 24
25 28 29 48 49
52 53 56 57 60

61

T2 ×

8 9 10 11 24
25 26 27 40 41
42 43 56 57 58

59

16 17 18 19 24
25 26 27 48 49
50 51 56 57 58

59

T3

4 5 6 7 20 21
22 23 36 37 38
39 52 53 54 55

×

T4

2 3 6 7 10 11
14 15 34 35 38
39 42 43 46 47

×

3 Paradoxes Associated with 2D-TCA
In this section, we turn to the self-referential sentences associated with 2D-
TCA. In particular, we pay special attention to those paradoxical ones. The
following definition is due to Herzberger [8, pp. 483-489] and Gupta [6, pp.
6-14].
Definition 3.1 Let {Ci,j |i, j ∈ Z} be the set of sentences as given in Definition
1.3. We say that it is paradoxical, if any of its revision sequences has no fixed
point.

The following theorem establishes a basic relation between 2D-TCA and
the corresponding self-referential sentences. Its proof is similar to the proof of
the one that Hsiung [9] gives for the elementary elementary cellular automata.
We refer the reader to this literature for details.
Theorem 3.2 Let {Ci,j |i, j ∈ Z} be the set of sentences associated with the 2D-
TCA with Wolfram number n. {Ci,j |i, j ∈ Z} is paradoxical, iff any evolution
sequence for this 2D-TCA has no fixed point.

Fig. 7. A rule for R31

We have known that the evolution sequences for R1 and R31 have no fixed
point. So by Theorem 3.2, the sets of sentences induced from R1 and R31 are
paradoxical. We now turn to the definition of paradoxical 2D-TCA.
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Firstly, the set of sentences associated with R1 which is given by the fol-
lowing equation:

Ci,j =¬T ⌜Ci,j⌝ ∧ ¬T ⌜Ci,j+1⌝ ∧ ¬T ⌜Ci,j−1⌝ ∧ ¬T ⌜Ci−1,j⌝ ∧ ¬T ⌜Ci+1,j⌝.
Consider Ci,j . We assume that Ci,j is true, which can also be expressed by
Boolean number 1. Then, we find f(Ci,j) = 0. If f(Ci,j) = 0, we find
T ⌜Ci,j⌝ = 1. Contradiction. Meanwhile, if all cell states of R1 are 0, the
next stage are 1 and hence we have the evolution process with a periodicity
which cycle of 0 to 1. Thus, for a 2D-TCA without fixed point, we can find
a correspondence paradox such that their have similar logical expression and
process periodicity, what one could call such a 2D-TCA a paradoxical cellular
automata.That is, according to the properties of automaton, we could call R1

cellular automata is a paradoxical TCA with the property of liar paradox.
As laid out above, we discuss what it could mean for a 2D-TCA have corre-

spondence to a specifical paradox. And we give a R1 as an example to show the
discussion. As we know that R31 doesn’t have any fixed points, either. That
is, there is a property of a paradox in the R31. And we would find that the
paradox is Curry paradox.

For R31, we note that the corresponding set of self-referential sentences is
given by

Ci,j =¬T ⌜Ci,j⌝ ∨ ¬T ⌜Ci,j+1⌝ ∨ ¬T ⌜Ci,j−1⌝ ∨ ¬T ⌜Ci−1,j⌝ ∨ ¬T ⌜Ci+1,j⌝.
So, in some sense, the set of sentences associated with R31 is the dual of that
with R1. At the same time, we must point out that the above equation can be
reformulated equivalently as follows

Ci,j = T ⌜Ci,j⌝ → ¬T ⌜Ci,j+1⌝ ∨ ¬T ⌜Ci,j−1⌝ ∨ ¬T ⌜Ci−1,j⌝ ∨ ¬T ⌜Ci+1,j⌝.
We thus can see that the set of sentences associated with R31 is something

like the Curry paradox. The Curry paradox is proposed by H. B.Curry [4,5].
A popular version of the Curry paradox is as follows:

If the sentence (15) is true, then C. (15)
Similarly, We consider the value of Ci,j . Assume that Ci,j is not true, we

find f(Ci,j) = 1. If f(Ci,j) = 1, we have T ⌜Ci,j⌝ = 0. Contradiction. Then,
we also can find a correspondence paradox—curry paradox— such that their
have similar logical expression and process periodicity. Therefore, R31 is a
paradoxical cellular automata.

So far we have found at the different numbers of the fixed points from the
2D-TCA. In the following stable we summarize some result on the 2D-TCA.
That is, we give a new classification of the 26 2D-TCA according to the number
of fixed points.

First, we looked at 2D-TCA that do not have any fixed points, and there
are R1 and R31. Now, there are 26 − 2 TCA. We know already that there are
2D-TCA having fixed points under those combining conditions: T1 → 1 and
T4 → 0,T2 → 1 and T3 → 0,T3 → 1 and T1 → 0,T3 → 1 and T2 → 0,T4 → 1
and T1 → 0 , T4 → 1 and T2 → 0. Meanwhile, there are much fixed points
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of the TCA under those conditions. Exclusion those 2D-TCA only 6 2D-TCA
remain, that is, R0, R30, R32, R33, R62 and R63. Obviously, there is a unique
fixed point in R0 and R63, which is 0 and 1 respectively. If 2D-TCA have
T5 → 1 and T0 → 0, there is at least one fixed point in the 2D-TCA obviously.
Hence, R30 and R33 are at least have one fixed point; R32 and R62 are at least
have two fixed points. we search through the tree diagrams of those 2D-TCA,
we can prove that, R30 and R33 only have unique fixed point; R32 and R62 only
have two fixed points respectively. List the above as follows:

Table 2
A classification of Totalistic Cellular Automata

Classification standard of TCA TCA
Without fixed points R1, R31

Only one unique fixed point with global state 0 R0, R30

Only one unique fixed point with global state 1 R33, R63

Only two fixed point with global state 0 and 1 R32, R62

Infinite fixed points R2 − R29 , R34 − R62

In the Table 2, first is the 2D-TCA without the fixed points, also we called
those 2D-TCA are paradoxical 2D-TCA. Specifically, R1 possesses the property
of the liar paradox, and R31 is similarly with the curry paradox. Secondly, there
is a unique fixed point in 2D-TCA, that is, all cell values are 0, such as R0.
Third, there is a unique fixed point which all cell values are 1 in the 2D-TCA,
such as R33. Fourth, there are only two fixed points in the 2D-TCA, that is,
all cell value are 0 or 1, such as R32. Last, there are many fixed points in those
2D-TCA, such as R2.

4 Other dimensional TCA
In section 3, we already have a sort of 2D-TCA about the fixed points. It is
natural to consider whether one dimensional or higher dimensional have the
same properties. Hence, we have
Proposition 4.1 If a 1D cellular automaton is a triple ⟨S, r, f⟩ with S =
{0, 1}, r = 2 and f : S(2·2+1) → S, then the classification of its fixed points is
the same as that in Table 2.

Proof. A 1D cellular automaton is a triple ⟨S, r, f⟩ with S = {0, 1} �r = 2
and f : S(2·2+1) → S. As [9] is mentioned before, we can take an automaton
as a two-infinite tape, in which the cells are evenly aligned and are naturally
indexed by the integers: Ci, i ∈ Z. And Ci is determind by itself and its four
neighbours, including Ci−1,Ci−2(left neighbour) and Ci+1,Ci+2(right neigh-
bour). Let f be the update function of the automaton in question. Then
we also can compute the state of the cell Ci at step t + 1 by the equation
Ci(t+ 1) = f(Ci−1, Ci−2, Ci, Ci+1, Ci+2), as shown in Figure 8.
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Fig. 8. A rule for 1D-TCA

Similarly, we use wolfram number to code the 1D-TCA, and denoted by
Dn. Let n=b0 · 20 + b1 · 21 + ... + b5 · 25. Then Dn can be represented as the
following algebraic expression:

Ci(t+ 1) = f(Ci−1 + Ci−2 + Ci + Ci+1 + Ci+2) (16)
where f is a function on {i ∈ N|0 ≤ k ≤ 5} such that f(i) = bi .

According to Prop.1.1 and [9], we can obtain the logical expression of 1D-
TCA:

Ci ≡ βb
∨ (T ⌜Ci−2⌝, T ⌜Ci−1⌝, T ⌜Ci⌝, T ⌜Ci+1⌝, T ⌜Ci+2⌝) . (17)

And we can establish the connection between the evolution process of a 1D-
TCA with the revision process of the corresponding self-referential sentences
and find out all of the fixed points in 1D-TCA.

According to Thm.3.2, we can also prove that the Prop.4.1 is true in 1D-
TCA. Similarly, we use the methon by [9] to determind the fixed point in 1D-
TCA. The prove is similar to [9], we can obtain those result: their evolution
sequences having no fixed point are D1 and D31; only one fixed point with the
cells’ status of 0 is D0 and D30; only one fixed point with the cells’ status of
1 is D33 and D63; there are two fixed points with 0 and 1 states respectively,
D32 and D62; others have finite fixed points. See [9] for the details. Then, we
can see that the sort of the fixed points is same as 2D-TCA, as desired.

2

Here we see that the properties of self-reference and the fixed point is same
in TCA are the same whether they are one-dimensional or two-dimensional.
Hence, we can also use Table2 to classification 1D-TCA. Then, it is natural to
have a corollary as follow.
Corollary 4.2 Higher dimensional TCA which have five cells�including objec-
tive cell and its four neighbours�show the same global behavior in fixed points.
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14 Totalistic Cellular Automata and Self-referential Sentences

As higher dimensional TCA at least has a initial state in space, the evolution
of higher dimensional TCA is more complex. But ever for higher dimensional
cellular automata, they are evolution process also determined by same rules,
so through their evolution rules, we can simplify them to 2D-TCA or even 1D-
TCA for corresponding research. According the result that 1D-TCA and 2D-
TCA have the same behavior in fixed points, we can make the same extension.
If we set a fixed direaction in 3D-TCA and give a initate state to an obejective
cell(show as Figure 9,(a)), we can simplify the 3D-TCA to 2D-TCA, and then
we can obtain the same classification as 2D-TCA. Similarly, If we set a fixed
direaction in 3D-TCA and give a initate state to an obejective cell(show as
Figure 9,(b)), we can simplify the 3D-TCA to 1D-TCA, and then we can obtain
the same classification as 1D-TCA. Therefore, we can see that in the case
of 3D-TCA mentioned above, the fixed point results show the same global
behavior with 2D-TCA and 1D-TCA. Moreover, in which the result is also
consistant with the observation found of Chate and Mannevile([2]) is explored
a wide variety of cellular automata of dimensions four, five and higher. Higher
dimensional situations will be more complex, but we can use the same ideas
above to investigate it.

Fig. 9. Simplified method for 3D-TCA

5 Concluding Remarks
It has been a hot research topic for a long time that scholars of various fields
on the cellular automaton. And it is an important direction to do some reg-
ular classified for cellular automaton of the research filed. In this paper, we
consider the different way to give a classification on TCA. That is, we ana-
lyze the different property of the fixed point for TCA from a logical direction,
and give TCA a new classification. Different in the research on elementary
cellular automaton of MingHsiung 2020([9]), we focus on the two-dimensional
cellular automaton. Comparing with one-dimensional cellular automaton, the
extension involve more real physical systems. And two-dimensional cellular
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automaton brings many new phenomena involving behaviors of the patterns
which no simple analogs in one-dimension.

Yet as it turns out, that should be not surprising at all: 1D-TCA which
concluding five cells show the behaviors in fixed pionts as same as 2D-TCA. And
that we have a corollary in higher dimensional TCA. Hence in the behavior of
fixed points, we can see that the complexity of the cellular automata world will
not change with the increase of dimensions, but only its displayed form. That
is also an mind what Wolfram emphasize in a new kind of science, “even from
very simple programs behavior of great complexity could emerge”.([15],p19)

This research is hoping to build up more wide relationship between cellular
automata with self-reference, through basing on logic to give a classification
for cellular automata. Then one can see more similarly system construction
of cellular automata and self-referential sentence, and will put forward to do
more research on cellular automata and self-reference.
Acknowledgements. An earlier version of this paper was presented at the
15th National Conference on Modern Logic (Zhuhai, China). We appreciate
two anonymous reviewers for their helpful comments on this paper.
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Abstract

This paper presents a formalization of the classical proof of completeness in Henkin-
style developed by Troelstra and van Dalen for intuitionistic logic with respect to
Kripke models. The completeness proof incorporates their insights in a fresh and
elegant manner that is better suited for mechanization. We discuss details of our
implementation in the Lean theorem prover with emphasis on the prime extension
lemma and construction of the canonical model. Our implementation is restricted
to a system of intuitionistic propositional logic with implication, conjunction, dis-
junction, and falsity given in terms of a Hilbert-style axiomatization. As far as we
know, our implementation is the first verified Henkin-style proof of completeness for
intuitionistic logic following Troelstra and van Dalen’s method in the literature. The
full source code can be found online at https://github.com/bbentzen/ipl.

Keywords: Intuitionistic propositional logic, Henkin completeness, Formal proofs,
Lean.

1 Introduction
Troelstra and van Dalen [17] propose a completeness proof in Henkin-style for
full intuitionistic predicate logic with respect to Kripke models. Despite being
a fairly standard result in the literature, this completeness proof has yet to be
formally verified in a proof assistant. In this paper, we describe a formalization
for intuitionistic propositional logic using the Lean theorem prover [13].

Our main goal is to document some challenges encountered along the way
and the design choices made to overcome them to obtain a formalized proof
that is elegant, intuitive, and better suited for mechanization using the spe-
cific techniques available in the Lean programming language, in particular, the
encodable.decode and insert_code methods developed by Bentzen [1].

1 guohuayu@zju.edu.cn
2 chen_dongheng@zju.edu.cn
3 bbentzen@zju.edu.cn
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2 Verified completeness in Henkin-style for intuitionistic propositional logic

To the best of our knowledge, our implementation is the first verified
Henkin-style proof of strong completeness for intuitionistic logic following
Troelstra and van Dalen’s method in the literature. As far as its proposi-
tional fragment is concerned, the main ingredient of Troelstra and van Dalen’s
Henkin-proof is a model construction based on a consistent extension of sets
of formulas, which is achieved by going through all disjunctions of the lan-
guage [17, lem 6.3]. To carry out this extension, they assume an enumeration
of disjunctions with infinite repetitions, also remarking that an alternative ap-
proach in which at each stage we treat the first disjunction not yet treated.
This variant appears in Van Dalen [5, lem 5.3.8]. Our implementation is based
on a third variant of the consistent extension method, which we developed
to better suit our needs of formalization. Each propositional formula is only
listed once in the enumeration, but we carry out the extension for each of
them infinitely many times. The formalization consists of roughly 800 lines of
code and encompasses the syntax and semantics of intuitionistic propositional
logic, along with the soundness and strong completeness theorems. We adopt
a Hilbert-style proof system due to its simplicity. The full source code can be
found online at https://github.com/bbentzen/ipl.

1.1 Related work
The formal verification of completeness proofs for intuitionistic logic can be
traced back to Coquand’s [3] use of ALF to mechanize a constructive proof
of soundness and completeness with respect to Kripke models for the simply
typed lambda-calculus with explicit substitutions. Heberlin and Lee [9] give a
constructive completeness proof of Kripke semantics with constant domain for
intuitionistic logic with implication and universal quantification in Coq. Re-
cently, Hagemeier and Kirst [8] formalize a constructive proof of completeness
for intuitionistic epistemic logic based on a natural deduction system. They also
provide a classical Henkin proof using methods similar to those in Bentzen [1],
but they do not present a formalization of the approach of Troelstra and van
Dalen [17] as is done in this paper. Bentzen [1] formalizes the Henkin-style
completeness method for modal logic S5 using Lean and From formalizes in Is-
abelle/HOL a Henkin-style completeness proof for both classical propositional
logic [6] and classical first-order logic [7]. Maggesi and Brogi [12] give a for-
mal completeness proof for provability logic in HOL Light. The formalization
presented here is inspired by the work of Bentzen [1], but makes a few improve-
ments regarding design choices, in particular, the use of Prop in the definition
of the semantics and the indexing of models to arbitrary types.

1.2 Lean
Lean [13] is an interactive theorem prover based on the version of dependent
type theory known as the calculus of constructions with inductive types [15,4].
Users can construct proof terms directly as in Agda [14], using tactics as in
Coq [16] or both proof terms and tactics simultaneously. Lean’s built-in logic
is constructive, but it supports classical reasoning as well. In fact, our Henkin-
style proof is classical since it relies on a nonconstructive use of contraposition.
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Therefore, we do not worry about any complexity and computational aspects
related to our proof. Our implementation makes use of some results from Lean’s
standard library and the user-maintained mathematical library mathlib [2].

Throughout the remainder of this paper, Lean code will be used to show-
case some design decisions in our formalization. The syntax and semantics of
intuitionistic propositional logic that is the starting point of our formalization
is described in Section 2. We also describe our formalization of a countermodel
for the law of excluded middle and sketch a proof of soundness. Then, an in-
formal overview of the Henkin-style proof method as well as a description of
our implementation is provided in Section 3. Finally, some concluding remarks
are given in Section 4.

2 Intuitionistic Logic
2.1 The language
The intuitionistic propositional language considered here contains implication,
conjunction, disjunction, and falsity as the only primitive logical connectives.
The language is defined using inductive types with one constructor for propo-
sitional letters, falsum, implication, conjunction, and disjunction, respectively:

inductive form : Type
| atom : N → form
| bot : form
| impl : form → form → form
| and : form → form → form
| or : form → form → form

This code can be found in language.lean file.
Since our language contains countably many propositional letters p0, p1, ...

we use the type N of natural numbers to define the constructor atom of propo-
sitional letters. The only way to construct a term of type form is using this
atomic constructor(atom) and the constructors for falsum (bot), implication
(impl), conjunction (and), disjunction (or).

The elimination rule is an operation that allows us to define functions by
recursion from it to any other types, including also the type of propositions
Prop, in which case, this elimination rule is an instance of the principle of
induction on the structure of the formula.

Constructors are displayed in Polish notation by default, but we define some
custom infix notation with the usual Unicode characters for better readability:

prefix `#` := form.atom
notation `⊥` := form.bot
infix `⊃` := form.impl
notation p `&` q := form.and p q
notation p `∨` q := form.or p q
notation `~`:40 p := form.impl p (form.bot )

Contexts are just sets of formulas. In Lean sets are defined as functions of type
A → Prop. As usual in logic textbooks, we display the formulas in a context in
list notation separated by a comma instead of using unions of singletons. We
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4 Verified completeness in Henkin-style for intuitionistic propositional logic

introduce the following notation to make this possible:
notation Γ ` ` ` p := set.insert p Γ

The formalization of the language can be found in the language.lean file.

2.2 The proof system

We define a Hilbert-style system for intuitionistic propositional logic that is
best described as a refinement of Heyting’s original axiomatization [10, §2].
The proof system is implemented with a type of proofs, which is inductively
defined as follows:

inductive prf : set form → form → Prop
| ax {Γ} {p} (h : p ∈ Γ) :prf Γ p
| k {Γ} {p q} : prf Γ (p ⊃ (q ⊃ p))
| s {Γ} {p q r} : prf Γ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

)
| exf {Γ} {p} : prf Γ (⊥ ⊃ p)
| mp {Γ} {p q} (hpq: prf Γ (p ⊃ q)) (hp :prf Γ p) : prf Γ q
| pr1 {Γ} {p q} : prf Γ ((p & q) ⊃ p)
| pr2 {Γ} {p q} : prf Γ ((p & q) ⊃ q)
| pair {Γ} {p q} : prf Γ (p ⊃ (q ⊃ (p & q)))
| inr {Γ} {p q} : prf Γ (p ⊃ (p ∨ q))
| inl {Γ} {p q} : prf Γ (q ⊃ (p ∨ q))
| case {Γ} {p q r} : prf Γ ((p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r

)))

Again, the elimination rule for this type generalizes definition by recursion
and induction on the structure of proofs. To follow the usual logical notation,
we abbreviate prf Γ p with Γ ⊢i p as follows:

notation Γ ` ⊢i ` p := prf Γ p
notation Γ ` ̸⊢i ` p := prf Γ p → false

To illustrate, we compare a mechanized formal Hilbert-style proof of the
identity of implication p ⊃ p in our implementation:

lemma id {p : form } {Γ : set form } :
| Γ ⊢i p ⊃ p :=
mp (mp (@s Γ p (p ⊃ p) p) k) k

with a non-mechanized formal proof written in Lemmon style:
1 p ⊃ ((p ⊃ p) ⊃ p) ⊃ (p ⊃ (p ⊃ p)) ⊃ (p ⊃ p) S
2 p ⊃ ((p ⊃ p) ⊃ p) K
3 (p ⊃ (p ⊃ p)) ⊃ (p ⊃ p) MP 1, 2
4 (p ⊃ (p ⊃ p)) K
5 p ⊃ p MP 3, 4

Notice that the proof structure in our term proof is actually clearer since it
indicates how the axiom schemes should be instantiated.

The formalization of the proof system can be found in the theory.lean
file.
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2.3 Semantics
2.3.1 Kripke models
We define the semantics for intuitionistic propositional logic in terms of Kripke
semantics as usual [17,5]. A model M is a triple ⟨W ,≤, v⟩ where W is a set
of possible worlds of type A, ≤ is a reflexive, symmetric and monotonic binary
relation on A, and v specifies the truth value of a formula at a world.

In Lean, Kripke models can be defined as inductive types having just one
constructor using the structure command. We define it not as a triple but
as a 6-tuple, composed of a domain W, an accessibility relation R, a valuation
function val, and proofs of reflexivity, transitivity, and monotonicity for the
accessibility relation R, denoted as refl, trans, and mono:

structure model (A : Type) :=
| (W : set A)
| (R : A → A → Prop)
| (val : N → A → Prop)
| (refl : ∀ w ∈ W, R w w)
| (trans : ∀ w ∈ W, ∀ v ∈ W, ∀ u ∈ W, R w v → R v u → R w u)
| (mono : ∀ p, ∀ w1 w2 ∈ W, val p w1 → R w1 w2 → val p w2)

In our case, a possible world is a term of type A. This allows for more
generality in the construction of a model unlike in [1]. What is more, the type
of propositions Prop is used to encode our truth values true or false.

2.3.2 Semantic consequence
To formalize the notion of truth at a type, we define a forcing relation w ⊩M p
that takes as arguments a model M, a formula p, and a type A and returns a
term of type Prop. As usual, falsity, conjunction, and disjunction are defined
truth-functionally and an implication p ⊃ q is true at a world w iff if R(w, v)
then p is true implies q is true at v, for all v ∈ W . We also introduce the
familiar notation for this forcing relation:

def forces_form {A : Type} (M : model A) : form → A → Prop
| (#p) := λv, M.val p v
| (bot) := λv, false
| (p ⊃ q) := λv, ∀ w ∈ M.W, v ∈ M.W → M.R v w
→ forces_form p w → forces_form q w
| (p & q) := λv, forces_form p v ∧ forces_form q v
| (p ∨ q) := λv, forces_form p v ∨ forces_form q v

notation w `⊩ ` `{` M `} ` p := forces_form M p w

To formalize the intuitionistic notion of semantic consequence Γ ⊨i p we
first extend this forcing relation to contexts pointwise and then we stipulate
that Γ ⊨i p iff for all types A, models M and possible worlds w ∈ W , Γ being
true at w in M implies p being true at w in M:

def forces_ctx {A : Type} (M : model A) (Γ : set form) : A →
Prop :=

λw, ∀ p, p ∈ Γ → forces_form M p w

notation w `⊩` `{` M `} ` Γ := forces_ctx M Γ w
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6 Verified completeness in Henkin-style for intuitionistic propositional logic

def sem_csq (Γ : set form) (p : form) :=
∀ {A :Type} (M : model A) (w ∈ M.W), (w ⊩ {M} Γ) → (w ⊩ {M} p

)

notation Γ `⊨i` p := sem_csq Γ p

It is worth noting that we are overloading the forcing relation notation for
formulas w ⊩ {M} p and contexts w ⊩ {M} Γ. There is no ambiguity because
Lean will delay the choice until elaboration and determine how to disambiguate
the notations depending on the relevant types.

The formalization of the Kripke semantics described above can be found in
the semantics.lean file.

2.3.3 The failure of the law of excluded middle
Before proceeding to prove completeness, it will be helpful to see how we can
build models in our implementation. To give a concrete example, let us show
how to build the following countermodel for the law of excluded middle [11,
p.99] using the type of booleans true tt and false ff:

ff

p

tt

Since our possible worlds are always booleans, the domain, accessibility
relation, and valuation function are formalized in Lean in a slightly different
way. The reflexivity, transitivity, and monotonicity proofs are straightforward,
so we shall omit them:

def W : set bool := {ff, tt}

def R : bool → bool → Prop :=λ w v, w = v ∨ w = ff

@[simp]
def val : nat → bool → Prop :=λ _ w, w = tt

Using this countermodel, we assume that the law of excluded middle holds,
that is for any formula p, either ∅ |=i p or ∅ |=i ¬p, and then derive a con-
tradiction. This allows us to prove that the law of excluded middle fails in
general:

lemma no_lem: ¬ ∀ p, (∅ ⊨i p ∨ ~p)

The mechanization of the countermodel can be found in the nolem.lean
file.

2.3.4 Soundness
The soundness theorem asserts that if a formula p can be derived from a set of
assumptions Γ using the inference rules of the logical system, then p is logically
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valid under any interpretation that satisfies Γ.
theorem soundness {Γ : set form} {p : form} :
(Γ ⊢i p) → (Γ |=i p)

The code for proof of soundness can be found in soundness.lean.
The proof proceeds by using induction to perform case analysis for each

inference rule. For each rule, the proof provides a way to derive the conclusion
based on the rule and a way to show that the conclusion is logically valid based
on the interpretation and the premises.

3 The completeness theorem
Now that we have presented the implementation of the syntax and semantics
of intuitionistic propositional logic in the previous section, we are prepared to
undertake a formal proof of completeness. The strong completeness theorem,
which states that every semantic consequence is a syntactic consequence, can
be stated in Lean using our custom notation as follows:

theorem completeness {Γ : set form} {p : form} :
(Γ |=i p) → (Γ ⊢i p)

Our implementation follows the original Henkin-style completeness proof
given by Troelstra and van Dalen [17] with some small modifications. The
main proof argument runs as follows.
(i) Assume that Γ ⊨i p and Γ ⊬i p hold;
(ii) Build a model M such that w ⊩M p iff w ⊢i p for all worlds w ∈ W ,

where we have sets of formulas as possible worlds;
(iii) Show that there is a world w ∈ W such that w ⊩M Γ but w ⊮M p;
(iv) Establish a contradiction from our assumption that Γ ⊨i p.

Our proof appeals to classical reasoning at the metalevel of Lean’s logic on
two occasions [17, p.87], namely, in our proof of Γ ⊢i p where we assume double
negation elimination and in our proof of w ⊩M p iff w ⊢i p.

The reader can refer to the completeness.lean file for the full details of
our implementation of the completeness proof.
3.0.1 Consistent prime extensions
The first step of Troelstra and van Dalen’s proof is the definition of what they
call a “saturated theory” [17, def.6.2]. We shall make use of the equivalent
concept of prime theory instead [5, def.5.3.7], in which the disjunction property
is expressed in terms of the membership relation. We say that a set of formulas
Γ is a prime theory if Γ is closed under derivability and if p ∨ q ∈ Γ implies
p ∈ Γ or q ∈ Γ. In completeness.lean file, we write:

def is_closed (Γ : set form) :=
∀ {p :form}, (Γ ⊢i p) → p ∈ Γ

def has_disj (Γ : set form) :=
∀ {p q :form}, ((p ∨ q) ∈ Γ) → ((p ∈ Γ) ∨ (q ∈ Γ))
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8 Verified completeness in Henkin-style for intuitionistic propositional logic

def is_prime (Γ : set form) :=
is_consist Γ ∧ has_disj Γ

The second step of Troelstra and van Dalen’s completeness proof is the proof
of a prime extension lemma [17, lem 6.3], which states that if Γ ⊬ r then there
is a prime theory Γ′ ⊇ Γ such that Γ′ ⊬ r. Assuming that they have a list of
disjunctions ⟨φi,1 ∨ φi,2⟩i with infinite repetitions, they define

Γ′ =
∪

i∈N
Γi,

where Γ0 = Γ and Γk+1 is defined inductively as follows:
• Case 1: Γk ⊢ φk,1 ∨ φk,2. Put

· Γk+1 = Γk ∪ {φk,2} if Γk, φk,1 ⊢ r, and

· Γk+1 = Γk ∪ {φk,1} otherwise

• Case 2: Γk ⊬ φk,1 ∨ φk,2. Put

· Γk+1 = Γk

Since we want to extend Γ to a prime theory Γ′, we want to ensure the
disjunctive property that if ϕ ∨ ψ ∈ Γ′ then ϕ ∈ Γ′ or ψ ∈ Γ′. If there were
no infinite repetitions in the list, we could never be sure that we have treated
all disjunctions in Case 1, for, at step k + 1, its disjuncts only get added to
the set when Γk proves the disjunction. It is possible that later the disjunction
becomes provable from Γk+m, but, we will never go back to it again.

Troelstra and van Dalen mention a simpler variant of the construction that
uses an enumeration of disjunctions without requiring infinite repetitions. At
stage k + 1 we simply treat the first disjunction not yet treated. This proof is
spelled out by van Dalen in [5, lem 5.3.8]. However, the proof method is less
suitable for mechanization given that it is difficult to tell a proof assistant how
exactly they should find the first disjunction not yet treated. We implement a
simplified version of this method where at each step k + 1 we always treat all
disjunctions in the language once more. The following Lean code encapsulates
the idea of the construction sketched above:

def insert_form (Γ : set form) (p q r : form) : set form :=
if (Γ ` p ⊢i r) then Γ̀ q else Γ̀ p

def insert_code (Γ : set form) (r : form) (n : nat) : set form
:=

match encodable.decode (form) n with
| none := Γ
| some (p ∨ q) := if Γ ⊢i p ∨ q then insert_form Γ p q r else Γ
| some _ := Γ
end
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def insertn (Γ : set form) (r : form) : nat → set form
| 0 := Γ
| (n+1) := insert_code (insertn n) r n

def primen (Γ : set form) (r : form) : nat → set form
| 0 := Γ
| (n+1) :=

∪
i, insertn (primen n) r i

def prime (Γ: set form) (r : form) : set form :=∪
n, primen Γ r n

Unlike in Troesltra and van Dalen [17] and van Dalen [5], the enumeration
in our formalization lists not just all disjunctions but all propositional formulas
in the language. When a formula is not a disjunction we simply ignore it just as
in Case 2 above. We follow Bentzen [1] in using encodable types to enumerate
the language. In Lean, a type α is encodable if there is an encoding function
encode :α → nat and a (partial) inverse decode :nat → option α that decodes the
encoded term of α.

Now that we extended Γ to Γ′, which we denote as prime Γ r, we have to
prove it is indeed a prime extension of Γ. First, we show that Γ ⊆ Γ′. But this
is easy, since for every Γ′

n n in the family of sets, Γ ⊆ Γ′
n n. Therefore, Γ must

also be included in the union of all Γ′
n n, which is Γ′

n.
lemma primen_subset_prime {Γ : set form} {r : form} (n):
primen Γ r n ⊆ prime Γ r

lemma subset_prime_self {Γ : set form} {r : form} :
Γ ⊆ prime Γ r

The next step is to prove that the Γ′ also has the disjunction property and
it is closed under derivability. Let us focus on the former first.

We need to show that p∨ q ∈ Γ′ implies p ∈ Γ′ or q ∈ Γ′. If p∨ q ∈ Γ′ then
there is some n ∈ N such that p ∨ q ∈ Γ′

n. But then since Γ′
n ⊢ p ∨ q, then we

know that p ∈ Γ′
n+1 or q ∈ Γ′

n+1 because the disjunction was treated at some
point. Thus, p ∈ Γ′ or q ∈ Γ′.

def prime_insertn_disj {Γ: set form} {p q r : form} (h : (p ∨
q) ∈ prime Γ r) :

∃ n, p ∈ (insertn (primen Γ r n) r (encodable.encode (p �q)+1))
∨ q ∈ (insertn (primen Γ r n) r (encodable.encode (p ∨ q)

+1))

lemma insertn_to_prime {Γ : set form} {r : form} {n m : nat} :
insertn (primen Γ r n) r m ⊆ prime Γ r

def prime_has_disj {Γ : set form} {p q r : form} :
((p ∨ q) ∈ prime Γ r) → p ∈ prime Γ r ∨ q ∈ prime Γ r

Saying that Γ′ is closed under derivability means that if we can deduce a
formula from Γ′, it is an element of Γ′. We use a lemma that states that if we
can prove r∨ p from Γ′, then there exists an n such that p ∈ Γn+1. We use the
above lemma insertn_to_prime to deduce that p ∈ Γ′:
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10 Verified completeness in Henkin-style for intuitionistic propositional logic

lemma prime_prf_disj_self {Γ : set form} {p r : form} :
(prime Γ r ⊢i r ∨ p) → ∃ n, p ∈ (insertn (primen Γ r n) r (

encodable.encode (r ∨ p)+1))

def prime_is_closed {Γ : set form} {p q r : form} :
(prime Γ r ⊢i p) → p ∈ prime Γ r

At this moment, we need to prove that Γ′ still remains consistent. First,
we by structural induction on the derivation that if Γ′ ⊢ r then there is some
n such that Γn ⊢ r. Then we prove by induction on n that if Γn ⊢ r then
Γ ⊢ r. The base case is trivial. In the inductive case, we complete the proof
by unfolding the definition of Γn and manipulating the inductive hypothesis.
Putting both lemmas together, we prove that Γ′ ⊢ r implies Γ ⊢ r:

def primen_not_prfn {Γ : set form} {r : form} {n} :
(primen Γ r n ⊢i r) → (Γ ⊢i r)

def prime_not_prf {Γ : set form} {r : form} :
(prime Γ r ⊢i r) → (Γ ⊢i r)

3.0.2 The canonical model construction

Given a set of formulas Γ and ϕ such that Γ ⊬ ϕ, the next step is to build
a canonical Kripke model M such that with w ⊩M Γ and w ⊮M ϕ for some
possible world. We build this model by letting W be the set of all consistent
prime theories; w ≤ v iff w ⊆ v for w, v ∈ W ; and v(w, p) = 1 iff w ∈ W and
p ∈ w, for a propositional letter p. The following Lean code reflects the model
construction:

def domain : set (set form) := {w | is_consist w ∧ ctx.
is_prime w}

def access : set form → set form → Prop :=λ w v, w ⊆ v

def val : N → set form → Prop :=λ q w, w ∈ domain ∧ (#q) ∈ w

The accessibility relation ≤ is clearly reflexive and transitive since so is ⊆.
Monotonicity is easy to see since p ∈ w and w ⊆ v means that q ∈ v. We prove
these lemmas by straightforward unfolding the definition of access.

Our model is integrated into Lean’s code as follows:
def M : model (set form):=
begin
fapply model.mk,
apply domain,
apply access,
apply val,
apply access.refl,
apply access.trans,
apply access.mono
end
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3.0.3 Truth and derivability

It turns out that a formula is true at a world in the canonical model if and only
if it can be proved from that world:

lemma model_tt_iff_prf {p : form} :
∀ (w ∈ domain), (w |= {M} p) ↔ (w ⊢i p)

We mechanize the proof employing the induction tactic, which allows us to
use the elimination rule of a type. This approach yields five goals, namely, to
prove the case where a formula is a propositional letter, falsity, implication,
conjunction, or disjunction. The proof of implication and disjunction deserve
some mention.

The disjunction case is simpler, so we shall discuss it first. Lean gives us a
biconditional in the following goal:

⊢ ∀ (w :set form),
w ∈ domain → (w |= {M} (p ∨ q)) ↔ (w ⊢i p ∨ q))

The proof in the forward direction starts with the introduction of assump-
tions and then split the proof into two cases. In the first case, we assume that
w |=M p ∨ q and our goal is w ⊢i p ∨ q. Through the tactic cases, which
expresses case reasoning, we can finish our goal using some basic facts about
disjunctions and the inductive hypotheses in both cases.

In the backward direction, we assume that w ⊢i p∨q. Since w is a prime the-
ory and thus enjoys the disjunctive property, we can reason by cases depending
on whether w ⊢i p or w ⊢i q. The result follows the inductive hypothesis.

Now we proceed to the implication case. Using the intro tactic, we begin
by assuming the inductive hypothesis for p. If w is a world and it is a prime
theory, then by unfolding the true definition of a formula in the model’s world,
we arrive at a biconditional goal that can be expressed as follows.

⊢ ∀ (w :set form),
w ∈ domain → (w |=i {M} (p ⊃ q)) ↔ (w ⊢i p ⊃ q))

We split the biconditional proof into two smaller conditionals using the
split tactic. In the forward direction, we first assume that w ⊩M p ⊃ q. We
reason by cases depending on whether w ⊢i p ⊃ q or not, therefore invoking the
law of excluded middle. If that is the case, we are done. If not, then we know
that w, p ⊬ q. We want to derive a contradiction. We extend the context w, p to
a prime theory (w, p)′ that still does not prove q. By our inductive hypothesis,
since (w, p)′ is in the domain, we know that (w, p)′ ⊩M q ↔ (w, p)′ ⊢i q.

To derive a contradiction, we just have to show that (w, p)′ ⊩M q. Recall
that our assumption w ⊩M p ⊃ q states that for all v ∈ W such that w ≤ v,
if v ⊩M p then v ⊩M q. But, clearly, w ≤ (w, p)′. To complete the proof, we
just have to show that (w, p)′ ⊩M p. By our inductive hypothesis, it suffices
to show that (w, p)′ ⊢i p. But this is clearly true, since the original set w, p is
contained in the prime extension (w, p)′ and w, p ⊢i p.

For the backward direction, what we have to prove is w ⊩M p ⊃ q. This
means for all v ∈ W such that w ≤ v, if v ⊩M p then v ⊩M q. We assume that
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12 Verified completeness in Henkin-style for intuitionistic propositional logic

v ∈ W such that w ≤ v, v ⊩M p then we have to show v ⊩M q. Using our
inductive hypothesis, we just have to show that v ⊢i q.

Since we know w ⊢i p ⊃ q and w ⊆ v, by weakening, we will have v ⊢i p ⊃ q.
We complete the proof by noting that v ⊢i p by our inductive hypothesis and
assumption that v ⊩M p. The result follows from modus ponens.

We have finished the proof of implication.
3.0.4 The completeness proof
To finish our completeness proof we just have to put together all the above
pieces into 27 lines of code. We assume that Γ ⊬i p and Γ |=i p, we just need to
arrive at a contradiction. We extend Γ to a prime theory Γ′ such that Γ′ ⊬i p.
Since we know Γ′ ⊩M q ⇐⇒ Γ′ ⊢i q for every formula q, we can conclude
that Γ′ ⊮M p. Thus, we contradict our assumption that Γ |=i p, given that
Γ′ ⊩M Γ but Γ′ ⊮M p.

4 Conclusion
We have used Lean to formally verify the Henkin-style completeness proof
for intuitionistic logic proposed by Troesltra and van Dalen [17] restricted to
a propositional fragment with implication, falsity, conjunction, disjunction.
The propositional proof system we implement is based on a Hilbert-style
axiomatization. In future work, we hope to expand our implementation to
full intuitionistic first-order logic with existential and universal quantifiers
and thus complete the formalization of Troesltra and van Dalen’s proof.
Our implementation also includes a mechanized proof of soundness and
a countermodel for the general validity of the law of excluded middle in
intuitionistic propositional logic.
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Abstract

The more recent philosophical literature on foundational questions about normativ-
ity relies heavily on the notion of normative reasons, understood as considerations
that count in favor or against actions: the notion is used when answering various
kinds of normative and metanormative questions and when analyzing other norma-
tive notions. The interaction between normative reasons is often made sense of by
analogy with weight scales. This paper, by contrast, construes it as a type of infer-
ence pattern—titular reason-based detachment—and analyzes it from first principles.
While very abstract and exploratory, the approach offers a novel perspective on the
(philosophical) idea of weighing normative reasons, and promises to let us relate it to
the broader concerns of nonmonotonic logic and related disciplines.

Keywords: detachment, principles, reasons, weighing.

1 Introduction

When philosophers talk about normative matters—about what is right, oblig-
atory, permitted, and so on—they tend to rely on the notion of normative
reasons, understanding them as considerations that count in favor of or against
actions (or attitudes). 1 The notion has become a mainstay of practical phi-
losophy, where it is routinely used when answering various normative and
metanormative questions. This is taken to the extreme in the reasons-first
program which holds, roughly, that the notion of reason is basic, and that all
other normative notions should be analyzed in terms of it. 2 When discussing
the interaction between reasons, philosophers often use phrases such as “the

1 The philosophical literature distinguishes between normative, motivating, and explanatory
reasons—see [2]. We restrict our attention to normative reasons here.
2 The locus classicus here is Scanlon [24]. But see also, e.g., [21], [23], [25].
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action supported on the balance of reasons” and “the reasons for outweigh the
reasons against”, inviting an image of weight scales. The simplest version of
these normative scales is meant to work roughly as follows. 3 The reasons in
favor of ϕ-ing go in one pan of the scales, the reasons against ϕ-ing go in the
other. If the weight of the reasons in the first pan is greater than the weight of
the reasons in the second pan, ϕ ought to be carried out. If the weight of the
reasons in the second pan is greater, ϕ ought not to be carried out. 4

Philosophers have explored various ideas about the exact workings of nor-
mative weight scales and have looked at some alternatives. 5 However, with few
exceptions, these investigations have been carried out informally, and the more
formal investigations have focused on exploring particular models. 6 In this pa-
per, we propose to think of the weight scales as a kind of inference pattern. We
call this pattern reason-based detachment, and the goal we set ourselves here is
to set up and begin to explore a general formal framework built around it. 7 We
start with the general notion of detachment systems—which can be thought of
as structures in which reason-based detachment is guaranteed to be valid—and
we formulate a number of principles or properties that a detachment system
can satisfy. Then we focus on a class of detachment systems called balancing
operations, and formulate and discuss a handful of further principles specific to
them. For instance, the principle we call Neutrality requires, roughly, that rea-
sons of opposing polarity—reasons for and against—are treated equally, while
the principle we call Fixed Value requires that a reason’s polarity always stays
the same. We also define several concrete balancing operations, or, roughly,
methods specifying how to determine whether ϕ is supported on the balance
of reasons.

The rest of this paper is structured as follows. Section 2 introduces the core
formal concepts—including detachment system—and principles that detach-
ment systems can satisfy. Section 3 defines the concept of balancing operation
and discusses principles that balancing operations can satisfy. Sections 4–5 dis-
cuss two different types of concrete balancing operations. Section 6 presents our
principle-based analysis of reason-based detachment. Section 7 takes a first step
towards relating reason-based detachment to logical consequence. Section 8 ex-
plains where we plan to take the project we started here in the future. Finally,
the rather brief Section 9 presents our conclusions.

3 Cf., e.g., [14] and [27].
4 Cf., e.g., [6] and [27].
5 While the scales model has its detractors, it is fair to say that it is the dominant model,
and that it is often simply taken for granted—see, e.g., Broome’s inquiry into the normativity
of rationality [4]. For detractors, see [6, 8, 10,12,26].
6 For the latter, see [7, 9, 12].
7 It pays noting that our approach is similar to the methodology underlying input/output
logic [16,17] which is built around factual detachment—see [20, pp. 502–5] for a discussion.
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2 Detachment systems

2.1 Core formal notions

In general, a detachment system is a two-place relation between, on the one
hand, an issue (an element of the universe of discourse) with a set of reasons
(other elements of the universe of discourse with a value) and, on the other
hand, a value. We call an issue together with a set of reasons a context. Thus,
a detachment system is a relation between contexts and values.

To facilitate the formal presentation, and to be more flexible, we represent
reasons as follows:

Definition 2.1 [Reasons] Let A be an infinite set called the universe of dis-
course, and let V be a set called values. A reason is a triple of the form (x, y, v)
where x and y are elements of A and v is an element of V. 8

Our formal definition of context is as follows:

Definition 2.2 [Contexts] A context C is a pair of the form (R, y) where R is
a finite set of reasons and y, called an issue, is an element from the universe of
discourse A.

Note that this general representation of contexts and reasons allows for such
contexts as ({(a, y, v), (b, z, v′)}, y). One may wonder whether the latter reason
is not superfluous in this context, and whether this context isn’t the same as
({(a, y, v)}, y). It is exactly these kinds of general considerations that we want
to be explicit about in our formal framework. Below, we call this particular
property Relevance.

Definition 2.3 [Detachment systems] A detachment system D is a two-place
relation between contexts and values from V.

We call elements that comprise a detachment system detachments.

2.2 Principles for detachment systems

In general, we identify properties of detachment systems. While we call them
principles, we could also have called them axioms. In the context of this paper,
‘properties’, ‘principles’ and ‘axioms’ are used synonymously. They can be
used to classify and distinguish between different detachment systems. Some
of these properties may be seen as desirable and, therefore, could be called
postulates or desiderata. However, it is important to note that not all of our
principles have the status of a desideratum. In fact, some of them, like the
Monotony Principle, are clearly undesirable. Nevertheless, it is useful to make
such undesirable properties as Monotony explicit and formal as well. This is
why we prefer to refer to the properties as principles. They can be used in a
principle-based analysis of reason-based detachment, as shown in Section 6.

8 The reader familiar with the philosophical literature on reasons will notice that our formal
notion of reason corresponds more closely to what is often called reason relation. This is
hardly a problem, since the two are closely related and reasons can be read from the relation.
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4 Reason-Based Detachment

It is natural to think that detachment systems should be complete, or that
we should be able to detach a value for every context. Note, however, that there
are at least two ways to make the intuitive notion of completeness more precise,
as Principles 2.4 and 2.6 make clear. The general completeness property, as
expressed in Principle 2.4 (Universal Domain), is quite strong. If this property
of completeness is considered to be too strong, we also consider the notion of
completeness with respect to a set of reasons, as expressed in Principle 2.6
(Reason Universal Domain). This notion is more complicated because the set
of reasons depends on the issue under discussion.

Principle 2.4 (Universal Domain) A detachment system D is said to sat-
isfy Universal Domain, Ud, just in case, it is total, that is, for every context C,
there is a value v such that (C, v) ∈ D.

Our second principle states that the assignment of a value to an issue (in a
context) is determined solely on the basis of the reasons that have to do with
that issue. Other reasons can be removed from the context without affecting
the result.

Principle 2.5 (Relevance) A detachment system D satisfies Relevance, Re,
just in case ((R, y), v) ∈ D if and only if ((Ry, y), v) ∈ D, where Ry =
{(x, y, v′) ∈ R : x ∈ A and v′ ∈ V}.

In case the first principle is considered to be too strong, we can use our
third principle instead. This principle makes use of the notion of the universe
of reasons Ry of an issue y in a detachment system, which is the set of reasons
that occur in some context for the issue for which the detachment system is
defined. What the principle requires, then, is that a value can be detached for
every context as long as its set of reasons is a subset of the universe of reasons
of its issue.

Principle 2.6 (Reason Universal Domain) Let D be a detachment system
and y an element of A. Let Ry =

⋃{R : ((R, y), v) ∈ D}, called the universe
of reasons of y. Then D is said to satisfy Reason Universal Domain, RUd, just
in case, for any y ∈ A and for any R ⊆ Ry, there is a value v such that
((R, y), v) ∈ D.

This principle may sound circular at first, but it is not. One can check whether
a detachment system satisfies Reason Universal Domain by first determining
the universe of reasons for every element, and then checking whether for that
element all other combinations are also present. In what follows, we will often
talk about the universe of reasons R associated with a detachment system
without qualification: it is but the union of the universes of reasons of all
issues.

If a detachment relation satisfies Reason Universal Domain but not Univer-
sal Domain, then various other principles can be defined. Our fourth principle,
Fixed Value, is a case in point. It states that if x is a v type of reason for y in
an universe of reasons, it cannot occur as another type of reason for y in this
universe of reasons.
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Principle 2.7 (Fixed Value) Let D be a detachment system and let R =⋃{R : ((R, y), v) ∈ D}. Then D is said to satisfy Fixed Value, FiVa, just in
case, for any two (x, y, v), (x, y, v′) ∈ R, we have v = v′.

The idea that reasons never change their polarities is one of the core tenets of
a philosophical view called atomism—we will say a little more about this view
in Section 6.

While we could formulate more principles strengthening Reason Universal
Domain, for reasons of space, we move on to principles of a different kind.
And the fifth principle we introduce is Anonymity—we could also have called
it Syntax Independence. Intuitively, a detachment system satisfies Anonymity
when all elements in the universe are treated equally. (In Section 4, we illustrate
this property using six balancing operations while in Section 5, we discuss three
balancing operations that do not satisfy it.)

Principle 2.8 (Anonymity) A detachment system D satisfies Anonymity,
An, just in case, for every ((R, y), v) ∈ D and any bijection π : A 7→ A, if we
have (({(π(x), π(z), v′) : (x, z, v′) ∈ R}, π(y)), v′′) ∈ D, then v′′ = v.

Our sixth principle is Unanimity. It states that if all the reasons for an issue
are of v type, then the assignment should also be of the corresponding type.

Principle 2.9 (Unanimity) A detachment system D is said to satisfy Una-
nimity, Ua, just in case, for any context C = (R, y), if there is some (x, y, v) ∈
R and, for all other (z, y, v′) ∈ R, we have v = v′, then ((R, y), v) ∈ D.

Our seventh principle is Groundedness. It can be seen as the inverse of
Unanimity. It states that if a context is assigned some value v, then its set of
reasons should contain at least one reason of the corresponding type.

Principle 2.10 (Groundedness) A detachment system D satisfies Ground-
edness, Gr, just in case, for any ((R, y), v) ∈ D with v 6= 0, there is some
r = (x, y, v) ∈ R.

3 Balancing operations

Our main focus in this paper is on a particular type of detachment system that
we call balancing operation. These are (more) closely related to the informal
model of normative weight scales.

3.1 Balancing operations defined

Balancing operations are specific detachment systems (for basic weight scales)
with the following properties:

(i) Contexts can only be related to the values +, −, or 0, reflecting the
weight scales metaphor: leaning towards the “for” side, leaning towards
the “against” side, or being equally balanced.

(ii) Reasons can only have the value + or −, reflecting whether they are rea-
sons for or against a given issue. (Note that an element can be a positive
reason for one issue and a negative reason for another.)
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6 Reason-Based Detachment

(iii) Contexts are related to exactly one value. 9

More formally:

Definition 3.1 [Balancing operations] Let A be an infinite set of propositional
atoms and V the set {+, 0,−}. A detachment system D is called a balancing
operation just in case it is a function from 2A×A×{+,−} ×A to V.

The reader may wonder about the difference between how + and − and true
and false. This issue is taken up in Section 7, where we discuss the differences
between balancing operations and logical relations.

Before we turn to principles specific to balancing operations, we introduce
some useful formal notation:

• Where v ∈ {+, 0,−}, we let v stand for the value that is opposite to v, that
is: v = − if v = +; v = + if v = −; and v = 0 if v = 0.

• Where r = (x, y, v) is a reason, let ground(r) = x, action(r) = y, and
polarity(r) = v.

• Where R is a set of reasons and y ∈ A, the set of reasons from R that
speak in favor of y is the set positive(R, y) = {r ∈ R : r = (x, y,+)};
the set of reasons from R that speak against y is the set negative(R, y) =
{r ∈ R : r = (x, y,−)}; and the set of reasons relevant to y is the set
relevant(R, y) = positive(R, y) ∪ negative(R, y). (We follow Raz [23] in
calling reasons for positive and reasons against negative.)

3.2 Principles for balancing operations

The first principle pertaining to balancing operations—and the eighth principle
overall—is called Neutrality. Where Anonymity states that reasons are to be
treated equally, Neutrality states that values are to be treated equally. Roughly,
if we switch + and − in the context, and vice versa, then the assignment
switches its value too. Of all the principles we discuss, this is perhaps the one
that is most characteristic of weight scales. Somewhat surprisingly, to the best
of our knowledge, this characteristic principle has not yet been formalized in
the literature on reasons.

Principle 3.2 (Neutrality) Let D be a detachment system and let R =⋃{R : ((R, y), v) ∈ D}. Then D is said to satisfy Neutrality, Ne, just in case,
for every ((R, y), v) ∈ D, if R′ = {(x, y, v) : (x, y, v) ∈ relevant(R, y)} ⊆ R,
then ((R′, y), v) ∈ D.

The remaining four principles we discuss describe (non)monotonicity prop-
erties. Our ninth principle is called Monotony. It states that if a context gets
assigned a nonzero value, adding more reasons to it is not going to change the
value that gets assigned.

Principle 3.3 (Monotony) Let D be a detachment system and let R =⋃{R : ((R, y), v) ∈ D}. Then D satisfies Monotony, Mn, just in case,

9 Thus, balancing operations are deterministic relations.
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if ((R, y), v) ∈ D where v 6= 0 and (x, y, v′) ∈ R, then we have ((R ∪
{(x, y, v′)}, y), v) ∈ D.

Clearly Monotony is not a desirable property for balancing operations, and
most operations defined in the literature are nonmonotonic. This raises the
question of whether there are weaker principles than Monotony that can be
defined for balancing operations. As a first response, we formulate a principle
called Polarity Monotony. If + gets detached, then adding a positive reason
will not change the assignment, and this applies also for − and negative reasons.
While the principle is not uncontroversial, it seems intuitive, and it is satisfied
by all but one of the balancing operations defined in this paper.

Principle 3.4 (Polarity Monotony) A detachment system D satisfies Po-
larity Monotony, PoMn, just in case, if ((R, y), v) ∈ D where v 6= 0 and
(x, y, v) ∈ R, then we have ((R ∪ {(x, y, v)}, y), v) ∈ D.

The next principle we discuss is Polarity Cut. It can be seen as the inverse of
Polarity Monotony. If a positive value gets detached, then removing a negative
reason from the context doesn’t affect the detachment. This is the case also
for detachments of negative values and positive reasons.

Principle 3.5 (Polarity Cut) A detachment system D is said to satisfy Po-
larity Cut, PoCu, just in case, for any ((R ∪ {(x, y, v)}, y), v) ∈ D with v 6= 0,
we have ((R, y), v) ∈ D.

The twelfth and final principle we introduce is Polarity Switching. It can
be seen as a strong kind of nonmonotonicity. It assumes that the universe of
reasons is infinite, and it states that, for every context that gets assigned a
positive value, we can extend the context if we have enough negative reasons
so that the resulting context gets assigned a negative value, and vice versa.

Principle 3.6 (Polarity Switching) Let D be a detachment system and let
R =

⋃{R : ((R, y), v) ∈ D}. Then D satisfies Polarity Switching, PoSw, just
in case, for any ((R, y), v) ∈ D, there is an R′ = {(x, y, v) : r ∈ R} such that
((R ∪R′, y), v) ∈ D.

Having introduced the principles, we turn to concrete balancing operations.

4 Anonymous balancing operations

Over the course of this section and the next, we introduce a handful of balancing
operations. All of them are defined with respect to a universe of reasons. In
this section, we discuss anonymous balancing operations.

Definition 4.1 [Anonymous balancing operations] Let D be a detachment sys-
tem and let R =

⋃{R : ((R, y), v) ∈ D}. Then D is an anonymous balancing
operation just in case D satisfies:

(i) the Reason Universal Domain principle (with respect to R); and

(ii) the Anonymity principle.
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8 Reason-Based Detachment

According to our first sample balancing operation, the context (R, y) is
assigned the value + in case the sheer number of reasons speaking in favor of y
is greater than the number of reasons speaking against y; it gets assigned the
value − in case the number of reasons against y is greater than the number of
reasons for y; and it gets assigned 0 otherwise. More formally:

Definition 4.2 [Simple Counting] Let D be an anonymous balancing opera-
tion. Then D is called Simple Counting just in case:

• ((R, y),+) ∈ D, if |positive(R, y)| > |negative(R, y)|;
• ((R, y),−) ∈ D, if |negative(R, y)| > |positive(R, y)|;
• ((R, y), 0) ∈ D, otherwise.

Admittedly, Simple Counting—as well as the other balancing operations we
are about to define—is, well, very simple and inadequate for most practical
purposes. That is, if we think back to the balancing scales metaphor from
the philosophical literature and use Simple Counting as a concrete proposal
regarding how to assign deontic statuses to actions—with the assignment of +
(−) standing for the conclusion that the action ought (not) to be carried out—
then we would surely get many cases wrong. That being said, Simple Counting
does justice to at least two important features that are inherent in the idea
of normative weight scales. First, it treats positive and negative reasons in a
symmetric fashion. Second, it can be seen as adding up the weights of reasons
while relying on the assumption that the magnitude (or “weightiness”) of all
reasons is the same.

It is worth making it explicit that Definition 4.2 does not define a single
balancing operation but a class of balancing operations: one for every different
universe of reasons R. The same applies to the other balancing operations
defined in this section.

Our second balancing operation, called All or Nothing, assigns the value +
to the context (R, y) if all the reasons that concern y in R are positive, and
the value − if all such reasons are negative. In case neither of these conditions
obtain, the context gets assigned 0.

Definition 4.3 [All or Nothing] Let D be an anonymous balancing operation.
Then D is called All or Nothing just in case:

• ((R, y),+) ∈ D if positive(R, y) = relevant(R, y) 6= ∅;
• ((R, y),−) ∈ D if negative(R, y) = relevant(R, y) 6= ∅;
• ((R, y), 0) ∈ D otherwise.

Our third balancing operation can be thought of as lying in between Simple
Counting and All or Nothing. The intuitive idea behind it is that the context
(R, y) gets assigned the value + (−) where most reasons that are relevant to y
argue in favor of (or against) y. For simplicity, we assume that ‘most reasons’
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translates into at least four times as many reasons. 10

Definition 4.4 [Most Reasons] Let D be an anonymous balancing operation.
Then D is called Most Reasons just in case:

• ((R, y),+) ∈ D if |positive(R, y)| ≥ 4× |negative(R, y)| and
relevant(R, y) 6= ∅;

• ((R, y),−) ∈ D if |negative(R, y)| ≥ 4× |positive(R, y)| and
relevant(R, y) 6= ∅;

• ((R, y), 0) ∈ D otherwise.

The next operation assigns − to a context, as long as it is not the case that
there are more positive than negative reasons for y. (In the latter case, the
context gets assigned a +.)

Definition 4.5 [Default Negative] Let D be an anonymous balancing opera-
tion. Then D is called Default Negative just in case:

• ((R, y),+) ∈ D, if |positive(R, y)| > |negative(R, y)|;
• ((R, y),−) ∈ D, otherwise.

Our final balancing operation is similar to Simple Counting, except now
there is a threshold that changes the rules of the game: once there are enough
positive reasons (the threshold is met), the existence of further negative reasons
to the contrary ceases to matter. The idea behind this operation comes from
the literature on threshold deontology. Advocates of threshold deontology hold,
roughly, that deontological norms are to be followed up to a point even if there
are adverse consequences, but when the consequences become so dreadful that
they cross some threshold, consequentialism takes over. 11

Definition 4.6 [Threshold] Let D be an anonymous balancing operation.
Then D is called Threshold just in case:

• ((R, y),+) ∈ D, if |positive(R, y)| ≥ 100 or
|positive(R, y)| > |negative(R, y)|;

• ((R, y),−) ∈ D, if |positive(R, y)| < 100 and
|negative(R, y)| > |positive(R, y)|;

• ((R, y), 0) ∈ D, otherwise.

For all the balancing operations defined so far, given a context (R, y), one
does not need to look beyond R to determine which value to assign to the
context. What’s more, it is not difficult to see that all of these operations satisfy
Anonymity (Principle 2.8). But, to anticipate the discussion in Section 6, only
the first three of them satisfy Neutrality (Principle 3.2).

10This simple proposal is meant to serve as an illustration of a more general idea or scheme
for specifying ‘most reasons’.
11See, e.g., [1, Sec. 4] or the more recent [5, 18]. Note that the balancing operation is only
inspired by the literature on threshold deontology and is not meant to capture any particular
account.
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10 Reason-Based Detachment

5 Relational balancing operations

In this section, we turn to a different class of balancing operations. These
assign values to contexts on the basis of the reasons within them, along with a
binary anti-symmetric relation ≺ on the reasons:

Definition 5.1 [Relation ≺] Given a detachment system D with its underlying
set of reasons R =

⋃{R : ((R, x), v) ∈ D}, an anti-symmetric relation ≺ on R
is a subset of R×R such that (r, r′) ∈ ≺ only if polarity(r) = polarity(r′).

Notice that two reasons can stand in the ≺ relation only if one of them is
positive and the other negative. Instead of (r, r′) ∈ ≺, we will write r ≺ r′.
An expression of the form r ≺ r′ can be thought of in terms of r′ having strictly
more weight than r, or r′ defeating r.

With this, we can state the general definition of balancing operations dis-
cussed in this section.

Definition 5.2 [Relational balancing operations] Let D be a detachment sys-
tem, let R =

⋃{R : ((R, y), v) ∈ D}, and let ≺ be a binary anti-symmetric
relation over R, as in Definition 5.1. Then D is a relational balancing operation
(for R and ≺) just in case D satisfies:

(i) the Reason Universal Domain principle (with respect to R); and

(ii) for all ((R, y), v) ∈ D, there is no r = (x, y, v) ∈ R such that r′ ≺ r for
every r = (z, y, v) ∈ R.

Notice that Clause (ii) states that + cannot be detached from (R, y) in case
there is some positive reason r for y that stands in the ≺ relation to—or is
better than, or defeats—every reason against y; and similarly for −. This is a
very weak property.

We proceed to define some concrete relational balancing operations, or,
rather classes of them: much like in the previous section, we get different
balancing operations for different R and ≺. We call the first class Exists Better
Reason. It assigns + to (R, y) in case, for every reason against y, there is a
stronger reason for y; and it assigns − to (R, y) in case, for every reason for y,
there is a stronger reason against y.

Definition 5.3 [Exists Better Reason, ∀∃] Let D be a relational balancing
operation. Then D is called Exists Better Reason just in case:

• ((R, y),+) ∈ D, if relevant(R, y) 6= ∅ and, for every r = (x, y,−) ∈ R, there
is an r′ = (z, y,+) ∈ R such that r ≺ r′;

• ((R, y),−) ∈ D, if relevant(R, y) 6= ∅ and, for every r = (x, y,+) ∈ R, there
is an r′ = (z, y,−) ∈ R such that r ≺ r′;

• ((R, y), 0) ∈ D, otherwise.

Our next balancing operation, Decisive Reason, is more demanding: it as-
signs + (−) to a context (R, y) just in case there exists a reason for (or against)
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y that is stronger than all reasons to the contrary. 12

Definition 5.4 [Decisive Reason, ∃∀] Let D be a relational balancing opera-
tion. Then D is called Decisive Reasons just in case:

• ((R, y),+) ∈ D, if there is an r′ = (x, y,+) ∈ R such that r ≺ r′ for every
r ∈ R with action(r) = y and polarity(r) = −;

• ((R, y),−) ∈ D, if there is an r′ = (x, y,−) ∈ R such that r ≺ r′ for every
r ∈ R with action(r) = y and polarity(r) = +;

• ((R, y), 0) ∈ D, otherwise.

The third operation, All Reasons Better, is even more demanding than
Decisive Reason: it assigns the value + (−) to a context (R, y) just in case all
reasons for (against) y are stronger than all reasons against (for) y. Otherwise,
it assigns the value 0.

Definition 5.5 [All Reasons Better, ∀∀] Let D be a relational balancing op-
eration. Then D is called All Reasons Better just in case:

• ((R, y),+) ∈ D, if relevant(R, y) 6= ∅ and, for every r′ ∈ R with action(r′) =
y and polarity(r′) = +, r ≺ r′ for every r ∈ R with action(r) = y and
polarity(r) = −;

• ((R, y),−) ∈ D, if relevant(R, y) 6= ∅ and, for every r′ ∈ R with action(r′) =
y and polarity(r′) = −, r ≺ r′ for every r ∈ R with action(r) = y and
polarity(r) = +;

• ((R, y), 0) ∈ D, otherwise.

This operation can be seen as injecting the idea underlying Decisive Reason
into the All or Nothing operation described in the previous section.

6 Chart

Now that we have defined a number of principles and a handful of balanc-
ing operations, we can analyze and compare the operations by looking at the
principles that they satisfy and the ones that they do not. For example:

Proposition 6.1 Simple Counting (Definition 4.2) satisfies Polarity
Monotony (Principle 3.4).

Proof. Let D be Simple Counting. Consider an arbitrary context (R, y) and
suppose that we have ((R, y), v) ∈ D with v 6= 0. Either v = +, or v = −.
Without loss of generality, we suppose that v = +. By Definition 4.2 (Simple
Counting), we can be sure that |positive(R, y)| > |negative(R, y)|. Now let’s
consider the context (R ∪ {r}, y) where action(r) = y and polarity(r) = +.
Since action(r) = y and polarity(r) = +, we have |positive(R ∪ {r}, y)| = 1 +
|positive(R, y)|. But 1+|positive(R, y)| > |positive(R, y)| > |negative(R, y)| =

12The terms ‘decisive reason’ and ‘decisive reasons’ feature prominently in the philosophical
literature—see, e.g., [14].
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Table 1
Summary of the principle-based analysis of balancing operations

SiCount AllNoth Most DefNeg Thresh ∀∃ ∃∀ ∀∀
1. Ud − − − − − − − −
2. Re X X X X X X X X

3. RUd X X X X X X X X
4. FiVa − − − − − − − −

5. An X X X X X − − −
6. Ua X X X X X X X X
7. Gr X X X − X X X X
8. Ne X X X − − X X X
9. Mn − − − − − − − −

10. PoMn X X X X X X X −
11. PoCu X X X X X X X X
12. PoSw X − X X − − − −

|negative(R∪{r}, y)|, which, by Definition 4.2, is enough for ((R∪{r}, y),+) ∈
D.

2

Proposition 6.2 All Reasons Better (Definition 5.5) does not satisfy Polarity
Monotony (Principle 3.4).

Proof. Let D be a detachment system with the universe of reasons R =
{(a, d,+), (b, d,+), (c, d,−)} and with ≺ = {((c, d,−), (a, d,+))}, and let D
assign values to contexts in accordance with Definition 5.5. It is not difficult
to verify that D1 = ({(a, d,+), (c, d,−)}, d,+) ∈ D, and that D2 = ({(a, d,+),
(c, d,−), (b, d,+)}, d, 0) ∈ D. This, however, means that the claim that if
((R, y),+) ∈ D, then ((R∪{(x, y,+)}, y),+) ∈ D does not hold of D, implying
that D does not satisfy Polarity Monotony. 2

The proofs of the remaining propositions—that is, the propositions that
show which other principles are (not) satisfied by which (other) operations—are
about as straightforward as those of Propositions 6.1 and 6.2. For this reason,
we omit them here, letting Table 1 summarize the lay of the land: the topmost
row lists the balancing operations; the leftmost column lists the principles;
the remaining cells state whether the given operation does (X) or doesn’t (−)
satisfy the given principle. For example, the third column makes it clear that
the balancing operation we called All or Nothing (Definition 4.3) satisfies all
principles except for Fixed Value, Monotony, and Polarity Switching.

The table provides a way to compare the various operations. It can also
be used to get important insights about both operations and principles. In the
remainder of this section, we hint at these and flag some other issues of broader
significance.

The chart indicates that none of the balancing operations satisfy Univer-
sal Domain (Principle 2.4) while all of them satisfy Relevance and Reason
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Universal Domain (Principles 2.5 and 2.6). Note that there is an ambiguity
here. Recall that each of our definitions from Sections 4–5 specify not a sin-
gle balancing operation but a class of balancing operations: roughly, we get a
different operation for every different universe of reasons. Note that some of
these operations do satisfy Universal Domain, namely, those whose universe of
reasons R contains all possible reasons that can be constructed from A and
{0,+}—call this RA. However, those operations whose universe of reasons is
more restricted do not satisfy the principle. Thus, what the chart indicates is
that Universal Domain does not hold true of all operations that belong to the
class.

This makes the importance of the universe of reasons underlying a given
detachment relation very clear, and the reader may wonder why we allow it to
be more restricted than RA. The motivation here comes from philosophical
literature where the standard view is that only some facts (or types of facts)
can ever constitute reasons—even if the views on what those facts are are very
different. As for Principles 2.5 and 2.6, if we think of balancing operations as
serving the same function as the weight scales model serves in the philosophical
literature, then we want them to satisfy both of these principles. In the end,
it would be very strange if, in certain cases, the deontic status of an action
could be genuinely (not epistemically) indeterminate, or if it was determined
by something irrelevant.

Recall that Fixed Value (Principle 2.7) states that the universe of rea-
sons underlying a detachment system cannot contain two reasons of the form
(x, y,+) and (x, y,−). This idea has a correlate in the philosophical litera-
ture, where there is a well-known view called atomism that says that a reason
can never change its weight, which includes both its polarity and magnitude.
Furthermore, there is a well-known argument against the weight scales model
that goes roughly as follows. (1) The weight scales model entails atomism. (2)
Atomism is false. Hence, (3) the weight scales model has to be wrong. 13 The
argument is now widely considered to be flawed—see, e.g., [27]—and our frame-
work provides further support for this. We can see our balancing operations
as simplified concrete specifications of the weight scales model. The fact that
none of them satisfy Fixed Value suggests that statement (1) must be false.

We take Anonymity and Neutrality (Principles 2.8 and 3.2) to be among
the most important principles we have identified. Even though we defined the
balancing operations in Section 4 using Anonymity, it is natural to see it as their
characteristic principle. Neutrality, in its turn, formalizes an idea that seems
inherent in the weight scales metaphor: that positive and negative reasons
are to be treated symmetrically—this, of course, is not to say that this idea
cannot be questioned. We can see at a glance that operations that don’t satisfy
Neutrality, namely, Default Negative and Threshold (Definitions 4.5 and 4.6),
do not treat positive and negative reasons symmetrically.

Unanimity, Polarity Monotony, and Polarity Cut (Principles 2.9, 3.4,

13See, e.g., [6].

61
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and 3.5) may look like very natural principles, and one may even be tempted to
think that the fact that All Reasons Better doesn’t satisfy Polarity Monotony
shows that it is a bizarre balancing operation. However, there is a well-known
example from the AI & law literature that could make one question all three
principles. The example describes the effects of heat and rain on one’s de-
cision as to whether or not to go jogging: taken by themselves, the facts
that it is raining, and that it is hot constitute reasons for you not to go jog-
ging, but when taken in combination, they make it rational to go jogging [22].
On the face of it, in this example we are dealing with two negative reasons
of the form (x, y,−) and (z, y,−) and a detachment system that includes
the following three detachments: (({(x, y,−)}, y),−), (({(z, y,−)}, y),−), and
(({(x, y,−), (z, y,−)}, y),+). This means that there’s a tension between all
three of these principles and the most straightforward analysis of the jogging
scenario. Those who like the analysis will deny the principles. Those who like
the principles will have to argue that the scenario is misdescribed—here see,
e.g., [3, 15,19,27].

7 Balancing operations and logical consequence relations

Although we have conceptualized detachments as pairs of the form ((R, x), v),
they can be rewritten either as triples of the form (R, x, v), or as pairs of
the form (R, (x, v)). This flexibility is an advantage of the framework. In
some applications, it is useful to see a detachment system as a binary relation
((R, x), v). From a mathematical point of view, it can be seen as a function (if
we add some conditions, as we did in Section 3). From an application point
of view, it is more like a weight scales for x. But in other applications, it
is useful to see a detachment system as a binary relation (R, (x, v)). From
a mathematical point of view, it should not be seen as a function. From an
application point of view, it is more similar to deductive systems and logical
relations.

Indeed, given that we used Boolean values when defining balancing opera-
tions, it is natural to wonder about their relationship to the logical languages
used in propositional logic, logic programming, and nonmonotonic inference
relations. Of course, the balancing operations that we considered in Section 4
and 5—as well as other operations from the (informal) literature—are quite
different to what can be found in the semantics of propositional logic, logic
programming, or nonmonotonic logic. So a syntactic correspondence between
the languages may be of interest mainly for technical reasons. Nevertheless, for
the definitions of principles, it may be illustrative to define a common language
for balancing operations and logical consequence relations. So, here we make
such a common language explicit.

To represent balancing operations, we identify the universe of discourse
with propositional atoms, and reasons with literals. Let L, L1, . . ., Ln be the
elements of the universe of discourse or their negations. A logic programming
rule is written as L :- L1, . . ., Ln, stating that L holds if L1, . . ., Ln hold.
In propositional logic, this is often written as the rule L1 ∧ . . . ∧ Ln → L.
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Alternatively, we could write L1, . . ., Ln � L. In the latter case, consider an
issue y, a set of reasons for y, and a set of reasons against y. If x is a reason
for y, we write it as x, and if x is a reason against y we write it as ¬x. There
are three assignments for y in a context:

+: L1, . . ., Ln � y
−: L1, . . ., Ln � ¬y
0: neither of the above

In this way, all of the principles we have defined can be rewritten as principles
of logical consequence relations.

With this translation, we have a unified language for reason-based entail-
ment and nonmonotonic inference, but the semantics will be very different.
The main difference concerns the interpretation of negation. In reason-based
detachment, “x is a reason against y” means something completely different
to the logical inference “the negation of x implies y”. In particular, we must
be careful when comparing or importing principles from one area into another.
Consider reasoning by cases, one of the hallmarks of logical inference. If “x
implies y” and “the absence of x implies y” both hold, then y holds uncondi-
tionally. Whether a similar inference pattern holds for reason-based entailment
is more controversial. Perhaps even more clearly, the nonstandard reading of
negation on the left becomes very clear when we consider Polarity Monotony.
While this principle makes a lot of sense for reason-based detachment, it makes
little sense for nonmonotonic inference.

Of course, this particular representation does not indicate that there is no
other way to represent reason-based detachment in existing logics of nonmono-
tonic entailment. It does, however, suggest that reason-based entailment is a
notion that should be analyzed from first principles. Furthermore, there is an
additional drawback to representing balancing as logical consequence relations:
it assumes the strong notion of completeness, or Universal Domain.

8 Future work

As future work, we plan to take the framework set up here in a number of dif-
ferent directions. First, in addition to reasons, the philosophical literature talks
about considerations which, while not being reasons, can have indirect effects
on the normative landscape—e.g., on which actions ought to be carried out. In
this context, the literature discusses in particular conditions (or undercutters)
which cancel the normative effects of a reason, and modifiers which either am-
plify or attenuate the (default) magnitude (or “weightiness”) of a reason. 14

What we want to do, then, is extend the framework so that we can represent
these other types of considerations too and explore their effects on detachment.
One thing we can do is extend our formal notion of a balancing operation by
allowing some of its underlying reasons to also take the value 0. These new
reasons—of the form (x, y, 0)—could then affect the standard ones—of the form

14See, e.g., [27, Sec. 2] for a nice summary.
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16 Reason-Based Detachment

(x, y,+) and (x, y,−)—and thereby indirectly affect detachment.
Another direction for future research is to explore detachment systems built

around numerical values. In fact, detachment systems of this sort may be closer
to the way reasons and their interaction are conceptualized in the philosophical
literature, where the weights of reasons are standardly taken to be comprised
of a polarity and a magnitude (or “weightiness”). It certainly seems worth
exploring different balancing operations that assign values to contexts by ap-
plying numerical operations to reasons. Also, this does not seem to be too far
off from the ideas explored in multi-criteria decision-making—see, e.g., [13].

Yet another promising idea is to explore detachment systems that are not
complete, even in the weaker sense of not satisfying the Reason Universal Do-
main principle: they appear to be fitting for modeling case-based reasoning of
the sort that is discussed, for instance, in the context of models of precedential
constraint—see, e.g., [11]. Yet another idea is to explore the detachment sys-
tems built around a richer domain of discourse: logical formulas, as opposed
to abstract elements. Finally, it would be useful to extend the principle-based
analysis presented here with further principles and balancing operations.

9 Conclusion

Our main goal in this paper was to set up and start exploring a (general) formal
framework built around reason-based detachment. We started by introducing
detachment systems, or structures in which reason-based detachment is guar-
anteed to be valid. After formulating some general principles that detachment
systems can satisfy, we focused on a class of detachment systems—which we
called balancing operations—that can be thought of as regimenting the informal
model of the normative weight scales: we formulated further principles specific
to balancing operations (Section 3), defined a handful of concrete balancing op-
erations (Sections 4–5), and put the two together in a principle-based analysis
(Section 6). We also briefly discussed the relationship between reason-based
detachment and logical inference, along with the most immediate directions
for future research. Ultimately, we are aiming to provide a framework within
which one can (i) define, relate, and compare various different (and possibly
complex) accounts of the way reasons interact to support actions as well as (ii)
relate these accounts to the ideas proposed in the context of case-based rea-
soning, multi-criteria decision-making, nonmonotonic reasoning, and related
disciplines. This short paper is but a first step in this direction.

Acknowledgments

Both authors acknowledge financial support from the Luxembourg National
Research Fund (FNR) for the project Deontic Logic for Epistemic Rights
(OPEN O20/14776480) L. van der Torre is also supported by the (Horizon 2020
funded) European Coordinated Research on Long-term Challenges in Informa-
tion and Communication Sciences & Technologies ERA-NET (CHIST-ERA)
grant CHIST-ERA19-XAI (G.A. INTER/CHIST/19/14589586).

64



Knoks and van der Torre 17

References

[1] Alexander, L. and M. Moore, Deontological Ethics, in: E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, 2021,
Winter 2021 edition .

[2] Alvarez, M., Reasons for action: Justification, motivation, explanation, in: E. N. Zalta,
editor, The Stanford Encyclopedia of Philosophy, 2016, winter 2016 edition .

[3] Bader, R., Conditions, modifiers and holism, in: E. Lord and B. Maguire, editors,
Weighing Reasons, Oxford University Press, 2016 pp. 27–55.

[4] Broome, J., “Rationality through Reasoning,” Wiley Blackwell Publishing, 2013.
[5] Cole, T., Real-world criminal law and the norm against punishing the innocent:

Two cheers for thershold deontology, in: H. Hurd, editor, Moral Puzzles and Legal
Perspectives, Cambridge University Press, 2019 pp. 371–87.

[6] Dancy, J., “Ethics without Principles,” Oxford University Press, 2004.
[7] Dietrich, F. and C. List, A reason-based theory of rational choice, Noûs 47(1) (2013),
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A Formalization of ‘Ought Not to Know’ Based
on STIT Logic

Yini Huang
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Abstract

One is bound by epistemic norms, which dictate what one ought to know or not to
know. When discussing norms, ‘ought to’ has both an epistemological and a deonto-
logical dimension to its interpretation. This paper argues that the purely epistemo-
logical interpretation of ‘ought to know’ does not take into account the deontic issues
that beliefs and knowledge may raise. With the proliferation of big data privacy
deontic issues, it is necessary to consider the influence of deontic norms on the dis-
cussion of epistemic norms. Due to the focus on agency, STIT logic has been chosen
for the formalization in this research. Based on the STIT theory, this study combines
the concepts of agency and obligation with epistemology and expands the epistemic
norms with deontic norms, formalizing the norm of ‘ought not to know.’ This paper
begins with a detailed introduction to STIT semantics and stit operators. Building
on existing research on the relationship between knowledge and obligation, the study
adds the ‘knowing-value’ operator to the XSTIT theory to formalize ‘ought not to
know’ and discusses the possible properties of the operator. This study provides a
formalization of the epistemic norms of pragmatism.

Keywords: epistemic norms, deontic logic, STIT theory, ‘ought not to know’

1 Introduction
A person is not only bound by norms of behaviour, but also by epistemic norms,
i.e., norms about what one ought or ought not to believe and know. When
discussing norms about ‘ought to’, a distinction needs to be made between the
epistemological sense of ‘ought to’ and the deontological sense of ‘ought to’.
The intuitive difference between the two can be shown by the following two
examples:
(i) It’s either raining or sunny outside, and the floor in the playground is dry,

so it ought to be sunny. 1

(ii) To get the job, you ought to follow the rules and regulations.

1 According to Canbridge Dictionary, we can use ‘ought to’ when we talk about what is likely
or probable.
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2 A Formalization of ‘Ought Not to Know’ Based on STIT Logic

Here, the first example represents the relationship between ‘it is sunny outside’
and a set of evidence (e.g. ‘it’s either raining or sunny outside’, ‘the floor in
the playground is dry’, etc.); The second example represents the relationship
between ‘compliance with rules and regulations’ and the agent’s purpose (e.g.
‘getting the job’).

Because of the direct link between epistemology and cognition, historically,
much of the discussion of cognitive norms has taken place from an epistemo-
logical perspective. The main concern of epistemology has been to explain the
justification of the various beliefs we hold about the world. When we discuss
whether a belief is justified, what we want to know is whether it is correct to
believe it. John L. Pollock [14] notes that epistemic norms are norms describing
when it is epistemically permissible to hold various beliefs. A belief is justified
if and only if it is licensed by the correct epistemic norm. Assuming that a
belief is justified by the reasoning underlying it, then the epistemic norms are
the norms governing ‘right reasoning’. Epistemologists usually understand epis-
temic norms as norms for evaluating reasoning. Thus, from an epistemological
perspective, cognitive norms are truth-oriented.

However, we find that the epistemological sense of ‘ought to know’ does
not actually take into account the deontic issues that beliefs and knowledge
may raise. In the post-privacy era, with the rapid development of artificial
intelligence and the widespread use of big data, people may tend to cede a
certain degree of privacy in exchange for a more convenient life. However, the
ensuing issue of big data privacy ethics has also aroused widespread concern,
and thus a challenging problem for big data security is how to control the
bounds of how big data technology is used so that it does not violate users’
personal privacy. Against this backdrop, we believe that we should add ethical
considerations to the discussion of epistemic norms. That is, when discussing
whether ‘one ought to know something’, we need to consider not only the
justification of the belief, but also the legitimacy of the agent’s purpose. At
the same time, we find that when discussing the ethics of big data privacy, the
focus is not on what the agent ‘ought to know’, but on what the agent is not
allowed to know, i.e., what the agent ‘ought not to know’. Therefore, in this
study, we will discuss the ‘ought not to know’ in depth.

In Section 2, we elaborate on the concept of ‘ought not to know’ that un-
derpins our research. To this end, we use STIT logic, proposed by Nuel Belnap
[5], Michael Perloff [5] and Ming Xu [5], as a tool to formalize this concept. In
Section 3, we introduce the semantics and common operators of STIT logic,
laying the groundwork for the subsequent chapters. In Section 4, we explore
the application of STIT theory to deontic and epistemic problems. We first
introduce the definition of ‘ought to’ as it applies to the context of this paper,
and discuss the XSTIT logic proposed by Jan Broersen. We then extend the
XSTIT theory by introducing cognitive operators to analyse the relationship
between cognition and obligation. In Section 5, we use XSTIT theory to for-
malize ‘ought not to know’ and extend the framework using the ’knowing-value’
operator to further explore the possible properties of the ‘ought not to know’
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operator.

2 Explanation of ‘ought not to know’
Let us consider a realistic example: suppose that a person has the belief that
‘the PIN for Ben’s bank card is 123456’ and that he has obtained enough
evidence to support the belief that ‘the PIN for Ben’s bank card is 123456’ by
hacking into multiple network systems, and that ‘the PIN for Ben’s bank card
is 123456’ is in fact true, then according to JTB (Justified true belief) theory in
epistemology, the person should have knowledge that ‘the PIN for Ben’s bank
card is 123456’; however, it is clear that Ben’s PIN is private to himself, and if
we say that ‘someone should have had knowledge of Ben’s PIN’, we are in fact
violating Ben’s right to privacy. In this case, then, it would clearly be against
our ethics to say ‘we ought to know about it’.

Jonathan Harrison [10] explains this situation in more detail. He argues
that for some knowledge, it is better for people not to know . There are three
reasons for that. First, some people will use their knowledge to do things that
harm themselves or others. That is, although knowledge helps them to achieve
their goals, those goals can be harmful to themselves or others. Secondly, in
addition to knowledge that can be harmful in itself, some knowledge may be
acquired in various improper ways, such as through telephone tapping, reading
other people’s private documents, and making rude enquiries into other people’s
private lives, which clearly violates other people’s privacy. Finally, doing so
breaks the tacit agreement among members of civilised society that people will
not try to find out from each other what others do not want to be known.

Thus, we are morally obliged to ‘ought not to know’ about things that may
cause harm to others, that are private or that we are not legally allowed to
know. Here we need to distinguish between ‘ought not to know’ and ‘have
the right not to know‘: ‘have the right not to know’ is an enabling provision;
‘ought not to know’ is an obligatory provision, which is mandatory under the
rules; it is a commanding directive that requires people to perform a certain
act, and if they ‘do not do it’, they are in breach of some rules, which makes it
‘obligatory’.

The ‘ought not to know’ we are concerned with here is in fact equivalent
to ‘being not allowed to know’, that is , someone is obliged to be in a state of
‘not knowing’ something. It is important to note that what we mean here by
‘ought not to know’ is not simply the negation of ‘ought’ in standard deontic
logic. 2 In our definition, we consider ‘not knowing’ as a whole. On the basis
of the above assumptions, this study will still take ‘ought not to know’ as the
target of our formalization.

In addition to this, ‘ought not to know’ in this study is not simply a modal
word for a belief state, but a modal word for a cognitive action. Consider the
following example: Suppose p is about the privacy of Ben. A person who is

2 Since the O and P operators of standard deontic logic are dual, ‘ought not to know’ in
formal language means ‘is allowed not to know’.
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4 A Formalization of ‘Ought Not to Know’ Based on STIT Logic

only passively in the state of ‘knowing p’ (e.g. being told) is not condemned for
violating Ben’s privacy; he is condemned only if he manages to learn p. In other
words, ‘ought not to know’ in this case means ‘ought not to learn about’. We
are not concerned with a person’s state of knowledge, but with the cognitive
act by which that person obtains that state of knowledge; the focus is on the
agency of the acting subject. Thus, we cannot simply use a combination of
the standard deontic operator and standard epistemic operator, i.e., O¬K, to
formalize ‘ought not to know’. Instead, to formalize ‘ought not to know’, we
use the STIT logic that focuses on the agent of the action as our tool.

3 STIT semantics and stit operators
The STIT (see to it that) logic [5,6] is philosophical logics of agency. The
primary virtue of STIT logic is that it discusses choice exertion explicitly, in
contrast to the majority of logical formalisms for action. STIT logic expresses
the statements inscribing agency in the formula [α stit:A], which reads ‘the
agent α sees to it that A holds’, where stit is the binary operator formalizing
agency, α is the agent, and A is an arbitrary statement. In the following we
abbreviate the statement with the stit operator as [α]A.

Given a countable set of propositional variables P and a finite set Agent
composed by agents, the formal language LSTIT is defined as follows:

A,B ::= p | ¬A | (A ∧B) | 2A | [α]A,
In this section, I will first introduce the framework and model of STIT logic,

and then introduce and explain different interpretations of such formulas, in
preparation for the later discussion.

3.1 STIT framework and STIT model
The semantics of STIT logic is based on the Branching Time frames. The
framework is a pair ⟨T , <⟩, where T is a nonempty set of moments and < is a
strict partial order relation on the set T that satisfies no backward branching.
That is, for each m, m′, m′′ in T , if m′ < m and m′′ < m, then we have
m′ = m′′ or m′′ < m′ or m′ < m′′. Each maximal <-chain in T can be called
a history, which represents a possibility [6]. If we denote moments by m and
histories by h, then m ∈ h can be interpreted as m occurring at a point in h, or
h passing through m. Due to uncertainty, different histories may pass through
the same moment. For any m ∈ T , we denote the set of histories passing
through m by Hm = {h ∈ HT : m ∈ h}, where HT is the set of all histories in
⟨T , <⟩.

The branching-time model adds to the branching-time framework an valu-
ation function v, where v : P → 2T×H assigns to each atomic proposition a set
of moment-history pairs [1]. For h ∈ Hm, we call of a moment-history pair m/h
an index. Given a branching time model M, the ordinary temporal operators
G (for ‘it will always be the case’) and H (for ‘it has always been in the case’),
the the operator of historical necessity 2. These operators are interpreted as
follow, where A is a formula:
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• M,m/h ⊨ GA iff u ∈ h, m < u only if M, u/h ⊨ A;
• M,m/h ⊨ HA iff for each u ∈ h, u < m only if M, u/h ⊨ A;
• M,m/h ⊨ 2A iff for each h′ ∈ Hm, M,m/h′ ⊨ A.

We use F, P and 3 as the dual operators of G, H and 2 respectively [18].
A branching time frame with instants is a branching time frame ⟨T , <⟩

to which a non-empty set Instant of instants is added, where Instant is a
partition of T .The notion of instants is strongly pre-relativistic, representing
‘the same time’ across all histories [18]. The frame satisfies properties of ‘unique
intersection’ and ‘order preserving’ :
• unique intersection: for each instant i and history h, i∩ h contains a unique

moment m, denoted as mi,h;
• order preserving: for all instants i, i′ and all histories h, h′, mi,h < mi′,h iff
mi,h′ < mi′,h′ .
In the branching time frame containing moments ⟨T , <, Instant⟩, we denote

by i(m) the moments to which m belongs, and for all i, i′ ∈Instant, i < i′ iff
there exists some m ∈ i and m′ ∈ i′, m < m′. In this case, the relation <
between instants is a strictly linear order that obeys order-preserving property.

The basic framework of a STIT logic is a quadruple ⟨T , <,Agent,Choice⟩,
that is, adding Agent and Choice to the branching time frame, where Agent is
a nonempty set of agents whose elements we usually denote by α, β, etc., while
Choice is a function that maps a pair of agents α and moments m to a partition
of the history set Hm passing through that moment, which we usually write
Choicemα . The function Choice needs to satisfy ‘no choice between undivided
histories’ and ‘independence of agents’:
• no choice between undivided histories: for all h, h′ ∈ Hm, if there exists a
m′ > m such that m′ ∈ h∩h′, then for each K ∈ Choicemα , h ∈ K iff h′ ∈ K;

• independence of agents: for each m ∈ T and each function s that maps an
agent α to a member of Choicemα ,

∩
α∈Agent s(α) ̸= ∅.

Choicemα is a partition of Hm. For each agent α and moment m, we call the
equivalence class in that partition the possible choices or actions of the agent
α at moment m. In other words, at moment m the agent α is able to identify
a particular equivalence class from Choicemα and in which the future historical
process necessarily exists. If the function s on Agent assigns to each subject α
an equivalence class of Choicemα , then we call it a selection function at moment
m. Also, for h ∈ Hm, we use Choicemα (h) to denote the particular possible
choices made from Choicemα containing the history h.

We call the quadruplet ⟨T , <,Agent,Choice⟩ the STIT frame and the quin-
tuplet ⟨T , <, Instant,Agent,Choice⟩ the STIT frame containing instants, where
⟨T , <, Instant⟩ is a branching time frame with instants. 3 A STIT model is a
model on a STIT frame, so that if the frame contains Instant, then the model

3 See [4,6] for a discussion of this.

70



6 A Formalization of ‘Ought Not to Know’ Based on STIT Logic

also contains Instant. For each STIT model M and moment m, we use ∥ A ∥Mm
to denote {h ∈ Hm : M,m/h ⊨ A}; if the model M is instant-containing, then
we use ∥ A ∥Mi to denote {h ∈ HT : M,mi,h/h ⊨ A} [18]. In practice, we
usually omit the superscript M and denote it by ∥ A ∥m or ∥ A ∥i.

3.2 stit operators
There are various stit operators, the most common of which are the following
four: astit (achievement stit), bstit (Brown’s stit), cstit (Chellas’ stit) and dstit
(deliberative stit). Here we write them as [α]a, [α]b, [α]c, and [α]d respectively.
In this paper, we will only use the operators [α]c and [α]d. The truth conditions
for the STIT formula are defined as follows:
• M,m/h ⊨ [α]cA iff Choicemα (h) ⊆ Am;
• M,m/h ⊨ [α]dA iff Choicemα (h) ⊆ Am and Hm ⊈∥ A ∥m.

We can be more specific about the above definition. At a given moment
and history, a dstit formula [α]dA is true at m/h if and only if (1) the choice
of the agent α at moment m at Choicemα (h) can guarantee that A is true; 4
(2) Also, there exists a history h′ such that A is false on it. 5 And in order for
[α]dA to be true at m/h, condition (1) that [α]cA is true at m/h only has to
be met. [α]dA is equivalent to [α]cA ∧ ¬2A.

4 The integration of STIT theory with deontic and
epistemic logic

STIT logic has been used in both deontic and epistemic studies. In this section,
we will explain how to combine the two using STIT logic.

4.1 Formalization of ‘ought-to-do’ in STIT
In the existing studies of STIT logic, there are two different approaches to the
formalization of ‘ought-to-do’, represented by Paul Bartha and John Horty:
the former defines ‘someone ought to do something’ as ‘someone performs a
violation if he does not perform the action’ [3], while the latter understands
‘ought-to do’ from a decision-theoretic perspective as ‘doing it is the agent’s
preferred action’, i.e., the action that leads to the maximisation of utility [12].
In Horty’s definition, we typically have defeasible conditional obligations, which
means more specific ones override more general ones. However, unlike ‘ought
to’, when discussing ‘ought not to’, the agent’s violation cannot be disregarded
because of other conflicting obligations. According to the previous section,
the definition of ‘ought not to know’ in this paper is ‘not (legally or morally)
allowed to know’, which means that for certain things that we ’ought not to
know’, we are condemned if we ‘actively know’ about it. So our definition of
‘ought-to-do’ here is closer to Paul Bartha’s approach. For this reason, this

4 That is, the choice of the agent α at m Choicemα (h) can cause future event processes to be
restricted to the history of Choicemα (h) and to be true at each moment A.
5 α’s choice Choicemα (h) must have an effect on the truth value of A at m.
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paper will adopt only Paul Bartha’s definition of ‘ought-to-do’ and will not
elaborate on John Horty’s approach. 6

Alan Ross Anderson proposed in 1956 to reduce deontic logic to alethic
modal logic, using S to denote a constant proposition meaning ‘sanction’ and
defining the ought operator O in terms of the relation between obligation and
sanction [2]:

Op =df 2(¬p → S).

There is a problem with this definition: in practical examples, due to the
limitations of external conditions, the agent’s action is not always detected
by others, so he is not practically bound to be punished. Yet this does not
mean that his behaviour is right. So here we change ‘sanction’ to ‘violation’.
A violation occurs even if for whatever reason there is no sanction. Therefore
we define O as:

Op =df 2(¬p → V ).

Paul Bartha’s definition of ‘ought to do something’ is based on Alan Ross
Anderson’s proposal:

O[α]dA =df 2(¬[α]dA → Vα).

Here, O is an ought operator as defined by Anderson, and Vα is a personalized
constant proposition associated with the agent α, which can be interpreted
as ‘α does something wrong’. Thus, ‘α ought to see to it that A’ is defined
as meaning that if α does not see to it that A, then he has done something
wrong. The advantage of this definition is that when we add the O operator,
the completeness theorem underlying dstit logic is still preserved [18].

Paul Bartha’s definition of O was also used by Jan Broersen in his study.
However, he has made certain modifications to the existing theory. In continu-
ation of Alan Ross Anderson’s theory, Broersen proposed a new xstit operator
in [8], which we write here as [α]x. Broersen proposed that in standard STIT
logic, the effects of actions are instantaneous. However, from an ontological
perspective, given that a process can be thought of as occurring ‘in’ time and
that an action can always be thought of as a ‘process’ connected to some effort
made by the agent involved, we can infer that actions also occur ‘in’ time.
Therefore, the effects of the agent’s choice would take effect at the next choice
point. 7 Based on this, Jan Broersen proposed the XSTIT logic.

In the XSTIT logic, Jan Broersen also added an operator X for ‘next’, thus
introducing the notion of ‘next state’ into the definition of O. The XSTIT
modal language LXSTIT is defined as follows:

A,B ::= p | ¬A | (A ∧B) | 2A | [α]xA | XA

6 For an account of John Horty’s formalization and application of ‘ought-to-do’, we refer to
the literature [11,12].
7 Note that we do not assume anything about how distant subsequent choice points should
be; they can be arbitrarily close [9].

72
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A STIT frame is incremental if every non-dead-end moment in a history h
has a unique immediate successor m+h and every non-root moment has a unique
immediate predecessor m−. m+h is the immediate next state of moment m.
The operators X, [α]x are interpreted as follows, where M is an incremental
STIT model that is ‘endless’ in the forward direction:
• M,m/h ⊨ XA iff M,m+h/h ⊨ A;
• M,m/h ⊨ [α]xA iff for each h′ ∈ Choicemα (h), M,m+h′/h′ ⊨ A.

We can intuitively explain [α]xA: in an incremental infinite STIT frame, A
is guaranteed to be true in the next state due to the choice of the agent α at
moment m, which is effectively equivalent to [α]cXA.

Relative to a model M, the semantics for the formulas of LXSTIT is defined
recursively by the following truth conditions, evaluated at a given index m/h:
• M,m/h ⊨ p iff m/h ∈ v(p), where p is a propositional variant;
• M,m/h ⊨ ¬A iff M,m/h ⊭ A;
• M,m/h ⊨ A ∧B iff M,m/h ⊨ A and M,m/h ⊨ B;
• M,m/h ⊨ 2A iff for each h′ ∈ Hm, M,m/h′ ⊨ A;
• M,m/h ⊨ XA iff M,m+h/h ⊨ A;
• M,m/h ⊨ [α]xA iff for each h′ ∈ Choicemα (h), M,m+h′/h′ ⊨ A.

Based on the above theory, Jan Broersen replaced the dstit operator used
by Paul Bartha with the xstit operator, thus defining ‘ought to do something’
as:

O[α]xA =df 2(¬[α]xA → [α]xVα).

We can interpret this to mean that if α does not see to it that A is true in the
next state, then he ensures that he would cause a violation in the next state.

4.2 Analysis of the relationship between epistemology and
obligation using STIT logic

Jan Broersen extends XSTIT theory with epistemic operators to formalize the
notion of ‘knowingly doing something’, further suggesting other possible forms
of ‘ought to do something’ in other possible forms [7,8]. His work on the
combination of epitemic logic and deontic logic is highly informative for our
formalization of ‘ought not to know’.

We assume that the STIT framework and model are both incremental and
infinite, and that the framework has relations ∼α between indexes, where
α ∈ Agent. Each relation ∼α is an equivalence relation between indexes,
and ‘m/h ∼α m′/h′’ can be understood as meaning that m/h and m′/h′ are
indistinguishable with respect to the agent α. We call such frameworks epis-
temic STIT frameworks, and we call ∼α the α (epistemic) indistinguishability
relation in the framework.

Jan Broersen [7] proposes the Kα operator to formalize the agent’s epistemic
state The interpretation of Kα is as follows:
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• M,m/h ⊨ KαA iff for all m′/h′ such that m/h ∼α m′/h′, M,m′/h′ ⊨ A.
Based on this, we further extend the formal language as follows:

A,B ::= p | ¬A | (A ∧B) | KαA | 2A | [α]xA | XA

In light of the foregoing definition, Jan Broersen [8] puts ‘the agent α know-
ingly sees to it that A’ as Kα[α]

xA. To distinguish between ‘knowingly do-
ing something’ and ‘unknowingly doing something’, he denotes the former by
Kα[α]

xA and the latter by [α]xA ∧ ¬Kα[α]
xA.

In the following we discuss three possible properties of ‘knowingly doing’
proposed by Jan Broersen [9], and present them in axiomatic form.

The first property is ‘knowledge about next states (Know-X)’, which is
expressed axiomatically as:

KαXA → Kα[α]
xA.

Its corresponding frame condition is:
• for all indexes m/h, m′/h′ and all h′′ ∈ Choicemα (h), m/h ∼α m′/h′ only if
m/h′′ ∼α m′/h′.

This property ensures that an angent cannot know more about the next states
than what their choice affects. In other words, an agent can only know about
(immediate) future events if it holds after their own actions. If something is
true for all the dynamic states that are part of the actual choices made by the
agent in the actual state, but not for all the dynamic states that the agent
considers are possible, then we say that the thing is ‘unknowingly done by the
agent’. In general, an agent does far more things unknowingly than it does
knowingly; Jan Broersen gives the example that by sending an email, we may
be enforcing many things that we are not aware of, and that are the result of
our sending the email. All of these things are done unknowingly by knowingly
sending emails.

Jan Broersen calls the second property ‘effect recollection (Rec-Eff)’, ax-
iomatically expressed as

Kα[α]
xA → XKαA.

whose corresponding frame condition is:
• For all indexes m/h and u/h′, m+h/h ∼α u+h′/h′ only if m/h ∼α u/h′.

This property is a dynamic version of the ‘perfect recall’ axiom about the
interaction between epistemic and temporal modalities. The property expresses
the idea that if an agent knowingly sees to it that a condition holds in the next
state, then in the same next state the agent will recall that the condition holds.
That is, the effect of a known action is known in the next state.

The last property is the ‘uniformity of strategies (Unif-Str)’, axiomatically
expressed as

3Kα[α]
xA → Kα3[α]xA.

Its corresponding frame condition is:
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10 A Formalization of ‘Ought Not to Know’ Based on STIT Logic

• If m/h ∼α m∗/h∗ and h′ ∈ Hm, then there exists a h′′ ∈ Hm∗ such that
m/h′ ∼α m∗/h′′.

We can interpret this property to mean that if an agent can knowingly sees to
it that A, then he knows that one of all his choices can see to it that A.

However, for events that are necessarily true, since their occurrence is not
caused by the agent’s actions, we do not say that the agent ‘knowingly sees
to it that these things happen’. For example, we can be sure that in the next
state the earth rotates, but we do not say that ‘we knowingly see to it that
the earth rotate’. It is only when the agent causes something to happen that
might not have come true without their intervention that we would say that
the agent ‘knowingly sees to it that something happens’. At the same time,
when we say that an agent ‘knowingly sees to it that something happens’, we
actually mean that the agent has other behavioural choices. 8 Based on this,
we can further define ‘the agent knowingly sees to it that something happens’
as Kα[α]

xA ∧Kα¬2XA.
Building on the above discussion, Jan Broersen adds the deontic operator

to formalize ‘the agent’s obligation to see to it that something happens’:

OK[α]xA =def 2(¬Kα[α]
xA → [α]xVα).

In this definition, the agent should perform the action ‘knowingly’ in order to
avoid violation. In other words, if the agent does not knowingly perform the
obligation, but ‘coincidentally’ complies, we would also say that he still causes
a violation.

Jan Broersen also discusses another variant of the deontic operator. The
above definition of ‘the agent is obliged to see to it that something happens’
does not mention whether the agent actually knows whether it is obliged to do
it. Jan Broersen therefore adjusts the previous definition by directly linking
the agent’s awareness of the obligation to the awareness of the violation:

KOK[α]xA =def 2(¬Kα[α]
xA → Kα[α]

xVα).

By this definition, the agent of the obligation has actual knowledge of the obli-
gation, i.e., if the agent does not comply with it, he will intentionally cause the
violation. Jan Broersen [9] mentions that the operator OK[α]x and KOK[α]x

both satisfy the axiomatic system KD of standard deontic logic, 9 that is, they

8 If an agent does not know that he has other choices than to do something, we do not
say that the agent ‘chooses’ to do something, nor would we say that the agent’s action was
intentional.
9 The axiomatic system KD of standard deontic logic consists of the following axioms and
rules:
• Taut: all propositional reduplicative formulas
• K: O(p→ q) → (Op→ Oq)

• D: Op→ Pp

• MP: φ,φ→ ψ/ψ
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have the same properties as the standard deontic logic proposed by von Wright
in Deontic logic [15]. 10

5 The formalization of ‘ought not to know’
In this section, we will combine STIT logic with the notion of ‘ought not to
know’.

5.1 Formalization of ‘ought not to know’ based on XSTIT theory
On the basis of the above discussion, we have attempted to formalize ‘ought
not to know’. We add to the meaning of ‘ought not to know’ the idea that
if a person knowingly learns about something, then he could be considered to
have caused the violation. Here, since ‘knowing something’ takes effect after
the action of ‘getting know something’, we will use the xstit operator proposed
by Jan Broersen in our definition.

According to our definition of ‘ought not to know’, if the agent is passively
in the state of ‘knowing something’, he will not necessarily cause a violation.
We therefore need to exclude the meaning of ‘passively knows’ from the for-
malization. We try to interpret ‘passive knowledge’ as meaning that the agent
will be in a state of ‘knowing something’ at the next stage, but that the agent’s
own actions do not actually see to it that he will be in a state of ‘knowing
something’ at the next stage, and is inscribed as: XKαφ ∧Kα¬([α]xKαφ).

We use ⊘α to mean ‘the agent α ought not to know’ and let φ mean ‘some-
thing’. Then we can formalize ‘the agent is obliged not to know something’
as:

⊘αφ =def 2(Kα[α]
xKαφ → [α]xVα).

This can be understood intuitively as meaning that a person causes a violation
at the next stage if his actions will see to it that he is in a state of ‘knowing
something’ at the next stage. Here, the antecedent already excludes the case
of ‘passive knowledge’.

In the above definition, however, we have merely stated that ‘if a person is
knowingly in a state of knowing something, he will cause a violation’, but not
whether the person has deliberately committed a wrong with knowledge of a
moral or legal norm. In order to distinguish ‘knowingly committing a wrong’
from ‘unintentional mistakes’, we directly link awareness of the obligation to
the awareness of violation, defining ‘ought not to know’ as:

⊘′
αφ =def 2(Kα[α]

xKαφ → Kα[α]
xVα).

In this definition, a person is knowingly causing a violation at the next stage
if he is knowingly in the state of ‘knowing something’ at the next stage.

• Substitution rule: φ/φ(p, ψ)
• Generalization rule: φ/Oφ The axioms and rules in

10A detailed proof can be found in [9].
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12 A Formalization of ‘Ought Not to Know’ Based on STIT Logic

Here, both ⊘α and ⊘′
α can be seen as definitions of ‘ought not to know’, the

former is more applicable to charcaterizing implicit epistemic norms, 11 while
the latter is more applicable to charcaterizing explicit epistmic norms. 12 Since
STIT logic only considers real-world possibilities, our definition can be used to
formalize real-world moral and legal norms of cognition.

5.2 Add ‘knowing-value’ operator
There is still a problem with the above research: it seems more natural that
our focus on ‘knowing something’ should be expressed as ‘knowing whether’ or
‘knowing what’ rather than ‘knowing that’.

In the real-life example we mentioned earlier, we want to emphasise that
someone ought not to know that ‘the PIN for Ben’s bank card is 123456’. In
this case, if we understand ‘knowing something’ in the form of ‘knowing that’,
we would say that ‘someone ought not to know [that] the PIN for Ben’s bank
card is 123456’. And if we take the ‘knowing what’ form, we can express
this example as ‘someone ought not to know [what] Ben’s bank card PIN [is])’,
where someone does not need to know exactly what Ben’s PIN is. Although the
two are equivalent for an external observer, the fact that an external observer
thinks α is true does not mean that the agent himself knows α. Thus, there is an
obvious problem if we understand ‘knowing something’ in terms of ‘knowing
that’: intuitively, if we say ‘by law someone ought not to know something’,
then in fact someone should know that he should not have known about it.
However, for the agent himself, if a person does not actually know that ‘the
PIN for Ben’s bank card is 123456’, we cannot say that ‘a person ought to have
known that he ought not to have known that the PIN for Ben’s bank card is
123456’, otherwise ‘the PIN for Ben’s bank card is 123456’ would be known to
this agent and would create a contradiction. It is worth noting that ‘ought to
know’ in this example and ‘ought not to know’ that we discuss in this paper
are still external norms. In contrast, when we need to discuss ‘the agent ought
to know that he ought not to know something’, the reference to ‘ought not
to know something’ is from the agent’s internal perspective. Thus, our use of
knowing-what avoids the contradictions that arise from internal and external
distinctions.

Meanwhile, according to Yanjing Wang [16], we have the following informa-
tion that there may be different patterns of reasoning for knowledge expressions
of ‘Knowing-Wh’ than for propositional knowledge expressions of the ‘Knowing
That’ form . Further, we will therefore modify the epistemic operator in the in-
scription of ‘ought not to know’, so as to provide a more reasonable inscription
of ‘ought not to know’ as we have defined it.

Jan Plaza [13] proposes that an agent is said to know the value of c if the
constant c has the same value in all worlds, and that value is indistinguishable
from the actual value. Since ‘knowing whether φ’ can also be understood as

11Norms that are agreed upon but not explicitly stated, since there is not necessarily a
uniform perception of such norms.
12Norms that are explicitly stated, such as laws, etc..
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‘knowing what the truth value (logical value) of φ is’ 13 , we can distinguish
‘know whether’ together with ‘know what’ for the inscription. Based on this,
we introduce a new notion: ‘knowing [what the] value [is]’, each constant has
a value that ranges over a possibly infinite domain, 14 which we denote by the
operator Kvα. Here, we give an example for a more intuitive interpretation of
the operator: we can use KiKvjc ∧ ¬Kvic to mean ‘i knows that j knows the
PIN of Ben’s bank card, but i does not exactly know what the PIN is’.

Further, we extend the formal language as follows (where c is any constant
symbol in the given set C)

A,B ::= p | ¬A | (A ∧B) | KαA | Kvαc | 2A | [α]xA | XA

To explain Kvαc, here we define an assignment function VC on the cross product
of the index set and the set C, based on [17]. The truth condition for Kvαc
15 is defined as follows:
• M,m/h ⊨ Kvαc iff for each m′/h′, m′′/h′′, if m/h ∼α m′/h′ and m/h ∼α

m′′/h′′, then VC(c,m
′/h′) = VC(c,m

′′/h′′)

Based on the above operator, we modify the formalization of ‘ought not to
know’. We inscribe the implicit and explicit norms of ‘the agent is obliged not
to know something’ as follows, respectively:

⊘′′
αφ =def 2(Kα[α]

xKvαφ → [α]xVα).

⊘′′′
α φ =def 2(Kα[α]

xKvαφ → Kα[α]
xVα).

Here, both expressions equally indicate that the agent will cause a violation
at the next stage (or knows that he will cause a violation at the next stage)
if his action will see to it that he is in the state of ‘knowing something’ at
the next stage. However, in this context ‘knowing something’ means ‘knowing
what’. Unlike ‘knowing that’, ‘knowing what’ does not need to be followed by
a statement that is necessarily true in all possible worlds, so the definition can
be applied to a wider range of issues.

We further discuss the possible property of ‘ought not to know’. For explicit
epistemic norms, if we ought not to know something, then we would say that
we ought to know that we ought not to know it. For example, in the Chinese
Legal System, if a natural person’s personal information is protected by law
and cannot be disclosed without permission, then we should know that we are
obliged not to actively obtain another person’s personal information, otherwise

13i.e., whether the truth value is 0 or 1.
14According to [16], knowing the value of something can be seen as knowing the answer to a
hidden question.
15Jan Plaza suggests that for Kvαc the following two axioms are valid [13]:

(i) Kvic→ KiKvic

(ii) ¬Kvic→ Ki¬Kvic
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14 A Formalization of ‘Ought Not to Know’ Based on STIT Logic

we are negligent in not knowing. Based on this, we can express this property
as follows:

2(¬Kα ⊘′′′
α φ → [α]xVα).

6 Conclusion
In the post-privacy era, the issue of privacy ethics has become a topic of great
concern. With the rapid development of digitalization and intelligence, peo-
ple’s personal information is constantly being collected, stored and processed,
which has led to an increasing threat to personal privacy. Against this back-
ground, this paper presents a philosophical discussion of a new epistemic norm
- ‘ought not to know’ - and gives a formal formalization of it. Under this new
epistemic norm, the agent ought to be unknown of certain information under
certain circumstances, thus protecting personal privacy. Considering that this
norm emphasizes the agency of the agent, STIT logic is chosen as a tool for
formalization in this paper.

In this study, we first introduce the STIT framework, models and common
operators. On this basis, we discuss the application of STIT theory to deontic
and epistemic problems. Then, in order to integrate deontic and epistemic
problems, we refer to the XSTIT theory, which is an extension of the STIT
theory, and formalize ‘ought not to know’. Within this extended theoretical
framework, the ‘ought not to know’ operator is formally defined and formalized.
At the same time, a distinction is found between ‘knowing that’ and ‘knowing
what’, and the formalization is further modified by the inclusion of a ‘knowing-
value’ operator. Finally, we discuss the possible properties of the ‘ought not
to know’ operator, providing a direction and basis for further research on this
operator.

In future work, we will explore and discuss more complex properties and
axiomatic systems that may be satisfied by this operator. We will also think
about the de re and de facto issues haunting epistemology and formalisms
assuming omniscience. This research provides a new way of thinking about
understanding deontic issues of privacy and provides a new paradigm for the
application of STIT logic to deontic issues and epistemic problems. In addition,
since AI research is also concerned about agency and the issues discussed in
this study are highly relevant to AI security, subsequent work on this research
could be combined with other fields such as AI and computer science to explore
broader applications.
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Abstract

In traditional defeasible description logic systems like rational closure, reasoning
relies mainly on T-Box. However, A-Box is more abundant and more accurate com-
pared to T-Box because A-Box directly comes from the corpus in most cases, while
T-Box comes from summarizing and concluding relations between elements in A-Box.
Besides, the rational closure system does not support incomplete reasoning. Incom-
plete reasoning means that the system can infer necessary intermediates for reasoning
if they are not provable in the system. To overcome these problems, we propose a
new method for defeasible description logic reasoning using abstract syntax graphs.
Abstract syntax graphs are directed graphs in which nodes are assigned with formu-
las. We propose a method inspired by models in argumentation theory to compute
consistent sets of formulas in a graph. For cases where we obtain multiple solutions,
we also define a partial-order on sets of formulas to select the best answer. We end
this paper with comparisons with other approaches to illustrate the advantage of ab-
stract syntax graphs.

Keywords: Description logic, Defeasible reasoning, Abstract Syntax Graph

1 Introduction

Nowadays, defeasible reasoning on a knowledge base is receiving increasing
attention. Although description logics are fundamental to numerous contem-
porary AI and database applications, the formulas in description logics are
incapable of properly expressing and reasoning with defeasible rules.

In order to achieve defeasible reasoning in description logics, many ap-
proaches [4,5,6] have been proposed, among which a representative one is ra-
tional closure. Its basic idea is that there is an ordering on defeasible rules.
Some rules are more general, such as birds can fly, while others are more spe-
cific, such as birds with severely injured wings cannot fly. Generally speaking,
rules with more antecedents are more specific. When a contradiction arises in
reasoning, we prefer to apply specific rules.
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However, rational closure does not support defeasible reasoning with A-
Box. Although some work has been done to implement rational closure to
defeasible knowledge bases with A-Box [9], they are not suitable for defeasible
reasoning in incomplete knowledge bases. This is because it can’t infer the
atomic terms that are not provable in the knowledge base, while rational
closure may need these terms as intermediate conditions for reasoning.

To overcome these problems, we propose a new model for defeasible descrip-
tion logic reasoning called abstract syntax graphs. The idea is inspired by the
concept of Abstract Syntax Tree [13]. In abstract syntax graphs, we translate
each term in description logics into an abstract syntax tree, then we build an
abstract syntax graph(ASG) by combining all abstract syntax trees together.
To compute consistent sets in ASG, we propose a method similar to models
in argumentation theory. We also define a partial-order on consistent sets in
case we have multiple solutions. Furthermore, we show that the most preferred
consistent set obtained from the partial-order can be used to generate expla-
nations, which serves as a response if there is any disagreement on the truth
value of particular formulas.

The rest of the papers will be organized as follows. Section two is reserved
for background knowledge. Then we introduce a formal model of abstract
syntax graphs in section three, and discuss properties in section four. In section
five we discuss related work and conclude in section six.

2 ALC Language

ALC Description Logic is a formal language used for expressing knowledge
about concepts and their relationships in a domain. It is a subset of first-
order logic with restricted syntax and semantics. The language consists of
concepts, roles, and individuals, where concepts represent sets of individuals,
roles represent binary relations between individuals, and individuals represent
objects in the domain. The syntax of ALC is used to construct expressions
that represent concepts and their relationships, while the semantics of ALC is
used to define the meaning of these expressions.

Definition 2.1 (ALC Language) An ALC language is a triple ⟨C,R, I⟩, where
C is a finite set of atomic concept names, R is a finite set of role names, and I
(a.k.a. attributes) is a finite set of individual names. C,R and I are pairwise
disjoint. [8]

Definition 2.2 (ALC Concept) Concepts of ALC are defined inductively as
follows:

C ::= ⊤| ⊥| D | (¬C) | (C ⊓ C) | (C ⊔ C) | (∃r.C) | (∀r.C)

where D ∈ C and r ∈ R.

Definition 2.3 (ALC General Concept Inclusion(GCI)) GCIs of ALC are de-
fined as follows:

GCI ::= C ⊑ D
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where C,D are ALC concepts. Specially, we use C ≡ D as an abbreviation for
C ⊑ D and D ⊑ C.
Definition 2.4 (Satisfication of ALC GCI) An interpretation I satisfies a GCI
C ⊑ D if CI ⊆ DI .
Definition 2.5 (ALC T-Box) A finite set of GCIs is called an ALC T-Box. [8]

Definition 2.6 (ALC Assertion)

• C(a) is called an ALC concept assertion(CA).

• r(a, b) is called an ALC role assertion(RA).

where C is an ALC concept, a, b are ALC individuals and r is an ALC role.

Definition 2.7 (ALC A-Box) A finite set of CAs and RAs is called an ALC
A-Box. [7]

Definition 2.8 (ALC Knowledge Base) An ALC knowledge base K is defined
as follows.

K ::= ⟨T ,A, I⟩
where T is an ALC T-Box, A is an ALC A-Box and I is a subset of I.

Definition 2.9 (ALC Term) General Concept Inclusions (GCI), Role Asser-
tions (RA), and Concept Assertions (CA) collectively refer to ALC terms.

Definition 2.10 (Defeasible knowledge base) The defeasible knowledge base
K is a tuple ⟨T , T ∗,A,A∗, I⟩, while T is a strict ALC T-Box, T ∗ is a defeasible
ALC T-Box, A is a strict ALC A-Box and A∗ is a defeasible ALC A-Box.

Example 2.11 Suppose we need to formalize a rule called Birds(B) can fly(F)
with two individual Tweety(t) and Jimmy(j). We can build an ALC knowledge
base K = ⟨T ,A, I⟩ where T = {B ⊑ F}, A = {B(t), B(j)}.

3 Reasoning on Incomplete and Inconsistent Knowledge
Bases

To reason on an incomplete and inconsistent knowledge base, we need a more
complex example.

Example 3.1 Now we consider adding more rules to Example 2.11. The first
rule being added is Injured(I) animals(A) can not fly(F). To build the rela-
tionship between this rule and the last rule, we add the rule Bird(B) is a kind
of animal(A). To distinguish two individuals, let Tweety(t) be injured(I). The
knowledge base K = ⟨T , T ∗,A,A∗, I⟩ is shown as follows:

T = {B ⊑ F},A = {B(t), B(j)}

T ∗ = {A ⊓ I ⊑ ¬F,B ⊑ A},A∗ = {I(t)}
Now we find that this knowledge base is no longer consistent. This is

because from the CA Tweety is a bird and the GCI bird can fly, one may infer
that Tweety can fly. But from the CA Tweety is an injured bird and GCI birds
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are a kind of animal and injured animal can not fly, we infer that Tweety can
not fly.

In this example, what we want to know is whether a specific individual
(Tweety or Jimmy) can fly. To illustrate the question, we define the determin-
istic problem.

Definition 3.2 (Deterministic Problem) Let K = ⟨T ,A, I⟩ be an ALC knowl-
edge base, C be an ALC concept and d be an ALC individual, a deterministic
problem is to check whether C(d) or ¬C(d) is more preferred.

In order to calculate several possible consistent sets for evaluation, we need
to put them all together in one graph. To choose the most preferred answer,
we need a method to compare two consistent sets and determine which is more
preferred.

3.1 Graph Construction

Before reasoning, we need to ground all GCIs to CAs. This is how we combine
the information from both A-Box and T-Box. We use the Gr function to do
so. The Gr function takes a set of GCIs and a set of individuals as input
and produces a set of CAs as output. We ground C ⊑ D by ¬C ⊔D because
C ⊑ D ≡ ¬C ⊔D. The definition is as follows:

Definition 3.3 (Gr function)

Gr(G, I) = {(¬C ⊔D)(i)|C ⊑ D ∈ G, i ∈ I}

where G is a set of GCIs, I is a set of individual.

After grounding, the next step is to combine all the CAs together. To
reduce complextity, we first simplify the CAs. we use a functionally complete
set of logic connectives {⊓,¬} to replace all the other logic connectives in CAs.
We call a CA with only two logic connectives {⊓,¬} as a standard CA. The
Std function takes a CA as input and produces a standard CA as output. The
inductive definition is defined as follows:

Definition 3.4 (Std Function)

Std(C(d)) = C(d), C ∈ C

Std((¬C)(d)) = ¬Std(C(d))
Std((C ⊓D)(d)) = Std(C(d)) ⊓ Std(D(d))

Std((C ⊔D)(d)) = ¬(¬Std(C(d)) ⊓ ¬Std(D(d))

Std(∀r.C(d)) = Std(⊓(d,x)∈rC(x))
Std(∃r.C(d)) = Std(¬(∀r.(¬C(d)))

where C,D are ALC concepts, r ∈ R and d ∈ I. Especially, because the domain
is finite, we can translate quantifiers into conjunctions. This is how we deal
with the roles and quantifiers in the knowledge base.

After standardization, we build a graph containing all the standard CAs.
we need to resolve each CA into sub units. For example, to check if C(d)⊓D(d)
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holds, we need to check if C(d) and D(d) hold, here C(d) and D(d) are sub
units of C(d) ⊓ D(d). The intuitive thought is to build an abstract syntax
tree(AST) [13]. However, we need two kinds of edges because we have two kinds
of logic connectives. So we slightly modify the algorithm to get an abstract
syntax graph(ASG) (An example of ASG can be found in section 3.4). We first
translate all CAs to ASTs, then combine these ASTs by merging the equivalent
nodes. Finally, we get a graph containing all the CAs.

Definition 3.5 (Node Equivalence) For two ACs C(d) and D(d), we define
C(d) ∼ D(d) if and only if C(d) ⊢ D(d) and D(d) ⊢ C(d) (under nature deduc-
tion of ALC [7]). With the relation of equivalence, we denote the equivalence
class of C(d) as [C(d)], which means D(e) ∈ [C(d)] ⇐⇒ D(e) ∼ C(d).
Definition 3.6 (Edge Equivalence) Edges(v1, v2) and (v3, v4) are equivalent
if and only if v1 ∼ v3 and v2 ∼ v4.
Definition 3.7 (Abstract Syntax Graph(ASG)) ASG is a tuple T =
⟨V,En, Ec⟩ , where V is the set of nodes, each of which represents a CA or
sub-CA. En is a set of undirected edges, which connect the nodes mutually
exclusive. Ec is a set of directed edges. The head of an edge is the premise,
and the tail of the edge is the conclusion. The conclusion holds true if and only
if all the premises are true.

To build an ASG, we need three auxiliary functions V c, Ec
n and Ec

c to gen-
erate three sets in the tuple. The first function V c generates all the nodes of
the ASG. The second function Ec

n generates all the negation relations of the
ASG. The third function Ec

c generates all the conjunction relations of the ASG.
The inductive definitions are as follows:

V c(C(d)) ={C(d)}, C ∈ C

V c(¬C(d)) ={¬C(d)} ∪ V c(C(d))

V c(C(d) ⊓D(d)) ={C(d), D(d)} ∪ V c(C(d)) ∪ V c(D(d))

Ec
n(C(d)) =∅, C ∈ C

Ec
n(¬C(d)) ={(C(d),¬C(d)), (¬C(d), C(d))} ∪ Ec

n(C(d))

Ec
n(C(d) ⊓D(d)) =Ec

n(C(d)) ∪ Ec
n(D(d))

Ec
c(C(d)) =∅, C ∈ C

Ec
c(¬C(d)) =Ec

c(C(d))

Ec
c(C(d) ⊓D(d)) ={(C(d), C(d) ⊓D(d)), (D(d), C(d) ⊓D(d))} ∪

Ec
n(C(d)) ∪ Ec

n(D(d))

where C,D are ALC concepts and d ∈ I.
Now we have introduced how to build an ASG based on a knowledge

database. The next definition summarizes all the processes of building an
ASG.
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6 Defeasible Description Logic Reasoning Based on Abstract Syntax Graph

Definition 3.8 (ASG on defeasible knowledge base) For a defeasible knowl-
edge base K = ⟨T , T ∗,A,A∗, I⟩, its corresponding ASG T = ⟨V,En, Ec⟩ is
defined as follows:

V = {[v]|v ∈
⋃

t∈S
V c(t)} En = {[e]|e ∈

⋃

t∈S
Ec

n(t)} Ec = {[e]|e ∈
⋃

t∈S
Ec

c(t)}

while S = {Std(a)|a ∈ A ∪A∗ ∪Gr(T ∪ T ∗, I)}
3.2 Model

After building the ASG of a defeasible knowledge base, the next step is to
compute consistent sets of formulas according to the graph. In this paper we
propose a method inspired by labeling approach in argumentation theory [12].
We obtain consistent sets of formulas by computing models of an ASG. For
a graph T = ⟨V,En, Ec⟩, a model is a function M maps each node in V to
{in, out, undec}. We call M(v) the label on node v. Specifically, if ∀v ∈
V,M(v) = X, we denote M(V ) = X. The consistency of a model is defined
as follows:

Definition 3.9 (Consistency Model) A model M is consistent if it satisfies
the conditions below:

∀(v, v∗) ∈ En,M(v) = in⇒M(v∗) = out

∀(v, v∗) ∈ En,M(v) = undec⇒M(v∗) = undec

∀v ∈ V,M(v) = in⇒∀(v∗, v) ∈ Ec,M(v∗) = in

∀v ∈ V,M(v) = out⇒∃(v∗, v) ∈ Ec,M(v∗) = out

Here we provide a computational procedure for computing models of an
ASG ⟨V,En, Ec⟩. We start with a set S containing all the legal models and
an empty set Sc. Then we check each model by the definition of consistency.
If the model is consistent, we add it to the Sc. After we have checked all the
legal models, the remaining part of the set is all the consistent models. Its
formalization steps are as follows.

(i) Let S = {in, out, undec}V
(ii) For eachM∈ S, ifM is consistent, Sc = Sc ∪ {M}
(iii) Return Sc

3.3 Model Ordering

We notice that in some circumstances, we obtain multiple models using the
computational procedure we define in the previous section. In such cases we
would like to find out the model which is the most preferred. To do so, we
define a partial-order on models. The basic idea is the following. First of all, if
C(d) or ¬C(d) can be directly inferred by strict rules, then every model which
supports C(d) or ¬C(d) should have the highest priority. In contrast, the
model which violates the strict rules should have the lowest priority. Secondly,
we want the model to satisfy the closed-world assumption, which means that
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atomic CAs that are not provable in the knowledge base should be labeled as
out as many as possible.

Let K = ⟨T , T ∗,A,A∗, I⟩ be a knowledge base and ASGK = ⟨V,En, Ec⟩ be
its corresponding ASG. For two consistent modelsM1 andM2,M1 ≥ M2 if
it satisfies one of the cases listed below:

• ∃X ∈ {in, out}, (∀M(M is consistent ∧M(V +
s ) = in)⇒M(C(d)) = X) ∧

M1(V
+
s ) = in

• ∃v ∈M2, (v ∈ V +
s ) ∧ (M(v) = out)

• M2(C(d)) = undec

• ∀v ∈ Va,M2(v) = undec⇒M1(v) = undec

while

V +
s ={[v] ∈ V |v ∈ Gr(T , I) ∪ A}
Vs =V

+
s ∪ {s ∈ V +

s |¬s} ∩ V
V +
d ={[v] ∈ V |v ∈ Gr(T ∗, I) ∪ A∗}
Vd =V +

d ∪ {s ∈ V +
d |¬s} ∩ V

V +
a ={v ∈ V |v is an atomic CA}/(Vd ∪ Vs)
Va =V +

a ∪ {s ∈ V +
a |¬s} ∩ V

The first case means if C(d) can be reasoned by strict CAs, then the model
must be the best model. The second case means that if a strict CA is out,
then the model should have the lowest priority. The third case means that if
a model does not get a useful result, it should be aborted. The fourth case
means we should maximize the undec label for unmentioned atomic CAs.

Generally, we remark the model with the highest priority as the most pre-
ferred model.

3.4 Example

Continuing with the setting of example 2.11, we show how our model works
step by step. The input database is K = ⟨T ,A, I⟩. The question is if F (t)
holds.

T ={B ⊑ F,A ⊓ I ⊑ ¬F,B ⊑ A}
A ={B(t), B(j), I(t)}

Gr(Tr, Ir) ={(B ⊑ F )(t), (A ⊓ I ⊑ ¬F )(t), (B ⊑ A)(t)}
Ag ={(B ⊑ F )(t), (A ⊓ I ⊑ ¬F )(t), (B ⊑ A)(t), B(t), I(t)}

{Std(a)|a ∈ Ag} ={¬(B(t) ∧ ¬F (t)),¬(I(t) ∧A(t) ∧ F (t)),
¬(B(t) ∧ ¬A(t)), B(t), I(t)}

Compared to calculating the structure of ASG step by step, it’s more visualized
to draw the ASG. Here we draw the ASG of the CA ¬(B(t) ∧ ¬F (t)) to show
how it works.
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8 Defeasible Description Logic Reasoning Based on Abstract Syntax Graph

¬(B(t) ⊓ ¬F (t))

B(t) ⊓ ¬F (t)

B(t) ¬F (t)

F (t)

En

Ec

V

The whole graph is shown below:

¬(B(t) ⊓ ¬F (t)) B(t) ⊓ ¬F (t)

B(t)

¬F (t) F (t)

I(t) ⊓A(t) ⊓ F (t)

¬(I(t) ⊓A(t) ⊓ F (t))

I(t) ⊓A(t)

I(t)A(t)

¬A(t)

B(t) ⊓ ¬A(t)

¬(B(t) ⊓ ¬A(t))

En

Ec

V

One consistent model of the graph is shown below:

¬(B(t) ∧ ¬F (t)) B(t) ∧ ¬F (t)

B(t)

¬F (t) F (t)

I(t) ∧A(t) ∧ F (t)

¬(I(t) ∧A(t) ∧ F (t))

I(t) ∧A(t)

I(t)A(t)

¬A(t)

B(t) ∧ ¬A(t)

¬(B(t) ∧ ¬A(t))

En

Ec

V

in out undec

4 Properties

The first important property of this model is that it can generate rebuttal
based on the most preferred model. For a model M of the ASG ⟨V,En, Ec⟩,
an attack to the modelM is a set Att ⊆ V . Each element in Att corresponds
to the disagreement with the label of the node. For example, if Att = {A(b)}
andM(A(b)) = in, it claims that it should beM(A(b)) = out. Two methods
are used to rebut the attack. The first method is to accept the attack and give
back another preferred model with the same label on C(d). The idea is that
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accepting these new labels will not effect the label of C(d). If the first method
fails, we will turn to the second method, which is to find a subset of Va called
E. If the attack is accepted under the same satisfaction of defeasible rules, then
one of the atomic CAs will be labeled as in while M(E) = out. This means
that the model M better satisfies the closed-world assumption. The proof of
this property is as follows.

Definition 4.1 (Restricted model) M∗ is a preferred model, the set of re-
stricted models of M∗ about Att is {M|M is a preferred model ∧ ∀v ∈
Att,M(v) ̸=M∗(v) ∧M(C(d)) =M∗(C(d))}

For any attack Att, if the set of restricted models is not empty, we can give
out an model in the set as rebut.

Lemma 4.2 (Consistent models can be uniquely identified by atomic nodes)
For two consistent models M1 and M2, if ∀s is an atomic CA,M1(s) =
M2(s), then ∀s,M1(s) =M2(s).

Proof. ∀v,M(v) is unique if and only if all the atomic CAs of v are unique.
Because all the atomic CAs are unique, the atomic CAs of v are unique. 2

Theorem 4.3 (Subset Rebut) T is an ASG and C(d) is the question. For an
attack Att to a preferred model M, if the restricted model does not exist, then
exists a subset E of Va, such thatM(E) = undec, and for any preferred model
M∗, if for all s ∈ Att, M∗(s) ̸= M(s) and ∀s ∈ Vd,M(v) = M∗(v), then
exists s0 ∈ E, such thatM∗(s0) ̸= undec.

Proof. We claim that the set of defeasible nodes E is {s ∈ Va|M(s) = undec}.
By the definition of E, we knowM(E) = undec. Then we prove by contradic-
tion. If it’s not the case, there exists a preferred model M∗, such that for all
s ∈ Att,M∗(s) ̸=M(s), andM∗(E) = undec.

If E∩Att ̸= ∅, then we immediately getM∗(E) ̸= undec, contradicted with
M∗(E) = undec. So we assume that E ∩Att = ∅.

So for model M∗, we know {s ∈ Va|M(s) = undec} = E ⊆ {s ∈
Vd|M∗(s) = undec}. By the definition of priority on model, we know
M∗ ≤ M. However, M is a preferred model, so M ≤ M∗. As a re-
sult, we have {s ∈ Va|M(s) = undec} = {s ∈ Va|M∗(s) = undec} . By
the definition of preferred, we know {s ∈ Vs|M(s) = M∗(s)}. As a result,
∀s is an atomic CA,M(s) =M∗(s). By lemma 1, we knowM =M∗. But by
the assumption, we knowM(C(d)) ̸=M∗(C(d)) because there does not exist
restricted model, which leads to the contradiction. 2

5 Related Work

DeLP [3], ASPIC+ [11], and other structured argumentation frameworks can also
be used for defeasible reasoning. Although they are not designed for description
logic, they can still be used for defeasible description logic reasoning because
description logic is the subset of first-order logic. The main difference between
these two approaches and our model is that these two approaches require build-
ing arguments before reasoning. An argument is a proof, containing CGIs,
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10 Defeasible Description Logic Reasoning Based on Abstract Syntax Graph

CAs, and RAs. After calculating the attack relation between arguments, we
can build an argumentation framework and calculate the extensions. However,
these approaches are in lack of efficiency because when building arguments,
sub-arguments are also built. As a result, the same GCIs, CAs, and RAs have
been reused repetitively and making the framework too complex for compu-
tation. Although some efforts [10] have been made to improve the efficiency of
calculation, it is still complex compared to direct reasoning with A-Box and
T-Box. In our model, each CA or RA appears only once, and GCIs only ap-
pear once for each individual. As a result, the cost of computation and storage
has significantly decreased. Briefly, our model is more suitable for defeasible
description logic compared with structured argumentation frameworks.

Rational closure [8] is another model for defeasible description logic. This
model uses the concept exceptional to divide the defeasible rules into several
layers and finds a maximally consistent set for reasoning. The disadvantage of
Rational closure is that it can’t infer necessary intermediates for reasoning
if they are not provable in the system.

Hyper network [2]is a special graph similar to our ASG. The difference
between this paper and our paper is that we use the graph in different tasks.
Hyper networks aim to find relevant arguments not related to update s. Ignor-
ing arguments irrelevant to updates contributes to the improvement of efficiency
in computing Delp. While ASG is a model designed to determine the truth
values of target formulas.

Argumentation-based reasoning [15] [14] is a argumentation-based
method for defeasible description logic. This model uses one condition set
and one conclusion formula to build an argument. Then it considers the un-
dercut attack relation to build an argument tree. However, the computing
complexity of this method is too high. Because the condition set is a subset of
the knowledge base, the number of arguments will grow up exponentially.

Inconsistent Ontology [1] is a consistent set-based method for defeasi-
ble description logic. This method requires MIO(minimal inconsistent sets)
buffer in the reasoning process. When considering inconsistent reasoning, this
method will gradually build a consistent subset by removing inconsistent for-
mulas. However, when the knowledge base goes large, the MIO buffer will grow
up to an unacceptable size.

6 Conclusion

In this paper, we propose a new model for defeasible reasoning on description
logic ALC . Compared with rational closure, our model can infer necessary
intermediates for reasoning if they are not provable in the system. We also
show that explanations can be generated from the preferred model.
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Abstract

In this paper, we study a De Morgan multi-modal logic aiming at representing the
open world model. Sequent calculus and axiomatic system are presented with sound-
ness and completeness proved. We prove it has the finite model property by methods
from algebraic proof theory, whence the decidability follows.

Keywords: open world model, De Morgan multi-modal logic, finite model property,
tense logic, rough set.

1 Introduction

Human knowledge or information about the world contains a significant amount
of ignorance and uncertainty due to the changeable nature of the world and
the cognitive limitations of agents. As an example, some categories of concepts
that may have been applicable to certain members of a community at a par-
ticular point in time may no longer be relevant to them once new information
becomes available. One interesting theory about this idea is that there exist
some changing classes, which means the arrival of new members or the depar-
ture of old members may happen from time to time. In this sense, information
is temporal and open. From the philosophical perspective, Quine’s natural
kind [24] and Wittgenstein’s family resemblance [28] echoed this idea as well.
Naturally, such an idea demands a new model to deal with it.

1 Email address: ianwang747@gmail.com
2 Email address: pennyshaq@163.com
3 Email address: hssjse@mail.sysu.edu.cn

93



2 A Logic for Temporal and Open Information

The open world model and its corresponding information system were de-
veloped to deal with this kind of open and temporal information in [5]. The
open world model in [5] indeed consists of a set of time points, and where corre-
sponding to each time point, a category can be classified in two ways: (1) into
two regions: “true” and “false” and (2) into 4 regions “uncertain”, “ignorant”,
“true” and “false”. Such an idea can be described by the following Figure 1:

UCT

IG F

F T

Fig. 1. Open Information Model

where the “UC”, “IG”, “T” and “F” denote “uncertain”, “ignorant”, “true”
and “false” respectively. A natural way to characterize these semantics is to
consider a fusion of classical temporal logic and 4-valued temporal logic. Similar
ideas can be found in Girard‘s linear logic [13] and D. Miller’s Int×CL (first-
order intuitionistic logic combined with classical first-order logic) [17].

We are concerned with the logic of the above open world model. Some
literature has already focused on this topic. Ju and Liu [15] explored the “open
set” notion, set up a semantic theory for a special 3-valued logic, and presented
a complete axiomatic system. Banerjee, Ju, and Tang [5] used the temporal
information systems (TISs) to represent the open information with descriptors
and the global modality. TISs can be used to reason about attribute-values of
the objects as well as their approximations relative to time. Khan et al [16]
further studied the properties of extended TISs, showing that different patterns
of flow of information give different TISs and their corresponding logics.

In this paper, we study the logic of temporal and open information from
an algebraic point of view. This algebraic structure turns out to be a variant
of pre-rough algebra in [4]. The methodology of this work can trace back
to the rough set theory. Pawlak [23] first introduced the rough set theory in
1982 as a mathematical tool to deal with vagueness and uncertainty. Due to the
advantage that no prior information is necessary about the topic dataset, rough
set theory has vast applications in machine learning, knowledge discovery, and
data mining, etc (cf. [1,6,10,29]). The algebraic research of rough equality
in rough set results in the definitions of topological quasi-Boolean algebra 5
(tqBa5), also called topological rough algebra in [18], and pre-rough algebra (cf.
[4,27]). There are various studies about intermediate algebras between tqBa5
and pre-rough algebras. Saha et al [25,26] gave the definitions of intermediate
algebras satisfy (IA1), (IA2), and (IA3) respectively. Lin et al [20] studied
the residuated algebras in the vicinity of pre-rough algebra, showed different
combinations of these residuated version algebras, and proved the decidability
of the word problem for these structures. Other intermediate algebras include
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MDS5 (cf. [9]) and Tetravalent Modal Algebra (TMA cf. [22]) with completely
different motivations.

The main contribution of this paper is that we define a De Morgan multi-
modal logic based on the algebraic results to represent open world model. More-
over, axiomatization for this logic is proposed, and the corresponding soundness
and completeness theorems are obtained. Moreover, we prove the finite model
property (FMP) and decidability via a conservative residuated extension of the
logic under consideration. Although the method is inspired by [20]. The con-
struction of the finite model is different and more simple. Further, this method
has advantages in studying the fusion and multi-modalities of non-classical
modal logics and may be extended to other relative structures.

This paper is organized as follows: in section 2, we recall some basic alge-
braic definitions and introduce the structure under consideration. In section
3, we present logics corresponding to the algebra and prove the soundness and
completeness. In section 4, we prove the finite model property based on the
sequent calculus. Finally, we give some concluding remarks in section 5.

2 Algebra

In this section, we first introduce the definition of the topic algebra and study its
algebraic properties. Then we present the corresponding simple sequent calcu-
lus and Hilbert system of the algebra with soundness and completeness proved.
Recall that a quasi-Boolean algebra (cf. [7], denoted by qBa) (A,∧,∨,¬, 0, 1),
also called De Morgan algebra in [21], is a bounded distributive lattice further
satisfying ¬¬a = a, ¬(a ∨ b) = ¬a ∧ ¬b, ¬(a ∧ b) = ¬a ∨ ¬b and ¬0 = 1 for all
a, b ∈ A.
Definition 1 ([3]) An algebra (A,∧,∨,¬, !, 0, 1) is called a topological quasi-
Boolean algebra (denoted by tqBa) if (A,∧,∨,¬, 0, 1) is a qBa and “!” is a
unary operator on A satisfying the following conditions: for all a, b ∈ A,

(N) !0 = 0; (K) !(a ∨ b) =!a∨!b; (T) a ≤!a; (4) !!a ≤!a.

Remark 2 The “!” symbol represents the open world model’s classical part
(true and false regions). Such a symbol’s usage comes from the tradition in
linear logic introduced by Girard [13].

Definition 3 An algebra (A,∧,∨,¬, P, F, 0, 1) is called a tense extension of
tqBa (denoted by tqBa.t) if (A,∧,∨,¬, P, 0, 1) and (A,∧,∨,¬, F, 0, 1) are both
tqBa and P, F satisfying the following condition: for all a, b ∈ A,

(Adj) Pa ≤ b iff a ≤ Gb; Fa ≤ b iff a ≤ Hb.

where the dualities are defined as Ga = ¬F¬a and Ha = ¬P¬a.
A tqBa5 is a tqBa additionally satisfies (5) !a ≤?!a where ?a := ¬!¬a

while an IA1 is a tqBa5 satisfies extra condition (IA1) ¬?a∨?a = 1. Here
“IA” denotes the phrase “Intermediate Algebra”. Consequently ¬?a∧?a = 0,
¬!a∨!a = 1 and ¬!a∧!a = 0. Obviously, let !A = {!a|a ∈ A}. Then BA =
(!A,∧,∨,¬, 0, 1) is a Boolean algebra. A pre-rough algebra is a tqBa5 satisfies
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three extra conditions: (IA1) ¬?a∨?a = 1, (IA2) ?(a∨ b) =?a∨?b, and (IA3) if
?a ≤?b and !a ≤!b, then a ≤ b.
Definition 4 An algebra (A,∧,∨,¬, !, P, F, 0, 1) is called a fusion of IA1
and tqBa.t (denoted by IA1×tqBa.t) if (A,∧,∨,¬, !, 0, 1) is an IA1 and
(A,∧,∨,¬, P, F, 0, 1) is a tqBa.t.

Remark 5 Let !A be defined as above. Then A = (!A,∧,∨,¬, P, F, 0, 1) is a
classical S4 tense algebra.

Example 6 The lattice in Figure 2 is an example of IA1×tqBa.t.
1

a

0

b

1 0 a b
¬ 0 1 a b
! 1 0 1 1
? 1 0 0 0
P 1 0 a b
F 1 0 a b

Fig. 2. An example of IA1×tqBa.t.

Proposition 7 Let †na = † †n−1 a, †0a = a where † ∈ {!, P, F}. The following
properties hold for any IA1× tqBa.t: for all a, b, c ∈ A,

(1) If a ≤ b, then †a ≤ †b;
(2) If †na ≤ b and †mb ≤ c, then †n+ma ≤ c;

(3) If †na ≤ 0, then †n+ma ≤ b;

(4) If †n1 ≤ b, then †n+ma ≤ b;

(5) If †na ≤ b, then †n(a ∧ c) ≤ b;

(6) †0 = 0;

(7) If †a ≤ b, then a ≤ b;

(8) If †a ≤ b, then † † a ≤ b;

(9) If ?!a ≤ b, then !a ≤ b;

(10) ¬?a∨?a = 1.

Hereafter, we use AL, L, G to denote the class of all IA1×tqBa.ts, the logic
of AL, and the sequent calculus of L respectively. A class of algebras K is
a variety if it is definable by a set of equations or satisfies the so-called HSP
property (cf. e.g. [12]).

Theorem 8 AL is a variety.

Proof. The (Adj) rule follows from the monotonicity of tense operators and
other equations, for instance, (t3) and (t6) in Ewald’s [11] intuitionistic tense
logic. Further, all other conditions of IA1×tqBa.t are clearly definable by a set
of equations. 2

3 Logic

In this section, we present simple sequent calculus S and axiomatic system H
for L respectively with soundness and completeness proved.

Definition 9 The set of formulas (terms) F is defined inductively as follows:

F ∋ α ::= p | ⊤ | ⊥ | ¬α |!α | Pα | Fα | α ∧ β | α ∨ β

where p ∈ Var such that Var is a denumerable set of propositional variables.
We define ?α = ¬!¬α, Gα = ¬F¬α and Hα = ¬P¬α. Let †nα = † †n−1
α, †0α = α where † ∈ {!, P, F}.
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Definition 10 The simple sequent calculus S for L consists of the following
axioms and rules: For n ≥ 0, i = {1, 2} and † = {!, P, F},
(1) Axioms:

(Id) α ⇒ α (D) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)

(IA1) ⊤ ⇒ ¬?α∨?α (⊤) α ⇒ ⊤ (⊥) ⊥ ⇒ α (DN) ¬¬α ⇒ α

(K) !(α ∨ β) ⇔!α∨!β (4) † †α ⇒ †α (T) α ⇒ †α (5) !α ⇒?!α

(2) Logical rules:
αi ⇒ β

α1 ∧ α2 ⇒ β
(∧L) α ⇒ β β ⇒ γ

α ⇒ β ∧ γ
(∧R)

α1 ⇒ β α2 ⇒ β

α1 ∨ α2 ⇒ β
(∨L) α ⇒ βi

α ⇒ β1 ∨ β2
(∨R)

α ⇒ β

¬β ⇒ ¬α (CP)

(3) Modal rules:

α ⇒ Hβ

Fα ⇒ β
(rHF)

Fα ⇒ β

α ⇒ Hβ
(rFH)

α ⇒ Gβ

Pα ⇒ β
(rGP)

Pα ⇒ β

α ⇒ Gβ
(rPG)

(4) Cut rule:
α ⇒ β β ⇒ γ

α ⇒ γ
(Cut)

A sequent α ⇒ β is provable in S, denoted by ⊢S α ⇒ β, if there is a
derivation of α⇒ β in S. We write ⊢S α⇔ β if ⊢S α⇒ β and ⊢S β ⇒ α. The
subscript S in ⊢S is omitted if no confusion arises.

Proposition 11 The following sequents are provable in S: for † ∈ {!, P, F},
(1) ⊢ ¬(α ∧ β) ⇔ ¬α ∨ ¬β;
(2) ⊢ ¬(α ∨ β) ⇔ ¬α ∧ ¬β;
(3) If ⊢ α ⇒ β, then ⊢ †α ⇒ †β;
(4) ⊢ †⊥ ⇔ ⊥;

(5) ⊢ P (α ∨ β) ⇔ Pα ∨ Pβ;

(6) ⊢ F (α ∨ β) ⇔ Fα ∨ Fβ;

(7) ⊢ G(α ∧ β) ⇔ Gα ∧Gβ;

(8) ⊢ H(α ∧ β) ⇔ Hα ∧Hβ;

(9) ⊢?α ∨ ¬?α ⇔ ⊤;

(10) !α ⇒ β iff α ⇒?β.

Remark 12 Let α be a tense logic S4 formula. Define f?(α) be the formula
obtained from α by replacing every propositional variables p in α by ?p. For
classical tense logic S4 denoted by S4.t, if ⊢S4.t α, then ⊢S⇒ f?α.

Definition 13 Given an IA1×tqBa.t A = (A,∧,∨,¬, !, F, P, 0, 1), an
assignment in A is a function θ : Var → A. Every assignment σ in A can
be extended homomorphically. Let σ̂(α) be the element in A denoted by α.
An algebraic model is a pair (A, σ) where A is an algebraic structure, and σ is an
assignment in A. A sequent α⇒ β is true in an algebraic model (A, σ), notation
|=A,σ α ⇒ β, if σ̂(α) ≤ σ̂(β). A sequent α ⇒ β is true in a class of algebraic
structure K, notation |=K α⇒ β, if |=A,σ α⇒ β for any algebraic model (A, σ)
with A ∈ K. A sequent rule with premises α1 ⇒ β1, . . . , αm ⇒ βm and conclu-
sion α0 ⇒ β0 preserves truth in K, if |=A,σ α0 ⇒ β0 whenever |=A,σ αi ⇒ βi
for 1 ≤ i ≤ m, for any algebraic model (A, σ) with A ∈ K.
Theorem 14 (Soundness and Completeness) S is sound and complete
with respect to AL.
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Proof. The soundness result can be obtained by the induction on the length
of proof and Proposition 7,11. For completeness result, it suffices to show that
for any sequent α ⇒ β, if ̸⊢S α ⇒ β, then ̸|=AL α ⇒ β. It can be proved by
standard construction. Let JαK = {β| ⊢S α ⇔ β}. Let A be the set of all JαK.
One defines {∧′,∨′,¬′, !′, P ′, F ′,⊤′,⊥′} on A as follows:

Jα1K ∧′ Jα2K = Jα1 ∧ α2K Jα1K ∨′ Jα2K = Jα1 ∨ α2K ⊤′ = J⊤K ⊥′ = J⊥K

¬′JαK = J¬αK !′JαK = J!αK P ′JαK = JPαK F ′JαK = JFαK
Clearly by Definition 4, (A,∧′,∨′,¬′, !′, P ′, F ′,⊤′,⊥′) is an IA1×tqBa.t.

The order is defined as Jα1K ≤′ Jα2K iff Jα1K∧′ Jα2K = Jα1K. Thus Jα1K ≤′ Jα2K
iff ⊢S α1 ⇒ α2. Define an assignment σ : Var −→ A such that σ(p) = [p].
By induction on the complexity of the formula, one shows that σ̂(α) = JαK for
any formula α. Suppose that |=AL α ⇒ β. Then σ̂(α) ≤ σ̂(β) in AL. Hence
⊢S α⇒ β, which yields a contradiction. This completes the proof. 2

Definition 15 Let A = (A,∧,∨,¬, !, 0, 1) be an IA1. The binary operation
⇒R on A is defined as follows:

a ⇒R b := (¬!a∨!b) ∧ (¬?a∨?b).

where the operation ⇒R is called the rough implication operation on A.
Definition 16 The language of the axiomatic system H of L consists of propo-
sitional variables {p, q, . . . , r}, and logical connectives {∧,∨,¬, !, P, F,⊤,⊥}.
We denote α ⇔R β := (α ⇒R β) ∧ (β ⇒R α). For † ∈ {!, P, F}, ‡ ∈ {?, H,G}
and i ∈ {1, 2}, the axiom schemes and rules of inference are listed as follows:

• Axiom schemes I

(⊤) α⇒R ⊤;
(⊥) ⊥ ⇒R α;

(DN) α⇔R ¬¬α;
(DM1) ¬(α ∧ β) ⇔R ¬α ∨ ¬β;
(DM2) ¬(α ∨ β) ⇔R ¬α ∧ ¬β;

(∧) ((α⇒R β) ∧ (α⇒R γ)) iff (α⇒R (β ∧ γ));
(∨) ((α⇒R β) ∧ (γ ⇒R β)) iff ((α ∨ γ) ⇒R β);
(D) α ∧ (β ∨ γ) ⇔R (α ∧ β) ∨ (α ∧ γ);

(HS) If ((α⇒R β) and (β ⇒R γ)), then (α⇒R γ);
(K∨) †(α ∨ β) ⇔R (†α ∨ †β);
(CP) (α⇒R β) ⇒R (¬β ⇒R ¬α);

• Axiom schemes II and Rules of
inference

(T) α⇒R †α;
(4) † † α⇒R †α;
(5) !α⇒R?!α;

(IA1) ?α ∨ ¬?α⇔R ⊤;
(PG) PGα⇒R α;
(GP) α⇒R GPα;
(FH) FHα⇒R α;
(HF) α⇒R HFα;
(MP) If α and (α⇒R β), then β;
(Gen) If α, then ‡α.

A formula α is provable in H (denoted by ⊢H α) is defined naturally.

Remark 17 It has been proved in [20] that the rough implication operation
defined on tqBa5s satisfies the property (P) in [2] (also called (E) in [14]): for
any a, b ∈ A, a⇒R b = 1 iff a ≤ b. Then one has the following rules:

(Res⇒R) α ∧ β ⇒R γ iff β ⇒R (α ⇒R γ); (K⇒R) ‡ (α ⇒R β) ⇒R (‡α ⇒R ‡β).
Lemma 18 For any formulas α and β, ⊢S α⇒R β iff ⊢H α⇒R β.

Proof. The right-to-left direction is easy and can be checked regularly in S.
For another direction, it suffices to show that all rules in S are preserved in H.
We prove such a result by induction on the length of proof. The basic cases are
trivial. For the inductive steps, we take the rule (rPG) as an example, others
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can be treated similarly. Assume ⊢S Pα ⇒ β, then by induction hypothesis,
one has ⊢H Pα ⇒R β. One suffices to show that ⊢H α ⇒R Gβ. By (Gen),
one has ⊢H G(Pα⇒R β). By (K⇒R

) and (MP), one obtains ⊢H GPα⇒R Gβ.
Clearly ⊢H α ⇒R GPα due to (GP). Therefore by (HS) and (MP), one gets
⊢H α⇒R Gβ. 2

Theorem 19 (Soundness and Completeness) H is sound and complete
with respect to AL.

Proof. Clearly, the implication of H satisfies property (P). Hence by Theorem
14 for any α⇒R β, ⊢S ⊤ ⇒ α⇒R β iff ⊢H α⇒R β. For any formula α, ⊢H α
iff ⊢H ⊤ ⇒R α iff ⊢S ⊤ ⇒R α. By Theorem 14, ⊢H α iff |=AL ⊤ ⇒R α. Thus
H is sound and complete with respect to AL. 2

4 Finite Model Property

In this section, we first consider a residuated but conservative extension of AL.
Further, we prove the FMP of such an extension’s sequent calculus rG, that
is, we will show that if ⊬rG α ⇒ β, then there is a finite algebra model M
s.t. ̸|=M α ⇒ β. Then, we obtain its decidability. Since such an extension is
conservative, one has L is decidable as well. Note that the “⊢” symbol in this
section means “⊢rG” if no confusion arises. First, we introduce some definitions
related to the residuated extension.

Definition 20 ([20]) An algebra (A, ·,→, 0, 1) is called a residuated bounded
commutative groupoid (denoted by bcrg) if (A, 0, 1) is a bounded groupoid and
“·”, “→” are binary operations on A satisfying the following conditions:

(Res) a · b ≤ c iff a ≤ b → c; (Com) a · b = b · a.
Definition 21 An algebra (A,∧,∨, !, P, F, ·,→, 0, 1) is called a residuated
IA1×tqBa.t (denoted by rIA1×tqBa.t) if (A, ·,→, 0, 1) is a bcrg and
(A,∧,∨,¬, !, P, F, 0, 1) is an IA1×tqBa.t where ¬a = a→ 0.

Proposition 22 The following properties hold for any rIA1× tqBa.t: for all
a, b ∈ A:
(1) ¬¬a = a;

(2) ¬(a ∨ b) = ¬a ∧ ¬b;
(3) ¬(a ∧ b) = ¬a ∨ ¬b;
(4) a ≤ b implies ¬b ≤ ¬a.

Hereafter, we use rAL and rL to denote the class of all rIA1×tqBa.ts and
the logic of rAL respectively.

Lemma 23 Every IA1× tqBa.t can be expanded to a rIA1× tqBa.t.

Proof. For any IA1× tqBa.t (A,∧,∨,¬, !, P, F, 0, 1), it suffices to show that
one can define · and→ satisfying (1) ¬a = a→ 0. (2) for all a, b ∈ A, a·b = b·a;
(3) a · b ≤ c iff a ≤ b→ c. “·”, “→” are operations on A defined as follow:

a · b =
{
0, if a ≤ ¬b
1, otherwise

a→ b =

{¬a, if b ̸= 1

1, otherwise

(1) Let b = 0, one has a→ 0 = ¬a.
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(2) Assume a · b = 0 i.e. a ≤ ¬b, then one has b ≤ ¬a by double negation law
and Proposition 22 (4). Consequently, a · b = 0 = b · a. Assume b · a = 1 i.e.
a ̸≤ ¬b, then one has b ̸≤ ¬a by similar method. Consequently, a·b = 1 = b·a.

(3) Assume c = 1, then a · b ≤ 1 iff a ≤ b → 1 = 1. Assume c ̸= 1. If a · b ≤ c,
then one has a · b = 0 and a ≤ ¬b = b→ c. Consequently, one has a ≤ b→ c.
If a ≤ b→ c, then b→ c = ¬b and a ≤ ¬b. Further, one has a · b = 0 = b · a.
Consequently, one has a · b ≤ c.

Therefore, the constructed algebra is a rIA1× tqBa.t. 2

In what follows, we present the rG for rL.

Definition 24 The set of formulas (terms) F is defined inductively as follows:

F ∋ α ::= p | ⊤ | ⊥ |!α |?α | Pα | Fα | Hα | Gα | α ∧ β | α ∨ β | α · β | α → β

where ¬α = α→ ⊥.
Definition 25 Let {⋆, §, •, ◦} be the structure operators for {·, !, P, F} respec-
tively. The set of all formula structures FS is defined inductively as follows:

FS ∋ Γ ::= α | (Γ1 ⋆ Γ2) | §Γ | •Γ | ◦Γ

where α ∈ F . Let ⊙n∆ = ⊙⊙n−1 ∆,⊙0∆ = ∆ where ⊙ ∈ {§, ◦, •}. A sequent
is an expression of the form Γ[α] ⇒ β, where Γ is a formula structure and
α, β are formulas. Let α ⇔ β denotes α ⇒ β and β ⇒ α. A context is a
formula structure Γ[−] with a designated position [−] which can be filled with
a formula structure. In particular, a single position [−] is a context. Let Γ[∆]
be a formula structure obtained from Γ[−] by substituting ∆ for [−]. For any
formula structure Γ, the formula f(Γ) is defined inductively as follows:

f(α) = α f(Γ1⋆Γ2) = f(Γ1)·f(Γ2) f(§Γ) =!f(Γ) f(•Γ) = Pf(Γ) F (◦Γ) = Ff(Γ)

Example 26 Let expression Γ[−] = §5 •10 ((− ⋆ ¬q) ⋆ p ∧ q) be a context. If
we replace the formula structure ∆ = •(p ⋆ (q ⋆ ◦q)) for the position − in Γ[−],
we get the formula structure Γ[∆] = §5 •10 ((•(p ⋆ (q ⋆ ◦q)) ⋆ ¬q) ⋆ p ∧ q).
Definition 27 The Gentzen-style sequent calculus rG for rL consists of the
following axioms and rules: for i = {1, 2}, ⊙ = {§, •, ◦} and the corresponding
† = {!, P, F},
(1) Axioms:

(Id) α ⇒ α (D) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)

(⊤) Γ[α] ⇒ ⊤ (⊥) Γ[⊥] ⇒ α (DN) ¬¬α ⇒ α

(2) Logical rules:
Γ[αi] ⇒ β

Γ[α1 ∧ α2] ⇒ β
(∧L) Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(∧R)

Γ[α1] ⇒ β Γ[α2] ⇒ β

Γ[α1 ∨ α2] ⇒ β
(∨L) Γ ⇒ αi

Γ ⇒ α1 ∨ α2
(∨R)

∆ ⇒ α Γ[β] ⇒ γ

Γ[∆ ⋆ α → β] ⇒ γ
(→ L)

α ⋆ Γ ⇒ β

Γ ⇒ α → β
(→ R)

Γ[α ⋆ β] ⇒ γ

Γ[α · β] ⇒ γ
(·L) Γ ⇒ α ∆ ⇒ β

Γ ⋆∆ ⇒ α · β (·R)
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(3) Modal rules:

Γ[⊙α] ⇒ β

Γ[†α] ⇒ β
(†L) Γ ⇒ α

⊙Γ ⇒ †α (†R)
Γ[α] ⇒ β

Γ[§?α] ⇒ β
(?L)

§Γ ⇒ α

Γ ⇒?α
(?R)

Γ[α] ⇒ β

Γ[•Gα] ⇒ β
(GL)

•Γ ⇒ α

Γ ⇒ Gα
(GR)

Γ[α] ⇒ β

Γ[◦Hα] ⇒ β
(HL)

◦Γ ⇒ α

Γ ⇒ Hα
(HR)

(4) Structural rules:

Γ[∆1 ⋆∆2] ⇒ α

Γ[∆2 ⋆∆1] ⇒ α
(Com)

§Γ1 ⋆ Γ2 ⇒ ⊥
Γ1 ⋆ §Γ2 ⇒ ⊥ (Dual§)

•Γ1 ⋆ Γ2 ⇒ ⊥
Γ1 ⋆ ◦Γ2 ⇒ ⊥ (Dual•◦)

◦Γ1 ⋆ Γ2 ⇒ ⊥
Γ1 ⋆ •Γ2 ⇒ ⊥ (Dual◦•)

§∆ ⋆ §∆ ⇒ ⊥
§∆ ⇒ ⊥ (IA1)

Γ[⊙∆] ⇒ β

Γ[∆] ⇒ β
(T)

Γ[⊙∆] ⇒ β

Γ[⊙2∆] ⇒ β
(4)

(5) Cut rule:
∆ ⇒ α Γ[α] ⇒ β

Γ[∆] ⇒ β
(Cut)

For brevity’s sake, the symbols “⊙” and “†” are in one-to-one correspon-
dence. Taking (†L) for example, one obtains (!L), (PL) and (FL) from (†L),
with “⊙” in the upper sequent of (†L) are “§”, “•” and “◦”, and “†” in lower
sequent of (†L) are “!”, “P” and “F”, respectively.

Remark 28 Note that the cut-elimination does not hold in rG because of the
axiom (D). Hence it does not have the standard subformula property.

Proposition 29 The following properties hold in rG: for † = {!, P, F},
(1) ⊢ α⇒ β iff ⊢ ¬β ⇒ ¬α;

(2) ⊢ α⇒ ¬¬α;

(3) (α ∧ β) ∨ (α ∧ γ) ⇒ α ∧ (β ∨ γ);

(4) ⊢!α⇔ ¬?¬α;

(5) ⊢ Pα⇔ ¬H¬α;

(6) ⊢ Fα⇔ ¬G¬α;

(7) ⊢ †⊥ ⇔ ⊥;

(8) ⊢ Pα⇒ β iff ⊢ α⇒ Gβ and ⊢ Fα⇒ β
iff ⊢ α⇒ Hβ

(9) ⊢ α⇒ †α
(10) ⊢ † † α⇒ †α;

(11) ⊢!α⇒?!α;

(12) If ⊢ α⇒ β, then ⊢ †α⇒ †β;

(13) ⊢ †(α ∨ β) ⇔ †α ∨ †β;

(14) ⊢ ¬(α ∧ β) ⇔ ¬α ∨ ¬β;

(15) ⊢?α ∨ ¬?α⇔ ⊤;

(16) ⊢ γ ⇒ α→ β iff α · γ ⇒ β.

Proof. We only provide the proofs for (5) and (15), others can be treated
similarly. For (5), one has:

α⇒ α ⊥ ⇒ ⊥
(→ L)

α ⋆ ¬α⇒ ⊥
(HL)

α ⋆ ◦H¬α⇒ ⊥
(Com)

◦H¬α ⋆ α⇒ ⊥
(Dual◦•)

H¬α ⋆ •α⇒ ⊥
(†L)

H¬α ⋆ Pα⇒ ⊥
(→ R)

Pα⇒ ¬H¬α

α⇒ α
(†R)

•α⇒ Pα ⊥ ⇒ ⊥
(→ R)

•α ⋆ ¬Pα⇒ ⊥
(Dual•◦)

α ⋆ ◦¬Pα⇒ ⊥
(→ R)

◦¬Pα⇒ ¬α
(HR)

¬Pα⇒ H¬α ⊥ ⇒ ⊥
(→ L)

¬Pα ⋆ ¬H¬α⇒ ⊥
(→ R)

¬H¬α⇒ ¬¬Pα ¬¬Pα⇒ Pα
(Cut)

¬H¬α⇒ Pα
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For (15), it suffices to show ⊢ ⊤ ⇒⊢?α∨¬?α, first, one has ⊢?α∧¬?α⇒ ⊥:
α⇒ α

(?L)
§?α⇒ α

(4)
§2?α⇒ α

(?R)
§?α⇒?α ⊥ ⇒ ⊥

(→ R)
§?α ⋆ ¬?α⇒ ⊥

(4)
§2?α ⋆ ¬?α⇒ ⊥

(Dual§)
§?α ⋆ §¬?α⇒ ⊥

(∧L × 2)
§(?α ∧ ¬?α) ⋆ §(?α ∧ ¬?α) ⇒ ⊥

(IA1)
§(?α ∧ ¬?α) ⇒ ⊥

(T)
?α ∧ ¬?α⇒ ⊥

Then, one has ⊢ ¬(?α ∧ ¬?α)⇒?α ∨ ¬?α:
¬?α⇒ ¬?α

(∨R)
¬?α⇒ ¬?α∨?α

¬¬?α⇒?α
(∨R)

¬¬?α⇒ ¬?α∨?α
(∨L)

¬?α ∨ ¬¬?α⇒ ¬?α∨?α ¬(?α ∧ ¬?α) ⇒ ¬?α ∨ ¬¬?α
(Cut)

¬(?α ∧ ¬?α) ⇒ ¬?α∨?α

Finally, one has

?α ∧ ¬?α⇒ ⊥
(Prop29 (1))

¬⊥ ⇒ ¬(?α ∧ ¬?α) ⊤ ⇒ ¬⊥
(Cut)

⊤ ⇒ ¬(?α ∧ ¬?α) ¬(?α ∧ ¬?α) ⇒ ¬?α∨?α
(Cut)

⊤ ⇒ ¬?α∨?α
2

Theorem 30 (Soundness and Completeness) rG is sound and complete
with respect to rAL.

Proof. The proof method is similar to Theorem 14. Note that the complete-
ness result can be obtained by the FMP result in the later part as well. 2

Lemma 31 (Conservative Extension) For any sequent α ⇒ β in G, ⊢G
α⇒ β iff ⊢rG α⇒ β.

Proof. By Theorem 14, ⊢G α ⇒ β iff |=AL α ⇒ β. While by Theorem 30,
⊢rG α ⇒ β iff |=rAL α ⇒ β. Hence one suffices to show |=AL α ⇒ β iff
|=rAL α⇒ β. The left to the right direction is easy since every rIA1× tqBa.t
is a IA1× tqBa.t. Conversely assume that ̸|=AL α ⇒ β, then by Lemma 23,
one obtains a rIA1× tqBa.t M such that ̸|=M α⇒ β. Therefore ̸|=rAL α⇒ β.2

In what follows, we are going to prove the FMP of rG.

Definition 32 Let T be a set of formulas, a formula structure Γ is a T -formula
structure if all formulas appearing in it belong to T . Let FS(T ) be the set
of all T -formula structure. Let the notation c(T ) denotes the closure of T
under (⊤,⊥,∧,∨,¬) and subformulas. A sequent Γ ⇒ β is a T -sequent if all
formulas appearing in it belong to T . One has ⊢ Γ⇒T β if there is a derivation
of Γ⇒T β s.t. all sequents appearing in it are T -sequent.
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Lemma 33 (Interpolation) If ⊢ Γ[∆] ⇒T β, then there is a γ ∈ T such
that ⊢ ∆ ⇒T γ and ⊢ Γ[γ] ⇒T β additionally for ∆ = ⊙∆′ and ⊙ = {§, •, ◦}
⊢ ⊙γ ⇒T γ.
Proof. We proceed by induction on the length of proof of Γ[∆] ⇒T β. The
proof for axioms is obvious. Take (⊥) as an example, that is Γ[⊥]⇒ α. Since
⊥ ∈ T , then ⊥ is the required interpolant. Assuming that the end sequent is
obtained by an arbitrary rule (R), let us consider the following cases, others
can be treated similarly:

(R)=(∧L). Assume the premise is ⊢ Γ[∆′[αi]] ⇒T β and the conclusion is
⊢ Γ[∆′[α1 ∧ α2]] ⇒T β. Then by the induction hypothesis, there is a γ ∈ T
such that (1) ⊢ ∆′[αi]⇒T γ, ⊢ Γ[γ]⇒T β and ⊢ ⊙γ ⇒T γ. Then from (1) by
(∧L), one obtains ⊢ ∆′[α1 ∧α2]⇒T γ. Therefore γ is the required interpolant.
The (∨R), (→R), (†L), (?R), (HR), (GR), (Com) cases can be treated similarly.

(R)=(∧R). Assume the premises are ⊢ Γ[∆] ⇒T α and ⊢ Γ[∆] ⇒T β.
By induction hypothesis, there are γ1, γ2 ∈ T such that (1) ⊢ ∆ ⇒T γ1, (2)
⊢ Γ[γ1] ⇒T α, (3) ⊢ ∆ ⇒T γ2, (4) ⊢ Γ[γ2] ⇒T β, (5) ⊢ ⊙γ1 ⇒T γ1 and (6)
⊢ ⊙γ2 ⇒T γ2. By applying (∧L) to (2) and (4), one has (7) ⊢ Γ[γ1 ∧ γ2]⇒T α
and (8) ⊢ Γ[γ1 ∧ γ2] ⇒T β. Next, by applying (∧R) to (7) and (8), one has
⊢ Γ[γ1 ∧ γ2] ⇒T α ∧ β. Again by applying (∧R) to (1) and (3), one has
⊢ ∆ ⇒T γ1 ∧ γ2. Finally, we apply (∧L) and (∧R) to (5) and (6), one has
⊢ ⊙(γ1 ∧ γ2) ⇒T γ1 ∧ γ2. Therefore, γ1 ∧ γ2 is the required interpolant. The
(∨L) case can be treated similarly.

(R)=(→L). Assume the premises are ⊢ ∆′ ⇒T α and ⊢ Γ[σ]⇒T β, and the
conclusion is ⊢ Γ[∆′⋆α→ σ]⇒T β. Subcase (i): if ∆′⋆α→ σ is contained in ∆
i.e. ∆ = ∆′′[∆′ ⋆α→ σ], then premises are ⊢ ∆′ ⇒T α and ⊢ Γ′[∆′′[σ]]⇒T β.
By induction hypothesis and (→L), one has the interpolant for ∆′′[σ] is the
required interpolant. Subcase (ii): if ∆ is contained in ∆′ ⋆ α → σ, then
∆′ = ∆′′[∆] or ∆ = α→ σ. If ∆′ = ∆′′[∆], by induction hypothesis and (→L),
one has the interpolant for ∆ in ∆′′[∆] ⇒T α is the required interpolant. If
∆ = α → σ, then α → σ is the required interpolant. Subcase (iii): if ∆
and ∆′ ⋆ α → σ are independent, then the premises are ⊢ ∆′ ⇒T α and
⊢ Γ′[σ][∆] ⇒T β, by induction hypothesis and (→L), one has the interpolant
for ∆ in Γ′[σ][∆]⇒T β is the required interpolant. The (·L), (·R), (?L), (HL)
and (GL) cases can be treated similarly.

(R)=(†R). Assume the premise is ⊢ Γ ⇒T α, then the conclusion is ⊢
⊙Γ ⇒T †α. Subcase (i): Γ = Γ′[∆], then by induction hypothesis, there is a
γ ∈ T such that (1) ⊢ ∆ ⇒T γ, (2) ⊢ Γ′[γ] ⇒T α and (3) ⊢ ⊙γ ⇒T γ. By
applying (†R) to (2), one has ⊢ ⊙Γ′[γ] ⇒T †α. Therefore, γ is the required
interpolant. Subcase (ii): ∆ = ⊙γ, then †α is the required interpolant.

(R)=(Dual§). Assume the premise is ⊢ §Γ1 ⋆Γ2 ⇒T ⊥, then the conclusion
is ⊢ Γ1 ⋆ §Γ2 ⇒T ⊥. Subcase (i): ∆ is contained in Γ1 or Γ2, then by induction
hypothesis and (Dual), one has the interpolant for ∆ is the required interpolant.
Subcase (ii): ∆ = Γ1 ⋆ §Γ2, then ⊥ is the required interpolant. Subcase (iii):
∆ = §Γ2, then by induction hypothesis, there is a γ ∈ T such that (1) ⊢
§Γ2 ⇒T γ, (2) ⊢ Γ2 ⋆ γ ⇒T ⊥ and (3) ⊢ §γ ⇒T γ. By (T) and (→L) with
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12 A Logic for Temporal and Open Information

⊢ ⊥ ⇒T ⊥ on (3), one has (4) ⊢ §γ ⋆¬γ ⇒T ⊥. Further by (Dual) and (→R),
one has (5) ⊢ §¬γ ⇒T ¬γ. By (→R) on (2), one has (6) ⊢ Γ2 ⇒T ¬γ. By
(Cut) on (5) and (6), one has ⊢ §Γ2 ⇒T ¬γ. One has (7) ⊢ γ ⋆ ¬γ ⇒T ⊥. By
(Cut) on (7) and ⊢ Γ1 ⇒T γ, one has ⊢ Γ1 ⋆¬γ ⇒T ⊥, then ¬γ is the required
interpolant. The (Dual•◦), (Dual◦•) and (IA1) cases can be treated similarly.

(R)=(T). Assume the premise is ⊢ Γ[⊙∆′] ⇒T β, then the conclusion is
⊢ Γ[∆′]⇒T β. Subcase (i): ∆ is contained in ∆′, then by induction hypothesis,
there is a γ ∈ T such that (1) ⊢ ∆ ⇒T γ, (2) ⊢ Γ[⊙∆′′[γ]] ⇒T β and
(3) ⊢ ⊙γ ⇒T γ. Next, by applying (T) to (2), one has ⊢ Γ[∆′′[γ]] ⇒T β.
Therefore, γ is the required interpolant. Subcase (ii): ∆′ is contained in ∆,
then the interpolant for ∆ is the required interpolant. Subcase (iii): ∆′ and ∆
are independent, then the interpolant for ∆ is the required interpolant.

(R)=(4). Assume the premise is ⊢ Γ[⊙∆′] ⇒T β, then the conclusion is
⊢ Γ[⊙2∆′] ⇒T β. Subcase (i): ∆ is contained in ∆′ but ∆ ̸= ⊙∆′, then
the interpolant for ∆ is the required interpolant. Subcase (ii): ∆ = ⊙∆′,
then by induction hypothesis, there is a γ ∈ T such that (1) ⊢ ∆ ⇒T γ, (2)
⊢ Γ[γ] ⇒T β and (3) ⊢ ⊙γ ⇒T γ. By applying (Cut) to (2) and (3), one has
⊢ Γ[⊙γ]⇒T β, then γ is the required interpolant. Subcase (iii): ∆′ is contained
in ∆ or independent, then the interpolant for ∆ is the required interpolant.

(R)=(Cut). Assume the premises are (1) ⊢ ∆′ ⇒T α and (2) ⊢ Γ[α]⇒T β,
then the conclusion is ⊢ Γ[∆′] ⇒T β. Subcase (i): ∆ is contained in ∆′ i.e.
∆′ = ∆′′[∆], then by induction hypothesis and (Cut), one has the interpolant
for the ⊢ ∆′′[∆]⇒T α is the required interpolant. Subcase (ii): ∆′ is contained
in ∆ i.e. ∆ = ∆′′[∆′], then by induction hypothesis and (Cut), one has the
interpolant for the ⊢ Γ[∆′′[α]]⇒T β is the required interpolant. Subcase (iii):
∆ and ∆′ are independent, then Γ[α] = Γ′[α][∆], by induction hypothesis and
(Cut), the interpolant for the ∆ in Γ′[α][∆] is the required interpolant. 2

Remark 34 The above interpolation lemma’s additional content: ⊢ ⊙γ ⇒T γ
where ⊙ = {§, •, ◦} is specially designed for solving the case of (R)=(4) when
∆ = ⊙∆′. Such a lemma is rooted in Buszkowski’s work [8] towards finite
embeddability property and FMP of nonassociative Lambek calculus and its
various lattice extensions. Lin [19,20] further studied this lemma to prove some
non-classical modal logics’ FMP or SFMP.

Definition 35 A formula α is a letter if α ∈ Var∪{⊤,⊥} or α = †β for some
† ∈ F where † ∈ {!, P, F, ?, G,H}. Let Le be the set of all letters. A formula α
is called a literal if α ∈ Le or α = ¬β for some β ∈ Le. The set of all literals
under language L is denoted by Li. A formula α is in disjunction normal form
(DNF) if α is of the form

∨
i<l

∧
j<k βi,j where βi,j ∈ Li and l, k > 0.

Let T be a set of formulas such that T = c(T ). Suppose that Tli ⊆ T be
the set of all literals in T . We say T is finitely based if Tli is finite. For any
formula α ∈ T , there is a DNF formula β ∈ T such that α is equivalent to
β under distributive, De morgan and double negation laws. If one omits the
repetition of literals, then one has a unique formula in DNF which is equivalent
to α. We denote the unique DNF formula corresponding to α by dfT (α). Let

104



Wang, Lin, and Ju 13

df(T ) = {dfT (α) | α ∈ T }. If Tli is finite, then df(T ) is finite.
Corollary 36 If ⊢ Γ[∆]⇒T β, then there is a γ ∈ df(T ) such that ⊢ ∆⇒T γ
and ⊢ Γ[γ]⇒T β.
Proof. Follows from the Lemma 33 and the definitions of df(T ). 2

Definition 37 We define ≤T on FS(T ) as follows: for ∆1,∆2 ∈ FS(T ),
∆1 ≤T ∆2 iff for any context Γ[−] and formula φ ∈ T , if Γ[∆2] ⇒T φ, then
Γ[∆1]⇒T φ.

Let ∆1 ≈T ∆2 be ∆1 ≤T ∆2 and ∆2 ≤T ∆1, then ≈T is an equivalence
relation. Let [α]T = {∆ | ∆ ≈T α &∆ ∈ FS(T )} for any α ∈ T . Let
[T ] = {[α]T | α ∈ T )}. Since [α]T = [dfT (α)]T and the number of [dfT (α)]T is
finite, [T ] is finite.
Lemma 38 For any ∆ ∈ FS(T ), there is a α ∈ df(T ) such that ∆ ≈T α.
Proof. For any Γ[−] and γ ∈ T , assume that ⊢ Γ[∆] ⇒T γ. By corollary 36,
there is a βj ∈ df(T ) such that ⊢ ∆⇒T βj and ⊢ Γ[βj ]⇒T γ. Obviously, the
number of βj is finite. Let δ be all the conjunctions of βj . Clearly δ ∈ T . By
(∧R) and (∧L), one has (1) ⊢ ∆ ⇒T δ and (2) ⊢ Γ[δ] ⇒T γ. Then dfT (δ) ∈
df(T ). Let θ = dfT (δ), then one has (3) ⊢ ∆ ⇒T θ and (4) ⊢ Γ[θ] ⇒T γ.
Therefore, the assumption ⊢ Γ[∆] ⇒T γ implies (4) ⊢ Γ[θ] ⇒T γ, then one
has θ ≤T ∆. Further, assume that (5) ⊢ Γ′[θ] ⇒T σ for some context Γ′[−]
and formula σ ∈ T . By applying (Cut) to (3) and (5), one has ⊢ Γ′[∆]⇒T σ.
Therefore, one has ∆ ≤T θ. Consequently, one has ∆ ≈T θ. 2

Definition 39 Let Q = ([T ],∧∗,∨∗,¬∗, !∗, P ∗, F ∗, H∗, G∗, ·∗,→∗,⊥∗,⊤∗) be
the quotient algebra of [T ] where all operations are defined as follows: for any
[α]T , [β]T ∈ [T ], ⊙ = {§, •, ◦} and their corresponding formulas † = {!, P, F},

(1) ⊤∗ = [⊤]T ;
(2) ⊥∗ = [⊥]T ;
(3) [α]T ∧∗ [β]T = [α ∧ β]T ;
(4) [α]T ∨∗ [β]T = [α ∨ β]T ;
(5) †∗[α]T = [γ]T s.t. γ ≈T ⊙α;
(6) H∗[α]T = [γ1 ∨ . . . ∨ γn]T s.t. F ∗[γi]T ≤∗ [α]T for any i ∈ {1, . . . , n};
(7) G∗[α]T = [γ1 ∨ . . . ∨ γn]T s.t. P ∗[γi]T ≤∗ [α]T for any i ∈ {1, . . . , n};
(8) ?∗[α]T = [γ1 ∨ . . . ∨ γn]T s.t. !∗[γi]T ≤∗ [α]T for any i ∈ {1, . . . , n};
(9) [α]T ·∗ [β]T = [γ]T s.t. γ ≈T α ⋆ β;
(10) [α]T →∗ [β]T = [γ1 ∨ . . . ∨ γn]T s.t. [α]T ∧∗ [γi]T ≤∗ [β]T for any i ∈

{1, . . . , n}.
Note that the symbols “†” and “⊙” in (6) are in one-to-one correspondence
similar to Definition 27. We define [α]T ≤∗ [β]T as [α]T ∧∗ [β]T = [α]T .

Lemma 40 All the operations defined in Definition 39 are well-defined.
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14 A Logic for Temporal and Open Information

Proof. We only provide the cases for operations of †∗ ∈ {!∗, P ∗, F ∗}, others
can be treated similarly. Clearly, by the definition of †∗[α]T and Lemma 38,
[γ]T exists and is unique. Further, let [α1]T = [α2]T , one can show that
†∗[α1]T = †∗[α2]T . Since α1 ∈ [α1]T , then α1 ∈ [α2]T . By the definition of the
equivalence class, one has α1 ≈T α2. Given any context Γ[−] and formula β ∈
T . Assume that ⊢ Γ[⊙α1]⇒T β, then one has ⊢ Γ[⊙α2]⇒T β. Therefore, one
has ⊙α2 ≤T ⊙α1. By similar argument, one has ⊙α1 ≤T ⊙α2. Consequently,
one has ⊙α1 ≈T ⊙α2. Assume †∗[α1]T = [γ]T such that γ ≈T ⊙α1, then
γ ≈T ⊙α2 and [γ]T = †∗[α2]T . Therefore †∗[α1]T = †∗[α2]T . 2

Lemma 41 The following conditions are equivalent for all α, β ∈ T :
(1) α ≤T β; (2) ⊢ α ⇒T β; (3) [α]T ≤∗ [β]T .

Proof. For (1) and (2), assume ⊢ α ⇒T β. Given any context Γ[−] and
formula φ ∈ T , assume that ⊢ Γ[β] ⇒T φ. By (Cut) one has ⊢ Γ[α] ⇒T φ.
Therefore, one has α ≤T β. Conversely, assume α ≤T β. Since ⊢ β ⇒T β,
then one has ⊢ α ⇒T β. For (2) and (3), Assume [α]T ≤∗ [β]T , then one has
[α]T ∧∗ [β]T = [α]T . Since [α]T ∧∗ [β]T = [α∧β]T , then one has [α∧β]T = [α]T .
By the definition of the equivalence class, one has α ∧ β ≈T α. Further, one
has α ≤T α ∧ β and α ∧ β ≤T β. Therefore one has α ≤T β. Conversely,
assume α ≤T β, then one has ⊢ α ⇒T β. By (∧R), one has ⊢ α ∧ β ⇔T α.
Therefore, one has [α ∧ β]T = [α]T = [α]T ∧∗ [β]T . Therefore, [α]T ≤∗ [β]T .
Consequently, α ≤T β iff [α]T ≤∗ [β]T . 2

Lemma 42 For any [α]T , [β]T ∈ [T ], †∗ ∈ {!∗, P ∗, F ∗}, the following condi-
tions hold for Q:

(Adj1) P
∗[α]T ≤∗ [β]T iff [α]T ≤∗ G∗[β]T ;

(Adj2) F
∗[α]T ≤∗ [β]T iff [α]T ≤∗ H∗[β]T ;

(Adj3) !∗[α]T ≤∗ [β]T iff [α]T ≤∗ ?∗[β]T ;
(Res) [α]T ·∗ [β]T ≤∗ [γ]T iff [α]T ≤∗ [β]T →∗ [γ]T ;
(Com) [α]T ·∗ [β]T = [β]T ·∗ [α]T ;
(Mon) If [α]T ≤∗ [β]T , then †∗[α]T ≤∗ †∗[β]T ;

(N) †∗⊥∗ = ⊥∗;
(K) †∗([α]T ∨∗ [β]T ) = †∗[α]T ∨∗ †∗[β]T ;
(T) [α]T ≤∗ †∗[α]T ;
(4) †∗ †∗ [α]T ≤∗ †∗[α]T ;

(IA1) If !∗[α]T ·∗ !∗[α]T = ⊥∗, then !∗[α]T = ⊥∗;
(Dual§) If !∗[α]T ·∗ [β]T = ⊥∗, then [α]T ·∗!∗[β]T = ⊥∗;
(Dual•◦) If P ∗[α]T ·∗ [β]T = ⊥∗, then [α]T ·∗ F ∗[β]T = ⊥∗;
(Dual◦•) If F ∗[α]T ·∗ [β]T = ⊥∗, then [α]T ·∗ P ∗[β]T = ⊥∗.

Proof. We only provide the proofs for the following cases. (Com) and (N) are
easy to check, (Res), (Adji) i ∈ {2, 3} are similar to (Adj), and (IA1), (Dual•◦)
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and (Dual◦•) are similar to (Dual§).

(Adj) Assume that P ∗[α]T ≤∗ [β]T . Let P ∗[α]T = [γ]T such that ⊢ •α ≈T γ, then
by Lemma 41 one has •α⇒T β. Let G∗[β]T = [δ∨ . . .∨δn]T s.t. P ∗[δi]T ≤∗
[β]T for any i ∈ {1, . . . , n}. By (∨R), one has ⊢ α⇒T δ∨. . .∨δn∨α. Clearly,
α is one of the δi. Therefore, [α]T ≤∗ G∗[β]T . Assume that [α]T ≤∗ G∗[β]T .
Then one has ⊢ α⇒T δ ∨ . . .∨ δn. By (∨R), one has ⊢ •(δ ∨ . . .∨ δn)⇒T β.
By applying (Cut), one has ⊢ •α⇒T β. Therefore, one has P ∗[α]T ≤∗ [β]T .

(Mon) Assume [α]T ≤∗ [β]T . Let †∗[α]T = [γ1]T and †∗[β]T = [γ2]T such that
⊙α ≈T γ1 and ⊙β ≈T γ2. It suffices to prove that ⊢ γ1 ⇒T γ2. By Lemma
41, one obtains ⊢ α ⇒T β. By Lemma 41 and Definition 37, ⊢ ⊙β ⇒T γ2.
Hence by (Cut), one obtains ⊢ ⊙α⇒T γ2. Therefore ⊢ γ1 ⇒T γ2.

(K) Clearly, [α]T ≤∗ [α]T ∨∗ [β]T and [β]T ≤∗ [α]T ∨∗ [β]T . By (Mon), one
obtains †∗[α]T ≤∗ †∗([α]T ∨∗ [β]T ) and †∗[β]T ≤∗ †∗([α]T ∨∗ [β]T ). Then
†∗[α]T ∨∗ †∗[β]T ≤∗ †∗([α]T ∨∗ [β]T ). Let [γ1]T = †∗[α]T , [γ2]T = †∗[β]T
and [γ3]T = †∗[α ∨ β]T s.t. γ1 ≈T ⊙α, γ2 ≈T ⊙β and γ3 ≈T ⊙(α ∨ β). By
Lemma 41, one has ⊢ ⊙α⇒T γ1 and ⊢ ⊙β ⇒T γ2. By (∨R) and (∨L), one
has ⊢ ⊙(α ∨ β) ⇒T γ1 ∨ γ2. By γ3 ≈T ⊙(α ∨ β) and Lemma 41, one has
†∗([α]T ∨∗ [β]T ) ≤∗ †∗[α]T ∨∗ †∗[β]T .

(T) Let †∗[α]T = [γ]T such that γ ≈T ⊙α. It suffices to prove that ⊢ α ⇒T γ.
Clearly, ⊢ ⊙α⇒T γ. Then by (T), one obtains ⊢ α⇒T γ.

(4) Let †∗[α]T = [θ1]T and †∗[θ1]T = [θ2]T such that θ1 ≈T ⊙α and θ2 ≈T ⊙θ1.
It suffices to show θ2 ≤T θ1 by Lemma 41. Assume ⊢ Γ[θ1] ⇒T φ for some
context Γ[−] and φ ∈ T . Hence ⊢ Γ[⊙α] ⇒T φ. Then by (4), one obtains
⊢ Γ[◦(⊙α)]⇒T φ. Whence ⊢ Γ[⊙θ1]⇒T φ. Therefore ⊢ Γ[θ2]⇒T φ.

(Dual§) Assume !∗[α]T ·∗ [β]T = ⊥∗. Let !∗[α]T = [γ1]T and !∗[β]T = [γ2]T such
that γ1 ≈T §α and γ2 ≈T §β. By Definition 39 and Lemma 41, one has
⊢ §α ⋆ β ⇒T ⊥. By (Dual§) rule, one has ⊢ α ⋆ §β ⇒T ⊥. Therefore, one
has [α]T ·∗ P ∗[β]T = ⊥∗.

2

Lemma 43 The following conditions hold for Q: for any † ∈ {!, P, F},
(1) If †α ∈ T , then †∗[α]T = [†α]T ;

(2) If Hα ∈ T , then H∗[α]T = [Hα]T ;

(3) If Gα ∈ T , then G∗[α]T = [Gα]T ;

(4) If ?α ∈ T , then ?∗[α]T = [?α]T ;

(5) If α ·β ∈ T , then [α]T ·∗ [β]T = [α ·β]T ;

(6) If α → β ∈ T , then [α]T →∗ [β]T =
[α→ β]T .

Proof. We only provide the proofs for (1), others can be treated similarly.
Assume †∗[α]T = [γ]T such that γ ∈ T and ⊙α ≈T γ. It suffices to show
γ ≈T †α. Assume that ⊢ Γ[γ] ⇒T φ for some context Γ[−] and φ ∈ T . Then
⊢ Γ[⊙α] ⇒T φ. By (†L), ⊢ Γ[†α] ⇒T φ. Assume ⊢ Γ[†α] ⇒T φ. Clearly
⊢ ⊙α⇒T †α. Then by (Cut), ⊢ Γ[⊙α]⇒T φ. Thus ⊢ Γ[γ]⇒T φ. 2

Remark 44 By Lemma 43, one has ¬∗[α]T = [¬α]T and ?∗[α]T = [?α]T .
Since T is closed under ¬, then the De Morgan rule and double negation rule
hold for Q. (5) !∗[α]T ≤∗?∗!∗[α]T can be obtained by (Dual§) in Lemma 42.
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Corollary 45 Let T be finitely based, then Q is a finite rIA1× tqBa.t.

Lemma 46 If ⊬rG α⇒T β, then ̸|=Q [α]T ≤∗ [β]T .
Proof. Let T be the smallest set containing α, β s.t. T = c(T ), assume
⊬rG α⇒ β, then ⊬rG α⇒T β. Construct Q = ([T ],∧∗,∨∗,¬∗, !∗, P ∗, F ∗, ·∗,→∗
,⊥∗,⊤∗) as above and an assignment σ : Var −→ [T ] such that σ(p) = [p]T .
By induction on the complexity of the formula, one can easily prove that σ̂(δ) =
[δ]T by Definition 39 and Lemma 43. Assume that |=Q,σ [α]T ≤∗ [β]T , then
by Lemma 41, one has ⊢ α⇒T β, which contradicts to our initial assumption.
Therefore, if ⊬rG α⇒T β, then ̸|=Q [α]T ≤∗ [β]T . 2

Corollary 47 If ⊬rG α ⇒ β, then ̸|=rAL µ(α) ≤ µ(β) where µ is a mapping
from Var to a finite rIA1× tqBa.t.

Theorem 48 (FMP) rG has FMP.

Theorem 49 (Decidability) rG is decidable.

Theorem 50 (FMP) G has FMP.

Proof. Since rG is a conservative extension of G by Lemma 31 and rG has FMP
by Theorem 48, then G has FMP. 2

Theorem 51 (Decidability) G is decidable.

5 Conclusion and Future Work

In this paper, we study a logic L of algebra IA1×tqBa.t by algebraic proof
theory for temporal and open information. We present the axiomatic system H
and sequent calculus G with soundness and completeness proved. By showing
a different kind of interpolation lemma, we prove a conservative extension rG
FMP result of G and thus decidability of rG and G. One of our future works is
to see whether there is a feasible way to rewrite the calculus into a context-free
language. If so, then a decidable algorithm can be possibly established for G.
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Assumable Logic Programming
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Abstract

In the case of incomplete information, a common reasoning framework is an
assumption-based two-step deductive reasoning process where intelligent agents make
assumptions first and then use them to build their belief sets. This paper proposes
a logic programming paradigm ALP (Assumable Logic Programming) that is devel-
oped as a knowledge representation and reasoning tool for designing intelligent agents
capable of performing the framework. ALP extends ASP (Answer Set Programming)
with a new modal operator used to precede a literal in rules bodies, and thus allows
for the representation of assumption knowledge. We define the language of ALP,
discuss the relation of ALP to ASP, and show that some problems that are beyond
the power of ASP can be solved by ALP through cases study and some theoretical
results.

Keywords: Logic programming, answer set, assumption-making, belief-building.

1 Introduction

In the case of incomplete information, a popular reasoning framework is two-
stage where intelligent agents make assumptions first and then use them to
build their belief sets through deductive reasoning [15]. Many existing for-
malisms can be considered as approaches for this framework. Examples in-
clude Assumption-Based Truth Maintenance System introduced in [6], [26],
and [7], Probabilistic Assumption-Based Model and language proposed in [17]
and [1], Poole’s Default Theory in [22] and [23], Supposition-based logic in [3]
etc. Some efforts are made to explore the way of identifying assumptions in
reasoning, in which assumptions are not given explicitly. For example, [5] ex-
plores the derivation of assumptions to explain observed events, [24] presents
an approach to hypothetical planning that involves generating assumptions
about actions that can not be derived from the knowledge-base etc. Besides,
many studies show that assumption-based reasoning is closely related to the
topics like argumentation [4], action reasoning [18], planning [21], contextual
reasoning [15], defeasible reasoning [11], default reasoning [16] [12] etc.

1 Email: seu zzz@seu.edu.cn. The work was supported by the Pre-research Key Laboratory
Fund for Equipment (Grant No.6142101210205).
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2 Assumable Logic Programming

This paper presents a new logic programming formalism for the two-stage
framework. Specifically, we propose Assumable Logic Programming (ALP)
language, where an assumption operator : is introduced to precede a literal
in rules bodies, and thus allow to represent an assumption e as : e to express
“e does not yield contradiction” or “e is acceptable” or “e is assumable” or
“Assuming e” or “e is possible” etc., that can be used for designing intelligent
agents whose behaviors of assumption making and belief building are defined
on the answer-set based deductive reasoning.

The rest of the paper will introduce ALP formally and is organized as
follows. In the next section, ASP and its extensions are briefly introduced
as background knowledge for the self-contained requirement and as objects
compared with ALP. In section 3, we introduce the syntax and semantics of
the ALP program. In section 4, some properties and the relation of ALP to
ASP are given. We conclude in section 5 with some further discussion.

We will restrict our discussion in this paper to propositional programs. How-
ever, as usual in answer set programming, we admit rule schemata containing
variables bearing in mind that these schemata are just convenient representa-
tions for the set of their ground instances.

2 ASP and Its Extensions

2.1 Answer Set Program

Follow the description of ASP from [10]. A regular ASP program is a collection
of rules of the form

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln (1)

where the ls are literals, not denotes default negation, or is epistemic disjunc-
tion. The left-hand side of a rule is called the head and the right-hand side is
called the body. A rule is called a fact if its body is empty and its head contains
only one literal, and a rule is called a constraint if its head is empty.

A collection of literals is consistent if it does not contain both a literal l and
its contrary l̄. Let M be a consistent collection of literals, r be an ASP rule of
the form (1), the notion of satisfiability denoted by |=ASP is defined below.

• (M satisfies r’s head). M |=ASP l1 or ... or lk if for some 1 ≤ i ≤ k, li ∈M
• (M satisfies r’s body). M |=ASP lk+1, ..., lm, not lm+1, ..., not ln if for all
k + 1 ≤ i ≤ m, li ∈M and for all m+ 1 ≤ i ≤ n, li /∈M

• (M satisfies rule r). M |=ASP r if whenever M |=ASP

lk+1, ..., lm, not lm+1, ..., not ln, it holds that M |=ASP l1 or ... or lk

M satisfies an ASP program Π if M satisfies every rule in Π, then M is called
a model of Π. M is an answer set of Π iff it is the least model (in the sense of
set inclusion) that satisfies ΠM , where ΠM is G-L reduct of Π with respect to
M achieved by two rules:

• delete all rules whose bodies are not satisfied by M .

• delete not l in the bodies of the remaining rules.
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AS(Π) is used to denote the set of all answer sets of an ASP program Π.

2.2 CR-Prolog

CR-Prolog extends the regular ASP with a purpose of representing indirect
exceptions to defaults ([10]). Follow the description of CR-Prolog from [2] and
[10], a CR-Prolog program is a collection of regular ASP rules or consistency-
restoring rules (CR-rule) of the form

l1 or ... or lk
+← lk+1, ..., lm, not lm+1, ..., not ln

where the ls are literals, not denotes negation as failure, or is epistemic dis-
junction. And, ≤ is a partial order defined on sets of CR-rules in the program.
This partial order is often referred to as a preference relation based on the
set-theoretic inclusion (R1 ≤ R2 iff R1 ⊂ R2) or defined by the cardinality of
the corresponding sets (R1 ≤ R2 iff |R1| ⊂ |R2|).

The set of regular ASP rules of a CR-Prolog program Ω is denoted by Ωr;
By α(r) we denote a regular rule obtained from a consistency-restoring rule r

by replacing
+← by ←, and α can be expanded in a standard way to a set R of

CR-rules, i.e., α(R) = {α(r)|r ∈ R}.
A minimal (with respect to the preference relation of the program) collection

R of CR-rules of Ω such that Ωr ∪ R is consistent (i.e., has an answer set) is
called an abductive support of Ω. Then, a set M is called an answer set of Ω if
it is an answer set of a regular program Ω ∪ α(R) for some abductive support
R of Ω. We use AS⊂(Ω) and AS](Ω) to denote the collection of answer sets of
Ω w.r.t. the preference relation on set-theoretic inclusion and the cardinality
respectively.

2.3 Abductive ASP

We consider two versions of the abductive answer set programs. In [13], an
abductive logic program (ABLP93) Γ is defined as a pair < P,A > where P is
a regular ASP program and A is a set of literals from the language of P called
abducibles. G a ground literal represents a positive observation. A set S is a
belief set of Γ with respect to E if S is an answer set of P ∪ E where E ⊆ A.
S is called A minimal if there is no belief set T of Γ such that T ∩A ⊂ S ∩A.
A set E is an explanation of G with respect to Γ if G is true in a belief set S
of Γ such that E = S ∩ A. An explanation E of G is minimal if no E′ ⊂ E is
an explanation of G. E is a minimal explanation of G iff S is an A minimal
belief set of < P ∪ {← not G},A >.

In [14], an abductive logic program (ABLP95) Γ is defined as a pair <
P,A > where both P and A are regular ASP programs. G a ground literal
represents a positive observation. A pair (E,F ) is a explanation of G with
respect to Γ if

(i) G ⊆M for ∀M ∈ AS((P − F ) ∪ E)

(ii) (P − F ) ∪ E) is consistent

(iii) E ⊆ (A− P ) and F ⊆ A ∩ P
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4 Assumable Logic Programming

On the other hand, a pair (E,F ) is an anti-explanation of G with respect to Γ
if

(i) G 6⊆M for ∀M ∈ AS((P − F ) ∪ E)

(ii) (P − F ) ∪ E) is consistent

(iii) E ⊆ (A− P ) and F ⊆ A ∩ P
An (anti-)explanation (E,F ) of G is called minimal if for any (anti-

)explanation (E′, F ′) of G, E′ ⊆ E and F ′ ⊆ F imply E′ = E and F ′ = F .

3 Assumable Logic Program

3.1 Syntax

An ALP rule r is written as

l1 or ... or lk ← e1, ..., em : em+1, ..., en (2)

where the ls are literals in propositional logic language, es are extended literals
that are propositional literals possibly preceded by default negation not, : is
called assumption operator. head(r) is used to denote the left-hand side of r
where or is an epistemic disjunction. body(r) is used to denote the right-hand
side of r. e1, ..., em is called the precondition of r and denoted by pbody(r).
em+1, ..., en is called the assumption of r and denoted by assump(r). As in
usual logic programming, a rule is called a fact if its body is empty (equival
to containing only a literal >) and its head contains only one literal, and a
rule is called a constraint if its head is empty (equival to containing only a
literal ⊥). An ALP rule is called assumption-free if its assumption is empty,
otherwise it is called an assumption rule. Sometimes, we use head(r)← body(r)
or head(r)← pbody(r) : assump(r) to denote r. lit(r) is used to denote the set
of propositional logic literals appearing in r. r can be read as When assump(r)
is possible, head(r) is believed if pbody(r) is believed or head(r) is believed if
pbody(r) is believed, when assump(r) do not yield a contradiction etc.

An ALP program is a collection of ALP rules. lit(Π) is used to denote the set
of propositional logic literals appearing in Π. alit(Π) is used to denote the set
of extended literals appearing in the assumptions of rules in Π. For convenient
description, sometimes an ALP program Π is written as a pair (ΠD,ΠW ) in
which ΠW is the set of assumption-free ALP rules in Π and ΠD is the set of
assumption rules in Π. An ALP program is default negation free if there is no
default negation not appearing in the program. We say an ALP program is an
ALP−not program if it is default negation free.

It is clear that an assumption-free ALP rule is a regular ASP rule, and an
assumption-free ALP program is an ASP program that can be dealt with by
ASP solvers like DLV ([8]), CLASP ([9]).

For the well-known example “Normally, birds can fly” of default knowledge,
its ALP encoding is the rule:

canfly ← bird : canfly
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This rule defines quite a natural reading If it is acceptable that a given bird can
fly then we believe that the bird can fly or If assuming that a bird can fly does
not cause inconsistency, then believe that it can fly of the above statement.

A statement “Assuming a bird is not sick, normally it can fly” can then be
encoded in an ALP rule:

canfly ← bird : canfly, not sick

3.2 Semantics

3.2.1 Satisfiability

Let M be a consistent set of literals, r be an ALP rule of the form (2), the
notion of satisfiability denoted by |=ALP is defined below.

• M |=ALP l if l ∈M
• M |=ALP not l if l /∈M
• M |=ALP head(r) if ∃1 ≤ i ≤ k,M |=ALP li

• M |=ALP pbody(r) if ∀1 ≤ i ≤ m,M |=ALP ei

• M |=ALP assump(r) if ∀m+ 1 ≤ i ≤ n,M |=ALP ei

• M |=ALP body(r) if M |=ALP pbody(r) and M |=ALP assump(r).

• M |=ALP r if whenever M |=ALP body(r), M |=ALP head(r).

We say M is a model of an ALP program Π, denoted by M |=ALP Π, if we
have M |=ALP r for ∀r ∈ Π. A set M of literals is inconsistent if it contains a
literal l and its contrary l̄.

It is easily verified that {bird, canfly} is a model of the rules canfly ←
bird : canfly and canfly ← bird : canfly, not sick mentained above.

3.2.2 Foundmental Principles

Here, we present three fundamental principles for reasoning within the frame-
work.

(i) Consistency of Assumption Making. This principle tells that the
assumptions that can be established must make the theory (program)
consistent, that is, in assuming a formula, the agent reasons and behaves
as if it is a fact and will not cause conflicts.

(ii) Rationality of Belief Building on Assumptions. This principle tells
that the agent’s beliefs are obtained by reasoning within the scope of
assumptions, that is, the belief set cannot exceed the results of reasoning
based on assumptions and the given theory (program).

(iii) Consistency between Assumptions and Beliefs. This principle says
that an agent’s assumptions and beliefs must be consistent.

The three principles are natural but abstract. Below, we will provide specific
technical methods to implement these principles. Next, we first provide a
method for assumption-making, and then define a method for belief-building.
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6 Assumable Logic Programming

3.2.3 Assumptiom Making

The notion of Assumption Set of an ALP program is viewed as the result of
assumption-making within the framework by the principle of Consistency of
Assumption Making.

Definition 3.1 Given an ALP program Π, an arbitrary set A ⊆ lit(Π), A is
an assumption set of Π if and only if

A ∈ AS
(
Π(A) ∪

←
A
)

where AS() denotes the set of all answer sets as mentioned in subsection 2.1,
and Π(A) is a program obtained by

Π(A) = {head(r)← pbody(r)|r ∈ Π and A |=ALP assump(r)}

and
←
A is used to denote the fact rules set {l← |l ∈ A}.
ASS(Π) is used to denote the collection of all assumption sets of an ALP

program Π.

Theorem 3.2 For an ALP program Π, an assumption set of Π is a model of
Π. 2

Example 3.3 Consider Π1 that consists of two rules:

canfly ← bird : canfly

bird←
There are four consistent sets of literals: A11 = ∅, A12 = {bird}, A13 =
{canfly}, and A14 = {bird, canfly}. We have

Π
(A11)
1 = Π

(A12)
1 = {bird←}

Π
(A13)
1 = Π

(A14)
1 = {canfly ← bird. bird← .}

Then,

Π
(A11)
1 ∪

←
A11 = {bird← .}

Π
(A12)
1 ∪

←
A12 = {bird← .}

Π
(A13)
1 ∪

←
A13 = {canfly ← bird. canfly ← . bird← .}

Π
(A14)
1 ∪

←
A14 = {canfly ← bird. canfly ← . bird← .}

Thus,

AS
(
Π

(A11)
1 ∪

←
A11

)
= AS

(
Π

(A12)
1 ∪

←
A12

)
= {bird}

2 Due to space limitations, the proofs of the theorems are given in the full version of this
paper.
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AS
(
Π

(A13)
1 ∪

←
A13

)
= AS

(
Π

(A14)
1 ∪

←
A14

)
= {bird, canfly}

Then,

A11 /∈ AS
(
Π

(A11)
1 ∪

←
A11

)
A12 ∈ AS

(
Π

(A12)
1 ∪

←
A12

)

A13 /∈ AS
(
Π

(A13)
1 ∪

←
A13

)
A14 ∈ AS

(
Π

(A14)
1 ∪

←
A14

)

By Definition 3.1, both A12 = {bird} and A14 = {bird, canfly} are assumption
sets of Π1.

Example 3.4 Consider Π2 that consists of two rules:

canfly ← bird : canfly, not sick.

bird← .

There are eight consistent sets of literals: A21 = ∅, A22 = {bird}, A23 =
{canfly}, A24 = {sick}, A25 = {bird, canfly}, A26 = {bird, sick}, A27 =
{canfly, sick}, and A28 = {bird, canfly, sick}. We have

Π
(A21)
2 = Π

(A22)
3 = Π

(A24)
2 = Π

(A26)
2 = Π

(A27)
2 = Π

(A28)
2 = {bird← .}

Π
(A23)
2 = Π

(A25)
2 = {canfly ← bird. bird← .}

Then,

Π
(A21)
2 ∪

←
A21 = {bird← .}

Π
(A22)
2 ∪

←
A22 = {bird← .}

Π
(A23)
2 ∪

←
A23 = {canfly ← bird. bird← . canfly ← .}

Π
(A24)
2 ∪

←
A24 = {bird← . sick ← .}

Π
(A25)
2 ∪

←
A25 = {canfly ← bird. bird← . canfly ← .}

Π
(A26)
2 ∪

←
A26 = {bird← . sick ← .}

Π
(A27)
2 ∪

←
A27 = {bird← . sick ← . canfly ← .}

Π
(A28)
2 ∪

←
A28 = {bird← . sick ← . canfly ← .}

Thus,

AS
(
Π

(A21)
2 ∪

←
A21

)
= AS

(
Π

(A22)
2 ∪

←
A22

)
= {{bird}}

AS
(
Π

(A23)
2 ∪

←
A23

)
= AS

(
Π

(A25)
2 ∪

←
A25

)
= {{bird, canfly}}

AS
(
Π

(A24)
2 ∪

←
A24

)
= AS

(
Π

(A26)
2 ∪

←
A26

)
= {{bird, sick}}

AS
(
Π

(A27)
2 ∪

←
A27

)
= AS

(
Π

(A28)
2 ∪

←
A28

)
= {{bird, canfly, sick}}

116



8 Assumable Logic Programming

Then,

A21 /∈ AS
(
Π

(A21)
2 ∪

←
A21

)
, A23 /∈ AS

(
Π

(A23)
2 ∪

←
A23

)

A24 /∈ AS
(
Π

(A24)
2 ∪

←
A24

)
, A27 /∈ AS

(
Π

(A27)
2 ∪

←
A27

)

A22 ∈ AS
(
Π

(A22)
2 ∪

←
A22

)
, A25 ∈ AS

(
Π

(A25)
2 ∪

←
A25

)

A26 ∈ AS
(
Π

(A26)
2 ∪

←
A26

)
, A28 ∈ AS

(
Π

(A28)
2 ∪

←
A28

)

Hence, A22, A25, A26, and A28 are assumption sets of Π2.

Just as the examples above show, in the scenario of incomplete informa-
tion, different assumption sets may be generated. Some of them satisfy the
assumption body of more rules or satisfy more assumption literals, while some
of them satisfy less (in the sense of set inclusion or cardinality). Based on this
observation, we define several strategies of assumption making while keeping
the principles unchanged.

Definition 3.5 Given an ALP program Π, A is an assumption set of Π,

(i) maxR
⊂ Strategy: A is a maxR

⊂ assumption set of Π if there is no assump-

tion set A′ of Π such that Π(A) ⊂ Π(A′).

(ii) minR
⊂ Strategy: A is a minR

⊂ assumption set of Π if there is no assumption

set A′ of Π such that Π(A) ⊃ Π(A′).

(iii) maxR
] Strategy: A is a maxR

] assumption set of Π if there is no assump-

tion set A′ of Π such that |Π(A)| < |Π(A′)|.
(iv) minR

] Strategy: A is a minR
] assumption set of Π if there is no assumption

set A′ of Π such that |Π(A)| > |Π(A′)|.
(v) maxL

⊂ Strategy: A is a maxL
⊂ assumption set of Π if there is no assump-

tion set A′ of Π such that {e ∈ alit(Π)|A |=ALP e} ⊂ {e ∈ alit(Π)|A′ |=ALP

e}.
(vi) minL

⊂ Strategy: A is a minL
⊂ assumption set of Π if there is no assumption

set A′ of Π such that {e ∈ alit(Π)|A |=ALP e} ⊃ {e ∈ alit(Π)|A′ |=ALP e}.
(vii) maxL

] Strategy: A is a maxL
] assumption set of Π if there is no assumption

set A′ of Π such that |{e ∈ alit(Π)|A |=ALP e}| < |{e ∈ alit(Π)|A′ |=ALP

e}|.
(viii) minL

] Strategy: A is a minL
] assumption set of Π if there is no assumption

set A′ of Π such that |{e ∈ alit(Π)|A |=ALP e}| > |{e ∈ alit(Π)|A′ |=ALP

e}|.
Reconsider the program Π1, A12 = {bird} is both a minR

⊂ assumption set
and a minL

⊂ assumption set, A14 = {bird, canfly} is both a maxR
⊂ assumption

set and a maxL
⊂ assumption set and so on.

For Π2, A26 = {bird, sick} is both a minR
⊂ assumption set and a minL

⊂
assumption set, and A25 = {bird, canfly} is a maxR

⊂ assumption set, a maxL
⊂,

and a maxL
] assumption set and so on.
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3.2.4 Belief Building

The notion of assumable answer set of an ALP program is viewed as the result
of belief-building over assumption-making within the framework by the princi-
ples of Rationality of Belief Building on Assumptions and Consistency
between Assumptions and Beliefs.

Definition 3.6 Given an ALP program Π, an arbitrary set M ⊆ lit(Π), M is
an assumable answer set of Π if and only if there exists an assumption set A
of Π such that

(i) M ∈ AS(Π(A)), and

(ii) M ⊆ A
We say that M is an assumable answer set of Π on the assumption set A, and
that (M,A) is a view of Π.

AAS(Π) is used to denote the collection of all assumable answer sets of an
ALP program Π. V IEW (Π) is used to denote the collection of all views of an
ALP program Π.

Theorem 3.7 For an ALP program Π = (ΠD,ΠW ), let M be an assumable
answer set of Π

M |=ALP ΠW

Example 3.8 Continue Π1 mentioned above, let us consider M1 = {bird} and
M2 = {bird, canfly}. We have

AS(Π
(A12)
1 ) = {bird} AS(Π

(A14)
1 ) = {bird, canfly}

Thus,

M1 ∈ AS(Π
(A12)
1 ) and M1 ⊆ A12

M2 ∈ AS(Π
(A14)
1 ) and M2 ⊆ A14

Hence, {bird} is an assumable answer set of Π1 on the assumption set A12,
{bird, canfly} is also an assumable answer set of Π1 on the assumption set
A14.

Example 3.9 Continue Π2 mentioned above, we have

AS(Π
(A22)
2 ) = AS(Π

(A26)
2 ) = AS(Π

(A28)
2 ) = {bird}

AS(Π
(A25)
2 ) = {bird, canfly}

Thus,

{bird} ∈ AS(Π
(A22)
2 ) and {bird} ⊆ A22

{bird} ∈ AS(Π
(A26)
2 ) and {bird} ⊆ A26

{bird} ∈ AS(Π
(A28)
2 ) and {bird} ⊆ A28

{bird, canfly} ∈ AS(Π
(A25)
2 ) and M2 ⊆ A25
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10 Assumable Logic Programming

Fig. 1. Views of Π1 and Π2

Hence, {bird} is an assumable answer set of Π2 on the assumption set A22

or A26 or A28, {bird, canfly} is also an assumable answer set of Π2 on the
assumption set A25.

Definition 3.10 Given an ALP program Π, M is called maxY
X(minY

X) assum-
able answer set of Π if (M,A) is a view of Π and A is a maxY

X(minY
X) assumption

set of Π. Correspondingly, the pair (M,A) is called a maxY
X(minY

X) view of Π.
where Y ∈ {R,L} and X ∈ {⊂, ]}.

maxY
X(minY

X)-AAS(Π) is used to denote the collection of all maxY
X(minY

X)
assumable answer sets of an ALP program Π. maxY

X(minY
X)-V IEW (Π) is used

to denote the collection of all maxY
X(minY

X) views of an ALP program Π, where
Y ∈ {R,L} and X ∈ {⊂, ]}. Figure 1 shows the views of Π1 and Π2 under
different assumption-making strategies.

The intuitions of max and min strategies of assumption making are direct:
max means that the reasoner is positive/optimistic/ credulous/brave in making
assumptions. min is just the opposite. Let us consider Π1 and Π2 again. A
positive reasoner’s view is ({bird, canfly}, {bird, canfly}) such that its belief
set is {bird, canfly}, and a cautious reasoner just has a belief set {bird}.

4 Some Properties and Relations

4.1 Nonmonotonicity

Obviously, ALP is an extension of ASP and ALP, it’s reasoning is nonmono-
tonic. However, the following theorem and example show that nonmonotonicity
does not solely stem from default negation and epistemic disjunctive opera-
tors. Assumption operators can also lead to nonmonotonicity. For convenient
description, an ALP not containing default negations is marked by ALP−not.

Theorem 4.1 ALP−not-based reasoning is nonmonotonic.

Theorem 4.1 can be demonstrated by the following examples.

Example 4.2 Π3 is an ALP−not program containing one rule:

p←: p

Π3 has two views: (∅, ∅) and ({p}, {p}). Consider Π′3 that is obtained from Π3
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by adding a fact:
p←: p

¬p←
Clearly, Π′3 has only one view ({¬p}, {¬p}).
4.2 Relation to ASP

Now, let us consider the relationship between ASP and ALP.

Theorem 4.3 For an assumption-free ALP program Π:

AAS(Π) = ZY
X-AAS(Π) = AS(Π)

where Z ∈ {max,min}, X ∈ {⊂, ]}, and Y ∈ {R,L}.
Theorem 4.3 tells that an ALP program containing no assumption rules

degenerates into an ASP program. In other words, ALP is an smooth extension
of ASP.

Define a mapping η frome an ASP program to an ALP program, identifies
an ASP rule r:

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln

with the ALP rule η(r):

l1 or ... or lk ← lk+1, ..., lm : not lm+1, ..., not ln

Then we have

Theorem 4.4 For any ASP program Π, if S is an answer set of Π, then (S, S)
is a view of η(Π).

Now, let us focus on the relationship among not and :. The most obvious dif-
ference is that the assumption operator : works during the assumption-making
stage, while not operates during the belief-building stage.

It seems that the assumption rule On the assumption of α, β is believed if
γ is believed can also be coded into an ASP rule β ← γ, not ¬α where not ¬α
is used to express α is assumable or it is consistent to assume α. However, the
following cases demonstrate the difference between ASP encodings and ALP
encodings of the assumptions.

First of all, let us see the difference by observing an example that contains:

• An assumption: p if it is consistent to assume p.

• A constraint: p is impossible.

Intuitively, the constraint is a denial of p such that the assumption is blocked,
thus the result is ∅. If the case is modeled by an ASP program

p← not ¬p

← p
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12 Assumable Logic Programming

where the assumption p is made through not ¬p. There is no solution because
the ASP program is unsatisfiable. If the case is represented by an ALP program

p←: p

← p

where the assumption p is made through : p. There is an assumable answer set
∅ as expected.

Now, let us consider another case with two assumptions:

• p if it is consistent to assume r, and

• q if it is consistent to assume ¬r.
If they are represented as an ASP program

p← not ¬r

q ← not r

The result is its answer set {p, q}. Meanwhile, if they are represented as an
ALP program

p←: r

q ←: ¬r
There are three assumable answer sets {p}, {q}, and ∅. Among them, both
{p} and {q} are maxR⊂ (and maxR] ) assumable answer sets, and ∅ is a minR⊂
(and min]) assumable answer set. Consider that r and its contrary ¬r cannot
appear in one world, the results given by the ALP program should be more
praised than that of the ASP program.

Another seeming ASP-based encoding of it is consistent to assume α is
not not α. But, it is easy to verify that the encoding of the second case in this
way

p← not not r

q ← not not ¬r
has only one answer set ∅.

Now, we focus on the the difference of not and : in representing defaults.
Consider an example of indirect exceptions to defaults.

Example 4.5 Consider a theory contains two laws:

• Birds generally have the ability to fly.

• Having the ability to fly means having wings.

and an observations: A bird without wings. 3

3 The wings of New Zealand’s kiwis have degenerated beyond sight.
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Consider a regular ASP representation Π4 of the example:

fly ← bird, not¬fly. wing ← fly. bird← . ¬wing ← .

Consider an ALP representation Π5 of the example:

fly ← bird : fly. wing ← fly. bird← . ¬wing ← .

Π4 is unsatisfiable, while Π5 provides a reasonable answer {bird,¬wing}. The
representation of indirect exceptions seems to be beyond the power of ASP,
which led to the development of a extension of ASP called CR-Prolog [10].
ALP seems to be adept at representing indirect exceptions to defaults. Next
subsection will shows that a CR-Prolog program can be converted into an ALP
program.

As shown in the examples above, assumption operators bring richer knowl-
edge representation by realize the two-stage framework that some beliefs
are built on making assumptions.

4.3 Relation to CR-Prolog

Define a mapping β from a CR-prolog to ALP, identifies a CR-rule r:

l1 or ... or lk
+← lk+1, ..., lm, not lm+1, ..., not ln (3)

with an ALP rule β(r):

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln : applyr (4)

where applyr is used to denote the fresh atom obtained from a CR-rule r.
Besides, β identifies a regular ASP rule in the CR-prolog program with itself.

Theorem 4.6 For any CR-Prolog program Ω

AS?(Ω) = minR
? -AAS(β(Ω))

where ? ∈ {⊂, ]}.
Example 4.7 Consider a simple CR-Prolog program Ω that contains only one
CR-rule r:

a
+←

It is easy to see Ω has only one answer set ∅. Then, an ALP program β(Ω) is

a←: applyr

whose minR] and minR⊂ assumable answer set is also ∅.
4.4 Relation to Abductive ASP

Define a mapping θ, for an ABLP93 program Γ =< P,A >, θ(Γ) is an ALP
program:

P ∪ {l←: l|l ∈ A}
We have
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14 Assumable Logic Programming

Theorem 4.8 For the ABLP93 program Γ =< P,A >, S is a minR
⊂ assumable

answer set of θ(Γ) if and only if S is a A-minimal belief set of Γ.

Example 4.9 Consider an abductive logic program Γ1 =< P,A > in [27]:

• P : p← not a

• A: a

The program has one A-minimal belief set {p}. θ(Γ1) is an ALP

p← not a

a←: a

Both {a} and {p} are its assumable answer sets, only {p} is its minR⊂ assumable
answer set as expected.

Theorem 4.10 For the ABLP93 program Γ =< P,A > and a positive obser-
vation G.

(i) If S is a minR
⊂ assumable answer set of the ALP program θ(Γ) ∪

{← not G}, then S ∩ A is a credulous explanation of G with respect
to Γ.

(ii) If E is a credulous explanation of G with respect to Γ, then there exists
a minR

⊂ assumable answer set S of the ALP program θ(Γ) ∪ {← not G}
such that E = S ∩ A.

Example 4.11 Continue to consider Γ1 mentioned in Example 4.9, given a
positive observation G = p. Clearly, ∅ is a credulous explanation of p with
respect to Γ1. Now, we have θ(Γ1) ∪ {← not G}:

p← not a. a←: a. ← not p.

that has a minR
⊂ assumable answer set ∅ such that E = ∅.

Define a mapping θ′, for the ABLP95 program Γ =< P,A >, θ′(Γ) is an
ALP program:

(P −A) ∪ {head(r)← body(r), applyr|r ∈ (A− P )}∪

{applyr ←: applyr|r ∈ (A− P )}∪

{head(r)← body(r), not blockr|r ∈ (A ∩ P )}∪

{blockr ←: blockr|r ∈ (A ∩ P )}
where both applyr and blockr are used to denote the fresh atoms obtained from
r ∈ A. We have

Theorem 4.12 For the ABLP95 program Γ =< P,A > and a positive obser-
vation G.
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(i) If S is a minR
⊂ assumable answer set of the ALP program θ′(Γ) ∪

{← not G}, then there exists a minimal explanation of G with respect
to Γ is (

{r|applyr ∈ S}, {r|blockr ∈ S}
)

(ii) If (E,F ) is a minimal explanation of G with respect to Γ, then there exists
a minR

⊂ assumable answer set S of the ALP program θ′(Γ) ∪ {← not G}
such that

E = {r|applyr ∈ S}
F = {r|blockr ∈ S}

Example 4.13 Consider an abductive logic program Γ2 =< P,A > and a
positive observation G:

• P :
fly ← bird

bird← penguin

penuin←
• A:

(1). f ly ← bird

(2). ¬fly ← penguin

• G: ¬fly
Thus, θ′(Γ2) is:

bird← penguin

penuin←
fly ← bird, not block1

¬fly ← penguin, apply2

block1 ←: block1

apply2 ←: apply2

Then, θ′(Γ2) ∪ {← not ¬fly} has a minR
⊂ assumable answer set

{apply2, block1, ¬fly, penguin, bird}

by which
E = {¬fly ← penguin}
F = {fly ← bird}

such that (E,F ) is a minimal explanation of ¬fly with respect to Γ2.

Theorem 4.14 For the ABLP95 program Γ =< P,A > and a positive obser-
vation G.
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16 Assumable Logic Programming

(i) If S is a minR
⊂ assumable answer set of θ′(Γ) ∪ {← G}, then there exists

a minimal anti-explanation of G with respect to Γ is

(
{r|applyr ∈ S}, {r|blockr ∈ S}

)

(ii) If (E,F ) is a minimal anti-explanation of G with respect to Γ, then there
exists a minR

⊂ assumable answer set S of θ′(Γ) ∪ {← G} such that

E = {r|applyr ∈ S}, F = {r|blockr ∈ S}
Example 4.15 Continue to consider the abductive logic program Γ2 used in
the Example 4.13. By the Theorem 4.14, the anti-explanation of fly with
respect to Γ2 is the min⊂ assumable answer set of the ALP program

θ′(Γ2) ∪ {← fly}

Obviously, a min⊂ assumable answer set of the program is {penguin, bird} that
tells neither (1) nor (2) is used, and the corresponding minimal anti-explanation
(E,F ) of fly is

E = ∅ F = {fly ← bird}

.

5 Conclusion

This paper introduces ALP that extends logic programming with an opera-
tor : to express the notion of assumption in logic programming. ALP can be
viewed as a tool to design the intelligent agent capable of assumption-based
reasoning that is a framework of many intelligent behaviors in the case of in-
complete information. Three fundamental principles of reasoning within the
framework are proposed to form a pattern of reasoning of assumptions and
beliefs. By these principles, ALP provides an approach to reasoning by using
the answer set-based reasoning in both assumption-making and belief-building,
which makes the existing ASP solvers able to facilitate the implementation of
the ALP solver. Several strategies of assumption-making are given in the defi-
nition of the semantics of ALP. Those strategies depict the attitude of agents
to assumptions and therefore provide options for designing a variety of intelli-
gent agents. The preliminary exploration results on the relationship between
ALP and ASP, ALP and CR-Prolog, and ALP and abductive ASP show that
ALP provides a more general way to model the problems with defaults, and
exceptions, and to solve the explanation problems. Due to space limitations,
the algorithm and its complexity in solving ALP programs are given in the full
version of this paper.

Future work includes more properties of the ALP languages and applica-
tions. The first next step is to explore the power of ALP by studying the
relation of ALP to other nonmonotonic logics such as circumscription[19], au-
toepistemic logic[20], default logic[25] and its variants, and so on.
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Abstract

As one of the basic tasks in natural language processing (NLP), named entity recognition (NER)
is an important basic tool for downstream tasks of NLP, such as information extraction, syntactic
analysis, machine translation and so on. The internal operation logic of the current name entity
recognition model is black-box to the user, so the user has no basis to determine which name
entity makes more sense. Therefore, a user-friendly explainable recognition process would be
very useful for many people. In this paper, we propose a novel interpretable method, BTPK
(Binary Talmudic Public Announcement Logic model), to help users understand the internal
recognition logic of the name entity recognition tasks based on Talmudic Public Announcement
Logic. BTPK model can also capture the semantic information in the input sentences, that
is, the context dependency of the sentence. We observed the public announcement of BTPK
presents the inner decision logic of Bidirectional Recurrent Neural Networks (BRNNs), and the
explanations obtained from a BTPK model show us how BRNNs essentially handle NER tasks.

Keywords: named entity recognition, interpretable, Talmudic Public Announcement Logic

1 Introduction
Named Entity Recognition (NER) is an information extraction task aimed at classify-
ing words in unstructured text [3,6]. Due to their ability to establish dependencies in
neighboring words, Bidirectional Recurrent Neural Networks (BRNNs) have demon-
strated excellent performance in many NER tasks [9]. Despite the advantages of such
deep learning based methods, their inherent black box nature makes them unable to
explain decision results [5,10]. In application areas where NER technology provides
extensive underlying support such as health-care or autonomous driving, a transpar-
ent internal decision system is critical for the system reliability and user trust. Many
interpretable works have been carried out for RNN [7,11,8], However, there are few
research efforts on the explainability of BRNNs in NER tasks, although models with
explainability are crucial [2].

1 corresponding author.
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2 BTPK-based interpretable method for NER tasks based on Talmudic Public Announcement Logic

Talmudic public announcement logic (TPK) is one of the modal logics that serves
as a good formalism for representing decisions depending on the future [1]. Re-
garding past and future information as context information, TPK is able to model the
context relationship and represent the implicit logic in context through modal logic.
Some work has been done in exporting logical insights derived from the Talmud to AI,
including the description of active historical databases, the study of retroactive update,
etc.In this paper, we use the Talmudic public announcement logic (TPK) model [1] as
a tool to explain the process of NER and bring transparency to the RNN-based mod-
els, since the reversible and modifiable recognition process in NER is very much in
line with the problem that TPK is trying to deal with. We propose a new binary TPK
model (called BTPK) based on the original TPK model, which can deal with actions
depending on future determinations by public announcements [1]. By modifying the
accessibility relation in a temporal tree structure, the public announcement at a fu-
ture state will tell which path should be chosen. Thus, a logical explanation can be
obtained for any trained BRNN based on BTPK.

We summarize our main contributions as follows: (1) We propose a BTPK-based
learning method based on the original TPK model and apply it to a BRNN model to
obtain logic explanationa for a BRNN.(2) We carry out a case study on real dataset
to show how BRNN handle NER tasks, as well as to explore the potential for further
reasoning on a BTPK model.

2 Preliminary

The original TPK model is a deterministic Talmudic K frame based on a time-
action tree structure. The time-action model is a tree structure with a set of states
S = {s0, s1, s2, s′2, . . . } (s0 is the root), and a set of actions A = {a1,a2,a3, . . . }.
The elements ofA are actions moving the agent from any state to a new one. This cor-
responds to a successor function R1 (denoted by→), and can be written in the form
s0R1s1. A time-action sequence has the form of s0a1a2 . . .an. In scenarios where
the present course of action is indeterminate and the subsequent state is uncertain, the
concept of a public announcement is proposed as a means of resolving the ambigu-
ity. This entails providing clarification regarding the previous undetermined path and
identifying the accurate successor to the decision point.

A deterministic TPK model [1] can be defined as a 6-tuple (S,R1, R, ρ, s0, π)
where (S,R1, s0) is a tree with root s0 and successor relation R1, R is the transitive
closure of R1, ρ is the public announcement function and π is an assignment for
each atom q, such that s |= q iff s ∈ π(q). D is the distance from the root, and
if s′3ρs3 then D(s3) = D(s′3) + 1. Let M = ⟨S,A,R, ρ, π⟩ be a TPK model and
s ∈ S, then the semantics of a Deterministic TPK model can be defined as follows:
As for the relation R1: M, t ⊨ 2A iff ∀s : tR1s → M, s |= A; M, t ⊨ Y A iff
∀s : sR1t→M, s |= A. As for the relation ρ: M, t ⊨ ⊟A iff ∀s : tρs→M, s |= A;
M, t ⊨ YA iff ∀s : sρt→ M, s |= A. Dn is a time constant: t |= Dn iff the distance
of t from so is n.
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3 Approach
The overall framework is illustrated in Figure 1. Initially, a Bidirectional Recurrent
Neural Network (BRNN) learner is trained on a set of training data to obtain a well-
trained BRNN model. The public announcements of the sequences are computed
through an analysis of the backward and forward hidden states. Section 3.1 provides
the definition of public announcement within the binary TPK model (BTPK). In Sec-
tion 3.3, the BTPK models of BRNNs are generated.

Fig. 1. The illustration of the framework of BTPK-based learning. hi in the blue circles rep-
resents the hidden state of a BRNN, hf

i in the white circles represents the hidden states in a
forward RNN and hb

i in the green circles represents the hidden states in a backward RNN,
where i is the element order. li in yellow box denotes the output of the BRNN.

3.1 Definitions
Definition 3.1 (Task definition) We regard NER as a sequence labeling problem,
whose input includes a set of sequences and labels. For any sequence W =
(w1, w2, ..., wn), the corresponding labels are Y = (y1, y2, ..., yn), where wi de-
notes an entity in the sequence, and yi comes from BIO tagging schema for labeling
elements from the sentence.

We view the final output of one RNN as the final option, so there are at most two
options for each entity in the BRNN. According to the original TPK model, we define
a binary TPK (BTPK) model as follows.

Definition 3.2 ( BTPK) A binary TPK (BTPK) model is defined as a T =< V,E >
with public announcements P and height |H|, where |V | is the order, V = V1 ∪ V2,
|E| is the size and E is represented by the successor relation R1. Height |H| denotes
the depth of a tree.

Based on the above definitions, let each node of the same height be annotated by
the possible label of a named entity, we can construct a tree that represents all options
in BRNN to recognize a sequence.

3.2 Path construction
For any sequence W = (w1, w2, ..., wn) and the corresponding labels Y =
(y1, y2, ..., yn), we can map the bi-directional hidden states to the path in a BTPK
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model T ′ =< V,E >, where the hidden states of BRNN constitute the vertices of
BTPK. We present the mapping from a BRNN network to a BTPK model of height
|H| = n+ 1 as follows:

V1 =
{
hf1 , h

f
2 , ..., h

f
n

}
V2 =

{
hb1, h

b
2, ..., h

b
n

}

H = {w0, w1, w2, ..., wn} n ≤ |E| < |V | ∗ (|V | − 1) (1)

where hfi means the hidden state (feature vector) of the ith element wi in forward
RNN, and hbi means the feature vector of the ith element wi in backward RNN, w0

denotes the start. V is the vertices of the graph, which is composed of V1 and V2,
where V1 and V2 denote the vertices of forward RNN and backward RNN, respec-
tively. H is denoted by the elements in the sequence. As mentioned above, for all
x, y ∈ V , xy ∈ E iff xR1y or yR1x, written as x < y or y < x. Unlike standard
binary trees, the size |E| is greater than or equal to n because there may be loops in a
BTPK model, since there are public announcements in the tree.

It is important to note that the primary methodology for constructing the path of
BTPK models involves the identification of branches, which entails recognizing the
points in the model where different decisions may be made and subsequently indicat-
ing the potential outcomes of these decisions at the corresponding nodes. This study
aims to identify the branches of trees in the BTPK model through the distinct masking
of forward and backward hidden states.

3.3 Public announcement extraction
The present study involves the construction of the branches and paths of BTPK models
through the utilization of trained BRNNs. Nevertheless, the process of path construc-
tion solely achieves the representation of knowledge pertaining to concealed states
of trained Bidirectional Recurrent Neural Networks (BRNNs), while the decision-
making logic that is implicitly involved remains undisclosed. Consequently, we con-
duct a further examination of the correlation between these concealed states and utilize
the technique of public announcement to represent said correlation.

The challenge of identifying public announcements includes identifying the key
factor that determine the predicted label of a given entity. The public announcements
in BTPK models are derived from the forward hidden states, backward hidden states,
and BRNN hidden states that combine the forward and backward ones, as illustrated
in Figure 1. Firstly, we split the input sequences into a series of grams such that

Gi = {wj , . . . wk} (0 ≤ j ≤ k ≤ n) (2)

whereGi denotes the i-th gram, and n denotes the length of an input sequence. wj and
wk denote the j-th words and k-th words in an input sequence, respectively. Then, we
select grams one by one for intervention, where the selected gram will be mapped to
the corresponding prototypes in the feature space, as shown in Figure 2. To be precise,
the hidden states of the chosen n-grams are set to zero through physical intervention.
The detection of public announcements is achieved through an analytical process that
involves the examination of both the original hidden states and the invented hidden
states, drawing inspiration from the techniques employed by the Millers’ methods [4].
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4 Experiments and Discussion
In this section, we will first introduce our experimental setup. Secondly, we will
show how to generate a BTPK model from a trained BRNN in a real-world instance.
Thirdly, we try to reason about ambiguous entities through TPK semantics.

4.1 Experiment setup
This paper trains BRNNs on a Chinese public NER dataset CBVM, which is available
on GITHUB and includes 7 label categories. We extracted 8791 available sequences
from it, including 7814 train samples and 977 test samples. As for training parameters,
we set batch size = 32, learning rate = 0.0001. Hidden states and embedding
dimensions are fixed at 128.

Fig. 2. The illustration of the identification of the public announcement in task103.

Fig. 3. The illustration of the public announcement in task103. The original sequences are in
Chinese, we also show them in English to help readers understand them.

4.2 Generating a BTPK model
For an arbitary input sequence, we can generate a global explanation for the decision
process of a trained BRNN using the BTPK model. The hidden state analysis for
Example 4.1 is demonstrated in Figure 2. Firstly, we split the input sequences into a
series of grams and each gram is composed of one or more words. Then, the selected
gram will be mapped to the corresponding prototypes in feature space, where the
selected gram (words) are “movie” in Figure 2. According to our experimental results,
we find that the predicted label of entities “Hobbits” will not be “video” when we fix
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the hidden states of the selected n-grams to 0 by physical intervention. Therefore,
it’s possible to derive the conclusion that “movie” is the public announcement for the
predicted label of entities as “Hobbits”, as shown in Figure 3. Based on the above
knowledge, a BTPK model is established in Figure 4.

Example 4.1 Consider the sentence task103 ={I really like “Hobbits”, what a movie”. }

4.3 Semantic ambiguity explanation
Intuitively, we consider the human-readable explanations which consist of public an-
nouncements and a natural language template. To generate user-friendly explana-
tions for those without background in name entity tagging, we consider “B book” and
“I book” to be “book”, “B video” and “I video” to be “video” and “B music” and
“I music” to be “music”. Generally, we have the following explanations for Example
4.1, Question: Why is “Hobbits” recognized as a video name rather than other labels
( e.g., book name or music name)?
Explanation: Because “movie” (public announcement) appears in the following
words, it is more reasonable to recognize it as “video”.

Fig. 4: BTPK model.

In this example, the explanation is obtained by a logic
reasoning process of a BTPK model M in Figure 4. Let
axiom q denote that the entity is recognized as “vedio”,
axiom p denote that the entity is recognized as other labels.
From semantics of TPK, “Hobbits” is correctly recognized
iff (M, s′6 ⊨ q) and (M, s′7 ⊨ q) and (M, s′8 ⊨ q) and
(M, s′9 ⊨ q), where s′i denotes the states in height |H| = i.
When the system gets words from s1 and goes forward
to s15, the path can be represented as M, s1 ⊨ 2p. But
there is a public announcement s159ρs′9, so the system will
go back to s′6 and then go forward to the end state s′15,
generating a new path on the right branch of the tree. The
new path can be denoted by (M, s′6 ⊨ q) and (M, s′7 ⊨ q)
and (M, s′8 ⊨ q) and (M, s′9 ⊨ q) (M, s5 ⊨ Yp) and (M, s′10 ⊨ 2p), which is
the ground truth of this sequence. Thus, the recognition process of the entity can
be presented in a logical way by the BTPK model, and the public announcement
illustrates how to go back to a more reasonable state.

5 Conclusions and future work
We proposed a new BTPK-based interpretable method for NER tasks, which can ef-
fectively and logically capture the semantics in the context and give explanations in
form of trees to show the internal mechanisms of BRNN models. We apply the BTPK-
based interpretable method to a trained BRNN model to obtain logic explanations. In
addition, we also demonstrate how to reason on a BTPK model to understand the in-
ner decision making path of a trained BRNN. For future work, we plan to combine the
BTPK-based interpretable method (as in this work) with transfer learning for cross-
lingual NER tasks.
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Abstract

Biosignal-based human-computer interaction has received widespread attention due
to its non-invasive nature and high accuracy, but its interpretability needs to be en-
hanced if it is to be applied to human health-related fields such as rehabilitation. To
address this problem, we fuse two different biosignals to obtain a more comprehensive
information representation and propose an interpretable feature selection and clas-
sification method to enhance its interpretability while achieving higher recognition
accuracy.

Keywords: Biosignal, Hand Gesture Recognition, Feature Select, Classification.

1 Introduction

Human-computer interaction (HCI) is an important way for people to use arti-
ficial intelligence and is widely used in many fields. As the most flexible part of
human body, hand gestures can express a large number of different meanings[6],
and they have the advantages of various types of gestures, rich meanings, little
influence by external environment, and a wide range of application scenarios,
etc. Gesture recognition-based interaction has become an important means of
HCI and is one of the current research hot spots in this field, so HCI based on
gesture recognition is of great significance[11].

However, due to the poor interpretability of artificial intelligence algorithms,
it is still not accepted by users in many fields related to human life and prop-
erty safety. For example, in rehabilitation treatment and assessment, as a
field closely related to human health, good interpretability is an important
factor for patient acceptance of the treatment and assessment method[10].
Therefore, we need to improve the interpretability of the method. There
are some model-agnostic interpretation methods: Variable Importance(VI)[8],
Local interpretable model-agnostic explanations (LIME)[9], SHapley Additive
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exPlanations(SHAP)[17], etc. These methods are separated from the machine
learning model, and their greatest advantage is their flexibility, which can be
applied to different types of models. However, it is not enough to achieve
high-precision interpretable HCI only by using those interpretable methods.
Therefore, we can improve the accuracy and interpretability of HCI by fusing
multimodal biosignal data representing different information to improve the
comprehensive representation and accuracy of human body information[18],
and enhance the trust of user data sources, combined with interpretable al-
gorithms to achieve user-acceptable HCI based on biosignals. In this way, we
can pave the way for the application of biosignals in the field of rehabilitation
treatment and assessment.

To solve this problem, we use surface Electromyography (sEMG) signals[7]
and A-mode Ultrasound (AUS) signals[16] to characterize different human body
information as signal sources for gesture recognition. By fusing them, we can
obtain richer human body information. Also, we propose a weighted soft voting
algorithm based on feature selection to achieve feature weight acquisition while
completing feature selection. And we perform back-end fusion by the soft
voting algorithm to improve the classification accuracy and explain the process
and results of prediction.

The structure of this paper is organized as follows. In the next section,
we briefly describe the research process of biosignal-based interpretable gesture
recognition. Then, in Section 3, we present the interpretable feature selection
and classification method proposed in this paper. Finally, we conclude this
paper with a final remark.

2 Sequence of processes

2.1 Choice of sensing modality

In the selection of multi-modal bio-signals, sEMG signal-based HCI has been
studied extensively and is a very mature HCI interface[5], but it still has prob-
lems such as insensitivity to fine movements and susceptibility to muscle fa-
tigue, so we hope to find other modal signals that can complement its short-
comings, and try to fuse them to obtain a more comprehensive and robust
information representation. At the same time, to make biosignal-based HCI
more user-friendly, we need to choose HCI signal sources that are interpretable
and non-intrusive.

In terms of the signal nature, the sEMG signal is a non-smooth electrical
signal generated by the electrical signal of human muscle contraction flooding
to the skin surface, reflecting the electrophysiological information generated
by the nerve signal of the subject’s motor intention after muscle amplification,
which is a temporal dimension but lacks the spatial information of individual
channels[3]. While the AUS signal reflects the morphological information of the
muscle-muscle interface and the muscle-skeleton interface of the subject[15]. It
is spatial dimensional information but lacks temporal information due to its
low sampling frequency. The AUS signal and the sEMG signal reflect the char-
acteristics of the muscle in different states from different dimensions, so they
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have strong complementary properties for gesture recognition[14]. Therefore,
we consider adding the AUS signal, which can obtain deep muscle information,
to complement the information of the sEMG signal, to achieve more accurate
and robust gesture recognition.

2.2 Feature extraction and fusion

Feature extraction is an important method to get useful information hidden in
the signal and remove unnecessary parts and interferences. With the in-depth
research related to biosignal feature extraction, a large number of time domain,
frequency domain and time-frequency domain features have been widely used
in sEMG and AUS signal feature extraction[1,13]. Most of the manual features
have clear meanings and can be easily understood and interpreted by users,
and different features can be extracted and selected for different purposes to
improve the interpretability and accuracy of the algorithm.

For manual discrete features, some methods can be used to rank them
and choose some of the most important features for feature fusion, which can
improve their interpretability as well as efficiency and accuracy[4]. In addition
to using manual discrete features to combine and downscale them into the
classifier for training, discrete features can also be two-dimensionalized and
then trained[1]. It is also possible to combine traditional manual features with
deep features based on deep learning[2], as they represent concrete and abstract
features of signals respectively, and their fusion can improve the efficiency and
interpretability of feature information extraction.

2.3 Design of classification algorithms

For the interpretability of traditional machine learning algorithms. Some meth-
ods such as Linear Discriminant Analysis (LDA) and decision trees have good
interpretability, but their accuracy is low in some cases. To solve this prob-
lem, ensemble learning methods such as soft voting algorithms can be used to
make full use of the characteristics of those interpretable methods to improve
the accuracy and ensure their interpretability. For the machine learning algo-
rithms with weak interpretability, some post-explanation models can be used
to explain them.

For the interpretability of deep learning algorithms, we can try to build an
interpretable multi-modal biosignal neural network model. We can simulate
and explain the relationship between biosignals and gesture movements based
on the relevant knowledge of physiology, morphology and anatomy of human
forearm muscle tissues. And we should consider the signal features as well as
the relevant muscle features to design the network structure when building the
network model, instead of using the same feature extraction and classification
network model for different signals[12]. At the same time, since the influence of
related muscles is also different for different gestures, an attention mechanism
can be added to emphasize the effective region information, which can improve
both the accuracy and its interpretability, and try to combine the attention
mechanism and game theory to achieve the interpretable attention mechanism
with better effect.
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Fig. 1. An example of automatic feature selection strategy.

3 Methods

Since manual features and traditional machine learning algorithms have better
interpretability than deep learning methods, this paper focuses on the research
related to feature selection and ensemble learning.

Since multiple features are often extracted at the same time in feature ex-
traction of biosignals, but not all features can be combined to achieve the best
results, we want to design an interpretable feature selection and classification
method to improve accuracy and interpretability, which consists of two main
parts, feature automatic selection strategy and weighted soft voting classifica-
tion.

3.1 Automatic feature selection strategy

The purpose of feature selection is to find the best combination of features for
recognition among all discrete features, reduce the negative impact of nega-
tive traits, and improve the model efficiency. Therefore, an automatic feature
selection method needs to be designed. Since the LDA classifier is an inter-
pretable linear classifier and does not require a hyper-parameter setting, we
use it as the classifier used in this method. Also, to prevent data leakage, our
feature selection method is used only on the training set, which is divided into
training-training subsets and training-test subsets according to a ratio, and
finally, the resulting feature combinations and their weights are applied to the
whole training and test sets.

In this paper, a generic feature automatic selection method is proposed,
whose flow chart is shown in Fig. 1. The main steps are as follows:

• Step 1. Combine all n features to get the feature set F , which is fed into the
LDA classifier to get the classification accuracy, which we called ACC;

• Step 2. The individual features in the feature set are sequentially deleted to
obtain n feature subsets Fin each of size n − 1, which are sequentially fed
into the LDA classifier to obtain the classification accuracy of each subset;

• Step 3. If the accuracy of a subset of features after deletion of a feature is
higher than the accuracy before deletion, it means that the feature harms
the task. So, these features with an accuracy higher than the ACC are
removed from the set of features in descending order, until the target number
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Fig. 2. The process of the weighted soft voting algorithm.

of dimensions is reached or all the features with accuracy higher than the
previous level have been removed to get the feature set Fi;

• Step 4. Record the accuracy of each sub-feature set and accumulate it to
each feature weight contained in it;

• Step 5. Repeat the above four steps until the feature set of the target di-
mension is obtained.

After the above steps, the combination of features with the best recognition
effect and the weights of each feature can be obtained. In a multimodal fusion
scenario, we can achieve more efficient modal fusion and gesture recognition
by performing feature selection for each modality separately. In addition, the
interpretability of the algorithm can be improved by showing the accuracy
changes of each feature subset during feature selection.

3.2 Weighted soft voting algorithm

In previous studies, researchers have often combined multiple features and
downscaled them before feeding them into the classifier for training[13], be-
cause the fused features contain information on multiple features, and in this
way, we can often obtain better recognition results than single features. There-
fore, we designed a weighted soft voting algorithm to fuse multiple features
from the feature set.

First, we input each discrete feature from the automatic feature selection
strategy into the classifier for training separately and get their respective prob-
ability matrices. In the next step, we splice each discrete feature after nor-
malization to obtain its concatenated features and feed them into the classifier
as well to obtain their probability matrices. Finally, we use the weights of
each feature obtained in the automatic feature selection strategy to weigh and
sum their associated probability matrices (Probabilityc), then obtain the final
probability matrix to make a judgment of the gesture category. The process
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of the weighted soft voting algorithm is shown in Fig. 2. Since both the ex-
tracted features and the LDA classifier are interpretable, the results obtained
from them are still highly interpretable after weighted summing.

Since different features represent various meanings, they perform differently
in the recognition of different gestures, and back-end fusion using a soft voting
algorithm can more fully exploit the recognition advantages of distinct features
on their dominant gestures. At the same time, since different features perform
differently in gesture recognition, by weighting the feature weights obtained
from the automatic feature selection strategy to the likelihood matrix of each
feature, the influence of effective features can be further strengthened, and
that of ineffective features would be weaken compared with the direct use of
all the discrete features. Thus our method can achieve a more robust gesture
recognition with higher accuracy and interpretability.

3.3 Evaluation methods

To evaluate the accuracy improvement of the method. We evaluate our model
using four evaluation metrics that are common in previous work: accuracy,
precision, recall, and F1 score, calculated as follows:

Accuracy =
TP + FN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

(4)

where TP is true positive, FP is false positive, FN is false negative, and TN
is true negative.

Because biological data collection is more difficult, it tends to be smaller.
To verify the robustness of the method, with a certain amount of data, we
can use the division of different training and testing sets ratios to verify its
robustness. For example, the data measured in the first small period in the
dataset is used as the training set, and at the same time, more parts of the
data in the later part of the dataset are used as the test set, if the results are
still satisfactory, it means that the method has high robustness.

4 Final Remark

In this paper, we propose an interpretable feature selection and classification
method based on biosignals represented by sEMG signals with AUS signals,
which obtains the weights of each feature while using a backward deletion
strategy for feature selection, and then feeds the automatically selected feature
set and fused characteristics into the classifier separately for training, and sums
up all the possibility matrices after weighting them to obtain the final result.
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This method can make full use of the information on each feature to improve
its accuracy and robustness. Because the whole process is interpretable, it
can be better understood by users and improve its acceptability in practical
applications. At the same time, the method is general and may provide ideas
and insights for pattern recognition of multiple features.
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Abstract

This paper presents the development of a legal question-answering robot and its
human-computer interaction system. The objective is to provide legal consultation
services through an intelligent robot, aiming to reduce costs and workload for legal
professionals. The research includes the construction of a legal question-answering
dataset through web scraping, fine-tuning experiments with Chinese pre-trained lan-
guage models, and the development of a human-computer interaction system using
the Pepper robot. The system successfully addresses the unequal distribution of legal
resources and demonstrates the potential of AI technology in improving the accessi-
bility of legal resources and meeting the demand for legal consultation services.

Keywords: question-answering system, pre-trained language model,
human-computer interaction.

1 Introduction

In recent times, ChatGPT [6], developed by OpenAI, has demonstrated remark-
able natural language generation abilities, showcasing its ability to comprehend
user intentions and provide excellent responses. The underlying technology of
large-scale pre-trained language models used by ChatGPT for knowledge stor-
age provides robust support for generating high-quality answers in question-
answering systems.

AI-powered legal consultation can directly assist clients in organizing and
analyzing legal issues and provide them with alternative solutions to choose
from. Moreover, the cost of the entire consultation process is almost negligible,
and even if a certain fee is charged, it is much lower than the standard charges
in the legal industry, well within the clients’ affordability range.

Our work makes several contributions. First, we complete the profes-
sional dataset in the field of legal question-answering. We utilize web crawling
techniques to extract a large amount of manually annotated legal question-
answering data from the Chinese Legal Service website and perform effective
data cleaning to obtain the dataset. Second, we conduct fine-tuning experi-
ments on multiple open-source Chinese pre-trained language models using the
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legal question-answering dataset. Compared to conventional retrieval-based le-
gal question-answering models, our research provides references and solutions
for improving the effectiveness of generative pre-trained Chinese legal question-
answering models. Finally, we develop a human-machine interaction system for
legal question-answering based on the Pepper robot [9], integrating the best-
performing legal question-answering model.

2 Data collection

To construct a legal question-answering dataset, this paper utilized the Se-
lenium library in Python to automate data crawling from the Chinese Legal
Service website (12348 China Legal Net) 1 . The Chinese Legal Service web-
site, established by the Ministry of Justice of the People’s Republic of China,
integrates over 1.39 million legal service personnel and offers legal consulta-
tion services. Its consultation service section contains a substantial amount
of high-quality, manually annotated legal question-answering data. In total,
approximately 350,000 raw data entries were collected from the Chinese Legal
Service website, spanning the time range from 2018 to 2022.

The dataset obtained through Selenium crawling contains four fields: “ti-
tle” for the legal question-answering title, “question” for the legal question,
“answer” for the legal answer, and “time” for the question timestamp.

This paper implements data cleaning techniques to enhance the quality
of the legal question-answering dataset. After applying the necessary data
cleaning steps to the original dataset, a final legal question-answering dataset
consisting of 336,760 data entries is obtained.

Statistical analysis was conducted on the length of legal question-answer
data. It was observed that the legal questions generally have shorter lengths,
with the majority of them being less than 200 characters. On the other hand,
the legal answers tend to be longer, with a majority falling within the range of
51 to 500 characters.

Fig. 1. Length of questions and answers in the Legal Question Answering Dataset.

1 Source: Chinese Legal Service website http://www.12348.gov.cn/
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3 Experiment

Currently, deep learning-based encoder-decoder architectures have become the
mainstream approach for natural language generation. Most existing legal
question-answering systems are built upon methods such as knowledge graphs
and BERT [10,12], which employ query-based approaches to retrieve legal an-
swers. In this paper, we compare and test the performance of three generative
language models, namely Chinese GPT-3, ChatGLM [11] based on GLM [3],
and PromptCLUE based on T5 [8]. We fine-tune these models using a Chinese
legal question-answering dataset, evaluating their effectiveness in the context
of legal question-answering tasks.

LLM models are mostly derived from transformer. PromptCLUE based
on T5 adopts an encoder-decoder architecture, while Chinese GPT-3 uses a
decoder-only architecture. ChatGLM, based on GLM, utilizes the Prefix-LM
architecture. Regarding performance on few-shot and zero-shot tasks, autore-
gressive language models like GPT have demonstrated promising results. These
models are trained by generating the next word in a sequence given the preced-
ing words. They have been widely employed in text generation and question
answering. Prefix-LM is a variant of the encoder-decoder architecture. By
controlling the mask matrix, the visibility of input tokens can be managed,
allowing the model to handle both natural language understanding and gener-
ation tasks effectively.

The Chinese GPT-3 model is based on GPT-3 [2] and is pretrained using a
large amount of Chinese unsupervised data and downstream task data. Cur-
rently, the Alibaba DAMO Academy has only released the specific parameters
for GPT-3 base, GPT-3 large, GPT-3 1.3B, and GPT-3 2.7B.

In this paper, fine-tuning is performed on GPT-3 large and GPT-3 1.3B.
The hyperparameters used for fine-tuning are presented in Table 1. The fine-
tuning of GPT-3 large is conducted on a server RTX 3090, while the fine-tuning
of GPT-3 1.3B is performed on a server with Tesla A100.

Hyperparameter GPT-3 large GPT-3 1.3B

Bbatch size 16 8
Epochs 20 10

Warmup steps 200 200
Learning rate 0.0003 0.0001

Optimizer AdamW AdamW

Table 1
The hyperparameters of the fine-tuning experiment of GPT-3

The ChatGLM-6B is implemented using P-Tuning v2 [5] for tuning, which
reduces the amount of parameters that need to be optimized to 0.1%. Addi-
tionally, model quantization and Gradient Checkpoint methods are employed,
enabling the model to run with a minimum requirement of just 7GB of GPU
memory. It is p-tuned on a server with an RTX 3090. During the p-tuning
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4 Design and Implementation of Legal Question Answering Robot

process, the quantization bit is set to 4. Under this configuration, the model
parameters of INT4 are frozen. The loss curve is depicted in Fig. 2.

Fig. 2. Loss of ChatGLM-6B.

In this paper, fine-tuning is also performed on PromptCLUE. To fine-tune
the PromptCLUE, the legal question-answering dataset is used. The exper-
imental setup includes a batch size of 8 and a maximum sequence length of
512.

The inference experiments are conducted. It is found that GPT-3 large,
due to its relatively smaller model size, performs poorly in legal question an-
swering. The parameters and scale of the GPT-3 1.3B model are larger but
the logical coherence in question answering still remains weak, primarily due
to computational resource limitations.

Fig. 3. Inference result of GPT-3 1.3B (1).

During inference testing of GPT-3 1.3B, it is observed that the model oc-
casionally exhibits a tendency to evade questions, leading to a decline in the
question-answering efficiency of GPT-3 1.3B.

Fig. 4. Inference result of GPT-3 1.3B (2).
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The ChatGLM-6B demonstrates better performance in legal question an-
swering. However, upon comparison with annotated data provided by China
Legal Service Network, significant discrepancies were found between ChatGLM-
6B and the annotated data.

Fig. 5. Inference result of ChatGLM-6B.

Finally, in this paper, PromptCLUE is tested through inference experi-
ments, and it is observed that PromptCLUE is capable of providing answers
based on specific legal clauses. However, the majority of the responses lack
direct answers to the questions.

Fig. 6. Inference result of PromptCLUE.

This study evaluates the generative legal question-answering model using
a comprehensive assessment of Rouge-1, Rouge-2, Rouge-L [4], and Bleu-4 [7]
metrics. These metrics measure the similarity between the generated answer
and the reference answer. Specifically, Rouge-1 and Rouge-2 evaluate simi-
larity based on n-gram overlap, Rouge-L utilizes longest common subsequence
(LCS), and Bleu-4 quantifies similarity through 4-gram precision with a brevity
penalty. The final results are presented in Table 2.

Model Rouge-1 Rouge-2 Rouge-L Bleu-4

ChatGLM-6B p-tuning 21.6 5.1 15.7 4.1
GPT-3 large 33.3 5.7 16.9 17.8
GPT-3 1.3B 37.5 17.5 26.4 24.7

PromptCLUE 50.1 25.5 36.4 30.3

Table 2
Experimental results of the Legal Question-answering model: evaluation using

Rouge-1, Rouge-2, Rouge-L and Bleu-4 metrics

It is found that PromptCLUE achieves the best performance in the eval-
uation system used in this study, closely followed by GPT-3 1.3B. Due to its
smaller model size and fewer parameters, GPT-3 large performs less effectively
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than GPT-3 1.3B. Surprisingly, the results of ChatGLM-6B p-turning are worse
than those of GPT-3 large. Inference results reveal that ChatGLM-6B outper-
forms GPT-3 large and even GPT-3 1.3B. This unexpected result may be at-
tributed to the insufficient parameter updates caused by freezing INT4 during
P-Tuning. Ultimately, PromptCLUE is chosen as the legal question-answering
model to provide legal advisory services in this study.

4 Interactive System for the Pepper Robot

This paper develops a human-machine interactive legal question-answering sys-
tem. Building upon the Pepper robot, a legal question-answering interaction
framework was designed as illustrated in Fig. 7. PromptCLUE was converted
to ONNX [1] format and deployed on a server using the Flask framework to
provide legal question-answering services for the robot.

Fig. 7. Flow chart of Pepper question-answering.

5 Conclusion

To develop a legal question-answering robot, this paper conducted research in
legal question-answering dataset construction, legal question-answering model
training, and the development of the Pepper human-machine interaction sys-
tem. Fine-tuning experiments were conducted using legal question-answering
data on Chinese pre-trained language models to create a generative legal
question-answering model. By comparing the experimental results, it was ob-
served that PromptCLUE achieved excellent performance in our legal question-
answering task.
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Abstract

In this paper we study modal Lambek calculus with primary assumptions. We prove
that modal Lambek calculus with primary assumptions is decidabe. Further we show
that the categorial grammars based on modal Lambek calculus with transitive pri-
mary assumptions are context-free, which partially provides the answer to long term
open problem concerning the generatic capacity of Lambek calculus with primary
assumptions.

Keywords: modal Lambek calculus, primary assumption, decidability,
context-freeness.

1 Introduction

Lambek calculus (L) was introduced by Lambek in 1958 [8] as a syntac-
tic calculus for categorial grammars. He provided a sequent system for this
calculus and proved the cut-elimination, which yields the decidability. Pen-
tus [9] shows that the categorial grammars based on it are context-free. As a
type logic for categorial grammars with application to linguistic analysis, not
only the pure logic are studied but addtional non-logical assumptions are con-
sidered. Buszkowski [2,4] shows that L with assumptions is undecidable and
generates all r.e. language while its weaker version(Nonassociative L) is decid-
able in P-time and generates context-free languages [3]. Bulińska[1] studies L
enriched with simple assumptions: p⇒ q where p, q are propositional variables
and shows decidability and the fact that categorial grammars based on L with
such assumptions are context-free. Foret [6] studies similar problem by another
method. Dudakov, Karlov, Kuznetsov and Fofanova show a certain subexpo-
nential extension of the Lambek calculus (related to primary assumptions) are
decidable and their R-total derivability are context-free [5]

The main contribution of the present paper is that we study Lambek cal-
culus with modalities (introduced by Jäger [7]) and enriched with primary

1 Email address: pennyshaq@163.com
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assumptions: p1, ..., pn ⇒ q. We prove that these logics enriched with finitely
many primary assumptions are decidable. We impose some restrictions on the
set of Φ. Φ is transitive i.e. it is closed under (Cut), while the formula in the
right side of a sequent would not be any of the antecedent p1, ..., pn. For exam-
ple, if p1, p2, p3 ⇒ q ∈ Φ and p4, q ⇒ r ∈ Φ, then p4, p1, p2, p3 ⇒ r ∈ Φ, while
if p1, p2, p3 ⇒ q ∈ Φ and p4, q ⇒ p3 ∈ Φ, then p4, p1, p2, p3 ⇒ p3 /∈ Φ. We show
that categorial grammars based on modal Lambek calculus with a set of tran-
sitive primary assumptions are context-free. One movitivation of considering
the transitive primary assumptions is that in real applications, the assumptions
under consideration are simple and untransitive for instance V P ⇔ PN\S (the
type of verb phrase conjunction).

This paper is organized as follows. In next section, we introduce L with
modalities enriched primary assumptions(L3(Φ)). We show their correspond-
ing sequent systems are all decidable. In section 3, we consider the type gram-
mar based on these logics, and show they are context-free.

2 Modal Lambek Calculus with Primary Assumptions :
decidability

In this section, we consider Lambek calculus with modal operators enriched
with primary assumptions (denoted by L3(Φ)). First, we recall some basic
notions for Lambek calculus with modal operators (denoted by L3).

Definition 2.1 The set of formulas (terms) F is defined inductively as follows:

F ∋ α ::= p | α · β | α⧹β | α⧸β | 3α | ■α

Definition 2.2 Let , and ◦ be structural counterparts for · and 3 respectively.
The set of all formula structures FS is defined inductively as follows:

FS ∋ Γ ::= α | (Γ,Γ) | ◦Γ

A sequent is an expression of the form Γ ⇒ α where Γ is a formula structure
and α is a formula. A context is a formula structure Γ[−] with a designated
position [−] which can be filled with a formula structure. In particular, a single
position [−] is a context. For instance Γ[∆] is the formula structure obtained
from Γ[−] by substituting ∆ for −. By f(Γ) we mean the formula obtained from
Γ by replacing all structure operations by their relevant formula connectives.

Definition 2.3 The sequent system for DFL3(Φ) consists of a finite set of
primary assumptions Φ and the following axiom and rules:

(1) Axiom:
α ⇒ α (Id)

(2) Connective rules:
Γ[(α, β)] ⇒ γ

(·L)
Γ[α · β] ⇒ γ

Γ ⇒ α ∆ ⇒ β
(·R)

(Γ,∆) ⇒ α · β

Γ[β] ⇒ γ ∆ ⇒ α

Γ[(∆, α⧹β)] ⇒ γ
(⧹L)

(α,Γ) ⇒ β

Γ ⇒ α⧹β
(⧹R)

Γ[β] ⇒ γ ∆ ⇒ α

Γ[(α⧸β,∆)] ⇒ γ
(⧸L)

(Γ, β) ⇒ α

Γ ⇒ α⧸β
(⧸R)

(3) Modal rules:
Γ[◦α] ⇒ β

Γ[3α] ⇒ β
(3L)

Γ ⇒ α

◦Γ ⇒ 3α
(3R)

Γ[α] ⇒ β

Γ[◦■α] ⇒ β
(■L)

◦Γ ⇒ α

Γ ⇒ ■α
(■R)

(4) Cut rule:
∆ ⇒ α Γ[α] ⇒ β

Γ[∆] ⇒ β
(Cut)
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(5) Structural rules:
Γ[∆1, (∆2,∆3)] ⇒ β

Γ[(∆1,∆2),∆3] ⇒ β
(As1)

Γ[(∆1,∆2),∆3] ⇒ β

Γ[∆1, (∆2,∆3)] ⇒ β
(As2)

A sequent Γ ⇒ α is provable in L3, notation ⊢L3
Γ ⇒ α, if there is a

derivation of Γ⇒ α in L3. We write ⊢L3
α⇔ β if ⊢L3

α⇒ β and ⊢L3
β ⇒ α.

Theorem 2.4 (Cut elimination) ⊢L3(Φ) Γ ⇒ β iff ⊢L3(Φ) Γ ⇒ β without any
application of (Cut).

Proof. Assume that there is a subderivation of Γ⇒ β ended with an applica-
tion of (Cut) as follows:

⊢ ∆ ⇒ α ⊢ Σ[α] ⇒ β

⊢ Σ[∆] ⇒ β
(Cut)

We suffice to show that if ∆ ⇒ α and Σ[α] ⇒ β are both provable in L3

without any application of (Cut), then Σ[α] ⇒ β is provable in L3 without
any application of (Cut). We proceed by induction on (I) the complexity of
(Cut) formula α. In each case we proceed by induction on (II) the sum of
the length of two premises of (Cut). Assume that ∆ ⇒ α is obtained by (Rl)
and Σ[α] ⇒ β is obtained by (Rr). We refer the details to the standard cut
elimination proof.
(1) We consider the case that at least one premise in a cut is an axiom or a
primary assumption. The cases for axiom is very simple, thus we omit it. We
only refer the details for the primary assumptions as follows.
(i) The left premise is a primary assumption. The proof

p1, ..., pn ⇒ q

◦Γ[q] ⇒ α
(■R)

Γ[q] ⇒ ■α
(Cut)

Γ[p1, ..., pn] ⇒ ■α

can be transformed into

p1, ..., pn ⇒ q ◦Γ[q] ⇒ α
(Cut)

◦Γ[p1, ..., pn] ⇒ α
(■R)

Γ[p1, ..., pn] ⇒ ■α

Thus the new application of (Cut) has lower length. By induction hypothesis
(II), the claim holds.
(ii) The right premise is a primary assumption. The proof

Γ[◦α] ⇒ pi
(3L)

Γ[3α] ⇒ pi p1, ..., pn ⇒ q
(Cut)

p1, ...Γ[3α], ..., pn ⇒ q

can be transformed into

Γ[◦α] ⇒ pi p1, ..., pn ⇒ q
(Cut)

Γ[3α] ⇒ pi
(3L)

p1, ...Γ[3α], ..., pn ⇒ q

Thus the new application of (Cut) has lower length. By induction hypothesis
(II), the claim holds.
(2) α is not introduced by (Rl). We transform the derivation by first applying
(Cut) to premises of (Rl) and Σ[α] ⇒ β. After that we apply (Rl) to the
resulting sequent. Take (·L) as an example to interpret this. The remaining
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cases can be treated similarly.
(Rl) is (·L). Then the proof

Γ[(α, β)] ⇒ γ
(·L)

Γ[α · β] ⇒ γ ∆[γ] ⇒ θ
(Cut)

∆[Γ[α · β]] ⇒ θ

can be transformed into
Γ[(α, β)] ⇒ γ ∆[γ] ⇒ θ

(Cut)
∆[Γ[(α, β)] ⇒ θ

(·L)
∆[Γ[α · β]] ⇒ θ

Thus the applications of (Cut) in the premises have lower length. Hence by
induction hypothesis (II) the claim holds.
(3) α is introduced by (Rl) only. We transform the derivation by first applying
(Cut) to the premise of (Rr) and ∆ ⇒ α. After that we apply (Rr) to the
resulting sequent. Take (⧹L) as an example to interpret this. The remaining
cases can be treated similarly.
(Rr) is (⧹L), then the proof

Π ⇒ θ

Γ[β] ⇒ γ ∆[θ] ⇒ α
(⧹L)

Γ[∆[θ], α⧹β] ⇒ γ
(Cut)

Γ[∆[Π], α⧹β] ⇒ γ

can be transformed into

Γ[β] ⇒ γ

Π ⇒ θ ∆[θ] ⇒ α
(Cut)

∆[Π] ⇒ α
(⧹L)

Γ[∆[Π], α⧹β] ⇒ γ

Thus the new application of (Cut) has lower length of its premise. By induction
hypothesis (II), the claim holds.
(4) α is introduced in both premises. We transform the derivation by applying
(Cut) to the premise of (Rl) and (Rr). Take (Rl) = (3R) and (Rr) = (3L) as
an example to interpret this. The remaining cases can be treated similarly.
The proof

Γ ⇒ α
(3R)

◦Γ ⇒ 3α

∆[◦α] ⇒ β
(3L)

∆[3α] ⇒ β
(Cut)

∆[◦Γ] ⇒ β

can be transformed into
Γ ⇒ α ∆[◦α] ⇒ β

(Cut)
∆[◦Γ] ⇒ β

Thus the complexity of (Cut) formula in the first and second application of
(Cut) are lower than the original one. Hence by induction hypothesis (I) the
claim holds.

2

Due to the cut eliminiation theorem 2.4 and the fact that the number of
connectives in conclusion of any rule is smaller than the one in the premises,
one have the following theorem.

Theorem 2.5 L3(Φ) is decidable.

Remark 2.6 Note that in the proof of Theorem 2.4 and 2.5, Φ is not required
to be tansitive.
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3 Context-freeness

Now we consider the type grammars based on L3(Φ) where Φ is a set of
transitve primary assumptions. A set of primary assumptions Φ is transitive if
it satisfies the following conditions:

• Φ is closed under (Cut)

• p1, . . . , pn, q ⇒ q ̸∈ Φ for any p1, . . . , pn, q.

Let us recall some basic definitions of type grammars. A type grammar
based on a type logic TL(shortly a TL-grammar) is formally defined as a triple
G = ⟨Σ, I,D⟩ such that Σ is a nonempty finite alphabet, I is a map which
assigns a finite set of types to each element of Σ, and D is a designated type.
Usually D is an atomic type, often denoted by s. Σ, I,D are called the alpha-
bet(lexicon), the lexical(initial) type assignment and the designated type of G,
respectively. Type grammars based on TL are referred to as TL-grammars. We
consider type logics enriched with finitely many assumptions Φ. Type gram-
mars based on TL enriched with finitely many assumptions Φ are referred to
TL(Φ)-grammars.

The string of formulae obtained from a formula tree Γ by dropping all
structure operations and the corresponding parentheses is called the yield of
Γ and denoted as st(Γ). A language L(G) generated by a TL(Φ)-grammars
G = ⟨Σ, I,D⟩ is defined as a set of strings a1, ..., an, where ai ∈ Σ, for 1 ≤ i ≤ n
and n ≥ 1, satisfying the following condition: there exists formulae α1, ..., αn

and a formulae tree Γ such that for all 1 ≤ i ≤ n, ⟨ai, αi⟩ ∈ I, Φ ⊢TL Γ ⇒ D
and st(Γ) = α1...αn.

We consider L3(Φ)-grammars here. In what follows we show that L3(Φ)-
grammars are context-free. For doing so, we first need to introduce a definition
of positive and negative formula. Then we construct a L3(Φ)-grammars from
L3-grammars.

Definition 3.1 The positiveness (negativeness) of an formula α appearing in
a sequent Γ⇒ β is defined recursively by the following rules:

α = β is positive, and α ∈ Γ is negative;

if α = α1 · α2 is positive(negative), then both α1 and α2 are posi-
tive(negative);

if α = α1⧹α2 is positive(negative), then α1 is negative(positive) and α2

is positive(negative);

if α = α1⧸α2 is positive(negative), then α1 is negative(positive) and α2

is positive(negative);

if α = 3α1 is positive(negative), then α1 is positive(negative);

if α = ■α1 is positive(negative), then α1 is positive(negative).

Definition 3.2 We define a substitution g for any p1, ..., pn ⇒ q ∈ Φ as re-
placing positive q with a formula p1 · . . . · pn which depands on its antecedent
p1, ..., pn.
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Theorem 3.3 If ⊢L3(Φ) Γ⇒ β, then ⊢L3
g(Γ⇒ β).

Proof. For the left to the right, we proceed by induction hypothesis on the
length of proof of Γ ⇒ β in L3(Φ). For (Id) it is obvious. We consider the
case for the primary assumtion i.e. Γ⇒ β is p1, ..., pn ⇒ q. Then g(Γ⇒ β) is
p1, ..., pn ⇒ p1, ..., pn, it obviously holds in L3. Assume that Γ⇒ β is obtained
by rule (R).
(1) (R)=(·L). Assume ⊢L3(Φ) Γ[(α, β)] ⇒ γ, then by induction hypothesis we
have ⊢L3

g(Γ[(α, β)]⇒ γ). By Definition 3.2, for any positive q in Γ[(α, β)]⇒ γ
with such p1, ..., pn ⇒ q ∈ Φ, we do the substitution. Then we apply (·L) to
the result. Hereafter we obtain ⊢L3

g(Γ[(α · β)]⇒ γ).
(2) (R)=(⧹L). Assume ⊢L3(Φ) Γ[β]⇒ γ and ⊢L3(Φ) ∆⇒ α, then by induction
hypothesis we have ⊢L3

g(Γ[β] ⇒ γ) and ⊢L3
g(∆ ⇒ α). By Definition 3.2,

for any positive q in Γ[β] ⇒ γ and ∆ ⇒ α with such p1, ..., pn ⇒ q ∈ Φ, we
do the substitution. Then we apply (⧹L) to the result. Hereafter we obtain
⊢L3

g(Γ[(∆, α⧹β)]⇒ γ).
(3) (R)=(3R). Assume the premise is ⊢L3(Φ) Γ ⇒ α. Then by induction
hypothesis, we have ⊢L3

g(Γ ⇒ α). By Definition 3.2, for any positive q in
Γ ⇒ α with such p1, ..., pn ⇒ q ∈ Φ, we do the substitution. After that we
apply (3R) to the result. Thus we obtain ⊢L3

g(◦Γ ⇒ 3α). The remaining
cases can be treated similarly.

2

Given a L3(Φ)-grammar G = ⟨Σ, I,D⟩. One construct a L3-grammar G =
⟨Σ′, I ′,Λ⟩ as follows:
• Σ = Σ′

• If α ⇀ a ∈ I, then αi ⇀ a ∈ I ′ where αi is obtained from replacing each
positive appearing of qi by p

i
1, ..., p

i
m in α, where pi1, ..., p

i
m ⇒ qi ∈ Φ.

• Λ is the set of all formula Di such that Di is obtained from replacing each
positive appearing of qi by p

i
1, ..., p

i
m in α, where pi1, ..., p

i
m ⇒ qi ∈ Φ.

Theorem 3.4 If in a L3(Φ)-grammar, Φ is finite, then there exists a L3-
grammar generates the same language.

Theorem 3.5 (Kanazawa) L3-grammars are context-free.

Theorem 3.6 L3(Φ)-grammars are context-free.

4 Conclusion

In the present paper, we show the categorial grammars based on modal
Lambek calculus with transitive primary assumptions are context-free. This
result depands on the cut free sequent system discussing in this paper. Since the
generative capacity of Lambek calculus with simply assumption p/q ⇒ q goes
beyond the context-free languages, it is natrual to guess that the generative
capacity of Lambek calculus with primy assumptions may beyond the context-
free languages. A interesting further work is to find a concrete examlpe of such
kind of categorial grammars which is not context-free.
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Abstract

With the iterative updates of technology, Bayesian artificial intelligence which is
based on probability inference has mighty computational power and can handle a
large number of complex uncertain inference problems. Bayesian artificial intelli-
gence uses Bayesian networks as carriers and Bayesian formula as the foundation to
visualize and intellectualize probability inference. However, when using Bayesian net-
works to model specific application domains, “how to calculate initial probabilities”
is the biggest challenge. In this paper, we propose that a calculation model needs to
be constructed from three dimensions to ensure the accuracy of initial probabilities,
namely logical requirements, calculation methods, and rational standards. Logically,
initial probabilities is necessary to meet the consistency requirements of probability
axioms, and probability rules provide the basis for probability inference. Method-
ologically, probability interpretations are used to integrate probability information
and figure out the numbers of initial probabilities. Rationally, the two reliable stan-
dards, that are transparency and consensus, should be required, and argumentation
provides a means of proof for reliability. Only through the cooperation and coupling
of the three can consistent and accurate initial probability values be obtained, thus
ensuring the reliability of the outputs of Bayesian artificial intelligence and providing
bases and suggestions for decision-making.

Keywords: Bayesian artificial intelligence, Bayesian formula, initial probabilities,
probability interpretations, probability calculation.

1 Introduction: The origin of the problem

The evolution of artificial intelligence has formed two representative paths in
the past 60 years: the first path is knowledge-driven symbolism, which con-
structs artificial intelligence with three elements: knowledge, algorithms, and
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2 Computing Logic for Initial Probabilities of Bayesian Artificial Intelligence

computing power; the second path is data-driven connectionism, which also
constructs artificial intelligence with three elements: data, algorithms, and
computing power. These two paths only simulate human intelligent behav-
ior from a particular perspective, and thus have their limitations. However,
Bayesian artificial intelligence is driven by both knowledge and data, and con-
structs artificial intelligence with four elements: knowledge, data, algorithms,
and computing power. It belongs to the third generation of artificial intel-
ligence and has stronger robustness and interpretability. Bayesian artificial
intelligence [11] uses Bayesian networks to represent knowledge and data, and
uses Bayesian formula as a guide for knowledge inference, making probability
inference visualized and intellectualized. Bayesian networks were first proposed
by Pearl [14] at the University of California in the 1980s. To solve the dilemma
of uncertain knowledge representation and inference in symbolism and connec-
tionism, inspired by cognitive science and bionics Pearl combined probability
inference with graph theory to form Bayesian networks, which simulate the
operating mechanism of neurons in the human brain and become a common-
ly used method for knowledge inference. The reason why Bayesian networks
can model any real-world problems involving uncertainty lies in the probability
foundation behind them, i.e., the probability theory based on Bayesian formu-
la. Bayesian probability theory is the most promising formal theory for dealing
with uncertain information.

Bayesian formula is the core of the probability theory and the origin of
Bayesian philosophy. It refers to the posterior probability P (H|E) of a propo-
sition H conditional on evidence E, which equals the product of the likelihood
P (E|H) of the evidence and the prior probability P (H) of the proposition, and
then divided by the probability P (E) of the evidence. It can be expressed in
the formula as:

p(H|E) =
P (E|H)P (H)

P (E)
,

where P (E) can be calculated using the law of total probability, which is
P (E) = P (E|H) × P (H) + P (E|¬H)P (¬H), here ¬H represents the logi-
cal negation of the proposition H. The prior probability and likelihood are
both initial probabilities that respectively measure the possibility of proposi-
tion H and the occurrence of evidence E before the evidence is received. The
posterior probability, as the final probability desired, serves as the basis for
decision-making and is the target output of the Bavesian network.

Modeling a specific application domain using a Bayesian network typical-
ly involves three steps: first, identifying the key variables and their possible
states in the domain; second, clarifying the structural relationships between
these variables and representing them graphically; and third, calculating the
probability distribution of each variable. The first two steps aim to construct
the property of the Bayesian network graph, which is feasible with collabora-
tion and communication with relevant experts despite the operational difficulty.
The third step aims to construct the quantity part of the Bayesian network,
which is often more challenging. “Where do the initial probability numbers
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come from?” is a commonly asked puzzle and also the most significant chal-
lenge faced by Bayesian artificial intelligence. Without initial probabilities
as numerical inputs to the Bayesian network, posterior probabilities cannot
be calculated, and hence, advice for decision-making cannot be provided. Of
course, any field involving probabilistic reasoning faces the challenge of initial
probabilities. This is because there is “no ‘true’ or ‘uniquely/objectively right’
probability,” and “probability is a very liberal concept in that it does not tell
one what their probability should be” [1, p. 13]. Given a situation, probability
logic does not provide any standard for determining initial probability; it only
provides rules from initial probability to posterior probability [8]. Therefore,
no “precise” theory or method for universally calculating initial probabilities
exists. Our goal is not to theoretically solve the “problem of initial proba-
bility numbers”, but to provide method guidelines and evaluation criteria for
decision-makers to calculate initial probabilities practically, thereby providing
an important guarantee for the wide application of Bayesian artificial intelli-
gence.

From the perspective of practical decision-making, the calculation of initial
probabilities as a decision-making behavior depends on the background infor-
mation 1 that decision-makers have mastered. Rational decision-makers will
try their best to ensure that the calculated initial probabilities truly reflect
the content expressed by background information and meet their value pur-
suits, such as truth-seeking, fairness, and justice. However, real people are not
entirely rational or omniscient like God. Therefore, the calculated initial prob-
abilities are “imprecise” but can be accurate. This requires decision-makers to
shoulder the obligation of calculating initial probabilities and provide evidence
for the calculation process while also to bear the risks and responsibilities of
inaccurate initial probabilities. How to calculate accurately initial probabili-
ties? To solve this problem, this paper proposes three suggestions. First, based
on the requirement of logical consistency, the initial probabilities must satis-
fy the basic restrictions of probability axioms. Second, at the methodological
level, probability interpretations should be used as bases when processing and
integrating various probability information and calculating probability values.
Finally, the entire calculation process should meet the reliable standards of
“transparency” and “consensus,” and in order to improve the accuracy and the
acceptability of numerical calculation, we advocate argumentation method as
the guarantee for justification.

2 Logical requirements: consistency of probability
calculations

The first step in calculating initial probability is to ensure no conflict about
probabilities of all uncertain events in the same uncertain phenomenon. How-
ever, the basis of probability calculation lies in various interpretations of the

1 Background information includes statistical data, literature, expert knowledge, general
knowledge about the world, and the empirical knowledge of decision makers.

161



4 Computing Logic for Initial Probabilities of Bayesian Artificial Intelligence

concept of probability. These interpretations characterize the meaning of prob-
ability from different perspectives, which have different advantages and disad-
vantages respectively. Despite the rapid development of probability theory and
its applications, there is still ongoing philosophical debate about what proba-
bility is and how to interpret it. No complete consensus has been reached so
far.

Probability has a peculiar dual meaning since its birth. Pascal used prob-
ability to describe random events in chance games and also evaluated proposi-
tions such as “the existence of God” with probability in his famous gambling
argument. As described by Hacking, probability is “Janus faced. On the one
side it is statistical, concerning itself with the stochastic laws of chance process-
es. On the other side it is epistemological, dedicated to assessing the reasonable
degrees of belief in propositions quite devoid of statistical background” [7, p.
12]. Based on the inherent duality of probability, it can be divided into statisti-
cal probability and epistemic probability. Statistical probability, also known as
objective probability, mainly includes the frequency interpretation and propen-
sity interpretation. Epistemic probability, also known as subjective probabili-
ty, mainly includes classical interpretation, personal subjective interpretation,
inter-subjective interpretation, and logical interpretation. These interpreta-
tions of probability depict the meaning of probability from different perspec-
tives, each with its advantages and limitations. The debate over probability in-
terpretations exists because some scholars insist that objective probability and
subjective probability compete each other and are mutually exclusive. This
debate can be attributed to the philosophical questioning of “what is proba-
bility,” and the result of this debate will not have a winner or loser, nor will it
reach a cognitive consensus, because the boundaries of various interpretations
of probability are inherently fuzzy and can even permeate each other. Specif-
ically, objective probability contains subjective assumptions of reference class
selection, while subjective probability entails objective data foundations. Ac-
cording to this, instead of engaging in philosophical debates about objectivity
and subjectivity, we advocate that probability interpretations should be viewed
as bases for calculating probability under different information conditions.

In fact, probability, as a measurement tool for the uncertainty of unknown
events, must satisfy two necessary conditions. First, for all possible events
of the same uncertain phenomenon, probability calculation must be consis-
tent and cannot be contradictory. Second, when new evidence occurs, the
probability of the uncertain event can be reasonably revised or updated [5,
p. 69]. Based on these two conditions, in 1933, Kolmogorov separated the
interpretation of probability from its mathematical properties, discarded the
philosophical debates on probability interpretation, and proposed a mathe-
matical axiomatic definition of probability. This definition can be regarded
as a mathematical response to the question of “what is probability.” In his
view, each specific uncertain phenomenon can be described as an experiment,
which produces various outcomes, and the set of all these outcomes is called
the sample space (denoted by Ω). Elements of the sample space is also called
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sample points. Any subset of the sample space is called an event, and the
set consisting of single sample point is called a basic event. Basic events are
mutually exclusive; that is, they cannot occur simultaneously. The set of all
subsets of the sample space is called the event field (denoted by F ), so each
element in the event field corresponds to some uncertain event. Kolmogorov
defined probability as a set function P from the event field F to the real
interval [0, 1] satisfying the following three axioms [5, p. 90-92]:

Axiom 1 (Non-negativity): The probability P (E) of any event E in F is a
non-negative number, that is, P (E) ≥ 0.

Axiom 2 (Normalization): The probability of the entire sample space is 1,
that is, P (Ω) = 1

Axiom 3 (Additivity): For mutually exclusive events E1, E2, E3, . . ., the
probability of at least one of them occurring is equal to the sum of their
probabilities, that is, P (E1 ∪ E2 ∪ E3 ∪ . . .) = P (E1) + P (E2) + P (E3) + . . .

The probability distribution of an uncertain phenomenon is formed by a
numerical assignment function that satisfies the three axioms. Depending on
the type of outcomes, uncertain phenomena can be divided into two types: dis-
crete and continuous. The sample space of a discrete uncertain phenomenon
can be divided into finite and infinite discrete sample spaces according to the
number of basic events it contains, and their corresponding event fields are
finite and infinite sets, respectively. The corresponding distributions are also
called finite discrete probability distributions and infinite discrete probabil-
ity distributions, respectively. For example, considering the uncertain phe-
nomenon of “tomorrow’s weather”, assuming that there are three interesting
outcomes: sunny, cloudy, and rainy, then the sample space Ω={sunny, cloudy,
rainy}, which is a finite discrete sample space. The event field F ={φ, {sunny},
{cloudy}, {rainy}, {sunny, cloudy} , {sunny, rainy },{cloudy, rainy}, Ω}. F
has eight events, among which {sunny}, {cloudy}, and {rainy} are the three
basic events. The empty set φ is called an impossible event, and the sam-
ple space Ω itself is called a certain event. Now, the following eight numeri-
cal assignments are made to these events: P{sunny}= 0.5, P{cloudy}= 0.3,
P{rainy}= 0.2, P{sunny, cloudy}= 0.8, P{sunny, rainy}= 0.7, P{cloudy,
rainy}= 0.5, P (Ω)= 1, P (φ) = 0. It is mathematically easy to verify that
the assignment function satisfies the requirements of the three probability ax-
ioms, thereby forming the probability distribution of “tomorrow’s weather”,
which is a finite discrete probability distribution. However, in practice in order
to reduce the number of required probabilities and avoid inconsistent situation-
s when constructing the probability distribution of a finite discrete uncertain
phenomenon, it is only necessary to assign probability values to basic events
according to the non-negativity and normalization axioms. Probabilities of the
other events can be calculated based on the three axioms. In the above example,
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6 Computing Logic for Initial Probabilities of Bayesian Artificial Intelligence

only the first three probability values need to be determined: P{sunny}= 0.5,
P{cloudy}= 0.3, P{rainy}= 0.2, and the remaining five probability can be
calculated based on the axioms. It should be noted that in order to satisfy the
requirements of the three axioms, people should consider the probabilities of all
basic events “simultaneously” and not calculate the probability of each basic
event separately in isolation; otherwise, it may lead to inconsistent results. If
the probabilities of sunny, cloudy, and rainy are calculated separately at dif-
ferent times, then inconsistent numerical assignments may occur, for example,
P{sunny}= 0.4, P{cloudy}= 0.5, P{rainy}= 0.3.

In addition to assigning probability values directly to basic events, pre-
defined probability distributions in mathematics can be used to construct dis-
tributions for uncertain phenomena. Examples of known finite discrete prob-
ability distributions include the two-point distribution and the binomial dis-
tribution, while known infinite discrete probability distributions include the
Poisson distribution and the geometric distribution. Each known probability
distribution is a model for computing probabilities and has been mathematical-
ly proven to satisfy three probability axioms. Depending on the characteristics
of the uncertain phenomenon, an appropriate known probability distribution
that can describe those characteristics is selected as the probability distribution
for that uncertain phenomenon. For example, the Poisson distribution is often
used to describe the number of machine failures.

For continuous uncertain phenomena, both the sample space and even-
t domain are infinite sets. Unlike discrete uncertain phenomena, probability
distributions for continuous uncertain phenomena are typically described by
density functions. Mathematics has pre-defined many density functions that
satisfy the logical requirements of the three axioms, such as uniform distribu-
tion, exponential distribution, and normal distribution. Each density function
is a mathematical model for calculating probabilities. An appropriate densi-
ty function that can describe the characteristics of the uncertain phenomenon
is selected to construct its probability distribution. For example, a normal
distribution is often used to describe human height.

In fact, probability theory has a fourth axiom, called the “conditional proba-
bility” rule, which is usually expressed as a definition for calculating conditional
probabilities in mathematics. The conditional probability rule and Bayes’ the-
orem can be derived from each other and are equivalent, so Bayesianists also
consider the latter as the fourth axiom of the probability system [5, p. 110,
135]. The three probability axioms, combined with the conditional probability
rule, can be used to derive probability complementary formula, Bayes’ formula,
probability addition formula, multiplication formula, total probability formu-
la, and other probability rules. They collectively constitute the entire formal
system of probability theory and play different roles in the calculation process.
The probability axioms require logical consistency for probability calculations.
In contrast, the probability rules provide rules and guarantees for further calcu-
lations of other probabilities, with Bayes’ theorem being the only rational rule
for probability revision or updating. The formal system of probability theory is
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a logically consistent and robust system that provides a solid logical framework
for uncertain reasoning.

As a quantitative attribute, probability has to satisfy the logical consistency
requirements of probability axioms. All probability distributions must satisfy
probability axioms. Prior probability distributions are relative to posterior
probability distributions, both must satisfy probability axioms.

It is worth noting that besides satisfying the consistency restrictions of the
three probability axioms, the initial probability is free. The formal system
of probability theory does not provide any other requirements or instructions
for computing the initial probability, nor can it provide specific methods for
calculating the initial probability. Therefore, the formal system of probability
theory neither specifies the method of calculating the initial probability nor
guarantees its reliability. It only accepts the initial probability as input and
produces logically consistent output based on it. The rationality of the output
depends on the reliability of the initial probability.

3 Method Empowerment: Feasibility of Probability
Calculation

Formal probability theory only imposes consistency requirements on the initial
probabilities, that is satisfying the three probability axioms, but it does not
restrict the methods used to calculate them. Therefore, the next problem is
how to compute the initial probabilities at the operational level. In order to ob-
tain methodological guidance, we need to turn to probability interpretations.
Unlike the probability axioms, which remain silent on computational meth-
ods, the important role of probability interpretations is to provide methods
for calculating initial probabilities from different perspectives by incorporating
specific background information of practical problems. However, as mentioned
earlier, there are multiple versions of probability interpretations, and it is up
to decision-makers to consider which interpretation to use for probability cal-
culation.

Probability interpretations should be analyzed independently from two per-
spectives. One is the probability concept perspective, which provides one an-
swer to “what is probability”. The other is the probability calculation per-
spective, which provides a method for calculating probability. The classical
interpretation does not define what probability is but essentially provides a
method for computing probability under the conditions of “equiprobability”
and “finiteness”. The frequency interpretation gives a definition of the probabil-
ity concept, stating that probability is the limit of infinite frequency sequences,
and provides a method for calculating probability by counting frequencies. The
propensity and logical interpretations focus on analyzing the probability con-
cept but provide little practical guidance for computing initial probabilities.
The subjective interpretation defines the probability as a degree of personal
subjective belief, and while it does not provide a clear method for computing
probability, it acknowledges multiple ways of computing probability.

Probability concept and probability calculation are two different things, and
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8 Computing Logic for Initial Probabilities of Bayesian Artificial Intelligence

it is necessary to separate and treat them differently in probability interpre-
tations. The main reason for the controversy surrounding probability inter-
pretations is to lump probability concept and probability calculation together.
From the perspective of probability concept, there can only be one definition of
probability, so various interpretations are mutually exclusive, which can lead to
disputes. However, from the perspective of probability calculation, the meth-
ods for calculating probability can be diverse, and probability interpretations
provide methods for calculating initial probabilities from different dimensions
by incorporating specific background information of practical problems, thus
avoiding disputes. On the contrary, at the level of probability calculation, the
subjective interpretation accepts multiple methods of probability calculation,
so it is an extension of other interpretations. The subjective interpretation
broadens the scope of probability application. The critical bottleneck for the
application of probability is not the probability concept but the probability
calculation. Currently, the focus of this paper is on probability calculation,
specifically on the basis for calculating initial probabilities. We will examine
the applicability and conditions of the classical interpretation, frequency inter-
pretation, and subjective interpretation in order to provide practical guidance
for decision-makers to make rational choices.

3.1 Classical Interpretation Method

The core of the classical interpretation is to provide an epistemological approach
to probability calculation under the conditions of finiteness and equiprobability.
The classical interpretation is usually attributed to Laplace, who argued that
probability is “relative in part to [. . . ] ignorance and in part to our knowledge”
[12, p. 2]. In other words, probability is always based on available knowledge,
although it may be difficult to obtain all knowledge about the world. Probabil-
ity can be used to expand the scope of cognition. In this sense, probability pro-
vides a rational tool for understanding the world and grasping its regularities,
whether in science or in everyday life. Therefore, the classical interpretation
is regarded as an epistemological probability that assigns probabilities in the
absence of any evidence or the presence of symmetric evidence.

Based on this, Laplace proposed the “principle of indifference,” which as-
sumes that the probability of each basic event of an uncertain phenomenon is
the same, and the initial probability is calculated accordingly. In this process,
the classical interpretation has two underlying assumptions: finiteness and e-
quiprobability. According to the available knowledge, it is assumed that the
uncertain phenomenon only includes a finite number of basic events. Based
on the principle of indifference, it is assumed that each basic event has an
equal probability of occurrence. Therefore, for any event A in an uncertain
phenomenon, its probability calculation formula is: the probability of event
A = the number of basic events contained in event A/the total number of basic
events in the sample space.

It is mathematically easy to verify that the classical probability calculation
formula satisfies the three axioms, thus meeting the requirement of consistency.
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The classical interpretation is an idealized model for calculating initial proba-
bilities. Many uncertain phenomena in reality, as long as they meet or satisfy
the characteristics of “finiteness” and “equiprobability,” can use the classical
interpretation to calculate initial probabilities.

However, the two underlying assumptions of the classical interpretation
limit its applicability. Firstly, equiprobability indicates that the classical in-
terpretation is an idealized mathematical model that is difficult to meet the
equiprobability condition in real-life situations precisely. However, from a prac-
tical standpoint, assuming equiprobability is acceptable if insufficient evidence
suggests that the events being examined do not have equiprobability. Therefore,
the classical interpretation is suitable for situations where there is no evidence
or where there is symmetrically balanced evidence. For example, when tossing
a coin, it is generally assumed that the probability of head and tail is equiprob-
able unless there is evidence that the coin is biased. Some scholars argue that
equiprobability is a circular definition because it actually refers to “equal prob-
ability.” It should be noted that we do not regard the classical interpretation
as a definition of probability but as a method for calculating probability, so
there is no problem of the circular definition. Secondly, finiteness indicates
that classical probability is only suitable for describing uncertain phenomena
with a finite number of basic events. When there are an infinite number of
basic events, classical interpretation is powerless. Therefore, when applying
classical interpretation to calculate initial probabilities, decision-makers must
transparently disclose the reasons for the assumptions of equiprobability and
finiteness and provide evidence to support them.

3.2 Frequency Interpretation Method

The core of the frequency interpretation is to provide an ontological approach
to probability calculation under the condition that objective attribute and em-
pirical estimation are integrated into each other. The frequency interpretation
was originated by John Venn and later modified by Richard von Mises. There
are multiple versions of the frequency interpretation, among which the most
accepted version by statisticians advocates that probability is the limit of an
infinite frequency sequence under specific stochastic assumptions. Empirical
evidence indicates that frequency has a significant statistical regularity; name-
ly, the frequency of an uncertain event always oscillates around a fixed constant,
which is called “frequency stability.” If the same object is measured multiple
times, although the results may differ slightly, a certain regularity becomes
more apparent as the number of measurements increases: each measurement
value fluctuates around a constant and exhibits some symmetry. Moreover,
Bernoulli’s law of large numbers proves that the limit value of frequency is e-
qual to the probability value. Frequency stability indicates that the magnitude
of the possibility of an uncertain event is an inherent objective property that
is not subject to volitional changes, and the constant toward which frequen-
cy tends is the magnitude of the possibility of the uncertain event occurring.
Therefore, frequency interpretation is an objective probability. Based on the
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ontological perspective, frequentism claims that each uncertain event has a u-
nique and correct probability, which can be obtained through the limit of an
infinite frequency sequence.

However, this idea, although perfect ideally, is impractical in operational
terms because an infinite sequence cannot be obtained. This is the biggest
challenge faced by the frequency interpretation. Fortunately, Von Mises argues
that the limit of an infinite frequency sequence is an ideal model of probability,
similar to the limits of velocity and density in science, and can be perceived
with finite experience. He believes that “the results of a theory based on the
notion of the infinite collective can be applied to finite sequences of observations
in a way which is not logically definable, but is nevertheless sufficiently exact
in practice” [16, p. 85]. Therefore, the method of calculating probability based
on the frequency interpretation in practical applications is firstly to select an
appropriate and finite reference class, such as a reference class composed of N
trial outcomes or observations. Secondly, count the number of times n that
the event A of interest occurs. Thirdly, calculate the frequency n/N , and this
frequency value is approximately regarded as the probability value of event A
occurring. This method of calculating probability is called finite frequencism.
It is easy to verify from a mathematical perspective that this method satisfies
the three probability axioms and meets the requirement of consistency.

The charm of the frequency interpretation lies in the integration of objec-
tivity and empiricism. The frequency interpretation advocates that uncertain
events objectively exist with correct probabilities, but they are unknown to
humans. However, these right probabilities can be empirically estimated us-
ing observed frequencies in samples. Although frequency interpretation has
become the mainstream interpretation in the scientific field, it also has the fol-
lowing problems. Firstly, the limit of an infinite frequency sequence cannot be
obtained in practice. Even if assuming the existence of an infinite frequency
sequence through counterfactuals, it involves the “infinitely repeatable” and
“independence” assumptions, which are difficult to satisfy in practice. There-
fore, the limit of an infinite frequency sequence is only an idealized model of
probability without practical operability, and probability calculation can only
be estimated through finite frequency. Secondly, finite frequency is not truly
equal to probability. It is only an approximate value of probability. The finite
frequency is based on the actual outcomes to calculate probability, and the er-
ror of this approximation can sometimes be significant. For example, suppose
a “fair” coin is tossed, according to the classical interpretation or the limit of
an infinite frequency sequence by counterfactuals, it is generally accepted that
the probability of “head” is 0.5. However, suppose the coin is tossed ten times
in practice. In that case, the result of “nine heads and one tail” may occur, and
according to finite frequencism, the probability of “head” is 0.9, which is signif-
icantly different from 0.5. Therefore, as an appropriate understanding of finite
frequency, it should be considered as evidence for reflecting probability, and
as “non-deterministic” evidence. Finally, calculating initial probabilities based
on the frequency interpretation must depend on a specific reference class, but
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there may be more than one feasible reference class. The frequency interpreta-
tion faces the problem of reference class selection. Therefore, when estimating
probability through frequency, decision-makers must transparently disclose the
basis and reasons for selecting a reference class and demonstrate the selected
reference class in communication and discussion so that it can be accepted and
recognized by others.

3.3 Subjective Interpretation Method

The core of the subjective interpretation method is to provide an epistemolog-
ical approach to probability calculation under the condition that objective and
subjective elements are integrated. Subjective interpretation, also known as
Bayesian interpretation, defines probability as the degree of belief of an appro-
priate subject under given information. Based on this, what is an appropriate
subject? A satisfactory answer is that an appropriate subject must be rational.
Ramsey pointed out that a rational subject should be logically consistent; that
is, the calculation of subjective probability requires the subject to follow the
consistency requirement of probability axioms. Following Ramsey’s approach,
subjective interpretation reaches its peak in de Finetti’s theory, where he com-
bines the Bayesian rule with exchangeability, promoting the convergence of
belief and observed frequency. This is the famous “de Finetti representation
theorem,” which ensures the applicability of subjective probability in statistical
inference.

Calculating subjective probability not only requires meeting the consistency
requirement of probability axioms but also considering all available informa-
tion, including frequency and equiprobability. “Every probability evaluation
essentially depends on two components: (1) the objective component, consist-
ing of the evidence of known data and facts; and (2) the subjective component,
consisting of the opinion concerning unknown facts based on known evidence.”
[3, p. 7] Since collecting factual evidence involves several subjective factors,
subjective factors are considered as a prerequisite for evaluating objective fac-
tors. In addition, in many cases, the decision-makers’ ability and experience
will affect probability judgments in various ways. Therefore, how to calculate
subjective probability depends on what conditional information the decision-
maker obtains and how she utilizes this information. Based on the different
types and sources of information, subjective probability can be calculated in
the following four situations.

Firstly, if the acquired information can provide reasons and support for the
assumption of “equiprobability”, then decision-makers can calculate probabil-
ities based on the classical interpretation or the uniform distribution. It is
worth noting that classical probability applies to finite equally likely events,
while the uniform distribution applies to infinite equally likely situations. In
this sense, the uniform distribution is an expansion of classical probability.

Secondly, if the acquired information is frequency data, decision-makers can
calculate probabilities based on the frequency method.

Thirdly, if the acquired information is empirical knowledge or expert knowl-
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12 Computing Logic for Initial Probabilities of Bayesian Artificial Intelligence

edge, decision-makers can estimate probabilities based on empirical perception
or intuition after considering this knowledge.

Fourthly, if there is no information available to estimate the probability,
then according to the maximum entropy principle, the assumption of “equiprob-
ability” can be made, and probabilities can be calculated based on the classical
interpretation or the uniform distribution. The maximum entropy principle,
proposed by Jaynes, states that “. . . in making inferences on the basis of par-
tial information we must use that probability distribution which has maximum
entropy subject to whatever is known. This is the only unbiased assignment
we can make; to use any other would amount to an arbitrary assumption of
information which by hypothesis we do not have.” [9, p. 623] The so-called
unbiased distribution is the best probability distribution and the optimal math-
ematical model for calculating probabilities. It can be seen that the maximum
entropy principle not only provides an optimal strategy for probability calcu-
lation but also solves the problem of assigning initial probability values in the
absence of information. Its advantage is that it can maximize the elimination
of subjective interference in the absence of any information and does not favor
anyone in order to obtain the fairest probability value.

It should be noted that subjective interpretation claims that there does not
exist a unique correct or objective probability. “the subjective theory [. . . ]
does not contend that the opinions about probability are uniquely determined
and justifiable. Probability does not correspond to a self-proclaimed ‘rational’
belief, but to the effective personal belief of anyone.” [2, p. 218] This indi-
cates that probability is primarily a personal subjective belief, and even under
the same information, probabilities calculated by different subjects may differ.
Therefore, in order to improve the accuracy of probability calculation, calcula-
tors should transparently disclose the calculation process and provide evidence
for it so that the obtained probability can achieve consensus and acceptability
in communication and discussion.

4 Rational Standards: Reliability of Probability
Calculation

Probability logic requires consistency in initial probabilities and provides logical
rules for calculating further probabilities based on initial probabilities. Howev-
er, it does not provide a method for calculating initial probabilities. Probability
interpretation provides a method for calculating initial probabilities but does
not guarantee the reliability of the calculation process and results. To en-
sure accuracy and acceptability of initial probabilities, the calculation process
should be transparent and consensual. Argumentation can be applied to justify
the calculation results.

Firstly, the reliability of initial probabilities must meet the standards of
transparency and consensus. Initial probabilities are not right or wrong but
can only be evaluated as accurate or inaccurate, which makes the calculation
of initial probabilities a decision-making process. Decision-makers must bear
the consequences and risks of inaccurate probability calculations. To improve
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the accuracy of initial probability calculations, decision-makers should not be
limited to a single probability interpretation but adopt a diversified perspective
and select a suitable probability interpretation based on the probability infor-
mation they possess. Different decision-makers may have different probability
information for the same uncertain phenomenon, resulting in different initial
probabilities. However, decision-makers’ initial probabilities must truly reflect
the probability information they possess, and they must provide justification
for the calculation results. “If we cannot require everybody sharing the same
likelihoods, we can require everybody having justified likelihoods” [6, p. 1506].
Decision-makers should “take responsibility for their quantifications of uncer-
tainty” and make “the best use of all relevant available data, knowledge and
information in a way that can be disclosed and audited” [1, p. 55-57]. What
calculation method is disclosed and audited? We advocate that transparency
and consensus serve as a basis and guideline for auditing the process and results
of initial probability calculations.

On the one hand, uphold openness and transparency. The transparency
standard is an important safeguard for probabilistic calculations, primarily be-
cause it requires all the choices and considerations involved in the initial prob-
ability calculation process to be made public and transparent. First, decision-
makers should disclose the sources of data, knowledge, and information and
clarify the reasons for selecting these sources. They also should fully consid-
er relevant competitive theories and viewpoints, and eliminate biases and ad
hoc interpretations of results. Secondly, the concepts and methods used in the
calculation process should have clear and explicit definitions and follow gen-
erally accepted rules and procedures. For example, probability distributions
should meet the requirements of the three probability axioms of Kolmogorov.
Finally, decision-makers should disclose the reasoning process of the calculation
and make public the assumptions and potential limitations involved, including
those hypotheses that may not be verifiable. They should keep an open attitude
towards criticism and communication. In any case, it is essential for decision-
makers to explain clearly how they arrived at the initial probability values, so
that researchers can decide to what extent they support the probability results.

On the other hand, follow cognitive consensus. The accuracy of the out-
puts of Bayesian artificial intelligence depends on the reliability of the inputted
initial probability. Therefore, decision-makers need to negotiate and reach a
consensus when communicating and discussing initial probability calculations.
Only by calculating initial probabilities in a transparent and open manner can
decision-makers improve their calculation results through communication and
discussion with others, ultimately gaining recognition and reaching a consensus.
Transparency contributes to achieving consensus. When examining uncertain
phenomena, reality and facts can only be understood through personal expe-
rience. Different people bring different information and viewpoints, and they
also use probability information such as data and knowledge in different ways.
Therefore, communication and discussion among decision-makers are necessary
to ensure that the probability values are accurate and stable. In communica-
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tion and discussion, consensus cannot be enforced; as a reliability indicator, it
refers to promoting consensus.

Secondly, argumentation provides a means of justification for the reliability
of initial probabilities. The rational aim of probability calculation is to achieve
stable consensus through explicit or implicit free communication. Transparen-
cy and consensus provide specific guidelines for achieving this goal. People no
longer need to argue whether initial probabilities are objective or subjective,
or the advantages and disadvantages of objectivity and subjectivity. It is suf-
ficient to examine the reliability of the calculation process based on these two
indicators. Only initial probabilities that withstand such scrutiny are accurate
and acceptable. Transparency provides the basic condition for scrutinizing ini-
tial probabilities, and argumentation provides a means of justification. The
probabilities that have been justified meet the consensus standard, and thus
they are rational and acceptable.

Human reasoning and argumentation often take the form of exchanging ar-
guments. Therefore, argumentation is an important tool for decision-makers
to communicate and discuss initial probability calculations. For each initial
probability value, argumentation completes the process of justification by di-
alectically scrutinizing the reasons for or against the value. Argument schemes
[17] are the core concept of argumentation, capturing standardized reasoning
patterns that can provide the normative and formal basis for justifying initial
probability calculations. In 2014, Keppens [10] distilled 20 argument schemes
for scrutinizing and justifying initial probability calculations. Prakken [15] also
proposed developing argument support tools to support probabilistic analysis
of complex criminal cases. Phan Minh Dung’s abstract argumentation theory
[4] can be seen as a calculus about conflicts. It solves the core problem of rea-
soning in inconsistent situations and has a milestone role in the field of artificial
intelligence and logic.

Whether based on statistical data or expert knowledge or experience, com-
puting initial probabilities involves the subjective judgments and assumptions
of decision-makers. What is the rationality of such subjectivity? Argumenta-
tion provides a means to justify rationality. For example, in probability analysis
of complex criminal cases, decision-makers often need to determine the random
matching probability of DNA, that is, the probability that the “defendant’s D-
NA matches the DNA collected at the crime scene” in the case where “the
defendant did not appear at the crime scene.” To do this, the decision-maker
needs to consider a reference class F, such as selecting all citizens as the refer-
ence class and then randomly selecting a sufficiently large sample or selecting
all individuals in F. Assuming that m citizens are selected, their DNA is com-
pared pairwise with the DNA collected at the crime scene. The number of
times that two DNA match, such as n times, is counted. According to the
frequency interpretation method, the matching frequency can be calculated as
n/m. Therefore, it is inferred that there are individuals in class F whose DNA
matches the DNA collected at the crime scene at a proportion of n/m, and it
is deduced that the random matching probability between the defendant and
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the DNA at the crime scene is n/m. The entire calculation process involves t-
wo argument schemes: statistical induction argument and statistical frequency
argument [15, p. 43-44], which at least contain the following critical questions:

a. Are the samples (i.e., m citizens) selected from F biased? Are they large
enough?

b. Is the defendant an element of class F? Does it have properties that are
obviously different from class F?

c. Is class F an appropriate reference class? Are there other reference classes
with different frequency information?

d. Are there reasons why this frequency cannot be used?
Critical questions have three functions in ensuring the reliability of initial

probabilities. Firstly, expose the sources of suspicion that may arise from the
use of argument schemes and reveal the reasons why argument schemes are not
applicable to specific contexts. Secondly, indicate what relevant information
decision-makers should make clear and transparent in the process of probabili-
ty calculation. Thirdly, serve as a basis for examing whether initial probability
calculation can be justified. If decision-makers can provide good reasons and
answer critical questions well in communication and discussion, then the proba-
bility calculation is justified and should be accepted. If decision-makers cannot
withstand the questioning of critical questions, then the probability calculation
is unreasonable, and its results cannot be accepted.

5 Conclusion

The biggest challenge for Bayesian artificial intelligence is “how to calculate
the initial probability.” “What is probability?” has been widely discussed
and extensively debated in philosophy. In this paper, we do not discuss the
controversy related to the concept of probability but adopt a pragmatic per-
spective to discuss how to calculate accurately the initial probability from the
practical application of probability, because the critical point of probability
application does not lie in the concept of probability, but in the calculation of
probability. Statistical data, literature, and expert knowledge are the primary
sources of probabilistic information [13]. However, how to process and inte-
grate this probabilistic information and calculate probability values relies on
probability interpretations. From the perspective of probability calculation, the
subjective interpretation is an extension of other interpretations. It acknowl-
edges multiple ways of calculating probability and advocates that probability
is subjects’ degree of belief under obtained conditional information. When the
obtained conditional information satisfies the assumptions of “equiprobability”
and “finite”, the decision-maker can use the classical interpretation method to
calculate probability. When the obtained information is frequency data, the
decision-maker can use the frequency method to calculate probability. When
the obtained conditional information is expert knowledge or experiential knowl-
edge, the probability is estimated based on the intuition method. If there is
no information, based on the principle of maximum entropy, “equiprobability”
can be assumed, and probability can be calculated based on the uniform dis-
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tribution. Regardless of which method of probability calculation is used, the
initial probability must satisfy the logical consistency requirement proposed by
probability axioms, and the probability rules provide a rule guarantee for cal-
culating further probability. In order to improve the accuracy and acceptability
of initial probabilities, the probability calculation process needs to meet the re-
liability standards of transparency and consensus, and argumentation provides
a means of justification for reliability. Only the division of labor and coopera-
tion among logical requirements, calculation methods, and rational standards
can obtain widely recognized initial probabilities, provide accurate inputs for
Bayesian artificial intelligence, ensure the reliability of its output, and expand
the application boundary of Bayesian artificial intelligence.
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Abstract

We introduce a language and a formal semantics which support reasoning about
factors in case-based reasoning, to determine their direction. We model a case-base
through a binary classifier linking cases to decisions. We propose a method, based on
counterfactual reasoning, to determine whether, relative to the information provided
by the classifier, a feature is a factor, i.e., it always supports a given outcome, or it is
irrelevant, i.e., it does not support any outcome, or it is ambiguous, i.e., it supports
different outcomes depending on co-occurrent features. We explore the connection
between this analysis and the case-based reasoning models adopted in AI and Law
research.

Keywords: Case-based reasoning, Modal Logic for classifiers, Explainable AI

1 Introduction

Case-based reasoning (CBR) has played an important role in AI & Law re-
search. Broadly speaking, CBR is engaged when a problem-situation is com-
pared with previous cases in order to reach conclusions and take decisions.
Hence, CBR is particularly relevant in the legal domain, especially in contexts
where decision-makers rely on a body of precedents to make decisions.

Various approaches to CBR have been developed in the legal domain with
different purposes, some approaches being more application-oriented [2,24] and
others more formally-oriented [23,11]. Since the seminal work on the HYPO
system for US trade secrets law, one basic assumption has become prevalent:
legal cases are seen as sets of case features, where a case feature is, according to
[21], a “legally relevant fact pattern” favouring one of the two opposing parties
(typically either the plaintiff or the defendant), or more generally one of the
alternative outcomes in a controversial issue. Particular attention has been paid
to Boolean legal features, often called factors (while the term “dimension” is
used for multi-valuted features).

One aspect, however, has remained in the background in factor-based legal
approaches to CBR, being adopted as an underlying property of case-based sys-

175



2 Finding Factors in Legal Case-Based Reasoning

tems, namely, the identification of factors, among the features that are present
in a case base, and the determination of their direction. Some investigations
in this regard have been conducted in an hybrid approach, handling factor
ascription to cases also through machine learning methods [19,20].

In this paper we propose a novel logic-based approach for the identification
of factors. The approach is based on the idea that a case base can be modelled
through a binary classifier. Each case is an instance of the classifier and is
represented by a set of features plus the outcome that the classifier links to
the presence of those features and the absence of the omitted features. Actu-
ally, our work will go beyond factor extraction: assuming that not all features
appearing in the case favour a specific direction, through our model we aim
to determine, by observing the behaviour of the classifiers, the nature of the
features characterising a case. The following are possible options: the feature
is a factor, if it consistently supports a single outcome; the feature is irrelevant,
if it does not support any outcome; the feature is ambiguous if, depending on
what other features co-occur with it, it supports one outcome or the opposite.

Our approach is based on the analytical model of factor-based reasoning
which was proposed in [17], where monotonicity conditions were defined enforc-
ing a fortiori reasoning over classifiers, in connection to the framework by [11],
and abductive and contrastive explanations were used to explain the outcomes
of classifiers. In this paper we shall connect the notion of a relevant feature,
and in particular of a factor, to the concept of counterfactual explanation.

The paper is structured as follows. In Section 2 we briefly discuss legal
factor-based case-based reasoning. Section 3 introduces classifier models (CMs)
within the logic BCL of binary input classifier. In Section 4 we show how a case
base can be modelled through a CM. In Section 5 through the analysis of CMs,
we investigate the nature of features within case bases. Section 6 shows the
relationship between our approach and some factor-based models developed in
the AI&Law domain (particularly, Horty’s model). Some conclusions end the
paper.

2 Factor-based Case-based Reasoning

In this section we provide a brief introduction to legal factor-case based reason-
ing. The factor-based line of research has been started with the HYPO system
[2,24], which addresses cases concerning the alleged misuse of trade secrets, on
the basis of cases including different constellation of pro-misuse (pro-plantiff) or
con-misuse (pro-defendant features). In the HYPO framework a factor-based
representation enables various patterns of analogical reasoning being defined:
citing a precedent, distinguishing it, and reasoning a fortiori. The factor-based
approach has been developed in various ways. Hierarchies (ontologies) of fac-
tors at different levels of abstraction have been proposed [3] and binary factors
have been extended into dimensions, i.e., multi-valued features which support
a certain outcome to various extents depending on their specific value in the
case at stake [6]. John Horty has developed formally-oriented models aimed at
formalising a founding concept in common law, that of precedential constraint,
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by formally establishing the conditions under which the decision of a new case
is forced by a body of previous cases [11]. Further developments are based on
distinguishing in a case the reason, namely, the set of elements that the judge
considers to sufficiently support a case decision, outweighing the factors to the
contrary and on providing new refined logical analysis of dimensions.

We introduce now some preliminary notions pertaining formal factor-based
approaches to case-based reasoning. In particular we will refer to John Horty’s
result model of precedential constraint, though departing from the original no-
tation and preferring the one introduced in [17] for uniformity reasons. We
will do this briefly, referring a more comprehensive and formal discussion on
Horty’s models of precedential constraint to Section 6. First of all, we assume
to have two possible outcomes for an assessed case, 1 and 0, meaning respec-
tively that the case has been decided in favour of the plaintiff or in favour of
the defendant. Then, recalling that factors are Boolean case features, we can
think of factors as a set of atomic propositions Atm0 a priori partioned between
pro-plaintiff factors (Plt) and pro-defendant factors (Dfd). Namely, we have
Atm0 = Dfd ⊎Plt . 1 A fact situation s, of the kind presented within legal case,
is a particular subset of such factors s ⊆ Plt ⊎ Dfd . Within the result model,
all factors appearing in a case are assumed to be significant for its outcome. In
this context, a precedent case can be seen as a triple c = (s,X, c), where s is a
fact situation; c ∈ {0, 1} is the outcome; X is the set of all pro-factors for c in
s, namely X = s ∩ Plt if c = 1 and X = s ∩Dfd otherwise. A Horty case base
is a set of precedent cases.

A key element of Horty’s model of precedent is the notion of a fortiori
reasoning, which we will introduce informally here. According to a fortiori
reasoning a new case should have the same outcome of a precedent case, if it
includes an equally or more inclusive set of factors for the precedent’s outcome,
and no additional factor against that outcome.

We remark that the presented model is based on two fundamental assump-
tions, reflected in the partition Atm0 = Dfd ⊎ Plt . Firstly, all features ap-
pearing in the case base are factors. Secondly the direction of all factors,
i.e. which party they favour, is supposed to be a priori known. Our work
aims to avoid both these assumptions (and thus the language-level partition
Atm0 = Dfd ⊎ Plt). In Section 5 we will show how it is possible to determine
which features of a case base can be considered factors and how to extract their
direction.

3 Logic of Binary Classifiers

In this section we introduce the language and semantics of binary-input clas-
sifier logic BCL first appeared in [15,16] and use it to formalize a notion of
counterfactual conditional.

1 ⊎ denotes disjoint union. The choice of notation Atm0, for propositional atoms, instead
of Atm, will become clear in the next section
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3.1 Language and classifier model semantics

We denote a set of finite atomic propositions by Atm, which is a disjoint union
Atm0 ∪ Dec, where the former stands for the set of input variables of the
classifier and Dec = {t(c) : c ∈ Val = {0, 1, ?}} for the set of all three possible
output values of the classifier. 2 In addition, let Val = {1, 0, ?} where elements
stand for plaintiff wins, defendant wins and indeterminacy respectively. Hence
t(c) reads as “the actual decision/outcome (of the judge/classifier) takes value
c”. For c ∈ {0, 1}, the “opposite” c is noted for the value 1 − c. The modal
language L(Atm) of BCL is therefore defined as:

φ ::= p | t(c) | ¬φ | φ ∧ φ | [X]φ,

where p ranges over Atm0, t(c) ranges over Dec, and X ⊆ Atm0.
3 Modal

operator ⟨X⟩ is the dual of [X] and is defined as usual: ⟨X⟩φ =def ¬[X]¬φ.
Their meanings will be revealed after Definition 3.2. Finally, for any X ⊆ Y ⊆
Atm0, the following definition syntactically expresses a valuation on Y s.t. all
variables in X are assigned as true, while all the rest in Y are false.

cnX,Y =def

∧

p∈X
p ∧

∧

p∈Y \X
¬p.

The language L(Atm) is interpreted relative to classifier models defined as
follows.

Definition 3.1 [Classifier model] A classifier model (CM) is a pair C = (S, f)
where:

• S ⊆ 2Atm0 is a set of states (or fact situations), and

• f : S −→ Val is a decision (or classification) function.

The class of classifier models is noted CM.

A pointed classifier model is a pair (C, s) with C = (S, f) a classifier model
and s ∈ S. Formulas in L(Atm) are interpreted relative to a pointed classifier
model, as follows.

Definition 3.2 [Satisfaction relation] Let (C, s) be a pointed classifier model
with C = (S, f) and s ∈ S. Then:

(C, s) |= p⇐⇒ p ∈ s,
(C, s) |= t(c)⇐⇒ f(s) = c,

(C, s) |= ¬φ⇐⇒ (C, s) ̸|= φ,

(C, s) |= φ ∧ ψ⇐⇒ (C, s) |= φ and (C, s) |= ψ,

(C, s) |= [X]φ⇐⇒∀s′ ∈ S : if (s ∩X) = (s′ ∩X) then (C, s′) |= φ.

2 The logic itself can have as finite many members in Dec as possible. For the purpose of
representing a partial binary classifier, here we specify Dec as cardinality three.
3 Notice p and t(c) have different statuses regarding negation: ¬p means that the input
variable p takes value 0, but ¬t(c) merely means the output does not take value c: we do not
know which value it takes, since the output is trinary.
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A formula φ of L(Atm) is said to be satisfiable relative to the class CM if there
exists a pointed classifier model (C, s) with C ∈ CM such that (C, s) |= φ. It
is said to be valid if ¬φ is not satisfiable relative to CM and noted as |=CM φ.

We can think of a pointed model (C, s) as a pair (s, c) in f with f(s) = c.
The formula [X]φ is true at a state s if φ is true at all states that are modulo-
X equivalent to state s. It has the selectis paribus (SP) (selected things being
equal) interpretation “features in X being equal, necessarily φ holds (under
possible perturbation on the other features)”. 4 Notice when X = ∅, [∅] is the
S5 universal modality since every state is modulo-∅ equivalent to all states, viz.
(C, s) |= [∅]φ ⇐⇒ ∀s′ ∈ S, (C, s′) |= φ.

3.2 A counterfactual conditional

We introduce a simple notion of counterfactual conditional for binary classifiers
in [15]. We start our analysis by defining the following notion of similarity
between states in a classifier model.

Definition 3.3 [Similarity between states] Let C = (S, f) be a classifier model,
s, s′ ∈ S. The degree of similarity between s and s′ in S relative to the set of
features Atm0, noted simC(s,s

′,Atm0), is defined as follows:

simC(s,s
′,Atm0) = |{p ∈ Atm0 : (C, s) |= p iff (C, s′) |= p}|.

A dual notion of distance between worlds can be defined from the previous
notion of similarity:

distC(s,s
′,Atm0) = |Atm0| − simC(s,s

′,Atm0).

This notion of distance is in accordance with [9] in knowledge revision, i.e. the
Hamming distance, which counts the cardinality difference of features’ values.

The following definition introduces the notion of counterfactual in Lewis’
style of the form φ⇒ ψ whose reading is “if it were φ, (with respect to features
in Atm0) it would be ψ.”

Definition 3.4 [Counterfactual conditional] Let C = (S, f) be a classifier
model, s ∈ S. Then, (C, s) |= φ⇒ ψ if and only if closestC(s,φ,Atm0) ⊆ ||ψ||C ,
where

closestC(s,φ,Atm0) = argmax
s′∈||φ||C

simC(s,s
′,Atm0),

and for every φ ∈ L(Atm):

||φ||C = {s ∈ S : (C, s) |= φ}.
The underlying idea is that φ⇒ ψ holds in a state of a classifier model iff

all the closest states to the current one, which make φ true, also make ψ true,
where “closest” is defined by the Hamming distance. Formula φ⇒ ψ captures
the standard notion of conditional logic. One can show that ⇒ satisfies all
semantic conditions of Lewis’ logic of counterfactuals VC [14].

4 [Atm0 \X]φ has the standard ceteris paribus (CP) interpretation “features other than X
being equal, necessarily φ holds (under possible perturbation of the features in X)”.
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4 From Classifiers Models to Case Bases

A first connection bewteen CBR and reasoning about classifiers has been al-
ready explored in [17], where a representation theorem reveals that every
Horty’s consistent case bases can be modelled by a set of classifier models.
In this section will now show how a “larger class” of case base can be mod-
elled via classifier models. The underlying intuition is that a pointed classifier
model, representing a factual situation associated with a decision, can model a
a case. Consequently, a cases base can be modelled through a classifier model,
i.e. it can be seen as the outcome of a classifier. Actually, in order to relate
CBR and reasoning about classifiers we will have to consider classifiers models
that satisfy two semantic constraints.

First of all, classifiers should allow incomplete-knowledge: not all factual
situations are associated with a decision in favour of the defendant or the
plaintiff. Namely, a fact situation, besides 0 and 1, can also be classified as
?, where ? means absence of decision. That is, we consider classifier models
whose classification function is of the form:

f : S −→ Val with V al = {0, 1, ?}. (1)

Secondly, we have to suppose that the classifier is complete, that is every
possible situation is take into account by the classifier. Namely,

S = 2Atm0 . (2)

Then, CMinc = {C ∈ CM : C satisfies (1), (2)}, is the class of incomplete-
knowledge classifier models. A formula φ of L is said to be satisfiable relative
to the class CMinc, if there exists a pointed classifier model (C, s) with C ∈
CMinc such that (C, s) |= φ. It is said to be valid relative to CMinc, and
noted as |=CMinc φ, if ¬φ is not satisfiable relative to CMinc . An incomplete-
knowledge classifier model C ∈ CMinc, models a incomplete-knowledge case
base defined as CBC = {k | k = (s, f(s)) with s ∈ S}.
Example 4.1 [Running example]

Our example will deal with hypothetical and simplified cases pertaining
compensation claims for trespassing to land. Trespass to land involves the un-
lawful interference with property rights without permission. In these cases the
plaintiffs are the owners of the property. Let us assume that the elements con-
sidered in this context are limited to: “the defendant causes property damage”
(damage); “the defendant acts in defence of public necessity” (necessity); “the
defendant intends to enter the land (intentional)”.

Let us assume that the judges ruled in favour of plaintiffs’s compensation
in the three following hypothetical scenario: 1) the plaintiff claimed his neigh-
bour intentionally occupied part of his land for his own use, causing damage
(which we will refer to as case k2) ; 2) the plaintiff claimed for damages from
the municipality for injuries to land caused unintentionally by a policeman in
an attempt to catch a criminal, acting in the public interest (case k3)

5 ; 3) a

5 partially inspired by Wegner v. Milwaukee Mut.Ins.Co., 479 N.W.2d 38 (Minn., 1991)
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hunter intentionally entered the plaintiff’s property, even if he has not caused
damage (case k5). Instead, let us assume that the judges ruled in favour of de-
fendant when: 1) the defendant accidentally entered the plaintiff’s land while
attempting to extinguish a fire in the neighbouring land (case k7); 2) the de-
fendant, while hiking, accidentally entered the plaintiff ’s property, without
causing damage, because the path was not well signposted (case k8).

The decisions made by the judges are mapped by the classifier C1 =
(2Atm0 , f), with Atm0 = {intentional, damage, necessity} and f :
2Atm0 −→ {0, 1, ?}, s.t. f(s) = 1 iff s ∈ {{intentional, damage},
{damage, necessity}, {intentional}} f(s) = 0 iff s ∈ {{necessity}, ∅},
f(s) =? otherwise. 6 The modelled case base is CBC1 = {ki | ki = (si, f(si))}
represented in following table.

si f(si)
k1 : {intentional, damage, necessity} ?
k2 : {intentional, damage} 1
k3 : {damage, necessity} 1
k4 : {intentional, necessity} ?
k5 : {intentional} 1
k6 : {damage} ?
k7 : {necessity} 0
k8 : ∅ 0

Intuitively, we expect that in this context damage is a factor in favour of
the plaintiff. Indeed, it is the only discriminating feature between the situation
in k3, classified as 1, and that in k7, classified as 0; moreover damage is not
discriminating for any situation classified as 0.

Henceforth, due to the connection between classifier models and case bases,
when referring to classifier models we will also mean the modelled case bases.

In the next section we will show how, in a classifier model, it is possible to
determine, according to provided classifications, which features can be consid-
ered factors and what their direction is. We shall also see that not all features
of a case base are factors and in that case they may be irrelevant or ambiguous.

5 Factors, Irrelevant and Ambiguous Features

Intuitively, a factor is a feature that is discriminating in only one direction. A
feature is said to be discriminating in one direction if just removing it from a
case classified in that direction suffices for having the opposite classification.

The discriminating aspect of features is nicely captured by the notion of
strong counterfactual explanation for a decision, which we can express in the
language L(Atm). Indeed, we will say that a formula φ of L(Atm) strong
counterfactually explains a decision c ∈ {0, 1} for a certain situation s, if not
satisfying φ would lead s to be classified as c. Formally, we have the following.

6 In this context we are implicitly enforcing the “closed-world assumption”, assuming that
the absence of a feature means that its negation holds.
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Definition 5.1 [Strong counterfactual explanation] We write SCfXp(φ, c) to
mean that φ strong counterfactually explains a decision for c and define it as

SCfXp(φ, c) =def t(c) ∧
(
¬φ⇒ t(c)

)
.

Example 5.2 Consider C1 of our running example. As already noted, remov-
ing damage from the factual situation s3, classified as 1, we obtain s7, classified
as 0. That is, (C1, s3) |= SCfXp(damage, 1). Similarly, looking at s5 and s8, it
can be verified that (C1, s5) |= SCfXp(intentional, 1) .

We speak of strong counterfactual explanation for a decision to distinguish
it from a “weaker” counterfactual explanation, according to which, φ explains
a decision c for a certain situation s, if not satisfying φ would lead s to be
classified differently than c (and thus in our framework either as c or as ?).

Definition 5.3 [Counterfactual explanation] We write CfXp(φ, c) to mean that
φ counterfactually explains a decision for c and define it as

CfXp(φ, c) =def t(c) ∧
(
¬φ⇒ ¬t(c)

)
.

Example 5.4 From cases k2 and k6 we have (C1, s2) |= CfXp(intentional, 1).
But (C1, s2) ̸|= SCfXp(intentional, 1), since the classification from s2 to s6
changes from 1 to ?.

On the basis of strong counterfactual explanation, we can distinguish three
related notion: the notion of factor (unidirectional feature), ambiguous (multi-
directional) feature and irrelevant (no-directional) feature. In the following we
shall provide definitions and examples for each of these notions.

A feature p is a factor in the direction of c if, as already mentioned, is
discriminating only in the direction of c, namely if: (i) there is a fact situation
such that p strong counterfactually explains the decision c and (ii) there is no
fact situation such that p strong counterfactually explains the opposite decision
c. That is, we have the following definition.

Definition 5.5 [Factor] We write Factor(p, c) to mean that p is a factor in the
direction of c and define it as

Factor(p, c) =def ⟨∅⟩SCfXp(p, c) ∧ [∅]¬SCfXp(p, c).
Example 5.6 From Example 5.2 and the fact that damage doesn’t strong
counterfactually explain a decision for 0, we have (C1, s) |= Factor(damage, 1).
In the same way we have, (C1, s) |= Factor(intentional, 1).

As already noted, not all features are factors. Indeed, a feature could either
not explain any decision strong counterfactually and in this case it is irrelevant,
or explain strong counterfactually opposite decisions and if so it is ambiguous.

Definition 5.7 [Irrelevant feature] We write Irrelevant(p) to mean that p is
irrelevant and define it as

Irrelevant(p) =def ¬⟨∅⟩SCfXp(p, 1) ∧ ¬⟨∅⟩SCfXp(p, 0).

182



Di Florio, Liu, Lorini, Rotolo and Sartor 9

Example 5.8 Within C1, necessity does not explain any decision strong
counterfactually, i.e. we have (C1, s) |= Irrelevant(necessity) for all s ∈ S.
Definition 5.9 [Ambiguous feature] We write Amb(p) to mean that p is an
ambiguous feature and define it as

Amb(p) =def ⟨∅⟩SCfXp(p, 1) ∧ ⟨∅⟩SCfXp(p, 0).
Example 5.10 In C1 there are not ambiguous features. But suppose now that
a new case is added to our case base. A private university claims compensation
for protesters trespassing and causing damages during an event. The protesters
call into question public necessity arguing that their actions are justified as
reasonable efforts to prevent immediate threat of greater harm caused by the
business of the event’s guests. The judge accepts the public necessity defence
and, while recognising intentionality, rules in favour of the defendant. 7 So that
the “updated” case base is the one modelled by C2 = (2Atm0 , g) described in
the following table.

si g(si)
k1 : {intentional, damage, necessity} 0
k2 : {intentional, damage} 1
k3 : {damage, necessity} 1
k4 : {intentional, necessity} ?
k5 : {intentional} 1
k6 : {damage} ?
k7 : {necessity} 0
k8 : ∅ 0

But then, in this context we have both (C2, s5) |= SCfXp(intentional, 1)
and (C2, s1) |= SCfXp(intentional, 0). Namely, (C2, s) |= Amb(intentional)
for every s ∈ S.

Two properties concerning features behaviour are established by the fol-
lowing propositions. Firstly, factors are unidirectional: if p is a factor in the
direction of c, it cannot be a factor in the opposite direction c. That is, the
following holds.

Proposition 5.11

|=CMinc

∧

p∈Atm0,c∈{0,1}

(
Factor(p, c)→ ¬Factor(p, c)

)
.

Moreover, the already introduced partition of features between factors, ir-
relevant and ambiguous is captured by the following validity.

Proposition 5.12

|=CMinc

∧

p∈Atm0

( ∧

c∈{0,1}
¬Factor(p, c)→

(
Irrelevant(p) ∨ Amb(p)

))
.

7 partially inspired by [Commonwealth v. Carter], see N. Y. Times, Apr. 16, 1987
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Example 5.10 hints at one aspect that deserves further attention. Namely,
suppose that decisions for previously undecided cases are provided. In this case,
features extracted as ambiguous will remain so. However, it could happen that:
a) features previously labelled as irrelevant may become ambiguous or factors,
b) features previously labelled as factors may become ambiguous (as it is the
case for intentional in the “updating” of Example 5.10). That is, with our
method, we identify pro tanto irrelevant features and pro tanto factors, i.e.
features that are irrelevant or factors given the current information. Bearing
the latter in mind, a classifier model that does not admit ambiguous features,
at least given the given classifications, will be called consistent.

Definition 5.13 [Consistency] A classifier C = (S, f) is consistent given the
current classifications if and only if for every s ∈ S, (C, s) |= Cons, where

Cons =def

∧

p∈Atm0

¬Amb(p).

Example 5.14 Classifier C1 of Example 4.1 is consistent . Whereas C2 of Ex-
ample 5.10 is inconsistent (and will remain so, regardless of later classifications
of originally undecided cases).

We now introduce a form of a fortiori reasoning that somehow may remind
of the a fortiori reasoning in the “Horty’s style” briefly introduced in Section 2,
but which differs from the latter. That is, intuitively, according to a form of a
fortiori reasoning, a case should have the same outcome of a precedent case, if it
includes an equally or more inclusive set of factors for the precedent’s outcome,
and no additional factor against that outcome. In our framework, however, we
take into account also ambiguous and irrelevant feature. More precisely, we
expect that if the classifier associates a situation s to an outcome c, then it
must assign the same outcome to every situation s′ such that: (a) s′ includes
all factors in the direction of c that are in s (b) s′ does not include factors in
the direction of c that are outside of s and (c) s′ includes exactly the same
ambiguous and irrelevant features that are in s. We shall call monotone those
classifiers that satisfy the a fortiori constraint such as the one just described.
Formally, we have the following.

Definition 5.15 [Monotonicity] We will say that C is monotone iff (C, s) |=
ClMon, where

ClMon =def

∧

c∈{0,1},X,Y⊆Atm0

((
SetFactor(X, c) ∧ SetFactor(Y, c)

)
→

∧

Z ̸⊆X∪Y,X′⊆X,Y ′⊆Y

(
⟨∅⟩(cnX′∪Y ′∪Z,Atm0

∧ t(c))→

∧

X⊃X′′⊇X′,Y ′′⊆Y ′

[∅](cnX′′∪Y ′′∪Z,Atm0
→ t(c))

))
,
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where, for every c ∈ {0, 1} and X ⊆ Atm0:

SetFactor(X, c) =def

∧

p∈X
Factor(p, c) ∧

∧

p∈Atm0\X
¬Factor(p, c).

Example 5.16 Classifier C1 of Example 4.1 is not monotone, i.e (C1, s) ̸|=
ClMon. Indeed, for ClMon to be satisfied, the case k1 should have been classified
as 1, since it contains more factors in favour of 1 (i.e. intentional) than the
factual situation of k3, classified as 1.

Previous examples show us that the consistency of a classifier (i.e. the ab-
sence of ambiguous features) does not imply its monotonicity (think of C1).
However, it is worth noting that the reverse is not true either, i.e. the mono-
tonicity of a classifier does not guarantee its consistency. 8 An “extreme” ex-
ample of this occurs when all features of a classifier are ambiguous, so that
ClMon is vacuously satisfied.

Example 5.17 By way of example only, consider this new simplified scenario:
C3 = (2Atm0 , h), where this time Atm0 = {intentional, damage} and the
behaviour of h summarized in following table

si h(si)
k1 : {damage, intentional} 0
k2 : {intentional} 1
k3 : {damage} 1
k4 : ∅ 0

It can be verified that both damage, intentional are ambiguous features
so that vacuously (C3, s) |= ClMon for all s ∈ S.
Remark 5.18 We should conclude this part of the paper by observing that, as
it is used in knowledge revision as well as in XAI [10], the Hamming distance is
adopted to establish similarity between cases. The reader can likewise observe
that, usually, analogy is measured in CBR by shared properties, e.g. in HYPO
via subset inclusion relation. We point that, in this context, building similarity
via Hamming distance coincides with building it via subset inclusion relation,
since the notion of factor only uses counterfactual explanation with an atomic
explanans.

6 Relation to Horty’s Models of Case Bases

In this section we compare our framework with Horty’s reason model previewed
in Section 2. Its difference to result model is that in a precedent c = (s,X, c),
X may be a set of some (but not all) pro factors for c in s. Result model can
thus be viewed as a special kind of reason model. Therefore we handle both

8 It is worth noting that our definition of consistency differs from that provided by Horty.
In following section, we will see that to some extent, both monotonicity and the absence of
ambiguous features are necessary to retrieve Horty’s consistency.
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12 Finding Factors in Legal Case-Based Reasoning

models under the umbrella term reason model. Nevertheless, whether the set
or a subset of pro factors is not the key point of this paper.

In [17] it is shown that given a Horty’s reason model of a case base, there are
a set of classifier models representing it. What if we start from some classifier
model and reverse engineer case bases it can represent? What at stake is that
in Horty’s theory features are a priori (completely) partitioned as plaintiff-
or defendant-side, while here we do not know but rather find a feature as
factor, irrelevant or ambiguous via counterfactual reasoning. Actually, a main
observation is that, e.g. a plaintiff-factor in Horty’s sense may not have the
direction for 1, i.e. p ∈ Plt but not Factor(p, 1). Hence the quadrichotomy of
features is more fine-grained than the dichotomy of Plt and Dfd .

Let us begin with briefly formalising the theory of Horty, which we started
to discuss in section 2, in the modal logic way. For more details see [11,21,17].

Definition 6.1 [Horty case base] Let Atm0 = Plt ⊎Dfd , the latter two stand-
ing for plaintiff- and defendant-side respectively. A Horty precedential case
(precedent) is a triple c = (s,X, c), where: s ⊆ Atm0 is a state/fact situation;
c ∈ {0, 1}; X is called the reason of the decision, with X ⊆ s ∩ Plt if c = 1,
X ⊆ s ∩Dfd otherwise. A Horty case base CB is a set of precedents.

Note that all precedents in a CB are decided deterministically as 1 or 0.
We adopt the notation Atmc

0, which denotes Plt if c = 1, and Dfd if c = 0.
The key concern of case base is maintaining its consistency with respect to

a fortiori reasoning, which we mentioned before and formalise now.

Definition 6.2 [A fortiori reasoning] Let CB be a case base and has a prece-
dent c = (s,X, c). Then for any fact situation s′ s.t. X ⊆ s′ ∩ Atmc

0 and
s ∩Atmc

0 ⊇ s′ ∩Atmc
0, s
′ is forced to be decided as c according to CB .

Definition 6.3 [Consistent case base] A case base CB is consistent, if it follows
a fortiori reasoning, and there is no fact situation s s.t. it is forced to be decided
as 0 by some c0 ∈ CB and decided as 1 by some c1 ∈ CB .

The representation theorem in [17] states that every consistent case base
can be represented by a set of classifier models. Actually we can do better
in showing that every consistent case base can be transformed into a unique
classifier, in which sense we call it “genuine”. The basic idea is that the genuine
classifier of a case base outputs ? for all and only all fact situations which cannot
be forced to take a decision by the case base. 9

Definition 6.4 [Genuine classifier] Let CB be a case base. The genuine clas-
sifier of CB is the function f : 2Atm0 −→ {0, 1, ?}, s.t. for any situation s,

f(s) =





c if ∃c = (s′, X, c) ∈ CB s.t.

X ∩Atmc
0 ⊆ s ∩Atmc

0, s
′ ∩Atmc

0 ⊇ s ∩Atmc
0;

? otherwise.

9 It is therefore the “smallest” representation, if we think of every classifier as a partial
function by naturally viewing ? as undefined.
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The genuine classifier model of CB is therefore C = (2Atm0 , f).

That is to say, f(s′) =? if and only if a fortiori reasoning fails to force s′ to
take either decision 0 or 1. We can also define the genuine CM for a case base
in terms of a formula.

Proposition 6.5 Let CB be a Horty case base. Then a classifier model C =
(S, f) is the genuine classifier of CB, if ∀s ∈ S, (C, s) |= φCB where

φCB =def

∧

X⊆Atm0

⟨∅⟩cnX,Atm0 ∧
∧

c∈{0,1}
[∅]

(
t(c)↔

∨

c=(s′,X,c)∈CB

cnX,X∪(Atmc
0\s′)

)
.

The “syntactic” representation φCB is stronger than the one in [17] con-
sisting of Compl, 2Mon and tr′(CB), due to the bi-conditional in φCB for t(c)
with c ∈ {0, 1}. Hence, fixing the language, φCB is satisfied in exact one CM.

Proposition 6.6 Every Horty case base induces exactly one genuine classifier
model.

The inverse, however, does not hold. Not only because two case bases may
force exactly the same set of fact situations but with different reasons, but
also, more intriguing, that there may exist more than one possible dichotomy,
say, Atm0 = Plt ⊎Dfd = Plt ′ ⊎Dfd ′, which both give rise to a consistent case
base respectively. That means, reverse engineering usually does not guarantee
a unique dichotomy but several admissible ones. That leads us to have the
following definition.

Definition 6.7 [Admissible dichotomy] Let CB be a Horty case base whose
a priori dichotomy is Atm0 = Plt ⊎ Dfd . We say that a dichotomy Atm0 =
Plt ′ ⊎Dfd ′ is admissible, if by doing so the a fortiori reasoning will not render
CB inconsistent.

Plainly speaking, that means, if we change from letting Atm1
0 = Plt to

Atm1
0 = Plt ′ and Atm0

0 = Dfd to Atm0
0 = Dfd ′ and run the a fortiori reasoning,

the case base keeps consistent. The simplest example is: let Plt = {p, q} and
Dfd = ∅ and a singleton case base {({p, q}, {p}, 1)}. The reader can check that
by changing to Plt ′ = {p},Dfd ′ = {q}, the case base remains consistent.

Proposition 6.8 Let CB be a consistent case base and C its genuine classifier.
Then a dichotomy Plt ′ ⊎Dfd ′ is admissible, if and only if for any state s,

(i) (C, s) |= ¬Amb(p) for any feature p

(ii) if (C, s) |= SetFactor(X, 1) ∧ SecFactor(Y, 0) for some X,Y ⊆ Atm0, then
X ⊆ Plt ′, Y ⊆ Dfd ′.

The proof relies on an observation regarding counterfactual explanation,
namely if p ∈ Plt ′ then (C, s) |= [∅]¬CfXp(p, 0); and if p ∈ Dfd ′ then (C, s) |=
[∅]¬CfXp(p, 1).

Now we show that the Plt/Dfd dichotomy is not only pre-determined but
also too coarse-grained from our lens.
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Proposition 6.9 There exists a Horty case base with Plt ⊎Dfd its dichotomy,
C = (2Atm0 , f) its genuine classifier model s.t. ∃p ∈ Plt but (C, s) |=
¬Factor(p, 1); and ∃q ∈ Dfd but (C, s) |= ¬Factor(q, 0).

Why? Because the dichotomy only guarantees that p on the defendant side
shall not support the plaintiff, but can not tell whether p is actually irrelevant,
viz supporting the defendant neither. See the following example.

Example 6.10 Let Plt = {p},Dfd = {q} and CB = {({p, q}, {p}, 1)}. Then
the genuine CM for CB is C = (2Atm0 , f) s.t. f(s) = 1 if p ∈ s; f(s) =?
otherwise. However, (C, s) |= ¬Factor(q, 0). Moreover, (C, s) |= Irrelevant(q),
since there are no s, s \ {q}, s.t. f(s) ̸= f(s \ {q}). As a result, Plt ′ = {p, q}
and Dfd ′ = ∅ is another admissible dichotomy.

In light of this it is easy to see that exactly due to irrelevant features do we
have not the unique, but many admissible dichotomies.

Our main result of this section shows the necessary and sufficient condi-
tion of being a genuine classifier for some Horty case base regardless of which
dichotomy the case base actually has.

Proposition 6.11 Let C = (S, f) be a classifier model. Then C is the genuine
CM for some consistent Horty case base with an admissible dichotomy Atm0 =
Plt⊎Dfd, if and only if C ∈ CMinc, C is monotone, C doesn’t have ambiguous
features, f(∅) =? and ∀p ∈ Atmc

0, f({p}) ̸= c.

7 Discussion and Related Work

Following the extensive AI & Law literature springing from the study of HYPO
and CATO, in the last decade a significant effort has been put in investigating
axioms as well as formal properties of factor-based CBR, and in providing the
logical foundations for such reasoning (see, e.g., [11,21,8,12,13,22,7,17,5,1]).

Also due to development of explainable AI [18,4], the quest for logical foun-
dations of factor-based CBR has been recently focused, e.g., on formal mod-
els of argumentative explanation [22] or on logics for classifier systems [17].
As suggested in [5] and investigated in [19,20]—also from a machine learning
perspective—one aspect has remained in the background and needs a specific
logical inquiry: the identification of factors, among the features that are present
in a case base. In this paper we proposed a novel approach to address this issue.
As already mentioned, this approach builds on the connection already revealed
in [17] between factor-based CBR and reasoning about classifier models. Such
a connection allowed us to refine the granularity of the analysis of the features
within a case base, enabling us to identify not only factors and their directions,
but also irrelevant and ambiguous features.

We believe that some aspects of our work need further discussion.
First, as recalled by [21] in regard to the question of whether the fact that

a factor favouring one side does not apply in a case favouring the other side,
Horty [11] argued that such a “closed-world assumption” should be adopted on
a case-by-case basis. However, [25] argued that the negated factor favouring
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the other side can only be included if there is a case where judges have stated
that the absence of a factor favours the other side. We implicitly use the closed-
world assumption when treating a fact situation as a conjunction of positive
and negative literals. Also it is responsible for the extra constraint f(∅) =?
needed when relating Horty’s models. It is worth exploring the case where
negation and absence differ, giving the framework some intuitionistic flavour.

A further consideration concerns monotonicity, that allowed us to deal with
a fortiori reasoning in preliminary manner. We have defined monotonicity as
condition that may or may not be verified by the classifiers (and thus the
case bases modelled by them), depending on whether they satisfy an a fortiori
constraint. We are already working on a more general framework in which
monotonicity is no longer a condition, but a principle underlying inference
mechanisms to classify new cases. Among these inference mechanisms, we are
investigating one that would allow us to classify new cases even in case of
inconsistencies, that is, even when a case base contains ambiguous features.
This approach would be a reply to a legitimate issue: in the context of “real”
legal case bases it is plausible that many features would result ambiguous ac-
cording to our classification. Furthermore, as regards both the condition of
monotonicity and the inference mechanisms just mentioned, we recall what has
already been emphasised in [11] about models of precedential constraint: our
model only captures single step reasoning, leading directly from the features
appearing in a case to the outcome of the case. In the future we will study
the extension of our approach to multi-step reasoning based on intermediate
features. In our future research, we also aim to address scalability, from the
computational complexity viewpoint.

Moreover, in this paper we view incomplete-knowledge case bases as partial
Boolean functions (pBF) and define a notion of monotonicity. A natural ques-
tion is its relation to the monotonic partial Boolean function. Different with
monotone Boolean functions which are thoroughly studied and widely used,
the theory of monotone pBFs is less developed to our knowledge. On this our
analysis can shed some light. The first insight is that there are at least two
ways to define monotone variable in pBF regarding CfXp(p, c) and SCfXp(p, c)
respectively. We leave this topic to future work.

Lastly, as we have discussed in Remark 5.18, a more technical point regards
how we can establish similarity between cases. We relied on Hamming distance,
while usually in CBR analogy is measured by shared properties. While the two
approaches in the current framework are mathematically equivalent because the
notion of factor only uses counterfactual explanation with an atomic explanans,
differences emerge when groups of features are analysed. This issue is left to
future research.

A Proofs

A.1 Proof of Proposition 5.12

Proof. Let (C, s) a pointed model, C ∈ CMinc. Let p s.t, for all c ∈ {0, 1},
(C, s) |= ¬Factor(p, c). Then, (C, s) |=

(
⟨∅⟩SCfXp(p, c) ∧ ⟨∅⟩SCfXp(p, c)

)
∨
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(
¬⟨∅⟩SCfXp(p, c)∧¬⟨∅⟩SCfXp(p, c)

)
. That is (C, s) |= Amb(p)∨ Irrelevant(p).2

A.2 Proof of Proposition 6.8

Proof. We claim that if p ∈ Plt then (C, s) |= [∅]¬CfXp(p, 0); and if p ∈ Dfd
then (C, s) |= [∅]¬CfXp(p, 1). And all the statements in the proposition follow
as corollaries. To prove the claim, suppose towards a contradiction that p ∈ Plt
but ∃s′ ∈ 2Atm0 s.t. (C, s′) |= t(1)∧¬p⇒ ¬t(1). This apparently violates the a
fortiori reasoning: since C is genuine to CB , f(s′) = 1 because some precedent
(s1, X1, 1) ∈ CB s.t. X1 ⊆ s′ ∩ Plt and s1 ∩ Dfd ⊇ s′ ∩ Dfd . Then a fortiori,
f(s′\{p}) = 1 for the same reason. But this contradicts (C, s′) |= ¬p⇒ ¬t(1).2

A.3 Proof of Proposition 6.11

Proof. Let C be the genuine CM for an Horty case base. We show that it
satisfies all constraints. Obviously C ∈ CMinc, since S need equal 2Atm0 ; any
precedent shall not have an empty fact situation by definition; also for any
p ∈ Plt , it shall never be a reason of a defendant case and similarly for a Dfd -
factor. Now assume towards a contradiction that C does not satisfy ClMon.
Then suppose w.l.o.g., there are two sets X,Y ⊆ Atm0 which Factor(X, 1) ∧
Factor(Y, 0) holds in C. Moreover, there is a state s1 = X1 ∪ Y1 ∪ Z, with
X1 ⊆ X,Y1 ⊆ Y,Z ⊆ Atm0 \ (X ∪ Y ). However, there is another state s2 =
X2 ∪ Y2 ∪ Z s.t. X1 ⊆ X2 ⊆ X,Y2 ⊆ Y1 but f(s2) = 0.

Now recall C is the genuine CM for some case base. We know there must
be (s3, X3, 1), (s4, Y4, 0) ∈ CB s.t. X3 ⊆ s1 ∩ Plt , s3 ∩ Dfd ⊇ s1 ∩ Dfd , and
Y4 ⊆ s2 ∩ Dfd , s4 ∩ Plt ⊇ s2 ∩ Plt , which allow the genuine classifier has
f(s1) = 1 and f(s2) = 0 via a fortiori reasoning. Now we consider the state
s5 = X3 ∪ Y4 ∪ Z. The a fortiori reasoning forces s5 to be both 1 and 0,
contradicting that CB is consistent.

For the other direction let us build a CB from a C satisfying all constraints,
while taking care of the dichotomy of Atm0 and the consistency of CB . Taking
advantage of Proposition 1 in [17], we simply do that for any state s and term
λ, if (C, s) |= AXp(λ, 1) with lit+(λ) = X and lit−(λ) = Y , then put (s,X, 1)
in CB , put members of X in Plt and members of Y in Dfd . We do the similar
for AXp(λ, 0). Eventually we obtain CB and let Plt what it is, and simply
Dfd = Atm0 \ Plt to have Plt ⊎Dfd = Atm0.

For the consistency of CB , suppose not towards a contradiction, then there
are two precedents (s1, X, 1) and (s0, Y, 0) s.t. X ⊆ s0 ∩ Plt ⊆ Plt and Y ⊆
s1 ∩ Dfd ⊆ Dfd . We show the supposition impossible by using AXp and PImp.
In light of the construction, we have that X ∈ lit+(λ1), Y ∈ lit+(λ0) with
(C, si) |= AXp(λi, i) with i ∈ {1, 0}. By definition of AXp, we know also (C, si) |=
PImp(λi, i) with i ∈ {1, 0}. Consider the term cnX∪Y ,(s0∩Plt)∪(s1∩Dfd). Since it
propositionally entails both λ1 (the negative part of λ1 is always “a subset of”
s0 ∩ Dfd) and λ2 (in the same way), by definition of PImp any state verifying
it shall have outputs both 0 and 1, contradicting that f is a function.

2
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A digital signature is an electronic and encrypted authentication on digital messages
accomplished by some mathematical scheme. However, the classical digital signature
faces the problems of fair exchange and ‘valid once signing’. To overcome these chal-
lenges, the notion of conditional digital signatures is proposed in the early twenty-first
century. However, the existing characterizations on this notion show some weakness
in security, power of expression and feasibility, for instances. This paper formalizes
conditional digital signatures in a more abstract form and the condition expressions
are designed with logical structures. Based on a chosen post-quantum digital sig-
nature scheme, e.g. Crystal-Dilithium, we distinguish two validities: cryptographic
validity and practical validity. A constructive method is given to find all practically
valid signatures from a collection of cryptographically valid conditional signatures.
An algorithm can be induced accordingly and makes the application feasible. More-
over, so as to capture multi-party handshaking principles and the reasoning about
conditional signatures, a consistent proof system CSL is established, which renders
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2 A Logical Approach to Post-Quantum Conditional Digital Signatures

1 Introduction

A digital signature is an electronic and encrypted authentication on digital
messages accomplished by some mathematical scheme, which brings a very
high confidence to the receiver that the messages are originated by the signer
and are not distorted during the transmission. It is generally implemented
by asymmetric encryption scheme where private-public key pairs, e.g. (sk, pk)
are generated for signing message (an encryption operation) and verifying the
signature (a decryption operation) respectively. The classical asymmetric en-
cryption scheme can be seen as a dual to the digital signature since the public
key is used for encryption and the private key is for decryption. A digital
signature is valid if the receiver decrypts the signed part of the signature by
the signer’s public key and the resulting text equals the plaintext part of the
signature. This process verifies the authentication of the message sender. The
Digital Signature Algorithm (DSA) is the most widely used standard for digital
signatures based on the concept of modular exponentiation and the mathemat-
ical discrete logarithm problem [4], which is a variant of the famous ElGamal
signature scheme [6].

1.1 Conditional Digital Signatures

Digital signatures are essentially bit strings which can be copied easily and
spread to many uninvolved parties. In other words, once a digital signature is
issued by its originator, he/she loses the control over the information flow of
this his/her signature. This uncontrolled information is not expected in many
scenarios, e.g. business negotiations, where digital signature is indispensable.
Conditional digital signatures are thence designed to deal with the problem.
A conditional signature can be treated as a pre-signature for committing a
message and only if the condition is met, the signature comes into force as a
classical signature. For example, a company A will sign the contract to pay for
the bill provided that the company B signs the contract to deliver the product
to A. There have witnessed several research on this special concept of digital
signatures. B. Lee and K. Kim implements fair exchange of digital signatures
in electronic commerce by conditional digital signature [9]. Considering the
compatibility with the current social infrastructure, their conditional signa-
tures still utilize the classical signature, but replace the content of the message
m with a concatenation with the condition in the form of m||h(c) where h(c)
is a Hash value of the condition c. A initiator A starts up a negotiation with
a signed information mA; cA conditioned by cA. If the receiver B accepts the
negotiation, B replies with a signed information mB ; cB where mB ∈ {cA} and
mA = cB , which represents that both sides agree to trade and the fair change
of their unconditional signatures can be fulfilled. I. Z. Berta et al. enable
users to generate digital signatures via conditional signatures constructed as
B. Lee and K. Kim indicates, in the help of a trusted smart card inserted to
an untrusted terminal [3]. M. Klonowski et al. put forward the first condi-
tional digital signatures which only sign the messages themselves instead of
the concatenations of messages and conditions [8]. Their approach extends the
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classical ElGamal scheme to a tuple (a1, b1S
z, az2) where (a1, b1) amounts to

the classical ElGamal signature on message M1 by the signer A and (Sz, az2)
plays the role of a commitment from B’s signature on M2, which collectively
represents a conditional signature of A on M1 conditioned by B’s signature on
M2.

1.2 Handshaking Principle

It worth noting that one of the most interesting problems discussed in the rele-
vant literature is the handshaking principle, which says that if A signs message
m1 provided that B signs message m2 (this is a conditional signature), and B
signs message m2 provided that A signs message m1 (a conditional signature
as well), then they are supposed to imply that A really signs m1 and B really
signs m2 (two classical signatures). This principle is not trivially held in the
classical logic system since from p → q and q → p, it cannot be inferred that
p∧q. To cope with the subtlety, B. Lee and K. Kim mentioned above provide a
characterization within their framework. That is if A signs mA; cA conditioned
by cA and B replies with a signed information mB ; cB where mB ∈ {cA} and
mA = cB , then they ‘shake hands’ and A actually signs mA and B actually
signs mB . Upon M. Bartoletti and R. Zunino’s formal characterization on con-
tract terms, a logic for contract (PCL) is proposed to reason about the terms,
contents and even duties in contracts. They specifically investigate handshak-
ing principle and validate it in PCL by constructing a special implication ↠
for characterizing the conditional clauses [1]. They construct a sound and com-
plete axiom system based on intuitionistic logic with addition to axioms about
↠ and an equivalent Gentzen-style sequence calculus is also given.

1.3 Limitations on Current Conditional Signature Schemes

Not quantum secure All the current constructions of conditional digital
signatures are based on the classical cryptographic algorithms, whose security
relies on some mathematical hardness problem, such as large number factor-
ing and discrete logarithm problem. However, with the rapid development of
quantum computers, the security of classical algorithms is very likely to be
broken by Shor’s algorithm [10]. Taking into account the quantum-security
in the future, we set the digital signature algorithm used in our paper as the
post-quantum signature algorithm, such as CRYSTALS-Dilithium [5], Falcon
[7] or SPHINCS+ [2].

Interactions with other participants In the previous research like M.
Klonowski et al.’s approach, a conditional signature of A is constructed suc-
cessfully only if B makes a commitment and partially calculates his/her own
digital signature. It implies that a conditional signature of A is only possible
when both sides interact with each other and an agreement needs to be achieved
beforehand. Their approach essentially excludes these scenarios where no pre-
communication exists. For example, the expression ‘A promises to sign the
payment contract provided that the production company signs a new contract
to purchase the best material’ does not require the production company to
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4 A Logical Approach to Post-Quantum Conditional Digital Signatures

be informed that they are involved in this conditional signature. It is just a
unilateral commitment from A.

Incapability in dealing with complex conditions Since the notion of
conditional digital signatures is inspired by some electronic commerce, they
mostly constraint on the binary cases where only two parties try to achieve some
agreements. It results in a very simple form of the condition in a signature,
which generally expresses that one party signs something. But there are a lot
of scenarios where a complex condition is necessary. For example, ‘A signs the
contract provided that B signs the contract and C signs the contract’ or ‘A
signs the contract provided that B signs the contract or C signs the contract’.
The condition can be in some logical structure which decides when the signature
of A can practically come into force.

1.4 Contributions of our work

Based on some given digital signature scheme, this paper extends the struc-
ture of the conditions in conditional signatures to capture multi-participant
scenarios. We do not specify the concrete digital signature scheme. It can be
the classical Digital Signature Algorithm or a even more modern post-quantum
scheme based on lattice hardness problem, e.g. Crystals-Dilithium issued by
NIST (National Institute of Standard and Technology) [5]. Considering the
forthcoming quantum computers which are capable of breaking the classical
cryptographic algorithms, we set the digital signature algorithm used in this
paper as the post-quantum signature algorithm, such as Crystals-Dilithium [5],
Falcon [7] or SPHINCS+ [2].

As we distinguish two notions on validity: cryptographic validity and prac-
tical validity, a constructive method on generating unconditional signatures
from a finite set of conditional signatures is to be given as an application in
encryption practice. In the light of the algorithm induced by the method, any
trusted third party that is authorized to collect conditional digital signatures
from different participants can deduce whose signature really comes into force.

In addition, inspired by the logic for contract and B. Lee and K. Kim’s
original idea of conditional signatures, a Hilbert-style proof system is also to
be given in order to validate the multi-party handshaking principle in a non-
monotonic manner. Besides binary handshaking principle, some new axioms
are introduced to strengthen the expressivity power and thence to derive the
desired properties. For the lack of semantics, the soundness and completeness
will not be discussed in this paper. Consistency is given to show that the
theories of the system by no means derive conflicts. However, in terms of ap-
plication, the proof system does not directly provide an executable algorithm
for computers to find all practically valid signatures. For encryption practice,
we insist on the constructive method to be given in Section 3.

This paper is organized as follows. We first introduce the basic scheme
of digital signatures in Section 2. Then we will give a novel formalization of
conditional digital signatures and show a constructive method in deriving all
practically valid signatures from a set of cryptographically valid conditional
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signatures in Section 3. Section 4 a discussed the non-monotonicity of con-
ditional signatures and releases consistent proof system CSL which validates
multi-party handshaking principles.

2 Preliminaries

Any digital signature algorithm deployed nowadays respects a common scheme
where asymmetric encryption process is used. We next introduce it briefly.

Definition 2.1 (Digital signature scheme) A digital signature scheme Σ is a
triple of algorithms

Σ = (KeyGen,Sign,Verify)

known as the key generation, signing and verification algorithms and satisfying
the correctness condition.

• The key generation algorithm takes no input and produces a pair of keys
(sk, pk)← KeyGen() known as the secret and public keys for a signer a.

• The signing algorithm takes a secret key sk and a message m as inputs and
produces a signature σ ← Sign(sk,m). A tuple (m,σ, a) is generated and is
called a signed message.

• The verification algorithm takes the public key pk of a, the message m in
the signed message and the corresponding signature σ as inputs and returns
a Boolean value b, i.e. b = 1 or 0. We say that σ is a valid signature for m
under key pk if Verify(pk,m, σ) = 1.

We elaborate on the above scheme a bit here. After a pair of public key and
private key of an agent A is generated, A keeps the private key him/herself and
distributes the public key to all other participants. The mathematical hardness
problem, e.g. LWE (Learning With Error) problem in post-quantum lattice-
based cryptography, on which the signature algorithm is based guarantees that
the secret key cannot be calculated or induced from the public key. σ ←
Sign(sk,m) represents that m is encrypted by secret key sk and a ciphertext
σ is obtained. Lastly, all other participants can verify whether the message
is really authenticated by A by decrypting σ via public pk and checking if it
equals m. Verify(pk,m, σ) = 1 means that they are equal, 0 otherwise.

A digital signature scheme must satisfy the correctness condition:

(Correctness Condition) All correctly generated signatures are
always valid, i.e. b = 1.

3 Conditional Digital Signature

Given a post-quantum digital signature scheme, a key generation process dis-
tributes each party their own secret-public key pairs. Then we can formalize
the conditional digital signature as follows.

3.1 Syntax of conditional signatures

Since we intend to formalize these conditions in some logical structure, we first
give the syntax of the conditions.
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6 A Logical Approach to Post-Quantum Conditional Digital Signatures

Definition 3.1 (Syntax of conditions Φ) Given a set of messages M and a set
of parties/agents G, the conditions of conditional digital signature are defined
inductively as following BNF form:

Φ := ϵ | (m, a) | (Φ ∧ Φ) | (Φ ∨ Φ)

where m ∈M , s ∈ G and ϵ represents the empty condition.

The atomic condition is (m, a) which simply means that the agent a signs
the message m in the classical (unconditional) sense. In other words, a’s sig-
nature on m comes into force. Definition 3.1 indicates that we only consider
these conditions about signatures from other parties, which is different from the
normal implication where conditions can be any state of affairs. The negated
condition is not considered here since a too complex structure of conditions
brings about some inconceivable philosophical confusions.

3.2 Logical form of cryptographic expression

In Section 2, we introduced that (m,σ, a) constitutes a signed message where
σ is a ciphertext involving message m and the signer a. Referring to B. Lee
and K. Kim’s idea, we treat a conditional digital signature as a special form of
classical signature where the message to be signed (e.g. according to Dilithium
algorithm) is concatenated with a condition, i.e. (m; Φ, σ, a) which represents
a practically signs m; Φ. Logically, it is equivalent to that a signs m if Φ is
satisfied.

As mentioned before, σ is used for verifying if the message is really signed
by a. But it is largely irrelevant to the upcoming discussion on the logical
aspect of conditional signatures. We hence omit σ in the following formalization
and call (m; Φ, σ, a) the cryptographic form of a conditional signature and call
Sig((m, a)|Φ) the logical form of a conditional signature. As a reminder, in the
cryptography, the standard post-quantum signature algorithm first computes
the Hash value of the message m and then signs it, which guarantees the length
of the signed message always 512 bits. This is a chosen parameter which not
only protects the security of the signature, but makes it not exceeding hard
for receivers to verify (compute) the signature. For the sake of simplicity and
readability, we omit the Hash function used in algorithm and only keep the most
general form of digital signatures: (m; Φ, σ, a) as their cryptographic form.

Definition 3.2 (Conditional signature) Given a message m ∈ M , an agent
a ∈ G and a condition Φ, a conditional signature (logical form) is represented
by Sig((m, a)|Φ).

Depending on different Φ, Sig((m, a)|Φ) can be read differently respectively.
For instances,

• Sig((m, s)|ϵ): a practically signs m;

• Sig((m, a)|(m′, a′)): a signs m provided that a′ signs m′;

• Sig((m, a)|(m1, a1) ∧ (m2, a2)): a signs m provided that a1 signs m1 and a2
signs m2;
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• Sig((m, a)|(m1, a1) ∨ (m2, a2)): a signs m provided that a1 signs m1 or a2
signs m2;

When Φ = ϵ, we also write Sig((m, a)|ϵ) as (m, a) since both represent that
a practically signs m.

Definition 3.3 (Syntax of conditional signatures) Given a set of messages
M , a set of agents G, and a countable set of propositions P , the syntax of
conditional digital signatures is defined inductively as following BNF form:

ϕ := p | ¬ϕ | sig((m, a)|Φ) | (ϕ ∧ ϕ)
where m ∈M , s ∈ G and p ∈ P .
Definition 3.3 restricts negation to the outside of conditional signatures. So

a formula in the form Sig(¬(m, a)|Φ) is not well-defined.
3.3 Binary handshaking

The logic for contract formalizes the binary handshaking principle as below:

(p↠ q) ∧ (q ↠ p)→ (p ∧ q)
It shows a basic property of contractual implication (↠) that it allows two

dual contracting parties to handshake so as to make their agreement effective.
Similarly, the binary handshaking in the context of conditional signatures can
be captured by the following formula in our syntax:

Binary Handshaking Principle (HS)

Sig((m, a)|(m′, a′)) ∧ Sig((m′, a′)|(m, a))→ (m, a) ∧ (m′, a′)

The formula (HS) can be read as: a signs m provided that a′ signs m′,
and a′ signs m′ provided that a signs m, then a practically signs m and a′

practically signs m′. This represents that a and a′ shake hands and really
sign the messages of their own parts. It plays an important role in deriving
unconditional signatures in the upcoming constructive method. And it also
must be included as an axiom or a derived formula in our proof system of the
conditional digital signatures in Section 4.

3.4 Constructively find practical validity

In the classical research on the cryptographic aspect of digital signatures, the
correctness condition gains the most attention. Once a signature is generated
correctly, it comes into force. However, a correctly constructed conditional dig-
ital signature by no means implies that the signer practically signs the message.
It merely represents that the signer makes some commitment under certain con-
dition. To clarify the discrepancy between them, we distinguish two validity:
cryptographic validity and practical validity.

Definition 3.4 (Cryptographic validity) Let Sig((m, a)|Φ) be a conditional
signature and (m; Φ, σ, a) is the corresponding cryptographic form of it.
Sig((m, a)|Φ) is cryptographic valid (c-valid) if Verify(pka,m; Φ, σ) = 1.
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8 A Logical Approach to Post-Quantum Conditional Digital Signatures

A conditional signature is cryptographically valid if it is generated correctly
according to some digital signature algorithm. Upon this notion, practical
validity is given based on a set of cryptographically valid conditional signatures.

Definition 3.5 (W -validity of conditions) LetW be a set of c-valid conditional
digital signatures and Φ is a condition defined as Definition 3.1. W -validity of
Φ is defined inductively as follows:

• When Φ = ϵ, then Φ is W -valid trivially;

• When Φ = (m, a), Φ is W -valid if (m, a) ∈W i.e. Sig((m, a)|ϵ) ∈W ;

• When Φ = Φ1 ∧ Φ2, Φ is W -valid if Φ1 is W -valid and Φ2 is W -valid;

• When Φ = Φ1 ∨ Φ2, Φ is W -valid if Φ1 is W -valid or Φ2 is W -valid;

Definition 3.6 (Practical validity) LetW be a set of c-valid conditional digital
signatures. (m, a) is valid in W (notated as W ⊨ (m, a)) is defined as follows:

• If Sig((m, a)|Φ) ∈W and Φ is W -valid, then W ⊨ (m, a);

• If Sig((m, a)|(m′, a′)) ∈ W and Sig((m′, a′)|(m, a)) ∈ W , then W ⊨ (m, a)
and W ⊨ (m′, a′).

As shown above, practical validity is only defined with respect to uncondi-
tional signatures. So W ⊨ (m, a) intuitively means that (m, a) is a signature
that comes into force induced from the set of conditional signatures W . Con-
sidering the application, is there a constructive method or an algorithm to find
all practically valid signatures given a set of conditional signatures?

Definition 3.7 (An inductive construction) Given a set of conditional signa-
tures W . We define PV (W ) =

⋃∞
i=0 PVi(W ) where

(i) PV0(W ) = {(m, a)|(m, a) ∈ W} ∪
{(m1, a1)|Sig((m1, a1)|(m2, a2)) ∈
W and Sig((m2, a2)|(m1, a1)) ∈W}

(ii) PVi+1(W ) = PVi(W ) ∪ {(m, a)|Sig((m, a)|Φ) ∈
W and Φ is PVi(W )-valid}

Let us explain the inductive construction above. In the first step, we collect
all unconditional signatures in W and also derive all unconditional signatures
generated by the binary handshaking principle. They constitute PV0(W ). The
second step is adding all unconditional signatures detached from those condi-
tional signatures whose conditions are ‘satisfied’ in PV0(W ), i.e. PV0(W )-valid.
So on so forth. We take the union of all PVi(W ) and the final set PV (W ) is
obtained. Definition 3.7 thence provides a constructive method to derive all
practically valid signatures given a set of cryptographically valid conditional
signatures. It can be easily transformed to an algorithm to compute PV (W ).
The whole process for an authority to find all practically valid signatures in
application is shown as following steps:
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Step 1: All participants submit their conditional digital signatures to
the authority. Each conditional signature is formalized as
Sig((m, a)|Φ).

Step 2: After collecting all conditional signatures, the authority verifies
all and only retains these cryptographically valid conditional
signatures.

Step 3: Let the set of all cryptographically valid conditional signa-
tures be W . The authority computes the set PV0(W ) =
{(m, a)|(m, a) ∈ W} ∪ {(m1, a1)|Sig((m1, a1)|(m2, a2)) ∈
W and Sig((m2, a2)|(m1, a1)) ∈W}

Step 4: Based on PV0(W ), the authority computes PV1(W ) =
PV0(W ) ∪ {(m, a)|Sig((m, a)|Φ) ∈W and Φ is PV0(W )-valid}

Step 5: According to the method shown in Step 4, the authority com-
putes PV2(W ), PV3(W ), · · · and so on so forth. When we meet
a i such that PVi(W ) = PVi+1(W ), we move to the next step.

Step 6: The authority computes PV (W ) =
⋃∞

i=0 PVi(W )

The following proposition shows the equivalence between practical validity
and the set PV (W ). The proof is not hard and is omitted here.

Proposition 3.8 Given a set of c-valid conditional signaturesW , for arbitrary
unconditional signatures,

W ⊨ (m, a) iff (m, a) ∈ PV (W ).

4 A Proof System for Conditional Signatures CSL
A constructive method in finding all practical valid signatures based on binary
handshaking principle is sufficient for application in most real-life cases. For
further study on the reasoning about conditional signatures and multi-party
handshaking principles, a more powerful proof system is required. The logic for
contract (PCL) given by M. Bartoletti and R. Zunino [1] seems to be a proper
candidate for the logical basis of the conditional digital signatures at first glace.
However, their new implication for conditional clauses ↠ is monotonic. In the
context of conditional signatures, we cannot infer a conditional signature like ‘A
signs the contract provided that B signs the contract and C signs the contract’
from the conditional signature saying ‘A signs the contract provided that B
signs the contract’ without mentioning C’s behavior. Therefore, ↠ does not fit
to conditional signatures that we intend to study in this paper. Moreover, even
the original definition for conditional signatures in commercial fair exchange
given in [9] is monotonic. To characterize the non-monotonicity of conditional
signatures and multi-party handshaking principles, a proof system is specifically
designed in this section.
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b

a c

shake hands

a

b c

Fig. 1. Three-party handshaking

4.1 Non-monotonicity

A monotonic implication → is monotonic if it satisfies (ϕ → ψ) ∧ (ϕ′ → ϕ) →
(ϕ′ → ψ). It means that if ϕ implies ψ, then a stronger precondition ϕ′ should
imply ψ as well. In the context of logic of conditionals, it is also called precon-
dition strengthening. This property is quite intuitive in most cases. However,
with development of logic of conditionals and more non-monotonic condition-
als are found, such as counterfactual conditionals and conditional obligations,
non-monotonicity gains a lot of attention.

If we take a closer look at the notion of conditional signatures that we
propose to study, it does not satisfy monotonicity. Let us see the following
example.

Example 4.1 Agent a signs message m provided that b signs message m1.
But it is by no means that ‘a signs message m provided that b signs message
m1 and c signs message m2’ can be derived, even though ‘b signs message m1

and c signs message m2’ trivially implies ‘b signs message m1’.

The example inspires that in a conditional signature, only if the condition
is exactly met, the signature takes effect. Any strengthening or weakening is
not compliant. Thus, we should exclude the formula below from our charac-
terization of conditional signatures.

(Φ′ → Φ) ∧ Sig((m, a)|Φ)→ Sig((m, a)|Φ′)

4.2 Multi-party handshaking principle

As an extension to the binary handshaking principle introduced in Section 3.3,
three or more participants can achieve some practically valid signatures when
their conditional signatures form a ‘cycle’, shown as Figure 1.

In Figure 1, the curved arrow from red node a to red node b represents a
conditional signature given by the agent b that b signs a message given that
agent a signs some message, similarly for the arrow from b to c and c to a.
When three participants’ conditional signatures (red nodes) form a cycle, all
their conditional signatures come into force and three real signatures (green
nodes) are obtained. Accordingly, we can formalize the three-party handshak-
ing principle as the following formula:
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Three-party Handshaking Principle

Sig((m, a)|(m′, b)) ∧ Sig((m′, b)|(m′′, c)) ∧ Sig((m′′, c)|(m, a))
→ (m, a) ∧ (m′, b) ∧ (m′′, c)

However, the above formalization is not satisfactory since if there are n
(n ≥ 3) parties, we need to give a specific formula to characterize the n-
party handshaking principle, respectively. That looks very redundant. A proof
system that is expressively strong enough to derive multi-party handshaking
principles are ready to come out.

In the next part , we show a consistent proof system for conditional digital
signatures which can derive multi-party handshaking principles.

4.3 The proof system CSL

Definition 4.2 The proof system CSL consists of following axiom schemes
and inference rules:

(TAUT) All instances of propositional tautologies

(Trans) Sig((m, a)|(m′, a′)) ∧ Sig((m′, a′)|(m′′, a′′))→ Sig((m, a)|(m′′, a′′))
(UHS) Sig((m, a)|(m, a))→ (m, a)
(Detach) Sig((m, a)|Φ) ∧ Φ→ (m, a)
(MP) From ϕ and ϕ→ ψ, infer ψ

In the system CSL, the axiom (Trans) represents a transitivity of condi-
tional signatures. It means that if we have a signs m provided that a′ signs m′

and a′ signsm′ provided that a′′ signsm′′, then it is implied that a signsm pro-
vided that a′′ signs m′′. It might not be trivially valid. But it makes sense if we
allow the agent do some very reasonably and logically correct, but easy infer-
ence. If a intends to sign m and he/she also knows that Sig((m′, a′)|(m′′, a′′)),
then a completely understand his/her conditional signature is practically equiv-
alent to Sig((m, a)|(m′′, a′′)). The axiom (UHS) is an abbreviation to ‘unary
handshaking’ which is a special form of handshaking principles. The axiom
(Detach) shows that the signature of a on m takes effect once the condition Φ
is satisfied.

4.4 CSL-Theories And Consistency

As mentioned in Section 4.2, we hope handshaking principles are axioms or
can be derived from our proof system, in order to show our characterization
validate handshaking in the context of conditional digital signatures.

Lemma 4.3 The following formulas are derivable in CSL:

(HS) Sig((m, a)|(m′, a′)) ∧ Sig((m′, a′)|(m, a))→ (m, a) ∧ (m′, a′)
(MHS) for any n ≥ 3, it holds that

Sig((m1, a1)|(m2, a2)) ∧ Sig((m2, a2)|(m3, a3)) ∧ · · ·Sig((mn, an)|(m1, a1))
→ (m1, a1) ∧ (m2, a2) ∧ · · · (mn, an)
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12 A Logical Approach to Post-Quantum Conditional Digital Signatures

Proof. (HS) is derivable in CSL:

1 Sig((m, a)|(m′, a′)) ∧ Sig((m′, a′)|(m, a))→ Sig((m, a)|(m, a)) (Trans)
2 Sig((m′, a′)|(m, a)) ∧ Sig((m, a)|(m′, a′))→ Sig((m′, a′)|(m′, a′)) (Trans)
3 Sig((m, a)|(m, a))→ (m, a) (UHS)
4 Sig((m′, a′)|(m′, a′))→ (m′, a′) (UHS)
5 Sig((m, a)|(m′, a′)) ∧ Sig((m′, a′)|(m, a))→ (m, a) 1,3
6 Sig((m′, a′)|(m, a)) ∧ Sig((m, a)|(m′, a′))→ (m′, a′) 2,4
7 Sig((m, a)|(m′, a′)) ∧ Sig((m′, a′)|(m, a))→ (m, a) ∧ (m′, a′) 5,6

(MHS) is derivable in CSL:
For each 3 ≤ i ≤ n− 1,

1 Sig((m1, a1)|(m2, a2)) ∧ · · ·Sig((mi−1, ai−1)|(mi, ai))→
Sig((m1, a1)|(mi, ai)) (Trans)

2 Sig((mi, ai)|(mi+1, ai+1)) ∧ · · ·Sig((mn, an)|(m1, a1))→
Sig((mi, ai)|(m1, a1)) (Trans)

3 Sig((m1, a1)|(m2, a2)) ∧ · · ·Sig((mn, an)|(m1, a1))→
(m1, a1) ∧ (mi, ai) 1,2,(HS)

For each i = n,

1 Sig((m1, a1)|(m2, a2)) ∧ · · ·Sig((mn−1, an−1)|(mn, an))→
Sig((m1, a1)|(mn, an)) (Trans)

2 Sig((m1, a1)|(mn, an)) ∧ Sig((mn, an)|(m1, a1))→
(m1, a1) ∧ (mn, an) (Trans)

3 Sig((m1, a1)|(m2, a2)) ∧ · · ·Sig((mn, an)|(m1, a1))→
(m1, a1) ∧ (mn, an) 1,2,(HS)

As a summary, (MHS) is derivable in CSL. 2

The formula (HS) is the binary handshaking principle. The formula (MHS)
characterizes the multi-party handshaking principles in any group scale.

Lemma 4.4 The following formulas are not derivable in CSL:
(MN) ̸⊢CSL Sig((m, a)|Φ) ∧ (Φ′ → Φ) ∧ ¬(Φ→ Φ′)→ Sig((m, a)|Φ′)
(US) ̸⊢CSL (m, a)→ Sig((m, a)|Φ) for Φ ̸= ϵ

Lemma 4.4 can be proved by showing that none of CSL-axioms replaces
the condition part of a conditional signatures with a stronger condition. We do
not show the proof in detail here. The formula (US) is a special form of (MN)
when Φ = ϵ.

As mentioned above, CSL is designed to be non-monotonic. The underiv-
ability of (MN) is a witness to this property. The formula (US) says if a really
signs m, then he/she signs m under arbitrary condition. (US) is valid in PCL,
but it is counter-intuitive in terms of conditional signatures.

The last problem is to prove that CSL is consistent. For the lack of the
semantics, we will prove it with respect to the notion of syntax-consistency.
The following definition is necessary. In the remaining part, PL represents the
classical propositional logic.
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Definition 4.5 (PL-Transformation) For each CSL-formula ϕ, ϕ′ denotes its
PL-transformation which is defined inductively as follows:

• p′ = p

• (¬ϕ)′ = ¬ϕ′
• Sig((m, a)|Φ)′ = pm,a where pm,a is a newly added propositional letter.

• (ϕ1 ∧ ϕ2)′ = ϕ′1 ∧ ϕ′2

Lemma 4.6 The PL-transformation of each CSL-axiom is also a PL-theory.

Proof. According to Definition 4.5,

• (Trans)′ = pm,a ∧ pm′,a′ → pm,a, which is a PL-theory;

• (UHS)′ = pm,a → pm,a, which is a PL-theory;

• (Detach)′ = pm,a ∧ Φ′ → pm,a where Φ can be arbitrary conjunction or
disjunction combination of (m, a). (Detach)′ is also a PL-theory.

• For each instance of tautologies ϕ, ϕ′ = β′[p1/γ′1, · · · , pn/γ′n]. Since β itself
is a PL-theory and each γ′i is a PL-formula, it is trivial to obtain that ϕ′ is
a PL-theory as well.

2

Lemma 4.7 The PL-transformation of each CSL is also PL-theory.

Proof. Let ϕ be an arbitrary CSL-theory. There must be a proof sequence to
derive ϕ by CSL-axioms and (MP) rule. Do induction on the length n of the
proof:

(i) n = 0: ϕ is a CSL-axiom. By Lemma 4.6, ϕ′ is PL-theory.

(ii) n = l: The PL-transformation of each formula in the sequence is PL-
theory.

(iii) n = l + 1:
(a) ϕ is a CSL-axiom. By Lemma 4.6, ϕ′ is PL-theory.
(b) ϕ is obtained by substituting the propositional part of a formula β

with a CSL-formula. Let ϕ = β[p/γ]. By induction hypothesis, β′ is
a PL-theory. γ is a PL-formula. So β′[p/γ′] is still a PL-theory.

(c) ϕ is obtained by (MP) rule from ⊢CSL β → ϕ and ⊢CSL β. By induction
hypothesis, (β → ϕ)′ is a PL-theory and beta′ is a PL-theory. So ϕ′ is
a PL-theory.

2

Theorem 4.8 The proof system CSL is syntax-consistent.

Proof. Let ϕ be an arbitrary CSL-formula. We need to prove that if ⊢CSL ϕ,
then ̸⊢CSL ¬ϕ. Suppose that ⊢CSL ϕ and ϕ′ is its PL-transformation. By
Lemma 4.7,⊢CSL ϕ′. Since PL is syntax-consistent, it holds that ̸⊢CSL ¬ϕ′. By
Lemma 4.7 again, we have ̸⊢CSL ¬ϕ. Therefore, CSL is syntax-consistent. 2
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14 A Logical Approach to Post-Quantum Conditional Digital Signatures

5 Comparison And Conclusion

Comparison with M. Klonowski et al.’s work M. Klonowski at al. de-
signed the very first conditional signature scheme based on ElGamal signature
scheme. It goes further than B. Lee and K. Kim who initially put forward the
concept of conditional signatures in the sense that M. Klonowski at al.’s scheme
mathematically separates the message and condition. Their scheme extends the
classical ElGamal scheme to a tuple (a1, b1S

z, az2) where (a1, b1) amounts to the
classical ElGamal signature on message M1 by the signer A and (Sz, az2) plays
the role of a commitment from B’s signature on M2, which collectively repre-
sents a conditional signature of A on M1 conditioned by B’s signature on M2.
Once B signs M2 and produces his/her own signature (a2, b2), everyone can
transform A’s conditional signature tuple (a1, b1S

z, az2) into A’s signature by
computing b1S

z

(az
2)

b2
= b1S

z

(a
b2
2 )z

= b1S
z

(Sz) = b1 where S = ab22 . So the complete A’s

signature (a1, b1) is obtained. It is obvious that this method requires a pre-
communication with B if A wants to establish a conditional signature since
B needs to compute (Sz, az2) beforehand. In addition, this condition can only
be given by one single participant, like B. More complex conditions are in-
compatible. Our method deals with condition following B. Lee and K. Kim’s
way in order not to change the basic signature scheme. It paves the way to
make any digital signature scheme feasible, including port-quantum signature
schemes. Meanwhile, our approach embeds logical relation into the expression
of conditions where any finite combination of conjunction and disjunction of
atomic signatures are allowed.

Comparison with PCL The logic for contract given in [1] treats conditional
clauses in contracts as a new implication ↠. Their proof system includes the
axiom (p′ → p) ∧ (p ↠ q) → (p′ ↠ q) which suggests that ↠ is monotonic.
As discussed during the whole paper, conditional signatures should not be
monotonic and therefore the proof system of CSL cannot be inherited directly
from PCL. CSL is non-monotonic since ̸⊢CSL Sig((m, a)|Φ)∧(Φ′ → Φ)∧¬(Φ→
Φ′)→ Sig((m, a)|Φ′).
Conclusion The emergence of conditional digital signatures aims to solve the
problem of fair exchange and ‘valid once signing’. Many digital commercial
scenarios requires conditional signatures for protecting interests of signers and
brings more efficiency in contracts coming into force. However, the existing
characterizations on this notion face several challenges in security, power of
expression and feasibility, for instances. This paper formalized conditional
digital signatures in a more abstract form Sig((m, a)|Φ) where (m, a) represents
that a signs m and Φ is a condition expression with a logical structure. Based
on a chosen post-quantum digital signature scheme, e.g. Crystal-Dilithium,
we distinguish two validities: cryptographic validity and practical validity. A
constructive method is designed to find all practically valid signatures from
a collection of cryptographically valid conditional signatures. An algorithm
can be induced accordingly and makes the application feasible. Moreover,
so as to capture multi-party handshaking principles and the reasoning about
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conditional signatures, a consistent proof system CSL is established, which
renders the conditional signatures non-monotonic.
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A Deontic Logic for Programming Rightful
Machines: Kant’s Normative Demand for
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Abstract

In this paper, I set out some basic elements of a deontic logic with an implementation
appropriate for handling conflicting legal obligations for purposes of programming
autonomous machine agents. Relying on Immanuel Kant’s philosophy of law, I ar-
gue that a deontic logic of the law should not try to work around such conflicts but,
instead, identify and expose them so that the rights and duties that generate inconsis-
tencies can be explicitly qualified and the conflicts resolved. Kantian justice demands
that enforceable laws be consistent, precise, and minimally justifiable in a system. I
then argue that a credulous, non-monotonic deontic logic can handle legal conflicts to
satisfy these normative demands, with appropriate modifications. Finally, I propose
an implementation of this logic via a modified form of “answer set programming,”
which I demonstrate with some simple examples. This proposed implementation helps
advance the design of “rightful machines,” autonomous machine agents that respect
the authority of legitimate law.

Keywords: Conflicts, Deontic Logic, Non-Monotonic Logic, Kant, Law, Answer Set
Programming, Logic Programming, Rightful Machines, Consistency, Standard
Deontic Logic,

1 Rightful Machines
According to Immanuel Kant, appeals to reason alone cannot completely spec-
ify what our rights and duties with respect to each other are in disputed cases
[7, 6:312]. In a society of moral equals, each person “has [her] own right to
do what seems right and good to [her] and not to be dependent on another’s
opinion about this,” Kant says [7, 6:312]. Hence even if everyone strives to act
perfectly ethically with respect to others, rightful relations are impossible in
the absence of a legitimate public authority, since “when rights are in dispute
(ius controversum), there would be no judge competent to render a verdict
having rightful force” [7, 6:312].

What is required, Kant argues, is

1 avwright@calpoly.edu
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a system of laws for a people...which because they affect one another, need a
rightful condition under a will uniting them, a constitution (constituto), so
that they may enjoy what is laid down as right. [7, 6:311]

Kant refers to this system of public laws and institutions as “public right” and
a society existing under such a system as one existing in a “rightful” or “civil”
condition, as opposed to a “state of nature.” Only by constituting a united
will to authoritatively define, enforce, and determine our rights and duties
with respect to each other can we avoid injustice in inevitable cases of conflict
between our rights, Kant argues (see [7, 6:313-14]). The determinations of a
legitimate public authority as to the rights and duties of everyone interacting
in community therefore generally take moral priority over individual ethical
judgments in cases of conflict. To reject the authority of legitimate public
law and institutions and instead use one’s own private ethical judgment in
such cases is to act wrongly, indeed, to commit wrong ”in the highest degree,”
according to Kant [7, 6:308n].

Kant’s philosophy of law is thus neither strictly positivist nor natural-legal.
On the one hand, Kant argues that there is a necessary connection between
positive law and morality because positive laws that violate conditions neces-
sary to constitute the united will are illegitimate and, therefore, lack moral
authority. 2 These conditions include, among others, respect for fundamental
natural rights of freedom, independence, and equality as well as requirements
that the laws be minimally rational and justifiable [10, p. 170-185]. A positive
law that violates such fundamental rights or principles imposes no moral duty
to obey it. But on the other hand, Kant argues that positive laws that do not
violate such rights or principles are in general morally authoritative, even if
those laws may otherwise be unwise or unjust. The positive laws of a legiti-
mate public authority are necessary to cure the problem of indeterminacy of
rights in the state of nature that makes rightful relations impossible. A positive
law that is unjust may still impose a moral duty to obey it.

Kant’s hybrid philosophy of law demands that enforceable laws be made
consistent, precise, and minimally rationally justifiable in a system. These nor-
mative demands will shape and constrain how a deontic logic of the law should
handle apparent conflicts between legal obligations. My aim in what follows is
to set out the basic elements of such a deontic logic, together with an imple-
mentation that could reasonably be part of the programming of an autonomous
machine agent. I first argue that a credulous, non-monotonic deontic logic can
adequately satisfy Kant’s normative demand for consistency in the laws, with
appropriate modifications. I then propose an implementation of this logic via
a modified form of “answer set programming,” which I demonstrate with some
simple examples. I hope this proposal will help advance the design of “rightful

2 The authority of a law refers to whether citizens have a moral duty to obey it, whereas its
legitimacy refers to the moral permissibility of enforcement of the law, regardless of whether
citizens have a duty to obey it or not. Kant’s position is that the law’s legitimacy is a
necessary condition for its authority.
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machines,” autonomous machine agents that properly respect the authority of
the law within the bounds of fundamental rights and principles of justice [12]
[13].

2 Conflicts Between Legal Obligations
2.1 The Normative Demand for Consistency in the System of

Laws
Kant appears to deny that there can ever be conflicts between legal obligations:

[S]ince duty and obligation are concepts that express the objective practical
necessity of certain actions, and two rules opposed to each other cannot both
be necessary at the same time—rather if it is one’s duty to act according to
one of them, to act according to the opposite one is not only no duty, but even
contrary to duty—a collision of duties and obligations is not even conceivable
(obligationes non colliduntur). [7, 7:224]

Kant argues here that if one were required to perform an action in accordance
with an obligation (Oa) that opposed another simultaneous obligation pro-
hibiting the action (O ∼ a), then acting in accordance with the first obligation
(a) would imply acting in a way that violated the second obligation (∼ a), a
performance that is not even conceivable (a∧ ∼ a). One cannot be obligated to
perform what is impossible (O(a∧ ∼ a)); therefore, Kant concludes, one cannot
simultaneously be subject to opposing obligations (Oa ∧ O ∼ a). (Here ”O” is
a monadic operator for an obligation one has; ”a” is an action one performs.)

Kant’s claim that obligations cannot come into conflict (∼ (Oa ∧ O ∼ a))
may be understood either descriptively or normatively. Understood descrip-
tively, the claim seems false. There seems to me no reason to think that even
a thoroughly rational public authority might not create legal obligations that
contradict in situations that authority did not foresee. For example, suppose
a state authority enacts a traffic law that requires stopping at stop signs and
also another law that forbids stopping in front of military bases (see [9] : 179).
It is not inconceivable that a local government agency might then erect a stop
sign in front of a military base, creating a conflict of narrow legal obligations
under applicable enforceable laws for drivers unfortunate enough to encounter
the situation. The possibility of such conflicts seems a mundane descriptive fact
about any system of laws, and while one might be tempted to assert that the
ordinances in question cannot be held to conflict in the case because the driver
can have only one true legal obligation, this assertion seems clearly normative
rather than descriptive.

Kant’s claim that legal duties cannot conflict should be understood as a
normative constraint on the prescriptive system of enforceable legal obliga-
tions. At the descriptive level, law contains contradictory obligations; but at
the prescriptive level of enforceable obligations, the laws should be completely
consistent. What does Kant’s normative demand for consistency in the system
of enforceable public laws imply for a deontic logic of the law?
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2.2 The Inadequacy of Standard Approaches to Legal Conflict
The standard system of deontic logic (SDL) is a normal modal logic with a de-
ontic gloss on the 2 (box) and 3 (diamond) operators, interpreted as obligation
(O) and permission (P), respectively. The system is a K logic characterized,
syntactically, by the D (deontic) axiom, ‘2p → 3p’ (that is, if action p is
obligatory, then p is permitted, Op → Pp) or the ‘D3Introduction’ rule in a
Fitch-style proof system, and, semantically, by a seriality condition on frames
in the Kripkean possible world semantics (that is, for every world, there is at
least one accessible world). What SDL amounts to is the rejection of conflicts
of obligation (∼ (2p ∧ 2 ∼ p)), which is just the D axiom.

But since, as we have seen, there is no reason to think that deontic conflicts
do not occur in the law as a descriptive matter, an adequate deontic logic of
the law should not deny the possibility of such conflicts, as SDL does. Yet if
one rejects axiom D so as to admit conflicts of obligation into SDL, then the
logic becomes immediately incoherent, since given some standard principles
for the inheritance of obligations (RM) (If ⊢ p → q, then ⊢ Op → Oq) and
aggregation (AND) (⊢ (Op ∧ Oq) → O(p ∧ q)), one can derive any obligation
from the contradiction in accordance with the classical logical principle ex falso
quodlibet (EFQ) ((p∧ ∼ p) → q) [5, p. 463–4]. That is, given a dilemma where
simultaneously Op and O ∼ p, any arbitrary action q can be proven to be
obligatory. (For example: 1. Op. assp. 2. O ∼ p. assp. 3. O(p∧ ∼ p). 1,2
AND. 4. (p∧ ∼ p) → q. EFQ. 5. O(p∧ ∼ p) → Oq. 4 RM. 5. Oq. 3,4 MP.) A
number of efforts to weaken one or more of these principles in order to avoid
the deontic explosion of arbitrary obligations have therefore been undertaken,
though with limited success.

Semi-classical and paraconsistent logics avoid this inferential explosion by
replacing the two truth values (true, false) of classical semantics with a seman-
tics of many values (e.g., null, just true, just false, and both true and false)
[4, p. 99–105, 195–196]. These logics have been thought too weak to be very
useful, however, because they fail to vindicate certain common, intuitively valid
deontic arguments. For example: 1. S ought to fight in the war or perform
alternative service to his country (O(f ∨ a)). 2. S ought not fight (O ∼f).
3. Therefore, Smith ought to perform alternative service to his country (Oa)
[5, p. 467]. This intuitively valid conclusion cannot be derived in most para-
consistent or relevance deontic logic systems because they lack the disjunctive
syllogism of propositional calculus needed to make the inference (f ∨ a)∧ ∼f
→ a. Such failures are not conclusive, however, and overcoming them continues
to be an area of active research.

Other efforts to describe contradictions while avoiding deontic inferential
explosion attempt to do so by weakening Aggregation (AND) or Inheritance
of Obligations (RM), rather than by rejecting classical EFQ. They typically
do so by imposing prior consistency or permissibility checks. For example,
Aggregation (AND) may be weakened by requiring that p and q be jointly
possible before allowing their aggregation under obligation (CAND: If ⊬ p →∼
q then ⊢ (Op ∧ Oq) → O(p ∧ q)), or by requiring that p and q be jointly
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permissible (PAND: ⊢ P (p ∧ q) → ((Op ∧ Oq) → O(p ∧ q))). Inheritance of
Obligations (RM) may be weakened by requiring that p be permissible before
allowing q to inherit an obligation from the obligation that p (RPM: If ⊢ p →
q then ⊢ Pp → (Op → Oq)) [5, p. 467–473]. Each resulting logic avoids
deontic inferential explosion and has its relative advantages and disadvantages
in accounting for the intuitive validity of various example deontic arguments.

2.3 What Kant’s Normative Demand for Consistency in the Laws
Really Requires

The problem with both paraconsistent logics and these other efforts to weaken
SDL’s axioms for purposes of a deontic logic of the law, however, is that they
offend the demand for consistency understood as a normative requirement.
Contradictory prescriptive legal obligations are admitted as first-class citizens
of such logics. In paraconsistent logics, inferences are derived in the face of
such contradictions by the alchemy of a non-classical semantics, which often
confounds intuitions. In the weakened deontic logics described above, by con-
trast, contradictions are like icebergs around which reasoning proceeds gingerly,
if at all. In neither case does the logic require that one contradictory obligation
be defeated, or that rules generating the contradiction be qualified or revised,
in order to allow an inference through the other obligation, or vice versa.

For example, suppose that a criminal statute requires the punishment of
anyone who intentionally kills a person (k → Op), while another statute forbids
punishing minors (m → O ∼ p), and suppose a court confronts a case where
a minor has intentionally killed someone (k ∧ m) (see Alchourron 1991). This
licenses the inferences Op and also O ∼ p, so creating a conflict of obligations.
The weakened logics above draw both inferences but then limit further infer-
ences that depend directly on one or another of them. For example, suppose
that punishment always consists in incarceration (p → c). RM would license
Op → Oc, and therefore the inference that the killer ought to be incarcerated,
despite that she is a minor (Oc) and ought not to be punished (O ∼ p). The
weakened RPM logic above appropriately blocks this inference because Op is
impermissible, O ∼ p (where O ∼ p ↔∼ Pp). The RPM logic infers that there
is a killer who is a minor (k, m), and that the court is obligated to punish her
(Op) and obligated not to punish her (O ∼ p), but then blocks the explosion
of further inferences such as that she ought to be incarcerated (Oc). While
the RPM logic thus succeeds in admitting conflicts while avoiding a deontic
explosion of inferences, which is its goal, its approach to doing so seems to me
to miss the point of admitting deontic conflicts in the first place.

Conflicts between deontic obligations should stimulate rational inference
rather than shut it down. What conflicts normatively indicate in a legal deontic
context is that one must either revise one or the other of the inconsistent
formulas, or prioritize one over the other or, semantically, that one must choose
between competing consistent models of (revised) rules given the facts of some
conflict situation. While a doxastic or epistemic application of modal logic
may perhaps not be subject to the same normative demands, a deontic logic of

212



6 A Deontic Logic for Programming Rightful Machines: Kant’s Normative Demand for Consistency in the Law

the law must provide some mechanism to adjudicate between consistent sets of
formulas. The goal in the case of the killer who is a minor above should be to
render a judgment as to whether her punishment is consistent with everyone’s
obligations and rights in the system of public laws, subject to constitutional
constraints. But paraconsistent logics and weakened deontic logics that admit
contradictions seem useless for this purpose.

A court might resolve the case by, for example, qualifying the rule against
homicide so as not to apply to minors (k∧ ∼ m) → Op, or, on the other hand,
by qualifying the rule barring the punishment of minors so as not to apply in
cases of intentional homicide (m∧ ∼ k) → O ∼ p, or the court might articulate
some explicit rule of priority [1, p. 423–424]. A deontic logic of the law should
be able to admit the conflict descriptively and provisionally generate inferen-
tial alternatives, together with further consequences, in order to evaluate each
resulting consistent set of rules and require a decision. The weakened deon-
tic logics above instead simply admit the conflict and limit further inferences.
What is needed is a deontic logic that admits the presence of contradictions
at a descriptive level but whose semantics insists that they be authoritatively
resolved at the prescriptive level of enforceable public laws. This resolution
should render our legal obligations precise, and, moreover, must be minimally
rationally justifiable by reference to authoritative laws, orders, or judgments.

In the next subsection, I argue that a non-monotonic reasoning system
with a classical (rather than paraconsistent) base can meet these normative
requirements, with appropriate modifications.

2.4 Non-Monotonic Deontic Logics and the “Credulous”
Reasoning Semantics

Non-monotonic reasoning systems (NMRs) are able to admit contradictions
without igniting a deontic inferential explosion of obligations because they re-
ject monotonicity (i.e., “If K ′ ⊢ p and K ′ ⊆ K, then K ⊢ p.”). What the
rejection of monotonicity means is that some inferences might no longer be
drawn when new premises are introduced; for example, one might introduce a
new fact that directly contradicts some fact upon which an inference depends,
so defeating that inference. NMRs thus avoid the deontic inferential explosion
of obligations that plagues SDL; at the same time, NMRs insist that the set of
consequences inferred be consistent.

Classical logic can be defined as a structure S = (F, R) where F is a set of
formulas and R is a set of rules of inference. R defines a classical consequence
relation (‘⊢’) between a set of formulas and a formula of the language (p). A
non-monotonic logic can be defined as a structure S = {F, K, R} where F is a
set of formulas, K is a set of default rules, and R is a set of rules of inference
that define a non-monotonic consequence relation (’|∼’ note the “snake”). This
consequence relation may be defined simply as follows [8, p. 66–67]:

F, K| ∼ p if and only if F, K ′ ⊢ p for all subsets K ′ ⊆ K which are maximally
consistent with F .

A subset K ′ of K is maximally consistent with F if and only if it is consistent
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with F and there is no superset with F that is consistent and also a subset of
K.

For example, suppose K = {b → f, p →∼f} (“Birds fly; penguins do not
fly.”). Suppose F = {b}. Hence {b}|∼K f because for all subsets K ′ of K that
are maximally consistent with {b}, {b}, K ′ ⊢ f . That is, {b, b → f, p →∼f} ⊢ f .
Suppose b: “chilly is a bird;” therefore, f : “chilly flies” because b → f : “birds
fly.” But now if we also add p (p: “chilly is a penguin”) to F , then {b, p}|̸∼K f
because {b, p} ⊬K f for all subsets K ′ of K that are maximally consistent with
F = {b, p}; that is, while {b, p, p → f} ⊢ f , the subset {b, p, p →∼f} ⊬ f .
(Note that {b, p}|̸∼K∼f , either, because {b, p, b → f} ⊬∼f . We cautiously infer
neither that chilly flies nor that chilly does not fly.) This demonstrates that
adding p to the premises causes the conclusion f to be withdrawn in the face
of contradiction.

What should the semantics of a deontic NMR appropriate for handling con-
flicts between enforceable legal obligations be? The consequences a NMR draws
given some set of rules K and first-order formulas F can be defined in terms of
the “extensions” of (K, F ), which, informally, are the rational and justifiable
sets of conclusions one can draw given (K, F ). Extensions are rational in the
sense that conclusions are not accepted if they would create inconsistencies, and
justifiable in the sense that 1) all the conclusions that one accepts have some
justification in (K, F), while 2) adding any further conclusion would create
an inconsistency. “Credulous” reasoning defines the consequences as those in
exactly one extension; “skeptical” reasoning defines the consequences as those
that lie at the intersection of all extensions. “Ideally” skeptical reasoning de-
fines consequences in terms of the intersection of paths of support, where facts
and rules are understood to form an inheritance network [11].

I argue that a credulous rather than skeptical reasoning semantics is needed
for a deontic logic of the law. Consider again the case of the killer who is a minor
(k ∧ m), where killers ought to be punished (k → Op) and minors ought not
to be (m →∼ Op). The extensions of these rules and facts are {k, m, Op} and
{k, m, ∼ Op}. Skeptical reasoning cautiously infers as consequences only that
there is a killer who is a minor (the intersection of the extensions, {k, m}),
but whether punishment is obligatory or not is left undefined. Yet Kantian
justice requires an authoritative ruling in the case; otherwise, any enforcement
(or lack of it) is wrongfully coercive. Obligations must be determinate at the
prescriptive level of enforceable law—punishment either is or is not obligatory
in the case.

Credulous reasoning appropriately requires exactly one or the other conclu-
sion as a consequence, which will then persist in the knowledge base to guide
and constrain further inferences. For example, suppose we again add (p → c)
(“punishment is by incarceration”) to our knowledge base of rules. If the NMR
credulously concludes that punishment is obligatory (Op) in the case—perhaps
on the theory that minors should be punished for crimes that are felonies such
as murder—then the obligation to incarcerate (Oc) will also follow as a conse-
quence. If the NMR credulously concludes, on the other hand, that the minor
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should not be punished (∼ Op)—even in felony cases—then Oc does not follow
as a consequence. This correctly reflects whether and how further inferences
such as Oc should be reached.

3 Proposal: Answer Set Programming Rightful
Machines

In this section, I propose an approach to programming autonomous machine
agents to handle conflicts between legal obligations via a form of logic pro-
gramming referred to as “answer set programming,” which can be viewed as
a efficient machine implementation of nonmonotonic formalisms. Answer set
programming, with some modifications, can therefore capture the deontic logic
of the law I proposed in in the previous section.

The two dominant semantics for extended logic programs are the “answer
set” / “stable model” semantics and the “well-founded model” semantics. The
answer set semantics for logic programs defines a logic program’s consequences
in terms of the intersection of its answer sets (extensions), however, and the
well-founded model will appear as a subset of this intersection. Both semantics
thus reflect skeptical reasoning, where the well-founded semantics reflects “ide-
ally” skeptical reasoning. To achieve credulous reasoning, I exploit only a part
of the answer set semantics to 1) enumerate answer sets, and then 2) require
the selection of exactly one answer set. This credulous semantics will achieve
the main aim of admitting conflicts at the descriptive level while normatively
requiring their resolution at the prescriptive level of enforceable law.

3.1 Background: Answer Set Semantics for Logic Programs
First, I briefly sketch the answer set semantics for extended logic programs.
My aim here is to provide some background material on how answer set pro-
gramming works, rather than a formal treatment (see [3] for a formal account).
A logic program (Π) consists of a set of rules of this form:

a :- bk, bk+1, ..., bm, not cm+1, ..., not cn.
where k, m and n are non-negative integers, a, b, and c are atomic formulas or
their negations (i.e. p or −p), and “not” is “negation-by-failure.” a above is
referred to as the head of the rule, while formulas following the “:-” symbol
make up the body of the rule. A rule with no head is a constraint, while a rule
with no body is a fact.

The answer sets of a logic program Π are obtained by the following proce-
dure [3]. I will first provide a general description of the procedure and then
apply it to an illustrative example. First, generate a partial interpretation (I)
of Π, which is a consistent set of ground literals formed from the rules of Π.
Ground rules, literals, and terms of a logic program contain no variables; hence
to create a ground instance of a rule of Π, replace all the rule’s variables with
ground terms of Π. A literal p is true if it is an element of the interpretation
and false if its complement is; otherwise, the literal is undefined. Next, obtain
the “reduct” of the program Π with respect to the generated partial interpre-
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tation I of Π. The reduct of Π is obtained by first deleting every rule from Π
with “not p” in its body, where p is a member of I, and then deleting all “not
q” from the remaining rules of Π, where q is any literal. Finally, repeatedly
obtain the immediate consequences (T (I)) of the reduct by applying modus
ponens and avoiding contradictions until reaching a fixpoint (Cn) where the
set of immediate consequences no longer changes. If the set of immediate con-
clusions is the same as the partial interpretation I, then the set is an answer
set. Repeat this procedure until you have found all answer sets.

3.2 Encoding Alchourron’s Example of the Killer who is a Minor

To illustrate, suppose we want to apply an answer set programming approach
to the conflict adduced previously between defeasible legal rules that 1) killers
should be punished, but 2) minors should not be punished, and the case is such
that a minor has killed someone [1]. How best to capture and resolve this case
of conflict between legal obligations in answer set programming? We want to
know what the rational, justifiable sets of conclusions (answer sets) are in the
case, given the facts and applicable legal rules. Intuitively, there are two such
sets: either 1) the minor should be punished because she is a killer, despite
being a minor, or 2) the minor should not be punished because she is a minor,
despite that she is a killer.

The following intuitive encoding of the rules and facts is inadequate because
it has just one answer set consisting only in the initial facts ({k, m}):
k. m. % a killer who is a minor
p :- k, not m. % punish killers unless they are minors
-p :- m, not k. % do not punish minors unless they are killers

Encoding the laws in conflict as “normal” default rules, on the other hand,
generates the results we want:
k. m. % a killer who is a minor
p :- k, not -p. % punish killers unless they should not be
-p :- m, not p. % do not punish minors unless they should be

This encoding yields two rational, justifiable extensions (answer sets). Either
1) the killer who is a minor should be punished ({k, m, p}), or 2) the killer who
is a minor should not be punished ({k, m, −p}).

The following table displays how the procedure described above finds answer
sets for this program (answer sets are starred):

Interpretation (I) Reduct (P I) γp(I)
{} k. m. k, m
k k. m. p :- k. -p :- m. ⊥
m k. m. p :- k. -p :- m. ⊥
k, m k. m. p :- k. -p :- m. ⊥
k, m, p k. m. p :- k. k, m, p*
k, m, -p k. m. -p :- m. k, m, -p*
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3.3 Regimenting the Proposed Encoding

While encoding legal rules as normal default rules achieves correct results, the
encoding should provide some way to make the qualifications on the rules that
generated each answer set explicit. This will meet Kant’s normative demand
that enforceable legal obligations be made precise. The following intuitive
encoding of rules with explicit qualifications, however, has no answer sets:
k. m. % a killer who is a minor
p :- k, not q1. % punish killers unless this rule is qualified
-p :- m, not q2. % do not punish minors unless this rule is

qualified

I propose the following encoding, which explicitly tracks the qualifications
required as they appear in each answer set and, moreover, leaves room to later
make additional qualifications to the rules as needed:
k. m. a. % a killer who is a minor (and an action is taken)

p :- k, not q1. % rule 1: punish killers
q1 :- a, not p. % unless this rule is qualified

-p :- m, not q2. % rule 2: do not punish minors
q2 :- a, not -p. % unless this rule is qualified

The following table indicates how answer sets for this program are found. (Par-
tial interpretations are generated and tested here in order by set inclusion; ’...’
indicates interpretations omitted to save space.)

Interpretation (I) Reduct (P I) γp(I)
{} k. m. a. p :- k. q1 :- a. ⊥

-p :- m. q2 :- a.
... ... ...
k, m, a, p k. m. a. p :- k. ⊥

-p :- m. q2 :- a.
... ... ...
k, m, a, q1, q2 k. m. a. q1:- a. q2 :- a. k, m, a, q1, q2*
k, m, a, q1, -p k. m. a. q1:- a. -p :- m. k, m, a, q1, -p*
k, m, a, q2, p k. m. a. p :- k. q2 :- a. k, m, a, q2, p*
k, m, a, q1, q2, p k. m. a. q2 :- a. k, m, a, q2
... ... ...

Answer sets for this program are {k, m, a, q1, q2}, {k, m, a, q1, −p}, and
{k, m, a, q2, p}. These answer sets reflect explicit qualifications made on both
rules (q1, q2), and then on one rule (q1), or the other (q2). In this encoding,
qualifications on legal rules are triggered when there is an action (a) and the
negation of the head of the rule qualified (p) is by default negation (e.g., not
p), rather than classical negation (−p), as in the first attempt at encoding
qualifications above. This encoding thus achieves the same behavior as nor-
mal default rules but with explicit qualifications on rules. Each answer set
reflects a rational, justifiable set of conclusions one might draw, given the facts
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and applicable rules in the case; moreover, the rule qualifications necessary to
construct each answer set are now made explicit in the set.

While qualifying both rules yields a set of consequences that are both con-
sistent and justifiable (i.e., the set stating merely that there is a killer who is a
minor, {k, m, a, q1, q2}), doing so fails to meet the Kantian normative demand
that legal rights in conflict cases must be resolved. The main purpose of the
law on Kant’s account is to rightfully resolve disputes over our rights and du-
ties with respect to each other. To meet this normative demand, a “ruling”
predicate is added to the encoding that requires each answer set to provide a
definite determination of the rights and obligations in conflict:
% a ruling is required
:- not ruling .
ruling :- p. ruling :- -p.

This eliminates the first answer set that qualifies both rules {k, m, a, q1, q2},
and thus fails to determine an answer to the question whether the killer who is a
minor should be punished, or not. The credulous reasoning semantics will now
demand that exactly one of the two remaining answer sets ({k, m, a, q1, −p},
{k, m, a, q2, p}) be selected as the program’s consequences.

3.4 Simple Legal Case: A Shooting in Self-defense
I illustrate the proposed encoding by evaluating a conflict between the legal rule
barring murder and one permitting the use of force in self-defense. Imagine a
case of first impression that generates a conflict between these rules. In what
follows I use the lparse grounder and clingo parser to ground and solve encoded
logic programs (see [2] for details).

First, a situation is described with facts that may satisfy elements of various
legal theories and rules:
%%% conflict situation
intentional ( shooting ). act( shooting ). causes_death (shooting ,

someone ). person ( someone ).
attacked (me). force(shooting , me). retreated (me).

The facts as encoded in this example are necessarily somewhat stipulative. An
actual autonomous machine agent governance system would include perceptual
and other subsystems organized to generate new facts (beliefs), which might
then generate messages for processing at progressively higher levels in the ra-
tional agent hierarchy. My aim here is to isolate and describe only the legal
reasoning part of the system.

Applicable legal rules are then extracted and encoded, perhaps by inter-
preting a semantic legal knowledge base. The head of a legal rule is encoded as
a deontic prescription on an action (e.g., that an action is obligatory (ob(A)),
forbidden (ob(−A)), permissible (pe(A)), or omissible (pe(−A))). The body of
the rule will then invoke legal theories relevant to establishing the deontic sta-
tus of the action (e.g., that the action constitutes a murder, or is self-defense,
an action by omission, an act of necessity, etc.), where elements establishing
these theories are define in existing statutory or case law (e.g., the common
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law rule that a murder is an intentional act that causes the death of a person).
Here is the first part of the body of a simplified rule prohibiting murder:

ob(-A) :- murder (A).
% legal elements of murder : malice killing
murder (A) :- intentional (A), act(A), causes_death (A, P), person (P).

The body of the rule is then completed with a generic defeasible qualification
(e.g. qual(r1(A))) on the rule tagged with the rule number (r1):
ob(-A) :- murder (A), not qual(r1(A)).
qual(r1(A)) :- act(A), not ob(-A).

This preserves the possibility that the rule may be defeated for reasons other
than those explicitly anticipated in the local context of the system.

Here accordingly are legal rules prohibiting murder (r1) and a conflicting
rule permitting the use of force in self-defense (r2):
%%% r1: it is obligatory not to murder
ob(-A) :- murder (A), not qual(r1(A)).
qual(r1(A)) :- act(A), not ob(-A).

% legal elements of murder : malice killing
murder (A) :- intentional (A), act(A), causes_death (A, P), person (P).

%%% r2: it is permissible to use force in self - defense
pe(A) :- self_defense (A), not qual(r2(A)).
qual(r2(A)) :- act(A), not pe(A).

% legal elements of self - defense : use of force by one who is
attacked and tried to retreat

self_defense (A) :- force(A, P), attacked (P), retreated (P).

The legal rules provided here are obviously simplified in order to isolate how the
system handles conflict. For example, the legal intention required to establish
the mens rea for murder is “malice aforethought,” which implies at least a
reckless awareness that one’s act will cause the death of a person (see [6]). I
omit such details here. 3

Next, a constraint to avoid conflicts between deontic obligations within
answer sets is added as well as standard deontic implication and convenient
equivalence relations between obligations and permissions. These reflect axioms
and equivalences of SDL that apply within answer sets.
% avoid deontic conflict
:- ob(A), ob(-A).

% deontic implication (D)
pe(A) :- ob(A). % obligation implies permission

% inheritance of obligation (RM)
ob(A) :- ob(B), -A.

3 I do not mean to imply that these details cannot be supplied, however—indeed, they must
be, if the law is to meet the normative requirement that prescriptive obligations be precisely
specified.
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ob(A) :- ob(B), B.
A :- B.

% deontic equivalences
ob(A) :- -pe(-A). -pe(-A) :- ob(A).
pe(A) :- -ob(-A). -ob(-A) :- pe(A).
ob(-A) :- -pe(A). -pe(A) :- ob(-A).
pe(-A) :- -ob(A). -ob(A) :- pe(-A).

Finally, an updated “ruling” constraint requiring each answer set to provide
some deontic resolution of the legal conflict at issue completes the program.
Appropriate #show directives have also been added to avoid clutter.
% a ruling is required : an obligation , prohibition , permission , or

omission
:- not ruling .
ruling :- ob(A). ruling :- ob(-A). % obligation , prohibition
ruling :- pe(A). ruling :- pe(-A). % permission , omission
#show pe /1. #show ob /1. #show qual /1.

The program generates the following answer sets. These answer sets rep-
resent the rational and justifiable sets of consequences with associated explicit
rule qualifications that one might infer in the case, given the facts and appli-
cable law as encoded.
Answer: 1
murder ( shooting ) self_defense ( shooting ) ob(-shooting) pe(- shooting )

qual(r2( shooting ))

Answer: 2
murder ( shooting ) self_defense ( shooting ) qual(r1( shooting ))

pe(shooting)

Either (Answer: 1) one is obligated not to intentionally shoot to kill,
ob(-shooting), in the case because the self-defense rule (r2) is qualified not
to apply here, qual(r2(shooting)). Or (Answer: 2) one is permitted to in-
tentionally shoot to kill, pe(shooting), because the murder rule is qualified
not to apply in the case, qual(r1(shooting)). The law as stipulated is thus
conflicted with respect to whether the shooting is forbidden or permitted.

Now, it has long been established in the criminal law that a killing that
would otherwise be a murder is justified if the killing meets the elements of self-
defense. Hence the conflict here should be resolved by explicitly qualifying the
murder rule (r1) to permit killing in self-defense (Answer: 2). To do that, the
self-defense qualification is made explicit, while retaining the generic defeasible
qualification on the rule so that it remains a candidate for defeat in future
cases of conflict (e.g., with other defenses such as necessity or excuses such as
insanity). The murder rule (r1) is thus adjusted as follows (changes in bold):
%%% r1: it is obligatory not to murder
ob(-A) :- murder (A), not qual(r1(A)), not qual(r21(A)).
qual(r1(A)) :- act(A), not ob(-A).

qual(r21(A)) :- self_defense (A). % unless in self - defense
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With this adjustment, the program produces only one answer set in the
situation described, where the murder rule is qualified, qual(r21(shooting)),
because the case as stipulated is clealry self-defense.
Answer: 1
murder ( shooting ) qual(r21(shooting)) self_defense ( shooting )

qual(r1( shooting )) pe(shooting)

The shooting in this case is therefore permissible. Further qualifications on the
updated murder rule may be progressively entertained and accepted or rejected
as new cases arise, such as qualifications for excuses or defenses such as insanity,
necessity, etc.

The total number of possible answer sets in a case of conflict will
be the power set of the available qualifications; in this simple example,
P (qual(r1()), qual(r2())), or only four total sets, including the empty set. The
answer set semantics eliminates inconsistent combinations of rule qualifications
and inferences that violate non-contradiction and modus ponens. The ruling
predicate eliminates the empty set and the set where no decision is made be-
cause all rules are qualified. If there are multiple answer sets remaining, then
the credulous reasoning semantics will require the selection of exactly one.

The resulting set of enforceable legal obligations will be a rational and
justifiable set of applicable laws explicitly qualified to resolve inconsistencies
and so to precisely determine legal obligations and rights in the case. So long
as the laws in the set are also legitimate, an autonomous machine agent that
acts in accordance with them is a rightful machine.
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Intelligence, Walter de Gruyter GmbH & Co KG, 2021 .

[13] Wright, A. T., A kantian course correction for machine ethics, in: G. J. Robson and J. Y.
Tsou, editors, Technology Ethics: A Philosophical Introduction and Readings, Routledge,
New York, 2023 pp. 141–151.

222



Multi-criteria Coherence Ranking of Legal
Theories: The Aggregation Problem and

Possible Solutions

Tianwen Xu 1

Guanghua Law School, Zhejiang University
Zhejiang University Law & AI Laboratory

Hangzhou, China

Abstract

While coherentist approach to justification has been trending in law and numerous
multi-criteria accounts of theory coherence have been established, it mostly remains
unknown how a legal decision maker can obtain an overall coherence ranking among
legal theories from the multiple criteria, such that he can tell legal theories from bet-
ter to worse and figure out which legal judgment is best justified. This paper intends
to unravel this puzzle. Inspired by social choice theory, the puzzle is presented as a
preference aggregation problem in a multi-criteria decision making context. A com-
mon problem setting as well as relevant rational conditions are first generalized from
three motivating examples. Such generalization gives rise to a formalization in terms
of decision matrix. The problem of obtaining an overall coherence ranking is thereby
a problem of making appropriate use of the coherence evaluation matrix, and the
aggregation function is defined as a coherence evaluation functional (CEFL). Three
CEFLs respectively on the basis of simple majority, Borda count and normalized
summation are then formulated, with a detailed examination of their strengths and
weaknesses for legal decision making.

Keywords: Coherence ranking of legal theories, Multi-criteria decision making,
Preference aggregation.

1 Introduction

Philosophy of law, as well as other major fields of philosophy, witnessed a rise
of coherentism in the later half of the 20th century. Debunking the robust cor-
respondence theory of truth, meaning and knowledge has led quite a number
of legal theorists to adopt a coherentist approach to many essential questions,
typical among which are the nature of law, the myth of legitimacy, the seman-
tics of legal statements, and the methods of legal reasoning [25,33]. As regards
legal argumentation, the result is a cluster of coherentist accounts of justifica-
tion (see, e.g., [1,2,3,10,11,13,17,18,23]). In general these accounts amount to

1 tianwen.xu@zju.edu.cn
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2 Multi-criteria Coherence Ranking of Legal Theories: The Aggregation Problem and Possible Solutions

the following claim: to justify a legal judgment is to show that the judgment
‘fits’ in a coherent legal theory, and how well the judgment is justified depends
on how coherent the theory is. 2 The crucial question then arises as to how a
theory’s degree of coherence can be properly assessed, such that one can tell if
one theory is more coherent than another, and thereby decides which judgment
receives the best justification.

Unfortunately, the above question has no easy answer. It is well recognized
that the concept coherence is more than mere consistency, since a consistent
theory may fail to ‘hang together’ or ‘make sense as a whole’ to qualify as
coherent [18, p. 235]. However, it is far less clear what conceptual contents
other than consistency are in coherence, let alone to decide which theory is
more coherent.

As a response to this puzzle, efforts have been put to dissemble coher-
ence into many sub-concepts, and accordingly propose multiple criteria to mea-
sure and compare the degree of coherence. Such is the approach adopted by
[1,6,16,23,27,29]. Some of the suggested criteria are structural properties of a
legal theory, e.g., ‘the number of supportive relations’, ‘priority orders between
reasons’ and ‘cumulation-netting of reasons’. Others are theoretical virtues,
e.g., ‘articulateness’, ‘explanatory power’ and ‘simplicity’.

Though being philosophically appealing, these multi-criteria accounts are
particularly difficult to implement. The major obstacle is the lack of legal
methods to synthesize the different coherence rankings of legal theories, each
given by a criterion, into an all-things-considered one. Thus as criticized by
Amaya [3, p. 24], a multi-criteria coherence theory ‘without an account of
how the different criteria may be balanced against each other’ is incomplete.
Therefore it is not surprising that some coherence theorists, though in favor of
a multi-criteria conception, actually turned to other coherentist accounts (such
as Paul Thagard’s coherence as constraint satisfaction, see [30,31]) to compute
and compare the degree of coherence (see [7], [27, p. 783-784]).

This challenge of obtaining an overall coherence ranking of legal theories
from multiple criteria is exactly what this paper intends to deal with. It will be
tackled in a formal way, by considering the challenge as a preference aggrega-
tion problem in a multi-criteria decision making context. There is an analogy
to the social choice setting. Each criterion of coherence can be considered as
an individual (or more specifically, a voter), and its coherence ranking of le-
gal theories can be treated as an individual’s preference over alternatives (or
more specifically, candidates). Then the problem of obtaining overall coher-
ence ranking from multiple criteria is similar to that of obtaining a collective
preference from individuals.

2 This generalization of coherentist justification in law is borrowed from [13]. As regards a
legal theory, throughout this paper it is understood in a broad sense as ‘covering both de-
scriptive, for example empirical theories, and normative or evaluative theories (norm systems
or value systems)’ [1][p. 132]. This allows for covering most multi-criteria accounts, even
those that conceive theory in a specific way, e.g., a five-tuple comprised of cases, factors,
rules, preferences between rules and between values, as in [6].
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To consider multi-criteria decision making via preference aggregation is not
entirely novel. In the past decade, some works have been done on associating
social choice with theory choice in science, see for instance [19,20,21,22]. There
is even a much earlier work in law [14] that explored the possibility of achieving
legal coherence by impossibility results developed in social choice literature,
although it has a quite different focus on aggregating preferences of legal norms
over decision options, rather than preferences of coherence criteria over theories
that are supposed to offer legal justification. Operational research is another
subject that has long been benefited from applying the social choice framework
to its specific multi-criteria decision problem (see e.g., [5]). It just remains to
see how such interdisciplinary effort would bring insights to law. Hopefully,
this paper will contribute to the following.

(i) Conceptually, to make explicit the underlying mathematical structure of
multi-criteria accounts of theory coherence in law;

(ii) Philosophically, to bring to light the nature of the proposed criteria, as
well as the possibility of acquiring from them an overall coherence ranking.

(iii) Computationally, to explore the potential of computing the degree of legal
coherence by the proposed criteria.

The paper is organized as follows. Section 2 first demonstrates three multi-
criteria accounts of legal coherence as motivating examples. Section 3 will then
formalize the examples in a preference aggregation framework using decision
matrix. Section 4 will finally examine some possible solutions to the problem
of aggregating an all-things-considered coherence ranking.

2 Three Motivating Examples

2.1 Alexy and Peczenik’s criteria

The first group of criteria is proposed by Alexy and Peczenik [1]. Their criteria
are centered around the idea of a perfect supportive structure, with the over-
arching conception of coherence that ‘the more the statements belonging to
a given theory approximate a perfect supportive structure, the more coherent
the theory’ [1, p. 131], and every criterion is supposed to enhance a theory’s
coherence ceteris paribus when it is better fulfilled. To summarize, Table 1 lists
all criteria in the group, together with an index specified by each criterion to
measure a theory’s coherence. 3

Table 1: Alexy and Pecznik’s criteria

No. Criterion Index of coherence in a theory

1 Supportive relations Number of statements that are supported

2 Supportive chains Length of supportive chains of reasons

3 Strong support
Number of statements that are

strongly supported

See next page. . .

3 For brevity, each criterion and its index are described in a much more concise manner.
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. . . Continued from previous page

4
Connection between

supportive chains
Number of conclusions supported by

the same premise

5
Priority orders

between reasons
Number of priority relations between principles

6 Reciprocal justification
Number of reciprocal empirical/analytic
/normative relations between statements

7 Generality
Number of statements without

individual names, number of general concepts,
resemblances between concepts

8
Conceptual

cross-connections
Number of common or resembled concepts

9 Coverage of cases Number of individual cases covered
10 Diversity of fields of life Number of fields of life covered

Since this paper is primarily concerned with the formal aspect, those terms with
complicated philosophical contents, e.g., supportive structure, strong support,
reciprocal justification and etc., will not be discussed here, but readers may
refer to [1], and to [23, chapter 4] for some extended elaborations. Speaking of
the formal concern, it is clear that Alexy and Peczenik’s criteria are quantita-
tive, as the index of a theory’s coherence given by each criterion is numerical.
Nonetheless, they did not provide any articulated method for combining those
numerical values into an all-things-considered coherence ranking, although they
were fairly aware that one theory might be simultaneously superior and inferior
to another with regard to different criteria; the only solution they offered was,
quite metaphorically, to conduct a ‘weighing and balancing’ among criteria so
as to determine the degree of coherence of a theory [1, p. 143].

2.2 Kress’s criteria

The second group of criteria is proposed by Kress [16], which was intended
to generalize intuitions about coherence that had appeared in the literature.
They are based on the idea that a coherent theory is coherent if it ‘hangs or
fits together, if its parts are mutually supportive, if it is intelligible, if it flows
from or expresses a single unified viewpoint’, and the more of them a theory
satisfies, the better is the theory [16, p. 521]. Table 2 illustrates each criterion
and its index of coherence.

Table 2: Kress’s criteria

No. Criterion Index of coherence in a theory

1 Consistency
The theory respect logical consistency between

principles and propositions

2 Comprehensiveness
The theory provides answers to questions

within the theory’s scope

3 Completeness
The theory provides single right answers to

all questions within the theory’s scope

4 Monism
The theory flows from a single principle,
or set of principles with a unified spirit

5 Unity
The theory’s principles imply, justify or

mutually support one another

See next page. . .

226



Xu 5

. . . Continued from previous page

6 Articulateness
The theory provides articulated methods

for deciding issues, integrating and unifying its
principles as well as resolving conflicts in between

7 Justified
The theory resolves conflicts with reasons,

or provides normatively intelligible meta-principles
and means to resolve conflicts between principles

At first glance, the above criteria appear to have an all-or-nothing character.
But this is not true. Instead, Kress argued that some criteria, for instance
comprehensive, are ‘unduly restrictive’ if a coherent theory is required to fully
posses; while some others, like completeness, only needs to be manifested to
a substantial degree for a theory to be coherent, or is explicitly stated as a
matter of degree, e.g., unity; not to mention that even consistency is just a
regulative idea, in the sense that it is more desirable in practice to retain some
inconsistencies until satisfactory solution is found [16, p. 528, 530]. Anyway,
all of his criteria involve properties that are conceptually possible to be more
or less satisfied. Even so, Kress did not formulate any procedure regarding how
to put together those criteria to give a singel answer of how coherent a theory
is, especially when they pull in opposing directions,

2.3 Bench-Capon and Sartor’s criteria

The last group is proposed by Trevor Bench-Capon and Giovanni Sartor in
[6,27]. Their criteria are subject to a cognitive conception of coherence that
aims at enhancing the cognitive vale of a theory, and are explicitly associated
with choosing from a range of candidate theories [27, p. 758-760]. Table 3
demonstrates a full list.

Table 3: Bench-Capon and Sartor’s criteria

No. Criterion Index of coherence in a theory

1 Explanatory power Number of cases explained

2 Consistency Free from unsolved internal collisions

3 Simplicity
Number of general rules that consider fewer factors

to be relevant

4 Safety Number of factors taken into account

5 Non-arbitrariness Less recourse to arbitrary assumptions

By commenting that ‘it is not easy to find a way of combining these different
criteria into a unique evaluation, given that they may lead to different results’
[27, p. 760], they clearly have in mind the difficulty of aggregating the criteria to
an overall coherence ranking of candidate theories. But as mentioned earlier,
Bench-Capon and Sartor turned to Thagard’s constraint satisfaction theory
for help, which is in fact not a multi-criteria account, and left as an open
question whether this alternative conception matched the shared intuition of
legal coherence.
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3 Formalizing Multi-criteria Coherence Ranking

3.1 The common setting

Though respectively developed along their distinct conceptions of coherence,
the three multi-criteria accounts do have a common setting. At least they agree
with the following. 4

(i) There are some candidate legal theories, whose degree of coherence awaits
to be assessed by a specific group of criteria.

(ii) For each candidate theory and its relevant attributes, each criterion will
give a unique evaluation, based on which one theory is better or worse
than another. In another words, each criterion will give a unique coherence
ranking of candidate theories.

(iii) The coherence rankings given by each criterion may pull in opposing di-
rections. That is to say, for any two theory a, b and any two criteria m,n,
it is possible that theory a is more coherent than b with regard to criterion
m, but less so with regard to n.

(iv) Though may pull in opposing directions, an all-things-considered coher-
ence ranking over candidate theories is supposed to be generated by, and
only by, combining the multiple coherence rankings given by all criteria in
the specific group.

(v) When combining the multiple rankings, it is possible for them to offset
each other. I.e., for any two theories a, b, a being worse than b with regard
to some criteria may be compensated by a being better than b with regard
to some other.

As the common setting is made clear, let us now fix the terminology. The
coherence ranking given by each criterion in a specific group will be called
an individual coherence ranking, while the all-things-considered ranking will
be called the overall coherence ranking. Furthermore, though not articulated
in the motivating examples, it is fairly reasonable to infer from the common
setting another set of rational conditions, which are intuitively necessary for
the multi-criteria coherence account to function.

(i) Any individual coherence ranking should satisfy following conditions:
1a. Every theory in question is taken into account;
1b. Any two theory is comparable;
1c. The ranking should consistently determine whether one theory is more

coherent than another.

(ii) The overall coherence ranking should satisfy the following conditions:
2a. Every theory in question is taken into account;
2b. Any two theory is comparable;
2c. The overall ranking should be unique;

4 The setting set forth below is very closed to that of the epistemic virtue account of theory
choice in science, see [22, p. 141-142].
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2d. The unique overall ranking should consistently determine whether one
theory is more coherent than another.

It is not hard to see how these conditions are related to the common setting.
All indexes specified by criteria are properties of a theory, and are either absent
or present to a certain degree (therefore, condition 1a). In the meantime, any
group of criteria indeed offers shared scales for all theories that fall under the
group’s target category (condition 1b). And for any scale, it is natural to
require that the scale gives a consistent and determinate evaluation, otherwise
the scale simply cannot be put to work (condition 1c). Arguments for condition
2a-2d is similar. The following formalization will be based on these conditions
and the common setting.

3.2 The Formalization

The formalization given in this section is inspired by [8] and [24], utilizing the
typical decision matrix in multi-criteria decision making. For a given multi-
criteria account, let C = {C1, C2, . . . , Cn}(n ∈ N) be the set of its criteria,
let T = {T1, T2, . . . , Tm}(m ∈ N) be the set of theories for evaluation (or
‘candidate’ theories, for some social choice flavor). In this context, any Ti ∈ T
can be presented as a vector

−→
Ti in the following form:

−→
Ti = (ai1, ai2, . . . , aij , . . . , ain)

where aij is the attribute of Ti relevant to criterion Cj . Intuitively speaking,−→
Ti sequentially enumerates Ti’s attribute aij considered by criterion Cj . For
example, a11 is the attribute of T1 considered by C1, while a12 the attribute

considered by C2. Reversely, for any criterion Cj ∈ C, vector
−→
Cj presents the

attribute considered by Cj of each Ti ∈ T , in a form similar to
−→
Ti :

−→
Cj = (a1j , a2j , . . . , amj)

With
−→
Ti and

−→
Cj , a coherence ranking problem is defined as follows.

Definition 3.1 [Coherence ranking problem] Let
−→T = {−→T1,

−→T2, . . . ,
−→Tm}, let−→C = {−→C1,

−→C2, . . . ,
−→Cn}. A coherence ranking problem is an m × n matrix A

whose i-th row is comprised of
−→Ti ∈

−→T , and j-th column of
−→Cj ∈

−→C , i.e.,:

A =




a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n
...

...
. . .

...
. . .

...
ai1 ai2 . . . aij . . . ain
...

...
. . .

...
. . .

...
am1 am2 . . . amj . . . amn



m×n

In this way, A characterizes a coherence ranking problem as a matrix com-
posed of attributes aij of Ti considered by Cj . It intuitively dissembles the
problem into a number of attributes awaiting evaluation, based on which a
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8 Multi-criteria Coherence Ranking of Legal Theories: The Aggregation Problem and Possible Solutions

criterion Cj will express its preference over Ti ∈ T with regard to degree of co-
herence. For each criterion Cj , let us proceed to define a coherence evaluation.

Definition 3.2 [Coherence evaluation] Given a Cj ∈ C, a coherence evaluation

is a function Uj :
−→
Cj −→ Rm, that assigns to

−→
Cj a vector

−→
Ej ∈ Rm, where−→

Ej = (e1j , e2j , . . . , emj).

Roughly speaking, Uj is associated with the particular scale used by Cj to
evaluate theories Ti ∈ T , and eij as the corresponding value. For instance,
a mountain has an attribute of height, and measuring its height by a metric
system will yield a value, say, 1000 with the unit of meter. But readers may
not take for granted that eij must always be the exact value that a given
scale yields. Rather, it could be a value given by any U ′j that preserves the
information of the kind of scale on which Uj is measured. E.g., if Uj is measured
on a purely ordinal scale, then any U ′j as a strictly increasing transformation
of Uj is informationally equivalent to Uj . If Uj is measured on a cardinal scale
with full comparability, then any U ′j that satisfies U ′j = kUj + b where k, b ∈ R
and k > 0 is informationally equivalent to Uj . If Uj is measured on a ratio
scale with full comparability, then any U ′j that satisfies U ′j = kUj where k ∈ R
and k > 0 is informationally equivalent to Uj . In utility theory these are called
information invariance, see generally [8, p. 1115-1126], [24, p. 31-36], [28,
Chapter 7].

Either way, when taken together the evaluation functions Uj used by Cj ∈ C
will form a profile U = (U1, U2, . . . , Uj). Such a profile will transform the matrix
A to another matrix Ae, where:

Ae =




e11 e12 . . . e1j . . . e1n
e21 e22 . . . e2j . . . e2n
...

...
. . .

...
. . .

...
ei1 ei2 . . . eij . . . ein
...

...
. . .

...
. . .

...
em1 em2 . . . emj . . . emn



m×n

Let us call Ae the evaluation matrix. It is easy to see that the individual
coherence ranking by Cj on T is a result of utilizing the j-th column in Ae.
Here is an example. Let ⪰j be the individual coherence ranking of Cj , ≥ be the
usual greater or equal to relation on R. Let Ti, Th ∈ T . Then a standard way to
define ⪰j is: Ti ⪰j Th iff eij ≥ ehj , and abbreviate Ti ⪰j Th but not Th ⪰j Ti
as Ti ≻ Th, while Ti ⪰j Th and Th ⪰j Ti as Ti ≈ Th.

5 It is easy to verify
that ⪰i defined as such satisfies the rational conditions 1a-1c as described in
Section 3.1. The overall coherence ranking obtains in a similar way. That is
to say, the aggregation problem of generating an overall coherence ranking is
about how to make use of the matrix Ae resulted from a profile U . To deal

5 Unless stated otherwise, this will be the default setting for individual coherence ranking
through the rest of the paper.

230



Xu 9

with it, let us introduce a coherence evaluation functional as the aggregation
function for multi-criteria coherence ranking.

Definition 3.3 [Coherence evaluation functional, CEFL for short] Let Ua be
the set of admissible profiles, let R be the set of all possible orderings on T .
A coherence evaluation functional is a function F : Ua −→ R, that assigns to
each U ∈ Ua an ordering on T as the overall coherence ranking.

What profile is admissible in Ua depends on the types of scale and the
patterns of evaluation allowed by Cj ∈ C. Meanwhile, F being defined on Ua

rather than on the set of n-tuples of
−→
Ej shows that the primary concern of

aggregation is with the evaluation function, because the value of eij can hardly
reflect the nature of Uj , i.e., ordinal/cardinal/ratio-scale (and etc.) measurabil-
ity as well as partial/full comparability, and thus makes it even harder to make
appropriately use of Ae. Indeed, the coherence evaluation functional defined as
such is an instance of social welfare functional (SWFL) proposed by Amartya
Sen, see e.g., [28, p. 185]. An obvious merit of applying SWFL to the aggrega-
tion problem at hand is that much more informations of individual coherence
ranking can be taken into account, besides the mere ordinal properties.

Now question remains as to what forms of CEFL will help to aggregate an
overall coherence ranking. This will be addressed in the next section, where
three basic methods, namely simple majority, Borda count and normalized sum-
mation are considered. They all present very little technical obstacles for legal
practice, and their corresponding CEFLs can be viewed as making increasingly
richer use of the evaluation matrix Ae. 6

4 In Search of Coherence Evaluation Functionals

4.1 Simple majority

The simple majority method is the well-known Condorcet pairwise compari-
son. It shares an important intuition with multi-criteria accounts of theory
coherence, that the more ‘coherence criteria’ are satisfied, the more coherent a
theory is. It realizes this intuition by comparing the relative amount of criteria
satisfied between each pair of candidate theories, and by doing so utilizes the
evaluation matrix Ae in a purely ordinal way. Formally, a CEFL based on
simple majority is defined as follows. 7

Definition 4.1 [CEFL based on simple majority] Let Uj(Ti) represent eij ,
and let ≥ be the greater or equal to relation on R. Given a profile U ∈ Ua

6 For convenience of demonstration, in constructing the CEFLs we will adopt the following
assumptions:

(i) All coherence criteria are assumed to have equal weight.

(ii) All coherence criteria are supposed to be maximized.

(iii) The probability distribution of profiles in Ua are set to equal.

7 The definition given below is an application of Arrow’s majority decision social welfare
function on weak orderings, see [4, p. 46].
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and two theories Ti, Th ∈ T , let set N(i,h) = {Uj ∈ U |Uj(Ti) ≥ Uj(Th)}, and
let ⪰ stand for the overall coherence ranking on T , where Ti ⪰ Th reads ‘Ti is
more coherent than or equally coherent to Th’. Then a CEFL based on simple
majority is a function F that assign to U an overall coherence ranking ⪰ by:

Ti ⪰ Th iff |N(i,h)| ≥ |N(h,i)|

Accordingly, Ti ≻ Th iff Ti ⪰ Th but not Th ⪰ Ti, while Ti ≈ Th iff Ti ⪰
Th and Th ⪰ Ti.

As shown by Arrow [4], the simple majority method satisfies condition
unrestricted domain, Pareto principle, independence of irrelevant alternatives
and non-dictatorship, 8 meanwhile guarantees an overall weak order (i.e., a
complete and transitive relation) when there are two alternatives. Condition
2a-2c as prescribed in Section 3.1 is thus satisfied, and 2d too if |T | = 2. The
offset effect as expected in the common setting is modeled by Ti ≈ Th when
|N(i,h)| = |N(h,i)|.

Despite the aforementioned good properties, the simple majority method is
not very ‘robust’ for the ranking task. The overall coherence ranking is only
assured to be a weak order when there are two theories under consideration,
but this is too restricted since in realistic scenarios the number of candidate
theories would easily transcend that amount. For instance, Ronald Dworkin’s
law as integrity reasoning, renown for its highly coherentist character, con-
stantly involves numerous candidate theories. In McLoughlin case this specific
reasoning yields six candidate interpretations, each of which offers a theory of
existing laws and cases [10, p. 240-241]. Bench-Capon and Sartor’s coherence
evaluation also involves more than two theories, e.g., in the showcase given in
[6,7] four theories are put to assess. These examples suffice to reveal the loom-
ing threat of the famous Arrow’s impossibility theorem [4, p. 97], according to
which the simple majority method fails to secure a weak order as output with-
out domain restriction. This is a well-known difficulty of pairwise comparison
in multi-criteria decision making (see [26, p. 32]).

Another known drawback of simple majority is that it will generate a non-
compensatory preference structure, which was defined by Fishburn [12] as fol-
lows:

• X is a set of n-tuples, where X = X1 ×X2 × . . .×Xn;

• (xi, (aj)j ̸=i) denotes the n-tuple (a1, . . . , ai−1, xi, ai+1, . . . , an);

• ≻ is an asymmetric relation on X;

• For each i and all xi, yi ∈ Xi, ≻i is a binary relation on Xi defined by:
xi ≻i yi iff (xi, (aj)j ̸=i) ≻ (yi, (aj)j ̸=i) for all (aj)j ̸=i ∈

∏
j ̸=iXj ;

• P (x, y) = {i |xi ≻i yi}

8 The result stated here is based on Lemma 3 in [4, p. 48], but slightly modified according
to a new set of conditions described in [4, p. 96-97].
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Then (X,≻) is a noncompensatory preference structure if and only if, for all
x, y, z, w ∈ X:

[(P (x, y), P (y, x)) = (P (z, w), P (w, z))]⇒ [x ≻ y iff z ≻ w]

This definition reflects that the relation ≻ on X between any two n-tuples
x = (x1, . . . , xn) and y = (y1, . . . , yn) depends solely on another relation ≻i

between any two coordinates xi, yi ∈ Xi [12, p. 393].

It is clear that the preference structure (
−→T ,≻) (or equivalently (T ,≻),

since each
−→
Ti ∈

−→T is representative of Ti ∈ T ), where ≻ results from Def-
inition 4.1, is a noncompensatory preference structure. A sketch of proof:

(P (
−→
Tx,
−→
Ty), P (

−→
Ty,
−→
Tx)) = (P (

−→
Tz,
−→
Tw), P (

−→
Tw,
−→
Tz)) implies N(x,y) = N(z,w) and

N(y,x) = N(w,z),
9 thereby |N(x,y)| = |N(z,w)| and |N(y,x)| = |N(w,z)|, then by

Definition 4.1 follows Tx ≻ Ty iff Tz ≻ Tw, and finally by
−→
Ti being representa-

tive of Ti yields
−→
Tx ≻

−→
Ty iff

−→
Tz ≻

−→
Tw. In stark contrast, the next two methods

Borda count and normalized summation will prove to be compensatory (see
also [24, p. 119-120]). The implication of simple majority being noncompen-
satory is that the method only conceives the offset effect in a crude manner,
in that each theory’s loss and gain in different criteria is not really taken into
account, that whether a theory is more coherent than another solely depends
on the number of criteria favoring each, thus entirely put aside how better a
theory is to another with regard to certain criteria. 10

4.2 Borda count

The second method is Borda count, a specific instance of positional scoring rule.
Compared with simple majority, Borda count makes use of the positional infor-
mation offered by evaluation matrix Ae. There are some preliminary notations
and definitions that lead to defining a CEFL based on Borda count:

• Let ⪰j be the individual coherence ranking of criterion Cj , and let Uj(Ti)
represent eij . Then ⪰j is defined by Ti ⪰j Th iff Uj(Ti) ≥ Uj(Th). Subse-
quently, Ti ≻j Th iff Ti ⪰j Th but not Th ⪰j Ti; Ti ≈j Th iff Ti ⪰j Th and
Th ⪰j Ti. Note that ≻j is a strict order and ≈j is an equivalence relation.

• On the basis of ⪰j , define a maximal ⪰j-chain which arranges Tik ∈ T in a
sequence µ = Ti1 ⪰j Ti2 ⪰j . . . ⪰j Tim. By the definition of ≻j and ≈j , all
⪰j in µ can be substituted by ≻j or ≈j , thus turn µ into µ = Ti1 ≻j Ti2 ≈j

Ti3 ≻j , . . . ,≻j Tim. Further, label µ from m to 1 in a decreasing order, and
denote the resulted chain as µ∗ = Tm

i1 ≻j T
m−1
i2 ≈j T

m−2
i3 ≻j . . . ≻j T

1
im.

• As ≈j is an equivalence relation, let ≈j partition T into equivalence classes
E1, E2, . . . En. Let Ek be the equivalence class to which Tm

ik belongs. Note

9 Note that N(x,y) = P (
−→
Tx,

−→
Ty)∪Q(x,y) where Q(x,y) = {Uj ∈ U | Uj(Tx) = Uj(Ty)}. Given

that ≥ on R is complete and (P (
−→
Tx,

−→
Ty), P (

−→
Ty ,

−→
Tx)) = (P (

−→
Tz ,

−→
Tw), P (

−→
Tw,

−→
Tz)), it follows

Q(x,y) = Q(y,x) = Q(z,w) = Q(w,z). Hence, N(x,y) = N(z,w) and N(y,x) = N(w,z).
10 In this sense the crude account set forth here resembles the cancellation property of social
choice function, see for example [32, p. 45].
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12 Multi-criteria Coherence Ranking of Legal Theories: The Aggregation Problem and Possible Solutions

that if Tm
ik ≈ Tm′

ik′ , then Ek = Ek′ .

• Let mk stand for the label m of Tm
ik . Then Bj is a Borda scoring function

based on Uj that assigns to T
m
ik a score according to its position in µ∗, in the

following manner:

Bj(Tm
ik ) =

1

|Ek|
∑

Tm
ik∈Ek

mk

A quick example. Suppose µ∗ = T 5
i3 ≻j T

4
i2 ≈j T

3
i1 ≈j T

2
i5 ≻j T

1
i4, then

Bj(T 5
i3) = 5, Bj(T 4

i2) = Bj(T 3
i1) = Bj(T 2

i5) =
(4+3+2)

3 = 3, Bj(T 1
i4) = 1. This

is the so called mid-rank method, whose advantage is that ‘the sum of the
ranks for all members remains the same as for an untied ranking’ [15, p. 34].

For simplicity, let Bj(Ti) represent Bj(Tm
ik ) where Ti = Tm

ik . A CEFL based on
Borda count is defined as follows.

Definition 4.2 [CEFL based on Borda count] Let ≥ be the greater or equal
to relation on R. Given a profile U ∈ Ua and two theories Ti, Th ∈ T . Then
a CEFL based on Borda count is a function F that assigns to U an overall
coherence ranking ⪰ by:

Ti ⪰ Th iff
∑

j
Bj(Ti) ≥

∑
j
Bj(Th)

Accordingly, Ti ≻ Th iff Ti ⪰ Th but not Th ⪰ Ti, while Ti ≈ Th iff Ti ⪰
Th and Th ⪰ Ti.

A great merit of the CEFL so defined is that it guarantees a weak order
as output, since the overall coherence ranking takes advantage of the ≥ on
R. In this way, condition 2a-2d in Section 3.1 are satisfied. Another positive
property is that the preference structure (T ,≻) generated by Borda count is
compensatory. To show this, let us look at the following example:

T C1 C2 C3 Sum

T1 3 4 2 9
T2 1 1 3 5
T3 4 3 1 8
T4 2 2 4 8

Consider this a Borda score table, where the ‘Sum’ column gives the total Borda
score of Ti. It is clear that (P (T1, T2), P (T2, T1)) = (P (T3, T4), P (T4, T3)), but
by Definition 4.2 the overall coherence ranking is T1 ≻ T2 and T3 ≈ T4, hence
the preference structure (T ,≻) is compensatory.

Nevertheless, a CEFL based on Borda count still has some weaknesses,
the most prominent among which is disregarding independence of irrelevant
alternatives (IIA for short). To see this, below is an example modified from the
removal paradox as illustrated in [9, p. 215], showing a paradoxical situation
where introducing a new theory will affect the coherence ranking of the existing
ones: 11

11Technically speaking, this example does not strictly accord with the definition of IIA,
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Before introducing T4, the overall coherence ranking is T1 ≈ T2 ≈ T3. After
T4 joins the evaluation, the overall ranking becomes T1 ≻ T2 ≻ T3 ≻ T4. This
result is bizarre, because all the coherence criteria are supposed to measure a
legal theory’s coherence, and it is reasonable to say that the overall coherence
ranking on theories should change only when some theory has its attribute
altered, thereby renders the evaluation different. This ‘measuring aspect’ is
perhaps a counterpart of the ordering aspect of IIA ([28, p. 142-143]) in social
choice. Nevertheless, there is a crucial distinction: unlike the ordering aspect of
IIA, the measuring aspect does not exclude intensity of preference. In another
word, measuring degree of coherence allows one to say that theory T1 is two
times better than T2 with regard to certain criterion, e.g., the strong supports
in T1 has twice the number of that in T2. This observation makes the foregoing
example not as much a paradox as a puzzle. The puzzle is: In what sense
is a theory, if deemed so, really irrelevant? Could it be the case that some
‘irrelevant’ theory is just irrelevant in certain way, but actually become relevant
when considered from a different viewpoint? It is this puzzle that lead us to
normalized summation, where the irrelevant become relevant and the loss of
IIA is purchased at a reasonable price.

4.3 Normalized summation

Let us first set forth the philosophical intuition underlying this last method.
In real world, the coherence of a legal theory is seldom evaluated in an abso-
lute manner, nor is the legal judgment backed by that theory justified in an
absolute sense. Rather, whether a legal theory is coherent and how much if it
is, is relative to theories available for evaluation. In a word, it is about mak-
ing the best of what one has at hand. Such notion is central to major legal
coherentism. For example, Dworkin [10] thought of the ‘right answer’ of legal
disputes as the interpretation among the proposed that best served fitness and
substantial political virtues, Peczenik [23, p. 106-107] regarded legal reasoning
as an argumentative dialogue and the final result as its survival, while Amaya
[2] and Thagard [30] considered coherentist reasoning to be an inference to the
best (legal) interpretation from piecemeal information. None of them rely on
an ideal Platonist entity, to which the word ‘coherent’ is perfectly entitled, to
evaluate and decide a theory’s degree of coherence.

since the inter-profile comparison in IIA occurs between profiles with the same alternative
set. However, it shares with IIA an important intuition, that the overall preference on
alternatives should not be affected by irrelevant alternatives. In this respect, the example
given here reveals that a Borda-based CEFL yields an overall coherence ranking that somehow
depends on the criteria’s evaluation of something outside.
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14 Multi-criteria Coherence Ranking of Legal Theories: The Aggregation Problem and Possible Solutions

Accordingly, the measuring aspect of coherence ranking may be modified
to allow the once ‘irrelevant’ alternatives to be ‘relevant’. The point is, every
measurement in coherence ranking has a contextual baseline that depends on
the status quo of candidate theories. Think of it in this way: if coherence in law
is about making the best of things at hand, then the overall ranking will hinge
on what are best of the candidate theories. That is to say, when aggregating
the individual coherence ranking, the distance of a theory to the best theory
available with regard to each criterion should be taken into account. Then, the
all-things-considered most coherent theory should be the one that minimizes
the distance, and the rest be ranked according to their performances in this
respect.

Normalized summation intends to capture this idea. A normalization is
a data processing that aims at arranging on a comparable scale those values
obtained by coherence evaluation. Speaking formally, a normalization is a

function V that assigns to each
−→
Ej = (e1j , e2j , . . . , emj) (recall Definition 3.2) a

new vector
−→
Ev

j = (ev1j , e
v
2j , . . . , e

v
mj) where e

v
ij ∈ [0, 1]. A normalized coherence

evaluation Uv
j is then a composition of Uj and normalization V , i.e., Uv

j =
Uj ◦ V . Note that the normalization process is not of unique kind, nor is
Uv
j . In the literature there are at least three normalization processes that have

notable affinity with the idea of ‘minimizing distance to best candidate’, among
others. For a coherence evaluation Uj , let max eij be the maximal value in Uj ,
and min eij the minimal. Then each eij in Uj is respectively normalized by
the three processes in the following way:

(1) evij =
eij

max eij
; (2) evij =

eij −min eij
max eij −min eij

; (3) evij =
eij∑
i eij

Though each minimizes the distance to best candidate in their own way, pro-
cess (1) and (3) have a particular advantage over(2), in that it preserves the
proportionality between pairs of eij

12 and thus does not alter the extent to
which a theory is more coherent than another. Still, process (2) better reflects
the status quo of available theories since the range of value from best to worst
is included in the calculation. 13 The question as to which kind of normal-
ization is most suitable for coherence ranking of legal theories is reserved for
future work. For current purpose, it suffices to proceed with them to construct
a CEFL based on normalized summation.

Definition 4.3 [CEFL based on normalized summation] Let ≥ be the greater
or equal to relation on R. Given a profile U ∈ Ua, two theories Ti, Th ∈ T and
a normalization V , a CEFL based on normalized summation is a function F
that assigns to U an overall coherence ranking ⪰ by:

Ti ⪰ Th iff
∑

j
Uv
j (Ti) ≥

∑
j
Uv
j (Th)

12Take ev1j and ev2j for example:
e1j

max eij
/

e2j
max eij

=
e1j∑
i eij

/
e2j∑
i eij

= e1j/e2j , no matter

what the max eij or
∑

i eij may be.
13These normalization processes as well as their merits can be found in [24].
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Accordingly, Ti ≻ Th iff Ti ⪰ Th but not Th ⪰ Ti, while Ti ≈ Th iff Ti ⪰
Th and Th ⪰ Ti.

Since ⪰ takes advantage of the ≥ on R, normalized summation always
output a weak order as overall coherence ranking. Condition 2a-2d in Section
3.1 is thus satisfied. It does violate IIA, but not always so. If process (1) or (2)
is adopted, then normalized summation actually respect IIA to the extent that
the change in individual coherence ranking of irrelevant alternatives does not
alter max eij (for process (1)) or min eij (both for process (2)); and for those
cases where IIA is loss (e.g., max eij is render different), the loss is reasonable
and indeed is required, because the once irrelevant alternatives become relevant
as the distance to best candidate is altered too.

Another virtue of normalized summation is that it accounts for the offset
effect in a way much finer than both simple majority and Borda count. To see
this, consider the following example. Suppose C = {C1, C2, C3} where C1 is ‘the
cases covered’, C2 is ‘strong support’ and C3 is ‘reciprocal justification’, and
T = {T1, T2, T3} is the set of theories for evaluation. Suppose the evaluation is
as illustrated in the table below:

T C1 C2 C3

T1 16 20 18
T2 30 18 16
T3 10 16 13

where T2 is only slightly inferior to T1 under C2 and C3, but greatly surpasses
others with regard to C1. Intuitively, one can argue that the overall coherence
ranking should at least rank T2 ⪰ T1. However, neither simple majority nor
Borda count could realize that. For simple majority:

|N(1,2)| = 2, |N(2,1)| = 1; 2 > 1, there fore T1 ≻ T2.
As for Borda count:

∑
j Bj(T1) = 8,

∑
j Bj(T2) = 7; 8 > 7, therefore T1 ≻ T2.

But for normalized summation, if process (1) is adopted, then:
∑

j U
v
j (T1) =

38
15 ,

∑
j U

v
j (T2) =

251
90 ; 251

90 > 38
15 , therefore T2 ≻ T1.

Despite these merits, a CEFL based on normalized summation is accompa-
nied by certain drawbacks. First, normalized summation demands a rigorous
evaluation to make sure that each eij is precise. In stark contrast, the precision
of evaluation is far less demanding in simple majority and Borda count, for the
precision only need to reach a degree that suffices for decision makers to iden-
tify the coherence ranking in an ordinal manner. In this regard, normalized
summation is indeed the most difficult to apply. Second, normalized summa-
tion impose an extra intellectual responsibility on decision makers: those who
seek for legal justification in terms of coherence must try their best to find the
best available theory, because normalized summation aims at making the best
of status quo and that status quo should be as good as it could be. Otherwise, a
critic may argue that the overall coherence ranking so given is only an evidence
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16 Multi-criteria Coherence Ranking of Legal Theories: The Aggregation Problem and Possible Solutions

of irresponsibility and thus not credible, not to mention that failing to take
into account some better candidate theory will result in a ranking that does
not justify the violation of IIA. Last but not least, the output of normalized
summation is vulnerable to the choice of normalization process, which could
only be remedied when an appropriate instruction for choosing normalization
process is available.

5 Conclusion

So far, to what extent does this paper fulfill the expectations at the outset? The
answer is to some extent positive, but not without reservation. The challenge of
obtaining an overall coherence ranking of legal theories from multiple criteria is
captured in the framework of preference aggregation. The aggregation problem
is formulated as finding appropriate coherence evaluation functionals (CEFL)
to operate on a coherence evaluation matrix. For this purpose, the paper
presents three CEFLs respectively on the basis of simple majority, Borda count
and normalized summation, with a detailed examination of their pros and cons.
In this way, the multi-criteria accounts of theory coherence in law are equipped
with formal tools to realize their ambition.

Nevertheless, this paper has raised lots of puzzles as well. First, to enrich
the informational basis for coherence ranking, i.e., to make richer use of the
evaluation matrix, is in the meantime to complicate the aggregation problem
and render the solution difficult to apply. This is especially the case with nor-
malized summation. It seems that more efforts must be put to model and to
make explicit the ‘legal theory’ so as to catch up with the increasing complexity.
This direction invites instructions and contributions from legal knowledge rep-
resentation. Second, every aggregation procedure has its own weaknesses. To
current knowledge, there is no once-and-for-all solution. And special attention
should be paid to the fact that none of the proposed CEFLs touch upon the
possibility of inter-criteria comparability in evaluation. The normalized sum-
mation slightly deals with this issue, through literally forcing the evaluated
values obtained by different criteria to be comparable at an interval between
0 and 1. But this is not entirely satisfactory as its own problems have shown.
A better way to conceive the comparability of different criteria may be to seri-
ously consider the ‘contribution to coherence’ of the index used by each criteria
in a specific multi-criteria account. In this respect, the constraint satisfaction
theory seems to be a good solution, but the exact connection between it and
those multi-criteria approaches are yet to discover. All in all, this paper at best
takes a starting step. There is still a long way to go.
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