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Preface

The First International Workshop on Logics for New-Generation Artificial In-
telligence (LNGAI 2021) was successfully held in Hangzhou last year. The
series of workshops are sponsored by the national key project “Research on
Logics for New Generation Artificial Intelligence” (2021–2025). The topics of
LNGAI involves five main research directions. They are non-monotonic log-
ics and formal argumentation, which consist of logical foundations for dealing
with incomplete, uncertain, dynamic and conflicting information in an open,
dynamic and real environment, and three important applied areas of logical
research: causal reasoning, reasoning with norms and values, and knowledge
graph reasoning, which play indispensable roles in explainable AI, ethical AI
and knowledge-based AI respectively. As an annual event, LNGAI 2022, the
second workshop in the seires, is held at the Zhuhai Campus of Sun Yat-sen
University, China, 10–12 June 2022.

In this workshop, we received 11 submissions. After rigorous peer-review
by the international program committee, 7 long papers and 2 extended ab-
stracts are accepted and included in this volume of proceedings. In addition,
5 abstracts from invited speakers of the workshop are also included in the pro-
ceedings. These papers and abstracts reflect very well the state-of-the-art of
the research orientated to the above five research directions.

On one hand, concerning logical foundations for reasoning about incom-
plete, uncertain, dynamic and conflicting information, there are seven contri-
butions in the directions of non-monotonic logics and formal argumentation.
Chen Chen and Beishui Liao propose a framework which extends EAF with
the strength of evidence and indicate that the strength of an argument is de-
termined by the accumulation of evidences supporting the argument. David
Fuenmayor and Christoph Benzmüller propose a technique of shallow semanti-
cal embeddings of non-classical logics in higher-order logic, allowing the logico-
pluralist formalization of arguments and their dialectical interactions. Puyin
Li et al introduce a weighted quantitative argumentation framework based on
regression, which is a further extension of the model proposed by Pietro Ba-
roni. Henry Prakken (invited speaker) argues that the principle-based approach
applied to evaluate formal argumentation semantics may not be very princi-
pled and takes gradual semantics for illustration. Muyun Shao and Beishui

i



ii

Liao propose a model of multi-agent control game and study how agents ad-
just their strategies and form coalitions in reaction to unforeseeable changes of
the environment. Christian Straßer (invited speaker) introduces some recent
developments in the argumentative unification of defeasible reasoning. Xue-
feng Wen proposes a new set of axiomatizations for Lewis’ conditional logics,
without using CSO, or RCEA, or the rule of interchange of logical equivalents.

On the other hand, about the logical models and algorithms adopted in
explainable AI, ethical AI and knowledge-based AI, there are also seven contri-
butions. J.-Mart́ın Castro-Manzano proposes a synthetic term logic by mixing
four logics which are designed to capture four aspects of natural language rea-
soning, namely assertion, numeracy, modality and relevance. Huajun Chen (in-
vited speaker) provides a structured overview of new trends of neural-symbolic
methods from perspectives of new developments of the knowledge graphs and
deep neural networks. Ali Farjami adopts LogiKEy to experiment and com-
pare Åqvist preference models with Kratzer models for conditional obligations.
Xiaolong Liang and Yı̀ N. Wáng introduce weighted graphs and as a special
case of it, similarity graphs, which can be used to model similarity between
epistemic objects. Yongmei Liu (invited speaker) introduces her recent work
on multi-agent epistemic planning based on higher-order belief change, and
the ongoing work on a model-theoretic definition of higher-order belief revision
and its syntactic characterizations. Valeria de Paiva (invited speaker) intro-
duces the task of Natural Language Inference is to test whether the system
can detect entailment, contradiction, or neutrality between pairs of sentences.
Alexander Sakharov investigates logical foundations of the derivation of literals
from non-Horn knowledge bases with fuzzy predicates.

We would like to thank the invited speakers and the authors for their con-
tributions to the workshop. Thanks to the program committee – Michael An-
derson, Pietro Baroni, Christoph Benzmüller, Alexander Bochman, Dragan
Doder, Huimin Dong, Kun Kuang, John-Jules Meyer, Gabriella Pigozzi, Tjitze
Rienstra, Olivier Roy, Guillermo Simari, Chenwei Shi, Leon van der Torre and
Bin Wei – for their careful reviews of the submissions. Meanwhile, we want
to thank local organizers Huimin Dong and Xiaolong Liang from Sun Yat-sen
University for their excellent work in organizing this event. Finally, we ac-
knowledge the financial support on LNGAI 2022 from the Key Program of the
National Social Science Foundation of China, No. 20&ZD047.

Beishui Liao, Réka Markovich & Yı̀ N. Wáng
Zhejiang University, Hangzhou, China

University of Luxembourg, Luxembourg
Sun Yat-sen University, Zhuhai, China

June 3, 2022
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Neural Symbolic Computing with Knowledge
Graph

Huajun Chen

Zhejiang University, Hangzhou, P.R. China

Abstract

The combination of old-fashioned symbolic methods with artificial neural networks
has a long-standing history, normally referred as so-called neural-symbolic methods.
In this talk, we provide a structured overview of new trends of neural-symbolic meth-
ods from perspectives of new developments of the knowledge graphs and deep neural
networks. The topic covers several subfields including embedding knowledge graphs
with neural networks, pretraining large-scale knowledge graphs, injecting knowledge
graphs into deep neural networks, etc.
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Multi-Agent Epistemic Planning Based on
Higher-Order Belief Change

Yongmei Liu

Sun Yat-sen University, Guangzhou, P.R. China

Abstract

In recent years, multi-agent epistemic planning has received attention from both
dynamic logic and planning communities. Existing implementations of multi-agent
epistemic planning are based on compilation into classical planning and suffer from
various limitations. In this talk, I will introduce our recent work on multi-agent
epistemic planning based on higher-order belief change, and our ongoing work on a
model-theoretic definition of higher-order belief revision and its syntactic characteri-
zations. We consider centralized multi-agent epistemic planning from the viewpoint
of a third person who coordinates all the agents to achieve the goal. In our frame-
work, the initial knowledge base (KB) and the goal, the preconditions and effects of
actions can be arbitrary KD45n formulas, the solution is an action tree branching
on sensing results, and the progression of KBs w.r.t. actions is achieved through the
operation of belief revision or update on KD45n formulas, that is, higher-order belief
revision or update. To support efficient reasoning and progression, we make use of a
normal form for KD45n called alternating cover disjunctive formulas (ACDFs). To
give a model-theoretic definition of higher-order belief revision, we propose a variant
of Moss’ canonical formulas which we call alternating canonical formulas, treat them
as models and define distances between them.
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Natural Language Inference: for Humans and
Machines

Valeria de Paiva

Topos Institute, Berkeley, the United States

Abstract

One hears much about the incredible results of recent neural nets methods in Natural
Language Processing (NLP). In particular much has been made of the results on the
Natural Language Inference (NLI) task using the huge new corpora SNLI, MultiNLI,
SciTail, etc, constructed since 2015. The main idea of the NLI task is that to test
understanding of the language one checks whether the system can detect entailment,
contradiction, or neutrality between pairs of sentences. Thus the sentence “John
arrived” entails the sentence “A person arrived”, contradicts the sentence “No one
arrived” and it is neutral with respect to the sentence “John and Mary arrived”,
while the sentence “John and Mary arrived” entails “John arrived”. Wanting to join
in the fun of doing logic with sentences instead of formulae, we decided to check the
results on the corpus SICK (Sentences Involving Compositional Knowledge), which
is two orders of magnitude smaller than SLNI, but curated by linguists and hence
presumably easier to deal with.
We discovered that there were many results that did not agree with our logical intu-
itions. As a result, we have written several papers on the subject of NLI on SICK. I
want to show you a potted summary of this work, to explain why we think the work
on NLI is not near completion, yet, despite claims that modern neural nets systems
achieve superhuman performance on the existing benchmarks. I plan to also describe
how we’re tackling NLI, why we think this problem is very important and how we
envisage the next steps.
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Principle-Based and Principled Formal Studies
of Argumentation: The case of gradual

semantics

Henry Prakken

Utrecht University, Utrecht, Netherlands
University of Groningen, Netherlands

European University Institute, Florence, Italy

Abstract

In 2007, two papers of Baroni & Giacomin and Caminada & Amgoud introduced the
idea of a principle-based approach to the study of formal argumentation semantics.
In such an approach, a number of principles (also referred to as ’axioms’, ’postulates’
or ’properties’) for argumentation semantics are formulated and then used to charac-
terise or evaluate a given argumentation semantics. A principle-based approach can
be purely mathematical in that it does not take a stance on whether the studied prin-
ciples are desirable. However, principles can also be seen as rationality constraints
on argument evaluation. An (often implicit) underlying idea is then that the more
principles a semantics satisfies, the better it is.
This underlying idea is justified to the extent that the proposed principles are them-
selves justified. Ideally, the principles would be based on generally accepted philo-
sophical insights about the modelled argumentation phenomena. However, often the
principles are not justified in this way but instead appear to be based on the authors’
intuitions.
In this talk I will argue that if the principle-based approach is applied in an intuition-
driven way to evaluate semantics, it is not very principled. I will do so by discussing
recent studies of gradual acceptability semantics. I will argue that such studies should
distinguish between logical, dialectical and rhetorical argument strength, and I will
propose a new definition of dialectical argument strength founded on philosophical
insights.
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Some Recent Developments in the
Argumentative Unification of Defeasible

Reasoning

Christian Straßer

Ruhr-University Bochum, Bochum, Germany

Abstract

In his seminal 1995 paper on abstract argumentation Dung envisioned formal ar-
gumentation as a unifying framework for defeasible reasoning. The latter has been
modeled in its many facets in terms of nonmonotonic logic. The unifying power of
formal argumentation is substantiated if central nonmonotonic methods can be nat-
urally phrased as forms of argumentative reasoning.
In this talk I will highlight some recent developments along these lines. First, I will
demonstrate how sub-classes of logic-based argumentation characterize Makinson’s
method of default assumptions and the family of adaptive logics (joint work with
Ofer Arieli and AnneMarie Borg). Second, I will illustrate how Makinson and Van
der Torre’s nonmonotonic input-output logics can be characterized by sequent-based
argumentation and an underlying elegant proof calculus (joint work with Kees van
Berkel). These two results generalize previous characterizations of reasoning with
maximal consistent sets in the tradition of Rescher and Manor. Finally, I will show
how several classes of prioritized default logic can be characterized in terms of AS-
PIC+, generalizing previous results by Liao et al (joint work with Pere Pardo).
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On Mixing Term Logics

J.-Mart́ın Castro-Manzano

UPAEP University
21 sur 1103, Puebla, Mexico

Abstract

In this contribution we try to mix four term logics as to produce a synthetic term
logic. To reach this goal we briefly sketch four logics designed to capture four aspects
of natural language reasoning—assertion, numeracy, modality, and relevance—and
then we mix said logics in order to produce a synthetic logic together with a tableaux
proof method.

Keywords: Tableaux, term logic, numerical logic, modal logic, relevant logic.

1 Introduction

Broadly speaking, the raison d’être of logic is the study of inference within
natural language [20], and in order to study inference in this sense it is custom-
ary to use Fregean, first order languages [11,18,34,3,19]. However, even if this
standard is common to us when teaching, researching, or applying logic—this
is the received view of logic, after all (cf. [8])—, there is no need to be partic-
ularly acute in order to notice that this view of logic may indeed be familiar,
but that does not make it natural [36,14,23,46,28,16].

Consequently, in an effort to deal with natural language reasoning, since
the late 50’s Sommers championed a revision of the traditional, Aristotelian
term logic. His project unfolded into three branches—ontology, semantics, and
logic (cf. [37])—that became, respectively, a theory of categories, a theory of
truth, and a theory of logic known as Term Functor Logic [35,36,38,12,14,17].

This last theory is a plus-minus algebra that uses terms and functors
rather than first order language elements such as variables or quantifiers
(cfr. [32,30,24,36,37]). Following the tenets of this project, in this contribu-
tion we try to mix four term logics as to produce a synthetic term logic. To
reach this goal we briefly sketch four logics designed to capture four aspects
of natural language reasoning—assertion, numeracy, modality, and relevance—
and then we mix said logics in order to produce a synthetic logic together with
a tableaux proof method. At the end we discuss some of the features of this
proposal.
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2 On Mixing Term Logics

2 Four Term logics

2.1 Assertoric term logic

Assertoric syllogistic—the logic at the core of traditional, Aristotelian term
logic—is a term logic that makes good use of categorical statements in order to
capture a basic notion of assertion. A categorical statement is a statement com-
posed by two terms, a quantity, and a quality. Typically, we say a categorical
statement is a statement of the form:

〈Quantity〉 〈S〉 〈Quality〉 〈P〉

where Quantity = {All, Some}, Quality = {is, is not}, and S and P are
term-schemes. From the standpoint of Sommers & Englebretsen’s (assertoric)
Term Functor Logic (TFLα, from now on) [35,36,38,12,14,17], we say:

Definition 2.1 [Categorical statement in TFLα] A categorical statement in
TFLα is a statement of the form:

±S± P

where ± are functors, and S and P are term-schemes.

So, for example, we can model the four traditional, categorical statements
in TFLα as follows, where the term L stands for logicians, and S stands for
smart : 1

Statement TFLα

All logicians are smart. −L + S
No logician is smart (i.e. all logicians are not smart). −L− S
Some logicians are smart. +L + S
Some logicians are not smart. +L− S

Table 1
Categorical statements in TFLα.

Given this language (say, LTFLα = 〈T ,±〉, where T = {A,B,C, . . .} is a set
of terms, and ± is shorthand for the + and − functors), TFLα offers a sense of
validity as follows [14, p.167]:

1 In this context, terms as those elements into which a statement can be divided, that is,
into that which is predicated of something (i.e. the predicate) and that of which something
is predicated (i.e. the subject), as Aristotle suggested (Pr. An. A1, 24b16–17); whereas
functors are logical expressions. As [15] explains, a term might be formed by the use of a
single word or a complex of words. In English, for example smart, and logician, are terms,
as well, as taught Plato, or in the agora are terms. Terms are what the medieval scholastic
philosophers called categoremata; whereas functors are syncategoremata, that is, words that
are not terms but are used to turn terms into more complex terms. In English, for example,
and, or, only if, if ... then, all, some, not, is, and is not are functors.
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Castro-Manzano 3

Definition 2.2 [Valid syllogism (in TFLα)] A syllogism is valid (in TFLα) iff:

(i) The algebraic sum of the premises is equal to the conclusion, and

(ii) the number of particular conclusions (viz., zero or one) is equal to the
number of particular premises. 2

And so, with this logic we can model assertoric inferences like the one shown
in Table 2.

Statement TFLα

1. All philosophers are smart. −P + S
2. All logicians are philosophers. −L + P
` All logicians are smart. −L + S

Table 2
A valid assertoric inference.

2.2 Numerical term logic

Murphree’s Numerical Term Logic (TFLν)—which serves as an extension of
numerical syllogistic [43,44]—is a term logic that tries to capture numeracy by
representing and performing inference with numerical quantifiers [29]. In this
logic, a numerical statement is a statement of the form:

〈Quantity〉 〈n〉 〈S〉 〈Quality〉 〈P〉

where Quantity = {All, All but, At most, At least, More than, Some},
n ∈ <+, Quality = {is, is not}, and S and P are term-schemes. Formally,
since TFLν is a conservative extension of TFLα, we say:

Definition 2.3 [Numerical statement in TFLν ] A numerical statement in TFLν

is a statement of the form:

±nS± P

where ± are functors, n ∈ <+, and S and P are term-schemes.

2 We must mention that this approach is not only capable of representing syllogistic inference,
since it can also represent relational, singular, and compound statements with ease and
clarity [12], but for our current purposes, this exposition will suffice.
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4 On Mixing Term Logics

Thus, we can model the four traditional, categorical statements in TFLν as
follows:

Statement TFLν

All logicians are smart.
At most 0 logicians are not smart. −0L+S

All but 0 logicians are smart.
No logician is smart.
At most 0 logicians are smart. −0L− S
All but 0 logicians are not smart.
Some logicians are smart.
More than 0 logicians are smart. +1L + S
At least 1 logician is smart.
Some logicians are not smart.
More than 0 logicians are not smart. +1L− S
At least 1 logician is not smart.

Table 3
Categorical statements in TFLν .

Something similar happens with the generalization of these statements for
n > 0, as follows: 3

Statement TFLν

At most n logicians are not smart. −nL + S
All but n logicians are smart.
At most n logicians are smart. −nL− S
All but n logicians are not smart.
More than n logicians are smart. +nL + S
At least n logicians are smart.
More than n logicians are not smart. +nL− S
At least n logicians are not smart.

Table 4
Numerical statements in TFLν .

Consequently, given this language (LTFLν = 〈T ,±,<+〉), TFLν offers the
next notion of validity [29]:

3 In these examples, the first expression is called simple interpretation), whereas the second
is known as exceptive interpretation [40]. These interpretations are important and interesting
because they help us represent exact quantifiers as follows:

• Exactly n S are P := +(+n−1S + P) + (−nS + P)

• Exactly n S are not P := +(+n−1S− P) + (+nS + P)

So, for instance, in order to represent the claim that there are exactly two smart logicians
we could write +(+1L + S) + (−2L + S), that is to say, more than one logician is smart
and at most 2 logicians are smart. Additionally, given this account of exact quantification,
comparative and fractional quantifiers only require some additional tweaks [40].

9



Castro-Manzano 5

Definition 2.4 [Valid syllogism (in TFLν)] A syllogism is valid (in TFLν) iff:

(i) The algebraic sum of the premises is equal to the conclusion,

(ii) the number of particular conclusions (viz., zero or one) is equal to the
number of particular premises, and

(iii) either (a) the value of a universal conclusion (i.e. a conclusion that begins
with a minus sign) is equal to the sum of the values of the universal
premises, or (b) the value of a particular conclusion (i.e. a conclusion that
begins with a plus sign) is equal to the difference of the universal premise
minus the particular. 4

Following our previous exposition pattern, and as an example, consider the
inference shown in Table 5.

Statement TFLν

1. All but 11 philosophers are logicians. −11P + L
2. At least 30 smart people are philosophers. +30S + P
` At least 19 smart people are logicians. +19S + L

Table 5
A valid numerical inference.

2.3 Modal term logic

Englebretsen’s Modal Term Functor Logic (TFLµ)—a formal version of modal
syllogistic [1,2,27,25,22,21,39,13,33,42,26]—tries to capture modality by ex-
tending TFLα with � and � [13,17]. So, given a term T, TFLµ allows the
next combinations: +� + T (i.e. � + T), +�− T (i.e. �− T), −� + T (i.e.
−�T), −�− T, and, as usual, the operator � is defined as −�−. Thus, we can
say a de dicto modal statement is a statement of the form:

〈Modality〉 (〈Quantity〉 〈S〉 〈Quality〉 〈P〉);
and a de re modal statement is a statement of the form:

〈Quantity〉 〈S〉 〈Quality〉 〈Modality〉 〈P〉
where Modality = {�, �}, Quantity = {All, Some}, Quality = {is, is not},
and S and P are term-schemes. Thus, formally:

Definition 2.5 [Modal statement in TFLµ] A modal statement in TFLµ is a
statement of one of the following forms:

µ(±S± P)|±S± P|±S± µP
where ± are functors, µ is a modality, and S and P are term-schemes.

So, for example, we can represent modal de re, de dicto, and combined
statements in TFLµ as follows:

4 This last condition is different from Szabolcsi’s Numerical Term Logic, which requires
that the value of the premises need to be equal or greater than the value of the conclusion
(cfr. [40]).
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6 On Mixing Term Logics

Statement TFLµ

All logicians are (not) necessarily smart. −L±�S
All logicians are (not) possibly smart. −L± �S
Some logicians are (not) necessarily smart. +L±�S
Some logicians are (not) possibly smart. +L± �S
Necessarily all logicians are (not) smart �(−L± S)
Possibly all logicians are (not) smart �(−L± S)
Necessarily some logicians are (not) smart �(+L± S)
Possibly some logicians are (not) smart �(+L± S)
Necessarily all (some) logicians are (not) necessarily smart �(±L±�S)
Necessarily all (some) logicians are (not) possibly smart �(±L± �S)
Possibly all (some) logicians are (not) necessarily smart �(±L±�S)
Possibly all (some) logicians are (not) possibly smart �(±L± �S)

Table 6
Modal de re, de dicto, and combined statements in TFLµ.

Given this language (LTFLµ = 〈T ,±,M〉, whereM = {�, �}), we have the
next notion of validity [13,17]:

Definition 2.6 [Valid syllogism (in TFLµ)] A syllogism is valid (in TFLµ) iff:

(i) The algebraic sum of the premises is equal to the conclusion,

(ii) the number of particular conclusions (viz., zero or one) is equal to the
number of particular premises,

(iv) the conclusion is not stronger than any premise, 5 and

(v) the number of de dicto-� premises is not greater than the number of de
dicto-� conclusions.

As an example, consider the inference shown in Table 7.

Statement TFLµ

1. All philosophers are necessarily smart. −P + �S
2. All logicians are philosophers. −L + P
` All logicians are necessarily smart. −L + �S

Table 7
A valid modal inference.

2.4 Relevance term logic

Relevance Term Logic (TFLρ) is an extension of TFLα that captures a notion
of relevance by following some insights of the Aristotelian sense of causal rele-

5 According to [13], there is a transitivity or “strength” of modal operators in such a way
that �T implies T�, T� implies T, T implies T�, and T� implies �T. So, a first statement
(or term) is stronger than a second statement (or term) if and only if the first entails the
second but not the other way around. The intuition is that a necessary condition for the
validity of any syllogism is that the conclusion cannot exceed any premise in strength: the
scholastics called this the peiorem rule, namely, peiorem semper sequiter conclusio partem.

11



Castro-Manzano 7

vance (cfr. [41,45]). It represents pieces of complex discourse (insofar as they
include at least two premises and one conclusion) with mood and figure (be-
cause the order of statements and terms matters) in which a conclusion that
is different from the premises (thus avoiding petitio principii) necessarily (and
hence deductively) follows from and depends on said premises (thus avoiding
irrelevance, non causa ut causa). In this logic we say a relevant statement is a
statement of the form:

〈Quantity〉 〈S〉 〈Quality〉 〈P〉 〈Flag〉

where Quantity = {All, Some}, Quality = {is, is not}, S and P are term-
schemes, and Flag = {pi, c} for i ∈ {1, 2, 3, . . .} is a set of (premise or conclu-
sion) flags. So, formally, we say:

Definition 2.7 [Relevant statement in TFLρ] A relevant statement in TFLρ is
a statement of the form:

±S± Pf

where ± are functors, S and P are term-schemes, and f is a flag.

Hence, for example, we can represent categorical statements in TFLρ as
follows:

Statement TFLρ

All logicians are smart. −L + Sf
No logician is smart (i.e. all logicians are not smart). −L− Sf
Some logicians are smart. +L + Sf
Some logicians are not smart. +L− Sf

Table 8
Categorical statements in TFLρ.

With this language (LTFLρ = 〈T ,±,F〉, where F is a set of flags), TFLρ

offers a notion of validity as follows:

Definition 2.8 [Valid syllogism (in TFLρ)] A syllogism is valid (in TFLρ) iff:

(i) The algebraic sum of the premises is equal to the conclusion,

(ii) the number of particular conclusions (viz., zero or one) is equal to the
number of particular premises, and

(vi) all the flags of the premises are reclaimed for reaching the conclusion and
the flags of the conclusion are different to the flags of the premises.

12



8 On Mixing Term Logics

And so, with this logic we can model relevant inferences such as the one
shown in Table 9. 6

Statement TFLρ

1. All philosophers are smart. −P + Sp1
2. All logicians are philosophers. −L + Pp2
` All logicians are smart. −L + Sc

Table 9
A valid relevant inference.

2.5 Term logics tableaux

Now, given the previous exposition, one could think the notion of validity
for these logics only covers monadic or syllogism-like inferences, but as we
hinted in a previous note, that would be a hasty conclusion. Indeed, we can
extend said notions of validity either by enlarging the rules of inference [12]
or, following [10,31], by implementing tableaux proof methods [9,6,4,7,5]. So,
if we let φ and ψ stand for arbitrary TFL well formed formulas, we can say an
inference is valid namely, ` −φ+ ψ iff ψ is obtained from φ by applying some
adequate rule of inference or by following tableaux procedures. Here we focus
on the latter.

Thus, as usual, we can say a tableau is an acyclic connected graph deter-
mined by nodes and vertices. The node at the top is called root. The nodes at
the bottom are called tips. Any path from the root down a series of vertices is
a branch. To test an inference for validity we construct a tableau which begins
with a single branch at whose nodes occur the premises and the rejection of
the conclusion: this is the initial list. We then apply the expansion rules that
allow us to extend the initial list: consider Diagram 1.

6 At this point, someone might wonder—and with good reason—what is the difference be-
tween the inference in Table 9 and the inference shown in Table 2, because they look all
the same. And the answer to this question is precisely that: they are the same; but that
is a virtue of the example (because it is a bona fide syllogism by design), not a vice of the
logic. In order to illustrate this point consider, for sake of comparison, an irrelevant but
truth-preserving inference, namely, a petitio:

Statement TFLρ

1. All logicians are smart. −L + Sp1
` All logicians are smart. −L + Sp1

Clearly, petitio is not a syllogism (because it has only one premise) and yet it complies with
conditions (i) and (ii) of TFLα, that is to say, it is valid in TFLα but, surely, it cannot be
causally relevant, for the premise is equal to the conclusion. Now, since Aristotelian relevance
requires premises and conclusions to be disjoint (Topics 100a25-26, De Sophisticis Elenchis
165a1-2, Pr. An. 24b19-20, Pos. An. 1, III, 72b25-32), the use of flags allows us to determine
that even if petitio is truth-preserving, it fails to meet condition (iii) for causal relevance: the
flags of the conclusion are not different to the flags of the premises. A full discussion on this
issue is given in another place.

13
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−A± B

−Ai ±Bi

(a)

+A± B

+Ai

±Bi

(b)

−nA±ε B

−nA
i ±εBi

v = n

(c)

+nA±ε B

+nA
i

±εBi
v = n

(d)

+nA

+k≤nA

(e)

−A± BN

−AiN ±BiN
(f)

+A± BN

+AiN

±BiN
(g)

�AiN

AiK

(h)

�AiN
AiK

(i)

−A± Bf

−Aif ±Bif
(j)

+A± Bf

+Aif

±Bif ′

(k)

Diagram 1: Expansion rules for a family of term logics. (a)-(b) Rules for TFLα.
(c)-(e) Rules for TFLν . (f)-(i) Rules for TFLµ. (j)-(g) Rules for TFLρ.

Diagrams 1a and 1b depict the rules for TFLα. After applying a rule we
introduce some index i ∈ {1, 2, 3, . . .}. For statements whose initial term has
a minus, “−” (i.e. universal statements) the index may be any natural; for
statements whose initial term has a plus, “+” (i.e. particular statements) the
index has to be a new natural if they do not already have an index. Also,
following TFL tenets, we assume the next rules of rejection: −(±A) = ∓A,
−(±A± B) = ∓A∓ B, and −(−− A−−A) = +(−A) + (−A).

Diagrams 1c, 1d, and 1e depict the rules for TFLν . They work exactly as
the rules for TFLα, but notice that after applying a rule we create a vector v
by keeping track of the numerical value n. Finally, Diagram 1e is a rule for
ordering atomic terms with a “+” attached. Also notice, we need to make a
little syntax modification that will come in handy in due time: we add the

14



10 On Mixing Term Logics

predicate term of a statement an arbitrary number ε > n for any other n ∈ <+.
Diagrams 1f-1i depict the rules for TFLµ. In particular, in Diagrams 1f-1g,

after applying a rule we introduce a superindex i ∈ {1, 2, 3, . . .} and we let
the subindex fixed as is. For statements whose initial term has a minus, the
superindex may be any number; for statements whose initial term has a plus,
the superindex needs to be a new number if they do not already have an index.
And in particular, in Diagrams 1h-1i, after applying a rule we introduce a
subindex K ∈ {1, 2, 3, . . .} and we let the superindex fixed as is. For statements
whose initial operator is �, the subindex may be any number; for statements
whose initial term is �, the subindex has to be a new number if they do not
already have an index.

For these logics—i.e. TFLα, TFLν , and TFLµ—, a tableau is complete if and
only if every rule that can be applied has been applied. For TFLα, a branch
is closed if and only if there are terms of the form ±Ai and ∓Ai on two of its
nodes (or ±nA

i and ∓nA
i for TFLν ; or ±AiN and ∓AiN for TFLµ); otherwise

it is open. A closed branch is indicated by writing a ⊥ at the end of it; an
open branch is indicated by writing ∞. A tableau is closed if and only if every
branch is closed; otherwise it is open. So, as usual, T is a logical consequence
of the set of terms Γ (i.e. Γ ` T) if and only if there is a complete closed
tableau whose initial list includes the terms of Γ and the rejection of T (i.e.
Γ∪ {−T} ` ⊥). In the case of TFLν we also require the vector v be equal to 0.

And finally, the rules for TFLρ behave as the tableaux rules for TFLα, but
besides the indexes, we introduce and keep a flag f, f ′ ∈ {pi, c} (pi for premise
for i ∈ {1, 2, 3, . . .}, c for conclusion). For this particular logic we say a branch
is open if and only if there are no terms of the form ±Ai and ∓Ai on it; a
branch is semi-open (or semi-closed) if and only if there are terms of the form
±Aif and ∓Aif ; otherwise it is closed. An open branch is indicated by writing
∞ at the end of it; a semi-open (semi-closed) branch is indicated by writing
∝f,f ( ∝f,f ); and a closed branch, as usual, is denoted by ⊥f,f ′ . We will return
to these considerations later.

3 Mixing term logics

Meanwhile, as we can see up to this point, these different logics try to cap-
ture different aspects of natural language reasoning, namely, assertion (TFLα),
numeracy (TFLν), modality (TFLµ) and causal relevance (TFLρ), using a term
syntax; plus, it is also easy to see that, given the languages and deductive
bases of each logic, we can mix—splice and split—these logics by addition and
substraction of syntactical elements and rules: consider Figure 1.

Notice, thus, that TFLαν = TFLν , TFLαµ = TFLµ, and TFLαρ = TFLρ.
Then, observe that TFLανµ = TFLνµ, TFLανρ = TFLνρ, TFLαµρ = TFLµρ. And
finally, consider TFLανµρ which, in the interest of time, will be the synthetic
system we will focus on.
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TFLα

TFLαν TFLαρTFLαµ

TFLανµ TFLανρ TFLαµρ

TFLανµρ

(a)

〈T ,±〉

〈T ,±,<+〉 〈T ,±,F〉〈T ,±,M〉

〈T ,±,<+,M〉〈T ,±,<+,F〉 〈T ,±,M,F〉

〈T ,±,<+,M,F〉

(b)

(i,ii)

(i,ii,iii) (i,ii,vi)(i,ii,iv,v)

(i,ii,iii,iv,v) (i,ii,iii,vi) (i,ii,iv,v,vi)

(i,ii,iii,iv,v,vi)

(c)

A

A,N A,RA,M

A,N,M A,N,R A,M,R

A,N,M,R

(d)

Fig. 1. (a) A family of term logics. (b) A family of languages. (c) A family of rules.
(d) A family of natural language reasoning aspects (A for assertion, N for numeracy,
M for modality, and R for relevance).

Thus, given the language LTFLανµρ = 〈T ,±,<+,M,F〉, we say:

Definition 3.1 [Synthetic statement in TFLανµρ] A synthetic statement in
TFLανµρ is a statement of the form:

µ(±nS±ε P)f |±nS±ε Pf |±nS± µεPf

where µ are modalities, ± are functors, n, ε ∈ <+, f is a flag, and S and P are
term-schemes.
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12 On Mixing Term Logics

And hence, following our exposition pattern we also say:

Definition 3.2 [Valid syllogism (in TFLανµρ)] A syllogism is valid (in
TFLανµρ) iff:

(i) The algebraic sum of the premises is equal to the conclusion,

(ii) the number of particular conclusions (viz., zero or one) is equal to the
number of particular premises,

(iii) either (a) the value of a universal conclusion is equal to the sum of the
values of the universal premises, or (b) the value of a particular conclusion
is equal to the difference of the universal premise minus the particular,

(iv) the conclusion is not stronger than any premise,

(v) the number of de dicto-� premises is not greater than the number of de
dicto-� conclusions, and

(vi) all the flags of the premises are reclaimed for reaching the conclusion while
the flags of the conclusion are different to the flags of the premises.

Consequently, for example, we can express the following syllogism in
TFLανµρ, call it a synthethic syllogism:

Statement TFLανµρ

1. Necessarily all philosophers are smart. �(−0P +ε S)p1
2. More than 5 logicians are possibly philosophers. +5L +ε �Pp2
` Possibly at least 5 logicians are possibly smart. �(+5L +ε �S)c

Table 10
A valid synthetic inference.

Clearly, the example shown in Table 10 is valid because (i) the alge-
braic sum of the premises is equal to the conclusion, and (ii) the number
of particular conclusions is equal to the number of particular premises (i.e.
(−P + S) + (+L + P) = +S + L); (iiib) the value of the particular conclusion
is equal to the difference of the universal premise minus the particular (i.e.
-0+5=+5); (iv) the conclusion is not stronger than any premise (i.e. from
the de dicto standpoint, the conclusion is weaker than any premise; and the
same happens from a de re perspective, for the terms in the conclusion are
weaker than the terms in the premises); (v) the number of de dicto-� premises
is not greater than the number of de dicto-� conclusions (i.e. we have 0 de
dicto premises); and all the flags of the premises are reclaimed for reaching
the conclusion while the flags of the conclusion are different to the flags of the
premises.

But since these term logics are not restricted to syllogism-like inferences,
we can consider multipremissed inferences (i.e. inferences with more than 2
premises) that encompasses assertion (plus relations), numeracy (both excep-
tive and non-exceptive), modality (both de dicto and de re) and causal rele-
vance (Table 5).
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Statement TFLανµρ

1. Necessarily all but 2 A give 4 B to some C. �(−2A + (+εG +4 B +ε C))p1
2. At least 5 D are necessarily A. +5D +ε �Ap2
3. Every B is E. −0B +ε Ep3
` Possibly 3 D give 4 E to some possible C. �(+3D + (+εG +4 E +ε �C))c

Table 11
Another synthetic syllogism.

From these examples we can learn that we can represent different aspects
of natural language reasoning. The invariable speech act of assertion—either
affirmation or negation—is captured by the very use of terms and functors;
numeracy is represented by the use of n (notice that when n = 0 or n =
1, TFLν collapses with TFLα); the different ways or modes of assertion are
captured by the use of modalities (notice that when the modalities are absent,
TFLµ collapses with TFLα); and relevance is captured by the use of premise or
conclusion flags.

Further, since we need to expand the aforementioned notion of validity be-
yond syllogistic structures, we can mix—split and splice—the previous tableaux
rules as in Diagram 2. Thus, as expected, for this synthetic system we say a
branch is open if and only if there are no terms of the form ±AiNf and ∓AiNf
on it; a branch is semi-open (or semi-closed) if and only if there are terms of
the form ±AiNf and ∓AiNf ; otherwise it is closed. An open branch is indicated
by writing∞ at the end of it; a semi-open (semi-closed) branch is indicated by
writing ∝f,f ( ∝f,f ); and a closed branch, as usual, is denoted by ⊥f,f ′ .

−nA±ε BNf

−nA
i
Nf ±εBiNf

v = n

(a)

+nA±ε BNf

+nA
i
Nf

±εBiNf ′
v = n

(b)

�AiNf

AiKf

(c)

�AiNf
AiKf

(d)

+nANf

+k≤nANf

(e)

Diagram 2: TFLανµρ expansion rules

Consider, as an example, the tableau for the inference shown in Table 11:
Diagram 3. Lines 1 to 3 are the premises. Line 4 is the rejection of the
conclusion. Line 5 is an equivalence from line 4. Lines 6 and 7 result from
applying the rule in Diagram 2b to line 2, so we start v = 5, we introduce
superindex 1, keep subindex 0, and occupy the corresponding flags. Line 8
results from applying the rule in Diagram 2e to line 6. Line 9 is the result of
applying the rule in Diagram 2c to line 7, keeping the same indexes and flag,
since we want the indexes to unify; similarly, line 10 is the result of applying
the rule in Diagram 2c to line 9: we use number 2 since we want the numbers
to unify. Line 11 results from using rule in Diagram 2c to line 1. Line 12 is
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14 On Mixing Term Logics

the result of applying the rule in Diagram 1a to 11, so we add −2 to v; also,
notice the left branch in line 12 has to be closed given the node in line 10; the
right branch, however, is still open, and so we apply the rule in Diagram 2b to
that open branch, getting lines 13-15, and so we add +4 to v. Line 16 is the
application of the rule in Diagram 2e to line 14. Line 17 is the application of
the rule in Diagram 2c to line 5; line 18 is just an equivalence of 17. Line 19
is the result of applying the rule in Diagram 2a to 18: notice that we have to
add -3 to v, and that the left branch in 19 gets closed given the node in line
8; while the right branch in 19 still open, and so we apply an equivalence in
20. Line 21 results from applying the rule in Diagram 2a to line 20: the left
branch closes given the node in line 13, but since the right branch in 21 is still
open, we apply an equivalence in 22. Line 23 results from using the rule in
Diagram 2a to line 22. Line 23 results from using the rule in Diagram 2a to
line 3: observe the left branch has to be closed given the node in line 16; but
since the right branch is still open, we use the rule in Diagram 2e on it as to
obtain line 24. Line 25 results from applying the rule in Diagram 2a to line 22:
the left branch closes given the node in line 24 and we add -4 to v, but the left
branch is still open. We use an equivalence in 26, and then we use the rule in
Diagram 2c to 26 in order to obtain 27, and so this last branch is closed given
the node in line 15. Hence, since the tableau is closed, complete, v = 0, and all
the flags are different and carried at the end of every tip, we say this synthetic
syllogism is valid.

4 Final remarks

Natural language reasoning is a complex inferential procedure that may include,
beyond the speech act of assertion, information about numeracy, modality,
and causal relevance. Given this premise, we have combined four term logics
that try to capture each one of those aspects and then we have extended the
notions of validity of said logics by mixing their respective tableaux. Finally, to
wrap this up, let us briefly consider some potential objections and comments
regarding future work.

Objection 1. This is unnecesary. While it is true that this proposal can
be deemed unnecessary, one problem with this objection is that, put like this,
it seems very deflationary: one could ask what is the utility of any scientific
endeavour. But this, then, would not be an objection to the proposal, but
to almost any human activity. Of course, someone might still say that this
answer is rather weak, for we require a more specific response. So, consider
that we can pinpoint, at least, a couple of specific purposes: i) the study and
development of systems like these contribute to the research of natural language
reasoning using formal tools beyond the usual Fregean first order logics; and ii)
these systems can be further developed as to promote the use of non-classical
programming paradigms for logic programming as in [8].

Objection 2. This is too complex. It is also true that, at first glance, the
proposal seems too complex of a contraption; now, that is a good observation,
but is not a very good objection. For one, it would be quite counterintuitive to
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1. �(−2A + (+εG +4 B +ε C))0p1
2. +5D + �εA0p2

3. −0B +ε E0p3

` �(+3D + (+εG +4 E + �εC))0c
4. − � (+3D + (+εG +4 E + �εC))0c
5. �− (+3D + (+εG +4 E + �εC))0c

6. +5D
1
0p2

7. +�εA1
0p2′

8. +3D
1
0p2

9. +εA
1
0p2′

10. +2A
1
0p2′

11. −2A + (+εG +4 B +ε C)0p1

12. −2A
1
0p1

⊥p1,p2′
+(+εG +4 B +ε C)

1
0p1

13. +εG
1
0p1

14. +4B
1
0p1′

15. +εC
1
0p1′′

16. +0B
1
0p1′

17. −(+3D + (+εG +4 E + �εC))0c
18. −3D− (+εG +4 E + �εC))0c

19. −3D
1
0c

⊥p2,c
−(+εG +4 E + �εC)

1
0c

20. −εG− (+4E + �εC)
1
0c

21. −εG1
0c

⊥p1,c
−(+4E + �εC)

1
0c

22. −4E− �εC1
0c

23. −B1
0p3

⊥p3,p1′
+εE

1
0p3

24. +4E
1
0p3

25. −4E
1
0c

⊥p3,c
− �ε C1

0c

26. �−ε C1
0c

27. −εC1
0c

⊥p1′′ ,c
v = 5− 2 + 4− 3− 4 = 0

Diagram 3: A valid synthetic syllogism.

say that we do not need to study or develop higher order logics, hybrid logics,
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16 On Mixing Term Logics

or non-classical logics because they are more complex and make logical analysis
even harder. The problem with this objection is that it fails to recognize the
net gain of complex models. Thus, even if combining these term logics seems
to increase complexity, that is not a price to high to pay if we consider the net
benefits of synthetizing four different aspects of natural language reasoning. As
a reviewer has correctly pointed out: a proposal like this could provides a good
trade-off between expressive power and tractability.

Objection 3. This is too ambiguous. And finally, while it is true that the
concept of mixing for term logics is still ambiguous, it seems the failure to
communicate comes from our exposition: we have not enough space to develop
the whole formal theory behind the combination of term logics, but that does
not imply the very proposal is ambiguous in itself: in other place we have offered
more insights on this issue, but for the purposes of this contribution, it suffices
to say that mixing term logics amounts to mixing a rules and signatures.

Finally, given these challenges, we would like to mention some of our fu-
ture work: i) we need to explain the formal theory behind the combination of
term logics, including proofs of completeness; ii) we also need to compare the
net benefits of this synthetic logic vis-à-vis Fregean logics; and finally, iii) we
require more time to offer minutiae about implementation.
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Filosof́ıa (2019), pp. 209–237.

[5] Castro-Manzano, J.-M., Distribution tableaux, distribution models, Axioms 9 (2020).
URL https://www.mdpi.com/2075-1680/9/2/41

[6] Castro-Manzano, J. M., Murphree’s numerical term logic tableaux, Electronic Notes in
Theoretical Computer Science 354 (2020), pp. 17–28, proceedings of the Eleventh and
Twelfth Latin American Workshop on Logic/Languages, Algorithms and New Methods
of Reasoning (LANMR).
URL https://www.sciencedirect.com/science/article/pii/S1571066120300797
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Abstract

This paper investigates logical foundations of the derivation of literals from non-
Horn knowledge bases with fuzzy predicates. Some of the predicates are defined by
neural networks, and some are defined by recursive functions. This inference excludes
reasoning by contradiction, and it is characterized by means of substructural single-
succedent sequent calculi with non-logical axioms expressing knowledge base rules and
facts. The semantics of this inference is specified by constrained real-valued models.
Lower bounds of fuzzy truth values of ground literals are calculated by traversing
sequent calculus derivations of the literals.

Keywords: non-Horn rule, sequent calculus, fuzzy knowledge base, real-valued logic,
neural-symbolic computing

1 Introduction

The languages of logic programs and knowledge bases (KB) are usually based
on first-order logic (FOL) [29]. Most commonly, KB facts are atoms or literals.
Atoms are expressions P (t1, ..., tk) where P is a predicate and t1, ..., tk are
terms. Literals are atoms or their negations. Non-Horn rules are expressions
A⇐ A1 ∧ ... ∧Ak, where A,A1, ..., Ak are literals. In Horn rules, A and all Ai

are atoms. In normal logic programs, A is an atom and Ai are literals.
Horn KBs have a limited inference power. The advantages of non-Horn

KB over normal logic programs are discussed in [31]. The semantics of non-
Horn KBs is given by classical 2-valued FOL models. FOL calculi are used as
the proof theories of non-Horn KBs. Nonetheless, inference for KBs and logic
programs differs significantly from inference in FOL. Most importantly, the
outcome of this inference and its intermediate steps is literal sets as opposed
to arbitrary FOL formulas.

KBs and logic programs may include computable (aka evaluable) functions
and predicates [21]. The values of terms composed of constants and evaluable
functions are calculated during inference. Also, the truth values of atoms
of evaluable predicates with constant arguments are calculated, not derived.
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2 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

Evaluable functions and predicates may be partial. Evaluable predicates do
not have to be boolean, they may yield multiple truth values.

Recent advances in AI made it possible to implement some predicates as
neural networks [9,33,15,32,13]. Representing predicates by neural networks is
also known as relational embedding. These predicates are usually represented
by tensor expressions whose coefficients are learned. The fuzzy truth values
of atoms of these neural predicates with constant arguments are calculated
by substituting argument embeddings into the tensor expressions. These
truth values are real numbers. Integration of neural methods with symbolic
reasoning is a challenging problem and an area of intense research [7,19]. For
some predicates, the calculation of fuzzy truth values of atoms with constant
arguments can be implemented by other means than neural networks.

The principle of Reductio Ad Absurdum (RAA) states that if A is deduced
from a hypothesis that is A’s complement, then A is derivable. Reasoning
by contradiction, i.e. with using RAA, is not quite adequate for KBs
with evaluable predicates [30]. It will be explained later that reasoning by
contradiction is not appropriate for KBs with neural predicates either.

The aim of this paper is to specify model and proof theories for inference
from KBs containing neural and evaluable predicates along with other
predicates that are derivable from KB rules and facts. In section 3, KB inference
without RAA is characterized by sequent calculi with a limited set of logical
and structural rules and with non-logical axioms that are images of KB facts
and rules. In section 4, the semantics of inference from KBs containing neural
and evaluable predicates is specified by constrained real-valued models. It is
also shown how to calculate lower bounds of the truth values of derived ground
literals.

2 Non-Horn Knowledge Bases With Fuzzy Predicates

Let us recall some definitions which will be used later. A KB is called consistent
if no atom is a fact or is derivable from this KB, along with its negation being
derivable or a fact. A literal is called ground if it does not contain variables.
A substitution is a finite set of mappings of variables to terms. The result of
applying a substitution to a formula or set of formulas is called its instance.

We consider inference of ground literals, which are called goals, from non-
Horn KBs. These KBs may contain predicates specified by neural networks,
which are used to approximate the truth values of atoms of these predicates
with constant arguments. Fuzzy truth values are usually represented by real
numbers from interval [0, 1]. For non-Horn KBs, it is more convenient to use
interval [−1, 1] for the representation of truth values. One represents true,
minus one represents false. Other real numbers from interval [−1, 1] represent
fuzzy truth values. Neural methods and their implementation are not discussed
here because our approach is applicable to a variety of neural networks. The
only requirement to these networks is that they yield numbers from interval
[−1, 1] for any input data.

These KBs may also contain evaluable functions and predicates [21].
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We assume that evaluable functions and predicates are defined as recursive
functions in a functional programming language or as algorithms in a
procedural programming language. The truth values yielded by the algorithms
implementing evaluable predicates could also be fuzzy, i.e. they could be from
interval [−1, 1].

Terms of evaluable functions with constant arguments are evaluated as
soon as they appear in KB derivations. The same applies to atoms of
neural and evaluable predicates with constant arguments. The evaluation
may not terminate, in which case it is assumed that the truth value is zero.
Any complete search strategy for inference from KBs with evaluable and
neural predicates should continue and-or search [29] simultaneously with the
evaluations including neural computations. If the evaluation of ground atom
A(...) yields a positive value above a certain threshold h > 0, then A(...) is
considered a KB fact. If the evaluation of this atom yields a negative value
below −h, then ¬A(...) is considered a fact. Non-Horn rules are well-suited
for KBs with neural and evaluable predicates because these negative facts
correspond to literals in KB rules.

All other predicates will be called derivable. As explained in [31], derivable
predicates should be considered partial by default. In the presence of neural
predicates, the truth values of ground atoms of derivable predicates should also
be real numbers from interval [−1, 1], that is, derivable predicates like neural
ones are fuzzy. It is expected that fuzzy truth values higher than h are assigned
to some facts. One is the default truth value for KB facts. Let |A| denote the
truth value of formula A.

We rely on the traditional definition of truth functions in fuzzy KBs [4].
The following equation defines the truth values for negation: |¬A| = −|A|.
The use of this truth function for negation is limited to the calculation of the
truth values of negatibve literals. The truth values for conjunction are defined
by the following equation: |A1 ∧ ... ∧ Ak| = min{|A1|, ..., |Ak|}. This function
is called the Godel t-norm. The use of this truth function for conjuction is
limited to the calculation of the truth values of the bodies of KB rules.

Truth functions for disjunctions will not be used here, and the use of
implication truth functions will be indirect in the KBs under consideration.
The meaning of KB rules is that the truth value of the rule body is a lower
bound of the truth value of the head. Given that KB rules are implications and
assuming that KB rules are not fuzzy, this semantics of KB rules is consistent
with residuum functions for t-norms. For the residua of the Lukasiewicz, Godel,
and product t-norms, |A⇒ B| = 1 if and only if |A| ≤ |B| [12].

It is explained in [31] why reasoning by contradiction is questionable for
KBs with evaluable predicates. The same argument applies to KBs containing
neural predicates. Consider two KB rules P ⇐ Q and P ⇐ ¬Q. Here is
reasoning by contradiction using these rules. Suppose P is false. The first rule
implies that Q is false, and hence P is true by the second rule. Now suppose
|P | = 0. If |Q| = 0 as well, then both rules are satisfied, but they do not
provide any evidence that P is true or |P | > 0 at least.
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3 Sequent Calculi

Let −A denote the complement of A, i.e. it is the negation of atom A, and the
atom of negative literal A. A sequent is Γ ⊢ Π where Γ is an antecedent and
Π is a succedent. Antecedents and succedents are multisets of formulas. KB
inference and logic programming are concerned about the derivation of literals,
i.e. sequents of the form ⊢ A where A is a literal. Consider single-succedent
calculi in which formulas are literals. The only structural rule is cut.

Γ ⊢ A A,Π ⊢ B

Γ,Π ⊢ B
cut

These sequent calculi do not have logical axioms. The following rule is the
only logical rule. It replaces the standard negation rules.

A,Γ ⊢ B

−B,Γ ⊢ −A
swap

KB facts and rules can be treated as non-logical axioms [23]. Sequents of
the form ⊢ A represent facts, and rules are represented by sequents of the form
A1, ..., An ⊢ A where A,A1, ..., An are literals. Variables can be replaced by
any terms in instances of these axioms.

Definition 3.1 Lcs is the set of single-succedent sequent calculus instances in
which formulas are literals, succedents contain one literal, the structural rule
is cut, the logical rule is swap, and non-logical axioms represent KB rules and
facts.

Arguably, Lcs are some of the simplest calculi formalizing KB inference
without RAA. Alternatively, this inference could be formalized by calculi whose
sequents contain atoms only. Yet another option is to define calculi based on
clauses, i.e. disjunctions, as opposed to sequents. We chose Lcs because their
single-succedent sequents comprised of literals copy KB rules. The other two
options require KB rule transformations. Lcs rules embody two fundamental
logical principles: cut corresponds to Modus Ponens and swap corresponds to
Modus Tollens.

Usually, if a formal theory is inconsistent, then any formula is derivable in
this theory. This is why inconsistent theories are discarded. In reality, KBs
may have bugs and may be inconsistent. Proliferation of inconsistencies is
limited in Lcs. Unlike sequent calculi for FOL, nothing else could be derived in
Lcs from sequents ⊢ A and ⊢ ¬A alone. Nonproliferation of inconsistencies is
important in KB development because bugs do not lead to a mass of gibberish
results in this case.

Theorem 3.2 (normal form) Any Lcs derivation of literal G can be trans-
formed into such Lcs derivation of G that the premise of every swap is a KB
rule and the transformed derivation tree contains the same KB fact instances
as the original derivation tree.

Proof. Consider a Lcs derivation. Let us replace swap with the two following
rules and adjust the derivation by replacing swap with the L¬ rule followed by
the R¬ rule.
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Γ ⊢ A
−A,Γ ⊢ L− B,Γ ⊢

Γ ⊢ −B R−

The L− and R− rules can be moved upward.

Γ ⊢ A A,Π ⊢ B

Γ,Π ⊢ B

−B,Γ,Π ⊢ →
Γ ⊢ A

A,Π ⊢ B

A,−B,Π ⊢
−B,Γ,Π ⊢

Γ ⊢ A A,Π, B ⊢
Γ,Π, B ⊢
Γ,Π ⊢ −B →

Γ ⊢ A

A,Π, B ⊢
A,Π ⊢ −B

Γ,Π ⊢ −B

B,Γ ⊢ A A,Π ⊢
B,Γ,Π ⊢
Γ,Π ⊢ −B →

A,Π ⊢
Π ⊢ −A

B,Γ ⊢ A

−A,B,Γ ⊢
−A,Γ ⊢ −B

Γ,Π ⊢ −B
By repeatedly applying these permutations, all applications of the L−/R−

rules can be moved above all applications of cut. Since R¬ always follows L¬,
the succedents of the premises of all cut rules are single literals. Any sequence
of L−/R− rules applied to a KB rule or fact can be either discarded or replaced
by one swap rule. The above permutations do not change the set of KB fact
instances. Hence, the transformed derivation satisfies the statement of this
theorem. 2

Theorem 3.3 Lcs is sound and complete with respect to the derivation of
ground literals in FOL without RAA.

Proof. It is proved in [30] that ground literal L is derivable from KB facts and
rules in FOL without RAA if and only if −L is refutable by resolution in which
the factoring rule is not used and at least one premise of every resolution step
is not −L or its descendant. Consider such resolution refutation. As usual, the
resolution steps that are not ascendants of the endclause are discarded. Let
us ground this refutation and then exclude the step that resolves −L. There
is only one such step because at least one premise of every resolution step is
not −L or its descendant. As a result, L is added to every descendant clause
of this step including the endclause which becomes L.

Let us traverse this resolution tree bottom-up and map every resolution
step to an application of cut in Lcs. Sequent ⊢ L is the conclusion of the last
cut in the respective Lcs derivation tree. The premises of every cut in this
tree are uniquely determined by the resolution step. The succedent of the cut
conclusion is also the succedent of the second premise, and the succedent of
the first premise is the principal formula of this cut. Every leaf node in the
Lcs derivation tree is an instance of a KB fact, an instance of a KB rule, or
a sequent that is the conclusion of swap applied to an instance of a KB rule.
Hence, the resulting tree is a normal-form Lcs derivation.

Now consider a ground normal-form Lcs derivation of sequent ⊢ L. Every
application of the cut rule in this derivation corresponds to a resolution step,
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6 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

and ground instances of KB rules and facts are used as input clauses in this
resolution derivation instead of the rules and facts. The endclause of this
resolution derivation is L.

The lifting lemma [6] states that if clause A is an instance of A′, B is an
instance of B′, and C is the resolvent of A and B, then there is such clause C ′

that C is its instance, and C ′ is the resolvent of A′ and B′. It is well-known
that the lifting lemma can be generalized onto arbitrary resolution derivations:
If C is the endclause of a resolution derivation with input clauses A1, ..., An

which are instances of A′
1, ..., A

′
n, respectively, then there is such resolution

derivation with input clauses A′
1, ..., A

′
n and endclause C ′ that C is an instance

of C ′. This is proved by a straightforward induction on the depth of resolution
derivations.

As a consequence of this generalization of the lifting lemma, there is a
resolution tree with the input comprised of KB rules and facts treated as clauses
and with such endclause L′ that L is its instance. A step resolving L′ and −L
is added to this derivation. The resolvent of this step is the empty clause, and
−L occurs in one premise of the last step only. Hence, this resolution refutation
corresponds to a FOL derivation without RAA. 2

4 Constrained Real-Valued Models

Models are usually defined by truth tables (or functions) for logical connectives
so that the truth values of ground formulas can be calculated. No other
formulas than literals are produced during KB derivations. Because of this,
legitimate models for KB inference can be defined by a negation truth function
and by constraints on truth values in ground instances of facts and rules as
opposed to truth tables for other logical connectives.

Definition 4.1 An assignment of real numbers from interval [−1, 1] to ground
literals is aMr model if |¬A| = −|A| for any ground atom A and the following
constraints are satisfied:
1. A is a ground KB fact instance: |A| > h
2. A0 ⇐ A1 ∧ ... ∧Ak is a ground KB rule instance:
a. If |Ai| ≥ h for i = 1...k, then |A0| ≥ min{|A1|, ..., |Ak|}.
b. For j = 1, ..., k, if |A0| ≤ −h and |Ai| ≥ h for i = 1...j−1 and i = j+1...k,
then −|Aj | ≥ −|A0|.
Constraint 2a expresses the semantics of KB rules: the truth value of the

body is less or equal to the truth value of the head, min is employed as the
truth function for conjunctions of literals in the bodies. Constraint 2b is a
consequence of this semantics of KB rules with fuzzy literals. Consider the case
that |Ai| are positive for i = 1...j− 1 and i = j+1...k, and |A0| is negative. In
this case, inequality |A0| ≥ min{|A1|, ..., |Ak|} implies that −|Aj | ≥ −|A0|.

Literal A is valid regarding Mr models if |A′| > h for all groundings A′

of literal A in all Mr models. The constraints of Mr models can also be
considered in the context of sequents as opposed to KB facts and rules. These
constraints hold for non-logical axioms of Lcs.
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Definition 4.2 The set of obscure occurrences of literals in derivation τ is
defined recursively as the minimal set of literal occurrences satisfying the
following two conditions.
- If sequent −A0, A1, ..., Aj−1, Aj+1, ..., Ak ⊢ −Aj from τ is the conclu-
sion of swap applied to KB rule instance A0 ⇐ A1 ∧ ... ∧ Ak, then
A1, ..., Aj−1, Aj+1, ..., Ak are obscure in τ .

- If sequent A1, ..., Ak ⊢ A0 occurs in τ and A0 is obscure in τ , then A1, .., Ak

are obscure in it.

Let m(τ) = minA∈F |A| where F is the set of non-obscure occurrences of
ground KB fact instances in derivation τ . If F = ∅, then m(τ) = 1.

Theorem 4.3 (soundness) If τ is a ground Lcs derivation of literal G, then
|G| ≥ m(τ) ≥ h for allMr models.

Proof. Let us transform τ to the normal form defined in Theorem 3.2. The
set of literals in τ is the same as the set of literals in its normal form. We
will prove by induction on the depth of normal-form derivations that |D| ≥
min{|Ai|, ..., |Aj |,m(µ)} for the endsequent A1, ..., Ak ⊢ D of any derivation µ,
where Ai, ..., Aj are non-obscure literal occurrences in µ among A1, ..., Ak. As
a corollary, |G| ≥ m(τ). Inequality m(τ) ≥ h holds because |A| ≥ h for all
ground fact instances A.

Base: The depth of derivation µ is zero. In this case, G is an instance of a
KB fact, and the above inequality holds.

Induction step. Suppose the inequality under consideration is satisfied for
all derivations whose depth is less or equal n. Suppose the depth of µ is n+1.
If the endsequent A1, ..., Ak ⊢ D is a KB rule instance, then this sequent does
not contain KB fact instances, and inequality |D| ≥ min{|A1|, ..., |Ak|,m(µ)}
holds due to constraint 2a. None of A1, ..., Ak is obscure in µ. If the last
rule in µ is swap, then its premise is a KB rule, µ does not contain KB fact
instances, and inequality |D| ≥ min{|A1|,m(µ)} holds due to constraint 2b.
Literals A2, ..., Ak are obscure in µ.

Now let the last rule in µ be cut, the first premise of this cut be B1, ..., Bk ⊢
C1, and the second premise be C1, ..., Cm ⊢ D. The conclusion of this cut
is B1, ..., Bk, C2, ..., Cm ⊢ D. If δ is the derivation ending in B1, ..., Bk ⊢ C1,
Bb, ..., Bb′ are the non-obscure literals of this antecedent in δ, ν is the derivation
ending in C1, ..., Cm ⊢ D, Cc, ..., Cc′ are the non-obscure literals of the
antecedent of the latter sequent in ν, then |C1| ≥ min{|Bb|, ..., |Bb′ |,m(µ)}
and |D| ≥ min{|Cc|, ..., |Cc′ |,m(ν)} by the induction assumption.

If C1 is obscure in ν, then it is also obscure in µ. In this case, all
literal occurrences from δ including B1, ..., Bk are obscure in µ. This is
proved by a straightforward induction on the depth of normal-form derivations.
In the case of obscure C1, the set of non-obscure literal occurrences of µ
is the same as the set of non-obscure literal occurrences of ν. Therefore,
|D| ≥ min{|Cc|, ..., |Cc′ |,m(µ)}.

Now, consider the case that C1 is not obscure in ν, i.e. Cc is C1.
By a straightforward induction on the depth of normal-form derivations,
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8 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

the succedent of the endsequent of any derivation γ is not obscure in
γ. As a corollary, C1 is not obscure in µ. The remaining literals
among Cc, ..., Cc′ are not obscure in µ either. Let Cc′′ follow Cc in this
list of literals. By combining the inequalities for both premises, we get
|D| ≥ min{|Bb|, ..., |Bb′ |,m(δ), |Cc′′ |, ..., |Cc′ |,m(ν)}. The set of non-obscure
occurrences of KB fact instances of µ is the union of the respective sets of δ
and ν. Hence, |D| ≥ min{|B1|, ..., |Bk|, |Cc′′ |, ..., |Cc′ |,m(µ)}. 2

This theorem establishes that m(τ) is a conservative approximation of the
truth values of G in Mr models. The proof of Theorem 3.3 shows that
resolution refutations without factoring can be transformed to Lcs derivations
in a single preorder traversal of the resolution refutations. Consequently, the
time complexity of this transformation is linear in the size of the refutations.

It is clear from the proof of Theorem 4.3 that the calculation of a lower
bound of |G| can be done in a single postorder traversal of the Lcs derivation
tree. Detecting obscure literal occurrences is done simultaneously with the
calculation of m values during this traversal. Hence, this calculation takes a
linear time of the size of G’s derivation in Lcs.

Efficient resolution methods can be used to implement inference from
non-Horn KBs containing neural and evaluable predicates. The resolution
refutations are transformed into Lcs derivations, and then lower bounds of the
fuzzy truth values of the goals are calculated. The overall time complexity of
these additional computations is linear in the size of the resolution refutations.
Complexity issues for advanced resolution methods are discussed in [17].

Consider the following KB rule R(x, z) ⇐ R(x, y) ∧ R(y, z) expressing
transitivity of predicate R. For instance, if a KB contains facts |R(a, b)| = 0.5
and |¬R(a, c)| = 0.8, then nothing else can be derived from these facts and
the aforementioned rule by forward chaining. Our method makes it possible to
derive goal ¬R(b, c) and to get this estimate: |¬R(b, c)| ≥ 0.8.

Theorem 4.4 (completeness) If |G| ≥ h in all Mr models for ground literal
G, then there exists a derivation of G in Lcs.

Proof. Suppose G is not derivable in Lcs from KB facts and rules. Let us
look at model M in which |B| = 1 for every ground literal B that is derivable
from KB facts and rules, |C| = −1 for every such ground literal C that −C is
derivable, and |D| = 0 for every other ground literal D. Such model M exists
for any consistent KB, and |G| = 0 in M .

Constraint 1 holds for M because ground instances of facts are derivable.
Suppose constraint 2a is violated for ground KB rule instance A0 ⇐ A1∧...∧Ak.
In this case, |Ai| = 1 for i = 1...k, and all sequents ⊢ Ai are derivable in Lcs.
Hence, A0 is derivable from the latter by k applications of cut to A1, ..., Ak ⊢ A0

and to every ⊢ Ai for i = 1...k. Hence, constraint 2a could not be violated for
this rule instance.

If we suppose that constraint 2b is violated for ground KB rule instance
A0 ⇐ A1∧ ...∧Ak, then all Ai for i = 1...j−1 and i = j+1...k are derivable in
Lcs, and −A0 is also derivable. Sequent −A0, A1, ..., Aj−1, Aj+1, ..., Ak ⊢ −Aj
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is derived by applying swap to this KB rule instance. −Aj is derivable by
application of cut to this sequent and to ⊢ −A0 followed by k − 1 applications
of cut using ⊢ Ai for i = 1...j − 1 and i = j + 1...k as the first premise.
Consequently, constraint 2b could not be violated for this rule instance.
Therefore M is aMr model and the assumption about G not being derivable
in Lcs cannot be true. 2

Now suppose that KB rules are fuzzy and truth values greater or equal to
h are associated with the rules. If the semantics of fuzzy KB rules is based on
the residuum of the Godel t-norm [12], then this semantics can be expressed
as follows: |A0| ≥ min{|A1|, ..., |Ak|, |A0 ⇐ A1 ∧ ...∧Ak|}. In the case of fuzzy
KB rules, condition 2a in the definition of Mr models should be changed to
the above inequality. Condition 2b remains unchanged.

Let m′(τ) = min{minA∈F |A|,minS∈R |S|} where F is the set of non-
obscure occurrences of ground KB fact instances in derivation τ and R is the
set of KB rules occurring in τ as premises of cut. Clearly, the theorems 4.3 and
4.4 hold in the case of fuzzy KB rules if condition 2a in the definition of Mr

models is changed as described earlier and if m is replaced by m′.

5 Related Work

An overview of KB inference methods including resolution-based methods can
be found in [29]. Inference from non-Horn KBs without RAA is more powerful
than forward or backward chaining and less powerful than FOL inference from
non-Horn KBs. See [30] for a comparison of these inference mechanisms.
Ordered resolution is recognized as one of the most efficient inference methods
[3]. It is used in modern theorem provers [18]. Ordered resolution has been
adapted to inference from non-Horn KBs without RAA [30].

Description logics [2] and other logics with more limited capabilities than
FOL are relevant to KB inference. Inference without RAA is used in
argumentation logics [16]. The proof theory suggested in that paper is natural
deduction without the RAA rule. Other arumentation logics with limited
inference capabilities have been proposed in [5].

Inference from fuzzy KBs is focused on numerical calculations approximat-
ing truth values. Forward chaining normally serves as the inference mechanism
for fuzzy KBs [4]. Inference from fuzzy KBs may also involve fuzzification and
defuzzification [4]. For non-Horn KBs with neural and evaluable predicates,
symbolic inference is done first and then approximate truth values are computed
by traversing the derivation trees. Instead of engaging fuzzy truth functions
for all logical connectives [12], we utilize constraints imposed by KB rules on
fuzzy truth values.

Paper [7] is a comprehensive survey of recent work in the area of neural-
symbolic computing. Neural-symbolic systems integrate neural networks and
inference methods. In particular, neural networks are used for guiding symbolic
inference [34,14,27]. Integration of neural and fuzzy systems is analyzed in [1].

Paper [28] introduces a neural-symbolic method employing weighted real-
valued functions for calculating lower and upper bounds of the truth values of
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10 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

FOL formulas. Inference is implemented as alternating upward and downward
passes over the structure of the formulas. Truth value bounds are adjusted
during these passes. Modus Ponens and Modus Tollens are used to get truth
value bounds. In our work, KB rules play the role of premises of Modus Ponens,
and swapped KB rules can be viewed as premises of Modus Tollens.

Non-Horn KBs containing neural and evaluable predicates are similar to
possibilistic logic [10] in the sense that in both of them, real numbers are
associated with derived ground literals. A survey of fuzzy proof theories in
which numbers indicating truthness are attached to FOL formulas is presented
in [11]. The major difference of our approach is that literals are the only FOL
formulas involved in the KB formalism considered here. Also, we use derivation
trees as the input for calculating the truth values of derived literals.

ProbLog [26] extends Prolog by associating probabilities with facts. It
is assumed that all ground instances of a non-ground fact are mutually
independent and share the same probability. ProbLog engines calculate
approximate probabilities for inference goals. Since Prolog has positive goals
only, negation as failure is adopted in ProbLog to derive negative goals. Non-
Horn KBs with neural and evaluable predicates are not probabilistic, they use
constraints on the truth values of literals for getting lower bounds of the truth
values of derived goals. Inference of negative goals from non-Horn KBs is direct,
which helps avoid controversies related to negation as failure [8].

DeepProbLog [20] extends ProbLog by allowing neural networks to be
associated with facts instead of probabilities. The probabilities of ground
instances of a fact are calculated by the neural network associated with
the respective predicate. This is similar to our assumption except for the
interpretation of the values yielded by neural networks. We follow their
traditional interpretation as fuzzy truth values of ground facts.

Sequent calculus derivations for Horn formulas are researched in [22].
Substructural sequent calculi have been investigated for decades [25,24]. Lcs

instances are substructural calculi. The set of Lcs calculi is particularly tailored
to inference from non-Horn KBs with neural and evaluable predicates. The
replacement of the two negation rules with the swap rule makes Lcs single-
succedent, which is essential for the approximation of truth values.

Lcs instances contain non-logical axioms which represent KB rules and
facts. The cut rule is a core of these calculi. Properties of sequent calculi
with non-logical axioms in the form of so-called mathematical basic sequents
are investigated in [23]. Axioms corresponding to KB rules/facts can be
transformed to mathematical basic sequents.

Like Lcs, LK−c calculi from [31] contain non-logical axioms representing
KB rules and facts. LK−c calculi characterize inference of literals from non-
Horn KBs without using RAA. Those calculi have the same inference power as
Lcs but they employ standard negation rules as opposed to the swap rule, they
allow multiple literals in succedents. LK−c derivations cannot be directly used
for the approximation of fuzzy truth values.
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6 Conclusion

The language of non-Horn KBs is much simpler than the language of FOL.
Negation is a connective in this language. Conjunction with a variable number
of arguments and implication are embedded in KB rules but they are not
standalone connectives in the language. Non-Horn KBs with evaluable and
neural predicates integrate reasoning, computation, and neural networks. They
are neural-symbolic systems [19] which fully integrate symbolic reasoning and
neural networks implementing relations, that is, predicates. These KBs bear
similarities with fuzzy KBs [4], but the inference is separated from numeric
computations.

The calculi and models presented here are comprehensible. Both non-logical
axioms of Lcs and the constraints in Mr models are projections of KB facts
and rules. The most important feature of our characterization of non-Horn KBs
with evaluable and neural predicates is that Lcs derivations provide sufficient
information for the calculation of lower bounds of the truth values of the
derivation goals. Hilbert-type systems are less adequate for characterizing these
KBs because they would explicitly include other logical connectives, possibly
non-standard ones.

It is feasible to get multiple Lcs derivations of the same goal. These
derivations of one literal may give various approximations of the truth value
of this literal. It may be beneficial to skip some facts with truth values close
to h during the derivation process. The design of efficient inference methods
capturing higher truth values is beyond the scope of this paper. Investigation of
the applicability of other fuzzy truth functions [12] to non-Horn KBs containing
neural and evaluable predicates is a topic for future research.
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Abstract

Benzmüller, Parent and van der Torre introduced the LogiKEy methodology for the
formalization and automation of new ethical reasoners, normative theories and deon-
tic logics. This article uses LogiKEy to experiment and compare Åqvist preference
models with Kratzer models for conditional obligations.

Keywords: LogiKEy methodology, Kratzer deontic models, Åqvist preference
models.

1 Introduction

In order to design and expriment in normative theories, Benzmüller, Parent
and van der Torre introduced the LogiKEy methodology, based on the se-
mantical embedding of deontic logics into classic higher-order logic. Earlier
work presented semantical embedding of two traditions in deontic logic in the
LogiKEy framework, namely Åqvist’s dyadic deontic logic E [3] and Makinson
and van der Torre’s input/output (I/O) logic [2,4]. Subsequent work provided
the Isabelle/HOL dataset for the LogiKEy workbench [1].

This article uses the LogiKEy methodology to experiment and compare
Åqvist preference models with Kratzer models for conditional obligations.
Horty [5] compared Kratzer deontic models with standard deontic models
(SDL) and van Fraassen models [8]. Comparison of the Kratzerian frame-
work with other well-known deontic models such as Åqvist preference models
is open.

The article is structured as follows. Section 2 collects basic definitions of
Åqvist preference models and Kratzer models. The semantical embedding of
Kratzer models in HOL is then devised and studied in Section 3. This section
also compares Åqvist preference models and Kratzer models for conditional
obligations. Section 4 concludes the paper.

2 Preliminaries

Syntax The language, for the purpose of this paper, is obtained by adding
the ⃝ operator (for monadic obligation) and ⃝( / ) operator (for conditional
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2 Experiments in Kratzer Modal Semantics Using Isabelle/HOL

obligation) to the language of propositional logic. ⃝φ is read “φ is obligatory”
and ⃝(ψ/φ) is read “If φ, then ψ is obligatory”. The set of well-formed
formulas (wffs) is defined in the straightforward way.

Semantics (Åqvist preference model) A preference model is a structure
M = ⟨W,⪰, V ⟩ where:

• W is a non-empty set of possible worlds (W is called “universe”);
• ⪰ ⊆W ×W (intuitively, ⪰ is a betterness or comparative goodness rela-
tion; “s ⪰ t” can be read as “world s is at least as good as world t”);

• V is a function assigning to each atomic wff a set of worlds, i.e., V (p) ⊆ W
(intuitively, V (p) is the set of worlds at which p is true).

No specific properties (like reflexivity or transitivity) are required for the bet-
terness relation. Given a preference model M = ⟨W,⪰, V ⟩ and a world s ∈W ,
the satisfaction relation M, s ⊨ φ (read as “world s satisfies φ in model M”) is
defined by induction on the structure of φ as described below. Intuitively, the
evaluation rule for the dyadic obligation operator puts ⃝(ψ/φ) true whenever
all the best φ-worlds are ψ-worlds. Here, best is defined in terms of opti-
mality rather than maximality [7]. A φ-world is optimal if it is at least as
good as any other φ-world. We define VM (φ) = {s ∈ W | M, s |= φ} and
opt⪰(V

M (φ)) = {s ∈ VM (φ) | ∀t(t ⊨ φ→ s ⪰ t)}. Whenever the model M is

obvious from context, we write V (φ) instead of VM (φ).

M, s |= p if and only if s ∈ V (p)

M, s |= ¬φ if and only ifM, s ̸|= φ (that is, not M, s |= φ)

M, s |= φ ∨ ψ if and only ifM, s |= φ or M, s |= ψ

M, s |= ⃝ (ψ/φ) if and only if opt⪰(V (φ)) ⊆ V (ψ)

As usual, a formula φ is valid in a preference model M = ⟨W,⪰, V ⟩ (no-
tation: M |= φ) if and only if, for all worlds s ∈ W , M, s |= φ. A formula
φ is valid (notation: |= φ) if and only if it is valid in every preference model.
The notions of semantic consequence and satisfiability in a model are defined
as usual. Åqvist dyadic deontic logic system E [7] is sound and complete with
respect to the class of all preference models.

Semantics (Kratzer’s model KD) A Kratzer model is a structure
M = ⟨W, f, g, v⟩, where f and g are functions from worlds to set of propo-
sitions. f is the modal base function, and g is the ordering source function.
g ranks the worlds as follows:

s ⪰g(w) t iff, for all X ∈ g(w), if t ∈ X, then s ∈ X.
(s ≻g(w) t iff s ⪰g(w) t and t ⪰̸g(w) s)

Best worlds are defined as usual: Bestg(w)(X) = {s ∈ X : ¬∃t ∈ X
(t ≻g(w) s)}. In this article, Kratzer models are restricted to models with
the stoppered property, a form of the limit assumption. A Kratzer model is
stoppered if and only if for all w if s ∈ ⋂

f(w) then s ∈ Bestg(w)(
⋂
f(w)) or

∃t. t ∈ Bestg(w)(
⋂
f(w)) ∧ t ⪰g(w) s (moreover, we can add the consistency

condition
⋂
f(w) ̸= ∅).
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The satisfaction relation for the monadic obligation [5] is defined as follows:

M,w |=KD ⃝φ if and only if Bestg(w)(
⋂
f(w)) ⊆ V (φ)

and the dyadic obligation [5] as follows:

M,w |=KD ⃝(ψ/φ) if and only if Bestg(w)(V (φ) ∩⋂
f(w)) ⊆ V (ψ)

See Fact 2 and Fact 3 [5] for the connection between Kratzer’s model KD and
stadard deontic models.

3 Implementation and Experiments

The semantical embedding of Kratzer models in HOL is similar to Åqvist prefer-
ence models. See the previous work [3] for the implementation and experiment
of Åqvist preference models in Isabelle/HOL.

3.1 Kratzer models in HOL

Kratzer’s system logical operators are implemented in Isabelle/HOL (cf. Fig. 1).
• On line 2, the type i for possible words is introduced.
• On line 3, the type τ for formulas is introduced.
• On line 3, a designated constant for the actual world (aw) is introduced.
• Lines 4–10 define the Boolean connectives in the usual way.
• On line 12, the constants f and g are introduced. f encodes the modal
base function and g the ordering source.

• Lines 14 – 17 define the ordering ⪰g(w) (and ≻g(w)).
• On line 19, the factual background

⋂
f(w) in a world w is introduced.

Fig. 1. Kratzer models in Isabelle/HOL
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4 Experiments in Kratzer Modal Semantics Using Isabelle/HOL

Kratzer monadic and dyadic deontic operators are defined in HOL and
consequently in Isabelle/HOL (cf. Fig. 2).

• Lines 21 – 22, Best worlds are defined based on the ordering source g(w).
• Lines 24 – 26 define stoppered property.
• Lines 28 – 29, the monadic obligation operator is defined.
• On line 31, the infex operator ∩ operator is introduced.
• Lines 33 – 34, the dyadic obligation operator is defined.

Fig. 2. Monadic and dyadic obligations in Isabelle/HOL

3.2 Åqvist Preference models ⇒ Kratzer models

For translating the preference models ⟨W,⪰, V ⟩ to Kratzer models ⟨W, f, g, v⟩
the modal base and ordering source are defined as follows (cf. Fig. 3):

• The modal base for the current world is defined as the most preferable
accessible worlds i.e.

⋂
f(w) = opt⪰(R(w)). It is used the abbreviation

R(w) = {s|s ⪰ w}.
• It is used in two ways for defining the ordering sources:
· Normality source: gn(w) = {X : opt⪰(R(w)) ⊆ X}
· Practicality source: gp(w) = {X : opt⪰(R(w)) ∩X ̸= ∅}

The translation is non-trivial, since the modal base function is not empty;
and it is different from the Lewis’s translation of ordering semantics to premise
semantics [6]. The model translation characterizes Åqvist preference models
[7] within the Kratzerian framework for conditional obligation.

• On line 35, the modal base
⋂
f is defined.

• On line 37, the normality ordering source gn(w) is defined.
• On line 38, the practicality ordering source gp(w) is defined.
• Lines 40 – 43, define the normality ranking relation ⪰gn(w) (and ≻gn(w)).
• Lines 45 – 48, define the practicality ranking relation ⪰gp(w) (and ≻gp(w)).
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Fig. 3. Normality and practicality ordering sources in Isabelle/HOL

Two different monadic and dyadic deontic operators are defined based on
the two mentioned ordering sources and the modal base (cf. Fig. 4).

• Lines 50 – 53, define Best worlds based on the normality ordering source
gn(w) and practicality ordering source ⪰gp(w).

• Lines 55 – 60, define stoppered property for the normality and practicality
ordering sources.

• Lines 62 – 65, define monadic obligation operators based on the normality
and practicality ordering sources.

• Lines 67 – 70, define dyadic obligation operators based on the normality
and practicality ordering sources.

Fig. 4. Deontic operators based on the normality/practicality sources in Isabelle/HOL
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3.3 Results

Isabelle/HOL shows that the dyadic operator defined in Åqvist Preference mod-
els, when the condition is restricted by the modal base or factual backgrounds⋂
f(aw), is equal to the both newly introduced dyadic operators in Kratzer

models (⌊⌋≀ denotes satisfaction in the actual world (aw)) (cf. Fig. 5).

Fig. 5. Conditional obligations in Åqvist preference models and Kratzer models

The experiments show that the following semantical relations holds, for a
given preference model and the two mentioned translated Kratzer models.

opt⪰(V (φ) ∩⋂
f(aw)) ⊆ V (ψ)⇐⇒ Bestgn(aw)(V (φ) ∩⋂

f(aw)) ⊆ V (ψ)
opt⪰(V (φ) ∩⋂

f(aw)) ⊆ V (ψ)⇐⇒ Bestgp(aw)(V (φ) ∩⋂
f(aw)) ⊆ V (ψ)

Hence, it is derived the semantical relation between normality and practi-
cality ordering sources based on the given preference relation as follows:

Bestgn(aw)(V (φ) ∩ opt⪰(⪰ (aw))) ⊆ V (ψ)
⇕

Bestgp(aw)(V (φ) ∩ opt⪰(⪰ (aw))) ⊆ V (ψ)

4 Conclusions

The shallow semantical embedding of Kratzer models in higher-order logic is
presented. The LogiKEy methodology is used to compare conditional obliga-
tion operators in Åqvist preference models and Kratzer models. It is interesting
to provide a mathematical explanation for this comparison.

Correspondence between ordering semantics and premise semantics is shown
by Lewis [6]. The experiments in this article aim to extend Lewis results for de-
composing a preference relation to a two-component premise semantics (modal
base + ordering source). The experiments could investigate a bridge between
preference aggregation in computational social choice theory and conditionals
in Linguistics.
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Abstract

In this paper we introduce weighted graphs and as a special case of it, similarity
graphs, which can be used to model similarity between epistemic objects. We study
epistemic logics interpreted over weighted models, their correspondence to classical
epistemic logics, sound and complete axiomatizations, as well as the computational
complexity results for the validity and model checking problems.

Keywords: epistemic logic, weighted model, similarity model, correspondence,
completeness, complexity.

1 Introduction

While similarity is a notion closely related to knowledge, it has not played
an important role or been explicitly involved in the classical representation of
knowledge in the area of epistemic logic [9,6,11]. In recent years, there have
been studies and developments in this area in the relationship between them
[5,12]. The technical framework can be traced back to that of weighted modal
logics [10,8].

In this paper, we borrow the notion of similarity from the area of data min-
ing, where it is mainly introduced to measure the alikeness of two data objects.
While in data mining, distance and similarity measures are typically concrete
algorithms designed for concrete scenarios, such as distance and similarity be-
tween matrices, texts, graphs, etc. (see e.g. [1, Chapter 3]), there is literature
defining general properties of distance and similarity measures. For instance,

1 Corresponding author. The author acknowledges funding support by the National Social
Science Fund of China (Grant No. 20&ZD047).
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in [13], it writes that the following properties typically hold for s(x, y) – the
similarity between points x and y – which is a binary numerical function from
two data objects to the range [0, 1]:

• Positivity: s(x, y) = 1 only if x = y;

• Symmetry: s(x, y) = s(y, x) (for all x and y).

Yet we are not ultimately interested in the measures of similarity, but rather
modeling it and derive from it the notion of knowledge. We achieve this by
interpreting knowledge with a type of models which we call weighted models
(and a special type of it called similarity models). Intuitively, “a knows φ”
(Kaφ) is understood as “φ is true in all states that look similar in a’s eyes to
the factual state”. A “state” here can be understood as a data object which
is the focus of data mining, but can also be regarded as any epistemic object,
possible situation, etc. We generalize the similarity function by replacing its
range [0, 1] with an arbitrary set of epistemic abilities. In our settings, the
degrees of similarity may not be compared or ordered.

We study epistemic logics interpreted over weighted models and similarity
models. Correspondence is found between these logics and the classical multi-
modal logic Km and KBm, respectively. Then the classical axiomatization for
Km (and KBm respectively) becomes an axiomatization for its correspondent
in this paper as well. The soundness and completeness of the axiomatizations,
and the validity problem for these logics, are therefore achieved via the cor-
respondence. We show in addition that the model checking problem for these
logics are in P.

Our work is different from the recent developments of epistemic logics in-
terpreted via the notions of similarity/distance, e.g., [5,12], also in that we
use the standard language of epistemic logic, while the other solutions usually
make explicit use of the degree of (dis)similiarity in the language (e.g., with a
sentence Kr

aφ meaning “a knows φ under the strength of effort or confidence
r”).

The structure of the paper is as follows. We introduce and illustrate
weighted graphs and similarity graphs in Section 2. Epistemic logic over
weighted models (ELW) is introduced in Section 3, in which we study the
correspondence of the logic to the classical epistemic logic, a sound and com-
plete axiomatization for ELW, and the computational complexity results of the
validity and model checking problems for ELW. We study similar problems for
epistemic logic over similarity models (ELS). We conclude in the last section.

2 Weighted Graphs

In this section we introduce two types of weighted graphs, in which weights
are intended to stand for the areas of similarity/uncertainty between epistemic
objects – such as data, areas of interest, etc. – which are characterized by nodes
of the graphs. Weighted graphs will be used in the next section for interpreting
the classical epistemic language.

Definition 2.1 A weighted graph is a pair (W,A,E), where
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• W is a nonempty set of states or nodes, called the domain;

• A is an arbitrary set of abstract epistemic abilities, which can be empty,
finite or infinite depending on the context;

• E : W ×W → ℘(A), called an edge function, maps every pair of states to
a set of epistemic abilities, meaning the two states are indistinguishable for
persons with only these epistemic abilities.

Here we adopt a very general definition of epistemic abilities which are not
necessarily (though possibly) ordered.

Definition 2.2 A weighted graph (W,A,E) is called a similarity graph if the
following hold for all s, t ∈W :

(i) Positivity: E(s, t) = A implies s = t, and

(ii) Symmetry: E(s, t) = E(t, s).

In the above definition, the edge function E is treated as presenting the
similarity relation between the states. Similarities are treated to be objective
here, in the sense that it does not change per agent. The conditions positivity
and symmetry are generalizations of typical ones for characterizing similarity
between data objects (cf. e.g., [13]). 2

Example 2.3 Three authors work together on a paper that consists of four
main parts, the introductory and motivational part (e1), introducing and defin-
ing new logics (e2), axiomatizing the logics (e3) and calculating complexity of
the logics (e4). The authors hold different opinions towards the presentation of
the paper, and are bad at synchronizing their work. As a result, five variants
of the paper, s1, s2, . . . , s5, come out during the process of collaboration. Hav-
ing different texts does not necessarily lead two variants being really different –
they may mean similarly, but may also have subtle and/or essential differences.

Consider a situation that:

• Variants s1, s2, s3 and s5 are essentially the same in the part e1, while s4 is
different in this part;

• Variants s1 and s3 are essentially the same in the parts e2 and e3, while s2,
s4 and s5, being the same also in the two parts, have differences from s1 and
s3 in each of the two parts;

• s1, s2 and s3 are essentially the same in e4, but are different from s4 and s5
which keep the same in e4.

The situation in Example 2.3 can be formalized with the similarity graph
G = (W,A,E), where:

• W = {s1, s2, s3, s4, s5};

2 An implicit condition that is typically presumed is the converse of positivity, i.e., E(s, t) =
A if s = t. This will give us reflexivity of the graphs, which can be characterized by the valid
sentences T (Kaφ → φ). We leave this condition out of the paper as it is not put forward
explicitly in the literature.
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s5e1

s2
e1,e4

e1,e2,e3

e1,e4

s3

e1

s1

e1,e2,e3,e4

s4

e2,e3 e2,e3,e4

Fig. 1. Illustration of a similarity graph for Example 2.3. Reflexive edges are all
omitted.

• A = {e1, e2, e3, e4};
• E is such that E(s1, s2) = E(s2, s3) = {e1, e4}, E(s1, s3) = {e1, e2, e3, e4},
E(s1, s4) = E(s3, s4) = ∅, E(s1, s5) = {e1}, E(s2, s4) = {e2, e3}, E(s2, s5) =
{e1, e2, e3}, E(s3, s5) = {e1}, E(s4, s5) = {e2, e3, e4}, and is reflexive (i.e.,
for all x ∈ W , E(x, x) = A) and symmetric (i.e., for all x, y ∈ W , E(x, y) =
E(y, x)).

The similarity graph G is illustrated in Figure 1 in a usual way.

3 Epistemic Logic over Weighted Models (ELW)

In this section we introduce the minimal epistemic logic over weighted models
(ELW). We show that there are reductions between ELW and the standard
multimodal logic Km. As a result, the standard axiomatization Km for Km

is a sound and complete axiomatization for ELW as well. We also show that
the validity problem for ELW is PSPACE complete and the model checking
problem for ELW is in P.

3.1 Syntax and semantics

The language we use is the standard language of multi-agent epistemic logic
[6,11]. Let Prop be a countable set of propositional variables and Ag a finite
set of agents. These will be the default setting throughout the paper.

Definition 3.1 The formulas of the default language is given inductively as
follows:

φ ::= p | ¬φ | (φ→ φ) | Kaφ

where p ∈ Prop and a ∈ Ag. Other boolean connectives, such as conjunction
(∧), disjunction (∨) and equivalence (↔) are treated as defined operators in a
usual way. Kaφ is intended to stand for “agent a knows φ”.

We shall interpret the language using weighted models, which is a quintuple
(W,A,E,C, ν) such that:

• (W,A,E) forms a weighted graph,

• C : Ag→ ℘(A) assigns every agent a set of epistemic abilities it obtains, and

• ν : W → ℘(Prop) a valuation that assigns every state a set of propositional
variables that are true in it.
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Fig. 2. Illustration of a weighted model (similarity model) for Example 3.2.

Example 3.2 (Continuation of Example 2.3) The three authors are named a,
b and c. Author a is good at coming up with new ideas (e1), introducing and
defining new logics (e2) and axiomatizing logics (e3). Author b has expertise
in e2, e3 and calculating complexity of logics e4. Author c is good at e4 only.
It is important for the authors to verify whether the paper truly presents what
they have planned to write, but it is hard for each of them to make a judgment
for the parts outside their areas of expertise. Four propositions, p1, p2, p3 and
p4, represent that the parts e1 to e4 properly put forward the planned content,
respectively.

The fact is that the introductory section (e1) and the introduction of logics
(e2) of the variants s1 and s3 are well written – truly presents the expected
content. Also well written are the parts e1 and e3 of s2, the parts e3 and e4 of
s4, and the parts e1, e3 and e4 of s5. The rest contain mispresentations.

Example 3.2 can be formalized in the weighted model (in fact, a similarity
model which we will study in Section 4) M = (W,A,E,C, ν) where:

• (W,A,E) form the similarity graph presented below Example 2.3;

• C is such that C(a) = {e1, e2, e3}, C(b) = {e2, e3, e4} and C(c) = {e4};
• ν is such that ν(s1) = ν(s3) = {p1, p2}, ν(s2) = {p1, p3}, ν(s4) = {p3, p4}
and ν(s5) = {p1, p3, p4}.

Figure 2 illustrates the weighted model M introduced above.
Satisfaction of formulas in a weighted model is given as follows.

Definition 3.3 Given a formula φ, a weighted modelM = (W,A,E,C, ν) and
a state s ∈W , we say φ is true or satisfied at s in M , denoted M, s |= φ, if the
following recursive conditions are met:

M, s |= p ⇐⇒ p ∈ ν(s)
M, s |= ¬ψ ⇐⇒ not M, s |= ψ
M, s |= (ψ ∧ χ) ⇐⇒ M, s |= ψ and M, s |= χ
M, s |= Kaψ ⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then M, t |= ψ.

In the above definition, the interpretation of Kaψ includes a condition
“C(a) ⊆ E(s, t)” which intuitively means that “agent a, with his abilities,
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6 Epistemic Logics over Weighted Graphs

cannot discern between the states s and t”. So the formula Kaψ intuitively
says that ψ is true in all states t that a cannot discern (between t and the
factual state s).

In Example 3.2, we have the following truths:

• M, s2 |= Kap3, meaning that when the variant s2 is at hand, a knows that
its third part (e3) is well written.

• M, s4 |= ¬Kbp1 ∧ ¬Kb¬p1. When b sees the variant s4, he does not know
whether its introductory section (e1) is well written.

• M, s3 |= Kc(Kap3 ∨ Ka¬p3). When c proofreads the paper s3, she knows
that a knows whether its third part is well written.

Moreover, it is also possible to verify global truths at the model level:

• M |= (Kap1∨Ka¬p1)∧ (Kap2∨Ka¬p2)∧ (Kap3∨Ka¬p3). No matter which
variant the author a sees, he always knows whether its first three parts are
well written.

A formula is called valid if and only if it is satisfied at all states of all
weighted models. We refer to the resulting logic epistemic logic over weighted
models (ELW for short).

3.2 Correspondence and completeness

We assume familiarity with standard multi-agent epistemic logic interpreted
over relational models (a.k.a. Kripke models). In short, a relational model
for multi-agent epistemic model is a tuple N = (W,R, V ) such that (i) W is
the domain, (ii) R : Ag → ℘(W ×W ) assigns every agent a binary relation
R(a) on W (which does not need to be an equivalence relation, but just any
binary relation will do), and (iii) V : Prop→ ℘(W ) assigns every propositional
variable a set of states. The satisfaction of a given formula φ at a state s in N
(denoted N, s ⊩ φ) is defined just as in standard modal logic (cf., e.g., [2]). In
particular, N, s ⊩ Kaφ iff for all t ∈W , if (s, t) ∈ R(a) then N, t ⊩ φ.

We observe that ELW is reducible to the standard multi-agent epistemic
logic over relational models. We show this by the following definition and
lemma.

Definition 3.4 We define a translation ·r from weighted models to relational
models, such that for a given weighted model M = (W,A,E,C, ν), Mr is a
relational model (W,R, V ) with the same domain and:

• R is such that for every a ∈ Ag, R(a) = {(s, t) ∈W | C(a) ⊆ E(s, t)};
• V is such that for every p ∈ Prop, V (p) = {s ∈W | p ∈ ν(s)}.

Lemma 3.5 For any formula φ, any weighted model M and any state s of M ,
M, s |= φ iff Mr, s ⊩ φ.

Proof. By induction on φ. Let M = (W,A,E,C, ν) be any weighted model
andMr = (W,R, V ) its translation. The atomic case is easy by the definition of
the translation. Boolean cases follow easily from the definition of satisfaction.
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The only interesting case here is that for the Ka operator:

M, s |= Kaψ ⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then M, t |= ψ
⇐⇒ for all t ∈W , if (s, t) ∈ R(a) then M, t |= ψ
⇐⇒ for all t ∈W , if (s, t) ∈ R(a) then Mr, t ⊩ ψ (IH)
⇐⇒ Mr, s ⊩ Kaψ.

The induction step holds, and so we achieve the lemma. 2

Less obviously, we can also reduce the standard multi-agent epistemic logic
over relational models to ELW, by playing a tiny trick on the set of abstract
abilities.

Definition 3.6 We define a translation ·w from relational models to weighted
models, such that for a given relational model N = (W,R, V ), Nw is a weighted
model (W,Ag, E, C, ν) with the same domain and:

• E is such that for all s, t ∈W , E(s, t) = {a ∈ Ag | (s, t) ∈ R(a)},
• C is such that for all a ∈ Ag, C(a) = {a}, and
• ν is such that for all s ∈W , ν(s) = {p ∈ Prop | s ∈ V (p)}.

In the the translated model Nw of the above definition, the collection of
epistemic abilities is set to be Ag. We use agents as labels of edges, which can
be understood intuitively to be that an agent cannot distinguish the ongoing
state from current state, with its epistemic abilities considered as a whole.

In the following lemma, we show that the above defined translation preserves
truth.

Lemma 3.7 For any formula φ, any relational model N and any state s of
N , N, s ⊩ φ iff Nw, s |= φ.

Proof. Let N = (W,R, V ) and its translation Nw = (W,Ag, E, C, ν). We
show the lemma by induction on φ. The atomic and boolean cases are easy to
verify. Here we only show the case for the knowledge operator:

N, s ⊩ Kaψ ⇐⇒ for all t ∈W , if (s, t) ∈ R(a) then N, t ⊩ ψ
⇐⇒ for all t ∈W , if a ∈ E(s, t) then N, t ⊩ ψ
⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then N, t ⊩ ψ
⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then Nw, t |= ψ (IH)
⇐⇒ Nw, s |= Kaψ

This finishes the proof. 2

Let Km be the well-known axiomatization for modal logic (multi-agent
version with each Ka a box operator; cf. [2]).

Theorem 3.8 Km is sound and strongly complete with respect to the class of
all weighted models. Namely,

• (Soundness) for any formula φ, if ⊢Km φ, then φ is valid in ELW;

• (Completeness) for any formula φ and any set Φ of formulas, if φ is a logical
consequence of Φ in ELW (denoted Φ |=ELW φ), then Φ ⊢Km φ.
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8 Epistemic Logics over Weighted Graphs

Proof. Soundness. Suppose ⊢Km φ. For any weighted model M and any
state s of M , it suffices to show that M, s |= φ. By the soundness of Km over
relational models, Mr, s ⊩ φ. It then follows from Lemma 3.5 that M, s |= φ,
as we wanted to show.

Completeness. Suppose Φ ⊬Km φ. By the completeness of Km over rela-
tional models, there exists a relational model N and a state s of N such that
N, s ⊩ ψ for all ψ ∈ Φ and N, s ⊩ ¬φ. By Lemma 3.7, Nw, s |= ψ (for all
ψ ∈ Φ) and Nw, s |= ¬φ. It follows that Φ ̸|=ELW φ. 2

3.3 Computational complexity

In this section we study the complexity of model and validity checking problems
for ELW.

As a corollary of Theorem 3.8, whether a formula φ is valid is equivalent
to the question of whether it is a theorem of Km. This is in turn equivalent to
the question whether φ is valid in standard multi-agent modal logic Km, which
is known to be PSPACE complete [7]. So we have the following theorem.

Theorem 3.9 The validity checking problem for ELW is PSPACE complete.

We then move our focus to the model checking problem for ELW. We first
define the measure of input.

Definition 3.10 The length of a formula φ, denoted |φ|, is defined as usual:
the length of φ is the number of all the propositional variables and boolean
and modal operators that occur in φ.

The size of a weighed modelM = (W,A,E,C, ν), denoted |M |, with respect
to a given formula φ, is the sum of the following:

• |W |, i.e., the cardinality of the domain,

• |A|, i.e., the cardinality of the set of epistemic abilities,

• |E|, defined to be |W |2 · |A|,
• |C| w.r.t. φ, which is defined as |φ| · |A|, and
• |ν| w.r.t. φ, defined to be |W | · |φ|.

Finally, given a weighted model M and formula φ, the size of the input is
|M |+ |φ|.

Theorem 3.11 The model checking problem for ELW is in P.

Proof. Given a weighted model M = (W,A,E,C, ν), a state s ∈ W and a
formula φ, we need to decide whether M, s |= φ. In order to do so, we present
an algorithm (Algorithm 1) for calculating V al(M,φ), the truth set of φ in M ,
i.e., {s ∈ W | M, s |= φ}. Model checking for M, s |= φ is thus reduced to the
membership testing in V al(M,φ), which takes at most |W | steps in addition
to the time costs on computing V al(M,φ).

It is not hard to verify that V al(M,φ) is indeed the set of states of M at
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Algorithm 1 Computing Truthset

Require:
M = (W,A,E,C, ν) is a weighted model
φ is a formula

1: function V al(M,φ)
2: if φ = p then return {s ∈W | p ∈ ν(s)}
3: else if φ = ¬ψ then return W \ V al(M,ψ)
4: else if φ = ψ → χ then return (W \ V al(M,ψ)) ∪ V al(M,χ)
5: else if φ = Kaψ then
6: initialize tmpV al = ∅
7: for all t ∈W do
8: initialize n = true
9: for all u ∈W do

10: if C(a) ⊆ E(t, u) and u ̸∈ V al(M,ψ) then n← false
11: if n = true then tmpV al← tmpV al ∪ {t}
12: return tmpV al
13: ▷ This returns {t ∈W | ∀u ∈W : C(a) ⊆ E(t, u)⇒ u ∈ V al(M,ψ)}

which φ is true. In particular, in the case for the Ka operator,

M, s |= Kaψ ⇐⇒ ∀u ∈W : C(a) ⊆ E(s, u)⇒M,u |= ψ
⇐⇒ ∀u ∈W : C(a) ⊆ E(s, u)⇒ u ∈ V al(M,ψ) (IH)
⇐⇒ s ∈ {t ∈W | ∀u ∈W : C(a) ⊆ E(t, u)⇒ u ∈ V al(M,ψ)}

The cost for computing V al(M,φ) is in polynomial time. In particular,
in the case for Kaψ, there are two while-loops over W , and checking C(a) ⊆
E(t, u) costs at most |A| steps, and the membership checking u /∈ V al(M,ψ)
takes at most |W | steps; this costs |W |2 · (|A| + |W |). The algorithm for
computing V al(M,φ) calls itself recursively, but only for a subformula of φ,
and the maximum number of recursion is bounded by |φ|, i.e., the length of φ.
So the total time cost for computing V al(M,φ) is |W |2 · (|A|+ |W |) · |φ|.

Considering the input size, we find that the total time cost is within O(n2).
So the theorem holds. 2

4 Epistemic Logic over Similarity Models (ELS)

In this section we study epistemic logic over similarity models (ELS for short).
That is, the formulas are interpreted with weighted models in which the binary
relations between states stand for the similarity relations.

Let KBm be the axiomatization achieved by adding an extra axiom B (i.e.,
φ→ Ka¬Ka¬φ) to Km, which is known to be a sound and strongly complete
axiomatization for the standard epistemic logic interpreted with the class of all
relational models in which the binary relation is symmetric (henceforth called
symmetric relational models). We now show that KBm is also a sound and
strongly complete axiomatization for ELS.

Lemma 4.1 The following results hold for the translations:
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10 Epistemic Logics over Weighted Graphs

(i) Given a similarity model M , the translation Mr (see Definition 3.4) is a
symmetric relational model;

(ii) Given a symmetric relational model N , the translation Nw (see Defini-
tion 3.6) is a weighted model satisfying symmetry (cf. Definition 2.2).

Proof. (i) Let M = (W,A,E,C, ν) be a similarity model, and its translation
Mr = (W,R, V ). For any a ∈ Ag and s, t ∈W , we have:

(s, t) ∈ R(a) ⇐⇒ C(a) ⊆ E(s, t) (Def. 3.4)
⇐⇒ C(a) ⊆ E(t, s) (by symmetry, see Def. 2.2)
⇐⇒ (t, s) ∈ R(a). (Def. 3.4)

Thus Mr is a symmetric relational model.
(ii) Let N = (W,R, V ) be a symmetric relational model, and its translation

Nw = (W,Ag, E, C, ν). For any a ∈ Ag and s, t ∈W , we have:

a ∈ E(s, t) ⇐⇒ (s, t) ∈ R(a) (Def. 3.6)
⇐⇒ (t, s) ∈ R(a) (since R is symmetric)
⇐⇒ a ∈ E(t, s). (Def. 3.6)

Hence Nw is a weighted model satisfying symmetry. 2

Theorem 4.2 KBm is sound and strongly complete with respect to the class
of all similarity models. Namely,

• (Soundness) for any formula φ, if ⊢KBm φ, then φ is valid in ELS;

• (Completeness) for any formula φ and any set Φ of formulas, if φ is a logical
consequence of Φ in ELS (denoted Φ |=ELS φ), then Φ ⊢KBm φ.

Proof. Soundness. Given a formula φ, a similarity model M and a state s of
M , suppose ⊢KBm φ. It follows from Lemma 4.1(i) that Mr is a symmetric
relational model. By the soundness of KBm over symmetric relational models,
we have Mr, s ⊩ φ. By Lemma 3.5, we have M, s |= φ.

Completeness. For a formula φ and a set Φ of formulas, suppose Φ ⊬KBm φ.
By the completeness of KBm over symmetric relational models, we have a
symmetric relational model N and a state s of it such that N, s ⊩ ψ (for all
ψ ∈ Φ) and N, s ⊩ ¬φ. By Lemmas 4.1(ii) and 3.7, the translation model Nw

is a symmetric weighted model and Nw, s |= ψ (for all ψ ∈ Φ) and Nw, s |= ¬φ.
Suppose Nw = (W,A,E,C, ν), and define M = (W,A∪ {b}, E, C, ν) with b

a new epistemic ability (i.e., b /∈ A). M is a similarity model, since positivity
holds as there cannot be any s, t ∈ W such that E(s, t) = A ∪ {b} and s ̸= t.
Moreover, we can show that for any formula χ, Nw, s |= χ iff M, s |= χ.
Therefore, Φ ̸|=ELS φ. 2

From the proof of Theorem 4.2, we also get the following.

Corollary 4.3 KBm is sound and strongly complete with respect to the class
of all symmetric weighted models.

Finally we introduce the computational complexity results for ELS.

52



Liang and Wáng 11

Theorem 4.4 (i) The validity problem for ELS is PSPACE complete.

(ii) The model checking problem for ELS is in P.

Proof. (i) By Theorem 4.2, whether a formula φ is valid in ELS is equivalent
to the question of whether it is a theorem of KBm. This is in turn equivalent
to the question whether φ is valid in standard multimodal logic KBm, which is
known to be PSPACE hard [3] (in fact it is shown there that the unimodal logic
KB is PSPACE complete). The PSPACE upper bound can be shown using a
similar method to that presented in [7] for the multimodal logic Km. We leave
a detailed proof in a technical appendix.

(ii) The model checking problem for ELS is a subproblem of that for ELW.
While the latter is in P (Theorem 3.11), so is the former. 2

5 Conclusion

We introduced epistemic logics over weighted models and similarity models,
showed by reductions that the axiomatizations Km and KBm are sound and
complete for them respectively, and identified the computation complexity re-
sults for the model and validity checking problems for these logics. For future
work we are interested in more sophisticated conditions on the similarity rela-
tion, such as introduced in [4]. It is also useful to compare our framework with
existing ones, such as those presented in [12,5].
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A Appendix

We fill in the gap in Theorem 4.4(i), namely, we prove the PSPACE upper
bound of the validity problem for ELS. The method is adapted from [7] where
tableaux are introduced to show the PSPACE upper bound of the validity
problem for the multimodal logic Km.

Recall that Ag is the (finite) set of agents we are concerned with, and here
we are working with the classical multi-modal language (where for each a ∈ Ag,
the operator Ka is a standard modal box operator).

We first introduce the notions of tableaux (Definitions A.1–A.3), and then
show that a formula φ is KBm satisfiable if and only if there is an open tableau
for φ (Lemma A.4). Then we introduce an algorithm (Algorithm 3) for comput-
ing whether there is an open tableau extending a given pre-tableau. This gives
us a decision procedure for the KBm satisfiability problem (also by Lemma A.4)
and we show that the decision procedure is bounded in polynomial space (The-
orem A.6).

Definition A.1 A pre-tableau is a pair (W,R,L), where:

• W is a nonempty set of states;

• R : Ag → ℘(W ×W ) is a function maping every agent to a binary relation
on W ;

• L is a function mapping every state to a set of formulas.

Definition A.2 A triple (W,R,L) is called an open tableau, if is a pre-tableau
such that for any s, t ∈W , a ∈ Ag and any formulas φ and ψ:

(i) If (s, t) ∈ R(a), then (t, s) ∈ R(a);
(ii) If ¬¬φ ∈ L(s), then φ ∈ L(s);
(iii) If (φ→ ψ) ∈ L(s), then ¬φ ∈ L(s) or ψ ∈ L(s);
(iv) If ¬(φ→ ψ) ∈ L(s), then φ ∈ L(s) and ¬ψ ∈ L(s);
(v) If Kaφ ∈ L(s) and (s, t) ∈ R(a), then φ ∈ L(t);
(vi) If ¬Kaφ ∈ L(s), then there exists t ∈ W such that (s, t) ∈ R(a) and

¬φ ∈ L(t);
(vii) It is not the case that both φ and ¬φ are in L(s).

Definition A.3 Let φ be a formula, an open tableau for φ is a tuple
(W,R,L, s), where (W,R,L) forms an open tableau, s ∈W and φ ∈ L(s).

Now we show that an open tableau for a formula actually witnesses the
satisfiability of the formula.

Lemma A.4 Let φ be a formula. There exists an open tableau for φ, if and
only if, φ is KBm satisfiable.

Proof. From left to right. Let (W,R,L, s) be an open tableau for φ. Let
M = (W,R, V ) be a relational model, such that for every p ∈ Prop, V (p) =
{s ∈ W | p ∈ L(s)}. It is not hard to verify that M is a symmetric relational
model.
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Now we prove that for any t ∈W and any formula ψ,

• ψ ∈ L(t) implies M, t ⊩ ψ, and

• ¬ψ ∈ L(t) implies M, t ⊩ ¬ψ.
We show it by induction on ψ. The atomic and boolean cases are easy to verify
by the definition of M and definition A.2. Here we only show the case for the
modal operator:

Kaψ ∈ L(t) =⇒ for all t′ ∈W , if (t, t′) ∈ R(a) then ψ ∈ L(t′)
=⇒ for all t′ ∈W , if (t, t′) ∈ R(a) then M, t′ ⊩ ψ (IH)
=⇒ M, t ⊩ Kaψ

¬Kaψ ∈ L(t) =⇒ there is t′ ∈W s.t. (t, t′) ∈ R(a) and ¬ψ ∈ L(t′)
=⇒ there is t′ ∈W s.t. (t, t′) ∈ R(a) and M, t′ ⊩ ¬ψ (IH)
=⇒ M, t ⊩ ¬Kaψ.

From right to left. Suppose φ is KBm satisfiable. Then there is a symmetric
relational model M = (W,R, V ) and a states s ∈ W such that M, s ⊩ φ. Let
(W,R,L, s) be a pre-tableau such that for every t ∈W , L(t) = {χ |M, t ⊩ χ}.
It is not hard to verify that (W,R,L, s) satisfies Definitions A.2 and A.3, hence
is an open tableau for φ. 2

Next we introduce an algorithm for deciding whether a pre-tableau is ex-
tendable to an open tableau, in the sense that it tells us whether for a given
pre-tableau (W,R,L), there is an open tableau (W ′, R′, L′) such thatW ⊆W ′,
R ⊆ R′ and for every s ∈ W , L(s) ⊆ L′(s). The algorithm is presented in Al-
gorithms 2 and 3, where a function Open is introduced to determine whether
a pre-tableau is extendable to an open tableau. By applying the above lemma
(Lemma A.4), the algorithm will play an essential role in deciding whether a
formula is KBm satisfiable.

Algorithm 2 Generating witnessing states for modal diamonds

Require:
(W,R,L) is a pre-tableau
s ∈W
u /∈W
φ = ¬Kaψ where a ∈ Ag and ψ is a formula

1: function Grow(W,R,L, s, φ)
2: for all t ∈W do
3: if (s, t) ∈ R(a) and ¬ψ ∈ L(t) then return false
4: W ←W ∪ {u}
5: R(a)← R(a) ∪ {(s, u)}
6: L(u)← {¬ψ} ∪ {χ | Kaχ ∈ L(s)}
7: return W,R,L

Lemma A.5 For any pre-tableau (W,R,L), (i) if Open(W,R,L) returns true
then the pre-tableau is extendable to an open tableau, and (ii) if Open(W,R,L)
returns false then the pre-tableau is not extendable to an open tableau.
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14 Epistemic Logics over Weighted Graphs

Algorithm 3 Deciding whether a pre-tableau is extendable to an open tableau

Require: (W,R,L) is a pre-tableau
1: function Open(W,R,L)
2: for all s ∈W do
3: for all a ∈ Ag do
4: if (s, t) ∈ R(a) and (t, s) /∈ R(a) then
5: R(a)← R(a) ∪ {(t, s)}
6: return Open(W,R,L)
7: for all s ∈W do
8: for all φ ∈ L(s) do
9: if φ = ¬¬ψ and ψ /∈ L(s) then

10: L(s)← L(s) ∪ {ψ}
11: return Open(W,R,L)
12: else if φ = (ψ → χ) and ¬ψ /∈ L(s) and χ /∈ L(s) then
13: L′ ← L
14: L′′ ← L
15: L′(s)← L′(s) ∪ {¬ψ}
16: L′′(s)← L′′(s) ∪ {χ}
17: if Open(W,R,L′) = true or Open(W,R,L′′) = true then
18: return true
19: else
20: return false
21: else if φ = ¬(ψ → χ) and [ψ ̸∈ L(s) or ¬χ ̸∈ L(s)] then
22: L(s)← L(s) ∪ {ψ,¬χ}
23: return Open(W,R,L)
24: for all s ∈W do
25: for all t ∈W do
26: for all a ∈ Ag do
27: for all φ ∈ L(s) do
28: if φ = Kaψ and (s, t) ∈ R(a) and ψ ̸∈ L(t) then
29: L(t)← L(t) ∪ {ψ}
30: return Open(W,R,L)
31: for all s ∈W do
32: for all a ∈ Ag do
33: for all φ ∈ L(s) do
34: if φ = ¬Kaψ then
35: if Grow(W,R,L, s, φ) = false then continue
36: return Open(Grow(W,R,L, s, φ))
37: for all s ∈W do
38: for all φ ∈ L(s) do
39: if ¬φ ∈ L(s) then
40: return false
41: return true
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Proof. Let (W,R,L) be a pre-tableau. We prove the lemma by induction on
the number n of recursive calls of Algorithm 3 itself (where the function Grow
is presented in Algorithm 2).

Basic step. If n = 0, then the algorithm does not recursively call itself. So
the input pre-tableau (W,R,L) does not update during the process. In this
case, either (W,R,L) satisfies all the conditions in Definition A.2, making itself
an open tableau (so the process will pass through the loops and return true
by the last line), or it reaches Line 36 of Algorithm 3 and returns false in the
loop (in this case there are φ and ¬φ in L(s) so that there are no open tableau
extending (W,R, V )). The lemma holds in both cases.

Inductive step. Suppose the lemma holds whenever Open(W,R,L) recur-
sively calls itself less than k times. Suppose now Open(W,R,L) recursively
calls itself k times. It suffices to show that the lemma holds as well.

Case (i). The kth recursive call returns true. There must be a pre-tableau
(W ′, R′, L′) such that Open(W ′, R′, L′) is called during the recursive processes
and it returns true. (For the case of implication, it generate two subcases, but
at least one of them returns true.) By the induction hypothesis, (W ′, R′, L′)
is extendable to an open tableau, so is (W,R,L) since (W ′, R′, L′) extends
(W,R,L).

Case (ii). The kth recursive call returns false. Then all the recursive calls
return false (in particular, the reader can verify the case for implication). By
the induction hypothesis, for all Open(W ′, R′, L′) executed during the recursive
process, (W ′, R′, L′) must not be extendable to an open tableau. Since every
(W ′, R′, L′) extends (W,R,L), we have that (W,R,L) is also not extendable
to an open tableau. Suppose towards a contradiction that this is not case, i.e.,
(W,R,L) is extendable to an open tableau. Then we extend it to a minimal
open tableau (i.e., a minimal one satisfying all the conditions in Lemma A.2).
Since Algothrim 3 truthfully implements these conditions, such an open tableau
must be one of the (W ′, R′, L′) mentioned above, which contradicts with that
(W ′, R′, L′) is not extendable to an open tableau. 2

Theorem A.6 The validity problem for KBm is in PSPACE.

Proof. To prove that the validity problem of KBm is in PSPACE, it is suffi-
cient to show that the satisfiability problem of KBm is in co-PSPACE. Since
it is known that co-PSPACE = PSPACE, it is sufficient to give an PSPACE
algorithm for testing whether a given formula is KBm satisfiable.

For a given formula φ, first define a pre-tableau (W,R,L) such that W =
{s}, R = ∅ and L(s) = {φ}. Then we execute Open(W,R,L) provided in
Algorithm 3. Because L(s) is a set of a single formula, during the process of
recursively calling the algorithm, only its subformulas and their negations can
appear in extended pre-tableaux, so the process always halts. By Lemma A.5,
the output of Algorithm 3 is true, if and only if, there exists an open tableau
for φ, which is equivalent to the fact that φ is KBm satisfiable by Lemma A.4.

We complete the proof by showing that Open(W,R,L) terminates in
PSPACE in size of the input. As usual, the size of the input φ is counted
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16 Epistemic Logics over Weighted Graphs

as |φ|, i.e., the length of φ. The size of the pre-tableau (W,R,L) given above
is |φ|+ c for some constant natural number c.

Since in the process, new states are introduced only when moving from a
formula to one of its subformulas (or its negation), so there will be at most 2·|φ|
states. For a similar reason, for any state u appeared in the process, there are at
most 2·|φ| formulas in L(u). So the size of expanded pre-tableau (in particular,
the finally generated open tableau) is bounded by 2·|φ|+(2·|φ|)2+(2·|φ|)·(2·|φ|).
So the space cost is polynomial.

The above gives us a PSPACE algorithm for deciding whether a given for-
mula is KBm satisfiable. 2
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Abstract

In this paper we introduce a weighted quantitative argumentation framework based
on regression, which is an extension of Baroni et al.’s quantitative argumentation
framework. Our model implements the method of regression to assign base scores to
arguments and method of cosine distance to assign weights to the attack or support
relations between arguments. In practice, the model aligns a decision-making process
where both real-time information and decisions made based on historical information
are considered, and finds a way to make a decision taking account of both current and
historical knowledge. A typical application area is selling and buying houses where
people refer to both historical and real-time information.

Keywords: Argumentation, Weighted Argumentation, QuAD, Regression.

1 Introduction

Data sets and regression models based on them have been implemented wide
and far in various subjects and areas in the past two centuries. When making
decisions about a case or a problem, people have an increasing tendency to refer
to large databases which describe various aspects of the cases. Hence, data
science has prospered during the past century. Nevertheless, despite the boost
of data science and mathematical logic these days, discussions are still rare on
how human-level knowledge (bargaining, reasoning, negotiation, etc.) can be
related, expressed, and presented in data sets that contain numerous empirical
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2 Decision Making with Weighted Quantitative Argumentation Based on Regression

information. One typical case of how human-level knowledge is involved with
objective data analysis is how people refer to past decisions to make a decision in
the future. Our work aims at extracting and presenting human-level knowledge
in the decision making process where both data at the present, data in the past,
and decisions made in the past makes a difference. This goal is achieved by
implementing logic as well as mathematical tools such as formal argumentation
and regression.

Our model is suitable for dealing with a setting where information is provided
as follows (think of buying and selling houses):

• A data set presenting the information needed for a decision being made where
regression can be applied to help the decision;

• Historical data sets as references for decisions made in the past;

• Present user’s preferences and past users’ preferences.

Given the above information, we design a regression-based quantitative argu-
mentation model which helps to make decisions under such settings.

The paper is organized as follows. Section 2 provides background on both
regression and argumentation frameworks, and specifies a sample case of rec-
ommending a house property to a potential customer. Following that, Section 3
introduces the idea of a weighted quantitative argumentation framework based
on regression with definitions and detailed discussion using the house or flat
purchasing case as a typical example. It also demonstrates how recommending
scores can be calculated and how explanations are generated by the argumen-
tation framework. Then, Section 4 is a comparison of our work with other
related papers. The last section draws a conclusion on what we have achieved
so far, specifies some limitations of the work, and points out some future work
that may be carried out based on what we have done.

2 Background

2.1 Abstract quantitative argumentation frameworks

We first introduce the idea of formal argumentation [3] used in this paper. As
introduced by Dung [11], core concepts of abstract formal argumentation in-
clude argumentation frameworks and some basic semantics for the frameworks.

Definition 2.1 An argumentation framework is a tuple AF = ⟨A,R⟩, where
A is a set of arguments andR ⊆ A×A is a set of attacks.

According to this definition, for two arguments α, β in AF , we use (α, β) ∈ R
to denote that α attacks β. And with the attack relation between arguments,
we can further define relation between sets of arguments and single arguments,
as well as the properties of such sets.

Definition 2.2 Let AF = ⟨A,R⟩ be an argumentation framework.

• A set S ⊆ A of arguments is conflict-free if and only if there is no α, β ∈ S
such that (α, β) ∈ R.
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• An argument α ∈ A is acceptable with regard to a set S ⊆ A, if and only if
∀(β, α) ∈ R, ∃γ ∈ S such that (γ, β) ∈ R.

• A conflict-free set of arguments S ⊆ A is admissible if and only if each
argument in S is acceptable with regard to S.

Having the notions of acceptable arguments and admissible sets in place, we
can have different types of extensions(admissible sets): a preferred extension of
AF is a maximal (with regard to set inclusion) admissible set of AF ; a stable
extension of AF is a conflict-free set of arguments that attacks each argument
in A which does not belong to itself; a complete extension of AF is an admissible
set of arguments which contains every argument in A that is acceptable with
regard to itself; and a grounded extension of AF is the minimal (with regard
to set inclusion) complete extension of AF .

This argumentation framework initially created by Dung is restrictive in the
following two aspects: first, it only discusses attack relations and leaves out
support relations; and second, the acceptability of arguments are binary - an
argument can only be either accepted or not accepted. But in real scenarios
of reasoning, the relations between arguments can be more sophisticated, and
the status of arguments are less determined than either to be accepted or
not. Therefore, bipolar argumentation frameworks with attack and support
relations [6,2,15] and quantitative argumentation frameworks where arguments
also have strength [4,18] are developed on the basis of Dung’s initial abstract
argumentation.

Definition 2.3 An abstract bipolar argumentation framework is a triple A =
⟨A,R+,R−⟩, where A is a set of arguments, R+ ⊆ A ×A is a set of support
relations and R− ⊆ A×A is a set of attack relations.

Definition 2.4 Let AF = ⟨A,R+,R−⟩ be a bipolar argumentation frame-
work, A1, An, B ∈ A, and Ri ∈ R+ ∪R−.

• A supported attack for an argument B is a sequence A1R1...Rn−1An, n ≥ 3,
with An = B, such that ∀i = 2, ..., n− 2, Ri ∈ R+ and Rn−1 ∈ R−.

To give numerical representations of the strengths of arguments, quantitative
argumentation framework is developed on top of the bipolar argumentation
framework. Here we present simpler and more concentrated version of Baroni’s
QuAD framework [4].

Definition 2.5 An quantitative argumentation framework is a 4-tuple AF =
⟨A,R+,R−,BS⟩, such that for the scale I ∈ [−1, 1], A is a set of arguments,
R+ is a set of support relations, R− is a set of attack relations, and BS : A → I
is a total function denoting argument a’s base score as BS(a).

With base scores added to the bipolar argumentation framework, we can
assign a generic score to arguments in the argumentation framework accord-
ing to the structure of the argumentation framework and the base scores of
arguments.
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4 Decision Making with Weighted Quantitative Argumentation Based on Regression

Definition 2.6 A generic score function for an argument
a in a quantitative argumentation framework is SF =
g(BS(a),Fatt(BS(a), SEQSF (R−(a))),Fsupp(BS(a), SEQSF (R+(a))) such
that:

• g is a aggregation function such that g(v0, va, vs) =



va if vs = nil and va ̸= nil

vs if vs ̸= nil and va = nil

v0 if va = vs = nil
(va+vs)

2 otherwise

;

• SEQSF is a corresponding sequence of attackers or supporters;

• and Fatt,Fsupp are two functions that return specific values given an argu-
ment, a sequence, and the type of relation between the argument and the
sequence.

The existing quantitative argumentation models, however, only incorporates
the numerical features of the arguments into their calculation. But in prac-
tice, we may not only consider how strong each argument is, but also how
close each argument is related to other arguments in order to decide whether
this argument is strong enough to be accepted. The importance of checking
the strength of support or attacks is addressed by some discussions in papers
on weighted argumentation frameworks [1,7,8,20], yet existing weighted argu-
mentation frameworks or graphs either only consider weights on individual
arguments, or only consider weights on attack/support relations. Publications
taking both aspects into account are scarce. Therefore, a viable way of devel-
oping the existing quantitative argumentation frameworks [1,7,8,20] is to take
both weights on the arguments and weights on the relations into account in
the calculation of generic scores. In the next section, we will define what an
argument is (in terms of data sets and preferences) and we will discuss how
to add weights to attack and support relations to enhance the existing quan-
titative argumentation frameworks. But before that, we need to have the idea
of regression, which gives base scores to the arguments later, and the idea of
cosine distance, which characterizes the similarity between two arguments and
gives weights to the attack or support relations.

2.2 Regression and cosine distance

Regression models [10,21] the relationship between a dependent variable y and
several explanatory variables xi by fitting an equation to observed data. Usu-
ally, the model is decided by the the methods know as Ordinary Least Squares.
There are different types of regression models such as linear regression, polyno-
mial regression, stepwise regression, etc. But the basic idea is the same: to fit
a set of data into a mathematical model, and give estimations and evaluations
to certain values in the data set. For every regression model, there are always
dependent and independent variables, and an error term representing the dif-
ference between the model’s estimation and the actual value of the dependent

62



Li, Gabbay, Chi and Cheng 5

Fig. 1. 668-1

variable. To illustrate the idea of regression, we present here first the idea of
data sets, and then a simplest and most implemented type, linear regression.
For other types, we invite our readers to refer to some more professional books
in statistics.

Definition 2.7 A data set is a collection of data. In this paper we present it
in the form of a m× n matrix, where every column of a table corresponds to a
variable/attribute, and every row corresponds to a record/item.

Example 2.8 The graph above, for example, presents a 5× 7 data set, where
each row represents the information about a house and each column represents
an attribute. Among all the attributes here, the attribute ”price” is dependent
on others, and can be regarded as a dependent variable in regression models.

Definition 2.9 Given a data set {yi, xi1, xi2, ..., xip}ni=1 of n items, a linear
regression model assumes that the relationship between the dependent variable
y and the p-vector regressors x is linear and takes the form:

yi = β0 + β1xi1 + ...+ βpxip + εi, i = 1, . . . , n,

where β0, β1, ..., βp are regression coefficients and εi is the error term (an unob-
served random variable that adds ”noise” to the regression relationship). Put
in the form of matrices, linear regression models can also be denoted more con-

cisely as :y = Xβ + ε, where y =




y1
y2
...
yn


 , X =




xT1
xT2
...
xTn


 =




1 x11 ... x1p
1 x21 ... x2p
...

...
. . .

...
1 xn1 ... xnp


,

β =




β0
β1
...
βp


, ε =




ε1
ε2
...
εn


.
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6 Decision Making with Weighted Quantitative Argumentation Based on Regression

It usually requires a large volume of data and a wise selection of variables
to make regression models representative. In the data set presented above, we
can add more records to the data set, and then do regression using the price
as the dependent variable y, and halls as independent variables x1, . . . , xn.

The regression method represents the relationship between one question item
and other referential items in a data set. However , to address the nature of
the decision-making process based on the data sets more precisely, we also need
to consider decisions made in the past and the similarity between the current
problem and the past problem. This similarity in the problem is represented
by the cosine similarity of the agents’ preferences.

Definition 2.10 The cosine similarity [19] between two vectors A and B is

SA−B = AB
|A||B| =

Σra,irb,i√
Σr2a,i

√
Σr2b,i

.

Here, each element ra,i or rb,i in the vectors A or B is a normalized value
of the agents preference on one attribute, whether the attribute is numerical,
ordinal, or binary.

2.3 Case study: bargaining in buying a house

As we have put it in the introduction part, our model serves to make a
decision when (I) data set that characterizes the present situation when the
decision in question is made; (II) data sets that characterize historical situations
when decisions were made by other agents; and (III) preferences of the current
decision-maker and previous decisions makers are provided. A typical scenario
that matches this setting is when a real estate agent is trying to recommend
housing properties to a potential customer.

If a person is to purchase a house, he may argue with the agent from several
aspects. First, whether the house is price worthy compared with other houses
at the market at the same time. Second, whether the house caters to his
particular preferences and needs. Third, whether the price of the house is
plausible compared to previous deals. For example, the purchasing history of
a customer’s friend tends to influence the buyer’s decision significantly. When
these three aspects are all well taken care of, the likelihood of a successful
recommendation should be high.

The model introduced in the next section incorporates all three aspects in
this example and other similar cases where present and historical data, as well
as personal preferences, make a difference to the decision. To represent how
the present market situation influences the buyer’s decisions, we use regres-
sion. And to characterize how his preferences and needs influence the decision,
we define functions that describe how similar they are with other users and
incorporate the functions into a quantitative argumentation framework that
eventually gives solutions to the decision.
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3 Weighted Quantitative Argumentation Frameworks
Based on Regression

In this section, we set up the argumentation framework that helps to make
decisions in the setting we have discussed above. We first define what an ar-
gument is in a data-based setting like this. Then we construct several indexes
that are useful in generating the weighted quantitative argumentation frame-
work. With these elements in place, we can set up the framework and see how
to make decisions with it.

3.1 Data-preference-based arguments

To generate an argumentation framework for the above setting, the first step
is to clarify what an argument is in such cases. In natural language, a data-
preference-based argument comes in the following form: given the current sit-
uation represented by the data set D and the agent’s preferences p1, p2, ..., pn,
the agent should be satisfied with item i. More specifically, in the house recom-
mendation case,a data-preference-based argument can be put down as follows:
given the housing prices in the market represented by the existing data and the
potential customer’s preference in transportation, location and facilities, etc.,
House 1 should be a satisfactory choice for the buyer.

We can also put this down in formal language as below:

Definition 3.1 A data-preference based argument is a tuple A = ⟨D,P, T ⟩,
where

• D is a data set with rows representing items and columns representing at-
tributes of these items;

• P = {p1, p2, ..., pn} is a set of agent’s preferences, p1, . . . , pn being indepen-
dent restrictions on values of the variables in D;

• T is the target item to be judged and measured.

Example 3.2 Suppose a customer is going to purchase a house in March 2022,
and the housing agent has a 10000 × 100 data set (in the form as presented
by Example 2.7) that incorporates information about all the houses on sale
in March. Then the customer gives his preferences on the house she wants to
buy: (I) it is in Xihu District, Hangzhou, China; (II) it is within 2km from
the nearest subway station; (III) it is a school district housing; (IV) It is no
more expensive than ¥7,000,000... With these preferences, the buyer or the
housing agent can pick out houses that satisfy or nearly satisfy the customer’s
requirements, which, for example, constitutes a smaller set of 1000× 100, and
build a regression model to estimate the price of the houses on the market.
They may eventually pick out several houses that are available at the moment
to decide which one to buy or to recommend to the customer. For each of the
houses picked in the data set by the preferences and other considerations, we
regard it as an argument.

Data-preference-based arguments defined above tell us information about the
relations between a single target house and all other houses on the market at
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8 Decision Making with Weighted Quantitative Argumentation Based on Regression

the time when the decision-maker is making the decision. But when making a
decision, people also refer to how other people who are similar to them have
made their decision in history. The similarity between the decision-maker and
past decision-makers is characterized by the cosine similarity between their
preferences as defined below.

Definition 3.3 The cosine similarity SPi−Pj between two preference sets
Pi,Pj is derived through three steps:

• normalize every variable (continuous/discrete/binary/categorical) in D;
• get the normalized values of pi1, . . . , pin in Pi and pj1, . . . , pjn inPj , denoting
as vi1, . . . , vim and vj1, . . . , vjm ;

• the cosine similarity between Pi and Pj is then just the cosine similarity
between vectors (vi1, . . . , vim) and (vj1, . . . , vjm).

Note that when we are doing the normalization, we may have to break down
one variable into two or more dimensions. For example, some categorical
variables may be divided into several binary values, and preferences given in
the form of intervals may be divided into two values (lower bound and up-
per bound). Therefore, the dimension of the normalized vectors in the above
definition may be higher than the number of rows in the data set.

3.2 Index Construction

Having defined what an argument is in setting when both data and preferences
are involved, we can further construct a set of indices by implementing regres-
sion and cosine distance. These indices plays the part of bricks in building a
regression-based argumentation framework. In this part we first introduce the
regression index (RI) which represents the relation between the item in ques-
tion and the overall situation of the data set. We then introduce the similarity
index(SI) which tells us how similar two arguments are. In the argumentation
framework to be defined, RI will be used as the base score of the arguments,
and SI will be used as weights on the binary relations.

Definition 3.4 For a data set D = (d0, d1, ..., dn), and a set of preferences
P = {p1, p2, ..., pm}, we filter D using P to get a subset of D, denoted as
D[P] = (dP0 , dP1 , . . . , dPn). We do regression (linear, polynomial, stepwise, etc.
) using the main column d0 as an independent variable and dP0 , dP1 , . . . , dPn

as dependent variables, which gives to Y = f(X) + ε .
For the target item I with a dependent variable valued yi and an error εi from
the regression model, the regression index is RI = εi

yi
.

The regression index shows how the actual value of dependent variable differs
from its estimated value by regression. Here we use the ratio to present the
difference in stead of immediately the error because it not only is more intuitive,
but also normalizes the value and makes situations vary greatly in amount more
comparable.

Then, we can define another index SI that describes the similarity between
cases. In Section 2 we introduce the cosine distance SA−B indicating the simi-
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larity between two agents’ preferences. Based on the cosine similarity, we define
an index that is more adaptable to argumentation frameworks.

Definition 3.5 The similarity index of two preference sets P1,P2 is

SI(P1,P2) =
SP1−P2

−ξ

1−ξ , where SP1−P2 is the cosine distance between P1,P2

and ξ is a parameter that can be adjusted to fit into specific situations depend-
ing on the application.

We construct the index in this way to make sure that it is restricted to the
range (−∞, 1], which facilitates a standard way of calculation. According to the
above definition, SI can be either positive or negative depending on ξ’s value.
When SI is negative, we say that two cases on which arguments are based on
are not similar and has no reference value. On the contrary, if SI is positive,
then we say the two cases are similar enough, and one case should be taken
into consideration when the decision concerning the other case is being made.
But how similar is similar enough is dependent on t he context of application,
so we make ξ a variable that is adjustable to various situations.

3.3 Weighted quantitative argumentation frameworks based on
regression (W-QuAD)

Definition 3.6 A weighted quantitative argumentation framework based on
regression is a 5-tuple AF = ⟨A,R+,R−,RI,SI⟩, where A is a set of
data-preference-based arguments, R+ ⊆ A × A and R− ⊆ A × A are sets
of binary relationships and W is a function from R+ ∪ R− to [0,1]. For
A1 = ⟨D1,P1, T1⟩, A2 = ⟨D2,P2, T2⟩ ∈ A:
• (A1, A2) ∈ R+, if and only if SI > 0, A1 is a positive evidence for A2, and
A1 precedes A2 in terms of time;

• and (A1, A2) ∈ R−, if and only if SI > 0, A1 is a negative evidence for A2,
and A1 precedes A2 in terms of time.

Example 3.7 Suppose a customer c1 preparing to buy a house H1 with a set
of preferences P1, after applying regression to houses on the market at present
(D1), the model finds that the regression index forH1 is I1 = 0.03. Historically,
we can find 2 successful and 2 failed deals, which yields 4 different arguments
A2 = ⟨D2,P2, T2⟩,A3 = ⟨D3,P3, T3⟩, A4 = ⟨D4,P4, T4⟩, and A5 = ⟨D5,P5, T5⟩.
The RIs for A2,A3,A4,A5 are respectively −0.02, 0.01,−0.015, and 0.03.
Deals succeed in A2,A3 , and fail in A4,A5. Moreover, we assume the cosine
similarity between P1 and P2,P3,P4,P5 to be 0.1, 0.3, 0.5 and 0.7 respectively.
These five arguments, then, form a 2-layer quantitative bipolar argumentation
framework based on data sets as presented by the graph below, with single
arrows representing attacks, and double arrows representing supports.

Based on the argumentation framework we have defined, we can then stipulate
the rules for choosing the house that is the most worth recommending. We do
this by giving a recommendation scoreRS for argument on the second layer of
argumentation framework.
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10 Decision Making with Weighted Quantitative Argumentation Based on Regression

Fig. 2. 668-2

Definition 3.8 For a 2-layer quantitative bipolar argumentation framework
based on data set, the recommendation score of an argument Aj on the second
layer, and A1, A2, ..., An arguments on the first layer, is RS(Aj) = −w0RIj +
1
n

n

Σ
i=1

δijSIijRIi, where w0 is a parameter denoting the extent to which the

current database is more important a reference than history records depending
on the application.

To increase the probability of successful recommendation, the recommenda-
tion agent should recommend the instance with the highest score to the cus-
tomer.

Example 3.9 Following last example with 4 arguments A2, A3, A4, and A5 on
the history layer and 1 argument A1on the current layer, suppose w0 = 1 in
the case. Then, the recommendation score of argument A1 gives to RS(A1) =
−0.03+ 1

4 × [0.1× (−0.02)+0.3×0.01−0.5× (−0.015)−0.7×0.03] = 0.033125.
In the same way, if there are some other arguments on the current layer, we
can repeat the process and calculate the recommendation score of them all.
And by comparing these different scores, we can decide on which house to
recommend to the house buyer. If there is more than one candidate for the
decision (as shown by the figure above), we can repeat the process and calculate
a recommendation score for every candidate.

4 Comparison with the Literature

Before our work on weighted argumentation framework, we notice that there
are already some efforts to bridge the gap between human reasoning and
recorded data in the existing literature. For instance, case-based reasoning
[13,22], as a pronounced method of using old experiences to understand and
solve new problems, combined with the ASPIC+ framework [16,9,23] well aligns
the process of human reasoning based on precedents, especially in the legal
field. Another pioneering work is matrix abduction developed by Gabbay et al.
[14,5], which uses concepts of distances to derive topological knowledge graphs
from numerical matrices. Lately, in computer science, argumentation has been
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Fig. 3. 668-3

implemented to help provide explanations for interactive recommendation sys-
tems [12,17], specifying not only what items are recommended, but also why
they are recommended. The above mentioned systems are different in char-
acter influence by the application areas they come and support. Our system
comes from business area of buying and selling valuable items with buyer’s
preferences. The model is computed from objective data.

Our work takes a step further from the existing work trying to combine hu-
man reasoning with existing data. Compared with argumentative case-based
reasoning and non-monotonic reasoning, it has a stronger ability to deal with
numerical rather than quantitative data. It also relies less on the relative
strengths of attributes or evidence than case-based reasoning does. In another
light, our model can be considered as a development over the method of matrix
abduction for it is more powerful and computationally simpler than previous
distance-based methods when dealing with large data sets. Lastly, compared
previous works trying to implement argumentation implemented in recommen-
dation systems, it sheds new light for argumentation not only plays a part
in providing explanations but also helps to make the recommendation more
accurate.

Potential applications of our model are scenarios where the recommendation
of items of the same kind is involved. The item can be some good on an online
shopping platform, houses to be introduced to potential customers by the real
estate agency, accommodation provided to travelers by the travel agency, and
so on. This paper takes the house recommendation example as a typical case
for illustration of the model.

5 Conclusion

In this paper we introduce a weighted quantitative argumentation framework
based on regression, which is an extension of previous QuAD model.of Baroni
et al [4]. The Baroni numerical values are essentially abstract (the strength
of the argument is assigned through voting). Our model is based on real-life
data in an actual application and shows how realistically the numerical values
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12 Decision Making with Weighted Quantitative Argumentation Based on Regression

are calculated from the application and the strength of the attack and defense.
For comparison, think of the theory of Generalised Coordinates in analytical
mechanics as compared /applied to a real model like the motion of the planets
in the solar system.

Our model implements the method of regression to assign base scores and
method of cosine distance to assign weights to the attack or support relations
between arguments. In practice, the model aligns a decision-making process
where both real-time information and decisions made based on historical infor-
mation are considered, and finds a way to make a decision taking account of
both current and historical knowledge. We have seen a typical such application
area in selling and buying houses.

However, there are some limitations of the model at the moment. First, the
W-QuAD model is a two layer model and requires recalculation whenever a new
argument is to be evaluated, which may add to the computational complexity.
Second, to have the similarity index of the model and the generic score, it is not
exactly clear how to get the parameter ξ and w0, and how to decide whether
the value of the parameter is optimal for the model.

There are many directions where discussion on this W-QuAD model can be
improved. First, we may address the limitations of the model and find out
ways to reduce computational complexity and find optimal parameters. Sec-
ond, empirical studies based on the model may be designed to check how well
it aligns with decision-making in practice and to what extent it contributes to
an increase in more successful recommendations.This may require us to find a
more testable example than a house purchase, for the data of house purchase
is not very obtainable, and making a deal happen is too costly to be exper-
imental. Instead of recommending houses, we may carry out experiments on
recommending bubble teas to students to see how the model performs. For in-
stance, we may make the price of bubble teas a dependent variable, and the tea,
sugar, milk and other ingredients added to the tea independent variables. Such
bubble tea behavior, then, can be tracked, and data can be collected to test
the model. Moreover, as argumentation frameworks have a explanatory powers
by nature, we can also further discuss how this model can be implemented not
only in making a decision, but also in providing explanations.
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Abstract

Evidence-based argumentation framework (EAF) is a special kind of bipolar argu-
mentation framework in order to capture the notion of “evidential support”. In an
EAF, an argument cannot be accepted or be used to attack other arguments unless
it is supported by evidence. However, different pieces of evidence may have different
strengths, so arguments supported by different pieces of evidence may have differ-
ent strengths. In this paper, we introduce a framework by extending an EAF with
strength of evidence. Then, the strength of an argument is determined by the accu-
mulation of the evidence supporting the argument. Moreover, the differences between
this work and the study of argument accruals from the literature are discussed.

Keywords: strength of evidence, evidence based argumentation, accumulation.

1 Introduction

Formal argumentation has become a well-known paradigm for knowledge rep-
resentation and reasoning with incomplete and inconsistent information [8].
Dung’s abstract argumentation framework has greatly eased the modelling and
study of argumentation. It consists of a collection of arguments interacting
with each other through an attack relation, enabling to determine “accept-
able” sets of arguments, called extensions. One important extension of Dung’s
argumentation frameworks is to allow positive interactions (usually expressed
by a support relation) between arguments. There have been several different
interpretations of support relation in the literature[15]. Among them, “eviden-
tial interpretation of support” deals with the relation between some evidence
and a claim of an argument.

Evidence-based argumentation framework [16] is an extended abstract argu-
mentation framework by adding evidential supports. It is intended to capture
the notion of “support by evidence”, meaning that an argument cannot be ac-
cepted unless it is supported by some evidence. In the framework, evidence is
represented by a special type of arguments, called prima-facie arguments, and
arguments can be accepted only if they are supported (directly or indirectly)
by evidence.

However, in scientific and social practice, different kinds of evidence has
different levels of strength. The evidence in medical diagnosis and treatment
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2 Strength and Accumulation of Evidence in Evidence-Based Argumentation Frameworks

has several levels of strength[22]. Besides, Craig R. Fox studied how to assess
strength of evidence from the perspective of cognitive psychology [9]. And,
Berkman N. D. et al divided evidence in health care to several levels according
to their strength[2]. It is obvious that arguments supported by strong evidence
have higher strength than those supported by weaker evidence. This impor-
tant notion has not been captured by the existing notion of evidence-based
argumentation framework and leaves us some issues to study.

Fig. 1. This table from [1] illustrates different levels of evidence in the practice
of nursing care according to their strength. Levels of evidence (sometimes called
hierarchy of evidence) are assigned to studies based on the methodological quality
of their design, validity, and applicability to patient care. These decisions gives the
”grade (or strength) of recommendation”.

The issue about how to determine strength of evidence or how to divide
levels of evidence is not the main issue of this paper. What we want to do is
actually to treat this phenomenon in computational argumentation. Based on
the need of scientific practice, the research questions of this paper are:

(i) How to capture the notion of evidence strength?

(ii) How to model accumulation of evidence based on EAF?

This paper is organized as follows. Section 2 introduces and analyses ev-
idence based argumentation. Section 3 models strength and accumulation of
evidence in the new framework, namely evidence accumulation argumentation
framework (ECAF). Several preliminary properties of ECAF will be given. Sec-
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tion 4 gives the conclusions of this paper and discusses the relation of ECAF
and other formalisms in the literature.

2 Evidence based argumentation

Evidence-based argumentation is intended to capture the notion of eviden-
tial support: First, only supported arguments can be used to attack other
arguments, while unsupported arguments will not be activated; Second, an
argument cannot be accepted unless it is supported by some evidence. The ini-
tial version of evidence-based argumentation framework proposed by Oren and
Norman [16] uses set attack and set support, which permit a set of arguments
to attack/support one argument. Cayrol et al [4] proposed a simplified version
that restricts the presentation of evidential support to the case where attacks
and supports are carried out by single arguments. In this paper, for simplicity,
we adopt the latter version.

Definition 2.1 [EAF] An evidence-based argumentation framework(EAF) is
a tuple (A,E,Ratt, Rsup), where A is a finite set of argument, ∅ ⊂ E ⊂ A is
a set of prima-facie arguments representing evidence, Ratt ⊆ A× (A\E) is an
attack relation, and Rsup ⊆ A×(A\E) is a support relation such that @a, b ∈ A:
(a, b) ∈ Ratt and (a, b) ∈ Rsup.

Then, an evidential support (or e-support for short) can be defined as a
particular case of the notion of (direct or indirect) support. Note that for
simplicity, definitions in the rest of this section are all given in an EAF.

Definition 2.2 [e-Support] Given an EAF (A,E,Ratt, Rsup), let a ∈ A, S ⊆
A.

• a is e-supported iff either a ∈ E or there exists b ∈ A such that b is e-
supported and (b, a) ∈ Rsup.

• a is e-supported by S iff either a ∈ E or there is an elementary sequence
b1Rsup . . . RsupbnRsupa such that {b1 . . . bn} ⊆ S and b1 ∈ E.

• S is self-supporting iff S e-supports each of its elements.

Example 2.3 Consider EAF = (A,E,Ratt, Rsup) where:

• A = {e1, e2, e3, a, b};
• E = {e1, e2, e3}
• att = {(a, b), (b, a)}
• sup = {(e1, a), (e2, a), (e3, b)}
In this framework, {e1, a} is a self-supporting set.

Only e-supported arguments are able to be used to make a direct attack on
other arguments. This notion is formalized by e-supported attack.

Definition 2.4 [e-Supported attack] A set S is an e-supported attack on an
argument a iff ∃b ∈ S, such that (b, a) ∈ Ratt and b is e-supported by S. A set
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a b

e1 e2 e3

Fig. 2. Solid arrows denote attacks and dashed arrows denote supports

S is a minimal e-supported attack on an argument a iff S is an e-supported
attack on a and @S′ ⊂ S such that S′ is an e-supported attack on a.

As a result of the notion “only e-supported arguments may be used to
make a direct attack on other arguments”, if an argument a is attacked by
b, which is e-supported, a can be reinstated either by a direct attack on b or
by an attack on c such that without c, b would be no longer e-supported. In
order to implement this idea, notions of e-Acceptability and e-Admissibility are
introduced as follows:

Definition 2.5 [e-Acceptability] Given an EAF (A,E,Ratt, Rsup), let a ∈ A,
S ⊆ A. We say that a is e-acceptable wrt S iff:

• For each minimal e-supported attack X on a, there exist b ∈ S and x ∈ X
such that bRattx and

• b is e-supported by S.

Definition 2.6 [(e-Admissibility] Given an EAF (A,E,Ratt, Rsup), let S ⊆ A.
We say that S is e-admissible iff:

• Each element of S is e-acceptable wrt S, and

• there are no arguments a, b ∈ S, such that aRattb.

Example 2.7 [ct’d example 2.3] {e3, b} is a minimal e-supported attack on a.
a is acceptable with {e1, e2, a}. {e1, e2, a} is admissible.

In an EAF, what matters to an argument is whether there exists evidence
to e-support the argument. But, strength of evidence has no effect on the
argument at all. This doesn’t quite match our intuition about evidence. From a
dynamic perspective, an argument becomes stronger if one finds more evidence
to support it, and an argument becomes weaker if one finds some problems
with some pieces of evidence supporting it (then some pieces of evidence will
be removed from the framework).

3 Formalism

This section extends evidence-based argumentation with strength and accumu-
lation of evidence.

Definition 3.1 [Evidence accumulation argumentation framework] An ev-
idence accumulation argumentation framework (ECAF) is a 4-tuple
(A,E,Ratt, Rsup,�) where: A is a finite set of arguments; E ⊂ A is a set
of prima-facie arguments representing evidence; Ratt ⊆ (A\E) × (A\E) is a
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symmetric relation representing attack; Rsup ⊆ A × (A\E) represents direct
support relation such that @a, b ∈ A, (a, b) ∈ Ratt and (a, b) ∈ Rsup; � is a
reflexive and transitive relation on 2E such that ∀E′ ⊆ E, {} � E′. � is used
to represent the preference relation over evidence. 1

There are two points worth noting in an ECAF. First, attack relation is
symmetric, because in this paper, for simplicity, we only consider rebutting
relation between arguments, and in this definition the strength of individual
arguments has not yet been taking into account. In [3], including undercutting
relation in an EAF has been studied. To add undercutting relation into an
ECAF can be done in the same way. We leave this to our future work. Second,
preference relation is defined between sets of evidence rather than individual
evidence. Based on attack relation and preference relation, defeat relation will
be generated later in Definition 3.8.

Example 3.2 Consider an ECAF F1 = (A,E, att, sup,�) where:

• A = {e1, e2, e3, e4, a, b, c, d, f};
• E = {e1, e2, e3, e4}
• att = {(a, b), (b, a), (d, f), (f, d)}
• sup = {(e1, a), (e2, b), (e3, c), (e4, f), (b, d), (c, d)}
• {e1} � {e2}, {e2} � {e1}, {e2} � {e4}, {e3} � {e4}, {e4} � {e2, e3} and
∀E′ such that {} ⊂ E′ ⊆ E, {} ≺ E′.

d f

b c

e2 e3 e4

a

e1

Fig. 3. Solid arrows denote attacks and dashed arrows denote supports

In this paper, we introduce the following two types of preference relation.

Definition 3.3 In an ECAF, the preference relation � is

• increasing iff for any E1, E2, E3 ⊆ E, if E1 � E2 then E1 � E2 ∪ E3;

• flat iff for any non-empty sets E1, E2 ⊆ E, E1 � E2 and E2 � E1.

An increasing preference relation means that adding new evidence to a set
either enhances or maintains, but cannot weaken, its strength. And a flat
preference relation means that every set of evidence has the same preference.

1 E1 ≺ E2 iff E1 � E2 and E2 � E1
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6 Strength and Accumulation of Evidence in Evidence-Based Argumentation Frameworks

Given an ECAF, we use labelling to represent the acceptability status of
arguments, and evidence base to represent the strength of an argument deter-
mined by some evidence that successfully supports the argument.

Definition 3.4 [Labelling] Given an ECAF F = (A,E,Ratt, Rsup,�), a la-
belling L of F is any pair of non-overlapping subsets (in(L), out(L)) of A. The
set of all labellings of F is denoted L(F).

A labelling L divides arguments into three parts: to be accepted (in(L)),
to be rejected (out(L)) and undecided (not in in(L) or out(L)). Evidence
arguments are all labelled in because evidence is considered deadly right and
must be accepted unconditionally. To illustrate this definition in Example 3.2,
({e1, e2, e3, e4, a, c, d}, {b, f}) is a labelling of F1.

In our approach, arguments’ strength is determined by the evidence used
successfully to support it. The evidence base of an argument a is a set of
evidence used to support a. So, evidence base is defined on the basis of a given
labelling. This method is called Recursive labelling [19]. If an argument is
labelled out, then this argument cannot be used to support anything. In other
words, it cannot appear in any argument’s evidence base.

Definition 3.5 [Evidence base] Given an ECAF F = (A,E,Ratt, Rsup,�) and
a labelling L of A, a set E′ ⊆ E is an evidence base of an argument a ∈ A,
denoted base(a), iff it satisfies both of the following conditions:

(i) for any e ∈ E, if e ∈ base(a) then there is a sequence
eRsupa1Rsup . . . RsupanRsupa such that a1, . . . , an are not labelled out;

(ii) for any e ∈ E, if there is a sequence eRsupa1Rsup . . . RsupanRsupa such
that a1, . . . , an are labelled in, then e ∈ base(a).

In Definition 3.5, the first condition states the necessary condition for a
piece of evidence to be in the evidence base of an argument: if evidence e is
in base(a), then e is in a set of arguments that are not labelled out to support
a. Condition 2 states the sufficient condition for a piece of evidence to be in
an accrual: if evidence e is in a set of arguments all labelled in to support an
argument a, then e must be in the accruals of a.

We use EB(F , L) = {base(a) | a ∈ A} to denote the set of evidence bases
of F in terms of L.

Example 3.6 (ct’d Example 3.2)

• given a labelling ({e1, e2, e3, e4, b}, {a}), then argument d has two evidence
bases: {e2, e3} and {e2}. We can see that there is a sequence e2RsupbRsupd
such that e2 and b are labelled in, so e2 is in every evidence bases of d. Also,
e3 can be in the evidence base of d because there is a sequence e3RsupcRsupd
such that c is not labelled out.

• given a labelling ({e1, e2, e3, e4, a}, {b, c}), then argument d does not have
any evidence base except {} because every sequence supporting d has at
least one piece labelled out.
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Lemma 3.7 Let L be a labelling of an ECAF (A,E,Ratt, Rsup,�). Any argu-
ment a ∈ A has at least one evidence base which can be an empty set.

Proof. Let S = {e ∈ E | there is a sequence eRsupa1Rsup . . . RsupanRsupa
such that a1, . . . , an are not labelled out} and S′ = {e ∈ E |there is a sequence
eRsupa1Rsup . . . RsupanRsupa such that a1, . . . , an are labelled in}. Then, for
all S′′ ∈ 2S , according to Definition 3.5, S′ ∪ S′′ is an evidence base of a.
Besides, if S = S′ = {}, then there is only one base(a), that is {}. As a result,
a has at least one evidence base. 2

Evidence base illustrates the strength of arguments. As a result, we may
compare two conflicting arguments through their evidence bases. If arguments
a and b conflict with each other, then a defeats b if one of a’s evidence bases is
not weaker than one of b’s evidence bases.

Definition 3.8 [Defeat] Given an ECAF F = (A,E,Ratt, Rsup,�), a labelling
L = (in(L), out(L)) of F , and the set of evidence base EB(F , L). Argument
a ∈ A defeats argument b ∈ A iff:

(i) (a, b) ∈ Ratt, and

(ii) for some base(a), base(b) ∈ EB(F , L), it holds that base(a) ⊀ base(b).

Example 3.9 (ct’d Example 3.6) Given a labelling ({e1, e2, e3, e4}, {}) of F1,
a has only one evidence base: {e1}, and b also has only one evidence base:
{e2}. Because {e1} � {e2} and {e2} � {e1}, a and b defeat each other. Given
a labelling ({e1, e2, e3, e4, c}, {}), d has two evidence bases: {e2, e3} and {e3},
f has one evidence base: {e4}. Because {e3} � {e4} and {e4} � {e2, e3}, d
and f defeat each other.

Next, we introduce the notion of complete labelling in ECAF to define
argument evaluation recursively.

Definition 3.10 [Complete labelling] Let F = (A,E,Ratt, Rsup,�) be an
ECAF. The characteristic function of F is a total function F : L(F)→ L(F).
For all L ∈ L(F), for all a ∈ A, the following conditions are satisfied:

(i) a ∈ in(F (L)) iff:
• a ∈ E or there is a sequence eRsupa1Rsup . . . RsupanRsupa such that
e ∈ E and a1, . . . , an are labelled in(L); and

• ∀b defeats a, b ∈ out(L); and

(ii) a ∈ out(F (L)) iff:
• a /∈ E and there isn’t a sequence eRsupa1Rsup . . . RsupanRsupa such that
e ∈ E and a1, . . . , an are not labelled out(L); or

• ∃b defeats a, b ∈ in(L).

A complete labelling of F is any fixpoint of F .

Definition 3.11 [Grounded labelling] Let F = (A,E,Ratt, Rsup,�) be an
ECAF. A complete labelling L = (in(L), out(L)) of F is a grounded labelling
iff in(L) is minimal (w.r.t set inclusion) among all complete labellings of F .
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Definition 3.12 [Preferred labelling] Let F = (A,E,Ratt, Rsup,�) be an
ECAF. A complete labelling L = (in(L), out(L)) of F is a preferred labelling
iff in(L) is maximal (w.r.t set inclusion) among all complete labellings of F .

Definition 3.13 [Stable labelling] Let F = (A,E,Ratt, Rsup,�) be an ECAF.
A complete labelling L = (in(L), out(L)) of F is a stable labelling iff in(L) ∪
out(L) = A.

Example 3.14 (ct’d Example 3.2) F1 has five complete labellings:

• L1 = ({e1, e2, e3, e4, c}, {});
• L2 = ({e1, e2, e3, e4, c, d}, {f});
• L3 = ({e1, e2, e3, e4, c, f}, {d});
• L4 = ({e1, e2, e3, e4, c, a, f}, {b, d});
• L5 = ({e1, e2, e3, e4, c, b, d}, {a, f}).
Among these complete labellings, L1 is a grounded labelling, L4 and L5 are
preferred labellings and stable labellings.

By definition, all preferred, grounded and stable labellings are complete
labellings.

Finally, for σ ∈ {complete, preferred, grounded, stable}, an argument is
sceptically or credulously justified if it is labelled in by all, respectively at least
one, σ labelling.

Next, several properties of ECAF are given as follows.

Proposition 3.15 For σ ∈ {complete, preferred, grounded, stable}, ∀e ∈ E, e
is sceptically justified.

Proof. Let e ∈ E be a piece of evidence. For any complete labelling L, L =
F (L). According to Definition 3.10, e ∈ in(F (L)) because e ∈ E. Then
e ∈ in(L). As a result, e is labelled in by all complete labellings. Because
all preferred, grounded and stable labellings are also complete labellings, e is
labelled in by all preferred, grounded and stable labellings. So for all σ ∈
{complete, preferred, grounded, stable}, ∀e ∈ E, e is sceptically justified. 2

Proposition 3.16 Let F = (A,E,Ratt, Rsup,�) be an ECAF. For all σ ∈
{complete, preferred, grounded, stable}, ∀a ∈ A, if for all b ∈ A such that
bRsupa, b is not credulously justified, then a is not credulously justified.

Proof. Assume that a ∈ A is credulously justified, and for all b ∈ A such
that bRsupa, b is not credulously justified. For σ ∈ {complete, preferred,
grounded, stable}, because a is credulously justified, there exists a σ labelling
L such that a ∈ in(L). Because for all b such that bRsupa, b is not cred-
ulously justified, b /∈ in(L). As a result, there does not exist a sequence
eRsupa1Rsup . . . RsupanRsupa such that e ∈ E and a1, . . . , an ∈ in(L). Ac-
cording to Definition 3.10, a /∈ in(F (L)). In other words, L is not a fixpoint of
F , so L is not a complete labelling. Because a preferred, grounded and stable
labelling is a complete labelling, L is not a σ labelling. This contradicts the
assumption. So, a is not credulously justified. 2
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Proposition 3.16 says that if an argument has no supporter to be credulously
justified, the argument itself will also not be credulously justified.

There are still some other important properties of ECAF, especially about
dynamics. For example if � is increasing, adding an argument a to support
an argument b into the framework will at least not weaken b. And reversely,
if � is decreasing, adding an argument a to support an argument b into the
framework will at least not strengthen b. Due to the limitation of the paper,
these properties will be presented formally in our future work.

4 Conclusion and discussion

This paper extends evidence-based argumentation framework with strength and
accumulation of evidence. The motivation is clear: evidence in practice differs
in strength, and evidence may accumulate to support an argument. The core
concept in this paper is evidence base. For a single argument, its evidence bases
are influenced by the whole labelling of the framework. The defeat relation
and argument evaluation also rely on evidence bases of arguments. Next, we
compare ECAF with other notions in the literature.

In computational argumentation, accrual proposed by Pollock[17] means
several arguments which are on their own defeated but together remain un-
defeated [21]. Prakken[18] set three principles for any formalisms modelling
argument accruals to follow: First, an accrual is sometimes weaker than its
accruing elements. Second, an accrual makes its elements inapplicable. Third,
flawed arguments should not accrue. Accrual is modelled in ASPIC+[19],
DeLP[13,10,14] and strength-based abstract argumentation[20]. The main dif-
ferences between ECAF and accrual are: First, ECAF models strength and
accumulation of evidence, and accrual acts directly on arguments. Second,
they are on different levels of argumentation, namely structured level and ab-
stract level. Specially, the work to model accrual in abstract argumentation[20]
differs from ECAF in terms of framework and semantics very much.

This paper presents a preliminary work on strength and accumulation of
evidence in argumentation frameworks. Future work includes: First, the se-
mantics of an ECAF in this paper is complicated, we want to introduce the
incremental computation[11] method to ECAF. It’s not difficult to see that ar-
guments in an ECAF have clear levels. To illustrate this in Example 3.2, before
dealing with the conflict between d and f , the conflict between a and b should
be settled first. If a defeats b but not vice versa, then b will be “out” and e2
won’t be in d’s evidence base. Then, we could deal with d and f accordingly,
namely d is defeated by f . Second, we are going to model strength and accu-
mulation of evidence in recursive argumentation frameworks [5], which allow
relations (support and attack) to be attacked. As a result, something similar
to “undercut” in structured argumentation frameworks are introduced into our
new framework. The last is to study the aggregation [6], dynamics [12] and
control [7] of ECAF.
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Abstract

Thanks to its expressivity, higher-order logic can adopt the status of a uniform lin-
gua franca allowing the logico-pluralist formalization of arguments (i.e. their deep
logical structure) and their dialectical interactions (attack and support relations).
A novel contribution of this work concerns the language-theoretical characterization
of the technique of shallow semantical embeddings of non-classical logics in higher-
order logic (as a universal meta-logic), which constitute a pillar stone of the LogiKEy
knowledge engineering framework and methodology. This novel perspective enables
more concise and more elegant characterizations of semantical embeddings of logics
and logic combinations, which is demonstrated with several examples.

Keywords: knowledge representation, argumentation, logical pluralism,
higher-order logic, shallow embedding.

1 Introduction

The need for combining heterogeneous, expressive logical formalisms for the
analysis of argumentative discourse is manifest in view of the richness of nat-
ural language phenomena. In our view, the problem is less the lack of logical
systems to represent those diverse perspectives, but rather the issue of bringing
them coherently under the same roof. In other words, what is actually lacking
is a lingua franca by means of which we can (i) flexibly combine logics, as re-
quired, e.g., for the formalization of non-trivial normative arguments, and (ii)
enable the articulation of inter-logical dialectical relations: how can arguments
formalized using different logics actually attack or support each other?

The proposed solution relies on the adoption of classical higher-order logic
as a metalanguage into which the logical connectives of (a combination of) ob-
ject logics can be ‘translated’ or ‘embedded’. This approach, termed shallow

1 The author acknowledges support by the Luxembourg National Research Fund (FNR),
project AuReLeE (Automated Reasoning with Legal Entities) [Grant: C20/IS/14616644].
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2 Higher-order Logic as a Lingua Franca for Logico-Pluralist Argumentation

semantical embeddings (SSE) [2,7], has quite interesting practical applications,
as it fosters the reuse of existing reasoning infrastructure for first- and higher-
order logic for seamlessly combining and reasoning with different quantified
classical and non-classical logics—including modal, deontic, and paraconsis-
tent logics as illustrated below—many of which are well suited for normative
reasoning applications. The SSE technique has thus become the pillar stone of
the LogiKEy [6] framework and methodology for designing normative theories
in ethical and legal reasoning, as it supports a logico-pluralistic approach to-
wards the formalization of arguments, indeed blurring the line between logical
and extralogical (resp. syncategorematic and categorematic) expressions.

Fig. 1: A joint undermining attack.

An illustrative situation is de-
picted in Fig. 1, where two argu-
ments, formalized in, say, logics L1

and L2, jointly attack a third argu-
ment, formalized in logic L3. This
attack can itself be modeled as an
argument encoded in the logic com-
bination L1⊕L2⊕L3. Notice that,
in non-trivial cases, there is a need
for additional, tacit premises (PT in
Fig. 1), which can have a different
nature. They can be definitions for
the connectives of the object logic
(cf. §3). Some may be part of under-
lying (meta-)logical theories, and thus
correspond to axioms (such as modal
K, D, 4, etc.), or their corresponding semantical constraints (cf. modal corre-
spondence theory), while others may correspond to formalized principles from,
e.g., domain theories or world knowledge (cf. [6, §7.2]). They may also corre-
spond to contextual, ‘implicit’ assumptions specific to the current debate.

We introduce a conceptual framework in §2-§3 allowing us to better artic-
ulate theoretically our notion of SSE; we draw upon these notions, in §4, to
propose a logico-pluralist approach towards encoding structured arguments in
higher-order logic. We conclude in §5 and discuss further work and prospects.

2 Signatures and Languages

It is customary to define propositional languages over a given set of proposi-
tional symbols (sometimes called a ‘signature’), while the logical connectives
are introduced by the language-generating mechanism or grammar. As an il-
lustration, a typical textbook approach for defining a modal language starts by
introducing a ‘signature’ P = {pn}0≤n<m consisting of m propositional atoms.
Subsequently, the modal language becomes defined inductively by a grammar
such as the following, where p ranges over elements of P:

φ := p | ⊥ | ¬φ | φ1 ∨ φ2 | 2φ .
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By contrast, presenting a logico-pluralistic approach compels us to do things
slightly differently. Our main tactic in this section consists in shifting logical
connectives from the grammar into the signature of a language, which is a
principle particularly well known in the literature on higher-order logics. This
move facilitates definitions and assessments at a higher level of abstraction.

Before getting started some remarks are pertinent: The present section
aims at building a conceptual framework and is thus rich in definitions. For
each of them we have provided one or several examples regarding well-known
modal-like systems, many of which have been previously encoded using the SSE
approach (see e.g. the examples at logikey.org). It is important to note that
SSEs of non-modal systems are also possible (e.g. [19]) though less studied. In
this exposition we strive for a middle path between readability and rigor. For
convenience, we may switch between prefix and infix notation for connectives,
and we may omit parentheses when they can be easily inferred from the context.

2.1 Propositional Signatures

We start with discussing propositional languages since, in spite of their sim-
plicity, they readily provide a suitable conceptual bridge towards the sort of
functional higher-order languages we utilize in the SSE approach. We will
gracefully skip first-order logic, since, for practical purposes, formulating first-
order languages as fragments of an adequate higher-order language suffices.

Definition 2.1 [P-Signature] A propositional signature (abbrev. P-signature)
is a tuple S = ⟨C,P0⟩, where C is a non-empty, denumerable set of disjoint sets
{Ck}k∈N, and P0 is a possibly empty, denumerable set {pn}n∈N. The elements
of each Ck are symbols called k-ary connectives and are always given a fixed
(intended) interpretation. The elements of P0 are called propositional symbols
(or parameters) and their denotation varies in each interpretation.

C and P0 can be seen as logical, resp. extralogical, base expressions of a
propositional language, and elements of P0 can be seen as having arity zero. In
the sequel, to avoid cluttering in our notation, all sets Ck which are not explicitly
mentioned are assumed to be empty. Union and intersection of signatures is
defined component-wise, e.g., S1 ∪ S2 = ⟨{Ck}k∈N,P0⟩, with Ck = C1k ∪ C2k and
P0 = P1

0 ∪ P2
0 . Signatures can be minimal or non-minimal.

Example 2.2 [CPL] An example P-signature for classical propositional logic
(CPL) with m propositional symbols is: SCPL = ⟨{C1, C2}, {pn}n<m⟩, with
C1 = {¬} and C2 = {∧}. Observe that SCPL is a minimal signature.

Example 2.3 [ML] An example P-signature for multi-modal propositional
logic with denumerable propositional symbols is: SML = ⟨{C1, C2}, {pn}n∈N⟩,
with C1 = {¬} ∪ {2n}n∈N and C2 = {∧}.
2.2 Propositional Languages

In the present approach, languages are not simply sets of well-formed formulas.
They must be generated inductively by a signature. In addition to the signature
symbols, we assume a fixed, denumerable set V0 = {vn}n∈N of schema variables.
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Definition 2.4 [P-Language] The propositional language (abbrv. P-language)
LP (S) over the P-signature S = ⟨{Ck}k∈N,P0⟩ is the smallest set such that:

(i) v, p, c ∈ LP (S) for every v ∈ V0, p ∈ P0, and c ∈ C0;
(ii) c(φ1, . . . , φk) ∈ LP (S), whenever c ∈ Ck (k ≥ 1) and φ1, . . . , φk ∈ LP (S).
Example 2.5 Each P-signature S presented in Ex. 2.2–2.3 induces a corre-
sponding P-language LP (S) in the manner exposed above.

Definition 2.6 [Language Fragment] Let L1 and L2 be two languages,
i.e., there exist signatures S1 and S2 such that L1 = LP (S1) and L2 = LP (S2).
We say that L1 is a fragment of L2, and write L1 ≤ L2, iff L1 ⊆ L2. The above
characterization is indeed applicable to any language induced by a signature.

Example 2.7 Language LP (SCPL) is a fragment of language LP (SML).

It is worth noting that presentations of propositional languages often include
so-called derived connectives, which are in fact abbreviations (‘syntactic sugar’)
for sequences of connectives; e.g., in modal logics the operator 3 often abbrevi-
ates ¬2¬. Note, however, that ¬2¬ is not a well-formed expression, and thus
there is no proper way to characterize derived connectives using P-signatures
and the language-generating grammar presented above. This contrasts with
higher-order languages, introduced in Section 2.4, which are equipped with a
suitable functional abstraction mechanism that can be used for this purpose.

2.3 Higher-order Signatures

We now introduce higher-order, functional signatures as a straightforward gen-
eralization of P-signatures.

Definition 2.8 [Functional Type] We inductively define the set τ of functional
types, which play an analogous role to arities in P-signatures:

ιn ∈ τ for every n ∈ N; α�β ∈ τ, whenever α, β ∈ τ.

We use the following aliases for commonly used (base) types: o for ι0, w for ι1,
and e for ι2. Note that � associates to the right, so that α�β�γ is shorthand
for α�(β�γ). Moreover, αn�β is shorthand for α�α� . . . (n-times) . . .�β.

We do not introduce product types, since they can (and will) be emulated
using functional types. For example, the product type (α× β)�η corresponds
to the functional type α�(β�η). 2

Definition 2.9 [F-Signature] A functional signature (abbrv. F-signature) is
a pair S = ⟨C,P⟩, where C is a non-empty denumerable set of disjoint sets
{Cα}α∈τ , and where P is a (possibly empty) denumerable set of disjoint sets
{Pα}α∈τ . The elements of each Cα are called connectives of type α and are

2 As an illustration, in a functional language, a binary operator such as + : N×N�N acquires
the type: N�(N�N). Thus, an expression such as, e.g., “3 + 4” becomes formalized as
((+ 3) 4) (infix notation can always be reintroduced as ‘syntactic sugar’ though). The notion
underlying these phenomena is known as Schönfinkelization or Currying in the literature.
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always given a fixed ‘intended’ interpretation. The elements of each Pα are
functional symbols (or parameters) of type α. Their interpretation is not fixed.

Note that F-signatures do not feature λ-expressions, which appear instead
in the grammar (cf. Def. 2.16). Thus, by keeping the grammar fixed, differences
in the defined languages can only be due to changes in the signature.

For the present purposes our exposition focuses on syntactic aspects only.
As for semantics, we restrict ourselves to noting that for every type γ ∈ τ we
assume a non-empty set Dγ as its semantic domain, and symbols of type α→β
are intended to denote functions from Dα into Dβ (i.e. ⌈φα→β⌉ : Dα → Dβ).

Example 2.10 [CPL-F] An example F-signature for CPL with m propo-
sitional symbols is: SCPL-F = ⟨{Co�o, Co�o�o}, {Po}⟩, with Co�o = {¬},
Co�o�o = {∧} and Po = {pn}n<m. (Compare with the P-signature in Ex. 2.2.)

Note that type o is intended to represent truth-values, and types o�o and
o�o�o are intended to represent unary resp. binary logical connectives.

Example 2.11 [FOL] An example F-signature for first-order logic with equal-
ity, countably many function symbols, m individual ‘constants’, and n unary
predicates is: SFOL-F = ⟨{Co�o, Co�o�o, Ce�e, Ce�e�o, C(e�o)�o}, {Pe,Pe�o}⟩,
with Co�o = {¬}, Co�o�o = {∧,∨,→}, Ce�e = {fk}k∈N, Ce�e�o = {=e},
C(e�o)�o = {Πe}, Pe = {pke}k<m, and Pe�o = {pke�o}k<n.

3

In Ex. 2.11 the type e is intended to denote individuals, so that e�e becomes
the type for (unary) functions over individuals. In particular, the symbol Πe,
of type (e�o)�o, has a fixed intended interpretation as a special second-order
predicate assigning true to those unary predicates which are true of every in-
dividual (of type e). In general, Παn

(of type (αn�o)�o for α ∈ τ) has a fixed
interpretation as a special predicate which is true of those predicates/relations
of type αn�o which are true of all of their arguments (each of type α). We use
∀xα.φ as shorthand for Πα(λxα.φ) and, analogously, ∃xα.φ for ¬Πα(λxα.¬φ).
Example 2.12 [SOL] An example F-signature for second-order logic, with re-
lations, and with two second-order predicates H1 and H2, but without any
functions is: SSOL = ⟨{Co�o, Co�o�o} ∪ {C(en�o)�o}n∈N ∪ {C((e�o)n�o)�o}n∈N,
{P(e�o)�o}⟩, with Co�o = {¬}, Co�o�o = {∧,∨,→}, C(e�o)�o = {Πe},
C((e�o)�o)�o = {Π(e�o)}, and P(e�o)�o = {H1, H2}.
Example 2.13 [STT] An example F-signature for Church’s simple type theory
(STT; [3]) with countably many parameters (for all types α ∈ τ) is: SSTT =
⟨{Co, Co�o, Co�o�o}∪{C(αn�o)�o}α∈τ,n∈N , {Pα}α∈τ ⟩, with Co = {T, F}, Co�o =

{¬}, Co�o�o = {∧,∨,→}, C(α�o)�o = {Πα}, and Pα = {pkα}k∈N. Syntax and
semantics of STT is discussed in detail by [4].

We also illustrate the encoding of semantic structures for modal and non-
classical logics. In the sequel, in order to improve readability, σ is used as

3 For convenience, when we have indexed parameters or connectives, we may use their type
as an additional label. This way we do not have to define a numbering mechanism for types.
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shorthand for type w�o. Thus, symbols of type σ are intended to denote propo-
sitions, understood as (characteristic functions of) sets of points or ‘worlds’.

Example 2.14 [Relational structures] Consider the following F-signature for
the first-order language of relational structures. SFORS = ⟨{Co, Co�o, Co�o�o,
Cσ�o}, {Pσ,Pw�w�o}⟩, with Co = {T, F}, Co�o = {¬}, Co�o�o = {∧,∨,→},
Cσ�o = {Πw}, Pσ = {pk}k∈N, and Pw�w�o = {Rk}k∈N.

Example 2.15 [Neighborhood structures] Consider the following F-signature
for a second-order language of neighborhood structures. This example fea-
tures two kinds of neighborhood functions for monadic and dyadic operators.
SSONS = ⟨{Co�o, Co�o�o, Cσ�o, C(σ�o)�o}, {Pσ,Pσ�σ,Pσ�σ�o}⟩, with Co�o =

{¬}, Co�o�o = {∧,∨,→}, Cσ�o = {Πw}, C(σ�o)�o = {Πσ}, Pσ = {pk}k∈N,
Pσ�σ = {Nk

1 }k∈N, and Pσ�σ�o = {Nk
2 }k∈N.

The previous example deserves some further explanations: In semanti-
cal approaches to modal and deontic logics (cf. minimal semantics [16] or
neighborhood semantics [18]), which follow the ‘propositions as sets of worlds’
paradigm, so-called neighborhood functions are usually introduced, in set-
theoretical terms, as functions N : W�P(P(W )) (where W is the domain set
and P(W ) its powerset) that assign to each point/world w a set N(w) of propo-
sitions/neighborhoods; this corresponds to the functional type w�(w�o)�o. It
is evident that N can be associated with a function N∗ : P(W )�P(W ) that
assigns to each proposition φ a proposition N∗(φ) corresponding to the set
of worlds to which φ gets assigned by N ; this corresponds to the functional
type (w�o)�(w�o), abbreviated as σ�σ. Neighborhood functions for sets
(often employed in the semantics of dyadic operators and having the form
N : P(W )�P(P(W ))) correspond to terms of type (w�o)�(w�o)�o, i.e.,
σ�σ�o. Note that Πw and Πσ correspond to quantifiers ranging over worlds
and propositions (sets of worlds) respectively.

2.4 Higher-order Languages

Analogous to the propositional case, we define higher-order languages induc-
tively. Again, the grammar remains fixed, so that only the signature changes in
each case. We assume a fixed, denumerable set V = {vkα}α∈τ,k∈N of variables.

Definition 2.16 [F-Language] The (higher-order) functional language L =
LF (S) over F-signature S = ⟨C,P⟩ is the smallest set defined inductively as:

(i) v, p,A ∈ LF (S) for every v ∈ V, p ∈ Pα∈τ , and A ∈ Cα∈τ ;

(ii) (Aα�β Bα)β ∈ LF (S) whenever A,B ∈ LF (S) for all α, β in τ ;

(iii) (λxα.Aβ)α�β ∈ LF (S) whenever A ∈ LF (S) and x ∈ V for all α, β in τ .

The elements of an F-language, i.e., its well-formed formulas, are called
terms; terms of type o are traditionally called formulas. We define the
grounded 4 language LF

Gr(S) over F-signature S = ⟨C,P⟩ as the language over

4 For want of a better word, we call terms ‘grounded’ when they are ‘parameter-free’. Note
that this may not coincide with other uses of ‘grounded’ in the literature.
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SGr = ⟨C, ∅⟩. A term is called closed if it does not contain any free variables. 5

We define the language of closed terms of a language L (= LF (S)) as the subset
of L consisting of all of its closed terms; this language is noted Closed(L).
Example 2.17 The F-signature presented in Ex. 2.10 induces a language
LF (SCPL-F). This language has the same expressivity as the P-language
LP (SCPL) in Ex. 2.2 if we neglect λ-abstraction (last item in Def. 2.16).

Example 2.18 The F-signature presented in Ex. 2.13 induces a language
LF (SSTT) for Church’s simple theory of types (STT); cf. [3].

Example 2.19 The F-signature in Ex. 2.11 induces a language LF (SFOL),
corresponding to extended first-order logic [10], an STT-fragment with equality
and quantification for objects of base type e, which retains λ-abstraction and
higher-order variables. (We obtain classical FOL by neglecting the latter two.)

Example 2.20 The F-signature presented in Ex. 2.14 (Ex. 2.15) induces a
first- (second-) order language LF (SFORS) (LF (SSONS)) that can be used to
define connectives and formulate semantic conditions for (non-)normal modal
logics in the style of Kripke (neighborhood [18]) semantics.

3 Shallow Embeddings as Derived Signatures

A signature is thus composed of (type-indexed) sets of symbols, divided into
connectives C and parameters P. Notice that these symbols adopt a double
role as both atomic building blocks and terms (well-formed formulas) of a
language. We can naturally ask whether terms, in general, can act as atomic
building blocks in the construction of languages; or more specifically, whether
terms, as symbols, can also adopt the role of connectives in signatures. We give
this question a positive answer by introducing the notion of derived signatures.

3.1 Derived Signatures

Informally, derived signatures arise when we allow closed terms to play the role
of logical connectives. They are called derived because they rely on an already
existing language, itself induced by a different, ‘primitive’ signature. In such
cases we say that signature SD has been derived from signature S and introduce
the relation derived(SD,S) to indicate this. We differentiate between rigidly
and flexibly derived signatures. We define the first recursively. We introduce
the predicate rigid(S) to indicate that S is either primitive or rigidly derived.

Definition 3.1 [Rigidly Derived Signature] A signature SD = ⟨CD,PD⟩ is
said to be rigidly derived from signature S = ⟨C,P⟩ provided that rigid(S)
and, for each type α ∈ τ , we have that PD

α ⊆ Pα and each connective c ∈ CDα
belongs to Closed(LF

Gr(S)).
Hence, the connectives of a rigidly derived signature SD are closed terms of

the grounded language over S and its parameters are simply a subset of those

5 Free variables are those which appear either outside any λ-expression, or unbound inside
some λ-expression; cf. [3] for a detailed exposition.
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of S, provided that S is itself a rigid signature. Notice that the connectives so
generated will get the same interpretation in all models; in other words, they
are rigidly interpreted. In this respect, rigidly derived signatures behave in fact
like primitive ones, in contrast to flexibly derived signatures.

Definition 3.2 [Flexibly Derived Signature] A signature SD = ⟨CD,PD⟩ is
said to be flexibly derived from signature S = ⟨C,P⟩ if, for each type α ∈ τ , we
have that PD

α ⊆ Pα and each connective c ∈ CDα belongs to Closed(LF (S)).
Thus, the connectives of a flexibly derived signature SD are closed terms of

the language over S (without further restrictions). Note that, since parameters
are also closed terms of the language LF (S), the elements of PD can also be
considered as elements of CD. Also notice that these ‘flexible’ connectives, in
contrast to those of a primitive or a rigidly derived signature, may get different
interpretations in different models.

Example 3.3 [Relational and neighborhood signatures as rigidly derived]
Note that SFORS and SSONS (introduced in Ex. 2.14 and 2.15 for relational
and neighborhood structures respectively) are proper subsets of the signature
SSTT. Hence LF (SFORS) and LF (SSONS) are proper fragments of LF (SSTT).

We provide examples illustrating how some non-classical logics, relevant to
normative reasoning, can be syntactically (and indirectly semantically) charac-
terized as fragments of a higher-order language, e.g. LF (SSTT). We recall that
σ is employed as shorthand for the type w�o, which can be understood as the
type of characteristic functions associated with sets of worlds (or propositions,
cf. ‘truth-sets’). We introduce the following convenient abbreviations; cf. [7]:

Definition 3.4 [(Type-lifted) Boolean connectives]
∧̇ := λφ.λψ.λw.(φ w) ∧ (ψ w) →̇ := λφ.λψ.λw.(φ w)→ (ψ w)
∨̇ := λφ.λψ.λw.(φ w) ∨ (ψ w) ¬̇ := λφ.λw.¬(φ w)

Example 3.5 [Rigidly derived signature for S5U] We add the following ab-
breviation to those in Def. 3.4: �̇u

:= λφ.λw.∀v.(φ v). A signature for
modal logic S5U (with universal modality) is given by SS5U = ⟨{{¬̇, �̇u}σ�σ,
{∧̇, ∨̇, →̇}σ�σ�σ}, {{pk}k∈N

σ }⟩, which has been rigidly derived from the signa-
ture SFORS for relational structures introduced in Ex. 2.14.

In the remainder each Ri represents an arbitrary relation. Similarly N i
1 and

N i
2 represent neighborhood functions for points and sets respectively.

Example 3.6 [Flexibly derived signature for a normal modal logic] We set as
abbreviations: �̇a

:= λφ.λw.∀v.(R1 w) v → (φ v), �̇p
:= λφ.λw.∀v.(R2 w) v →

(φ v), 3̇a := λφ.¬̇ �̇a ¬̇φ, and 3̇p := λφ.¬̇ �̇p ¬̇φ. A signature for
the (bimodal) normal modal logic (extending K) is given by SBMLK =
⟨{{¬̇, �̇a

, 3̇a, �̇p
, 3̇p}σ�σ, {∧̇, ∨̇, →̇}σ�σ�σ}, {{pk}k∈N

σ }⟩, which is flexibly de-
rived from the signature for relational structures SFORS introduced in Ex. 2.14.
Extensions of K are obtained by correspondingly restricting R1 and R2.

Example 3.7 [Flexibly derived signature for a non-normal modal logic] We
set abbreviations: Ȯd := λψ.λφ.λw.(N1

2 φ) ψ, Ȯa := λφ.λw.(N1
2 (R1 w)) φ,

90



Fuenmayor, Benzmüller 9

and Ȯp := λφ.λw.(N1
2 (R2 w)) φ. Consider the following signature for

a non-normal modal logic featuring two monadic and one dyadic operator:
SDML = ⟨{{¬̇, Ȯa, Ȯb}σ�σ, {∧̇, ∨̇, →̇, Ȯd}σ�σ�σ}, {{pk}k∈N

σ }⟩, which has been
flexibly derived from the signature SFORS ∪ SSONS.

As an example application in normative reasoning, observe that the signa-
ture for the language of the dyadic deontic logic (DDL) by Carmo & Jones [11]
corresponds (up to presentation) to the (component-wise) union of the three
signatures introduced in the examples above: SDDL = SS5U ∪ SBMLK ∪ SDML.
Hence SDDL is flexibly derived from the ‘primitive’ signature SSTT, and thus
LF (SDDL) is a (proper) fragment of LF (SSTT). The semantic conditions im-
posed for DDL-frames (e.g. reflexivity, resp. seriality for accessibility relations
and the closure conditions for the neighborhood function) translate in our ap-
proach to formulas of the host language LF (SSTT). In the spirit of previous
work on the shallow semantical embeddings (SSE) of object logics in higher-
order logic, we may speak in the present case of a SSE of the object logic DDL
into the meta-logic STT (cf. the encoding of DDL in Isabelle/HOL in [5]).

In order to generalize, and formally define, the notions discussed in the
above example, some remarks on terminology are in order. We conceive of
a logic L as a formal language L, together with a consequence relation ⊢L
⊂ P(L) × L, where the latter can be defined model-theoretically or proof-
theoretically. We write L(i) to refer to the logic based upon the language L(i).

Definition 3.8 [SSEs as derived F-signatures] Let SO be a derived ‘object’
signature, such that derived(SO,SH) for some ‘host’ F-signature SH . Further-
more, let us assume an (informal) interpretation of the connectives of SO as
corresponding to the connectives of some ‘object’ logic LO. Moreover, let us
consider a (higher-order) logic LH based upon the language LF (SH) together
with a set of formulas Γ ⊂ LF (SH) interpreted as ‘semantic conditions’. We
say that SO is a shallow semantical embedding (SSE) for the ‘object’ logic LO

into the ‘meta-logic’ LH after defining a special predicate vld(·) in LF (SH),
such that, for any φ ∈ LF (SO), Γ ⊢LH vld(φ) iff ⊢LO φ.

From the above definition it follows that LF (SO) is a fragment of LF (SH).
Note also that the condition of faithfulness of the SSE has been integrated in
the definition. This last condition can be weakened for particular purposes.

Example 3.9 [SSE of modal logics into STT] We obtain SSEs from derived
‘modal’ signatures (e.g. in Ex. 3.5–3.7) by defining the LF (SSTT ) predicate
vld := λφ.(Πw φ) and appropriately encoding the corresponding semantic con-
ditions (e.g. via Sahlqvist correspondence).

The logic combination 6 of a pair L1, L2 (resp. an i-indexed set Li) of
logics is termed L1⊕L2 (resp.

⊕
Li). Recall from Ex. 3.7 and its subsequent

discussion, that a SSE for the DDL [11] corresponds to the signature SDDL =
SS5U ∪ SBMLK ∪ SDML. We can indeed define a combination mechanism for

6 There exist several logic combination mechanisms in the literature; cf. [12]
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10 Higher-order Logic as a Lingua Franca for Logico-Pluralist Argumentation

SSEs of logics such that it corresponds to the union of their (derived) signatures.
Their corresponding (meta-logical) semantic conditions can indeed be grouped
together (as long as they are consistent). As a further example, we can conceive
of a paraconsistent dyadic deontic logic, say PDDL, obtained as DDL⊕P for
some Logic of Formal Inconsistency (LFI) 7 P such that SPDDL = SDDL ∪ SLFI.
Example 3.10 [SSE for LFIs] We set abbreviations: ¬̇p := λφ. φ →̇ (N1

1 φ),
and ◦̇ := λφ. ¬̇(φ ∧̇ (N1

1 φ)) ∧̇ (N2
1 φ). A SSE for LFIs (with replacement and

based on a neighborhood semantics [13]) can employ the following signature:
SLFI = ⟨{{¬̇p, ◦̇}σ�σ, {∧̇, ∨̇, →̇}σ�σ�σ}, {{pk}k∈N

σ }⟩, which is flexibly derived
from the signature SSONS in Ex. 2.15. Different logics in this class of LFIs are
obtained by suitably restricting the neighborhood functions N1

1 and N1
2 [13].

Note that in flexibly derived signatures logical connectives may get dif-
ferent interpretations in different models, since connectives are articulated by
employing parameters such as accessibility relations or neighborhood functions
(Ri and Ni in the examples above) that do not have a fixed interpretation.
While this phenomenon is characteristic of modal logic, our logico-pluralist ap-
proach readily exploits (and generalizes) it to non-classical logics. This allows
us, for instance, to consider the logic of formalization as an additional degree of
freedom in the process of logical analysis of argumentative discourse [17], where
we can ‘switch’ between object logics, based upon flexibly derived signatures,
by adding/removing meta-logical axioms in the host logic (intended as object-
logical semantic conditions); thus blurring the distinction between logical and
extralogical (resp. syncategorematic and categorematic) expressions.

4 Encoding Formal Argumentation

We propose a logico-pluralist characterization for arguments and their dialecti-
cal relations in line with the SSE approach as discussed in the previous sections.

Definition 4.1 An L-argument (or L-argument where L is any L-based logic)
is a pair ⟨Γ, φ⟩, where Γ ∪ {φ} is a set of L-formulas. The Γ are termed
premises, and φ is termed conclusion (of the argument). Let A be an L-
argument. We define the functions Premises(A) and Conclusion(A), which
return Γ and φ respectively. Moreover, A is said to be L-deductive if Γ ⊢L φ,
and L-(in)consistent if Premises(A) is logically (in)consistent according to L.

As an illustration, we provide a logico-pluralist definition of joint support.

Definition 4.2 [Support] The i-indexed set of Li-arguments Ai supports L2-
argument B if the argument ⟨⋃Conclusion(Ai), ψ⟩, with ψ ∈ Premises(B), is
L-deductive for the logic combination L =

⊕
Li ⊕ L2.

7 The class LFI of paraconsistent logics was introduced in [15]. They feature a non-explosive
negation ¬, as well as a (primitive or derived) consistency connective ◦ which allows to
recover the law of explosion in a controlled way [14]. It has been recently shown that some
logics in the hierarchy of LFIs (starting with the minimal logic mbC) can be enriched with
replacement, and thus given algebraic and neighborhood semantics [13].
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Similarly to well-known approaches towards structured argumentation
(cf. [8]) different kinds of attack relations between arguments can be intro-
duced in a logico-pluralist fashion. Observe that the given definitions have
the benefit of not featuring negation. This allows us to apply them to any
(non-classical) logics Li irrespective of the properties satisfied by their nega-
tion operator(s); this includes e.g. the paraconsistent LFIs in Ex. 3.10, which
provide their own particular mechanisms for defining logical (in)consistency
(cf. [14] for a discussion). Moreover, we can take special measures in case the
involved arguments are (or not) deductive or consistent. Note also that these
definitions can be seamlessly extended to two (or more) attacking arguments.

Definition 4.3 [Undermine] L1-argument A undermines L2-argument B if
Conclusion(A) ∪ Premises(A) is L1⊕L2-inconsistent.

Definition 4.4 [Rebuttal] L1-argument A rebuts L2-argument B if
Conclusion(A) ∪ Conclusion(B) is L1⊕L2-inconsistent.

Definition 4.5 [Deductive Undercut] L1-argument A undercuts L2-argument
B if ⊢L1 Conclusion(A) implies (metalogically) that B is not L2-deductive.

Arguably, the last definition above can be seen as a special kind of undercut.
It can be given an informal reading, namely, that if the conclusion of argument
A holds, then the argument B is not valid.

5 Conclusion and Further Work

As a first contribution, this article introduces a conceptual framework, together
with illustrative examples, enabling an improved ‘syntax-oriented’ (and thus
‘user-oriented’) characterization and analysis of the shallow semantical embed-
dings (SSE) technique. We expect that this framework will leverage communi-
cation and better support the development of more concise SSEs of logics and
logic combinations. In particular, faithfulness proofs, which have been very
technical and verbose so far, will benefit from being stated (and even carried
out) much more concisely. This represents an important step towards a sys-
tematic method for encoding logics (modal, deontic, paraconsistent, etc.) in
higher-order logic, a pillar stone of the LogiKEy framework and methodology
for designing normative theories in ethical and legal reasoning [6].

Recent work [20] shows that the expressivity of higher-order logic indeed
allows us to encode several notions of abstract argumentation frameworks [1],
and to mechanize reasoning with them, e.g., by harnessing Isabelle/HOL’s inte-
grated reasoning tools [9] to generate arguments’ extensions and labellings, and
to carry out meta-theoretical investigations. As a second main contribution,
the present work connects to those efforts by considering the instantiation of
abstract arguments and their dialectical relations as structured entities, in a
logico-pluralist spirit. This is useful for prototyping tasks involving reasoning
with (small) argument networks at the abstract and structural level in an inte-
grated fashion. Ongoing and future work is geared towards providing a scalable
implementation by integrating specialist argumentation solvers and tools.
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New Axiomatization of Lewis’ Conditional
Logics

Xuefeng Wen 1

Sun Yat-sen University

Abstract

We shows that the popular axiomatic systems proposed by Nute for Lewis’ conditional
logics are not equivalent to Lewis’ original systems. In particular, the axiom CA which
is derivable in Lewis’ systems is not derivable in Nute’s systems. Then we propose a
new set of axiomatizations for Lewis’ conditional logics, without using CSO, or RCEA,
or the rule of interchange of logical equivalents. Instead, the new axiomatizations
adopt two axioms which correspond to cautious monotonicity and cautious cut in
nonmonotonic logics, respectively. Finally, we gives a simple resolution to a puzzle
about the controversial axiom of simplification of disjunctive antecedents, using a
long neglected axiom in one of Lewis’ systems for conditional logics.

Keywords: conditional logic, axiomatization, simplification of disjunctive
antecedents, nonmonotonic logic.

1 Introduction

Lewis proposed two conditional logics, denoted by V and VC, respectively.
Each of them has three different axiomatizations in the literature. Two were
proposed by Lewis himself, one in [7], where V and VC were named C0 and
C1, respectively, the other in [9]. A third formulation was offered by Nute
[14,16,17]. Lewis’ formulations have less but some cumbersome axioms. Nute’s
formulations have more but neater axioms, making them easier to compare
with other systems. Thus, Nute’s axiomatizations are more popular in the
literature now. When referring to Lewis’ conditional logics, often are Nute’s
axiomatizations presented, for instance in [2] and [19]. 2 We will show in this
paper, however, that Nute’s systems are not equivalent to Lewis’ original ones.
In particular, the axiom CA derivable from Lewis’ systems is not derivable from
Nute’s systems. By replacing MOD with CA in Nute’s systems, the defects can
be amended.

1 wxflogic@gmail.com. This research was supported by the 2021 Humanities and Social
Science General Program sponsored by the Ministry of Education of China (Grant No.
21YJA72040001). I thank one referee for correcting several minor mistakes.
2 In [2], the author wrote: “...it is useful to see first that the system VC can be axiomatized
via the axioms ID, MP, MOD, CSO, CV and CS with RCEC and RCK as rules of inference.”
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2 New Axiomatization of Lewis’ Conditional Logics

Both Lewis’ systems in [7] and Nute’s systems contain the axiom CSO,
which says that bi-conditionally implied propositions can be interchanged with
each other for antecedents. From CSO together with RCE (namely a condi-
tional from ϕ to ψ can be derived if ϕ entails ψ), the rule of interchange of
logical equivalents for antecedents (RCEA, henceforth) can be derived. Instead
of CSO, Lewis’ systems in [9] contain the rule of interchange of logical equiva-
lents (RE, henceforth). We will propose some new axiomatizations for Lewis’
logics. They contain neither CSO, nor RCEA or RE, and hence may shed light
on nonclassical conditional logics, where these axiom and rules are invalidated.
The new systems we propose indicate that it is hard to abandon these axiom
and rules in conditional logics, since they can be recovered from other intuitive
axioms.

Finally, we will show that an axiom in one of Lewis’ systems can be used to
solve a puzzle triggered by the controversial axiom of simplification of disjunc-
tive antecedents (SDA, henceforth), which is intuitively valid but trivializes
conditional implication to strict implication if added to any conditional logic
with RCEA.

2 Preliminaries

For reference, we list all related axioms and rules for conditional logics in this
paper as follows:

(PC) All tautologies and derivable rules in classical logic

(ID) ϕ > ϕ

(CM) (ϕ > ψ ∧ χ)→ (ϕ > ψ) ∧ (ϕ > χ)

(CC) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ > ψ ∧ χ)

(CV) (ϕ > χ) ∧ ¬(ϕ > ¬ψ)→ (ϕ ∧ ψ > χ)

(CA) (ϕ > χ) ∧ (ψ > χ)→ (ϕ ∨ ψ > χ)

(AC) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ ∧ ψ > χ)

(RT) (ϕ > ψ) ∧ (ψ ∧ ϕ > χ)→ (ϕ > χ)

(CSO) (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ))

(MOD) (ϕ > ¬ϕ)→ (ψ > ¬ϕ)

(DAE) (ϕ ∨ ψ > ϕ) ∨ (ϕ ∨ ψ > ψ) ∨ ((ϕ ∨ ψ > χ)↔ (ϕ > χ) ∧ (ψ > χ))

(PIE) (ϕ > ¬ψ) ∨ ((ϕ ∧ ψ > χ)↔ (ϕ > (ψ → χ)))

(CMP) (ϕ > ψ)→ (ϕ→ ψ)

(CS) ϕ ∧ ψ → (ϕ > ψ)

(SDA) (ϕ ∨ ψ > χ)→ (ϕ > χ) ∧ (ψ > χ)

(RCM)
ϕ→ ψ

(χ > ϕ)→ (χ > ψ)

(RCE)
ϕ→ ψ

ϕ > ψ
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(RCN)
ψ

ϕ > ψ

(RCK)
ψ1 ∧ . . . ∧ ψn → ψ

(ϕ > ψ1) ∧ . . . ∧ (ϕ > ψn)→ (ϕ > ψ)
(n ≥ 0)

(RCEA)
ϕ↔ ψ

(ϕ > χ)↔ (ψ > χ)

(RCEC)
ϕ↔ ψ

(χ > ϕ)↔ (χ > ψ)

(RE)
ψ ↔ ψ′

ϕ↔ ϕ[ψ/ψ′]

All the axioms and rules above had been discussed in the literature (e.g.
[9,14,16]) before. Note that we slightly reformulate the axiom MOD here.
The standard formulation of MOD in the literature (including Lewis’ works)
is

MOD’ (¬ϕ > ϕ)→ (ψ > ϕ).

The reason why we reformulate it is that it is this reformulation rather than
the standard one that corresponds directly to the associated model condition
of worlds selection functions, normally formulated in the literature as follows:

(mod) f(w,ϕ) = ∅ =⇒ f(w,ψ) ∩ [ϕ] = ∅,
where [ψ] denotes the truth set of ψ, and f is the selection function, associating
with a possible world w and a sentence ϕ a set of ϕ- worlds that are closest
to w. Rather, the standard formulation MOD’ corresponds to the following
condition instead:

(mod’) f(w,¬ϕ) = ∅ =⇒ f(w,ψ) ∩ [¬ϕ] = ∅.
Of course, if the rules RCEA and RCEC, or the rule RE is available, the
difference between the two formulations is immaterial. But if one works on
conditional logics without such rules admissible, the two formulations might
turn out to be very different. This is related to my second reason for choosing
the reformulation. In a proof of the derivation of CSO from MOD’ and PIE
below, we find if the reformulation MOD is used then the rule RCEA or RE is
dispensable; otherwise, such rules are required for the derivation.

3 Amendments of Nute’s Axiomatizations

Nute’s axiomatization for V and VC are as follows 3

Vn = 〈PC, ID,CM,CC,CV,MOD′,CSO; RCEC〉
VCn = 〈PC, ID,CM,CC,CV,MOD′,CSO,CMP,CS; RCEC〉.

3 Nute’s original axiomatization used the rule RCK instead of the axioms CM and CC. But
to reduce inference rules to the minimum, we prefer to use these two axioms instead of the
rule RCK. It can be easily shown that they are equivalent as long as RCEC is provided.
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4 New Axiomatization of Lewis’ Conditional Logics

We will show that CA is not derivable in neither of these systems. Since VCn
is the stronger one, it suffices to prove that CA is not derivable in VCn.

Proposition 3.1 0VCn CA.

Proof. Let U = {0, 1, 2, 3}, A = {1, 2}, and B = {1, 3}. Define g : U×℘(U)→
℘(U) as follows:

g(i,X) =





{1} if X = A and i = 0

{i} if i ∈ X
X otherwise

Now we verify that g satisfies the following conditions: for all i ∈ U and
X,Y ∈ ℘(U)

(id) g(i,X) ⊆ X
(mod) g(i,X) = ∅ =⇒ g(i, Y ) ∩X = ∅
(cv) g(i,X) ∩ Y 6= ∅ =⇒ g(i,X ∩ Y ) ⊆ g(i,X)

(cso) g(i,X) ⊆ Y and g(i, Y ) ⊆ X =⇒ g(i,X) = g(i, Y )

(cent) i ∈ X =⇒ g(i,X) = {i}
(id) and (cent) are obvious. (mod) holds since g(i,X) = ∅ iff X = ∅. It
remains to verify (cv) and (cso). For (cv), suppose g(i,X) ∩ Y 6= ∅. Consider
the following cases:

(1) X = A and i = 0. Then g(i,X) = {1}. Since g(i,X) ∩ Y 6= ∅, we have
1 ∈ Y . Hence X ∩ Y = X or X ∩ Y = {1}. In both cases, we have
g(i,X ∩ Y ) = g(i,X).

(2) i ∈ X. Then g(i,X) = {i}. Since g(i,X) ∩ Y 6= ∅, we have i ∈ Y . Then
i ∈ X ∩ Y . Hence g(i,X ∩ Y ) = {i} = g(i,X).

(3) X 6= A or i 6= 0, and i /∈ X. Then g(i,X) = X. Since i /∈ X, we have
i /∈ X ∩ Y . Then either g(i,X ∩ Y ) = {1} or g(i,X ∩ Y ) = X ∩ Y . If
g(i,X ∩Y ) = X ∩Y , we have g(i,X ∩Y ) ⊆ X = g(i,X). If g(i,X ∩Y ) 6=
X ∩ Y and g(i,X ∩ Y ) = {1}, by the definition of g, we have X ∩ Y = A.
Hence 1 ∈ X and g(i,X ∩ Y ) ⊆ g(i,X). .

For (cso), suppose g(i,X) ⊆ Y and g(i, Y ) ⊆ X. Consider the following cases:

(1) X = A and i = 0. Then g(i,X) = {1}. Since g(i,X) ⊆ Y , we have 1 ∈ Y .
Since g(i, Y ) ⊆ X and i /∈ X, we have Y = A or g(i, Y ) = Y ⊆ X. In
the former case, we have g(i,X) = g(i, Y ). In the latter case, we have
Y = {1}, and hence g(i, Y ) = {1} = g(i,X).

(2) i ∈ X. Then g(i,X) = {i}. Since g(i,X) ⊆ Y , we have i ∈ Y . Hence
g(i, Y ) = {i} = g(i,X).

(3) X 6= A or i 6= 0, and i /∈ X. Then g(i,X) = X. Since g(i,X) ⊆ Y , we
have X ⊆ Y . If Y = A and i = 0, then g(i, Y ) = {1}. By g(i, Y ) ⊆ X,
we have 1 ∈ X. Then by X ⊆ Y = A, we have X = {1} or X = Y .
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In both cases we have g(i,X) = g(i, Y ). If i ∈ Y , then g(i, Y ) = {i}.
Since g(i, Y ) ⊆ X, we have i ∈ X, contradicting that i /∈ X. In other
cases, we have g(i, Y ) = Y . Since g(i, Y ) ⊆ X, we have Y ⊆ X. Hence
g(i,X) = g(i, Y ).

Given a model M = (W, f, V ), the truth set of ϕ in M, denoted [ϕ]M, is
inductively defined as follows:

• [p]M = V (p) for p ∈ PV
• [¬ϕ]M = W − [ϕ]M

• [ϕ ∧ ψ]M = [ϕ]M ∩ [ψ]M

• [ϕ > ψ]M = {w ∈W | f(w, [ϕ]M) ⊆ [ψ]M}
We say that ϕ is valid in F = (W, f) if for all models M based on F, [ϕ]M = W .
Let G = (U, g). By the frame conditions that G satisfies, it can be easily
verified that all axioms in VCn are valid in G, and G preserves validity for the
rule RCEC. But CA is not valid in G, since g(0, A ∪ B) = {1, 2, 3} * {1, 3} =
g(0, A) ∪ g(0, B). Therefore 0Vn CA. 2

Corollary 3.2 0Vn CA 4

Now we show that by replacing MOD′ with CA in the corresponding systems,
Nute’s axiomatizations can be amended. Let

Va = 〈PC, ID,CSO,DAE; RCK〉
Vb = 〈PC, ID,MOD′,PIE; RCK,RE〉
Vc = 〈PC, ID,CM,CC,CV,CA,CSO; RCEC〉

VCa = 〈PC, ID,CSO,DAE,CMP,CS; RCK〉
VCb = 〈PC, ID,MOD′,PIE,CMP,CS; RCK,RE〉
VCc = 〈PC, ID,CM,CC,CV,CA,CSO,CMP,CS; RCEC〉,

where Va and VCa are Lewis’ first axiomatizations of V and VC, respectively;
Vb and VCb are his second axiomatizations; Vc and VCc are amendments
of Nute’s systems for V and VC, respectively. To prove that these amend-
ments are equivalent to Lewis’ original systems, it suffices to prove that Vc is
equivalent to Va or Vb. Since Va = Vb, if suffices to show that Vc ⊇ Va and
Vb ⊇ Vc.

Proposition 3.3 Vc = Va = Vb.

Proof. First, we show that Vc ⊇ Va. For simplification of proofs, we will first
prove that RCM, RCE, RCN, and RCEA are derivable in Vc.

For RCM:

4 Nute also gave the axiomatization VWn = 〈PC, ID,CV,MOD′,CSO,CMP; RCEC,RCK〉
for Lewis’ system VW. So neither is CA derivable from VWn. The reason why CA is
missing from Nute’s axiomatization is not clear, since no explicit proof of completeness of
these systems was given in his writings. We guess the reason may be that CA is derivable in
his axiomatization of C2.
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(1) ϕ→ ψ Assumption

(2) ϕ ∧ ψ ↔ ϕ (1), PC

(3) (χ > ϕ ∧ ψ)↔ (χ > ϕ) (2), RCEC

(4) (χ > ϕ ∧ ψ)→ (χ > ψ) CM, PC

(5) (χ > ϕ)→ (χ > ψ) (3), (4), PC

For RCE:

(1) ϕ→ ψ Assumption

(2) (ϕ > ϕ)→ (ϕ > ψ) (1), RCM

(3) ϕ > ϕ ID

(4) ϕ > ψ (2), (3), PC

For RCN:

(1) ψ Assumption

(2) ϕ→ ψ (1), PC

(3) ϕ > ψ (2), RCE

For RCEA:

(1) ϕ↔ ψ Assumption

(2) ϕ→ ψ, ψ → ϕ (1), PC

(3) ϕ > ψ, ψ > ϕ (2), RCE

(4) (ϕ > χ)↔ (ψ > χ) (3), CSO, PC

Now we prove that RCK is derivable in Vc. The case for n = 0 is just RCN.
The case for n = 1 is just RCM. It remains to prove the case for n = 2. The
case for n > 2 can be obtained similarly.

(1) ψ1 ∧ ψ2 → ψ Assumption

(2) (ϕ > ψ1 ∧ ψ2)→ (ϕ > ψ) (1), RCM

(3) (ϕ > ψ1) ∧ (ϕ > ψ2)→ (ϕ > ψ1 ∧ ψ2) CC

(4) (ϕ > ψ1) ∧ (ϕ > ψ2)→ (ϕ > ψ) (2), (3), PC

Next we prove that DAE is derivable in Vc. By CA, it suffices to prove (ϕ∨ψ >
ϕ) ∨ (ϕ ∨ ψ > ψ) ∨ ((ϕ ∨ ψ > χ)→ (ϕ > χ) ∧ (ψ > χ)).

(1) (ϕ ∨ ψ > χ) ∧ ¬(ϕ ∨ ψ > ¬(¬ϕ ∨ ψ))→ ((ϕ ∨ ψ) ∧ (¬ϕ ∨ ψ) > χ) CV

(2) (ϕ ∨ ψ) ∧ (¬ϕ ∨ ψ)↔ ψ PC

(3) (ϕ ∨ ψ > χ) ∧ ¬(ϕ ∨ ψ > ¬(¬ϕ ∨ ψ))→ (ψ > χ) (1), (2), RCEA, PC

(4) (ϕ ∨ ψ > χ) ∧ ¬(ϕ ∨ ψ > ¬(ϕ ∨ ¬ψ))→ ((ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ) > χ) CV

(5) (ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ)↔ ϕ PC

(6) (ϕ ∨ ψ > χ) ∧ ¬(ϕ ∨ ψ > ¬(ϕ ∨ ¬ψ))→ (ϕ > χ) (4), (5), RCEA, PC

(7) ¬(¬ϕ ∨ ψ)→ ϕ PC
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(8) (ϕ ∨ ψ > ¬(¬ϕ ∨ ψ))→ (ϕ ∨ ψ > ϕ) (7), RCM

(9) ¬(ϕ ∨ ψ > ϕ)→ ¬(ϕ ∨ ψ > ¬(¬ϕ ∨ ψ)) (8), PC

(10) ¬(ϕ ∨ ¬ψ)→ ψ PC

(11) (ϕ ∨ ψ > ¬(ϕ ∨ ¬ψ))→ (ϕ ∨ ψ > ψ) (10), RCM

(12) ¬(ϕ ∨ ψ > ψ)→ ¬(ϕ ∨ ψ > ¬(ϕ ∨ ¬ψ)) (11), PC

(13) ¬(ϕ ∨ ψ > ϕ) ∧ ¬(ϕ ∨ ψ > ψ) ∧ (ϕ ∨ ψ > χ)→ (ϕ > χ) ∧ (ψ > χ)(3), (6),
(9), (12), PC

(14) (ϕ ∨ ψ > ϕ) ∨ (ϕ ∨ ψ > ψ) ∨ ((ϕ ∨ ψ > χ)→ (ϕ > χ) ∧ (ψ > χ))(13), PC

This completes the proof of Vc ⊇ Va.
Now we prove Vb ⊇ Vc. The derivation of CC and CM is straightforward

using RCK. The rule RCEC is a special case of RE. It remains to show that
CA, CV, and CSO are derivable in Vb.

For CV:

(1) ¬(ϕ > ¬ψ) ∧ (ϕ > (ψ → χ))→ (ϕ ∧ ψ > χ) PIE, PC

(2) χ→ (ψ → χ) PC

(3) (ϕ > χ)→ (ϕ > (ψ → χ)) (2), RCK

(4) (ϕ > χ) ∧ ¬(ϕ > ¬ψ)→ (ϕ ∧ ψ > χ) (1), (3), PC

For CSO: Let α = ϕ > ¬ψ, β = ψ > ¬ϕ. By PC, it suffices to prove

(c) ¬α ∧ ¬β ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ)),

(d) α ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ)), and

(e) β ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ)).

For (c):

(1) ¬α→ ((ϕ ∧ ψ > χ)↔ (ϕ > (ψ → χ))) PIE

(2) ψ ∧ (ψ → χ)→ χ PC

(3) (ϕ > ψ) ∧ (ϕ > (ψ → χ))→ (ϕ > χ) (2), RCK

(4) χ→ (ψ → χ) PC

(5) (ϕ > χ)→ (ϕ > (ψ → χ)) (4), RCK

(6) ¬α ∧ (ϕ > ψ)→ ((ϕ > χ)↔ (ϕ ∧ ψ > χ)) (1), (3), (5), PC

(7) ¬β ∧ (ψ > ϕ)→ ((ψ > χ)↔ (ϕ ∧ ψ > χ)) analogous to (1)–(6)

(8) ¬α ∧ ¬β ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ)) (6), (7), PC

For (d):

(1) ¬ψ ∧ ψ → χ PC

(2) α ∧ (ϕ > ψ)→ (ϕ > χ) (1), RCK

(3) ¬ψ ∧ ψ → ¬ϕ PC

(4) α ∧ (ϕ > ψ)→ (ϕ > ¬ϕ) (3), RCK

(5) (ϕ > ¬ϕ)→ (ψ > ¬ϕ) MOD
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8 New Axiomatization of Lewis’ Conditional Logics

(6) α ∧ (ϕ > ψ)→ (ψ > ¬ϕ) (4), (5), PC

(7) α ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ (ψ > ϕ ∧ ¬ϕ) (6), RCK, PC

(8) ϕ ∧ ¬ϕ→ χ PC

(9) α ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ (ψ > χ) (7), (8), RCK, PC

(10) α ∧ (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ)) (2), (9), PC

Note that in the above derivation, we use MOD instead of MOD’, so that we
can dispense with RE. If MOD’ is used instead, then the derivation is longer,
with an additional line of transforming MOD’ to MOD, using RE.

(e) can be proved analogously to (d).
For CA: Let α = ϕ ∨ ψ > ¬ϕ, β = ϕ ∨ ψ > ¬ψ. It suffices to prove

(f) ¬α ∧ ¬β ∧ (ϕ > χ) ∧ (ψ > χ)→ (ϕ ∨ ψ > χ),

(g) α ∧ (ϕ > χ) ∧ (ψ > χ)→ (ϕ ∨ ψ > χ), and

(h) β ∧ (ϕ > χ) ∧ (ψ > χ)→ (ϕ ∨ ψ > χ).

For (f):

(1) ¬α ∧ ((ϕ ∨ ψ) ∧ ϕ > χ)→ (ϕ ∨ ψ > (ϕ→ χ)) PIE, PC

(2) (ϕ ∨ ψ) ∧ ϕ↔ ϕ PC

(3) ¬α ∧ (ϕ > χ)→ (ϕ ∨ ψ > (ϕ→ χ)) (1), (2), RE

(4) ¬β ∧ (ψ > χ)→ (ϕ ∨ ψ > (ψ → χ)) analogous to (1)–(3)

(5) ϕ ∨ ψ > ϕ ∨ ψ ID

(6) (ϕ ∨ ψ) ∧ (ϕ→ χ) ∧ (ψ → χ)→ χ PC

(7) (ϕ ∨ ψ > (ϕ→ χ)) ∧ (ϕ ∨ χ > (ψ → χ))→ (ϕ ∨ ψ > χ)(5), (6), RCK, PC

(8) ¬α ∧ ¬β ∧ (ϕ > χ) ∧ (ψ > χ)→ (ϕ ∨ ψ > χ) (3), (4), (7), PC

For (g):

(1) (ϕ ∨ ψ) ∧ ¬ϕ→ ψ PC

(2) ϕ ∨ ψ > ϕ ∨ ψ ID

(3) α→ (ϕ ∨ ψ > ψ) (1), (2), RCK, PC

(4) ψ > ϕ ∨ ψ PC, RCK, ID

(5) α ∧ (ψ > χ)→ (ϕ ∨ ψ > χ) (3), (4), CSO

(6) α ∧ (ϕ > χ) ∧ (ψ > χ)→ (ϕ ∨ ψ > χ) (5), PC

(h) can be prove analogously to (g).
This completes the proof of Vb ⊇ Vc. 2

Corollary 3.4 VCc = VCa = VCb.
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4 New Axiomatizations of Lewis’ Conditional Logics

We propose the following new axiomatizations of Lewis’ conditional logics,
which are denoted by V′ and VC′, respectively.

V′ = 〈PC, ID,CM,CA,CV,AC,RT; RCEC〉
VC′ = 〈PC, ID,CM,CA,CV,AC,RT,CMP,CS; RCEC〉

Both systems replace the axiom CSO by the axioms AC and RT in Vc and
VCc, respectively. Meanwhile, CC is omitted, since it is derivable from other
axioms and rules. We will prove that the new axiomatizations are equivalent to
Lewis’ original ones. By Proposition 3.3 and Corollary 3.4, it suffices to prove
that V′ is equivalent to Vc.

Proposition 4.1 V′ = Vc.

Proof. First, we show that Vc ⊇ V′, i.e. AC and RT are derivable in Vc.
For AC:

(1) (ϕ > ϕ) ∧ (ϕ > ψ)→ (ϕ > ϕ ∧ ψ) CC

(2) ϕ > ϕ ID

(3) (ϕ > ψ)→ (ϕ > ϕ ∧ ψ) (1), (2), PC

(4) ϕ ∧ ψ → ϕ PC

(5) ϕ ∧ ψ > ϕ (4), RCE

(6) (ϕ > ψ)→ (ϕ > ϕ ∧ ψ) ∧ (ϕ ∧ ψ > ϕ) (3), (5), PC

(7) (ϕ > ϕ ∧ ψ) ∧ (ϕ ∧ ψ > ϕ)→ ((ϕ > χ)↔ (ϕ ∧ ψ > χ)) CSO

(8) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ ∧ ψ > χ) (6), (7), PC

For RT:

(1) ψ ∧ ϕ→ ϕ PC

(2) ψ ∧ ϕ > ϕ (1), RCE

(3) ϕ > ϕ ID

(4) (ϕ > ψ)→ (ϕ > ψ ∧ ϕ) (3), CC, PC

(5) (ϕ > ψ)→ (ϕ > ψ ∧ ϕ) ∧ (ψ ∧ ϕ > ϕ) (2), (4), PC

(6) (ϕ > ψ ∧ ϕ) ∧ (ψ ∧ ϕ > ϕ)→ ((ϕ > χ)↔ (ψ ∧ ϕ > χ)) CSO

(7) (ϕ > ψ) ∧ (ψ ∧ ϕ > χ)→ (ϕ > χ) (5), (6), PC

Then we show that V′ ⊇ Vc.
For CSO:

(1) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ ∧ ψ > χ) AC

(2) (ψ > ϕ) ∧ (ϕ ∧ ψ > χ)→ (ψ > χ) RT

(3) (ϕ > ψ) ∧ (ψ > ϕ) ∧ (ϕ > χ)→ (ψ > χ) (1), (2), PC

(4) (ϕ > ψ) ∧ (ψ > ϕ) ∧ (ψ > χ)→ (ϕ > χ) analogous to (1)–(3)
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(5) (ϕ > ψ) ∧ (ψ > ϕ)→ ((ϕ > χ)↔ (ψ > χ)) (3), (4), PC

To prove CC, note that we have proved that RCE can be obtained from PC, ID,
CM, and RCEC in the proof of Proposition 3.3. Since RCEA follows from RCE
and CSO, we also have RCEA in V′. Now we have the following derivation for
CC:

(1) ϕ ∧ ψ ∧ χ > ϕ ∧ ψ ∧ χ ID

(2) ϕ ∧ ψ ∧ χ > ψ ∧ χ (1), CM, PC

(3) ϕ ∧ ψ ∧ χ↔ χ ∧ ϕ ∧ ψ PC

(4) χ ∧ ϕ ∧ ψ > ψ ∧ χ (2), (3), RCEA, PC

(5) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ ∧ ψ > χ) AC

(6) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ ∧ ψ > ψ ∧ χ) (4), (5), RT, PC

(7) ϕ ∧ ψ ↔ ψ ∧ ϕ PC

(8) (ϕ ∧ ψ > ψ ∧ χ)→ (ψ ∧ ϕ > ψ ∧ χ) (7), RCEA

(9) (ϕ > ψ) ∧ (ψ ∧ ϕ > ψ ∧ χ)→ (ϕ > ψ ∧ χ) RT

(10) (ϕ > ψ) ∧ (ϕ > χ)→ (ϕ > ψ ∧ χ) (6), (8), (9), PC
2

Corollary 4.2 VC′ = VCc.

The axiom CSO was criticized by Gabbay [5]. One may be inclined to abandon
it directly. However, the above new systems show that CSO can be recovered
from AC and RT. It should be easy to notice that AC and RT correspond to
cautious monotonicity and cautious cut (a.k.a. cumulative transitivity) in non-
monotonic logics. Both cautious monotonicity and cautious cut are regarded
as the minimal requirements for nonmonotonic consequences. If AC and RT
are also taken to be minimal for conditional logics, then the above proof shows
that CSO is inevitable in conditional logics. If CSO is inevitable, then RCEA
is also inevitable, since it follows from CSO and the very intuitive axiom RCE.
The new axiomatization indicates that it is difficult to construct nonclassical
conditional logics for characterizing default conditionals. It also leads us to a
puzzle about the controversial axiom SDA, which is the converse of CA.

5 A Resolution of a Puzzle about SDA

The axiom SDA suggests that conditionals with disjunctive antecedents have
conjunctive reading. For example, when I say that if John or Mary comes to
my party, I’ll be happy, it is reasonable to conclude that if John comes to my
party I’ll be happy, and if Mary comes to my party I’ll be happy. But if SDA
is contained in any conditional logic with the rule RCEA, the so called fallacy
of strengthening the antecedent which is rejected in all conditional logics will
be recovered. This can be shown by the following simple derivation:

(1) ϕ↔ (ϕ ∨ (ϕ ∧ ψ)) PC

(2) (ϕ ∨ (ϕ ∧ ψ) > χ)→ ϕ ∧ ψ > χ SDA, PC
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(3) (ϕ > χ)→ (ϕ ∧ ψ > χ) (1), (2), RCEA, PC

There are mainly three approaches to solving this puzzle. The first approach,
adopted in [10,11,15,8], is to abandon SDA and apply something other than
logic such as translation lore to account for the intuitive validity of SDA. The
second approach, adopted in [12,13,14], is to keep SDA while giving up the
rule RCEA by developing nonclassical conditional logics. As we have seen in
Section 4, this means that some other intuitively reasonable axioms such as
AC or RT have to be abandoned too. In [4], both the first two approaches
were suggested. The third approach, adopted in [1,6,18], is to give nonclassical
interpretations for disjunction, so that the disjunctive antecedents in condi-
tionals have conjunctive reading. All the approaches are somewhat ad hoc, in
the sense that conditionals with disjunctive antecedents are treated as special
and different from other conditionals.

It has been noticed that SDA has counterexamples in both counterfactual
and indicative conditionals. The following is one for counterfactuals given in
[11]:

(1) If Spain fought on the Axis side or fought on the Allied side, it would fight
on the Axis side.

(2) If Spain fought on the Allied side, it would fight on the Axis side.

By SDA, (1) implies (2). But obviously (2) is false even if (1) is true. A similar
counterexample for indicative conditionals was given in [3]:

(3) If Ivan is playing tennis or playing baseball, then he is playing baseball.

(4) If Ivan is playing tennis, then he is playing baseball.

By SDA, (3) implies (4). But we can have (3) true and (4) false. Both coun-
terexamples have the following form: ϕ∨ψ > ϕ is true but ψ > ϕ false. As far
as we know, no other forms of counterexamples of SDA have been discovered.
Considering that SDA has only counterexamples of such special forms, one
can not resist keeping SDA while explaining away such counterexamples by at-
tributing them as abnormal uses of conditionals with disjunctive antecedents.
But we still face the conflict between SDA and RCEA. Remarkably, one of
Lewis’ axioms for conditional logics, namely the old-fashioned axiom DAE,
which has been neglected for a long time, can perfectly account for both the
intuitive validity of SDA and its counterexamples! The axiom DAE says that
either ϕ ∨ ψ > ϕ is true, or ϕ ∨ ψ > ψ is true, or (ϕ ∨ ψ > χ) is logically
equivalent to (ϕ > χ) ∧ (ψ > χ). From DAE it follows that

¬(ϕ ∨ ψ > ϕ) ∧ ¬(ϕ ∨ ψ > ψ)→ SDA,

which is weaker than SDA. But it is not too weak, since as long as we exclude
the cases when the disjunctive antecedent conditionally implies one of its dis-
juncts, which are exactly the counterexamples for SDA we have found, SDA
is obtained. We think this resolution of the puzzle around SDA is better than
previous ones, since we can dispense with any special treatments of the con-
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12 New Axiomatization of Lewis’ Conditional Logics

ditionals with disjunctive antecedents. It is a big surprise that Lewis himself
did not discover this simple solution, even though he had published a note [8]
about SDA some years after he proposed the axiom DAE in [7].
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Abstract

Control argumentation frameworks describe meaningful models for an agent to make
decisions in an unpredictable but foreseeable environment that is represented by a
set of uncertain arguments. But in a multi-agent setting they fail to capture both
coalition formation and interactions among a set of agents in an unforeseeable envi-
ronment. To study this problem, we propose a model of multi-agent control game
and study how agents adjust their strategies and form coalitions in reaction to un-
foreseeable changes of the environment.

Keywords: Control argumentation, alternating transition system, coalition
formation, argument enforcement

1 Introduction

Formal argumentation offers a natural and easily understood form of non-
monotonic reasoning, and has been applied to various domains such as legal
reasoning and coalition formation [2,3,4,9]. It starts with abstract argumen-
tation frameworks proposed by Dung [6], and then several extensions based
on it including structured argumentation frameworks, bipolar argumentation
frameworks and probabilistic argumentation frameworks, etc. As a new family
of formal argumentation, control argumentation frameworks [5] aim to reach
certain state (acceptance/rejection of particular arguments to be ensured) re-
gardless of unpredictable threats they may face in a dynamic environment rep-
resented by a set of uncertain arguments. In the majority of extended abstract
argumentation frameworks such as structured argumentation frameworks [7],
frameworks are assumed to be fixed, without uncertainty about the existence of
arguments. Control argumentation frameworks (CAFs) relax this assumption,
allowing different possible changes in the frameworks including the addition
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and removal of arguments and/or attacks. These changes may affect the sta-
tus of arguments in an argumentation system. The main theme of CAFs is to
study how to maintain desired status of particular arguments which can resist
unpredictable changes of the uncertain arguments.

Since the existing theories of CAFs only focus on enforcing the status of
some arguments, rather than describe how agents interact with each other in an
unforeseeable environment, they may not be directly applicable to multi-agent
game settings. In a CAF, agents are assumed to know the whole framework.
Even some arguments are uncertain, any change of arguments may be unpre-
dictable but foreseeable. While in reality agents may encounter some problems
which may not be foreseeable. For instance, a driver may find his car stopped
suddenly without any foreseeable problem, or a representative may realize that
the opponent has already known his bottom line in the middle of the negotia-
tion without any previous evidence. In these cases agents may adjust his/her
model of the environment as well as his/her strategy according to information
provided by the environment. There are also some other cases in which the
agent may not be able to ensure certain status of particular arguments and
may need help from others. Take the prisoner dilemma as an example, one
prisoner is unable to ensure the best situation unless he collaborates with the
other one. CAFs fail to capture these intuitions and naturally give rise to the
following research question:

How agents adjust their beliefs and strategies and form coalitions in reac-
tion to unforeseeable changes of the environment in the setting of control
argumentation?

To study this problem, we propose a method based on alternating transition
system, and exploit a language and its semantics based on the existing theory of
alternating-time temporal logic to represent control propositions and coalition
formation in argumentation.

The structure of this paper is organized as follows. In the next section, we
will give a brief introduction of some basic notions of CAFs and alternating
transition system. Then, in section 3, we introduce the basic idea of our method
by defining a control game structure. Finally, we conclude the paper with a
final remark.

2 Preliminaries

2.1 Control Argumentation Frameworks

A control argumentation framework [5] is a triple CAF = (C,F, U) which
describes a model of environment including arguments controlled by the agent
(the control part C), arguments which are certain but not controlled (the fixed
part F ), and uncertain arguments (the uncertain part U). The goal is to
find a strategy, namely a subset of the arguments controlled by the agent,
which ensures certain status of particular arguments in all possible cases. If
such status is ensured, we say that the status is controlled by the strategy.
In the control game structure introduced in the next section, we use a control
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proposition to represent the controlled status of a certain argument with respect
to a state, for instance acc(α) denotes the acceptance of an argument α.

2.2 Alternating Transition System

An alternating transition system (ATS) [1] is a tuple S = (Π,Σ, Q, π, δ) with
the following components: Π is a set of propositions. Σ is a set of agents. Q is
a set of states and q0 is the initial state. π : Q→ 2Π maps each state to the set

of propositions that are true in the state. δ : Q × Σ → 22
Q

maps a state and
an agent to a non-empty set of choices, where each choice is a set of possible
next state.

3 Control Game Structure

In this section we will give an introduction of the multi-agent control game
structure. In order to form a multi-agent control game which is capable of rep-
resenting coalition formations and modifications of agents’ beliefs and strate-
gies in the setting of control argumentation, we propose a method combining
ATS and control argumentation introduced in the preliminaries to build a
modified version of ATS. For components mentioned in the preliminaries, i.e.
Π,Σ, Q, π, δ, we do not modify them except that we let Π be the set of all con-
trol propositions. Besides that we propose several new components in our game
structure to represent agents’ beliefs and strategies, including α representing
agents’ possible strategies in a given state, CAF representing agents’ models of
the environment (the CAFs) and an updating function upd, of which the idea
is inspired by [8], describing adjustments of agents’ models. We give a formal
definition of these modifications in Definition 3.1.

Definition 3.1 (Game structure) A Multi-agent Control Game Structure
(MCGS) is a tuple S = (Π,Σ, Q, π, δ, α, CAF, upd) where

• α : Q× Σ→ N (where N is the set of natural numbers) is a function which
gives a number to each available action for an agent i ∈ Σ at a state q ∈ Q.
In a control game structure, actions of agents are simply strategies. At each
state q, we denote the set of joint strategies for all agents in Σ by Σ(q).

• δ : Q × Σ(q) → Q is the transition function where δ(q,m) is the next state
from q if players execute the action m ∈ Σ(q).

• CAF is the set of all possible control argumentation frameworks and CAF0 is
the actual dynamic environment in which we compute control propositions.

• upd : CAF×Σ(q)→ CAF is a function used to update agents’ models of the
environment where upd(CAFi,m) is the new model updated from a previous
model CAFi given that a joint action m ∈ Σ(q) is executed.

The multi-agent control game structure alone is not sufficient to study the
research question mentioned above. We still need to define a language which
is capable of representing control propositions in the game structure. The way
we define the language depends on what properties of control argumentation
we are interested in. In this paper we pay attention to three types of them,
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that are (1)whether certain status of an argument is controlled at a state,
(2)whether a control proposition can be the semantic consequence of another
control proposition (independent of states) and (3)whether a coalition can con-
trol certain status of a particular argument. The corresponding three types of
control propositions are called normal control propositions, conditional control
propositions and coalitional control propositions. We give a formal definition
of the language in Definition 3.2 for better understanding.

Definition 3.2 (Syntax and Semantics) The language of MCGS is defined as
follows:

p ∈ Π|¬ϕ|ϕ ∧ ψ|ϕ→ ψ|[C]ϕ

The truth condition of formulas in MCGS is defined as follows:

• q ⊨ p iff p ∈ π(q).
• q ⊨ ¬ϕ iff q ̸|= ϕ.

• q ⊨ ϕ ∧ ψ iff q ⊨ ϕ and q ⊨ ψ.
• q ⊨ ϕ→ ψ iff for all states q′ ∈ Q, if q′ ⊨ ϕ then q′ ⊨ ψ.
• q ⊨ [C]ϕ iff there exists a set of agents C ⊆ Σ and a joint action ac of C such
that for any m ∈ Σ(q), if ac ⊆ m then δ(q,m) ⊨ ϕ.

For any A ⊆ Π, we write q ⊨ A for q ⊨
∧

a∈A a

By virtue of the game structure and the language, the game model is capable
of representing control propositions in multi-agent settings. What left to be
discussed is how agents evaluate different control strategies which may have
different outcomes, namely the payoffs of the strategies. In this paper we use
argumentation goals to set foundations for evaluating strategies, of which the
idea is in correspondence with the basic idea of control argumentation, i.e.
whether a set of desired status of arguments is ensured. Considering that some
other works [2,4] give a preorder to measure outcomes, we also define a preorder
on outcomes based on to what extent they satisfy the argumentation goals.

Definition 3.3 (Argumentation goals and weak preference relation). The ar-
gumentation goals of agent i is a set of propositional variables Gi ⊆ Π which
denotes the desired status of particular arguments. For each agent i, ⩾i is a
partial order on Q which is reflexive, transitive and asymmetric. q ⩾i q

′ iff for
all A ⊆ Gi, if q

′ |= A, then q ⊨ A.

4 Final Remark

In this paper, we present a multi-agent control game structure to model (1)
agents’ interaction, (2) adjustments of their beliefs and strategies and (3) coali-
tional controllability in multi-agent settings. In future work, there are two
topics we are interested in. The first topic is the details of upd function. In
[8] the authors presented a reasonable version of upd function in the setting of
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abstract argumentation. But in the setting of control argumentation, an agent
needs to distinguish between the fixed arguments and arguments controlled by
other agents. We may not simply add new arguments into agents’ models, but
label them as fixed arguments or arguments controlled by a particular agent
by virtue of some rational disciplines.

The second topic is, given a particular argument, how to find minimal sub-
sets of controlled arguments (w.r.t set inclusion), such that a particular control
configuration of these arguments controls the desired status of that argument.
This topic is familiar with a topic in dynamics of argumentation called en-
forcement. The difference is that in our setting there are more restrictions.
For instance, there is no reason to add/remove the facts (the fixed arguments)
and their attack relations, as well as actions of other agents (the arguments
controlled by other agents). An algorithm of such procedure may give insights
in modelling coalition formation in the control game structure.
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