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Preface

This volume contains the proceedings of DEON 2016, the 13th International
Conference on Deontic Logic and Normative Systems that was held at the Uni-
versity of Bayreuth (Germany) on 18-21 July 2016. The biennial DEON confer-
ences are designed to promote interdisciplinary cooperation amongst scholars
interested in linking the formal-logical study of normative concepts and nor-
mative systems with computer science, artificial intelligence, linguistics, phi-
losophy, organization theory and law.

There have been twelve DEON conferences: Amsterdam 1991; Oslo 1994;
Sesimbra 1996; Bologna 1998; Toulouse 2000; London 2002; Madeira 2004;
Utrecht 2006; Luxembourg 2008; Fiesole 2010; Bergen 2012; Ghent 2014.

General Topics and Special Focus
DEON conferences focus on the following general topics:

¢ the logical study of normative reasoning, including formal systems of deontic
logic, defeasible normative reasoning, logics of action, logics of time, and
other related areas of logic

¢ the formal analysis of normative concepts and normative systems

¢ the formal specification of aspects of norm-governed multi-agent systems
and autonomous agents, including (but not limited to) the representation of
rights, authorization, delegation, power, responsibility and liability

¢ the normative aspects of protocols for communication, negotiation and multi-
agent decision making

¢ the formal analysis of the semantics and pragmatics of deontic and normative
expressions in natural language

¢ the formal representation of legal knowledge

¢ the formal specification of normative systems for the management of bureau-
cratic processes in public or private administration applications of normative
logic to the specification of database integrity constraints

¢ game-theoretic aspects of deontic reasoning
e emergence of norms
¢ deontic paradoxes

In addition to these general topics, DEON 2016’s special focus was “Rea-
sons, Argumentation and Justification.” Reasons play a prominent role in the
normative study of action, belief, intention, and the emotions, as well as in
everyday justification and argumentation. Recent years have seen numerous
fruitful exchanges between deontic logicians, computer scientists, and philoso-
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phers on the nature of reasons and their role in practical and theoretical de-
liberation. There have also been multiple applications of formal frameworks
for the study of reasons in areas of interest to linguists and philosophers of
language. The goal of DEON 2016’s special focus was to continue this positive
trend by encouraging submissions that explore the significance of deontic logic
for the study of reasons and their connection with justification and argumen-
tation (and vice versa).
Topics of interest in this special theme included:

¢ the role of general (though perhaps defeasible) principles in justification and
argumentation

¢ the relation between practical and epistemic reasons
¢ the formal analysis of reasons and of reasoning about reasons
¢ the role of justification in multi-agent systems
¢ the connection between justification and argumentation
Our call for papers attracted 44 submissions from a variety of research
communities. All submitted papers were reviewed by three members of the

Program Committee. In total, 19 papers were accepted for presentation at the
conference and 18 are published in this volume.

Keynote Speakers

Our four keynote speakers were chosen with an eye to the conference’s special
focus. They were:

¢ John Broome (University of Oxford)

¢ Janice Dowell (Syracuse University)

e Xavier Parent (University of Luxembourg)

¢ Gabriella Pigozzi (Université Paris-Dauphine)

Titles and abstracts of the invited talks were the following:

John Broome, “A Linking Belief is Not Essential for Reasoning”:

Reasoning is a mental process through which some attitudes of yours —
premise attitudes — give rise to a new attitude of yours — a conclusion atti-
tude. Not all processes of this sort are reasoning, so what further conditions
are essential for a process of this sort to be reasoning? A common view is
that you must believe that the content of the conclusion attitude is implied
by the contents of the premise attitudes. Call this a ‘first-order linking be-
lief’. A first-order linking belief is plausibly a necessary condition for some
sorts of reasoning — specifically for theoretical reasoning that concludes in a
belief. But it is not a necessary condition for other sorts of reasoning, such
as practical reasoning that concludes in an intention. And it is not essential
even for reasoning that concludes in a belief: it is not part of what makes a
process reasoning.
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Janice Dowell, “Methodology for Semantic Theorizing: The Case of Deontic
Modals”:

Recent challenges to Kratzer-style contextualism about modals accord speak-
ers’ truth- and warrant-assessments a special evidential role: They presup-
pose that any adequate semantic hypothesis must vindicate those assess-
ments. Here I challenge this presupposition, focusing on John MacFarlane’s
central challenge to contextualism about deontic modals. In order for our
judgments about his challenge case to be reasonably accorded that evidential
role, its characterization (of its discourse context and circumstances of eval-
uation) must be non-defective. However, his case does not meet this minimal
constraint on characterizations. That characterization may be repaired to
reveal data that properly plays the presumed evidential role. However, none
of that data is data the contextualist cannot easily explain.

Xavier Parent, “Preference-based semantics for dyadic deontic logics in Hans-
son’s tradition: a survey of axiomatisation results”:

I present and discuss a number of axiomatization results about so-called
dyadic deontic logics in the preference-based semantics tradition. These rely
on ranking possible worlds in terms of a Hanssonian binary preference rela-
tion of comparative goodness or betterness. In that framework the condi-
tional obligation operator is defined in terms of best antecedent-worlds. The
goal is to identify the different systems that can be obtained, depending on
the special properties envisaged for the betterness relation, and depending
on how the notion of “best” is understood (optimality vs. maximality, strin-
gent vs. liberal maximization). If time allows, decidability issues will also
be discussed.

Gabriella Pigozzi, “Changing norms: a framework for revising and contracting
rules”:

In human societies as well as in artificial ones, norms change over time: new
norms can be created to face changes in the society, and old norms can be
retracted. Multiagent systems need mechanisms to model and reason about
norm change. In this talk I will present AGM contraction and revision of
rules using input/output logical theories. We replace propositional formulas
in the AGM framework of theory change by pairs of propositional formulas,
representing the rule based character of theories. In general, results from
belief base dynamics can be transferred to rule base dynamics, but a similar
transfer of AGM theory change to rule change turns out to be much more
problematic. (Joint work with Leon van der Torre.)

Acknowledgements

Organizing a conference is team work. We are grateful to everyone who made
this conference possible. Most of all, we thank our invited speakers, and all
the authors of the presented papers. Special thanks go to the members of the
Program Committee and the additional reviewers for their service in reviewing
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very tight timescale to make this volume a reality. We also thank the Local
Organizing Committee, especially Albert Anglberger, Huimin Dong, Franziska
Poprawe and Nathan Wood, for taking care of all the countless details that a
conference like this requires. We also thank Leon van der Torre and Jeff Horty,
Chair and Vice Chair of the DEON Steering Committee, respectively, for their
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getting these proceedings published.

June 2016 Olivier Roy, Allard Tamminga and Malte Willer
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Cumulative Aggregation

Diego Agustin Ambrossio Xavier Parent Leendert van der Torre

University of Luzembourg
6, rue Richard Coudenhove-Kalergi, Luxembourg
{diego.ambrossio,zavier.parent, leon.vandertorre}Qunsi. lu

Abstract

From any two conditional obligations “X if A” and “Y if B”, cumulative aggregation
derives the combined obligation “X UY if AU (B \ X)”, whereas simple aggregation
derives the obligation “X UY if AU B”. We propose FC systems consisting of cu-
mulative aggregation together with factual detachment, and we give a representation
result for FC systems, as well as for FA systems consisting of simple aggregation to-
gether with factual detachment. We relate FC and FA systems to each other and to
input/output logics recently introduced by Parent and van der Torre.

Keywords: cumulative aggregation, abstract normative systems, input/output logic.

1 Introduction

In this paper, we contrast and study two different principles of aggregation for
norms in the context of the framework of Abstract Normative Systems (ANS)
due to Tosatto et al. [9].

This one is intended as a general framework to compare logics for norma-
tive reasoning. Only fragments of the standard input/output logics [5] are
covered by Tosatto et al., and so here we set ourselves the task of applying
the framework to the input/output logic recently introduced by Parent and
van der Torre [7]. (Cf. also [6].) Its most salient feature is the presence of a
non-standard form of cumulative transitivity, called “aggregative” (ACT, for
short). Such a rule is used in order to block the counter-examples usually given
to the principle known as “deontic detachment”: from the obligation of X and
the obligation of Y if X, infer the obligation of Y.

Our contribution is first and foremost technical. We acknowledge that the
benefits of using the theory of abstract normative systems may not be obvious
to the reader. We will not discuss the question of whether it has a reasonable
claim to be a general framework subsuming others, nor will we discuss the
question of whether aggregative cumulative transitivity is, ultimately, the right
form of transitivity.

A central feature of the Tosatto et al. account is that it abstracts away
from the language of propositional logic. We recall that as initially conceived
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input/output logic is an attempt to generalize the study of conditional obli-
gation from modal logic to the abstract study of conditional codes viewed as
relations between Boolean formulas. The underlying language is taken from
propositional logic. It contains truth-functional connectives, and is assumed to
be closed under application of these connectives. It is natural to ask if one can
extend the generality further, by working with an arbitrary language, viewed
as a collection of items, and without requiring that the items under consider-
ation be “given” or regimented in some special way. Similar programs have
been run for propositional logic and modal logic. Koslow [4]’s structuralist ap-
proach to logic is perhaps one of the best-known examples of such a program.
Unlike Koslow, we do not even assume that the items under consideration can
enter into some special implication relations with each other. There are schol-
ars who (rightly or wrongly) take the well-known Tarskian conditions for the
consequence relation to be objectionable on the grounds that, for reasons of
vagueness (or more), important consequence relations over natural languages
(however formalized) are, for instance, not generally transitive. (See, e.g., [8].)
The idea is just to investigate the possibility of a formal theory of normative
reasoning that avoids such commitments (be they justified or not).*

Tosatto et al.’s account has no apparatus for handling conjunction of out-
puts, and our main purpose in this paper is to develop it to do so. We follow the
ideas of so-called “multiple-conclusion logic”, and treat normative consequence
as a relation between sets, whose elements are understood conjunctively. No
assumption about the inner structure of these elements is made.

Conditionals:

ASX,BoY,... Rules
Input: Detachments:

I Derivations: Arguments: XY

) A= X =Y [A.X)
(A X} (3Y) (B,Y) )

(AU XUY) (AU XUY)

Fig. 1. An Abstract Normative System

An example of an abstract normative system studied in this paper is given
in Figure 1. It should be read as follows. Conditionals A - X,B — Y, ... are
the norms of the normative system. Each of A, X, B and Y is a set of language
elements (whose inner structure remains unanalyzed). Sets are understood con-
junctively on both sides of —. The input I is a collection of language elements
representing the context. Rules are used to generate derivations and arguments
based on I. The set of detachments {X,Y,...} is the output consisting of all
detached obligations. The elements of Figure 1 are explained in more detail in
the next two sections.

The prime focus in [7] was the contrast between two forms of transitiv-
ity, called “cumulative transitivity” and “aggregative cumulative transitivity”.

1 This motivation for using ANS is ours.
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This paper shifts the emphasis on the contrast between the following two forms
of aggregation.

Simple aggregation If X is obligatory in context A, and Y is obligatory in
context B, then X UY is obligatory in context AU B. In other words, simple
aggregation derives the obligation “X UY if AUB” from any two conditional
obligations “X if A” and “Y if B”.?

Cumulative aggregation If X isobligatory in context A, and Y is obligatory
in context B, then X UY is obligatory in context AU(B\ X). In other words,
cumulative aggregation derives the combined obligation “XUY if AU(B\X)”
from the same two conditional obligations.

The rule of simple aggregation gives the most straightforward way of col-
lecting items as detachments are performed. When A = B, simple aggrega-
tion gives the rule “If X is obligatory given A, and Y is obligatory given A,
then X UY is obligatory given A.” A drawback of simple aggregation is that
it does not capture transitive reasoning. Given the two conditional obliga-
tions “{z} if {}” and “{y} if {«}”, simple aggregation only yields “{z,y} if
{z}”. This motivates the rule of cumulative aggregation. In the particular
case where B = AU X, cumulative aggregation yields the form of transitivity
introduced by Parent and van der Torre [7] under the name ACT. This is the
rule (4, X), (AU X,Y)/(A, X UY). In our example, one gets “{x,y} if {}.”3

To summarize, we adress the following issues:

¢ How to develop the theory of abstract normative systems to handle conjunc-
tion of outputs and the form of cumulative transitivity described in [7]?

¢ How to define the proof theory of the system? What are the most significant
properties of the framework?

e How to provide a semantical characterisation, along with a representation
result linking it with the proof theory?

The layout of this paper is as follows. In Section 2, we introduce FA systems
for simple aggregation. In Section 3, we introduce FC systems for cumulative
aggregation. We give representation results for both systems. In Section 4,
we show how FA and FC systems relate to one another, and we discuss some
properties of the systems. In Section 5 we show how FA and FC systems relate
with the input/output logics introduced by Parent and van der Torre [7].

Due to space limitation, we focus on the logical framework and the results,
and leave the proofs of the representation theorems to a technical report [1].
We would like to stress that these are not just a re-run of the proofs given
by Parent and van der Torre [7] in a classical logic setting. The two settings

2 Note that intersection as used in abstract normative systems does not correspond to dis-
junction in propositional logic. Take ({p},{z}) and ({q},{z}). The intersection of the two
contexts yields ({}, {z}). Reasoning by cases would yield ({p V ¢}, {z}) instead.

3 As mentioned, it is not our purpose to discuss this rule in any greater depth. For more

details on it, see Parent and van der Torre [7].
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are very different. The question of whether the proofs of our representation
results can be adapted to yield a completeness result in a classical logic setting
remains an open problem.

2 FA systems for simple aggregation

In this section, we introduce abstract normative systems for simple aggregation,
and we give a representation result. Though FA systems may be interesting in
their own right, in this paper the main role of FA systems is to set the stage for
FC systems for cumulative aggregation, introduced in the next section. Thus,
although we talk about normative systems and use examples from normative
system it must be kept in mind that FA systems are not appropriate for all
kinds of normative reasoning.

In general, a system (L, C, R) consists of a language L, a set of conditionals
C defined over this language, and a set of rules R. The input is a set of sentences
from L. If (L,C, R) is a normative system, then a conditional A — X can be
read as the norm “if A, then obligatory X”. A normative system contains
at least one set of norms, the regulative norms from which obligations and
prohibitions can be detached. It may also contain permissive norms, from
which explicit permissions can be detached, and constitutive norms, from which
institutional facts can be detached. In this paper we do not consider permissive
and constitutive norms. In the present setting, a system generates or produces
an obligation set, a subset of the universe, reflecting the obligatory elements of
the universe.

All abstract normative systems we consider satisfy at least factual detach-
ment. To represent factual detachment, we write (A, X) for the argument for
X in context A, in other words, for input A the output contains X. Factual
detachment is the rule A — X/(A, X), and says that if there is a rule with the
context as antecedent, then the output contains the consequent.

Besides factual detachment, FA systems have the rule of so-called simple
aggregation. This one is usually given the form (A, X),(A4,Y)/(A, X UY). In
this paper aggregation is given the more general form (A4, X), (B,Y)/(AUB, XU
Y). This more general form allows for the inputs not to be the same. Given
strengthening of the input, (A, X)/(A U B, X), the two rules are equivalent.
Since we do not assume strengthening of the input, our rule is strictly stronger.

Definition 2.1 [FA system with input] A FA system is a triple (L, C, R) with
L a language, C' C 2F x 2© a set of conditionals written as A — X, and R a
set of rules. For every conditional A — X € C, A and X are finite sets. A FA
system is a system (L, C, R) where R consists of the rule of factual detachment
(FD) and the rule of aggregation (AND):
A= X (A,X) (B,Y)
A4,X) "“PTauBXxUY)
An input I C L for system (L,C, R) is a subset of the language.
Let FA = {FD,AND}. We write a(A — X) = A for the antecedent of a
conditional, and ¢(A — X) = X for the consequent of a conditional. We write

FD
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a(C) =U{a(A = X) | A— X € C} for the union of the antecedents of all the
conditionals in C. We write ¢(C) = U{c(4A — X) | A — X € C} for the union
of the consequents of all the conditionals in C.4

The following example is meant to exercise the notation. We build a lan-
guage, and introduce a set of conditionals and an input. The language L is the
domain (or universe) of discourse. For the purpose of the example, L is a set
of literals. Following Tosatto et al., we also introduce a complement function
€ for the elements e of the language L.

Example 2.2 [Sing and dance, adapted from Goble [3]] Given a language Ly
which does not contain formulas of the form ~a, the language L is Lo U {~a |
a € Lo}. Fora € L, if a € Ly then @ =~a, and otherwise @ = b for the b € L
such that a =~b.

Let Ly be {z,y,d, s}. Intuitively: “it is Spring” (z); “it is Sunday” (y);
“a dance is performed” (d); and “a song is performed” (s). The language L
adds classical negation to the language, L = Lo U {~y,~x,~d,~s}. The
complement function says & =~x, ~Z = x, and so on.

Suppose the conditionals C; = {y — d,z — s} apply to a wedding party.
This says that on Sundays one ought to dance, and in Spring one ought to sing.
The antecedents of the conditionals are: a(y — d) = y; a(z — s) = x; a(Cy) =
{z,y}. Their consequents are: c(y — d) =d; c(z — s) = s; ¢(Cy) = {s,d}.

We distinguish three related kinds of output from a system and an input,
called derivations, arguments and detachments, respectively. A derivation is a
finite tree, whose leaves are elements from the set of conditionals and whose
root is a pair (A4, X) obtained by successive applications of the rules, with the
further constraint that A C I.° An argument is a pair (A4, X) for which such
a derivation exists, and X is a detachment for which such an argument (A, X)
exists. 6

Definition 2.3 [Derivations der, Arguments arg, and Detachments det ]
Given a system (L, C, R) and an input I,

e a derivation of (A, X) on the basis of I in system (L,C) is a finite tree”
using the rules R, with as leaves elements of C, and as root the pair (A, X)
where A C T and X C L.

4 To ease readability we will omit curly braces when referring to singleton sets, and we write
a — z for {a} — {z}.

5 Alternatively, we could add the condition A C I only to the definitions of arguments and
detachments, or only to the definition of detachments. There are pros and cons to both
choices. For example, the advantage of our definition is that the set of derivations is smaller,
but the disadvantage is that the set of derivations is not closed under sub-derivations, which
complicates the proofs of the formal results.

6 Note the special feature of our formal framework that weakening of the output can be added
in different ways. For example, one can add a rule (A, X UY)/(A, X), or one can adapt the
definition of detachment such that X is detached for input I if there is an argument (A,Y)
such that A C I and X C Y. The same holds for other properties added to the formal
system. We leave the formal analysis of such kinds of extensions to further research.

7 By a finite tree, we mean one with finitely many nodes.
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e an argument is a pair (A, X), such that there exists a derivation d with
root(d) = (A, X).

e a detachment is a set X such that there is an argument (A, X).

We write der(L,C, I, R) for the set of all the derivations which can be con-
structed in this way, we write arg(L, C, I, R) for the set of all such arguments,
and we write det(L,C, I, R) for the set of all such detachments.

We write leaves(d) for the set of all the leaves of derivation d, i((4,X)) = A
for the input of a pair (A4, X) and o((A4, X)) = X for the output of a pair (4, X).
Also we write (D) = U{i((A, X)) | (A4,X) € D} and o(D) = U{o((A, X)) |
(A, X) € D} for the inputs and outputs of sets of such pairs.

The derivation rules take one datatype, norms, and outputs another, argu-
ments. Nonetheless, the main idea is that derivations are always based on an
input. This is reflected by the constraint i(root(d)) C I. But we stress that
such a constraint is put on the root of the derivation only, and that all the
other nodes need not verify this constraint. Otherwise we would not be able
to chain conditionals together. Because of this, the property of closure under
sub-derivations does not always hold. It depends on the rules being used. We
will see an example of this phenomenon with system FC in Section 3. This also
makes the proof of the representation theorem for FC trickier. The standard
method of induction over the length of derivations is not available any more.

A derivation is a relative notion, since it is meant to represent the inner
structure of an argument. As argued before derivations are tied to the context
giving a justification for the argument put forward based on what is, or is not,
the case. In the literature, the notion of argument is defined in two ways.
Either an argument is viewed as either a pair whose first element is a set of
formulas (the support) and second element a formula (the conclusion), or as
a derivation in a logical proof system, i.e. a sequence, tree or graph of logical
formulas. Here we choose the first definition. In the context of this study,
the pair itself denotes a norm. However, it could represent any conditional
statement. We use the term argument rather than norm, just to emphasize
that we are interested in the relationship between a set of premises and its set
of conclusions.

We now can briefly explain the notion of abstraction at stake in the theory
of abstract normative systems. Intuitively, the detachment system treats the
elements of L as atomic, in the sense that detachments have no relation with
the logical structure of language L. Formally, we can replace one language L
by another one L', define a one-to-one function f between elements of L and
L', and extend f to subsets of L and C. Then we have f(det(L,C,I,R)) =
det(f(L), f(C), f(I), R). In this sense, it is an abstract theory.

We continue Example 2.2 to illustrate factual detachment and aggregation,
as well as the distinction between derivations, arguments and detachments. In
the absence of the rule of strengthening of the antecedent, one cannot derive
that X is obligatory in context A U B from the fact that X is obligatory in
context A. This reflects the idea that arguments are minimal, in the sense that
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one cannot add irrelevant elements like B to their support. For example, if the
input is {A, B} and the sole conditional is A — X, then there is no argument
(AUB, X). But X will be detached, since the input set triggers the conditional
in question. The absence of the rule of strengthening of the antecedent does
not reflect the fact that rules may leave room for exceptions.

Example 2.4 [Example 2.2 - Continued] Given L = Lo U {~a | a € Ly}, we
say that an element a € I is a violation if there is a detachment containing @,
and this detachment is called a violated obligation. Moreover, we say that a
detachment is a cue for action if it is not a violated obligation.

The derivations for C; = {y — d,x — s} and I} = {x,y} are
der(L,Cl,Il,FA) =

z—d Yy—s
—d T — S FD FD
{dl =2 FD, d2 = FD (z,d) (y,9) },

(y,d) (z,s)  d3 = (o o) Tod)) AND

the arguments are arg(L,C1, I1, FA) = {(y,d), (z,s), {z,y}, {s,d})} and the
detachments are det(L,Cy, I, FA) = {{d},{s}, {s,d}}, which are all cues for
action. Thus I; does not contain violations. Factual detachment derives d and
s, and aggregation combines them to {d, s}. First, note that some strengthen-
ing of the input is built in the aggregation inference rule AND, as we derive
the conditional norm ({z,y}, {s,d}) whose antecedent is stronger than the an-
tecedent of the conditional norms in C7. Second, note that, for the context
where there is no singing I = {z,y, 3}, we obtain exactly the same deriva-
tions, arguments and detachments. However, now 5 is a violation, and the
detachments {s} and {s,d} are violated obligations, and only {d} is a cue for
action.

Now consider Cy = {{z,y} — {s,d}} and, e.g., Is. The derivation is

{z,y} = {s,d}
der(L, CQ, IQ,FA) = {d4 = m FD} s
the arguments are arg(L,Co, Is, FA) = {({z,y}, {s,d})} and the detachments
are det(L,Cy, I, FA) = {{s,d}}.
It should not come as a surprise that the set of detachments is syntax-
dependent. This follows at once from letting the rule of weakening of the output
go. This phenomenon is familiar from the literature on belief revision. 8

Theorem 2.5 gives a representation result for FA systems. The left-hand
side of the bi-conditional pertains to the proof theory, while the right-hand side
of it provides a semantic characterization in terms of subset selection. For X
to be derivable from a set of conditionals C' on the basis of input I, X must be
the union of the consequents of finitely many conditionals in C', which are all
‘triggered’ by the input set I.°

8 For more on the rule of weakening of the output, and the reason why it may be considered
counter-intuitive, we refer the reader to the discussion in Goble [3] (see also Parent and van
der Torre [7].)

9 In FA systems, we call ‘triggered’ those conditionals whose antecedents are in I.
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Theorem 2.5 (Representation result, FA) X € det(L,C,I,FA) if and
only if there is some non-empty and finite C' C C such that a(C’) C I and
X = ¢(C).

Proof. See [1]. 0

Corollary 2.6 (Monotonicity of det) det(L,C,1,FA) C det(L,C’, I, FA)
whenever C C C".

The following example illustrates how to calculate the detachments using
the semantic characterization described in the statement of Theorem 2.5.

Example 2.7 [Example 2.2 - Continued] We calculate det(L,C1, I, FA), now
using Theorem 2.5. The set of conditionals C; has three non-empty subsets:
Ci1 ={y — d}, Cho = {z — s}, and C1 3 = {y = d,x — s}. Here
a(C’l.l) Q Il, 0(01.2) Q Il and a(Cl_g) Q Il. AISO C(Cl.l) = {d}, C(CLQ) =
{S} and 6(01‘3) = {S,d}. SO d@t(L,Cl,Il,FA) = {0(01.1)7 C(Cl‘g), 0(013)} =
{{d}, {s},{s,d}}.

3 FC systems for cumulative aggregation

In this section we introduce FC systems for cumulative aggregation. FC is
much alike FA except that the rule of aggregation AND is replaced with that
of cumulative aggregation CAND.

Definition 3.1 [FC system with input] A FC system is a triple (L, C, R) where
R consists of the following rule of factual detachment (FD), and the rule of
cumulative aggregation (CAND). We write FC = {FD,CAND}.

= (4,x) CAND= (AU(B\ X),XUY)

To illustrate the difference between FA and FC systems, we use the same
example as the one that Parent and van der Torre [7] use in order to motivate
their rule ACT. We reckon that, compared to the framework described in [7],
the present framework does not yield any new insights into the analysis of the
example itself.

Example 3.2 [Exercise, from Broome [2]] C' contains two conditionals. One
says that you ought to exercise hard everyday: {} — z. The other says that,
if you exercise hard everyday, you ought to eat heartily: x — h. Intuitively, in
context {}, we would like to be able to derive {z, h}, but not {h}.

FA systems do not allow us to do it.

Let T = {}. With simple aggregation the set of deriva-

tions is der(L,C,I,FA) = {d1 = {(i}_;)x FD}, the set of arguments is
arg(L,C,I,FA) = {({},x)} and the set of detachments is det(L,C, I, FA) =
{{z}}. Thus the desired obligation is not detached. Norms can be chained
together only in so far as the input set contains their antecedent. Let I’ = {z}.
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Then the set of derivations is der(L,C,I’, FA) =

{} == x — h
{dl— U=e op =22l pp o " @m0 }

T ) z,h ’ =
{}, z) (z, h) ds PREADY AND

the set of arguments is arg(L,C,I', FA) = {({}, z), (z, h), (z,{x, h})} and the
detachments are det(L,C,I', FA) = {{z},{h},{z, h}}.

With cumulative aggregation, the derivations for C' and I = {} are
der(L,C,I,FC) =
{} -2 z — h
’ ’ TNE))

The arguments are arg(L,C,I,FC) = {({},z), {},{z,h})} and the detach-
ments are det(L,C,I,FC) = {{x},{x,h}}. Factual detachment allows us to
detach {z}, and cumulative aggregation allows us to detach {x, h} in addition.
Like in [7], h cannot be derived without x. Intuitively, the obligation to eat
heartily no longer holds, if you take no exercise.

Definition 3.3 introduces the functions f and g, to be used later on in the
semantic characterization of cumulative aggregation. Intuitively, given a set
D C L, the function f(C, D) gathers all the consequents of the conditionals in
C' that are triggered by D. The function g(C,I) gathers all the sets D that
extend the input set I and are closed under f(C, D).

Definition 3.3 [f and g] We define
fC. D)= J{X|A-XeC;AC D}

9(C.I)={D|IC D2 f(C,D)}
We illustrate the calculation of functions f and g continuing Example 3.2.

Example 3.4 [Example 3.2 - Continued| Consider the following table. The
left-most column shows the relevant subsets C’ of C. The middle column
shows what consequents can be detached depending on what set D is used as

input. The right-most column shows the sets D extending I and closed under
f(C’, D), for each subset C".

CI f(C/,D) g(C/7 {})
IR {z} {(DlzeDy
z - h {}ifz ¢ D, {D|x¢Dor

{h}ifzxeD {z,h} C D}

=z, {xyifzdD, .~

-
x—h {z,h} ifxeD {D[{z h} C D}
Theorem 3.5 gives a representation result for FC systems. For X to be
derivable from a set of conditionals C' on the basis of input I, X must be the
union of the consequents of finitely many conditionals in C, which are either
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directly triggered by the input set I (in the sense of Footnote 9), or indirectly
triggered by the input set I (via a chain of norms).

Theorem 3.5 (Representation result, FC) X € det(L,C,I, FC) if and
only if there is some non-empty and finite C' C C such that, for all
D e g(C',I), we have a(C") C D and X = f(C', D).

Proof. See [1]. 0

We show with an example how to calculate the detachments using the se-
mantic characterization given in the statement of Theorem 3.5.

Example 3.6 [Example 3.4 - Continued] We again calculate det(L,C, I, FC),
now using Theorem 3.5. We use the Table shown in Example 3.4.

The top row tells us that, {x} € det(L,C, I, FC). This is because, for all D
in g(C",{}), f(C",D) = {x}.

The bottom row tells us that, {z,h} € det(L,C,I, FC). This is because,
for all D in g(C’,{}), f(C’, D) = {x, h}.

We can also conclude that, {h} & det(L,C, I, FC) because, for all C’, there
is a D in g(C’,{}) such that f(C’, D) # {h}.

Finally, the set of detachments is det(L,C, I, FC) = {{z},{z, h}}.

4 Some properties of FA systems and FC systems
We start by showing how FA systems and FC systems relate to each other.

Definition 4.1 [Argument subsumption] Argument (A, X) subsumes argu-
ment (B,Y) if A C B and X =Y. Given two sets of arguments S and T,
we say that T subsumes S (notation: S C T'), if for all (B,Y’) € S there is an
argument (A, X) € T such that (A, X) subsumes (B,Y).

Example 4.2 Consider the following derivation.

(A, X) (AUBUX,XUY)
d= CAND
(AUB,XUY)
The argument (AU B, X UY) subsumes the argument (AUBU X, X UY).
Proposition 4.3 arg(L,C,I, FA) C arg(L,C, I, FC).

Proof. Let (A, X) € arg(L,C,I,FA), where A C I. Let d be the derivation of
(A, X) on the basis of I using the rules FD and AND. Let leaves(d) = {4; —
Xi,...,Ap, = X, }. We have A =J!", A; and X = J!_, X;.'° That is,

(4, X) = (U Ay, UXi)

One may transform d into a derivation d’ of (A’, X') on the basis of I using the
rules FD and CAND. Keep the leaves and their parent nodes (obtained using

10 Strictly speaking, this follows from a lemma used in the proof of the representation result
for FA systems, Lemma 1 in [1].
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FD) as they are in d, and replace any application of AND by an application of
CAND. The result will be a tree whose root is

A, x) = (o Jean U . U

i=1

We have
n i—1 n n n
=2 j=1 =1 =1 =1

On the one hand, (A", X) € arg(L,C,I,FC). On the other hand, (4’,X)

subsumes (A4, X). O
Corollary 4.4 det(L,C,1,FA) C det(L,C, I, FC)
Proof. This follows at once from Proposition 4.3. a

We now point out a number of other properties of FA and FC systems.
Proposition 4.5 (Applicability) The rules AND and CAND can be applied
to any arguments (A, X) and (B,Y).

Proof. Trivial. Assume arguments (A, X) and (B,Y). By definition of an
argument, ACT, BCI, XCLandY C L. Thus, AUBCI, AU(B\X)CI
and X UY C L. a
Proposition 4.6 (Premises permutation, FA) AND can be applied to two
arguments (A, X) and (B,Y) in any order.

Proof. Straightforward. a

It is noteworthy that Proposition 4.6 fails for CAND, as shown by the
following counterexample, where A # B:
(B,A) (A B)

(A,B)  (B,A)
(AAUB) CAND <& (B.AUD) CAND

The arguments (A, AU B) and (B, AU B) are distinct.
Proposition 4.7 considers two successive applications of AND, or of CAND.

Proposition 4.7 (Associativity) Each of AND and CAND is associative,
in the sense of being independent of the grouping of the pairs to which it is
applied.

Proof. The argument for AND is straightforward, and is omitted. For CAND,
it suffices to show that the pairs appearing at the bottom of the following two
derivations are equal:

: BY) (@2 @x) By :
(A, X) (BU(C\Y),YUZ) (AU (B\ X),XUY) (C, Z)
(AU((BU(C\Y)\X),XUYU2Z) (AU(B\X)U(C\(XUY)),XUYU?Z)
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The fact that the two pairs in question are equal follows at once from the
following two laws from set-theory:

(AUB)\ X = (A\ X)U(B\ X) (1)
B\ (XUY)=(B\X)\Y (2)

We have:

AU(BUC\Y)\X)=AU(B\X)U((C\Y)\X)  [bylaw (1)]
= AU(B\X)U(C\(XUY))  [by law (2)]

|

Proposition 4.8 FA systems are closed under sub-derivations in the following
sense: given a derivation d € der(L,C,1,FA), for all sub-derivations d' of d,
d' € der(L,C, I, FA)-that is, i(root(d’")) C I.

Proof. Let d € der(L,C, I, FA) with root(d) = (A, X) and A = A;U...UA4,, C
Iand X = XjU...UX,,. Without loss of generality, we can assume that n > 1.
By Proposition 4.7, d can be given the form:

A1—>X1 A2—>X2

F FD
(A1, X1) (A2, X2) AND : oD
(Al UAQ,Xl UXQ) (A37X3) AND
(Al U As UA3,X1 U Xo UX3)
: A, — X,
FD ——Mm—
(A1U...UA, 1, X1 U...UX, ) (An, Xn)

AND
(AtU...UA,, X1 U...UX,)

Let d' be a sub-derivation of d with root (A’, X’). Clearly, A’ C A, and so
A" C I, since ACI. a

Proposition 4.9 FC systems are not closed under sub-derivations.

Proof. We prove this proposition by giving a counterexample. Let C be the
set of conditionals {4 — X, X — Y} and let I = {A}. Consider the following

derivation:

dy = A—-X XY
d= (A4, X) (X,Y)
(A, XUY)

We have i(root(d)) C I, so that d € der(L,C,I,FC). Since i(root(ds)) = X
and X Z I, dy € der(L,C, I, FC). O

Proposition 4.10 (Non-repetition) For every d € der(L,C,I,FA) with
root (A, X) and leaves leaves(d), there exists a derivation d' € der(L,C, I, FA)
with the same root and the same set of leaves, such that each leaf in leaves(d’) is
used at most once. The same holds for every derivation d € der(L,C, I, FC).
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Proof. We only consider the case of FC systems (the argument for FA sys-
tems is similar). Assume we have a derivation d with root(d) = (4, X) and
leaves(d) = {41 — X1,... A, — X, }. By Proposition 4.7, one can transform
d into a derivation d’ of the form

A1 — X1 Az — Xa
F FD
(A1, X1) (A2, X2)
AND A3 — X3
————_FD
(As, X3)
AND
D A, — Xn
N (An, Xn)
ND
(A, X)

Suppose that in d’ some A; — X; decorates at least two distinct leaves. We
show that we can eliminate the second one. To aid comprehension, let B be
mnemonic for the following union, where [ < j:

A1 U (Ax\ X1) U (43 \ (X1 UX2)) U U (A \ (X1 U...UX;_1))

Suppose we have the step:

Al *)Xl A2 *)XQ
(A1, X1) (A2, X>5) Az — X3
(A1 U (A2\ X1), X1 U X2) (A3, X3)
(Al @] (A2 \Xl) ] (A3 \ (X1 UXQ)),Xl U Xo UX3)
Aj —)Xj
(A5, X;) A= X,
(B, Ui, Xi) (A, X1)

(BU(AN\UL_, X:), U, X; U X))

where the sub-derivation with root (B, ngl X;) contains a leaf carrying 4; —
X;. That is, A; — X; is one of 41 — X1, ... and A; — X, and it is re-used
immediately after A; — X;. Since X; is one of Xy, ... and X, ngl X, UX; =

/_, X;. On the other hand, (A, \ U_, X;) € (4 \UiZ; Xi) € B , so that
BU(A;\Ul_, X;) = B. Thus, we can remove from d’ all the re-occurrences of

the leaves as required.
O

5 Related research

As mentioned in Section 1, the present paper extends the framework described
by Tosatto et al. [9] in order to handle conjunction of outputs along with the
form of cumulative transitivity introduced by Parent and van der Torre [7].
At the time of writing this paper, we are not able to report any formal result
showing how the Tosatto et al. framework relates with the present one. Care
should be taken here. On the one hand, the present account does not validate
the rule of strengthening of the input, while the Tosatto et al. one does in
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the following restricted form: from (T, x), infer (y,x). On the other hand, in
order to relate the proof-theory with the semantics, the authors make a detour
through the notion of deontic redundancy [10]. A more detailed comparison
between the two accounts is left as a topic for future research.

There are close similarities between the systems described in this paper
and the systems of I/O logic introduced by Parent and van der Torre [7]. As
explained in the introductory section, our rule CAND is the set-theoretical
counterpart of their rule ACT. In both systems, weakening of the output goes
away. At the same time there are also important differences between the two
settings. First, the present setting remains neutral about the specific language
to be used. This one need not be the language of propositional logic. Second,
the present account does not validate the rule of strengthening of the input.

Tosatto et al. explain how to instantiate the ANS with propositional logic
to obtain fragments of the standard input/output logics [5]. In this section we
rerun the same exercise for the systems studied in [7]. Unlike Tosatto et al., we
argue semantically, and not proof-theoretically, because of the problem alluded
to above: derivations in FC are not closed under sub-derivations.

For the reader’s convenience, we first briefly recall the definitions of Oy and
O3 given by Parent and van der Torre [7]. Given a set X of formulas, and
a set N of norms (viewed as pairs of formulas), N(X) denotes the image of
N under X, ie., N(X) = {x : (a,z) € N for some a € X}. Cn(X) is the
consequence set of X in classical propositional logic. And x —F y is short for
x b yand yF x. We have x € O1(N, I) whenever there is some finite M C N
such that M (Cn(I)) # {} and x 4+ AM(Cn(I)). We have x € O3(N, I) if and
only if there is some finite M C N such that M (Cn(I)) # {} and for all B, if
I C B=Cn(B) 2 M(B), then x 4~ AM(B). !

Theorem 5.1 (Instantiation) Let (L,C,R) be a FA system, or a FC sys-
tem, with L the language of propositional logic (without T) and C a set of
conditionals whose antecedents and consequents are singleton sets. Define
N ={(a,z) | {a} = {2} € C}. The following applies:
i) IfX € det(L,C,I,FA), then AX € O1(N,I), where AX is the conjunction
of all the elements of X ;
i) If X € det(L,C,I,FC), then NX € O3(N,I).

Proof. See [1]. ]

6 Summary and future work

We have extended the Tosatto et al. framework of abstract normative systems
in order to handle conjunction of outputs along with the aggregative form of
cumulative transitivity introduced by the last two co-authors of the present

1 The proof-system corresponding to O1 has three rules: from (a,z) and b - a, infer (b, x)
(SI); from (a,z) and (a,y), infer (a,z Ay) (AND); from (a,z) and b - q, infer (b, z) (EQ).
The proof-system corresponding to O3 may be obtained by replacing (AND) with (ACT).
This is the rule: from (a,z) and (a A z,y), infer (a,z A y).
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paper. We have introduced two abstract normative systems, the FA and FC
systems. We have illustrated these two systems with examples from literature,
and presented two representation theorems for these systems. We have also
shown how they relate to the original I/O systems.

FA systems. They supplement factual detachment with the rule of simple
aggregation, taking unions of inputs and outputs. The representation the-
orem shows that the sets of formulas that can be detached in FA precisely
correspond to sets of conditionals that generate this output.

FC systems. They supplement factual detachment with the rule of cumu-
lative aggregation, a subtle kind of transitivity or reuse of the output, as
introduced in [7]. The representation theorem shows how the cumulative
aggregation rule corresponds to the reuse of the detached formulas.

Besides the issues mentioned in the previous section, we are currently investi-
gating the question of how to use FA and FC systems as a basis for a Dung-style
argumentation framework.
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Abstract

We develop an exact truthmaker semantics for permission and obligation. The idea
is that with every singular act, we associate a sphere of permissions and a sphere of
requirements: the acts that are rendered permissible and the acts that are rendered
required by the act. We propose the following clauses for permissions and obligations:

* a singular act is an exact truthmaker of Py iff every exact truthmaker of ¢ is in
the sphere of permissibility of the act, and

* a singular act is an exact truthmaker of O¢p iff some exact truthmaker of ¢ is in
the sphere of requirements of the act.

We show that this semantics is hyperintensional, and that it can deal with some of
the so-called paradozes of deontic logic in a natural way. Finally, we give a sound and
complete axiomatization of the semantics.

Keywords: strong permission, exact truthmaker semantics, free choice permission,
Good Samaritan paradox

1 Introduction

The aim of this paper is to develop an exact truthmaker semantics for permis-
sion and obligation. The basic idea of exact truthmaker semantics is that we
can give the semantic content of a statement by saying what precisely in the
world makes the statement true: by giving its exact truthmakers. Intuitively,

1 53 albert@anglberger.org
? = faroldi@nyu.edu
3 = jkorbmacher@gmail.com
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an exact truthmaker of a statement is a state (of affairs) such that whenever the
state obtains it is directly and wholly responsible for the truth of the statement.
In particular, an exact truthmaker of a statement will not contain as a part
any other state that is not wholly responsible for the truth of the statement.
So, for example, the state of the pen being black is an exact truthmaker of the
statement “the pen is black.” But the complex state of the pen being black
and full of ink is not an exact truthmaker of the statement, since it contains as
a part the state of the pen being full of ink, which is irrelevant to the truth of
“the pen is black.” This idea traces back to a paper by Bas van Fraassen [11].
But in recent work, Kit Fine uses it to give truth-conditions for: counterfactual
conditionals [3], metaphysical ground [4], permission [5], and partial content
and analytic equivalence [6]. 4

It turns out that the framework of exact truthmaker semantics has a natural
action-theoretic interpretation: we can take an exact truthmaker of a sentence
to be any concrete singular act, such that the performance of the act is directly
and wholly responsible for the truth of the sentence. For example, on this
interpretation, President Obama’s act of refilling the pen at his desk in the
oval office on Monday morning at 7 a.m. would be an exact truthmaker of the
statement “Obama refills the pen.” In contrast, Obama’s act of refilling the
pen and spilling his coffee would not be an exact truthmaker of the statement,
because it has as a part the irrelevant act of Obama spilling his coffee. In
this paper, we will use this interpretation to provide a natural semantics for
permissions and obligations, which are the direct result of normative acts.

Once we interpret the exact truthmaker framework in this way, there is a
natural way to obtain truth-conditions for permissions and obligations. For
this purpose, let’s assume that we’re given a set of normatively admissible and
a set of normatively required acts. Then we can say:

¢ a statement of the form Py is true iff every act that is an exact truthmaker
of ¢ is admissible,® and

¢ a statement of the form O is true iff some act that is required is an exact
truthmaker of .

But this only gives us the truth-conditions for permissions and obligations, and
not their exact truthmakers. And from the perspective of exact truthmaker
semantics, this means that these clauses don’t give us the content of permissions
and obligations. To make things worse, the clauses cannot be applied to iterated
permissions and obligations, where a permission or obligation occurs in the
context of another permission or obligation. To see this, consider a statement
of the form OPy, for example. According to the above truth-conditions, we
get:

¢ a statement of the form OPy is true iff some act that is required is an ezact

4 Note that Fine only gives truth-conditions for the concepts in question and not their exact
truthmakers.

5 Such a clause is essentially proposed by Fine [5].
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truthmaker of Py.

But since we don’t know what an exact truthmaker of Py is, we can’t ascertain
the truth-value of O Py. In this paper, we shall propose recursive clauses for the
exact truthmakers of permissions and obligations, which can deal with these
issues.

We propose that with every act, a set of acts is associated that are admissible
as a result of the act being performed, and a set of acts that are required as
as result of the act being performed: we associate with every act a sphere of
permissions and a sphere of requirements. For example, consider John’s act of
checking in at the airport. This act permits him to proceed to his gate, but it
obligates him to keep his luggage with him at all times. Thus, the act of John
going to the gate is in the sphere of permissions of him checking in, and the act
of John keeping his luggage with him is in the act’s sphere of obligations. We
can then give the following clauses for the exact truthmakers of permissions
and obligations:

e an act is an exact truthmaker of Py iff every exact truthmaker of ¢ is in the
sphere of permission of the act, and

e an act is an exact truthmaker of Oy iff some exact truthmaker of ¢ is in the
sphere of requirements of the act.

In the following, we shall develop this informal idea in formal detail.

2 The Semantics

In the following we shall work in the context of a standard propositional deontic
language with: a countable stock p1, pa, . .. of propositional variables, the truth-
functional operators —, A,V and the deontic operators P,O. We write ¢ — 9
for = V1) and ¢ <> ¢ for (¢ — ¥) A (Y — @).

To develop our semantics, we assume that we're given a non-empty set A
of atomic singular acts.® These acts correspond to the concrete atomic acts
an agent might perform, like the aforementioned concrete act by Obama of
refilling the pen, for example. We then say that a complex singular act (over
A) is a set of atomic acts:

X is a complex singular act iff X C A.

Complex acts are “aggregates” of atomic acts, which we think of as being
performed together, like the concrete act of Obama refilling the pen and spilling

6 Two short comments are in order here. First, whenever we talk about concrete singular acts
(atomic or complex), we do not presuppose that they are actually executed. By “concrete
singular acts” we rather mean “(possible) concrete singular acts”, and we will introduce
executed singular acts later. Second, how to distinguish between atomic and complex singular
acts certainly is an interesting philosophical question. Here we do not deal with this question
though, and rather assume that this distinction is useful. However, nothing hinges on that. To
get the theory off the ground, all we need is that we can individuate concrete acts aj ..., an
to construct the set A = {a1,...,an} of concrete (atomic) acts. Anyone who deems the
distinction between atomic and complex singular acts to be meaningless, may just take the
singletons of A to be “complex” generic acts, which, in a sense, eliminates the distinction.
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the coffee. We denote the set of complex acts (over A) by A, i.e. A = p(A).
A generic action over A is a set of complex singular acts over A:

X is a generic action iff & C A.

A generic action is a collection of complex acts, which we think of as the
different ways of performing the generic action. For example, there are various
concrete ways in which Obama can refill the pen, e.g. he may refill it with
blue ink, black ink, green ink etc. All these concrete acts are realizations of the
same generic action of refilling the pen. A similar phenomenon can be found
in metaphysics: various (concrete) objects can be concrete instances of one
and the same (abstract) type. Obviously, the same holds for singular acts and
generic actions: there are numerous (concrete) ways in which Obama can refill
the pen, all of which are instances of the (abstract) type Obama-refills-the-pen.
Hence and in line with the usual terminology, we will occasionally use ‘action
token’ to talk about a singular act (atomic or complex), and ‘action type’ to
talk about a generic action.

We denote the set of generic actions over A by T, i.e. T = p(A). Finally,
we assume that some subset Ex C A of atomic singular acts are ezecuted. We
say that a complex singular act X € A is executed iff all the members of X
are executed:

X is executed iff X C Ez.

We denote the sets of executed complex singular acts by Ex, i.e. Ex = p(Ex).
And a generic action X € T is realized iff some member X € X is executed:

X is realized iff X N Ex # (

Thus, we can think of a generic action as a disjunctive list of conjunctive
complex acts. To realize a generic action means to execute (at least) one such
complex act. We will call a structure of the form (A, Ex) an action frame.
Structures of this form are the action theoretic backdrop to our semantics.

If (A, Ex) is an action frame, then we’ll assume that we’re given for every
atomic singular act x € A, both a sphere of permissions Ok, C A and a sphere
of obligations Req, C A. Intuitively, the members of Ok, for a (singular) act
x € A are exactly those (complex) acts that are rendered normatively admissi-
ble by x: it is a normative consequence of z being executed that all members
of Ok, are admissible. Similarly, the members of Req, are the acts that are
rendered required by the performance of x: it is a normative consequence of x
being executed that all members of Regq, are required.”

Let us consider an example.® Suppose that Johannes executes the follow-
ing, concrete act: he buys a day ticket on March 7, 2016 at 8am for the public
transport in Munich (a;). This renders quite a number of other concrete acts

7 Note that not all acts have to be normatively significant, i.e. Ok, and Req, can also be
empty.

8 For reasons of simplicity, but without loss of generality, we take all the singular acts in the
example to be atomic.
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admissible: He may take the U3 at 8:04am and go to Moosach (az). He may
take the U6 at 8:08am to go to Marienplatz (a3). Since Johannes bought a day
ticket, he is also entitled to take the S3 after work at 7pm from Marienplatz to
go to Haidhausen (a4). And so on. In our formal framework, this is expressed
by Ok?al = {{ag}, {ag}, {CL4}, .. }

For a complex act X € A, we define the set Okx to be UweX Ok, and
Reqx to be |J,cx Reqy. Thus, intuitively the members of Okx for an act
X € A are the acts that are rendered admissible by the performance of the
members of X and the members of Reqy are the acts that are rendered re-
quired by the performance of the members of X. We call a structure of
the form (A, Ex, (Oky)zea, (Reqy)zeca), where (A, Ex) is an action frame and
((Okz)zea, (Reqy)rca) are spheres of permissions and obligations for every act
x € A a deontic action frame. Thus, a deontic action frame consists of a basic
action theoretic structure together with a normative framework on top, which
determines the normative consequences of actions.

Following von Wright [12], we take formulas of our language to represent
action types. More formally, if (A, Bz, (Oky)zca, (Req:)zeca) is a deontic ac-
tion frame, then we assign to every atomic formula p an action type V(p) € T,
where we think of the members of V' (p) as all concrete acts that exactly realize
what’s expressed by p under V. We furthermore assign to every atomic formula
p an action type F(p) € T, where we think of the members of F(p) as all those
acts that exactly prevent what’s expressed by p under F.

To illustrate, think of the example with Obama again. Let us suppose
that aq,as,...,a5 are all atomic singular acts Obama can execute. Let
{{a1,a2},{a1,a3}} be the set of all the (complex) singular acts that exactly
realize the action type of Obama refilling the pen, i.e. V(Obama — refills —
the — pen) = {{a1, a2}, {a1,a3}}. For example, {a1,az} might be the complex
act of Obama filling the pen by opening the pen (a;) and inserting a blue
cartridge (az), while {a1,as} is the complex act of him opening the pen and
putting in a black cartridge (a3). Some of the other (complex) concrete sin-
gular acts, let’s say {a1,a4} and {aj, a5}, exactly realize Obama signing the
document. Since Obama cannot refill the pen and sign the document (at the
same time, of course), both {a1,a4} € F(Obama — refills — the — pen), and
{a1,a5} € F(Obama — refills — the — pen).

We now extend the exact truthmakers and exact falsemakers to arbitrary
propositional formulas by a simultaneous recursion on the construction of for-
mulas using van Fraassen’s clauses [11]:

s V(= ) (
o F(=
.V
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If F = (A, Ex, (Oky)reca, (Reqs)zca) is a deontic action frame and V and F are
truthmaker (falsemaker) assignments of the sort just described, then (F,V, F)
is a deontic action model.

Since the underlying action frame tells us which actions are executed, we
can define what it means for a formula to be true (false) under an interpretation
of the sort just described: it is true iff the action type it expresses (prevents
what it expresses) is executed. More precisely, if M = (F,V, F) is a deontic
action model, then:

o ME ¢ iff V(p) is realized, i.e. V() NEx # ()

¢ is true in a model M = (F,V,F) iff there is an exact realiza-
tion of ¢ that is executed according to the deontic action frame F =
(A, Bz, (Oky)zea, (Reqz)zea). This simply means that for at least one ex-
act realization of ¢, all atomic acts that constitute an exact realization of ¢
are in Ez.

e Mg iff F(p) is realized, i.e. F(p)NEx # 0

@ is false in a model M = (F,V,F) iff there is an executed act according
to the deontic action frame F = (A, Ex, (Oky)zea, (Reqy)zca), such that an
execution of ¢ is prevented. This simply means that for at least one exact
exact falsemaker of ¢, all atomic acts that constitute such an exact exact
falsemaker of ¢ are in Ex.

As usual, validity (F) is defined as truth in all deontic action models. We can
then show the following lemma:

Lemma 2.1 If M is deontic action model, then:

i) a) ME=p iff M=o
b) M= —p iff ME ¢

it) a) ME ANV iff ME ¢ and ME Y
b)) MA oAy iff Mo or M3y
it) a) ME VY iff MEp or ME Y
b) MapVvy iff M3 o and M3y

We might want to put conditions on the exact truthmakers and exact false-
makers of formulas. If V and F are exact truthmaker and exact falsemaker
assignments in a deontic action frame, we say that:

e (V,F) is complete iff for all p, V(p) NEx # () or F(p) NEx # ()
(i.e. p is either realized or prevented)

* (V, F) is consistent iff for no p, V(p) NEx # 0 and F(p) N Ex # ()
(i.e. p is not realized and prevented)

e (V,F) is classical iff for all p, either V(p) NEx # () or F(p) NEx # ()

(i.e. p is either realized or prevented, but not both)

It it easily shown, that these conditions extend to all formulas:
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Lemma 2.2 If M = (F,V, F) is a deontic action model, then for all p without
P orO:

1) if (V, F) is complete, then for all o, ME ¢ or M 3¢
it) if (V, F) is consistent, then for all ¢, not both M E ¢ and M 3 ¢
i11) if (V, F) is classical, then for all ¢, either M E ¢ or M = ¢

In particular, this means that by imposing conditions on the assignments, we
can ensure that we obtain a certain background logic: ¥

Lemma 2.3 For all ' and ¢ without P or O,
i) T FrpE @ iff for all deontic action models M, if M E T, then M E ¢

it) ' Fxs ¢ iff for all deontic action models M such that (V, F') is consistent,
if MET, then ME ¢

iii) T Erp ¢ iff for all deontic action models M such that (V, F) is complete,
if MET, then MFE ¢

iw) T FeL ¢ iff for all deontic action models M such that (V, F) is classical,
if MET, then ME ¢

Proof. This follows from the previous two lemmas. O

We could therefore, in principle, use different background logics, but in the
following we shall restrict ourselves to classical logic: we shall assume that all
exact truthmaker and exact falsemaker assignments are classical. We shall call
a deontic action model (A, Ex, (Oky)zeca, (Reqy)zeca, V, F) classical iff (V| F)
is classical.

It is now high time to introduce our clauses for the exact truthmakers and
exact falsemakers of permissions and obligations. The case for the exact truth-
makers is relatively straightforward. If (A, Ex, (Oky)zca, (Reqz)zca, V., F) is a
classical deontic action model, we say that:

* V(Pp) ={X | V(p) C Okx}

A complex act exactly realizes that ¢ is permitted iff the execution of that
act renders all exact realizations of ¢ admissible.

* V(0Op) = {X | V(p) N Reqx # 0}

A complex act exactly realizes that ¢ is obligatory iff the execution of that
act renders at least one exact realization of ¢ required.

In other words, a complex act is a exact truthmaker of an permission Py iff
every exact truthmaker of ¢ is in the sphere of permissions of the act, and an
act is a exact truthmaker of an obligation O iff some exact truthmaker of ¢
is in the sphere of obligations of the act.

9 Here we assume that the reader is familiar with the many valued semantics for the logic
of first-degree entailment (FDE), strong Kleene logic (K3), the logic of paradox (LP), and
(of course) classical logic (CL). For the details of these semantics, see e.g. [9, §§ 7-8].
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But when it comes to the exact falsemakers of permissions and obligations,
the issue becomes a bit more complicated. Intuitively, what makes an per-
mission or obligation false is that no corresponding normative acts have been
executed. But what is an act that makes this the case then? We propose that
if indeed no corresponding normative act has been executed, then it is the to-
tality of the executed acts that jointly makes it the case that something is not
permitted or obligatory:

. _ J{Ez} if V(Po)NEx =1
FPe) = {@ otherwise
FOe) = {@ otherwise

Remember that we confined our semantics to classical deontic action mod-
els. The classicality of deontic action models and the definition of F(Py)
and F(Oy) result in a very natural reading of what prevents a permission (an
obligation) to hold in that model. On the one hand, classicality implies com-
pleteness: given a classical deontic action model M, every ¢ is either realized
or prevented (given the set of executed singular acts Ex of the model M). As
a consequence, either Py is realized or Py is prevented in a classical deontic
action model M. Now suppose that there is no executed act that allows ¢, i.e.
V(Py) NEx = {). Since the model is maximal, there is no further executable
act, and the totality of all executed atomic acts (Ex) is responsible for Py (Oyp)
being prevented. On the other hand, classicality also implies consistency: if
there is an executed act that allows ¢, i.e. V(Pyp)NEx # (), then there cannot
be an act that exactly prevents it from being permitted, i.e. F(Pyp) = ) (same
for Op).

We shall conclude this section with an observation about how our semantics
relates to the truth-conditions that we sketched in the introduction to this
paper. Remember that we said that once we've identified what states are
admissible and required, natural truth conditions for P and O are as follows:

¢ a statement of the form Py is true iff every act that is an exact truthmaker
of ¢ is admissible, and

¢ a statement of the form Oy is true iff some act that is required is an exact
truthmaker of ¢.

Indeed, in our semantics above, we can recover these truth-conditions in the
following lemmas:

Lemma 2.4 If M is a classical deontic action model, then:
i) ME-piff MF @

it) ME@AY iff ME ¢ and ME ¢

i) ME VY iff MEp or ME

) ME Po iff V(p) € U,ep, Oka
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v) ME O iff V() NU,ecp, Reqe # 0

In other words, in a given classical deontic action model, we can identify
the admissible acts in the model with the acts that are rendered admissible by
the executed acts (|J,¢ g, Ok;) and the required acts with the acts rendered
required by the executed acts (U, cp, Reqz)-

Note that the semantics for P and O is hyperintensional: there is a model
M and formulas ¢, such that F ¢ <> ¢ (‘¢ is logically equivalent to 1)
and M E Py but M F P (and similarly for O). In other words, on our
semantics permission and obligation (in a model) are not closed under logical
equivalence. For example, it’s easy to find a model M such that M E P(pV—p)
but M  P(qV —q). But this is a feature rather than a bug: for example we
might want it to be permitted to go home or not to go home without it being
permitted to kill the cat or not kill the cat.

According to our semantics, whether something is permitted (obligatory)
depends entirely on the executed actions, on the members of Ez, and their
spheres of permissibility (requirements). In particular, if no action is executed
(Ex = (), then nothing is permitted (obligatory).!? At first glance, this
seems to rule out the possibility categorical permissions (obligations), which
are independent of what actions are executed. But there are ways we can allow
for categorical permissions and obligations by making slight changes to our
framework. First note that there are at least two ways in which we can think of
a permission (obligation) being independent of the actions. We can understand
this as meaning that every possible act renders a generic action permissible
(obligatory) or that there is some necessarily executed act which renders it
permissible (obligatory). To allow for categorical permissions in the first sense,
we would simply have to require that the set of executed actions is always
non-empty, i.e. Ex # (). Then it would follow that categorical permissions
(obligations) in fact imply permissions (obligations) in the present sense. To
allow for categorical permissions in the second sense, we might introduce a
special atomic singular act aT € A, and interpret at as the empty action. aT is
further always executed (at € Ex). Categorical permissions (obligations) can
then be modelled as permissions (obligations) which result from the execution
of aT.

3 The Paradoxes

In this section, we shall show that our semantics deals in a natural way with
some well-known paradoxes of deontic logic.

3.1 The Paradox of Free Choice Permission

Suppose Johannes issues the following permission “Albert, you may have
tiramisu or zabaglione for dessert.” Albert (naturally) concludes that he is free
to choose: that he may have zabaglione, and that he may have tiramisu. In ev-
eryday discourse, the permission of a disjunction seems to imply the permission

10We are particularly grateful to one reviewer for raising this point.
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of both disjuncts (cf. [8]):

(FCP)  P(pV) — Po AP

Put differently, permitting Albert to have tiramisu or zabaglione, but not per-
mitting him to have tiramisu seems to be inconsistent. It is well-known that
FCP is recipe for disaster: already very weak principles, if augmented with
FCP, lead to unacceptable consequences. Take, for instance, the rule RE, that
warrants substitution of logically equivalent formulas:

Fpod
(RE) F Py« Py

According to classical logic, we have - ¢ <> (pAY)V (@ A—)). This equivalence
and RE4+FCP already leads to a disastrous result, i.e. if ¢ is permitted, then
@ together with any 1 is permitted, in formal terms:

(IC) Py — P(pAY)

is a theorem of CL+FCP+RE, and it seems to be completely unacceptable as a
theorem of any useful deontic logic. This suggests that it is generally very hard
to find a logic which contains FCP but also avoids problematic consequences
like IC. As Sven Ove Hansson puts it: “It [i.e. the derivation of IC] indicates
that the free choice permission postulate may be faulty in itself, even if not
combined with other deontic principles such as those of SDL.”[7, p.208] This
is the problem of free choice permission.

It probably doesn’t come as a surprise that FCP is highly controversial and
regarded to be implausible by most deontic logicians. Given certain interpre-
tations of permission, FCP turns out to be valid though. Take, for instance,
the open reading of permission (cf. [2],[1]) where Py is interpreted as “every
way to ensure ¢ is admissible”. 11 Now, given that ¢ — ¢ V1) is a theorem (cf.
[7]), this interpretation validates FCP. However, this reading (intuitively and
formally) also validates IC: Since every way to ensure ¢ A1) is a way to ensure
©, the permission of ¢ implies the permission of ¢ A ¢). However, accepting the
(intuitively) unacceptable consequence IC in order to make sense of the (intu-
itively) acceptable principle FCP is far from an ideal solution to the problem
of free choice permission. This approach just replaces one evil with another.

In our opinion, the semantics developed in the previous section offers a real
solution to the problem of free choice permission. First, note that according
to our reading of permission, FCP turns out to be valid. In this respect, our
semantics is similar to the open reading of permission. In more formal terms:

Lemma 3.1 £ P(¢ V) = Pp A Py.

Proof. Let M = (F,V, F) be deontic action model and suppose M £ P(p V1))
i.e. (by Lemma 2.4) V(oVy) C U, cp, OFs. Hence, V(9)UV (¥) € U, c gy OFx,

11 Or “every execution of ¢ leads to an Ok-state”, depending on your preferred framework,
cf. [2]
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by the construction of exact realizations of disjunctive generic actions. Basic
set theory now gives us V(¢) € U,cp, Ok. and V(¥) C U, cp, OFz, which
according to Lemma 2.4 means that M F Pp A P. O

But how do we now avoid the seemingly unavoidable consequence IC? The
solution to this is quite simple: RE is not a sound rule in our semantics.
The semantics we developed in the previous section is hyperintensional: logical
(even necessary) equivalences may not generally be substituted for one another.
In order to see why RE is not a plausible rule in exact truthmaker semantics,
take, for example, the problematic equivalence statement ¢ < (pAY)V (pA—))
again. Although classically equivalent, ¢ and (@ A ¥) V (¢ A —%) may have
completely different exact realizations. An exact realization of (¢ A ) must
consist of an exact realization of both ¢ and v, and exact realization of (pA—1))
of an exact realization of ¢ and an exact prevention of ¥. An exact realization
of ¢ does not have to be either, just take an exact realization of ¢ that is
neither an exact realization of ¥ nor an exact prevention of ¢. This idea shows
us how to find a countermodel for IC:

Lemma 3.2 ¥ Py — P(o A ).

Proof. Let F = (A, Ex, (Okg)zea, (Reqy)zca) be a deontic action frame with
A = {ay,a2}, Ex = {a1}, Oky, = {{a1}}. Let M = (F,V,F) based on
F st. V() = {{a1}} and V(¢) = {{az}}. This gives us M E Py (since
V(e) C Okgy, and a; € Ex). We also have V(o A¢) = {{a1,a2}}, but since
there is no = with {{a1,a2}} € Ok, and = € Ex, we get M P(p A%). O

To conclude this section, let us now consider the converse of FCP
(CFCP) (P A PY) = Plp V).

CFCP does not seem to have sparked much controversy, and just as in many
other deontic logics, it is also valid in our semantics:

Lemma 3.3 F (Pp A Py) — P(p V).
Proof. Left to the reader. O

Note that P A Py and P(p V 1)) are not just logically equivalent, but they
even have the same exact truthmakers. Hence, offering a choice between ¢ or
¥ (i.e. P(p V1)) is permitting both ¢ and ¢ (i.e. Py A P), and permitting
both is offering a choice. We take this to be very plausible property of our
semantics.

However, as we will now show, the reasons why our logic validates the
converse of FCP are quite different from the ones usually brought forward:
Many deontic logics (e.g. SDL, DDeL, etc.) contain closure of permission
under logical consequence

Fo—=19
(CLP)  F Py — Py,
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which immediately gives you CFCP. But of course, closure usually gives you
more than just that. Whereas CFCP might seem plausible, some formulas used
in its standard derivation

1) ¢ = (eVY) (Tautology)
(ii) Py — P(p V1) (CLP)
(iii) (Pe A Py) — P(p V) (Monotonicity)
have been considered to be intuitively problematic. In particular, formula (ii)

has the permission variant of the Ross’ Paradox

“If it is permitted to post the letter, then it is permitted to post
the letter or burn it.”
as one of its many counterintuitive instances.'? (i) is logically stronger
than CFCP, so it is obviously is more prone to counterexamples. Where in
CFCP both ¢ and 3 have to be permitted to result in the permission of ¢ V 1,
it is according to (ii) sufficient that only ¢ is. What makes this intuitively
problematic is that we might also add an (intuitively) forbidden action type
(“burn the letter”, in the example). In our semantics, permission is not closed
under logical consequence (it’s not even closed under logical equivalence, see
above) so we avoid the validity of problematic formula (ii), while keeping the
desired property CFCP.
The lesson to be drawn from all of this is that material equivalence does not
adequately express identity of exact realizations. This is how we solve the
problem of free choice permission in our semantics.

3.2 The Good Samaritan Paradox

Another paradox of deontic logic that has a natural solution in our semantics
is Prior’s Good Samaritan paradox [10]. This paradox arises in systems where
obligation is closed under logical consequence, i.e. systems which validate the
following rule:
Fp—v
(CL) FOp — Oy

This rule is validated by many systems of deontic logic, such as the system SDL
of standard deontic logic, but it leads to counterintuitive results in certain cases.
Consider the case of Smith who has been robbed. Intuitively, it is obligatory
that Jones helps smith. Thus, it is obligatory that John helps Smith who has
been robbed. According to Prior, we can formalize this by the formula O(pAg),
where p stands for John helps Smith and q stands for Smith has been robbed.
But since in classical logic we have - pAq — p, it follows by CL that Og, which

120ne might also have general worries about the classical action theoretic background logic
(and thereby (i) and (iii)) or about monotonicity (iii). We want to keep the action theoretic
background as classical as possible though, and rather focus on what is special about deontic
contexts.
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means that its obligatory that Smith has been robbed and is absurd.

Prior’s concrete example may be more or less convincing, but there are
many examples of the same logical structure that lead to the same result: CL
is intuitively flawed. For example, it is intuitively obligatory for the nurse to
give his patient the medicine A and medicine B, if together they heal him,
but medicine A alone might kill the patient, so it is not obligatory for the
nurse to give his patient medicine A. Intuitively, the problem is that certain
acts, such as the nurse giving the patient medicine A and the nurse giving him
medicine B, are only required in conjunction and not by themselves. And in
our semantics, we can faithfully represent this intuitive claim.

To see this, let’s model this situation in our semantics. Consider an action
frame (A, Ex) with two atomic acts A = {a,b,c} and one executed action
{a}. Intuitively, a is the act of the doctor telling the nurse that he should give
medicine A and B to the patient, b is the act of the nurse giving medicine A to
the patient, and c is the act of the nurse giving medicine B to the patient. Since
a is the act of the doctor telling the nurse that he should give medicine A and
B to the patient, we can plausibly assume that Req, = Reqg,y = {{b, c}}, and
for simplicity we can assume that the spheres of permissions and obligations for
all the other acts are empty. Let M be the corresponding deontic action frame.
Now let p stand for the nurse gives the patient medicine A and ¢ for the nurse
gives the patient medicine B. We will have V(p) = {{b}}, V(q) = {{c}}, and
thus V(p A q) = {{b, c}}. Moreover, we’ll have V(O(p A q)) = {{a}} and hence
that M E O(p A ¢q). But we’ll neither have M E Op nor M E Og, exactly as
we want. More generally, this model shows that CL is not sound with respect
to our semantics:

Lemma 3.4 ¥ O(p A ) = Ogp

In this consists our solution to the Good Samaritan paradox. '3

4 Axioms

In this section, we give a sound and complete axiomatization of our semantics.
However, we shall use a slightly non-standard technique to obtain such an
axiomatization, which is nevertheless adequate to the hyperintensional spirit
of our semantics.

To formulate our proof-theory, we shall extend our language with the binary
operator ¢ = 1), which we give the intended reading that ¢ and ¢ have the
same truthmakers in all models. This allows us to significantly simplify the
proof-theory for our logic, which will simply be the restriction of the proof-
theory we develop here to the language without =.

131t’s well known that CL can also be made invalid by moving to a non-normal modal
logic, e.g. by using a neighborhood semantics without upward closure of the obligation
neighborhood (of a world). What makes our approach different, though, is that we do not
just get rid of it (formally), but that we can give a natural explanation of its invalidity in
terms of exact truthmakers.
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In a recent paper, Fine sketches how to obtain an axiomatization of same-
ness of exact truthmakers according to van Fraassen’s clauses, which we’ve used
in our above semantics [6]. The axiomatization consists of the following axioms
and rules:

= @ = g
ANy =P Ap VY =9V
PVp=p N VO)=(pA)VI(pVo)
eV (Vo) =(pVi) Ve AW AD) = (pA)ANO
“(pVY) = e A (P AY) = —pV

(Replacement) — 0(p),p = 1¥/0(¢)

Let’s denote derivability in this system by Fg . Then we get the following
theorem:

Theorem 4.1 For all ¢ and ¢ without P,0,=, we have: Fg ¢ = ¥ iff for
all deontic action models (F,V, F), we have V(¢) = V().

Our goal is to use this system to obtain an axiomatization for our semantics
of permission and obligation. The first step along the way is to get a grip of
the truthmakers of permissions and obligations. We get this in the following
lemma:

Lemma 4.2 For all deontic action models (F,V, F), we have for all ¢ and :
i) V(P(e V1)) =V(Pp A Py).
i) V(O(e V) =V (0pVOY).
Proof. Note that since on our semantics we have that Okx = (J, x Ok, and
Reqx = U, cx Reqs, we get:
* Oky, x, = U, Okx,
. ReqUi x; = U; Reqx,
Using these identities, we get:
D {X [ V(p) V() COkx} ={XUY | V(p) C Okx,V(¢) C Oky}

=V (P(eVih)) =V (PeAPY)
ii) {X | (V(p)UV(¥) N Reqx # 0} = {X| V(p) N Regx # 0} U{X| V(¥) N Reqx # 0}
=V (O(eVy)) =V(0pVOy)

O

It turns out that these two identities are enough to obtain a sound and
complete axiomatization of our semantics. The system consists of the above
axioms and rules plus all axioms (over the full language including P and O)
and rules of classical propositional logic and:

Pl Vi) = Pp APy
O(p V1) = OpV Oy
We shall denote derivability in this system by Fgpr.
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Theorem 4.3 For all p and I' without =, I' Fgpr ¢ iff T E .
Let’s conclude with a few sample derivations to show how the system works:
(i) FepL P(e V1) < Po APy

(a) P(eVe) < PleVy) (Tautology)
(b) P(p V1) = Pp APy (Axiom)
(¢c) Plp V) <> Ppo APy (a,b, Replacement)
(ii) FepL O~(p A1) <> OV Ot
(a) O~(pAY) < O=(p A Y) (Tautology)
(b) =(pAYp) = =V (Axiom)
(c) O=(pAY) < O(=p V 1) (a,b, Replacement)
(d) O(=¢V ~¢) = O=p VvV O-¢ (Axiom)
(e) =(pAY) < O—pV O (c,d, Replacement)
(ili) P~=(pV¥)Fepr Py
(a) P==(p V) (Assumption)
(b) (V) =V (Axiom)
(c) P(p V) (a,b,Replacement)
(d) Ple V)< Po APy (1)
(e) Po APy (¢,d, Logic)
(f) Py (e, Logic)

5 Summary and Future Research

We'’ve developed a new, and so we believe exciting semantics for permission
and obligation in terms of truthmakers and falsemakers. We’ve argued that the
semantics is quite natural on intuitive grounds and we’ve shown that it solves
the Problem of Free Choice Permission and the Good Samaritan Paradox in
intuitively plausible ways.

But the work doesn’t end here. Note, for example, that many standardly
held principles in deontic logic fail on our semantics. Here are just a few:

(Obligation Aggregation) EOpAOY — O(p A1)
(Obligation Weakening) EO(pAY) — Op AOyY
(Obligation Implies Permission) FOp — Py

(No Conflicting Obligations) E (O A O—p)

The fact that our semantics doesn’t validate (Obligation Aggregation) and
(Obligation Weakening) is integral to our solution of the Good Samaritan Para-
dox. But it might be interesting to investigate what is possible with respect
to (Obligation Implies Permission) and (No Conflicting Obligations). But we
postpone this work to another day. 14

14 Acknowledgements: We would like thank the following people for very useful comments
on earlier versions of this paper: the three anonymous DEON referees, J. Broersen, A.
Tamminga, O. Foisch, the Bayreuth logic group, attendees of the Deontic Logic and Formal
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Abstract

We present a general formal argumentation system for dealing with the detachment of
conditional obligations. Given a set of facts, constraints, and conditional obligations,
we answer the question whether an unconditional obligation is detachable by consider-
ing reasons for and against its detachment. For the evaluation of arguments in favor of
detaching obligations we use a Dung-style argumentation-theoretical semantics. We
illustrate the modularity of the general framework by considering some extensions,
and we compare the framework to some related approaches from the literature.

Keywords: formal argumentation, ASPIC™T, conditional norms, conflicting norms,
prioritized norms, factual detachment, deontic detachment.

1 Introduction

We take an argumentative perspective on the problem of detaching conditional
obligations relative to a set of facts and constraints. We allow for the construc-
tion of arguments the deontic conclusions of which are candidates for detach-
ment. Next, we define a number of ways in which these arguments may attack
one another, as when the conclusions of two arguments are conflicting. We
borrow Dung’s semantics [6] for evaluating arguments relative to the attack re-
lations that hold between them. Conclusions of arguments which are evaluated
positively are safely detachable in our framework. They can be interpreted as
all-things-considered obligations — following Ross [28] — or output obligations
— following Makinson & van der Torre [18,19].

The argumentative approach defended in this paper is both natural and
precise. Norms which guide reasoning are naturally construed as conclusions of
proof sequences. Objections raised against the derivation of certain obligations
are naturally construed as argumentative attacks. Arguments are naturally
evaluated in terms of the objections raised against them.

I Email: mathieu.beirlaen@rub.de, christian.strasser@rub.de. The research of both authors
was supported by a Sofja Kovalevskaja award of the Alexander von Humboldt-Foundation,
funded by the German Ministry for Education and Research.
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In Section 2 we introduce a basic argumentation system for evaluating ar-
guments the conclusions of which can be interpreted as all-things-considered
obligations. This generic, modular framework can be extended in various ways,
as we illustrate in Section 3. We show how various mechanisms for conflict-
resolution can be implemented (Section 3.1), and how we can rule out obliga-
tions committing us to further violations or conflicts (Section 3.2). In Section
4 we compare our approach to related systems from the literature. We end by
pointing to some further expansions of our framework, which we aim to present
in a follow-up paper (Section 5).

Due to space limitations we had to omit the Appendix with meta-proofs in
this manuscript. They are included in the online version of this article available
at http://arxiv.org/abs/1606.00339.

2 The basic framework

We start by reviewing the basic concepts needed from Dung’s semantics (Sec-
tion 2.1). Next we turn to the construction of deontic arguments (Section 2.2)
and attack definitions (Section 2.3). We define a consequence relation for de-
taching all-things-considered obligations in deontic argumentation frameworks
(Section 2.4), and present some of its meta-theoretical properties (Section 2.5).

2.1 Abstract argumentation

A Dung-style abstract argumentation framework (AF) is a pair (A, Att) where
A is a set of arguments and Att C A x A is a binary relation of attack. Relative
to an AF, Dung defines a number of extensions — subsets of A — on the basis
of which we can evaluate the arguments in A.

Definition 1 (Complete and grounded extension). Let (A, Att) be an AF. For
any a € A, a is acceptable w.r.t. some S C A (or, S defends a) iff for all b
such that (b,a) € Att there is a ¢ € S for which (c,b) € Att.

If § C A is conflict-free, i.e. there are no a,b € S for which (a,b) € Att, then:

e S is a complete extension iff a € S whenever a is acceptable w.r.t. S;
e S is the grounded extension iff it is the set inclusion minimal complete

extension.

Dung [6] showed that for every AF there is a grounded extension, it is unique,
and it can be constructed as follows.

Definition 2 (Defense). A set of arguments X defends an argument a iff every
attacker of a is attacked by some b € X

Definition 3 (Construction of the grounded extension). The grounded exten-
sion G relative to an AF (A, Att) is defined as follows (where A is countable):

e Go: the set of all arguments in A without attackers;

* Gir1: all arguments defended by G;;
o g - UiZO gz

Besides the grounded extension, a number of further extensions (preferred,
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(semi-)stable, ideal etc.) have been defined in the literature. Due to space
limitations, we focus exclusively on grounded extensions in the remainder.

On Dung’s abstract approach [6], arguments are basic units of analysis
the internal structure of which is not represented. But nothing prevents us
from instantiating such abstract arguments by conceptualizing them as proof
trees for deriving a conclusion based on a set of premises and inference rules.
Frameworks with instantiated arguments are called structured argumentation
frameworks (for examples, see e.g. [1]).2 In the remainder of Section 2 we
show how questions regarding obligation detachment in deontic logic can be
addressed and answered within structured deontic argumentation frameworks.

2.2 Instantiating deontic arguments

Our formal language £ is defined as follows:

P ={p,qr,...} L~ = (LP) = (L)
LE =P | T L[~(L") [ (L) V(L) Lo = 0(L")
£5 = O(EP) | (£P) | ~L5) | (£P)V (£5) £ 1= £F | £5 | £~ | £O

The classical connectives A, D, = are defined in terms of — and V. We represent
facts as members of L. Where A, B € L, conditional obligations are formulas
of the form A = B, read ‘If A, then it — prima facie — ought to be that B’
or ‘If A, then B is prima facie obligatory’.? Where A € LF, a constraint OA
abbreviates that A is settled, i.e. that A holds unalterably. Formulas of the
form OA (where A € L) represent all-things-considered obligations.

Unless specified otherwise, upper case letters A, B, ... denote members of
L and upper case Greek letters T', A, ... denote subsets of £LF U LP U L=,
Where I' C £ and t € {P,0,=,0}, ' =T n L.

Cngy,(T) denotes the closure of I' C £F under propositional classical logic,
CL. Cnyo(T) denotes the closure of I' C £” under LY, which we use as a
generic name for a modal logic for representing background constraints, e.g.
T, S4, S5, etc. In our examples below, we will assume that L™ is normal and
validates the axiom OA D A.°

Arguments are ordered pairs (A : s) in which A is called the conclusion,
and s a proof sequence for deriving A. We use lower case letters a,b,c,... as

2 QOur approach is similar in spirit to the ASPICT framework for structured argumentation
from e.g. [20]. We return to this point in Section 4.2.

3 Depending on the context of application, the following alternative readings are also fine:
‘If A is the case, then B is pro tanto obligatory’, ‘If A, then the agent ought (prima facie, pro
tanto) to bring about B’. On the latter, agentive reading, we can think of ‘=’ as implicitly
indexed by an agent.

4 If DA holds, then the fact that A is deemed fixed, necessary, and unalterable. Obligations
which contradict these facts are unalterably violated. Carmo & Jones cite three factors giving
rise to such unalterable violations. The first is time, e.g. when you did not return a book
you ought to have returned by its due date. The second is causal necessity, e.g. when you
killed a person you ought not to have killed. The third is practical impossibility, e.g. when
a dog owner stubbornly refuses to keep her dog against the house regulations, and nobody
else dares to try and convince her to remove it [4, pp. 283-284].

5 Moreover, where A= C L=, we assume that I' F1,o OA iff T U A= Fpo OA.
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placeholders for arguments.

Definition 4. Given a premise set I', we allow the following rules for con-
structing arguments:

(i) If OA € Cnypo(T), then (OA : ——) is an argument; (where —— denotes
the empty proof sequence)

(i) If A= B €T~ and A € Cnyo(T), then (OB : A, A = B) is an argument;

(i) If A= B €I~ anda=(0OA:...) is an argument, then (OB : a, A= B)
1§ an argument;

(iv) Ifa=(0A:...) and b= (OB :...) are arguments, then (O(AA B) : a,b)
18 an argument.

(v) If a = (OA : ...) is an argument and O(A D B) € Cnyo(T'), then (OB :
a,d(A D B)) is an argument.

Argument a is a deontic argument if a is of the form (OA:...). We use C(a)
to denote the set of all formulas in L used in the construction of a, including
its conclusion. E.g. where a = (Oq : p,p = q) and b = (Or : a,q = 1),
C(a) = {p,p = q,0q¢} and C(b) = {p,p = ¢,0q,q = r,0r}. Argument a is
a sub-argument of argument b if C(a) C C(b); a is a proper sub-argument of
argument b if C(a) C C(b); and b is a super-argument of argument a if a is a
proper sub-argument of b.

(ii)-(v) correspond to inference rules well-known from deontic logic. (ii)
allows for the factual detachment of an all-things-considered obligation OB
from a conditional prima facie obligation A = B and a fact A. (iii) is a
deontic detachment principle. (iv) and (v) allow for obligation aggregation (or
agglomeration), resp. inheritance (or weakening).

Example 1 (Constructing arguments). Let I'y = {Op, T = —p,—p = —¢q,p =
q}. By Definition 4 we can construct — amongst others — the following argu-
ments from I'y:
ap: (Bp:——) ag: (Oq:p,p=q)
az: (O-p: T, T = -p) as: (O(=q A q) : as,aa)
az:  (0—q:az,—p= —q) ag: (O(qVr):ag,0(gD(gVT)))
Argument ay is constructed from Op € Ty in view of (i). Arguments as and
ay are constructed by means of (i)% ; as is constructed from as by means of
(iii); as is constructed from as and ay by (w); and ag is constructed from ay
by (v).
We can interpret I'; as representing a classic contrary-to-duty (CTD) sce-

nario (for the sake of readability, we omit the qualifier ‘prima facie’ in our
reading of conditional obligations):

6 Note that, in the construction of argument a4, the formula p follows from I'y by Op and
since Fr,o Op D p.
7 The example is adapted from [27].
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T = =p  There ought not be a dog.

—p = —q If there is no dog, there ought not be a warning sign.
p=q If there is a dog, there ought to be a warning sign.
Op It is settled that there is a dog.

Of course, not all of the conclusions of arguments as-ag qualify as all-things-
considered obligations. Argument as, for instance, is internally incoherent and
should be filtered out when evaluating the arguments constructed from I'y.
Arguments are evaluated in terms of the attack relations which hold amongst
them. Before we turn to the definition of these relations, we point out that rules
(i)-(v) in Definition 4 allow for a version of the necessitation rule whenever L”
is a normal modal logic. For instance, given a premise set {Op, T = ¢}, we can
construct the argument a; = (Og : T, T = ¢) by (ii). Since Op 1,0 O(g D p),
we can construct the argument as = (Op : a1, 0(¢ D p)) by (v). If desired, the
construction of ay can be prevented by defining — in addition to ‘O’ — a weaker
(non-material) implication connective in L™ on the basis of which to construct
arguments in line with clause (v) in Definition 4.

2.3 Attacking deontic arguments

In our basic framework, we define two ways in which arguments may attack one
another. First, we take care that unalterably violated obligations are attacked
by the constraints which violate them. (We write A = —B in case A = =B or
B=-A)

Definition 5 (Fact attack). Wherea = (OA : ...) is an argument, let UO(a) =
{B| OB € C(a)}. Where ) #© C UO(a), (O— AO : ——) attacks a.

In Example 1 the obligation O—p cannot guide the agent’s actions, since
it cannot be acted upon in view of the constraint Op. Definition 5 takes care
that ay attacks ag, since UO(b) = {-p}. Note that, as soon as A € UO(a) for
some argument a and formula A, A € UO(b) for any super-argument b of a.
Consequently, if an argument c¢ attacks a in view of Definition 5, then ¢ also
attacks all super-arguments b of a. So in Example 1 the argument a; attacks
as as well as its super-arguments az and as.

Since we assume that L7 is a normal modal logic, we know that O(—(—g A
q)) € Cnya(T'1). Hence, by Definition 5 again, argument a7y = (O(—=(—g A q)) :
——) attacks argument a5 from Example 1.

Example 2 (Attacks on incoherent arguments). Let I'ys = {T = p, T =
-p, T = q}. We construct the following arguments on the basis of I'y:

ar: (Op:T,T=p) as: (O(pV=g):a,0(p D (pV—q)))
az: (O=p:T,T = —p) as: (O(=p A (pV —q) : az, as)
az: (Oq:T,T =q) ag: (O=q:as,0((=pA(pV—q) D—q))

By Definition 5:

UO(as) = {p,pV —¢,~p,=p A (pV —q)}
UO(as) = {p,pV —q,~p,~p A (pV —q), ~q}
Hence, both as and ag are attacked by ar:
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a7 = (O=(pA-p): ——)
Arguments as and ag are incoherent in the sense that in constructing them
we relied on arguments the conclusions of which are conflicting (namely a;
and ag). It is vital that we are able to filter out such incoherent arguments.
Definition 5 takes care of that. By attacking ag, argument a7 protects (defends)
the unproblematic ag, which is attacked by ag in view of Definition 6 below.
We return to this point in footnote 9, after we explained how arguments are
evaluated.

The second type of attack relation ensures that mutually incompatible obli-
gations attack each other:

Definition 6 (Conflict attack). a = (O—A:...) attacks b= (0A:...), and a

attacks all of b’s super-arguments.

In Example 1, arguments a3 and a4 attack each other according to Definition
6. Moreover, ag attacks as and ag; and a4 attacks as. Likewise, in Example 2,
ay and ag attack each other, and so do az and ag. Moreover, a; attacks as and
ag; and ao attacks a4, as, and ag.

Example 3 (Conflict attack). Let I's = {p,q,p = r,(p A q) = s,0-(r A s)}.
We construct the following arguments on the basis of I's:

ar: (Or:p,p=r) aq: (O-(rAs):——)
az: (Os:pAg,(pAq)=s) as:  (O=r:az,0(s D 7))
as: (O(rAs):a,az) ag: (O=s:ay,O(r D —s))

a4 attacks az by Definition 5. By Definition 6 a1 attacks as; as attacks a1, as,
and ag; as attacks ag; and ag attacks as,asz, and as.

2.4 Evaluating deontic arguments

For the evaluation of deontic arguments relative to a premise set, we extend
Dung-style AFs to deontic argumentation frameworks, and we borrow Dung’s
argument evaluation mechanism from Definitions 1-3:

Definition 7 (DAF). The deontic argumentation framework (DAF) for T' C
LP U LB U L™ is an ordered pair (A(T), Att(T')) where

o A(T) is the set of arguments constructed from T in line with Definition 4;

and
e where a,b € A(T): (a,b) € Att(T) iff a attacks b according to Definition 5

or Definition 6.

Like AFs, DAFs can be represented as directed graphs. Here, for instance,
is a graph depicting the arguments we constructed on the basis of I'y: 8

Nodes in the graph represent the arguments constructed on the basis of
I'y in Example 1. Below the arguments’ names, we stated their conclusions.
Arrows represent attacks. Dotted lines represent sub-argument relations.

We evaluate arguments in a DAF using Dung’s grounded semantics from

8 Due to space limitations, we leave it to the reader to construct similar graphs for the other
examples in this paper.
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ag
...... 0. OqVvr)

Fig. 1. Arguments and attack relations for I'y.

Section 2.1: In Definition 1, replace A (resp. Att) with A(T") (resp. Att(T)).
Similarly for Definition 3, where we also replace occurrences of G and G; with
G(T') and G;(T") respectively.

Let us now apply Definition 3 to Example 1. Clearly, a1,a7; € Go(T'1),
since Definitions 5 and 6 provide us with no means to attack arguments the
conclusions of which are members of I'{. In the next step of our construction,
aq,a6 € G1(I'1), since they are defended by a; € Go(T'1). ag,as,as € G1(I'1),
since each of these arguments is attacked by a; (hence undefended).

We cannot construct any further arguments which attack a4 or ag and which
do not contain any of the undefended arguments as or az as sub-arguments.
Moreover, we show in the Appendix (Lemma 2) that, for any premise set T,
if a € G(I'), then a € G;(T'). By the Definition 3, a1, a4, as, a7 € G(I'1) while
as,as, as ¢ Q(Fl)

Definition 8 (DAF-consequence). Where I' C LP UL UL~ and A € LT,
I' Fpar OA iff there is an argument a € G(T') with conclusion OA.

By Definition 8, I'y Fpar Og and I'y Fpar O(g V ), while 'y Y'par O—p and
I'y #par O—g.

In Example 2, I's Fpar Og¢.° We leave it to the reader to check that none
of Op,0—p, O(p V —q), or O—q is a DAF-consequence of I'y, and that none of
Or,0s,0(r A s),0—r, or O—s is a DAF-consequence of I's.

2.5 Rationality postulates

In [3, Sec. 4] the properties of output closure and output consistency were
proposed as desiderata for well-behaved argumentation systems. Where
Output(T') = {A | T Fpar OA}:

Property 1 (Closure). Output(I') = Cngy, (Output(I')).
Property 2 (Consistency). Cngy,(Output(I')) is consistent.

Properties 1 and 2 follow for DAF in view of resp. Theorems 1 and 2 in

9 The conclusion Oq of argument a3 in Example 2 is accepted despite its being attacked by
ag. The reason is that ag is in turn attacked by a7, so that a7 defends a3 from the attack
by ae.
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the Appendix. Property 3 is proven in Theorem 3 in the Appendix:

Property 3 (Cautious cut/cumulative transitivity). Let A, ={T = A| A€
A} ]fF Fpar OA fO’I" allAec A andTU A:> FDAF OB, then T Fpar OB.

Properties 4 and 5 fail for DAF:

Property 4 (Cautious monotonicity). If ' Fpar OA and I’ Fpar OB, then
T'u {T = A} Fpar OB.

Property 5 (Rational monotonicity). IfI' Fpar OA and I t/par OB, then
T'u {T = B} Fpar OA

Example 4 (Failure of properties 4 and 5, adapted from [2]). LetTy = {p,p =
¢, 9 =11 =" -9=s,T = s} We construct the following arguments on
the basis of T'y:

ar: (Oq:p,p=q) as: (Os:az,~q=s)
as: (Or:ay,qg=r) as: (O=s:T,T = —s)
ag: (O—g:ag,r=—q) ag: (O-(qA—q):——)

By Definition 6: ai attacks az and a4; az attacks all of ai-a4 (including
itself); and a4 and as attack each other. By Definition 5, ag attacks az and ay,
since both g and —q are members of UO(as) and UO(a4). As a result, Oq,Or,
and O—s are DAF-consequences of I'y, while O—q and Os are not.

Now add the new conditional obligation T = r to 'y, so that we obtain the
new arguments

a7: (Or:T,T=r) ag: (Os:ag,~q=s)
ag: (O—q:ar,r= —q)

None of these new arguments is attacked by ag, which defends a1 and as
from the attacks by as and a4 respectively. By Definition 6, ag and ay attack
each other. So do ag and as. As a result, none of ai,as,as, and ag is in the
grounded extension of T4U{T = r}. So we have a counter-ezample to Property
4: Ty Fpar Or and Ty Fpar O—s, while 'y U {T = ’I“} Hpar O-s.

This example also serves to illustrate the failure of Property 5 for DAF.
Arguments with conclusion O—r can be constructed on the basis of I'y only on
the basis of incoherent arguments. Let, for instance:

a10: (O(gA—q):ar,a3z) ai: {O-r:ai,0((gA—g) D))

In view of Definition 5, arguments constructed on an incoherent basis are

attacked by an otherwise unattacked argument. For instance, a1; is attacked

by the unattacked argument ag. Because of this, I'y /par O—r. But then,
since T'y Fpar O—s and Ty U {T = r} /par O-s, Property 5 fails for DAF.
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3 Beyond the basics

3.1 Conflict-resolution
3.1.1 Resolving conflicts via logical analysis

It has been argued that, in cases of conflict, more specific obligations should
be given precedence over less specific ones. ' Consider the following example:

Example 5 (Specificity). Let I's = {q,7,q = p,(¢ A1) = —p}. We can
interpret I's as representing a scenario in which an agent s making carrot soup.
Let p, q, and, respectively, v abbreviate ‘there is fennel’, ‘there are carrots’, and
‘there is celery’. If there are carrots in the garden still, our agent should take
care that he buys fennel in order to make the soup (q = p). However, if both
carrots and celery are in the garden, he should not get fennel ((g A1) = —p),
because celery can be used instead of fennel. As it turns out, both carrots and
celery are in his garden (q,r). The desirable outcome in this case is that the
agent ought not go out and buy fennel.

A principled way of obtaining outcomes in which more specific obligations
are preferred over less specific ones, is to define specificity in terms of logical
strength, and to define a new attack relation for letting more specific arguments
attack less specific ones. Let the factual support of a deontic argument a be
the set S(a) = {B | B € (C(a) N LP)}.

We write S(a) T S(b) iff for all A € S(a) there is a B € S(b) such that
At B and for all B € S(b) there is an A € S(a) such that A+ B. S(a) C S(b)
(a is more specific than b) iff S(a) C S(b) and S(b) Z S(a).

We replace Definition 6 with Definition 9:

Definition 9 (Conflict attack w/specificity). Let a = (O—A : ...) and b =
(OA:...).

(i) If S(a) = S(b), then a attacks b and all of b’s super-arguments,

(ii) b attacks a and all of a’s super-arguments, unless a attacks b in view of
clause (1).

Let DAF, (with subscript ‘s’ for specificity) be the logic resulting from
constructing the attack relation Att on the basis of Definitions 5 and 9.
In Example 5, we construct the following arguments from I's:
ai: (Op:q,q=p)
az: (O-p:gAr (gAT)= —p)
Since S(az) C S(aq), as attacks a; by Definition 9, but not vice versa. As
a result, only ag is in I's’s grounded extension, and I's Fpar, O—p, while
I's ¥par, Op.
In Example 3, the factual support of the arguments constructed from I's
is such that S(az) = S(as) C S(a1) = S(ag). By Definition 9, as attacks a;
and ao attacks ag. As a result, the more specific arguments as and as defeat

10 Understood in this way, specificity cases have been studied extensively in the fields of
non-monotonic logic (see e.g. [7,5]) and deontic logic (see e.g. [4,27,30,31]).
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the less specific a; and ag, so that I's Fpap, Os and I's Fpagp, O—r, while
I's |7[DAF5 Or and I's |7ZDAF5 O-s. As before, I's |71DAF5 O(’I’ AN 5)

In dealing with conflict-resolution via logical analysis, we have chosen for a
cautious notion of specificity. For instance, {p} Z {p,q} and {p} Z {p A g, r}.
In certain contexts it may be sensible to opt for a stronger characterization of
‘C’. A detailed discussion of such issues would lead us too far astray given our
present purposes. Instead, we point out that our framework readily accommo-
dates alternative characterizations of ‘C’ to be used in Definition 9.

3.1.2 Resolving conflicts via priorities

Instead of (or in combination with) conflict-resolution via logical analysis, a
priority ordering < can be introduced over conditional norms, and our formal
language can be adjusted accordingly. Conditional norms then come with an
associated degree of priority o € ZT, written A =, B (higher numbers denote
higher priorities).

We lift < to a priority ordering = over arguments via the weakest link
principle: an argument is only as strong as the weakest priority conditional used
in its construction [25]. Let Pr(A) = {a | A =, B € A} and let min(Pr(A)) be
the lowest « € Pr(A). Then A < A’ iff min(Pr(A)) < min(Pr(A’)). Relative
to a premise set I', we write a < b iff C(a) NT= X C(H)NI=. a<biff a < b
and b A a.

We replace Definition 6 with the following definition:

Definition 10 (Prioritized conflict attack). If a £ b, then a = (O—A : ...)
attacks b= (0OA :...) and all of b’s super-arguments.

Let DAF< be the logic resulting from constructing the attack relation Att
on the basis of Definitions 5 and 10.

Example 6 (Prioritized conflict attack). Let I's = {p,q,r,O0-(s At Au),p =

$,q =2 t,r =3 u}. We construct the following arguments on the basis of T's:
ar: (O-(sAtAu):——) ag: (O(sAtAu):aq,as)

as: (O=(t Au):az,0(s D =(tAu)))

az: (O=(sAw) a3, 00D (sAw)))

ag: (Ou:r,r=3u) arr: {O=(sAt):aq,0( D (sAL)))

as: : (O-wu:as,0((sAt) D —u))

ag:  (O(sAu):ag,aq) aiz:  (O=t:ae, O((s Au) D —t))

ar: {(O(tAu):as,aq) arg:  (O=s:a7,O((tAu) D -s))

The order of arguments is such that ao,as,aq,as, g, 12,013 <
as,ar,aig, 14 < a4,a11. By Definition 10, ay4 attacks as,as, ag, ag, ag, a2,
and ay3; as attacks ar3; ag attacks a12; a1 attacks as,ag, and a12; a1g attacks
ag and ai3; and ay attacks ag. By Definition 5, a1 attacks ag. As a result,
ai,as,aq,a7,a10,a11,0a14 € g(F(;), while as, as, de,08,a9,a12,a13 ¢ Q(Fﬁ) The
following obligations are DAF < -consequences of I's : Ot, Ou, O(t A u), 0= (s A
u),0=(s A't),0-s. The following obligations are not DAF < -derivable from
I'g : 0s,0(s A t),0(s Au),O(s At Au), 0= (t A u),O—u, O-t.

As with ‘C’ in Definition 9, there are other ways of characterizing ‘<’ in
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Definition 10. For instance, instead of lifting < via the weakest link principle,
we could lift it via the strongest link principle, according to which an argument
is as strong as the strongest priority conditional used in its construction. '
Depending on the way < is lifted to =<, different outcomes are possible with
respect to the priority puzzles studied in e.g. [9,14,15]. A thorough investigation
of these puzzles within our framework is left for an extended version of this

paper.
3.2 Anticipating violations and conflicts

Obligations which are violated or conflicted should not be detached. But what
about obligations that commit us to violations or conflicts? Consider the fol-
lowing example, adapted from [16,19].

Example 7. Let 'y = {p,p = q,q = r,r = —p}. We construct the following
arguments on the basis of I'7:

ar: (Op:——) az: (Or:as,q=r)

az: (Oq:p,p=q) aq:  (O—p:as,r= —p)

Suppose you are throwing a party. Letp (resp. q,r) abbreviate ‘Peggy (resp.
Quincy, Ruth) is invited to the party’. If Peggy is invited, then Quincy should
be invited as well (perhaps because they are good friends and we know both of
them). Likewise, if Quincy is invited then Ruth should be invited as well. But
if Ruth is invited, then Peggy should not be (perhaps because we know Ruth and
Peggy do not get along well). It is settled that Peqgy is invited. You already
sent her the official invitation, and it would be too awkward to tell her she can’t
come. Should Quincy and/or Ruth be invited?

Arguments aj,as, and a3 are in I'7’s grounded extension G(I'7). a4 is not
in G(I'7) since it is attacked by a; according to Definition 5; consequently,
1—‘7 l_DAF Oq and F7 l_DAF O’I’, while F7 |7/DAF Oﬁp,

A more cautious reasoner may argue that Og and Or should not be detached,
since they lead to a commitment to O—p: they form part of the detachment
chain of a4. This commitment reflects very badly on arguments as and as,
since O—p is violated.

To model this behavior, we introduce the deontic doubt operator &. We will
use this operator to construct new arguments, called shadow arguments, the
conclusion of which is of the form ®A. A shadow argument with conclusion
©A casts doubt on — and attacks — arguments with conclusion OA. Shadow
arguments cannot be used to support obligations, but only to attack other
arguments. They can only rule out deontic arguments. They cannot generate

new consequences. 12

L1Tf the strongest link principle is used, Definition 10 should no longer allow for attacks on
super-arguments, since a £ b no longer warrants that a £ ¢ where ¢ is a super-argument of
b. A further alternative is to use the last link principle, according to which an argument gets
the priority of the conditional which occurs last in its proof sequence.

12Shadow arguments are similar in spirit to Caminada’s HY-arguments from [2]. An HY-
argument a is an incoherent argument constructed on the basis of the conclusion of another
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In the resulting system DAF, our language £ is adjusted so as to in-
clude members of P within the scope of the new operator ®. Arguments are
constructed in line with Definition 11:

Definition 11. Given a premise set I', we allow rules (i)-(vii) for constructing
arquments, where (i)-(v) are the rules from Definition 4:
vi) If a = (0OA : ——) is an argument, then (®—A : a) is an argument;
vii) If a = (OA:...) is an argument, then (9—A : a) is an argument.
We say that an argument a has minimal support if there is no argument b
with the same conclusion such that C(b) C C(a). In DAF the attack relation
is constructed on the basis of Definition 12: 13

Definition 12 (Shadow attack). Where a = (OA : ...) has minimal support:
(i) Where b is a deontic sub-argument of a, (A :...) attacks b as well as all
of b’s super-arguments,
(i1) Where b is a deontic sub-argument of a and ) # © C UO(a), (0 AO:...)
attacks b as well as all of b’s super-arguments.

Reconsider I'; from Example 7. From a;, we can construct the shadow
argument as = (®—p : a1). By clause (i) of Definition 12, a5 attacks aq4,as,
and as. As a result, as and ag are no longer in G(I'7). I'; VDAFQ Oq and
I'7 /par, Or.

Example 8. Let I's = {0s, T = p, T = q,(pAq) = r,r = —s,q = t}. We
construct the following arguments on the basis of I's:

ap: (Os:——) as: (Or:aq,(pAq)=r)
az: (Op:T,T =p) ag: (O—s:as,r= —s)
ag: (Oq:T,T =¢q) a7: (Ot:as,q=1t)

as: (O(pAq):az,az) ag: (O-s:ap)

By Definition 12 the shadow argument ag attacks ag as well as its sub-
arqguments as—as. Moreover, it attacks a7, which is a super-argument of az. As
a result, none of the conclusions of arguments as-a7 are DAF g -consequences
Of Fg .

Example 4 no longer serves as a counter-example to properties 4 and 5
provided in Section 2.5. We can construct the shadow argument a1 : (©®s : as).
By clause (i) of Definition 12, this argument attacks ay as well as its sub-
arguments ai-az. As a result of this attack, I'y /'par, Oq and I'y /par, Or.
More generally, we can show that the cautious monotonicity property (Property

argument b. Since a shows that b leads to incoherence, b’s conclusion is attacked by the HY-
argument a. Caminada shows how in the presence of HY-arguments, the property of cautious
monotonicity may be restored for AFs. The same holds true for shadow arguments in our
setting (cfr. infra). As Caminada’s construction is defined within a framework consisting
only of literals and (defeasible) rules relating (conjunctions of) literals, we cannot employ it
in our setting.

13 By the construction of Definition 12, Definitions 5 and 6 become redundant in DAF . All
cases covered by these definitions are covered already by Definition 12.
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4 in Section 2.5) holds for DAFg. A proof is provided in Theorem 4 of the
Appendix.

Instead of — and equivalently to — working with the ®-operator and Defini-
tions 11 and 12, we could have generalized Definitions 5 and 6 so as to include
attacks on sub-arguments. Definitions 5 and 6 currently entail that if a attacks
b, then a attacks all super-arguments of b. In the generalized form, these def-
initions would entail that if a attacks b, then a attacks all superarguments of
all sub-arguments of b.

There are two additional reasons for working with the doubt operator ®,
however. First, this operator has a clear and intuitive meaning, and adds ex-
pressivity to our argumentation frameworks. Second, by characterizing shadow
arguments via a separate operator we can think more transparently about (a)
the implementation of additional logical properties of this operator, and (b)
alternatives to Definition 12. Regarding (a), think about the strengthening
rule (‘If ®A, then ®B whenever B - A’), which carries some intuitive force.
Regarding (b), reconsider Example 8, and suppose we add the premise T = —p
to I's. A not-so-skeptical reasoner may argue that in this case we should not
be able to cast doubt on the arguments az and a7, since the doubt casted on
argument a4 arguably arises in view of the conflicted conditional obligation to
see to it that p. 14

4 Related work

Due to space limitations, we restrict our discussion of related formalisms to
those of input/output logic (Section 4.1) and those based on formal argumen-
tation frameworks (Section 4.2). A comparison with other related deontic sys-
tems, such as Nute’s defeasible deontic logic [22,21] and Horty’s default-based
deontic logic [13,10,11,15] is left for an extended version of this article.

4.1 Input/output logic

Like the constrained input/output (I/O) logics from [19], the DAFs defined
here are tools for detaching conditional obligations relative to a set of inputs
and constraints. Unlike most I/O logics, none of these DAFs validates strength-
ening of the antecedent (SA) for conditional obligations — from A = C' to infer
(A A B) = C. Unrestricted (SA) is counter-intuitive if we allow for conflict-
resolution via logical analysis as defined Section 3.1.1, since it allows the unre-
stricted derivation of more specific from less specific conditional obligations. 13

Example 9 (DAF and I/0O logic). LetTg = {p,p = q¢,p = —r,q = r}. We
construct the following arguments on the basis of I'g:
ar: (Ogq:p,p=q) az: (Or:aj,q=r)
ay  (O—r:p,p= —r)
Since as and ag attack each other in view of Definition 6, as,az & G(T'g),
14 Caminada’s HY-arguments from [2] are similar in spirit to this less skeptical proposal.

15In [29] an I/O system is presented which invalidates (SA) in the context of exempted
permissions which are subject to conflict-resolution via logical analysis (specificity).
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while a; € G(Tg). Consequently, Ty t/par Or and Ty t/par O-—r while
Iy Fpar Og.

In constrained I/0 logic, triggered conditional obligations in the input are
divided into maximally consistent subsets (MCSs). I's” has three MCSs: {p =
4,9 = v}, {p = ¢p = r}, and {¢ = —r,p = r}. In [19] two ways are
presented for dealing with conflicts and constraints: via a full meet operation
on the generated MCSs, or via a full join operation on the generated MCSs.
The first approach gives us none of ¢,r, and —r for I'g. The second gives us all
three.

Some of the I/O logics defined in e.g. [18,19,24] validate intuitively appealing
rules which are not generally valid in our DAF's, such as the rule (OR) — from
A= C and B = C to infer (AV B) = C. A detailed study of the appeal and
implementation of (OR) and similar rules in the present argumentative setting
is left for future investigation.

4.2 Formal argumentation

Several ways of modeling normative reasoning on the basis of formal argumen-
tation have been proposed in the literature. For instance, the approach in [8]
is based on bipolar abstract argumentation frameworks. Dung’s abstract ar-
gumentation frameworks are enriched with a support relation that is defined
over the set of abstract arguments. This device is used to express deontic
conditionals. A similar idea is used in [23] where a relation for evidential sup-
port is introduced. Argumentation schemes of normative reasoning are there
expressed by means of Prolog-like predicates and subsequently translated into
an argumentation framework. Here, we follow the tradition of structured or
instantiated argumentation in which no support relation between arguments is
needed. In our approach conditional obligations are modeled by a dyadic op-
erator = that is part of the object language. Arguments consist of sequences
of applications of factual and deontic detachment. As a consequence, for in-
stance, evidential or factual support is an intrinsic feature of our arguments
and is modeled via the factual detachment rule.

The general setting of our DAFs is close to ASPIC™T. For instance, in the
dynamic legal argumentation systems (in short, DLAS) from [26], deontic con-
ditionals are also modeled via a defeasible conditional ~ in the object language.
There are several differences to our approach. For instance, our conditionals
are not restricted to conjunctions of literals as antecedents. As a consequence
we needed to define a strong fact attack rule (Def. 5) that, in order to avoid
contamination problems (see Ex. 2), warrants that arguments with inconsis-
tent supports are defeated.'® Our fact attack and our shadow attack rules
do not conform to the standard attack types defined in ASPIC* (rebutting,
undercutting, and undermining). Our conflict attacks can be seen as forms of
ASPICT-type rebuttals where the contrary of OA is defined by O—A.

Unlike DLAS or Horty’s deontic default logics, we follow the tradition in de-

16 Other solutions to this problem have been proposed, e.g., in [33].
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ontic logic to have a dedicated operator O for unconditional obligations which,
for instance, allows to formally distinguish between cases of deontic and cases
of factual detachment.

Recently, van der Torre & Villata extended the DLAS approach with deon-
tic modalities [32], adopting the input/output methodology from Section 4.1.
The resulting systems, like DAF, allow for versions of the factual and deontic
detachment rules. Moreover, they allow for the representation of permissive
norms. Unlike DAF, and unlike the I/O logics from Section 4.1, these systems
do not have inheritance (weakening) or aggregation rules.

Another approach in which formal argumentation is used for the analysis of
traditional problems of deontic logic, such as contrary-to-duty and specificity
cases is [31]. There, arguments are Gentzen-type sequents in the language of
standard deontic logic and conditionals are expressed using material implica-
tion. One drawback which is avoided in our setting is that there conditionals
are contrapositable and subject to strengthening of the antecedent.

5 Outlook

We presented a basic logic, DAF, for detaching conditional obligations based
on Dung’s grounded semantics for formal argumentation. We extended DAF
with mechanisms for conflict-resolution and for the anticipation of conflicts and
violations. For now, these mechanisms mainly serve to illustrate the modularity
of our framework. A detailed study of e.g. different approaches to prioritized
reasoning, or different conceptions of specificity-based conflict-resolution, is left
for an extended companion paper.

We conclude by mentioning three challenges for future research. The first
is to include permission statements. The second is to increase the ‘logicality’ of
our framework by allowing for the nesting and for the truth-functional combi-
nation of formulas of the form OA, A = B, or OA. The third is to extend our
focus beyond grounded extensions, and to study how our framework behaves
when subjected to different types of acceptability semantics for formal argu-
mentation. Working with Dung’s preferred semantics [6], for instance, allows
for the derivation of so-called floating conclusions [12,17].
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Abstract

After Dung’s seminal paper on argumentation frameworks, the relation of attack be-
tween arguments has occupied pride of place in formal argumentation theory. Yet,
very little attention has been devoted to modelling argumentation about attack re-
lations. Argumentation of this kind is encountered in many situations, especially
when arguers discuss the relevance of each other’s arguments. To model it, we in-
troduce argumentation frameworks with justified attacks, where an attack succeeds
only if one of its justification arguments are accepted. The main technical result is
a representation theorem, showing how to translate argumentation frameworks with
justified attacks into standard argumentation frameworks with dummy arguments
whose combinatorial properties encode the support-function of attack justifications.

1 Introduction

The computational theory of argumentation has become an important research
topic in artificial intelligence [14]. At the core of the theory we find the notion of
an argumentation framework (AF), introduced by Dung in the early 1990s [7].
By proposing to treat arguments as atoms that are connected to each other by
an attack relation, Dung was able to better harness the power of graph-theoretic
methods in the study of non-classical logic. Specifically, he was able to define
important semantic concepts in terms of combinatorial properties of directed
graphs. Many technical results have followed, and formal argumentation theory
is a field in rapid growth within the field of artificial intelligence, see, e.g., [6].

However, not everyone agrees that representing arguments as nodes in di-
rected graphs strikes the appropriate balance between abstraction and repre-
sentational adequacy. Specifically, it has been argued that taking the attack
relation as a primitive and ignoring the internal content of arguments threatens
to render the theory overly abstract [13, p. 94-95]. A key intuition behind this

1 sjur.dyrkolbotn@uu.nl.
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criticism is that when an argument a attacks another argument b, then it does
so for a reason. This reason, moreover, must depend on the internal structure
of a and b. However, on Dung’s account of argumentation, the internal struc-
ture is hidden from view; an argument is nothing but an atom in a network,
and the network itself is often drawn up by the modeller in an ad hoc fashion,
not according to formal rules. This, it may be argued, is where a high level
of abstraction becomes a potential problem, since it leaves out something that
seems crucial when it comes to justifying the attack relation used in a given
model.

To address this concern, much recent work in formal argumentation is based
on formally representing also the content of arguments, to make sure that
attack relations are instantiated. That is, one requires the attack relation to
be drawn up in a way that is justified by the internal argument structure,
according to some agreed-upon rules of non-monotonic reasoning [2]. However,
as show by much recent work in structured argumentation, it is hard to settle
on a canonical set of rules for drawing up attack relations across different
domains. In practice, the modeller will always have significant room for making
discretionary decisions in this regard, for instance by stipulating a preference
relation over arguments to prune away some attacks that would otherwise arise
from the rules in the system, e.g., as it is done in the ASPIC™ framework for
structured argumentation [13,12].

In light of the inherent defeasibility of attack relations, the present paper
proposes to complement existing techniques by a framework that approaches
justification of attacks in a different way, not by trying to pin them down
according to general rules, but rather by treating them as a topic of argumen-
tation in their own right. Specifically, we propose to model attack justification
as a form of meta-argumentation, where the justification of an attack (a,b) is
itself an argument, one that has (a, b) as its conclusion.

We are not the first to discuss meta-level argumentation about properties
of argumentation frameworks, see, e.g., [11,3,8]. We would especially like to
highlight Gabbay’s work in [8], which contains many of the same intuitions
and technical ideas that we develop in a systematic way in this article. What
sets us apart from previous work is that we anchor our discussion in the notion
of an attack justification, proposing to treat such justifications as arguments.
This greatly simplifies Gabbay’s approach, while also generalising it in an in-

2 Some might wonder why we are not concerned also about the meta-level question of how
to justify the inclusion of a given argument in the model. The reason why we do not worry
about this is that the justification question for arguments can be seen as a special case of
the justification question for attacks. In a system with an argumentation-based semantics,
an argument that does not feature in any attacks plays no role whatsoever in the evaluation
of any other arguments. Such an argument can safely be removed from consideration; it is
irrelevant. Conversely, it seems clear that a reason to doubt the inclusion of an argument
in a model is also a reason to doubt all justifications for including any attack involving that
argument. In light of these two observations, there does not appear to be any reason to for-
mally distinguish between justifications for including attacks and justifications for including
arguments in a given model.
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teresting way, allowing for non-wellfounded attack relations. Like Gabbay, we
stay very close to Dung’s original proposal. This allows us to prove a represen-
tation theorem, showing how argumentation models with justified attacks can
be faithfully modelled using standard AFs, provided we add new atomic argu-
ments and make sure the combinatorial properties of these arguments encode
meta-level information about attacks. This result implies that algorithms and
techniques developed for AF's can be applied also to argumentation frameworks
with justified attacks. More generally, our results shows that there is no need
to abandon the graph-theoretic view in order to account more fully for the
argumentative origins of attacks.

The structure of the paper is as follows. In the next section, we motivate
our own formalism by formulating three design principles that existing formal
frameworks fail to satisfy. In Section 3, we define and explain our proposed
argumentation frameworks with justified attacks (AFJAs) and give definitions
of AF-style semantics for these structures. In Section 4, we show how any
AFJA can be reduced to a classical AF. Finally in Section 5, we conclude.

2 Background and motivation

An argumentation framework (AF) is defined as a directed graph F = (A, R).
The intuition is that A is a set of atomic argument names while R C A x
A is an indefeasible attack relation over those arguments. Importantly, the
attack relation is not justified but given as a primitive by the modeller. This is
where we want to generalise the formalism, by asking for attacks to be justified
by arguments.® An obvious consequence of asking for this is that we must
then be prepared to account for the fact that attack arguments sometimes fail.
Specifically, any formal model of justified attacks need to encompass a defeasible
notion of attack, where attacks are sometimes not taken into account because
their justifications are rejected.

The literature on formal argumentation has already seen several proposals
for frameworks with defeasible attack relations [10,1,8]. However, none of the
existing formalisms give us what we want, because they all fail to satisfy at
least one among the following list of three design principles.

Principle I: attack justifications should be represented as arguments

In general, an attack (a,b) can be justified in many different ways, by many
distinct justifications. To capture this, we will demand that all attack justi-
fications must be modelled explicitly as arguments. If the aim is to come up
with something like a general theory of arguments, this demand must surely
be met; in this case, attack justifications would fall under the scope of the
theory already because a justification is a kind of argument. Usually, however,

3 We remain agnostic about what theories of justification such arguments might be based on.
This is the benefit of a highly abstract model; justifications can be anything, what matters
is not where they come from but how their argumentative functions can be analysed by
studying an appropriate attack relation (e.g., one that has been generated by some system
of instantiated argumentation).
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one has a more specific argumentation theory in mind, for instance a theory
of arguments based on non-monotonic inference rules. If this is the case, what
we effectively require is that the reasoning used to justify attacks between ar-
guments should be representable within the formal system that generates what
we call arguments. This is a natural property for a system of non-monotonic
reasoning to satisfy, ensuring that it can represent a key component of its own
argumentation-theoretic meta-properties. In future work, we plan to make this
aspect explicit by considering instantiations of justified attacks in a system of
structured argumentation with meta-level inference rules. For now, we hope
the reader will agree that while the principle we propose here is not axiomatic
by any means, it makes a natural demand on the expressive power of argumen-
tation theories.

In addition, we highlight a more localised reason to adopt our proposal.
Specifically, once we introduce higher-order attacks into our framework, our
principle ensures that attacks on attacks make sense. We are now in a position
to say why they are there, to enable also the higher-order attacks to be justified
in a systematic manner. By contrast, if attack justifications are not represented
explicitly as arguments in the model, it is not clear what the basis is for saying
that you can attack an attack in the first place. What exactly are you attacking,
if not some argument in favour of the attack you don’t want? This does not
seem clear in previous work on higher-order attacks, serving as a reason why
our principle should at least be observed in this special context. The next
design principle clarifies this point further.

Principle II: attacks on attacks are attacks on attack justifications

Given Principle I, it becomes perfectly natural to consider attacks on attack
justifications; such justifications, after all, are regarded as arguments in their
own right. Intuitively, in order to make an attack on an attack you have to
specify which of the justifications for the attack you are challenging. We include
this as our second design principle, to stress that an attack on an attack will
only be considered well-formed if it targets specific justification arguments. In
previous work, attacks on attacks have been modelled as a relation that targets
attacks directly. Hence, an attack on an attack will either have to be taken
to defeat all conceivable justifications, or else it must be taken to defeat none
of them. In our opinion, it is better to model attacks on attacks by explicitly
accounting for the justification arguments that such an attack challenges. This
makes it possible to account for the fact that an attack can defeat some of
the justifications for another attack, while still failing to force the attack to be
retracted.

Principle III: the acceptability of an attack justification should not
depend on the acceptability of the source of the underlying attack

Since we model attack justifications as arguments, it also becomes natural to
consider attacks made by such arguments. In effect, attacks can sometimes at-
tack other arguments and attacks, not directly, but through their justification
arguments. This is similar to an intuition pursued by Gabbay [8]. However,



Dyrkolbotn and Pedersen 53

a\_/ o b

€2

Fig. 1. A structure including an attack emanating from an attack justification.

attacks emanating from attacks become quite mysterious objects when no dis-
tinction is made between attacks and the justification arguments that support
them. For this reason, Gabbay’s definitions are both more complicated and
less general than those presented here. Nevertheless, Gabbay’s work contains
a crucial semantic insight: the acceptability of an attack justification does not
depend in any way on the acceptability of the argument from which the un-
derlying attack emanates. If you have a convincing argument that a attacks b,
then your argument is still convincing even if a is not accepted. This means
that while there should be a dependence linking the acceptability of your ar-
gument and the acceptability of the attack (a,b), there should not necessarily
be any such dependence between the acceptability of a and the acceptability of
an argument justifying (a,b). Several previous theories of higher-order attacks
violate this constraint, with Gabbay’s work being a notable exception.

In the next section, we provide a formal framework that supports all the
design principles stipulated above.

3 Formalising justified attacks

To satisfy Principles I and II, we need to be able to define attacks as relations
over a set of arguments that includes at least one argument for every attack,
corresponding to its justification. A simple formal structure that allows us to
do this is presented below.

Definition 3.1 Given a set of propositions II, an argumentation framework
with justified attacks (AFJA) is a pair A = (N, E) where

e N is a non-empty set of argument names, and
e E: N — (N x N)UII maps argument names to conclusions.

If E(n) € II we say that the argument n is atomic. Otherwise, we say it is a
meta-argument (meaning its conclusion is that one argument attacks another).

To illustrate the definition, notice how the structure depicted in Figure 1
is an example of an AFJA with N = {a,b,e1,e2} and E(e1) = (a,b), E(e2) =
(e1,a).

AFJA models provide a representation formalism that is more general than
any existing proposal of which we are aware. Specifically, our model supports
representation of multiple attacks from a to b, as well as modelling of non-
wellfounded attacks. For an example of the latter, consider the AFJA on the
left in Figure 2. Arguably, the attack depicted here is the canonical example of
an argument that successfully makes an attack that is not explicitly justified,
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meaning that the attack it makes must be (at least implicitly) self-justifying.
The natural converse, depicted in the middle of Figure 2, is a new type of
fallacious structure, namely the attack that is self-defeating. Finally, on the
right, we see an example of a structure that is both self-defeating and self-
justifying — the ultimate fallacy, namely the conceited claim that self-defeat is
the only possible explanation for rejection.

e

p

€1

p

Fig. 2. Three kinds of non-wellfounded attack justifications. For instance, these can
be used to model ei: “not p, therefore e; attacks p” (E(e1) = (e1,p)), e2: “not p,
therefore p attacks ex” (E(e2) = (p,e2)) and es: “es is rejected, therefore ez attacks
63” (E(EJ) = (63,63)).

The increased expressiveness of AFJAs compared to earlier proposals stems
from the introduction of explicit attack arguments. Specifically, having such
arguments available enables us to link attacks with their justifications using a
map from N to N x N, a simple representation of how attack claims can be
the conclusions of arguments.? For uniformity, we have also endowed atomic
arguments with explicit conclusions, taken from some arbitrary set of proposi-
tions II. The perspective induced by this signature strikes us as the appropriate
one, since a distinction should always be made between an argument and the
proposition it is used to support. For the theoretic purposes of this paper,
however, it is safe to simply conflate argument names with their conclusions,
i.e., to assume that IT C N and that E(n) = id whenever n is not an attack
justification.

Notice that AFJAs, like AFs, suppress the premises of arguments. We
believe this is natural, since premises can take many forms; arguably, any-
thing from proof trees to photographs can be used to build arguments that
we might want to represent and reason about using formal tools. Therefore,
we should rely on abstraction, to ensure that the computational theory does
not become tied to a specific format for representing the content of arguments.
Formalisms that attempt to derive attack relations from the internal structure
of arguments tend to violate this constraint. For instance, in order to use the
attack-generating features of ASPICT, one must first rewrite all arguments
as derivations in some formal logic. Such a requirement might not always be
appropriate, much less realistically fulfilled. Moreover, a computational theory

4 By contrast, if one treats objects from N x N as arguments and attacks simultaneously, as
in [8], giving well-defined attack relations becomes more complicated. Moreover, expressive
power is lost, since an attack is then simply conflated with its justification.
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of argument should be able to represent and process argumentative content
sourced from a variety of domains, where premises can be represented using
various kinds of data structures and may support their conclusions in less con-
vincing ways than formal logicians tend to expect. In a concrete modelling
context, one may then explore this aspect of instantiation further by providing
amap P : N — I, linking arguments with their premises (taken from some col-
lection I of information). In general, however, we believe it is a strength if the
theory of argumentation can be developed in general terms, without reference
to any specific P or 1.

Now, to demonstrate in more depth how AFJA models can be used, we will
model a meta-argument based on a classical example in default logic. Recall
that a (propositional) default rule has the form a : piddisein} where p,q,J; are
propositional formulas for all 1 <47 < n. Then we say that p is the prerequisite
of a, all the j;s are justifications for it, while ¢ is its conclusion. Default rea-
soning can be looked at as argumentation, a perspective that has been adopted
often in previous work. Arguably, however, the most important arguments that
can be sourced from the field of default logic are meta-arguments that do not
correspond to chains of default rules, but instead pertain to the question of how
to define a semantics for default theories. Here the AFJA formalism can help
to formalise an aspect of default reasoning that is not commonly formalised at
all, as demonstrated in the following example.

Example 3.2 Let II = {p,q} and assume we have the default rules a : %

b: T;—;q and ¢ : —E. Moreover, assume the agent has a priority over these
rules given by a > b > ¢. The example is important in default logic, since
there is meta-level disagreement about it. According to some, it shows the
inadequacy of early variants of prioritised default logic, which would tend to
give {—¢q,p} as the preferred extension of the theory [4]. Let us use an AFJA
model to represent a simple argument about whether {—q, p} is a reasonable
outcome. First, we take a, b and ¢ to be arguments with E(a) = ¢, E(b) = ~¢
and E(c) = p. Then we generate attack justifications on the basis of the
following general principles: (1) we argue that symmetric attacks must be
present between any two conflicting defaults, (2) we argue that an asymmetric
attack must be present from a to b if a and b are in conflict and a has higher
priority than b, and (3) we argue that when a attacks b via an asymmetric
attack, then b must be rejected if the preconditions of a are added to the
knowledge base. These principles appear justified by meta-logical properties of
default logic. However, the arguments resulting from (3) are meta-arguments,
since they talk about asymmetric attacks between default rules. Let us apply
principles (1)-(3) to our example. Then by (1) we get e; with E(e;) = (a,b)
and ez with E(ez) = (b,a). By (2) we get e with E(e3) = (a,b). Finally, from
principle (3) and the fact that p is necessarily added to the knowledge base, we
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get ey with E(eq) = (es,b). The resulting AFJA is depicted below.

€3 ey

S

a'\_/
€2
Intuitively, since there are no counterarguments against either es or e4, we
should accept both of these arguments. Hence, we should reject b and accept a
and c. In other words, {p, ¢} should be the outcome of applying these rules to
an empty knowledge base, not {p, =¢q}. If you disagree with this conclusion, of
course you can try to add suitable attacks to the AFJA above. The question
becomes: can you justify them?®

This example shows the potential usefulness of AFJA models when doing
meta-reasoning in the context of default logic. Notice, in particular, that it
would be incorrect, or at least counter-intuitive, to model the rejection of b as
arising directly from the fact that a attacks b and is the preferred argument.
Clearly, the rejection of b depends on holistic properties of the structure, prop-
erties that are more naturally modelled by meta-level attacks like e4. Indeed,
in examples like the one considered above, one of the intuitions we form is that
we need to reject b before accepting a, since otherwise a can never be accepted.
But if this is how we reason, a as such can hardly be the argument we rely
on when rejecting b. Indeed, this is why the example is important, and why
it leads to disagreement. It would be great to have an argumentation system
that can systematically encode this sort of disagreement and produce default
extensions in response to it (perhaps according to new principles, e.g., without
relying on a fixed scheme to “lift” priorities to chains of defaults). We believe
the example above shows that AFJA models can potentially play a useful role
in the development of such kinds of argumentation systems. Of course, the true
extent of the potential identified here will only become clear once we enhance
AFJA models by an instantiation layer to systematically produce appropri-
ate attack justifications, e.g., by a suitable modification of ASPICY. Further
exploration of this will be left for future work.

In the next section, we develop a formal semantics for AFJAs that satisfies
our design principles and also agrees with the intuitions we have presented in
examples so far.

3.1 Semantics

A key assumption in formal argumentation is that arguments that are not
attacked should be accepted. That is, the default position is to accept all
arguments, unless there is a reason to do otherwise. This basic assumption is
what permits the theory to make do with only an attack relation; an argument

5 Perhaps you can; in what sense exactly is it correct to say that p is added to the knowledge
base in this case, c.f, principle (3)?
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is not in need of any support unless it is attacked, in which case the only
relevant support is that offered by an attack on an attacker.

To arrive at a semantics for AFJA models we will rely on a generalised
version of this intuition. Here we need to take into account that the effectiveness
of an AFJA-attack depends on two separate semantic entities: (1) the attacking
argument, and (2) the argument justifying the attack. On this basis, the idea
behind the semantics we propose can be stated very simply, as the principle that
the strength of an argument should be taken to equal the maximum possible
acceptance value minus the strength of the weakest component of the strongest
attacking argument. We mention that this idea is essentially present already
in [8].5 However, as noted earlier, our formalisation using explicit attack
justifications is at once more general and easier to define.

To formalise things, we first define the auxiliary notions of source and target,
provided in Equation 1.

{7 B =)
sre(n) =
*  otherwise (1)
trg(n) = 1Y if E(n) = (z,y)
*  otherwise

In addition, for every n € N, we define in(n) = {m € N | n = trg(m)}.
Moreover, if f: N — {0,/2,1}, we use the notation f© = {n € N | f(n) =0}
and similarly for f /2 and f1. Let us introduce the convention that by default

max (min{ f(e), f(src(e))}) = 0.

Then, for any f : N — {O, 1/2,1}, we can define the argument evaluation
f:N— {0, Y, 1} as follows, for all n € N:

f(n) =1— max min{f(e), f(src(e))} (2)

e€in(n)
This evaluation map allows us to generalise all the standard Dung-style

argumentation semantics to AFJA models. Specifically, we are ready to define
complete labellings as those that satisfy the following, for all n € V:

f(n) = f(n) (3)

In the following, we will focus on the complete semantics. However, we note
that semantics corresponding to the other classical semantics for AFs can also
be defined, as listed in Figure 6. Notice that all the semantics defined here
give the desired result in all examples considered previously. For instance, if
we return to the AFJA in Figure 1, it is not hard to see that any f satisfying
Equation 3 will have to provide f(e2) = f(e;) = f(b) = 1 (meaning these
arguments are accepted) and f(a) = 0 (meaning a is rejected).

6 Compare also with Gabbay’s later work on equational semantics for argumentation [9].
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Domain Condition

Admissible, adm(S):

£€40,Y5,1}" VneN:f(n)=1= f(n)=f(n)
Complete, com(S):

fe{O,l/g,l}n VYn e N: f(n) = f(n)
Grounded, grd(S):

f € com(S) Vi e com(S) : filz g fe
Preferred, prf(S):

f € adn(S) V' € com(S): ft ¢ f1
Semi-stable, sem/(.S):

f € adm(S) Vi€ com(S): f/2 2 2
Stable, stb(S):

f € adm(S) =0

Fig. 3. Other semantics for AFJAs (the left column shows the domain of f, while the
right column states the condition for membership in the semantics).

It is not prima facie clear that all AFJAs admit complete labellings. The
remainder of this section is devoted to establishing an existence theorem. We
begin by defining, for all f : N — {O, Y, 1}, a corresponding sequence F' =
{f=nh,[f2---, [i,..} inductively as follows, for all ¢ > 1, for all z € N:

fi(z) = 1 — maxeein(ny min{ fi—1(e), fi—1(src(e))} (4)

Clearly F' contains a complete f; just in case f; = f;11, in which case f; = f;
for all f; € F with j > ¢. This forms the basis for the proof of the following
result.

Theorem 3.3 For all AFJAs A, there exists at least one complete labelling
fiN— {07 Y, 1} (i.e., a labelling satisfying FEquation 2).

Proof. Let fo(n) =1/, for every n € N, and define the sequence fo, f1,... as
previously discussed. Notice that since fo/ >=N, f§ = f& = 0. We show that
Vi, f2 C f2, and f2 C fl . Suppose towards a contradiction that this is not

A

the case, and that ¢ is the smallest number which violates this, i.e., either (i)
O f2 or (ii) f1 € fL (or both). By definition of fo we know that ¢ =0
is impossible. To proceed, let us assume the monotonicity claim holds for all
0 <4 < c and use this to derive a contradiction.

(i) Suppose fO Z fO ;. Let x be an element such that z € f°, but z ¢ f2,;.
This means that

L masx min {feos(6). foor(srefe))} = 0 (5)
L= maxx min {fo(e). fo(sre(c))} # 0 (6)

Equation 5 holds (by witness e) if, and only if,
Jy € in(z) [fe-1(y) = fe-1(sre(y)) = 1]



Dyrkolbotn and Pedersen 59

and Equation 6 holds if, and only if,

Vy € in(z) [fe(y) # 1 or fe(sre(y)) # 1]

It follows that for the witness e we have f._1(e) = fo—1(sre(y)) = 1, but
also that min{f.(e), f.(src(y))} # 1. Suppose, without loss of generality,
that f.(e) # 1. Then e € fL |, but e ¢ fL. This contradicts the assumption
that ¢ was the smallest index for which the monotonicity claim failed.

(ii) Suppose f!  fl. ;. Let z be an element such that = € f}, but = ¢ fL ;.
This means that

L max min {for(e). foo(sre(e))} =1 (7)
L max min {f.(e). fy(sre(e))} # 1 (8)

Equation 7 holds if, and only if,

Yy € in(z) [fe—1(y) =0 or fe_1(sre(y)) = 0]

And Equation 8 holds, by witness e if, and only if,

Jy € in(z) [fe(y) # 0 and fe(sre(y)) # O]

It follows that for the witness e we have f;(e) # 0 and f.(src(e)) # 0, but at
least one of f._1(e) = 0 or fe_i(src(e)) =0, so {e,src(e)} N fO_, \ f2 # 0.
But this contradicts the assumption that ¢ was minimal.

We have shown that the assumption that monotonicity fails at some index
¢ > 0 leads to a contradiction, hence the sequences of sets f? and f! grow
(concurrently) monotonically with 7. With an appeal to the Knaster-Tarski
fixed-point theorem we have a fixed point. a

4 Reduction (AFJA ~ AF)

In this section we show how to represent any AFJA model A as an AF 7(A).
To do this, we need to be able to approach all arguments from A as though they
were atomic. This risks losing important information, a concern we will address
by adding auxiliary (atomic) arguments to ensure that all attack justifications
can be represented implicitly, as combinatorial properties of those (atomic)
arguments from 7(A) that correspond to meta-arguments in A. Specifically,
we provide the following definition, which is similar to a construction used in
[8] to provide several AF-based semantics for higher-order attack relations.

Definition 4.1 For all AFJA models (N, E), we define 7((N, E)) = (A, R) as
follows

o AfNUNUNe where
- N={Z|ne€N,src(E(n)) =x}



60 Argumentation Frameworks with Justified Attacks

: Ne:{envﬁ|E(n) ¢H}

* R= {(en,y), (:Eaen)L(ﬁa en) | E(n) = (z,y)} U R where
- R={(n,n)|neN}

Intuitively, each named argumentative element becomes an element N C A.
Furthermore, every edge n has an “edge-node” e,, (from N.), Finally, all edges
and every node which is the source for some edge have an argument claiming
that they must be rejected: #. Notice that N and N, may overlap. For an
example, consider the AFJA and the corresponding AF-reduction depicted in
Figure 4.

LA
NNV L
.,

Fig. 4. AF (below) corresponding to AFJA (above)

Example 4.2 To illustrate how the representation works for structures that
are further removed from ordinary AFs, consider the AFJA ({e},{e —F
(e,e)}). The AF representation will consists of the elements of three sets:

N = {e} because e is a named element,

N = {e} because e is the source of an edge, and

N, = {e., €} with both elements included because e is an edge.

This construction, together with the original AFJA| is depicted in Figure 5.

To prove formally that our representation gives the required result, we will
show a correspondence theorem linking our semantics for AFJAs with the stan-
dard semantics for AFs. For convenience, we will work with a labelling-based
formulation of the standard AF semantics. Specifically, given an AF (4, R)
and a labelling f: A — {0, Y, 1} we define f as follows, for all z € A:

fla) =1 —maz{f(b) [b € R (a)} (9)

We can now formulate the complete semantics for AFs by saying that
f A — {0,Y2,1} is (AF-)complete whenever we have f(a) = f(a) for all
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Fig. 5. AFJA (left) and corresponding AF (right).

a € A. Tt is not hard to see that this definition corresponds to the standard
definition of complete semantics for AFs, c.f., the labelling-based formulation
given in [5]. Moreover, we can easily express the other classical semantics for
AF's in a similar manner, corresponding to the AFJA-semantics in Figure 6.
However, for space reasons, we only discuss the complete semantics here (the
representation theorem is easily adapted to the other semantics as well).

The next step towards a proof is to establish a link between labellings of
arguments in AFJAs and labellings of corresponding AFs. To this end, we
construct, for all A = (N,E) and all f : N — {0,/2,1}, a corresponding
labelling f, : A — {0,/2,1} for 7(A). Specifically, for all z € A, we define the
value of f, as follows:

f(z) reN
fo(x) = 41— f(n) r=1n,n€N (10)
min{f(n), f(sre(n))} =z =e, € N,

This gives us the following representation result.

Theorem 4.3 For all AFJAs A= (N, E), we have that f : N — {O7 Y, 1} is
complete for A if, and only if, f, is complete for T(A) = (A, R).

Proof. Let A= (N, E) be an arbitrary AFJA, and let f = N — {0, Y, 1} be
an arbitrary labelling. Further, let 7(A) = (A, R) be the corresponding AF as
defined in Definition 4.1 of 7, and f, be the labelling defined in Equation (10)
w.r.t. f.

We show that f is complete w.r.t. A if, and only if f, is complete for 7(A),
that is f = f < fo= fp. First we make some observations.

(A) By inspection of the definition of 7, it is easy to verify that the only
incoming edge in 7(A) into arguments of the form 7, for n € N, comes
from n. That is, R~ () = {n}. By inspecting (10), we can also see that
fo(n) =1— fy(n) =1— f(n). Importantly, notice that by (9), we have

fo(n) =1—= max {f,(0)} =1—fy(n) = fo(n)

beER- (71)

(B) By inspecting the definition of 7, we see that R~ (e,,) = {m,5} where
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src(m) = s. This and (9) yields

folem) =1 = max  fy(b) =1 —max{f,(m), f,(5)}

beER™ (em)

This in turn, by two appeals to (10) and (A), gives

folem) =1 —max{l — f(m),1 - f(s)}
= min{f(m), f(s)} = folem)

=) Assume f = f. We need to show that for every a € A, f,(a) = f,(a). By
inspecting the definition of 7, we see that either a € N, or otherwise either

a =7 for some n € N, or a = e, where m € N and E(m) € N x N.

» Suppose x ¢ N. If x = i1 for some n € N, by observation (A) we are done.
Otherwise = e,, for some m € N and E(m) € N x N, but then, by
observation (B), we are done.

e Otherwise, z =n € N. From (10) and the assumption that f is complete,

fo(n) = f(n) = f(n).

fn)=1- x| min{f(m), f(src(m))} (2)
=1 max folem) (10)
=1 D fp(0) (B)
= fp(n) (9)

From the assumption that f is complete for A, we have shown that, for every
ac€ A, f,(a) = fo(a), i.e., that f, is complete for 7(A).

<) Follows trivially from f,(n) = f(n), which we showed above without any
appeals to the assumption of completeness of f,.
O

5 Conclusion

This paper has proposed a new formalism for modelling argumentation with
justified attacks, extending Dung’s theory of argumentation frameworks. The
motivation for providing a new formal framework was presented in Section
2 where we briefly stated and defended three design principles that existing
formalisms fail to satisfy.

A key point made was that disputes about where attack relations come
form should not necessarily be dealt with by attempting to formulate strict
rules, maintained externally to the formalism itself, that pin down the appro-
priate way to derive attacks from the internal structure of arguments in a given
domain. Instead, we believe the theory of argumentation can benefit greatly
from a formalism that supports formal reasoning about attack justifications as
meta-arguments, especially if techniques and results developed for AFs can be
applied also at the meta-level.
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We believe that our AFJA models provide exactly such a formalism, one
that extends, clarifies, and simplifies very sensible ideas that can also be found
in previous work by Gabbay. The main result of the paper was a representation
theorem that shows how results obtained for AF's can indeed be imported to the
new setting, with only a linear growth in the number of arguments needed to
represent meta-argumentation about attacks as combinatorial dependencies in
directed graphs. For this reason especially, we believe the AFJA formalism will
make a valuable addition to the toolbox of representation languages employed
in the field of formal argumentation.
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Abstract

We assume that an agent is not responsible for rule-induced extensions of its theory about the
world; responsibility requires the presence of a choice. This supports the attractive conclu-
sion that responsibility for rule-based agents can only arise when the agent faces a “dilemma”
regarding how to apply the rules. Default logic offers precise formulations of this intuition.
However, it turns out that existing definitions force us to recognise too many dilemmas when
reasoning about rules. Specifically, not all moral conflicts are moral dilemmas; the crucial el-
ement of choice is sometimes missing. To address this, we first present a refined definition
for normal default theories, before going on to present a generalisation that applies to abstract
argumentation frameworks.

1 Introduction

As the gun lobby keeps telling us: guns don’t kill, people do. We could not agree
more, but would like to add that gun lobbyists probably kill more than most, since
they work to uphold deadly rules. Indeed, deadly rules are just like guns; they don’t
kill people, rule-makers do. This statement might be provocative, but it is structurally
similar to the claim made by the gun lobby. Both slogans highlight the importance of
morally salient choices; the gun-killer’s choice of gun use and the rule-maker’s choice
of gun regulation. In this article, we address the question of how moral choices like
these should be defined. For the sake of precision, we provide an example definition
in default logic, extending a line of formal work on moral reasoning that was initiated
by Horty [5,6].

I sjur.dyrkolbotn@uu.nl.
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The overarching aim of the article is to contribute to formalising theories about
moral responsibility in formal logic. This is becoming an increasingly important re-
search topic in light of the increasing moral salience of intelligent systems in our
societies. A key intuition underlying our work in this article is that an agent is not
responsible for the rules it has been given, but might be responsible for how it solves
conflicts that arise from them. Moreover, if the agent resolves conflicts by weighing
the rules in a way that the designers of the rules would not condone, this would ap-
pear not to be the designer’s fault, but rather the fault of the agent. To unpack these
intuitions and make them precise, the notion of a moral choice comes to function as
an important anchor, both conceptually and formally.

The definition we provide is novel, departing from previous work on moral rea-
soning in this context. It is based on the following conceptual premise: moral choices
should not be conflated with their indirect rule-induced consequences. If you choose
to = and then you y because x triggers a rule saying you should y, you did not (neces-
sarily) choose y. The rule-maker certainly did, but you may not have. We argue that
this precept is particularly important in the context of reasoning about responsibility
for intelligent systems. Unlike humans, robots do not typically “choose” to follow
the rules; they typically have no choice, rules are a physical constraint on their be-
haviour. This motivates a simple formal definition of moral responsibility relative to
default logic, based on our insistence that choices need to be recorded separately from
rule-induced consequences.

The structure of the paper is as follows. We begin in section 2 by giving an infor-
mal argument to support our ideas about moral choice and responsibility. We do not
discuss the vast literature on moral responsibility or the growing literature on machine
ethics, but compactly present our starting point and the ideas that motivate our formal
work. Then in section 3 we present a formal definition of responsibility which applies
to so-called normal default theories. Here we rely on ideas and techniques from ar-
gumentation theory to define what it means to make a moral choice, giving rise to a
new distinction between moral conflicts and moral dilemmas in the context of default
reasoning. We proceed to sketch a theory of responsibility for abstract argumentation
in section 4, where responsibility is defined as a modality over argumentation frame-
works. This definition lifts the concept of responsibility in such a way that it can
be used in any formalism of non-monotonic reasoning that admits an argumentation-
based semantics. In section 5, we offer a brief conclusion.

2 Responsibility and choice: a conceptual starting point

We regard a moral rule as an action-directing element of an agent system, possibly one
with special significance, but not necessarily an expression of a universally desirable
principle. This does not make us relativists and it is not an attack on moral philosophy.
Moreover, while we offer the moral realists the courtesy of highlighting our descriptive
starting point, we do so with some degree of reservation. This is because we wish
to remain sensitive to the possibility that there might not be a clear-cut distinction
between descriptive and normative theories about morality. However, since nothing
in the current article seems to hinge on this, we feel confident to leave this aspect of
meta-ethics behind us for now.
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It seems true, in any case, that descriptive moral rules are just like guns; they are
not good or bad in themselves. It all depends on how you choose to use them. This
should not be a controversial claim; if there really is such a thing as a universal moral
theory, its object of study is surely good rational agency, not the plethora of descriptive
moral rules that might or might not get us there.> However, descriptive moral rules
do guide our judgements about moral responsibility, relative to a given agent system.

In the following, we take moral responsibility to be a meta-level notion, a notion
that we can apply when assessing agency against moral rules, not a notion that is
inherently dependent on any specific collection of such rules. This sense of responsi-
bility is backward-looking, requiring a form of abductive reasoning about a chain of
events leading to some outcome. This is also where the notion of moral choice be-
comes important, because it helps distinguish between those points in the event chain
that can be attributed to agents and those that have to be attributed to rule-makers. As
we will see in examples later, this distinction can make a significant difference when
reasoning about responsibility.

We remark that we approach moral responsibility from a normative perspective,
inquiring into what the conditions for moral responsibility should be, not what they are
taken to be in a given moral community. Furthermore, our work focuses on unpack-
ing what we call the choice principle, a constraint on responsibility attribution that
we formulate as follows: an agent can be morally responsible for choosing X only
if the agent could have chosen differently when X was chosen. We remark that this
is weak choice principle, since it only speaks about choices as mental states, without
making reference to their possible physical manifestations. There is no requirement,
for instance, that there are any consequences of X that could have been prevented by
making a different choice. We abstract away from physical aspects of choice on pur-
pose, because they do not seem to play a role in our conceptual argument. A further
benefit of doing this is that our choice principle seems to be compatible with physical
determinism; it does not appear to have any problem with standard Frankfurt cases
(which invokes alternative possibilities, apparently intended as physical manifesta-
tions of differences between choices). 3

Since we are interested specifically in the aspects of responsibility that hinge on
the choice condition, a single-agent formalism like standard default logic is suitable
for our purposes. The formal context is one where we want to know whether an
agent is responsible for a formula it derive using default rules. We assume that the
agent is not omniscient about the consequences of its reasoning choices. Moreover,
we do not model epistemic aspects of agency, with the implicit premise being that the
epistemic state of the agent is arbitrary, not that it is logically perfect. This assumption
also covers knowledge about the system itself; specifically, we do not assume that the
agent knows (or does not know) the (implicit) consequences of applying certain rules.
The only assumption we make is that the agent knows whatever it needs to know to

2 Some might want general principles to express what is good in the universal sense, but those principles
would then have little to do with descriptive moral rules. To say that some rules are bad by comparison with
a universal principle might be possible, but would not seem particularly informative in itself.

3 For a detailed philosophical argument that free will and determinism is compatible because free will is
not a physical phenomenon, see [7].
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apply rules and choose between them in case of conflict.

For the purposes of facilitating a simple formal definition, we assume that agents
make all their morally salient reasoning decisions on the basis of explicit moral rules
in a propositional, non-schematic, format. With respect to human agency, this is an
extreme idealisation, useful for getting at the essence of the phenomenon we wish to
highlight. With respect to artificial agency, the assumption might be justified also at a
deeper level. Specifically, it is hard to imagine how an intelligent machine could make
a moral choice unless there was some kind of explicit moral rule involved (possibly
a poorly understood one, formulated in terms of learning principles). Machines still
appear to be rule-based systems, our increasing lack of understanding of them notwith-
standing. This observation might seem to support a further argument to the effect that
machines cannot make morally salient decisions, since meaningful alternatives are
lacking. But this is not necessarily the case. Specifically, if a machine resolves a
moral conflict, it is prima facie plausible to say that it makes a moral choice. This is
not the same as saying that the machine is not rule-based; clearly, a conflict between
rules is based on rules. Moreover, in a machine, conflicts are also resolved by rules
(although these can be very different rules, not directly addressing the rules generating
the conflict). Moreover, we are not suggesting that a machine is a moral agent; to have
made a moral choice is a necessary condition for moral responsibility, not a sufficient
one.

To illustrate the importance of choice, consider a self-driving car that kills its
passenger by stopping at a red light, allowing a large truck to crash into it from behind.
Most people would probably agree that we need to know more before we can conclude
that a morally salient choice was made to kill the passenger. This in spite of the fact
that the decision would be motivated by a moral rule, resulting in an outcome that the
car might in theory also be able to anticipate. Specifically, the car (and its makers)
might not have a choice in the relevant situation; once the light turns red, the rule-
following behaviour might be inescapable. Moreover, this behaviour would hardly be
implemented to kill people, but rather to uphold traffic regulations. Hence, additional
evidence of wrongdoing would be required in order to hold anyone other than the truck
driver responsible.

But now, consider the same scenario again, with the only difference being that the
car has an additional algorithm that flags up a dilemma in this situation: “should I
obey the traffic rule and kill the passenger or should I break the traffic rule and save
the passenger”? If such an algorithm is present, most people would probably approach
the case very differently; we would no longer think we were dealing with neutral rule-
following, we would think that morally salient choices were being made by (means
of) the machine. Moreover, when the car decides to stop at the red light, the following
conclusion suggests itself: the car has committed murder.

The question of how exactly we should draw distinctions like the one illustrated
here seems important and difficult. Simple thought experiments gloss over the diffi-
culty, but highlight the importance. We believe that is fair. Simple examples at least
show that those who think there is not an important distinction to make, have some
explaining to do. This is also were the present article aims to make a contribution; its
primary purpose is to help formulate a better foundation for further debate, not to pro-
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mote a certain view on whether or not machines can be held morally responsible for
their behaviour. We believe the only non-trivial assumption we make in this regard is
that something like the choice principle is true. If it is, what follows makes a relevant
point about moral reasoning, a point that has not to our knowledge been made before.

3 Responsibility and moral dilemmas in default logic

In this section, we develop our ideas more precisely using default logic, a much used
formalism in artificial intelligence, capable of representing (and, in its programming
variants, implementing) reasoning with rules that can have exceptions. Here is the
basic definition:

Definition 3.1 Given a set of propositions II a default rule is a triple d
p(d); j(d)/c(d) where p(d), c(d) are propositional formulas over IT and j(d) is a set
of such formulas. We say that p(d) is the prerequisite of d, ¢(d) is its conclusion and
j(d) is its justification set. A default theory is a pair (T', B) where T is a propositional
theory and B is a set of default rules. We define the semantics of default logic as
follows:

¢ Given a (deductively closed) theory T and a rule d, we say that d is active in T,
written a(7, d), if p(d) € T, {=¢ | ¢ € j(d)} NT = () and ¢(d) ¢ T. We define
a(T,B) = {d € B | a(T,d)}, the set of defaults active at T".

¢ Given a default theory (7', B), an argument is a pair (E, d) such thatd = dy, ..., d,
is a sequence of defaults (the reasons supporting the argument) and £ = E,, (the
content of the argument) is a set of formulas defined by the following recursion: 4
- Eg = ¢l(T) (where ¢l is deductive closure in propositional logic),

o Cl(Ei_l U {C(d7)}) if d1 € a(Ei_l, B)
" | undefined otherwise
If a(E,,B) = ( for some argument (E,,d) then we say that the argument is
an extension for B at T'. Let j(E,d) = U, <,;<,{j(d;)}, the justification for the
argument (E, d). An extension is an R-extension if {=¢ | ¢ € j(E,d)}NE, = 0.°
We use Ext(T', B) to denote the set of R-extensions of (T, B).

* An agent over B is a function Ag : 2¢ — 2% such that Ag(T') € Ext(T, B) for all
T € 2*. In short, agents choose, but they don’t break the rules.

Notice how we define extensions in terms of arguments. This is different from
the original definition of extensions, due to Reiter [11]. However, it is not hard to see
that our definition is equivalent to the original definition. It is simply a restatement of
it where we keep track of the order in which default rules are applied and formulate
Reiter’s consistency requirement as a separate closure condition. The use we make of
arguments to define extensions is different from the original representation of default
logic in terms of argumentation, due to Dung [4]. Our approach is close in spirit,
and gives rise to the same semantics, but builds on a different set of arguments. We

4 1t follows that if some E; from the sequence is undefined, then E = E,, is not defined either, so (E, d)
is not an argument.

5 The R stands for Reiter, who introduced this system of default logic [11].
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leave further exploration of the connection between the two approaches for future
work. Here we focus instead on the issue of responsibility: what are the necessary
and sufficient conditions that should be met before an agent is held responsible for
something it derives using default rules?

Let B,Ag(T) = R¢ denote that the agent Ag is responsible for deriving ¢ from
(T, B) using the argument Ag(T") = (E, d) € Ext(T, B). Then the avoidance princi-
ple for responsibility for rule-based conclusions can be formalised as follows:

B,(E,d) =R¢= I(E',d) € Ext(T,B): ¢ € E\ E’ (1)

That is, responsibility requires that the formula results from a genuine choice made
by the agent. Is the requirement also sufficient? We argue that it is not. In section 2,
we gave an intuitive argument to this effect, by pointing out how some choices have
rule-based consequences, meaning that the responsibility for these consequences rests
with the rule-maker, not the agent.

To make this intuition formal, we now define the relation of attack between argu-
ments. We build on the approach in [4], but differ in that we generate attacks from
the full content of arguments, not only their final conclusions. Let A(7, B) denote
the set of all arguments at (7, B). Then we define the relation R = R(T,B) C
A(T, B) x A(T, B):

(E,d)R(E",d") & En{=¢ | e j(E d)}#0 2)

In words, we say that x attacks y whenever the content of = contains the negation of a
formula that is in the justification set of y.

This gives us, for every (7, B), an argumentation framework F(T, B) with the
arguments A(7, B) and the attacks R(T, B) as defined above. If e = (F,d) is an
argument withd = dy,...,d, and ¢’ = (E',d’) withd' = d}, ..., d,, we say that e
is a sub-argument of ¢/, written e C ¢’ if m > n and d; = d forall 1 < ¢ < n. For all
arguments e = (E,d) withd = dy, ..., d, welet s(e, d;) denote the sub-argument of
euptod;. Thatis, s(e,d;) = (E',d') suchthatd' = dy, . .., d; (clearly, this argument
is well-defined, c.f., Definition 3.1). The advantage of our way of defining arguments
and attacks, compared to how it is done by Dung [4] and in ASPIC™ [8], is that
we get additional structure allowing us to be more specific about the relationship that
exists between an argument and its set of sub-arguments (this relationship is lost in
[4] since attacks are generated by looking only at the final conclusion of the attacking
argument). % Specifically, we get the following proposition, which will be of great use
to us later when when we define responsibility.

Proposition 3.2 Let (T, B) be a default theory and let R = R(T, B). We note the
following facts:

(i) For all arguments e, f,g € A(T, B) such that e C f, we have (1.a) if eRg then
fRg and (1.b) if gRe then gRf.

6 Tt is also worth noting that our framework satisfies the rationality postulates of [2]. Moreover, as long as
one of the postulates are fulfilled (the sub-argument closure), it is intuitively clear that our way of generat-
ing attacks will not produce different results with respect to extension-based semantics for argumentation
(although we get additional, helpful, structure for our purposes in this paper).
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(ii) If (T, B) is normal (so that j(d) = ¢(d) for all d € B), then R is irreflexive.
(iii) If (E,d) is an extension, but not an R-extension, then (E,d)R(E, d).

Proof. (1) Lete = (E,d), f = (E',d’) such thate C f, and g = (E”,d"). Since
e C f,wehave E C E' and j(E,d) C j(E',d'). To prove (1.a), assume eRg,
i.e., there is a ¢ € E such that ¢ € j(E”,d"), then clearly ¢ € E’ such that
j(E",d") by Equation (2) gives us f Rg. To prove (1.b), assume that g Re, then there
isa ¢ € E” such that ¢ € j(E, d), but then also ~¢ € j(E’,d’) so by Equation (2)
we have gRf.

(2) Let (B, T') be a normal default theory (recall that T is consistent). Assume towards
a contradiction that there is an argument (E,d) € A(T, B) such that (E,d)R(F, d)
for R = R(T, B), i.e., there is a ¢ in E such that ¢ € j(E,d). Since B is normal,
J(E,d) C E, but then F contains a contradiction which was introduced by applying
some d. € d. Let i be the smallest index such that E; is inconsistent, c.f., Definition
3.1. Thatis, E;_; is consistent, and E; = ¢(E;_1 U {c(d;)}) is not. This means that
d; was active and that p(d;) € E;_1 and —j(d;) ¢ E;_1, but since (T, B) is normal,
j(d;) = ¢(d;), so E;_; consistent, contradicting the assumption as desired.

(3) Assume (E, d) is an extension that is not an R-extension. Then by definition R-
extension there is some ¢ € j(E,d) such that -~¢ € E. The claim then follows
immediately from Equation 2. a

The fact that the attack relation is irreflexive for normal default theories lets us
record an important fact about such theories: all arguments can be developed into
R-extensions, there are no arguments that must be rejected. We state this formally.

Proposition 3.3 Given a normal default theory (T, B), let e € A(T, B) be arbitrary.
There is some ¢’ € Ext(T, B) such thate C €.

We now prove a theorem that corresponds to Dung’s original instantiation result
[4]. Specifically, we show that the notion of a stable set in argumentation corresponds
to the notion of an R-extension for default. Recall that .S is a stable set in an argumen-
tation framework (A, R) if, and only if, S C A with

VeeS,ye A:yRe=>ye€ A\ Sand3Iz € S: 2Ry 3)

Then the instantiation theorem for our representation of default reasoning as argumen-
tation can be stated as follows.

Theorem 3.4 Forall B, T, we have

(i) If (E,d) is an R-extension for (T, B), then there is a stable set S of F(T, B)
such that (E,d) € S.

(ii) If S is a stable extension of F(T, B) then S contains at least one R-extension,
and all R-extensions in S have the same content.

Proof. To prove (1), we let e = (FE,d) be an R-extension. We need to show that
there is stable set that contains e. To this end, we define the set S that contains e;
every argument with the same content as e that is not attacked by e; and all of their
sub-arguments. We first show that S is conflict-free. By Proposition 3.2 we only
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need to consider maximal arguments. By definition of S these are the arguments that
have the same content as e but are not attacked by e. Assume towards contradiction
that two such arguments, f and g, attack each other. By definition of S, we know
that e does not attack g. This contradicts the assumption that e and f have the same
content. To show that S attacks everything outside of .S, consider some argument
e/ = (E',d') ¢ S. By definition of S we can assume that e’ does not have the same
content as e (since otherwise ¢’ would be attacked by €). Moreover, we know that ¢’
is not a sub-argument of any member of S (since S is closed under sub-arguments).
Hence, there is some rule that has been applied in ¢’ that is not applied in e. We
choose the minimal i such that &} € d' is such arule, i.e., such that d; ¢ d and d; ed
forall 1 < j < i. By minimality of 7, we have p(d;) € E. By the fact that e is an
extension, we have d; ¢ a(E, B). It follows that there is some ¢ € j(d}) such that
—¢ € E. Hence, e attacks e’ as desired.

To prove (2), assume towards contradiction that S is a stable extension that
does not contain an R-extension. Since extensions that are not R-extensions attack
themselves (Proposition 3.2 point (3)) and S is a stable set it follows that S does not
contain any extensions. Let e = (E,d) € S be a maximal argument, i.e., such that
there is no ¢/ € S with e C ¢’. Since e is not an extension, we have a(E, B) # ).
We let et = (E*,d") be an argument extending e by some d,, 1 € a(E, B). Since
et ¢ S itis attacked by some argument f’ € S. Moreover, since d,,+1 € a(F, B)
we know that the content of f’ is not the same as the content of e (since otherwise
e would also attack e*, contradicting that d,, ;1 is active in e). Let f = (E',d’) be
maximal such that f/* C f € S. Hence, we have two maximal arguments e, f € S
such that £ # E’. This means that there is at least one rule in the sequence d that
is not in the sequence d’. We choose the first rule of this kind encountered along
d, namely d; € dsuchthatd; ¢ d and d; € d forall 1 < j < i, i.e., elements
preceding d; in d are present somewhere in d’. Hence, we have p(d;) € E’ (since this
pre-condition was derived in F using only rules that are also present in d’). Moreover,
since (f,e) € R (by f,e € S) it follows that there is no ¢ € j(d;) such that ~¢ € FE’.
Hence, we get d; € a(E', B). Let f* = (E”,d") be the argument obtained from
f by adding d; and taking the closure. Since f is maximal we get f* ¢ S so there
must be g € S that attacks f*. Hence, g contains —¢ for some ¢ € j(E”,d").
Since f € S, we cannot have ¢ € j(f), since then g would attack f, contradicting
stability of S. Hence, ¢ € j(d;). But then g attacks e with g and e both being in S,
contradicting that S is stable. To conclude the proof we show that if S contains two
R-extensions (E,d) and (E’,d’), then E = E’. Assume to the contrary and without
loss of generality that there is some ¢ € E \ E’. It follows that there must be some
default d; € d that is not applied in d’. That is, we must have d; # d; forall d; € d'.
Since (E’,d') is an extension, we know that a(E’, B) = (). This means that d; is not
active in E’. Hence, it follows that there is a ¢ € j(d;) such that ~¢ € E’. It follows
that (E,d) attacks (E’,d’), contradicting the assumption that they are in the same
stable set. a

Effectively, this theorem gives us an equivalent characterisation of agents and their
choices; choosing between extensions is the same as choosing between stable sets
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of an argumentation framework. Now, according to our conceptual understanding of
where responsibility comes from, we would like to demonstrate formally that choosing
a stable set amounts to resolving moral dilemmas. But how do we define the moral
dilemmas of default reasoning with moral rules? It is tempting to define them in terms
of attacks; if defaults are given a deontic interpretation, an attack on an argument can
be intuitively recognised as a moral reason not to argue in a certain way on the basis
of the rules. Assuming that the agent could argue in the way prescribed by some
argument, it would seem that an attack on that argument presents the agent with a
moral dilemma.

In general, however, an argument might be impossible to accept, on pain of arriv-
ing at an inconsistency. In these cases, attacks have a different status; now they encode
the derived consequences of moral rules, not any choice for the agent. Specifically,
such attacks will bind the choice of any rule-based reasoner that always reasons to
an extension. Clearly, the agents defined in Definition 3.1 are reasoners of this type.
Hence, some attacks are morally vacuous, as illustrated by the following example.

Example 3.5 Let B be a theory given by
1:Tsa/a 2:T;-a/b

Here we have the arguments = (cl({a}),1) and y = (cl({b}),2). Moreover, we
get (x,y) € R(0, B). This is not a moral conflict, it is simply an encoding of the fact
that accepting 2 will not lead to an R-extension. Hence, the attack in this case does
not signify that the agent has a choice. Rather, it encodes a rule-bound reasoning step
that no agent can resist (modulo our definition of agents as rule-followers).

The example shows that in order to arrive at a definition of moral dilemmas in
terms of attacks, we have to prune the attack relation. Looking back at the avoidance
principle in Equation 1, it is tempting to try to do so by saying that two arguments,
e and €', represent a moral dilemma if both can be expanded to R-extensions and
there is some ¢ in one that is negated in the other. In this case, at the very least, they
represent a moral conflict centred on ¢. In previous literature, most notably Horty’s
work on imperatives and defaults [5], moral conflicts of this kind have been conflated
with moral dilemmas.

Is such a conflation appropriate? We argue that it is not. The reason is that a
moral conflict involving ¢ does not necessarily imply a choice for the agent with
respect to ¢. The implication fails just in case ¢ is a rule-induced consequence of a
previous choice made by the agent. In this case, the agent is certainly responsible for
something, but not necessarily for ¢; while ¢ could have been prevented by the agent,
it arose as a consequence from the agent’s choice only because of the rules in the
system. Intuitively, if the agent did not know this when making the choice, the blame
for ¢ rests solely with the rule-maker, not with the agent. In this paper, we do not
assume that agents are omniscient and we do not model their epistemic capabilities.
Hence, in our setting, an agent is never responsible for a formula that arises only as a
rule-induced consequence of its choices. 7

7 If an agent does have the capacity to know and reflect on the fact that some ¢ will arise as a rule-based
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In the human realm, the mechanism we identify here is significant to our responsi-
bility attributions. For instance, imagine a young woman wondering whether to enlist
in the army. She might have many beliefs about what this might entail, including that
she might end up taking lives. Still, if she chooses to enlist and then decides to kill
someone — intentionally — on the orders of a superior officer, we would hesitate to
say she is morally responsible. At least we would be likely to think she is in a sig-
nificantly different position than she would be if she had made the relevant choice to
kill the person as a civilian. However, if we do not keep track of the relevant choice
moments and the differences between them (the choice to enlist and the choice to kill),
we could be led to believe that even the choice principle has been fulfilled in this case.
This is exactly the kind of conflation we want to avoid in the formal system, to get the
right characterisation of moral dilemmas also in situations where locating the relevant
choices might be considerably harder than in an intuitive example like this one.

In the world of intelligent systems, where things happen very quickly and many
decision steps remain highly opaque to us, the distinction between different choice
moments is all the more important. In this setting, it is not a good idea to think
about the lack of a relevant choice as a sort of “excuse” that we can address as a
separate issue independently from the core definition of responsibility. If we follow
this strategy, we are likely to vastly overestimate the moral salience of apparently
autonomous choices in chains of harmful events involving machines.

The technical challenge becomes how to pick out exactly those moral conflicts
that are also moral dilemmas, because they correspond to moral choices. This cannot
be done by simply looking at extensions, we also need to look at reasons. As far as
we are aware, this observation has not been made in earlier work. To illustrate the
phenomenon from a technical perspective, consider the following example.

Example 3.6 Assume a theory B consisting of the four defaults
1:Tsa/a 2:T;-a/-a 3:a;b/b4:—a;—b/—b

Then we have the argument « = (cl({a, b}), (1, 3)) resulting from applying rule 1 and
then rule 3. Similarly, we get the argument y = (cl({—a, =b}), (2,4)). Itis easy to see
that these arguments are R-extensions and that they attack each other. However, on
our understanding, these attacks do not correspond to a moral dilemma. Specifically,
there is no moral dilemma centred at b. The reason is that once a rule-based agent
accepts the argument =’ = (¢({a}), 1) it has no choice but to apply 3 and accept z,
giving b by a default rule. Similarly, if the agent accepts y' = (cl({—a}),2), it has
no choice but to apply 4 and accept y, again by a default rule. Hence, the only moral
dilemma in this scenario is between z’ and v/, centred on a.

In this example, there is no doubt a moral conflict between b and —b. Moreover,
this moral conflict is not muted because one of the options are ruled out by rule-based
reasoning; both conclusions are possible. However, the only dilemma is the choice

consequence of its choice we do not deny that responsibility for ¢ might result. However, this kind of
responsibility looks conceptually and technically distinct from the responsibility that arises from making
moral choices.
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between a and —a; whatever the agent chooses to do with respect to a will deprive it
of choice with respect to b. Moreover, this deprivation of choice does not result from
logical necessity; the choice disappeared because of a default, a rule imposed by the
rule-maker. In a setting like ours, where meta-level reasoning about defaults is not
something agents engage in, we believe the only possible conclusion for the example
above is that the agent is not responsible for deriving b (or —b). Responsibility begins
and ends with a.

How can we generalise this observation? We believe the solution is to use our
argumentation representation to pinpoint moral choices precisely, as defined below.

Definition 3.7 Let (7', B) be a default theory and let e = (E,d) € A(T, B) be an
argument with d = dy,...,d,. We say that e is a moral choice, written ch(e), if
there is some ¢’ € R(T, B)~ (e) such that there is no ¢ < n with either s(d;,e) €
R(T,B) (e') or e’ € R™s(d;,e). We use C(e) to denote the set of moral choices
encountered along d. That is, C(e) = (J;;<,{5(di,€) | ch(s(d;,e))}. In particular,
we have ch(e) if, and only if, C(e) # 0.

By Proposition 3.2, if (T, B) is normal, then for every argument e there is an R-
extension €’ such that e C e’. Hence, for normal theories we know that every moral
choice occurs in some R-extension (stable set). This means that in normal default
theories, every moral choice is a real moral dilemma; the choice is not forced on the
agent by any sub-argument accepted up to that point, and the choice will result in an
R-extension, provided the agent continues to reason correctly. The latter property is
not true for non-normal theories; here some moral choices are blocked because they
lead to inconsistency. This further complicates the issue of responsibility, motivating
the more abstract definitions provided in section 4.

Already, we can make interesting observations about the case of normal default
theories. First, notice that many R-extensions are not themselves moral choices. This
is the case, for instance, for both the extensions encountered in the (normal) theory of
Example 3.6 above. Hence, we now have a definition that provides a formal reflection
of our intuition that defining responsibility with respect to extensions is not sufficiently
fine-grained. The adequacy of our definition is further supported by the fact that is is
truly a refinement of Principle (1): the existence of multiple R-extensions implies that
the agent will make at least one moral choice. Specifically, whenever there exist two
R-extensions with different content, then every R-extension has at least one moral
choice among its sub-arguments. We state this formally.

Proposition 3.8 Given a default theory (T,B), if there are (E,d),(E',d) €
Ext(T, B) such that E # E', then for every e € Ext(T, B) we have C(e) # 0.

Proof. Lete = (E,d) and ¢’ = (E’,d’). By Theorem 3.4, we know that there are
stable sets Se, Se such thate € S, ¢’ € Ser and e’ & Se,e € Ser. Let R = R(T, B).
Hence, by stability of S, and S./, we get f € S, with fRe' and f' € S with
f/Re. We choose f, f’ in such a way that we minimize ¢ and j with fRs(d;, e’) and
f'Rs(d;,e). Then the sub-arguments s(d;, e’), s(d;, e) are moral choices as desired
(f, f' cannot be attacked by smaller sub-arguments of e or ¢’ since then stability of S
would see to it that the minimality of f, f’, 7, j would be contradicted). a
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Hence, multiple extensions do indeed arise only when an agent has a choice. For
normal default theories, this becomes an equivalence: moral choice implies multiple
extensions and vice versa. Specifically, we get the following result.

Theorem 3.9 Given a normal default theory (T, B), there are e, f € Ext(T, B) with
different content if, and only if, there is at least one moral choice in A(T, B).

Proof. =) This follows from Proposition 3.8. <) Assume e = (FE,d) is a moral
choice and let f = (H,e) € R (a) witness to this fact. By Proposition 3.3 there
are R-extension €', f’ with e C ¢/, f C f’. We need to show that ¢’ = (E’,d’) and
' = (H',€) have different content, i.e., B/ # H'. Let R = R(T, B). Since fRe
it follows by Proposition 3.2 that f'Re’. Hence, there is some ¢ € j(e’) such that
—¢ € H'. From the fact that ¢’ is an R-extension it follows that —¢ ¢ E’ as desired.O

Although multiple R-extensions only arise when there is at least one moral choice,
such choices can appear anywhere in the sequence of reasons supporting an extension,
meaning that the extension itself might be as much a consequence of other rules as it is
a consequence of the agent’s choices. In light of our discussion above, we believe this
should influence how we define responsibility. For normal default theories, where we
know that every moral choice resolves a real moral dilemma, we believe the following
definition is appropriate.

Definition 3.10 Let a normal default theory (7, B) be given. For every argument
e € A(B, T) we define the responsibility set of e = (E, d), written R(e), by induction
on |C(e)| (the number of moral choices encountered along e):

R(e) = § if|C(e)] =0
(di UR(s(di—1,€))) where i = mazq,ece){j} if|Cle)] >1

We write (T, B),e = R¢ to indicate ¢ € {c(d) | d € R(e)}, where ¢(d) is the
conclusion of the default rule d and R(e) is defined as above.

It is not hard to see that this definition of responsibility satisfies the prevention
constraint specified in Equation (1). Specifically, we get the following simple result
(proof omitted).

Theorem 3.11 If (T,B),e = R¢ for some e € R(T,B) then there are
(E,d),(E',d") € Ext(T, B) such that € E \ E'.

Finally, we show that for normal theories, the set of moral choices on an extension
suffice to uniquely pick out its content, adding further weight to our claim that moral
choices are the roots of responsibility.

Theorem 3.12 For all normal theories (T, B), ife, e’ € Ext(B,T) and C(e) = C(¢’)
then the content of e is the same as the content of €’

Proof. Assume towards contradiction that e = (E,d),e’ = (E’,d') € Ext(B,T)
such that C(e) = C(e’) and E # E’. This means there is at least one rule in d that
is not in d’. We choose such a rule with minimal index 4, such that d; € d,d; € d’
and d; € d' forall 1 < j < i. Then p(d;) € E’. Hence, we must have —j(d;) =
—c(d;) € E’. Moreover, by the minimality of ¢ we know that e’ does not attack any
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sub-argument of s(d;, ¢) and that no sub-argument of s(d;, ) can attack ¢’ (in either
case, ¢/ would attack itself, so it would not be an R-extension). O

In terms of argumentation theory, what this result tells us is that the moral choices
in a stable set uniquely determine that set. This observation is the key to the generali-
sation presented in the next section, where we lift the notion of responsibility defined
herein to the level of abstract argumentation. This definition can then be applied to
any system of default reasoning that instantiates some argumentation framework. 3

4 Responsibility in abstract argumentation

We assume given an argumentation framework F = (A, R) with R C A x A (see,
e.g., [10] for further details). We interpret this as a deontic structure, such that if a
attacks b then accepting a is a moral reason not to accept b. In this context, we define
an agent as a function Ag : A — {1, 0, %} Intuitively, it means that the agent accepts
and argument just in case it assigns 1 to it, it rejects it if it assigns 0, and it withholds
judgement if it assigns % (for further details on why this third semantic status should be
included, see, e.g., [3]). We want to know when an agent is responsible for assigning
a given value to an argument.

To talk about what follows from an agent’s choice of extension, we use the follow-
ing modal language, £:

p:=p | o¢—=>¢ |9 |Re

where p € A is an argument. The formula R¢ should be understood as expressing the
fact that the agent is responsible for concluding the formula ¢. We want to generalise
the ideas developed in section 3, so that responsibility arises from a moral choice made
by the agent. Hence. a natural starting point is to ask: what are the moral dilemmas in
F? If we try to adapt the definition provided for default logic, we need to first define
a notion corresponding to the sub-argument relation that we defined for arguments
based on their internal content as derivations in default logic (c.f., Definition 3.1).
Since arguments in abstract argumentation have no internal structure whatsoever, a
straightforward generalisation is therefore blocked.

Instead, we will capture the intuition behind the sub-argument relation in terms
of the combinatorial properties of .A. To achieve this, we first think more closely
about why we introduced the sub-argument relation in the first place. In short, the
reason was the following: for all arguments, we found among its sub-arguments a
set of moral choices that uniquely determined the semantic status of that argument.
Specifically, the purpose of introducing the notion of a sub-argument was to capture
the phenomenon that arises when a sub-argument suffices to force the acceptance of a
unique super-argument. Specifically, if an argument is accepted, the responsibility of
the agent appears co-equal with the responsibility it has for the minimal sub-argument
that enforces that argument. To arrive at the total responsibility of an agent for an
argument, we then iterated this to account also for the responsibility the agent had
with respect to the minimally enforcing sub-argument of this sub-argument and so on
all the way back to the starting point (c.f., Definition 3.10).

8 For the issue of instantiation generally, see [1,9].
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Adopting now a more abstract perspective on this iterative process, we see that the
crucial aspect of what we did was to identify the reasoning steps that the agent had to
take, given its previous choices. Some steps were induced and therefore did not give
rise to responsibility. The notion of induced choices is in fact well-known in argu-
mentation, as a technical notion used to extend certain kinds of partial extensions of
argumentation frameworks. In the following, we use the labelling-based formulation
due to Caminada, see, e.g., [3].

Specifically, let w : A — {1,0, %} be some partial assignment of boolean values to
the arguments of F (such that all arguments not receiving a boolean value are assigned
%). Then we define the rule-based closure of 7 as I'(7) defined as follows:

[(m)(z) =1— max {m_1(y)} ©)
yER™ (x)

If T'(7) admits a least fixed point 7 (with T'(7) = 7), then 7 is the rule-based
closure of 7r. The intuition for us is that the rule-based closure of 7 extends 7 accord-
ing to rules that do not require the agent to resolve any moral dilemmas; the closure
depends only on rules, not on choices. If 7 is incoherent (not admissible in argumen-
tation jargon), then applying rules to extend it will result in an inconsistency, in which
case the operator I" has no fixed point and 7 is not defined. In all other cases, we claim
that 7 is morally equivalent to 7, in the sense that all moral choices that have a bearing
on 7 have already been made at 7. We remark that a coherent 7 : A — {1, 0, %} cor-
responds to a stable set (obtained by collecting all arguments assigned the value 1) if,
and only if, 7 is boolean-valued. There are also many other semantics for argumenta-
tion, but in this paper, the distinctions between them are not important: we define our
notion of responsibility so that it works for all coherent 7, meaning that it works for
all the “classic” argumentation semantics, including those defined in Dung’s original
paper [4].

We now use the definition of rule-based closure to define a class of assignments
around every assignment 7, collecting all those assignments that are morally equiva-
lent to it. From the point of view of an agent Ag : A — {1,0, 1}, this is the collection
of all the morally equivalent choices that the agent could have made at A.

D(m)={r" |7 =7} (%)

7 is incoherent if D(w) = (). Intuitively, D(7) gives us all assignments that cor-
respond to a given way of making moral choices, a given way of resolving moral
dilemmas.

The characterisation of moral choices allows us to define a semantics for the lan-
guage L. Specifically, we define the following inductive extension of 7 to all of L.

m(x) ifze A
N1 R@ifa =9
(z) min{l,1 — (n(¢) —7(¥))} ifz=9¢ — ¢ ©

min(1,ming cpm{7'(¢)}) if x = Re
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We write F, 7w |= ¢ if, and only if, 7(¢) = 1. This gives us a three-valued modal logic.
We leave an in-depth exploration of our logic for future work, but note some of its va-
lidities. Specifically, we record that the R-modality is a peculiar kind of modality that
is either degenerate (when D(7) = )) or else S5. More interestingly, it satisfies some
special properties arising from the underlying structure of F, including the following
(we omit the proof).

Proposition 4.1 For all F and all agents such that Ag(F) = 7 we have:

o F,m = R(¢ A —9) if, and only if, T is not defined (meaning w is incoherent) (“You
are responsible for a contradiction if, and only if, you reason incorrectly”).

o Thereis ap suchthat F,m |= —Rp if, and only if, 7 is defined (“You reason correctly
if, and only if, there is some proposition you are not responsible for” ).

e F,m = R(p A —p) — R (“The person who is responsible for a contradiction is
responsible for everything” ).

* F,0 = —R(¢p — —¢) if, and only if, ¢ is made true by all coherent (¢ is sceptically
accepted in F). Notice especially the indirect way of expressing this in L.

e F,m = R(¢ — ¢) (“You are responsible for reasoning correctly”).

e F,m E (¢ A —Ryp) = R(=¢ — @) (“If you reason correctly and accept a formula,
you are responsible for not rejecting it” ).

In future work, we would like to explore this modal logic further, but for now we
are satisfied with concluding that it seems like an intuitively reasonable formalisation
of responsibility for single-agent argumentation.

5 Conclusion

We have studied responsibility for rule-based reasoning, starting from the premise that
an agent can only be held responsible for its conclusion if that conclusion reflects a
choice made by the agent. To formally pin-point the morally salient choices made by a
rule-based reasoner, we used an argumentation-based representation of the semantics
of default logic. This enabled us to specify the sub-set of arguments that correspond to
moral choices for the agent. We observed that for normal default theories, every moral
choice corresponds to a real moral dilemma without a pre-determined answer. Hence,
for such theories, we could define responsibility in a way that matched our intuitions.
To generalise this to any kind of default theory, we abstracted away from the internal
structure of arguments and proceeded to sketch a theory of responsibility that applies
to argumentation frameworks directly. In future work, we would like to study the re-
sulting logic of responsibility in more depth and examine instantiations of it, including
both non-normal default theories and other frameworks for non-monotonic reasoning
which includes an element of choice. In addition, we would like to extend the treat-
ment of responsibility given here to take into account information about priorities and
preferences over rules and arguments.
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Abstract

The aim of this paper is to introduce a system of dynamic deontic logic in which the
main problems related to the definition of deontic concepts, especially those emerging
from a standard analysis of permission in terms of possibility of doing an action
without incurring in a violation of the law, are solved. The basic idea is to introduce
two crucial distinctions allowing us to differentiate (i) what is ideal with respect to a
given code, which fixes the types of action that are abstractly prescribed, and what
is ideal with respect to the specific situation in which the agent acts, and (ii) the
transitions associated with actions and the results of actions, which can obtain even
without the action being performed.

Keywords: dynamic deontic logic; deontic paradoxes; ought-to-be logic; ought-to-do
logic.

1 Introduction

Systems of deontic logic aim at modeling our intuitions concerning prescrip-
tive concepts, such as prohibition, permission, and obligation, so as to provide
appropriate formal frameworks for analyzing deontic problems, conceiving de-
ontically constrained procedures, and assessing existing deontic systems. It is
well-known that different kinds of deontic systems can be introduced in the
light of the position one assumes with respect to the following non-exclusive
options:
(i) developing a deontic logic of states [1,7,14] (ought-to-be logic, sein-sollen
logic) or carrying the analysis to a deontic logic of actions [5,9,12] (ought-
to-do logic, tun-sollen logic);

1 alessandro.giordani@unicatt.it - ilaria.canavotto@gmail.com.
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(ii) developing a static logic of actions [4,9,10] (where what is crucial is to
characterize the structure of a system of actions and their basic properties)
or carrying the analysis to a dynamic logic of actions [6,8,11] (where it is
also crucial to characterize the sequential composition of actions and the
properties of such sequences).

It is also well-known that, while the descriptive power of systems of dynamic
logic of actions allows us both to solve some traditional paradoxes and to high-
light important distinctions which would be otherwise neglected, these systems
are still subject to difficulties [2,11], thus appearing inadequate to account for
our basic deontic judgements.

The aim of this paper is to introduce a system of dynamic deontic logic in
which the main problems related to the definition of deontic concepts, especially
those emerging from a standard analysis of permission in terms of possibility
of doing an action without incurring in a violation of the law, are solved. Our
proposal is based on the idea that, in order to account for the intuitions which
generate the paradoxes, more distinctions than those which can be drawn within
a standard dynamic deontic system are to be made. In particular, we think
that it is crucial to consider (i) a distinction between what is ideal with respect
to a given code, i.e., the abstract ideal allowing us to determine the types of
action which are permitted or prohibited, and what is ideal with respect to a
specific situation, i.e., the concrete ideal determined by the context of the agent
[3,7]; and (ii) a distinction between the transitions associated with an action
and the result of the action, which possibly obtains without the action being
performed. Accordingly, we propose a system constituted of

e an ontic part, which includes both a logic of states and a logic of actions,
where states are represented, as usual, by sets of possible worlds, and actions,
more precisely action types, are represented by relations between worlds;

e a deontic part, which includes both a logic of an abstract deontic ideal,
represented by a set of worlds satisfying the prescriptions of a code, and an
actual deontic ideal, represented by an ordering of the worlds accessible by
performing some action.

In this way, we hope to provide a deeper perspective on what is prescribed in
a certain context, by constructing a very general modal system for handling
traditional problems. The plan of the paper is then as follows. In the next
section, we briefly discuss the basic intuitions that our system aims at capturing
as they emerge from a discussion of the main deontic paradoxes derivable in a
dynamic logic of action. In section 3 we introduce our system of deontic logic of
states and actions. Finally, in the last section, we define four groups of deontic
concepts and provide solutions to the problems discussed in section 2.

2 Difficulties in defining deontic concepts

In a dynamic deontic logic, where action terms can be combined by using
suitable operators, like negation (-), alternative execution (L), simultaneous
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execution (M), and sequential execution (;), the deontic operators of prohibition,
permission, and obligation can be defined in terms of a propositional constant
I, representing an ideal state of law satisfaction, and of the dynamic operator
[-], which takes an action term « and a formula ¢ and returns a new formula
[a]p, stating that all ways of doing « lead to a p-state. In fact, an action is

(i) prohibited iff it necessarily results in a violation of the law (F(a) := [a]—1)
(ii) permitted iff it is not prohibited (P(«) := —[a]—I)
(iii) obligatory iff not doing it is prohibited (O(«) := [a]—I)

Although these definitions seem to be unproblematic, together with some
intuitive principles on the action operators, they imply several counter-intuitive
conclusions. We especially focus on three groups.

Group 1: standard paradoxes of obligation and permission.
- Ross’s paradox: O(a) — O(aU B) (if it is obligatory to mail a letter, then
it is obligatory to mail-the-letter-or-burn-it).
- Permission paradox: P(a) — P(aU ) (if it is permitted to mail a letter,
then it is permitted to mail-the-letter-or-burn-it).

Group 2: paradoxes of permission and prohibition of sequential actions.

- van der Mayden’s paradox: —[a]-P(8) — P(a; ) (if there is a way of
shooting the president after which it is permitted to remain silent, then it
is permitted to shoot-the-president-and-then-remain-silent)

- Anglberger’s paradox: F(a) — [o]F(B) (if it is forbidden to shoot the
president, then shooting the president necessarily leads to a state in which
remaining silent is forbidden).

Group 3: contrary to duties obligations [3].

Paradoxes of group 1 can be avoided by introducing strong notions of obli-
gation and permission, according to which, for an action to be obliged or per-
mitted, it is necessary both that no way of performing it leads to a state of
violation and that there is at least a way to perform it which does not lead to a
state of violation. Paradoxes of group 2 are more difficult to solve. If we think
of an action as characterized by a starting state, a final state, and a transition
leading from the first to the second state, then these paradoxes can be seen as
the result of disregarding the deontic relevance of the starting state and the
process of an action. To be sure, van der Mayden’s paradox follows from ne-
glecting the difference between the fact that the final state is safe and the fact
that the transition which leads to this state is safe, in the sense that no step in
the transition infringes the law, or fails to be the best the agent can do from a
deontic perspective, given the initial conditions. Similarly, Anglberger’s para-
dox follows from neglecting the difference between the absolutely ideal states,
in which no norm is violated, and the relatively ideal states, in which the best
conditions realizable by the agent in the actual conditions are in fact realized.
Interestingly, once these distinctions are taken into account, also paradoxes of
group 3 turn out to find a solution (but more on this below).
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3 Action deontic logic

The language L of the system ADL of action deontic logic contains a set Tm(L)
of terms and a set Fm(L) of formulas. Assuming a standard distinction between
action types and individual actions, let A be a countable set of action types
variables. Then T'm(L) is defined according to the following grammar:

az=a;|l|alaUpf|anp]|af wherea;, € A

Intuitively, 1 is the action type instantiated by any action whatsoever; & is
the action type instantiated by any action which does not instantiate the type
«; a Ll B is the action type instantiated by any action which instantiates either
the type « or the type 8 or both; a3 is the action type instantiated by any
action which instantiates the types a and S in parallel; «; 8 is the action type
instantiated by any action which instantiates the types a and 8 in sequence.
We assume that an individual action can instantiate different action types.
Accordingly, when we say that an action is a token of a; we do not exclude the
possibility that it is also a token of a different type a;.

Turning to the set of formulas of £, let P be a countable set of propositional
variables. Then F'm(L) is defined according to the following grammar:

o:=p|—¢|ene| Do lale | R(a) | [l | I wherep € P, and a € Tm(L).

The other connectives and the dual modal operators, Go, (@) ¢, (1) @, are
defined as usual. The intended interpretation of the modal formulas is as
follows: “Oe” says that ¢ holds in any possible world; “[c]e” says that ¢
holds in any world that can be accessed by performing action «, i.e., that ¢
holds as a consequence of «; “R(«a)” says that the state which is the result of
action « is realized 2; “[f]¢” says that ¢ holds in all the best worlds that can
be accessed by performing some action; and, finally, “I” says that the ideal
of deontic perfection is realized. It is worth noting that, since 1 is the action
type instantiated by any action, “(1)¢” says that ¢ can be realized by doing
an action. Hence, the crucial distinction between what is possible and what is
realizable is captured by the distinction between Gy and (1) ¢.

3.1 Semantics
The conceptual framework we adopt is based on the following notion of frame.
Definition 3.1 frame for L(ADL).

A frame for L(ADL) is a tuple F' = (W, R,{R,, | w € W} ,r, S, Ideal)
As mentioned above, frames for L{(ADL) can be subdivided into two parts.
Ontic part: (W,R,{R,, | w € W},r), where

(i) R:W — p(W)

(ii) Ry : Tm(L) — p(W), for all w € W
(iii) r: Tm(L) — p(W)

2 Hence, the formulas R(a) and [a]¢ allow us to capture von Wright’s distinction between
the result and the consequences of an action [13].
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We assume that an agent is endowed with a set of primitive actions and
think of these actions as ways of obtaining specific resulting states, represented
as subsets of a set of possible worlds W. Since the same result can be obtained
in different ways, every primitive action corresponds to a set of transitions
between worlds in W 3. More specifically, R, R,, and r are characterized by
the following conditions.

Conditions on R
(a) w € R(w)
(b) v € R(w) = R(v) = R(w)

Hence, R models a standard S5 notion of ontic modality *

Conditions on R,:

(a) Ru(aUB) = Ruw(a)U Ruw(B)
(b) Ru(a; B) = UuERw(a) R, (B)
(¢) Ru(a) € R(w)

Here, R, is a function that, for each action term, returns the outcomes
of the transitions associated with the action performed at w, so that R, () is
the set of worlds that are accessible by doing « at w. While conditions (a) and
(b) characterize the notions of alternative and sequential actions, (c¢) captures
the intuition that every realizable state is a possible state. Hence, R and R,
allow us to account for the distinction between what is possible and what is
realizable by acting at a world. In fact, it might be the case that reaching a
world is beyond the power of the agent, even if that world is possible.

Conditions on 7:

(a) r(@) =W —r(a) (e) (e B) C r(B)

(b) r(@nB) =r(e)Nr(B) (f) Ruw(a) Cr(a)

() r(aUB)=r(e)Ur(B) (g Rw)Nnr(a) Cr(B) = Ruw(a) C Rw(B)
(d) r(a) Cr(1) (h) w € r(a) = Rw(1)Nr(B) Cr(a;B)

Here, r is a function that, for each action term, returns the state corre-
sponding to the result of the action, so that r(«) is the result of a. The
conditions connect the intuitive algebra of action results to a corresponding
algebra on sets and connect actions with their results. Intuitively:

(a) realizing & coincides with not realizing «;

(b) realizing oM § coincides with realizing both « and 3;

(c) realizing oo U § coincides with realizing either « or f;

(d) realizing any action « is a way of realizing action 1;

3 Notice that we use the terms “world” and “state” for expressing different concepts, while
in the literature about transition systems they are interchangeable with each other. In
particular, we use “world” for the complete state which can be reached by performing an
action (hence, a world w is an element of W), and “state” for the state of affairs that is the
result of an action, as in [13] (hence, a state is in general a subset of W, i.e. a set of worlds).
4 Using a universal modality would simplify the semantics, but the use of an S5 modality
gives us a more flexible framework, since the stock of necessary states of affairs can change
across the worlds.
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(e) realizing any sequence «; 8 is a way of realizing the last action §.

Finally, every realized action realizes its result, by (f); every action whose
result involves the result of another action counts as a realization of the latter
action, by (g); and, if the result of § is realized after the result of «, then the
result of a; (3 is realized as well, by (h).

It is important to note that r(a) does not coincide with J, ey Ruw(a),
since we allow for the possibility that a state of affairs, which is the result of an
action, obtains even if no action has brought it about. Indeed, it is possible for
a door to be open, even if it was not opened by an agent. As a consequence,
(1), which is W, does not coincide with |J,,cy Rw(1), which is the set of
worlds the agent can reach by performing some actions. In addition, we do not
assume that R(w) coincides with R,,(1), since, as mentioned above, we allow
for a difference between what is possible at a world and what is achievable by
acting at it. This is crucial to account for cases where the ideal of perfection,
although possible, is not realizable by performing any action.

Deontic part: (W, R, S, Ideal), where

(i) S: W — p(W)

(ii) Ideal CW

We introduce a deontic function S on W, so that S(w) is the set of the
best accessible worlds relative to w, which are the worlds where the conditional
ideal that can be achieved in w is realized. In contrast, Ideal is the subset of
W containing the best possible worlds from a deontic point of view, which are
the worlds where the ideal of deontic perfection is realized.

Conditions on S: Conditions on Ideal:
(a) @ # S(w) (a) R(w) N Ideal # 0
(b) S(w) € Rw(1) (b) Ruw(1) N Ideal C S(w)

(c) v e S(w) = S(w) CS(w) (c) Rw(l)NIdeal # 0= S(w) C Ideal

According to the conditions on S, the set of worlds that can be accessed
by the agent always contains a non-empty subset of realizable best options,
such that the best options that are accessible by acting in a world that can
be reached by w are accessible by w itself. According to the conditions on
Ideal, the set of accessible worlds always contains a non-empty subset of best
possible options. In addition, no accessible world is strictly better, according
to S, than any world in Ideal, which coincides with the set of the best options
if some ideal world is accessible. It is worth noting that a conditional ideal
is achievable even if the ideal of perfection cannot be possibly achieved, since
R,(1) N S(w) = S(w) is non-empty even if R, (1) N Ideal is empty.

Definition 3.2 model for L(ADL).
A model for L(ADL) is a pair M = (F, V), where (i) F is a frame for L(ADL)
and (ii) V is a function that maps propositional variables in ().

Definition 3.3 truth in a model for L(ADL). The definition of truth is as
follows:
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M,w = p; < weV(p)

M,wkE-p & Mwle

M,wlEeANYy & M,wkEpand M,w =9
MwEOp & Yve W e Rw) = M,v )
M,wE ol & Yve W e Ry(a) = M,v E @)
M,wkER(a) & wer(a)

M,wkE[tle & Yve W e S(w) = M,v E )
M,wkEI< we Ideal

3.2 Axiomatization

The system ADL is defined by the following axioms and rules. The first three
groups of axioms take into account the pure modal part of the system, while
groups 4, 5 and 6 characterize actions and their results. On the way, we define
deontic operators in the Andersonian style.

Group 1: axioms for [J Group 2: axioms for [1]

OK: O(p = ¢) = (Op = O¢) - [IK: [1(e = ¢) = (Te = 1Y)

OT: Oy — ¢ [11D: [Tl — (D ¢
05: Op — OO [114: [t]e — [M[Me
OR: ¢ / Op (ML [ — [
Group 3: axioms for I 12: e = [ — »)
I: oI 13: (1)1 — I

Definition 3.4 Deontic operators on states based on I.
[Ie =0 = ¢) and (I) ¢ := (I A ).

[I]p is a standard concept of obligation for states®, as proposed in [1]. Tt
is not difficult to see that [I] is a K D45 modality, since we can derive:

(i) [I](¢%¢)> (M — [I]9)

(i) [ — (1

(iii) [[e — [I][I]e
(iv) () = [I](I) ¢
(v) /U]

The fundamental distinction we want to highlight here concerns (I) ¢ and
(1) ¢. While (I) ¢ states that ¢ holds in some ideal world, (1)¢ states that
© holds in some of the best accessible worlds. As we will see, this distinction
gives rise to two different operators of permission.

Let us now introduce the axioms concerning actions and their results.

5 Letting O¢p be [I]¢ and Py be (I) ¢, the choice of an S5 modal logic gives us theorems like
Oy — OOy¢ and Py — OPy. In our setting, these principles are justified by the intended
interpretation of a formula like [I]p. I is an ideal state determined by a specific legal code,
and we assume that the distinction between what is prescribed and what is not prescribed
is also fixed by that same code. Hence, given that “O¢” is interpreted as ¢ is prescribed by
the code that fixes I, the previous principles turn out to be intuitive, since it is impossible
to change what is prescribed according to the code without changing that code as well.
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Group 4: axioms for [¢]
[a]K: [a](p = ) = ([e]e = [o])
[a1: [de A [Ble = [a U Ble

Group 5: axioms for R
R1: R(a) <» “R(@)

R2: R(aMp) «+ R(a) A
R3: R(aUp) < R(a) V
R4: R(a) = R(1)
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[o]2: [o; Bl < [a][Ble
[@]3: Op — [a]p

R5 R(e; 8) = R(B)

[a]R @)
R7 O(R(e) = R(B)) = ([Ble — [alp)
R8: R(a) = [1](R(8) = R(«; §))

These groups of axioms take into account the operations on actions and results
and the connections between actions and results, which is further clarified by
the following facts.

V [@z]e = [an Uazle
Al = (o) ¢
— (@) R(a)

1) [alp < [a]p (5
2) [aa]e V [az]p = [a1 Maz]e (6
3) [aU Blp = [ade A [Ble (7
4) a1 Maz]p < [an]o Afaa]e (8
f. Let us prove (4).

3) <+ R(a) V R(B), by R3

+ —R(a) vV -R(f), by R1
& —R(ar8), by R2

& R(anf), by Rl

< [@u Ble, by R7

a N Ble < [ale A [B)e, by (3), and [a]l a

Since (1-5) are derivable, our system is powerful enough to interpret the sys-
tem proposed by Meyer in [8], except for the axiom on the negation of sequential
actions. In addition, since (7) is derivable, within ADL the performability of
an action, expressed by (a) T, is to be distinguished from the possibility of
the result of the action, i.e., OR(«a). In fact, while (o) T — (o) R(«), and,
hence, (o) T — OR(«), it is possible that OR(a) even if « is not performable.
Finally, in this system two intuitive concepts of inclusion between actions or
action results are definable.

Q1 Qi

QI

Maa% S

Ql
CCCC
AN E\E|E|E

Q]
-
=

Definition 3.5 inclusions.

(i) B C a:=[a]R(B).

(ii) B Cr a:=0OR(a) = R(H)).
As it is easy to check, both C and Cg are preorders. As it will become clear
below, the introduction of these preorders allows us to represent actions that,
while being optimal in their results, are not permitted, due to the fact that
they also realize what is prohibited during their course.
3.3 Characterization

The system ADL is sound and strongly complete with respect to the class
of models introduced above. Soundness is straightforward. Completeness is
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proved by a canonicity argument. Let us first define w/0 := {¢ | Op € w};
w/[1]:={¢ [ [tlp € w}; w/[a] = {¢ | [a]p € w}.

Definition 3.6 canonical model for £L(ADL). The canonical model for
L(ADL) is the tuple

Me = (W, R, S, Ideal,{Ry, | w € W} ,r,V), where

1) W is the set of maximal consistent sets of formulas

2) R: W — (W) is such that v € R(w) < w/0 C v

3) S: W — p(W) is such that v € S(w) < w/[1] Cv

4) Ideal ={w | I e w} CW

5) Ry : Tm(L) = p(W) is such that v € Ry (a) & w/[a] Cv
6) r: Tm(L) — p(W) is such that v € r(a) & R(a) € v

TV :P — p(W)issuch that v e V(p) & pev

(
(
(
(
(
(

For reason of space, we omit the proofs of the following lemmas.
Lemma 3.7 (Truth Lemma): Mo, w = p & ¢ € w.
Lemma 3.8 (Model Lemma): M¢ is a model for L(ADL).
They essentially follow from the definitions of R, S, Ideal, R, r and from

the correspondence between axioms of ADL and conditions on models for
L(ADL).
4 Deontic concepts and paradoxes

At this point, we can introduce the definition of four different kinds of deontic
concepts 6

Definition 4.1 deontic concepts on states and actions.

Group 1: ideal on states. Group 2: ideal on results.

L Pp):=(D)¢ P(R(a)) := (I) R()

2. Fp) := ]~y F(R(a)) := [[]-R(a)

3. O(p) =g O(R(a)) := [[]R(a)

4. P9(p) == O AO(p — I) 4 P%(R(a)) := OR(a) AOR(a) — 1)
Group 3: ideal on actions. Group 4: conditional on results.

1. Pl(a) :=(a) I 1. P(a) := (1) R(a)

2. Fli(a) === (o) ] 2. F(a) := = (1) R(w)

3. Ola) ==~ (@) I 3. 0(a) == ~ (1) R(@)

4. P¥5(a) := () I A [T 4. P%(a) := (P R(a) A [TR(a)

The definition of the conditional deontic concepts can be justified by con-
sidering the following equivalences.

M,w = F(a) & M,wkE - (1) R(a)

M,wkEF(a) & Yve W e S(w) = M,v~ER(a))

6 Concepts in Group 2 are specific instances of concepts in Group 1. They characterize
deontic concepts on actions in terms of action results and are of interest when compared
with concepts in Group 3 and Group 4.
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M,wkEF(a) & YveW(ve S(w) = v ¢r(a))

M,w EF(a) e r(a)nNS(w) =92

Hence, an action is conditionally prohibited provided that its result only
holds in worlds that are worse than the best accessible worlds. Similarly, an
action is conditionally permitted (obliged) when its result holds is some (all)
of the best accessible worlds.

Fact 4.2 Relations between different deontic concepts.
(1) Pl(a) = P(a)
(2) Pl(a) A la]e = P(p), and so Pl(a) —» P(R(«))
(3)(DIAN{TYe— (I)p, by 13, and so (1) I AP(a) — P(R(«))

As expected, (1) all ideally permitted actions are conditionally permitted
and (2) both the result and all the consequences of ideally permitted actions
are ideally permitted states. In addition, (3) provided that the ideal can be
accessed, the result of conditionally permitted actions are ideally permitted. By
contrast, it can be proved that not all actions that are conditionally permitted
are ideally permitted. Thus, conditional prescription can be effective even in
cases where no action is ideally permitted.

Fact 4.3 Permission and inclusion.
(1) Pl(a) ABC a=P(S)
(2) P(a) N\BER a=P(B)

Accordingly, actions including conditionally prohibited actions are prohibited.

Now, our claim is that the best way for capturing the intuitions discussed
in section 2 is to use conditional deontic concepts. Thus, we assume them to
provide a solution to the three groups of paradoxes mentioned above.

4.1 Paradoxes on standard prescriptions

Within ADL standard paradoxes concerning the conditional notions of obli-
gation and permission can be solved in two different ways. Firstly, we can opt
for using notions of strong permission and obligation as in [6]. Secondly, and
more interestingly, we can define two specific notions of choice permission and
choice obligation:

— choice permission: P(a+ 8) := (1) R(a) A (1) R(B)
— choice obligation: O(a+ 8) := O(aU B) AP(a+ )

It is then not difficult to see that:

FADL P(O{ + ﬂ) — P(Oé) AN P(ﬁ), |7[ADL P(Oé) — P(a + B)
FADL O(OtJrﬂ) *)P(Oé+ﬂ); HFADL O(a) *)O(O[Jrﬂ)

The present solution seems to be more intuitive insofar as both strong per-
mission and strong obligation require that there is no way we can violate the
law if we act according to what is strongly permitted or obliged, while ordinary
choices can be risky: we are ordinarily allowed to choose between alternative
actions even if there are ways of performing such actions that lead to a violation
of the law.
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4.2 Paradoxes on prescriptions on sequential actions

Within ADL paradoxes concerning obligation and permission of sequential
actions, when these concepts are fixed according to the conditional definition,
find an insightful solution.

As to van der Mayden’s paradox, note that both (o) P(5) — P(«;8) and
the stronger P(a) A (a) P(8) — P(«; 8) can fail. Consider the following model:

1) W = R(w) = R(v) = R(u) = R(z) = {w,v,u,x}
(@) = {v}; Ry(a) = Ry(a) = Re(a) = &

2) R
3)R (1) ={v,u,z}; Ry(1) = Ru(1) = {u}; Re(1) = {x}
4) S(w) = S(z) = {z} = Ideal; S(v) = S(u) = {u}
5) r(a) =A{v,z}; 7(B) = r(a; B) = {u}
1,8
s ()
w ’ z: R(a), I
1,8
v: R(a) TS u: R(B), R(a; B)

In this model, w = (1) R(a) and w E {(a) (1) R(8), but w (= (1) R(«a; B),

whence the conclusion. The failure of these principles is due to the fact that,
even when « is permitted, (o) P(3) is not sufficient for P(«; ), since the world
we land on by performing « at w may not be one of best options of w. In the
previous model, § is permitted in v because the R(S)-world v is among the
best options achievable from v. Still, since this is not sufficient to obtain that
u is also among the best options achievable from w, «;f is not permitted in
w. In addition, note that the converse of the first principle also fails, since
u = (1) R(a; B), but u [~ (1) R(a).

As to Anglberger s paradox, note that both F(a) — F(«; 8) and F(a) —
[]F(B) can fail. Consider the following model:

W = R(w) = R(v) = R(u) =
Ry(a) = {v}; Ry(a) = Ru()
R, (1) ={v,u,z}; R,(1) =R,
S(w) = S(v) = S(u) = {u} =
r(a) ={v}; r(8) = r(a; B) =

xX (6]
1,8
1, 1,8

u:R(B), R(e; §), I

R(z) = {w,v,u,z}

= Ry(a) = 2;
(1) = {u}; Ro(1) = {«}
Ideal; S(z) = {z}
{u}

1.5

In this model, w £ (1) R(«), but w | (a) (1) R(8) and w = (1) R(«a; B),

and the conclusion follows. The failure of these principles is due to the fact
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that, for a to be prohibited, it is sufficient that o makes the deontic condition
of the reference world worse than any of the best accessible worlds. Still, this
is not sufficient to exclude that doing «; 8 leads to one of these best accessible
worlds.

4.3 Contrary to duty obligations

As a final application, let us consider cases of contrary to duty obligations
instantiating these classical schemas:

It ought to be that ¢, but —¢ It ought to be that ¢, but —¢
It ought to be that if ¢ then ~R(a) It ought to be that if ¢ then ~R(«)
If =, then it ought to be that R(a) It ought to be that if - then R(«)

In our framework, the most intuitive analysis is:

e A= e A=
[](¢ = =R(a)) [](¢ = —R(a))
O(=¢ — [T]R(a)) [1(=¢ = R(a))

In both cases, we obtain that [I]-R(«) and [1]R(«). Still, no contradiction
follows, since in any situation in which the result of « is prohibited, according
to the law, the obligation to do « is only conditional. Finally, note that the
present interpretation of the conditional leading to a contrary to duty obligation
validates both

FD: factual detachment and DD: deontic detachment

O(p — [1]9) O(p — [19)
@ [Ty
[ [y

which is one of the desiderata proposed in [3].

5 Conclusion

In this paper, we have presented a general system of deontic logic of actions
in which the main problems related to the definition of deontic concepts in
a dynamic framework can be overcome. The solutions we have proposed are
based on the introduction of a group of conditional deontic concepts, according
to which what is permitted, prohibited and obligatory depends on the best
states that the agent can realize, given the conditions in which she is acting.
The conceptual apparatus encoded in our system, which allows us to capture
these new concepts, includes a twofold distinction on the ontic level. First, a
distinction between what is possible and what is realizable by performing an
action; and, second, a distinction between the result associated with an action
and the consequences of that action. Being based on this conceptually rich
framework, our system gives us the possibility of systematically bringing to-
gether and comparing in an innovative way Andersonian deontic concepts on
states as well as on results of actions, ideal deontic concepts on actions a la
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Meyer, and conditional deontic concepts on actions. We have shown that the
availability of both ideal deontic concepts on states and conditional deontic
concepts on actions provides us with a natural solution to the paradoxes of
contrary to duty obligations. What is more, the introduction of conditional
deontic concepts allows us to define original notions of choice permission and
choice obligation that, while not being subject to standard paradoxes, take
into account the riskiness of choices. Finally, besides not incurring in para-
doxes concerning the sequential execution of actions, the new deontic concepts
provides us with a way of making sure that, even in states in which the ideal of
deontic perfection is not realizable, the actions of the agent can be deontically
qualified in a non-trivial way.

Acknowledgments. We would like to thank the referees of DEON 2016
for helpful comments and for highlighting an important issue in a previous
version of this paper.
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1 Introduction

Most of the work in deontic logic has focused on the study of the concepts of
obligation, permission, prohibition and related notions, but little attention has
been dedicated on how these prescriptions are generated within a normative
system.! The general idea of norms is that they describe conditions under
which some behaviours are deemed as ‘legal’. In the simplest case, a behaviour
can be described by an obligation (or a prohibition, or a permission), but often
norms additionally specify what are the consequences of not complying with
them, and what sanctions follow from violations and whether such sanctions
compensate for the violations.

To address the above issues, Governatori and Rotolo [12] presented a Gentzen
style sequent system to describe a non classical operator (®) which models
chains of obligations and compensatory obligations. The interpretation of a
chain like a ® b ® ¢ is that a is obligatory, but if it is violated (i.e., —a holds),
then b is the new obligation (and b compensates for the violation of a); again, if
the obligation of b is violated as well, then c is obligatory (and so on).

As we argued in [12, 8], the logic of ® offers a proof-theoretic approach to
normative reasoning (and in particular, CTD reasoning), which, as done by
[18, 17] in the context of Input/Output Logic, follows the principle “no logic of
norms without attention to the normative systems in which they occur” [16].

1 A normative system can be understood as a, possibly hierarchically structured, set of norms
and mechanisms that systematically interplay for deriving deontic prescriptions in force in a
given situation.
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This idea draws inspiration from the pioneering works in [20] and [1], and focuses
on the fact that normative conclusions derive form of norms as interplaying
together in normative systems. Indeed, it is essential in this perspective to
distinguish prescriptive and permissive norms from obligations and permissions
[3, 10]: the latter ones are merely the effects of the application of norms.
While Input/Output approach mainly works by imposing some constraints
on the manipulation of conditional norms, the ®-logic uses ®-chains to express
the logical structures (norms) that generate actual obligations and permissions.
In [4], we proposed a model-theoretic semantics (called sequence semantics) for
the ®-logic, that addresses the problem identified in [7] that affects most of the
existing approaches for the representation of norms, in particular compensatory
obligations, using ‘standard’ possible world semantics. A compensatory obliga-
tion is a sub-class of a contrary-to-duty obligation, where the violation of the
primary obligation is compensated by the fulfilment of the secondary obligation.

Compensatory obligations can be modelled by ®-chains. As we have already

discussed, an expression like @ ® b means that a is obligatory, but its violation is

compensated by b or, in other terms, it is obligatory to do b to compensate the

violation of the obligation of a. Thus, a situation where a does not hold (or —a

holds) and b holds is still deemed as a ‘legal’ situation. Accordingly, when we

use a ‘standard’ possible world semantics, there is a deontically accessible world
where —a holds, but this implies, according to the usual evaluation conditions
for permission (something is permitted, if there is a deontically accessible world
where it holds), that —a is permitted. However, we have the norm modelling
the compensatory obligation that states that a is obligatory (and if it were not,
then there would be no need for b to compensate for such a violation since,
there would be no violation of the obligation of a to begin with). The sequence
semantics solves this problem by establishing that to have an obligation, we
must have a norm generating the obligation itself (where a norm is represented
by an ®-chain), and not simply that something is obligatory because it holds in
all the deontically accessible worlds.

The work of the present paper completes the picture in three points.

e We extend sequence semantics and split the treatment of ®-chains and
obligations; the intuition is that chains are the generators of obligations and
permissions, we hence semantically separate structures interpreting norms
from those interpreting obligations and permissions.

e We add @-sequences to express ordering among explicit permissions [8]; as
for ®, given the chain a & b, we can proceed through the ®-chain to obtain
the derivation of Pb. However, permissions cannot be violated. Consequently,
it does not make sense to obtain Pb from a @ b and —a. Here, the reason to
proceed in the chain is rather that the normative system allows us to prove
O-a;

¢ We systematically study several options for the axiomatisation of ® and .

The layout of the paper is as follows: in Section 2 we introduce the language of

our logics. In Section 3 we progressively introduce axioms for the deontic oper-

ators to axiomatise more expressive deontic logics with and without interaction



Governatori, Olivieri, Calardo and Rotolo 95

between the operators, and we discuss some intuition behind the axiomatisation.
In Section 4 we provide the definitions of sequence semantics to cover the case
of weak and strong permission. Soundness and completeness of the various
deontic logic with the novel semantics are proved in Section 5. Finally, a short
discussion of related work and further work (Section 6) concludes the paper.

2 Language

The language consists of a countable set of atomic formulae. Well-formed-
formulae are then defined using the typical Boolean connectives, the n-ary
connectives ® and @, and the modal (deontic) operators O for obligation and
P for permission. The intended reading of ® is that it encodes a sequence of
obligations where each obligation is meant to compensate the violation of the
previous obligation. The intuition behind & is instead meant to model ordered
lists of permissions, i.e., a preference order among different permissions [8].

Let £ be a language consisting of a countable set of propositional letters
Prop = {p1,p2, ...}, the propositional constant L, round brackets, the boolean
connective —, the unary operators O and P, the set of n-ary operators ®"
for n € NT and the set of n-ary operators @" for n € NT. We shall refer
to the language where @ does not occur as L%, and the language where ®
does not occur as £LP. There is no technical difficulty in avoiding that ®
and @ be binary operators: the reason why we define them as m-ary ones is
mainly conceptual and is meant to exclude the nesting of ®- and @-expressions.
Consider ¢ ® (b ® ¢) ® d. The expression (b ® ¢) means either that b is not
obligatory or that it is so but ¢ does not compensate the violation of Ob. What
does it mean this as a compensation of the violation of Oa? Also, what is the
meaning of a ® (b® ¢) ® d?

Definition 2.1 [Well Formed Formulae] Well formed formulae (wifs) are defined

as follows:

e Any propositional letter p € Prop and | are wifs;

e If @ and b are wifs, then a — b is a wif;

e If a is a wif and no operator ®, &, O and P occurs in a, then Oa and Pa
are a wif;

e If ay,...,a, are wifs and no operator ™, @™, O and P occurs in any of
them, then a; ®" --- ®™ a,, and a; @™ --- O™ a,, are a wif, where n € NT;2

e Nothing else is a wif.

We use WFF to denote the set of well formed formulae.

Other Boolean operators are defined in the standard way, in particular
—a =g a— Land T =gop L — L.

We use ® to refer to either ® or &. Accordingly, we say that any formula
a1 @+ ®ay is an ®-chain; also the negation of an ®-chain is an ®-chain. The
formation rules allow us to have ®-chains of any (finite) length, and the arity of

2 We use the prefix forms ®'a and ®'a for the case of n = 1.
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the operator is equal to number of elements in the chain; we thus drop the index
m from @™. Moreover, we use the prefix notation Q?:l a; fora; ® - ©® ay,.

3 Logics for ® and &

The aim of this section is to discuss the intuitions behind some principles
governing the behaviour and the interactions of the various deontic operators.
These principles are captured by axioms or inference rules.

3.1 Basic Axiomatisation
In this paper, we assume classical propositional logic, CPC, as the underlying
logic on which all the deontic logics we examine are based.

The first principle is that of syntax independence or, in other terms, that
the deontic operators are closed under logical equivalence. To this end, all the
logics have the following inference rules:

a=b a=b
Oa = ObO'RE Pa =Py F
Nz (ai = bi) Ny (ai = bi)

®iz1ai = Qi bi e Disiai =D, bi

Consider the ® chain a ©b®a ®c. If ©® is ®, the meaning of the chain
above is that a is obligatory, but if a is violated (meaning that —a holds) then
b is obligatory. If also b is violated, then a becomes obligatory. But we already
know that we will incur in the violation of it, since —a holds. Accordingly, we
have the obligation of c. However, this is the meaning of the ®-chain: a @ b ® c.

If ® is @, the intuitive reading of a ©® b ® a ® ¢ is that a should be permitted
unless (for other reasons) a is forbidden; in such a case b is permitted. However,
if also b is forbidden, then a is permitted. Nevertheless, we have already
established that this is not possible, since a is forbidden, we thus have the
permission of c¢. Again, this is what is encoded by the ®-chain a &b & c.

The above example shows that duplications of formulae in ®-chains do not
contribute to the meaning of the chains themselves. This motivates us to adopt
the following axioms to remove (resp., introduce) an element from (to) a chain
if an equivalent formula occurs on the left of it.

n k—1 n
®ai = ®ai ® ® a; where a; = ay, j <k (®-contraction)
i=1 i=1 i=k+1

n k—1 n
@ai = @ai &) @ a; where a; = a, j <k (d-contraction)
i=1 i=1 i=k+1

The minimal logics resulting from the above axioms and inference rules are
E® when the language is restricted to £®, E® for £®, and E®® for L.
3.2 Deontic Axioms

The logics presented in the previous section are minimal, and besides the
intended deontic reading of the operators, they do not not provide any ‘genuine’
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deontic principle. In the present section, we introduce axioms to model the
relationships between O and P; specifically, the axioms lay down the conditions
under which the various operators are consistent.

The first axiom defines the duality of obligation and permission.

Pa = -0-a (OP-duality)

This axiom implies the reading of permission as weak permission, i.e., the lack
of the obligation of the contrary.

Oa — Pa (O-P)

Axiom O-P, is the standard D axiom of modal/deontic logic. This axiom can
have different meanings depending on whether O and P are the dual of each
other. If they are, the axiom is trivially equivalent to the following one:

Oa — —0-a (D-0)

The axiom states the external consistency of a normative system: a normative
system is externally consistent if no formula is obligatory and forbidden at the
same time. If O and P are independent modalities, then Axiom O-P establishes
the consistency between obligations and permissions, while Axiom D-O must
be assumed to guarantee the external consistency of obligations.

Internal consistency of obligation is the property that no obligation is self-
inconsistent; this is expressed by:

-0L1 (P-0)

Finally, when obligation and permission are not dual, while the consistency
between obligation and permission is covered by Axiom O-P, we have yet to
cover the consistency between prohibition and permission. To this end, we can
use one direction of the duality, namely:

Oa — —P-a (0-P)

The axioms we consider hitherto focus on consistency principles for O and P.
The next axioms provide consistency principles for ®-chains.

Given that we use classical propositional logic as the underlying logic, it is
not possible that an ®-chain and its negation hold at the same time. What
about when ®-chains like a @ b ® ¢ and —(a ® b) hold. In case ® is ®, the first
chain states that a is obligatory and its violation is compensated by b, which
in turn is itself obligatory and it is compensated by c¢. The second expression
states that ‘either it is not the case thata is obligatory, but if it is so, then its
violation is not compensated by b’. Accordingly, the combination of the two
expressions should result in a contradiction (a similar argument can be made
for @-chains). To ensure this, we must assume the following axioms that allow
us to derive, given a chain, all its sub-chains with the same initial element(s).

MO Ry = Q RaAp_1, N> 2 (®-shortening)
GMB - Bay > a B Bay_q, N> 2 (¢-shortening)

While any combination of the axioms presented in this section can be added to
any of the minimal logics of the previous section, we focus on two options that
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we believe are meaningful for the representation of norms. For the first option,
we call the resulting logic D®, we consider O and P as dual, and it extends E®

with OP-duality, P-O and ®-shortening. For the second option, we reject

the duality of O and P, essentially taking the strong permission stance, and

we assume E®® plus all axioms presented in this section with the exclusion of
OP-duality. We use D®® for the resulting logic.

3.3 Axioms for ® and O

In this section, we address the relationships between ® and O; we thus focus on
axioms for extending D® (though the axioms are suitable for extensions of D®®).
As we have repeatedly argued, ®-chains are meant to generate obligations. In
particular, we have seen that the first element of an ®-chain is obligatory. This
is formalised by the following axiom:

a1 ® - ®a, — Oay. (®-0)

Furthermore, we say that if the negation of the first element does not hold, we
can infer the obligation of the second element. Formally

a1 ® - Qan A a; — Oas. (1)

Moreover, we argued that we can repeat the same procedure. This leads us
to generalise (1) for the axiom that expresses the detachment principle for
®-chains and factual statements about the opposites of the first k& elements of

an ®-chain.
k<n

a - Qap A /\ —a; = Oagy1 (O-detachment)
i=1

A possible intuition behind this schema is that it can be used to determine
which are the obligations that can be complied with. For example, since —a;
holds, then we know that it is no longer possible to comply with the obligation
of a;. In a similar way, we could ask what are the parts of norms which are
effective in a particular situation. In this case, instead of detaching an obligation
we could detach an ®-chain. Accordingly, we formulate the following axiom:

MR Rap NG — as ® - ® ay, (®-detachment)

where as ® - - - ® a, does non contain a; or formulae equivalent to it.

Notice that, contrary to what we did for (1), there is no need to generalise
®-detachment to a version where we consider the negation of the first &
elements of the ®-chain since

k<n
a1®'~®an/\/\—\ai%ak+1®~~®an (2)
i=1
is derivable from k applications of ®-detachment; hence, there is no need to
take (2) as an axiom. Furthermore, in case Axiom ®-detachment holds, it
is possible to use (1) to detach O from an ®-chain instead of O-detachment
which would then be derivable from ®-detachment and (1).

The attentive reader will not fail to observe that the above detachment

axioms do not explicitly mention that the negations of the first k£ elements of
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an ®-chain are violations. The next few axioms address this aspect:

k<n

a4l ® - Qap A /\ (Oa; A —a;) = Oagy1 (O-violation-detachment)
i=1

a1 ® - Qap, ANOag A—a; > a2 ®---Qa, (R®-violation-detachment)

Axioms O-violation-detachment and ®-violation-detachment are the im-
mediate counterpart of Axioms O-detachment and ®-detachment just in-
cluding the violation condition in the their antecedent (and we can repeat the
argument about the possible axiom combination for their counterparts).

The question is now what are the differences between the cases with or
without the explicit violations. Suppose, we have the ®-chains

a®b —a® c

Applying ®-O and D-O results in a contradiction. Suppose that a normative
system is equipped with some mechanisms (as it is the case of real life normative
systems) to resolve conflicts like this (maybe, using some form of preferences
over norms). 3 Also, for the sake of the example, the resolution prefers the first
®-chain to the second one, and that the first norm has been complied with,
that is @ holds. Then, we can ask what the obligations in force are.

On the one hand, one can argue that the norm prescribing the second
®-chain is still effective and thus it is able to generate obligations, but since
the first option (—) would produce a violation, then we can settled for the
second option, and we can hence derive Oc from it. If one subscribes to this
interpretation, then Axioms O-detachment and, eventually, ®-detachment
are to be assumed. On the other hand, it is possible to argue that when a norm
overrides other norms, then the norms that are overridden are no longer effective.
Accordingly, in the case under analysis, a is not a violation of the second ®-chain,
and then there is no ground to proceed with the derivation of Oc. But, if —a
holds instead of a, then we have a violation of the first ®-chain: we can apply
®-0 to conclude Oa, and then O-violation-detachment to obtain Ob. Hence,
the axioms suitable for modelling this intuition are O-violation-detachment
and, eventually, ®-violation-detachment in case one wants to derive which
sub-chains are effective after violations.

Notice that the logic of ® was devised to grasp the ideas of violation and
compensation: for this reason, we do mot commit to any reading in which,
given a ® b, the fact —a prevents the derivation of Oa. If this were the case, we
would not have any violation at all. On the contrary, Ob is precisely meant to
compensate for the effects of the non legal situation described by Oa A —a. To
further illustrate the idea behind compensatory obligations, consider a situation
where —a and b hold. Suppose, that you have the norm a ® b. Here, we can
derive the obligations Oa and Ob, the first of which is violated, and such a

3 It is beyond the scope of the present paper to discuss mechanisms to resolve conflicts, the
focus of the paper is to propose which combinations of formulae result in conflicts, the reader
interested in some solutions using the ®@-logic can consult [8].
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violation triggers the second obligation, i.e., Ob, whose fulfilment compensates
the violation. Accordingly, the situation, while not ideal, can be still considered
compliant with the norm. Suppose that instead of a ® b we have two norms ®'a,
and ®'b. Similarly, we derive the obligations Oa and Ob. However, Ob does not
depend on having the violation of Oa, nor does it compensate for that violation.
Thus, in the last case, Oa is an obligation that cannot be compensated for, and
Ob is in force even when we comply with Oa.

3.4 Axioms for ®, ®, O, P

We now turn our attention to the study of the relationships between @-chains
and permissions. The basic Axiom @®-P states that the first element of a
permissive chain is a permission.

a @ Da, = Pay (®-P)

As we have seen, the intuitive reading of a b @ c is that a should be permitted,
but if it is not, then b should be permitted and, if even b is not permitted,
then, finally, ¢ should be permitted. Consequently, we formulate the following
axioms for detaching a permission from a permissive chain, and for detaching a
permissive sub-chain.

k<n

AL @ ®ap A /\ —Pa; — Pay4q (P-detachment)
i=1

L ®-Da, N—Pas 5 as®--- D an, (d-detachment)

The considerations we made about the choice of axioms for ® and O apply for
the axioms relating P and & as well.

If we assume the obligation-permission and prohibition-permission consis-
tency principles, i.e., Axioms O-P and O—P, then the axioms in the previous
section and the axioms above suffice to describe the relationships among the
various deontic operators. In absence of such axioms, several variations of the
axioms are possible to maintain consistency between obligations and permissions.

a1 ® - ®ap A P-a; — Oay (3)
a1 ® - ®ap, AN 0O-a; — Pay. (4)

In the situation where a norm holds while the permission of contrary of the
first element (of the chain) does not, (3) allows us to determine that the
first element is mandatory. Symmetrically, (4) derives the first element of
a permissive chain as a permission whereas its contrary is not mandatory.
Similar combinations can be used for the detachment axioms we have proposed.
For instance, we can integrate the obligation-permission consistency in Axiom
O-violation-detachment to obtain

k<n

a1 Q- Qap N\ /\ —a; A ="P-ag41 — Oag41 (5)

i=1

or we integrate the prohibition-permission in (4) resulting in

al@...@an/\o—\al4)(12@"'@0477,' (6)
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Notice that (3)—(6) (and similar extensions of the various detachment axioms)
are derived when Axioms O-P and O—P as well as the corresponding detachment
axioms hold.

3.5 Logics

In this paper, we shall prove completeness results for three groups of systems,
as outlined in the table below.

Basic Systems
E® CPC + O-RE + ®-RE + ®-contraction
E® CPC + P-RE + @-RE + @-contraction
E®OD E® + E®

Basic Deontic Systems
D® E® + OP-duality + O-P + P-O 4 ®-shortening
D®® | E®® 4+ O-P + P-O + D-O + O-P + ®-shortening +
@-shortening
D%® | D¥ + ®-0
Basic Full Deontic System
DOP®® [ D¥® + -0
Besides these systems, in Section 5 we shall also analyse systems extending
DOP®® with combinations of detachments axioms (including @©-P).

4 Sequence Semantics

Sequence semantics is an extension of neighbourhood semantics. The extension
is twofold: (1) we introduce a second neighbourhood-like function, and (2) the
new function generates a set of sequences of sets of possible worlds instead of set
of sets of possible worlds. This extension allows us to provide a clean semantic
representation of ®-chains.

Before introducing the semantics, we provide some technical definitions
for the operation of s-zipping, i.e., the removal of repetitions or redundancies
occurring in sequences of sets of worlds. This operation is required to capture
the intuition described for the ®-shortening axioms.

Definition 4.1 Let X = (Xy,...,X,) be such that X; € 2V (1 <i<n). Y
is s-zipped from X iff Y is obtained from X by applying the following operation:
for 1 <k <n,if X; = X and j < k, delete X, from the sequence.

Definition 4.2 A set S of sequences of sets of possible worlds is closed under
s-zipping iff if X € S, then (i) for all Y such that X is s-zipped from Y, Y € S;
and (ii) for all Z such that Z is s-zipped from X, Z € S.

Closure under s-zipping essentially determines classes of equivalences for
®-chain based on Axioms ®-shortening and ®-shortening.

The next three definitions provide the basic scaffolding for sequence seman-
tics: frame, valuation, and model.

Definition 4.3 A sequence frame is a structure F = (W,C, '), where
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e W is a non empty set of possible worlds,

e C is a function with signature W — 22")" such that for every world w, every
X € Cy is closed under s-zipping.

o N is a function with signature W — 22"

Definition 4.4 A sequence model is a structure M = (F, V), where
e F is a sequence frame, and
e V is a valuation function, V': Prop — 2.

Definition 4.5 The valuation function for a sequence model is a follows:
¢ usual for atoms and boolean conditions,

© wi= ok a iff (Jallv,... llan]v) € Cu,

o w k= Oa iff |jallv € Ny.

Sequence models are meant to be used for the combination of a deontic
operator (in this paper O ranges over O and P) and the corresponding ®-chain
operator (® and @, respectively). We are going to use sequence models for the
logics where we consider only ® and O, and P is defined as the dual of O.

The next three definitions extend sequences semantics to the case of two
sets of independent combinations of ® and the corresponding unary deontic
operator.

Definition 4.6 A bi-sequence frame is a structure F = (W,C°,C°, NO NP,

where

e IV is a non empty set of possible worlds;

e CO and CP are two functions with signature W — 2(2W)”, such that for every
world w € W, for every X € C and Y € CF, X and Y are closed under
s-zipping;

e N© and NP are two functions with signature W — 22" .

Definition 4.7 A bi-sequence model is a structure M = (F, V), where

e F is a bi-sequence frame, and

e V is a valuation function, V': Prop — 2.

Definition 4.8 The valuation function for a bi-sequence model is as follows:
¢ usual for atoms and boolean conditions,

cwEa® - @aiff (Jaifv,... faallv) € CQ,

cwEa® - ®an iff (Jallv,... lallv) €CE,

o w k= Oaiff ||a]|y € N9,

e w = Pa iff |ja|y € NP.

5 Soundness and Completeness

In this section we study the soundness and completeness of the logics defined in
Section 3.5. Completeness is based on adaptation of the standard Lindenbaum’s
construction for modal (deontic) neighbourhood semantics.

Definition 5.1 [£-maximality] A set w is £L-maximal iff for any formula a of
L, either a € w, or —a € w.
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Lemma 5.2 (Lindenbaum’s Lemma) Any consistent set w of formulae in
the language L can be extended to a consistent L-mazimal set w.

Proof. Let ay,as,... be an enumeration of all the possible formulae in L.

® Wo = Wy

* w1 = w, U{a,} if its closure under the axioms and rules of S is consistent,
w U {—a,} otherwise;

o wh =, 50 Wn 0

5.1 Basic classical systems: E®, E®
The construction of a sequence canonical model is as follows.

Definition 5.3 [E®-Canonical Models| A sequence canonical model M =

(W,C,N,V) for a system S in the language L® (where S D E®) is defined as

follows:

1. W is the set of all the £®-maximal consistent sets.

2. For any propositional letter p € Prop, ||p|lv := |p|s, where |p|s := {w € W |
pE wh.

3. Let C := U,ew Cw, where, for each w € W, Cy := {{|lar|v,..., |lan|v) |
&, a; € w}, where each a; is a meta-variable for a Boolean formula.

4. Let N := e Nw where for each world w, Ny, := {||a;|v | Oa; € w}.

Any canonical model for a logic extending E®, on the other hand, would
be exactly the same, but for condition (3), to be changed as to read: Let C :=
Uwew Cws where, for each w € W, Cy := {(|laxllv,. ... lan|lv) | B, a; € w},
where each a; is a meta-variable for a Boolean formula.

Lemma 5.4 (Truth Lemma for Canonical Sequence Models) If M =
(W,C,N,V) is canonical forS, where S O E® orS 2 E®, then for any w € W
and for any formula A, A € w iff w = A.

Proof. Given the construction of the canonical model, this proof is easy and
can be given by induction on the length of an expression A. We consider only
some relevant cases.

Assume A has the form a; ® - - -®a,. If A € w, by definition of the canonical
model, then there is a sequence (||a1]|v,- .-, [|[an||v) € Cyw. Following from the
semantic clauses given to evaluate ®-formulae, it holds that w F a1 ® -+ ® ay,.
For the opposite direction, assume that w = a1 ®- - -®a,,. By definition, there is
C. which contains an ordered n-tuple (||a1]|v, ..., |lan||v) and by construction
a1 ® - ® ay, € w. Clearly the same argument holds in the case of operator &.

If, on the other hand, A has the form Ob and Ob € w, then ||bl|y € Ny, by
construction, and by definition w = Ob. Conversely, if w = Ob, then ||b]|y € N,
and, by construction of N, Ob € w. O

It is easy to verify that the canonical model exists, it is not empty, and
it is a sequence semantics model. Consider any formula A ¢ S such that
SDE®,SDEY; {—A} is consistent and it can be extended to a maximal set w
such that for some canonical model, w € W. By Lemma 5.4, w |~ A. That C,,
is closed under zipping follows immediately from the Lindembaum construction.
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Corollary 5.5 (Completeness of E® and E®) The systems E® and E® are
sound and complete with respect to the class of sequence frames.

Definition 5.6 [Bi-sequence Canonical Models] A bi-sequence canonical model

M = (W,C°,C°, NO, NP V) for a system S in LZ® (where S D E®®) is defined

as follows:

1. W is the set of all the £L&¥-maximal consistent sets.

2. For any propositional letter p € Prop, ||p|lv := |p|s, where |p|s := {w € W |
p € w}.

3. Let CO := Uwew €O, where for each w € W, CO := {(||lai|lv, -, |lan]v) |
&, a; € w}, where each a; is a meta-variable for a Boolean formula.
4. Let CP := e Ch» where for each w € W, CE = {(la1]lv, ..., [lanv) |

@, a;}, where each q; is a meta-variable for a Boolean formula.
5. Let N© :=J,cw NS where for each world w, N := {|la;||v | Oa; € w}.
6. Let NP := {J, ey Vi) where for each world w, N, := {||a;||v | Pa; € w}.

Lemma 5.7 (Truth Lemma for Canonical Bi-sequence Models) If
M = (W,CO,C°,NO, NP V) is canonical for S, where S O E®®, then for any
w € W and for any formula A, A € w iff w = A.

Since the modal operators do not interact with each other, we can state:

Corollary 5.8 (Completeness of E®®) The system E®® is sound and com-
plete with respect to the class of bi-sequence frames.

5.2 Deontic Systems

Theorem 5.9 (Completeness of D®) The frame of a canonical model for
D®, as defined in Definition 5.8, has the following properties. For anyw € W,
1. X € Ny if and only if —X & N. (see OP-duality, O-P and D-O)

2. 0 € Ny (see P-O)

3. (X1,...,X,) €Cy forn >2 then (X1,...,Xn—1) € Cy (see @-shortening)

Proof.

1. X € N, iff X = |la]ly for some Oa € w, ie., iff “O—a € w, O—a & w,
—llallv & Nu.

2. Assume by reductio that § € A,. Then w = OL, OL € w, reaching a
contradiction.

3. Assume (||al|1,...,[|a,]||) € C,. By construction it means that @, a; € w
and by ®-shortening, ®?:_11 a; € w, thus {||lall1,..., ||an—1]]) € Cw. 0

Theorem 5.10 (Completeness of D°%®) The frame of a canonical model for
DO® (Definition 5.3) has the properties expressed in Theorem 5.9 and the
following: For any world w, if (X1,...,X,) € Cy then X1 € Ny (see ®-0)

Proof. If (X;,...,X,) € Cy , then there are n formulae such that for 1 < i < n,
X; = |lag|lv and a1 ® -+ ® a, € w. By Axiom ®-O, Oa; € w and hence
||[11||V c Nw. O
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Theorem 5.11 (Completeness of D®®) The frame of a canonical model for
D®® | as defined in Definition 5.6, has the following properties. For any w € W,

1. NP O NP (see O-P)

2. X € NO implies —X ¢ N9 (see D-0)

3. 0 gNQ (see P-O)

4. X € NO implies —X ¢ NF (see O-P)

5. (X1,...,X,) €CO forn >2 then (X1,...,X, 1) € CO (see ®-shortening)
6. (X1,...,X,) €CP forn >2 then (X1,...,X,_1) € C" (see ®-shortening)

Proof. Recall that D®® = E®® + O-P 4+ P-O + D-0 + O—P 4 ®-shortening +

@-shortening; remember that the operator P is not defined as a dual of O.

1. Assume ||ally € N2, then Oa € w and, by O-P, Pa € w. Hence ||ally € NF.

2. Assume X € N2 for some w € W, then, by construction, there is some
formula Oa € w and X = ||a||y. By D-O and MP, =0O-a € w, i.e., O—a & w,
i O-a, [|mally & N2, hence —|lally & NP

3. See the proof of Theorem 5.9.

4. Assume X € N2; by Definition 5.6 X = ||a||y for some a such that Oa € w.
Then, by O-P, =P-a € w, P-a € w, hence ||a||y & NF.

5. See the proof of Theorem 5.9.

6. See the proof of Theorem 5.9. a

5.3 Extended Deontic Systems

In what follows we shall prove completeness results for various systems by
adding 6 detachment schemata that combine the modal operators introduced.

Theorem 5.12 (Completeness of DOP®®) The canonical frame (see Defini-
tion 5.6) for the logic DOP®® has the properties stated in Theorem 5.11 plus:
For any world w if (X1,...,X,) € CO then X; € NO (see ®-0).

Proof. See the proof of Theorem 5.10. a

Theorem 5.13 Let S be a system such that S O DOP®D_ If S contains any of
the axioms listed below, the canonical frame enjoys the corresponding property:
For any world w
1. O-detachment:
If (X1,...,X,) €CO andw & X; for1 <i <k andk < n, then X1 € NO.
2. ®-detachment:
If (X1,...,X,) €CC and w & Xy, then (Xa,...,X,) € CO.
3. O-violation-detachment :
If (X1,...,X,) €CC and, for 1 <i<k andk <n, w ¢ X; and X; € N9,
then Xpy1 € NO.
4. ®-violation-detachment:
If (X1,...,X,) €CO and X, € NQ and w & X, then (Xa,...,X,) € CO.
5. ®-P:
If (X1,...,X,) €CP then X; € NF.
6. P-detachment:
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If (X1,...,X,) €CP and X; € N¥ for 1 <i<k<n, then Xp11 € NF.

7. &-detachment:
If (X1,...,X,) € C° and X; ¢ N for 1 < i < k and k < n, then
<Xk+17"'7Xn> GCuP)

Proof. Again, the proof is very straightforward and it follows closely the
syntactical structure of the schemata. Notice that the fact (X,...,X,) € C2
always implies that for 1 < ¢ < n formulae X; = ||a;||v.

LIf(Xq,...,X,) € COand w ¢ X; for 1 < i < k with k& < n, then for
1 < i < n formulae it holds that X; = |ja;||v, a1 ® -+ ® a,, € w, a; € w for
1 <4 <k, hence /\f:1 —a; € w. Thus, by O-detachment, Oaj; € w and
larr1llv € N

2. If {larllv,-- -, lanllv) € CQ and w & ||a;||v, then a1 ®- - -®a,, € wand —a; €
w, thus, by ®-detachment, a; ®---®a, € w and (||as|v, ..., |a.|v) € CO.

3. Assume (||lay||v, ..., [|an]|v) € CO and, for 1 <i < k with k < n, w & ||a;|v
and ||a;|ly € NS. Then a; ® - -- ® a,, € w, /\f:1 —a; € w, and /\f:1 Oa; € w.
By classical propositional logic /\le(Oai A —a;) € w and, by O-violation-
detachment, Oay;; € w and ||agy1 v € N9.

4. Assume (|la1llv,-..,|lan|lv) € CO, w & |lai|v, and |jai]v € NQ. Then
a1 ® - Qap € w, na; € wand Oa; € w and, by ®-violation-detachment,
ay @+ ®a, €w and {||az||y,...,|anlv) € CO.

5. See Theorem 5.10.

6. Assume (||lai||v,...,|lan]lv) € C% and, for 1 < i < k with k < n, |Ja;|v &
NP. Then a; @ --- @ a, € w and /\f:1 —Pa; € w and, by P-detachment,
Payy1 € w, implying that |lagy1]yv € NE.

7. Assume (||lai||v, .-, |lan]lv) € CP and, for 1 < i < k with k& < n, ||a;||v €
J\/E. Then a1 & --- P a, € w and /\f:1 -Pa; € w and, by ®-detachment,
a1 ® - ®a, € w and hence (||lags1lv, .-, |lan|v) € C. 0

6 Conclusions and Related Work

The deontic logic literature on CTD reasoning is vast. However, two fundamental
mainstreams have emerged as particularly interesting.

A first line of inquiry is mainly semantic-based. Moving from well-known
studies on dyadic obligations, CTD reasoning is interpreted in settings with
ideality or preference orderings on possible worlds or states [15]. The value
of this approach is that the semantic structures involved are rather flexible:
different deontic logics can thus be obtained. This semantic approach has been
fruitfully renewed in the ‘90s, for instance by [19, 21], and most recently by
works such as [14, 2], which have confirmed the vitality of this line of inquiry.
However, most of these approaches are based on ‘standard’ possible world
semantics with the risk of being affected by the paradox advanced in [7].

While the original systems for ® were mainly motivated by modelling CTD
reasoning [12, 4], in this paper we have broadened our analysis by extending
chains to permissions and by generically dealing with compensations and vi-
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olations. Indeed, we accept different types of O-detachment, either allowing
for the derivation of all obligations from any ®-chain, or only the subsequent
ones in the chains with respect to the ones that have been violated. Our aim
was to provide the semantics analysis for several axioms (principles) for the
novel operators ® and @ and how they can be used to generated obligations
and permissions. In this paper, we did not study what combinations of axioms
are suitable to model different interpretations for different intuitions for the
various deontic notions. This study is left to future investigations.

The second mainstream is mostly proof-theoretic. Examples, among others,
are various systems springing from Input/Output Logic [18, 17] and the ®-logic
originally proposed in [12]. The logic for ® proved to be flexible for several
applied domains, such as in business process modelling [13], normative multi-
agent systems [6, 9], temporal deontic reasoning [11], and reasoning about
different types of defeasible permission [8].

This paper completes the effort in [4] and offers a systematic semantic study
of the ® and @ operators originally introduced in [12] and [8]. We showed that
suitable axiomatisations can be characterised in a class of structures extending
neighbourhood frames with sequences of sets of worlds. In this perspective, our
contribution may offer useful insights for establishing connections between the
proof-theoretic and model theoretic approaches to CTD reasoning. Also, we
have shown that the semantic structures can easily keep separate structures
interpreting norms from those interpreting obligations and permissions, thus
mirroring the difference between ® and & operators from O and P.

A number of open research issues are left for future work. Among others, we
plan to explore decidability questions using, for example, the filtration methods.
The fact that neighbourhoods contain sequences of sets of worlds instead of sets
is not expected to make the task significantly harder than the one in standard
neighbourhood semantics for modal logics.

Second, we intend to study richer deontic logic. For example, we could
extend rule RM for O (i.e., a — b/Oa — Ob), this would allow us to determine
that the combination of a ® ¢, b ® d, where a — —b, results in a contradiction.
In this case, the semantic condition to add is that A/ is supplemented. Similarly,
we may study what are the ® counterpart of axioms like M, C an so on. [5]
shows how to provide a generalisation of rule RM to the case of ®.

Third, [9] investigates how to characterise different degrees and types of
goal-like mental attitudes of agents (including obligation) with chain operators.
We plan to explore the use of sequence semantics to provide axioms (and
corresponding semantic conditions) that correspond to the mechanisms governing
the goal-like attitudes and their interactions.

Finally, we expect to enrich the language and to further explore the meaning
of the nesting of ®- and @®-expressions, thus having formulae like a ® ~(b®c) ® d.
As we have said, the meaning of those formulae is not clear. However, a semantic
analysis of them in the sequence semantics can clarify the issue. Indeed, in the
current language we can evaluate in any world w formulae like —(a ® b), which
semantically means that there is no sequence (||a||v, ||b||v) € CO. Conceptually,

w*
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this means that there is no norm stating that a is obligatory and that the
violation of this primary obligation generates an obligationb. Accordingly, the
truth at w of a ® =(b ® ¢) ® d means that there exists a norm stating that
a is obligatory, but either b does not compensate a or, otherwise, ¢ does not
compensate b, and d compensates what compensates a, whatever it is.
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Abstract

This paper presents two deontic logics following an old idea: normative notions can
be defined in terms of the consequences of performing actions. The two deontic
logics are based on two special propositional dynamic logics; they interpret actions
as sets of state sequences and have a process modality. The difference between the
two deontic logics is that they contain different formalizations of refraining to do an
action. Both of the two deontic logics have a propositional constant for marking the
bad states. The normative notions are expressed by use of the process modality and
this propositional constant.

Keywords: deontic logic, dynamic logic, process modality, negative action

1 Background

There is an old idea in the field of deontic logic: an action is prohibited if doing
it would cause a bad thing; it is permitted if performing the action is possible
without causing a bad thing; it is obligated if refraining to do it would cause a
bad thing. This idea is intuitive in some sense; the point of it is that the three
fundamental normative notions, prohibition, permission and obligation, can be
defined in terms of the consequences of doing actions. According to [4], this
idea can be traced back to Leibniz.

[1] and [9] independently develop this idea along similar lines. The resulting
deontic logic has a modal operator O, the classical alethic modality whose dual
is ©. It also has a propositional constant ¥ which intuitively means that what
morality prescribes has been violated. The three normative notions are defined
as follows: O(¢ — V) says that the proposition ¢ is prohibited, (¢ A =V)
says that ¢ is permitted and O(-¢ — V) says that ¢ is obligated. This logic
applies deontic operators to propositions and does not really analyze actions.
As mentioned in the literature, e.g., [10], this approach leads to quite a few
problems.
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Starting from the same idea, [11] proposes a different approach with empha-
sis on the analysis of actions in terms of their postconditions. In his dynamic
logic [a]¢ expresses that no matter how the action « is performed, ¢ will be the
case afterwards. The dual of [a]¢ is («)¢, which expresses that there is a way
to perform « s.t. ¢ will be the case after a is done. The logic presented by [11]
has a propositional constant V saying, again, that this is a undesirable state.
By use of [a]¢ and V, the three normative notions can be expressed: [a]V,
meaning that « is prohibited, («)-V indicating that « is permitted and [a]V
denoting that « is obligated. By @, [11] intends to express this: to perform
@ is to refrain from doing «. This work applies deontic operators to actions
and many problems with previous deontic logics are avoided this way. [11] is a
seminal paper that has given rise to a class of dynamic deontic logics following
this approach.

There are two problems with [11]. The first one concerns the three norma-
tive notions. Whether an action « is prohibited /permitted/obligated or not is
completely determined by whether the output of performing « is undesirable
or not, and has nothing to do with what happens during the performance of a.
As pointed out by [15], this is problematic, because it entails that while killing
the president is prohibited, killing him and then surrendering to the police may
not be, that while smoking in this room is not permitted, smoking in this room
and then leaving it may be permitted, that while rescuing the injured and then
calling an ambulance is obligated, rescuing the injured may not be. None of
this sounds reasonable.

The second problem with [11] lies in how it technically deals with @. It
presents a complicated semantics for actions. In short, it firstly assigns each
action a so called s-trace-set; then it links each s-trace-set to a binary relation.
In this way each action is interpreted as a binary relation. Essentially, this is
like the standard semantics for actions from propositional dynamic logic (PDL).
Under the semantics defined by [11], although @ is not the complement of «,
still the behaviour of @ is not quite in line with the intuition of refraining from
«. Firstly, the intersection of the interpretations of @ and « is not always
empty, which would mean that in some states there may be ways to refrain
from « while at the same time doing «. Secondly, the intersection of the
interpretations of @ and «; 8 is not always empty, which would mean that in
some cases, performing «; 3 is a way to refrain from doing «. This runs counter
to our intuition about refraining from doing an action.

Indeed, [11] shows clear awareness of the requirement that @ and « should
be disjoint and that @ and «; 8 should be disjoint as well. The correspondence
between actions and s-trace-sets was designed to achieve this, but the assign-
ment of binary relations to s-trace-sets results in some crucial information loss.

Dynamic logics in the style of PDL interpret actions as binary relations
and can not deal with the progressive behaviour of actions. To solve this
problem, so-called process logics take the intermediate states of doing actions
into consideration and view actions as sets of sequences of states. Based on
a process logic from [12], [15] proposes a deontic logic which aims to handle



Ju and van Eijck 111

free choice permission and lack-of-prohibition permission in one setting. The
sentence “you can use my pen or pencil” involves the former permission and
“you can use his pen or pencil” involves the latter permission. The first sentence
gives the addressee the permission to use the pen, but the second one does not.
To see that the latter is the case, imagine a situation where the speaker of the
second sentence is just reporting something by this sentence, and he/she knows
that the owner of the pen and pencil allows the addressee to use the pen or
pencil but does not know exactly which. Unlike [11], [15] does not introduce
undesirable states, but uses undesirable transitions instead. The resulting logic
allows description of the states during execution of actions and it avoids the
first problem with [11]. However, the focus is on permission only, and there
is no attempt to deal with refraining to do an action or with obligation. [13]
extends the logic in [15] by introducing two dynamic operators: one adds and
another removes desirable transitions. The two operators are used to model
the dynamics of the so called policies, which are on what is and what is not
permitted.

Realizing that the formalization of refraining to do an action in [11] is prob-
lematic, [2] and [14] present alternative proposals, both based on a relational
semantics for actions. The motivation of [2] is that the formalization in [11]
can not be easily generalized to encompass iteration and converse of actions.
[2] views @ as a constrained complement of «: @ is not the complement of «
w.r.t. the universal relation, but the complement of o w.r.t. the set consisting
of all the transitions resulting from performing actions constructed without use
of -. Under this treatment, the intersection of the interpretations of @ and « is
always empty; however, the problem with the intersection of the interpretations
of @ and «; 8 remains: this intersection might not be empty. [14] thinks that
the sentence “you are permitted either to eat the dessert or not” has different
meaning from “you are permitted either to kiss me or not”, as the latter im-
plies that the addressee may kiss the speaker but the former does not. The two
sentences turn out equivalent. To remedy this, [14] interprets @ in a so called
stratified way. Firstly, for any atomic action a with the interpretation R, it
defines Rg, the interpretation of @, in the following way: a transition (w,u) is
in Rz if and only if (w,u) is not in R, but (w,x) is in R, for some x; then by
four inductive rules taken from [17], it defines the interpretation of @ for any
compound action «. However, this approach suffers from the same problem as
[11]: neither the intersection of @ and « nor the intersection of @ and «;f is
always empty.

It is our aim in this paper to propose two deontic logics that follow the
general approach of [11] but resolve the problems mentioned above.

2 Two Challenges

Two challenges are crucial in dynamic deontic logics: how to formalize refrain-
ing to do an action and how to handle the normative notions. We here state our
ideas for these two issues, as a prelude to the two deontic logics to be presented
below.
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To refrain to do an action is to do something else. We think that to do
something else meets the principle of symmetry: if doing « is doing something
else than f, then doing g is also doing something else than a. We also think
it is reasonable to impose the principle of perfect tense: deeds that are done
remain done forever. In other words, for any action, if the agent has done it,
then he/she will always have done it. Under the two principles, we do not have
many choices in analyzing to do something else.

Let’s look at an example. Let a and b be two different actions. Fix a start
point. When would we say that the agent has done something else than a;b?
Clearly, if the agent has done a, he/she has done something else than b. By the
principle of the perfect tense, if he/she has done a; b, he/she has done something
else than b. By the symmetry principle of to do something else, if he/she has
done b, he/she has done something else than a;b. We can not say that if the
agent has done a, he/she has done something else than a;b. Why? Because
if an agent has done a;b she has done a, by the principle of perfect tense. So
if she has done a then it cannot be the case that she has done something else
than a;b. We must therefore conclude that doing b is doing something else than
doing a;b, but doing a is not doing something else than doing a;b.

About the issue of normative notions, we propose a sharpened version of the
old idea mentioned in the previous section. There are a class of states, a group
of people and an agent who might not belong to this group. The agent doing
an action at a state might change this state to a different one. Some states are
bad and others are fine for this group. An action of the agent is prohibited at
a state relative to this group if the state will be bad at some point during any
performance of this action. An action is permitted at a state if the state will
always be fine during some performance of this action. An action is obligated
at a state if the state will be bad at some point during any performance of
anything else.

Next, how to formalize these ideas? In process logics such as those of [12]
and [3], atomic actions are interpreted as sets of state sequences which might
not be binary relations. [7] presents a simple process logic where atomic actions
are viewed as binary relations and the action constructors of composition, union
and iteration are treated in the usual way. We will follow this to formalize the
notion of to do something else. Actually we will work this out in two different
ways. As a follow-up to [7], [6] proposes two process modalities to describe what
happens during execution of actions. One of them is called the Y3 process
modality. Below, we will use this modality plus a propositional constant to
express the three normative notions.

3 A Deontic Logic Based on Process Theory

Let IIy be a finite set of atomic actions and @y a countable set of atomic
propositions. Let a range over Il and p over ®;. The sets IIppy, of actions
and ®pppr, of propositions are defined as follows:
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az=a|0|(a)|(ava)|a*

¢pu=p|T|b]-¢|(drd)]||afd
Here in “®pppr,”, “P” is for “process” and “DDL” for “dynamic deontic logic”.
0 is the impossible action. b means that this is a bad state. f, this is a fine
state, is defined as -b. |«|¢ indicates that for any way to perform «, ¢ will
be the case at some point in the process. The dual {a)¢ of ||af¢ is defined as
—|la||-¢, which says that there is a way to perform « s.t. ¢ will be the case at
all the points in the process. Fa, a is prohibited, is defined as ||a|b; it means
that no matter how to perform «, the state will be bad at some point in the
process. Pa, « is permitted, is defined as {«a))f; it means that there is a way
to perform « s.t. the state will always be fine in the process. Other standard
syntactic abbreviations apply here.

In next section, for any action « in Ilppy,, we will specify a 8 in IIppy, and
claim that to do something else but « is to do 8. The special action 0 will be
needed there. After that we will specify the formula saying that it is obligated
to perform a.

M= (W,{R,|aelly}, B,V) is a model if

1. W is a nonempty set of states

2. for any a €Ily, R, €W x W, and for any a,belly, R,Nn Ry =&
3. BcW

4. V is a function from & to 2V

)

Atomic relations are pairwise disjoint. This constraint guarantees that syn-
tactically different atomic actions are genuinely different. B is a set of bad
states. B, the complement of B, is the set of fine states. Note that there is no
constraint on B; it could be the whole universe and could also be the empty
set. A model is just a so called interpreted labeled transition system with the
constraint that the relations are pairwise disjoint, plus a set of bad states.

Fix a model MM = (W,{Ry|a € Iy}, B,V). Define R = U{Rq|a € Ip}. A
sequence wy ...w, of states is called a trace if woR...Rw,. Specially, for
any w € W, w is a trace. A trace represents a transition sequence made by
doing a series of basic actions. A special trace w means doing nothing. Let
T be the set of traces. Define a partial binary function ext on T as follows:
ext(Ug ... Up, Vo ... Upy) equals ug ... upvy ... Uy if u, = v, otherwise it is unde-
fined. Let S and T be two sets of traces. Define a function ®, called fusion,
like this: S®T = {ext(k,\) |k € S & X € T, and ext(k, ) is defined }. Each
action « is interpreted as a set S, of traces in the following way:

1. Sy =Ry

2. S@;,Y:S/g@)SV

3. SBU’Y:SBUS’Y

4. Sqr =W uSaUS4.qU...

This semantics for actions is called trace semantics. This semantics has the
following feature: for any basic actions ai,...,a,, all the traces in Sg,; . .4,
contain n + 1 states, provided it is given that S,,;. .4, is not empty.

n
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M, w I ¢, ¢ being true at w in M, is defined as follows:

M wi-p < weV(p)

M, w I T always holds

Mwi-kb < weB

M, w IF =¢ < not M, w I+ ¢

Mwik(pA) < Mwi- ¢ and M, w -

M, w I+ |a|¢ < for any trace wy . .. wy, if wg =w and wq ... w, € Sy, then
M, w; I- ¢ for some i s.t. 1<i<n

Recall the definitions of F'ow and Pa above. It can be verified that

7. Mwirf< weB

8. M, wir {a)p < there is a trace wp ... w, s.t. wo =w, wp...w, € Sy and
M, w; I+ ¢ for any i s.t. 1<i<n

9. M, w I+ Fa < for any trace wy ... wy,, if wg =w and wy ...w, € S,, then
M, w; I- b for some i s.t. 1<i<n

10. M, w I+ Pa < there is a trace wg...w, s.t. wy = w, wqg...w, € S, and
M, w; I+ f for any i s.t. 1<i<n

S Gt W=

Note that the semantics views the ending point of doing « as a point during
the process of doing « but does not view the starting point as a point of the
process.

The notions of wvalidity and satisfiability are defined as usual. This logic
is called PDDL. Illustrations of this logic will be given in section 5 after we
make it clear which formula expresses the obligation to do «.

4 To Do Something Else

In this section, we provide a formalization for the notion of to do something
else following the idea stated in section 2.

A finite sequence of atomic actions is called a computation sequence, ab-
breviated as seq. The empty seq is denoted by e and the set of seqs denoted
by CS. Each seq corresponds to a composition of atomic actions and seqs are
understood by their corresponding actions. For any sets A and © of seqgs, let
A;0 = {07 e A & §eO}). CS(a), the set of the seqs of «, is defined as
follows:

1. CS(a) = {a}

2. CS(0)=w

3. CS(o; 8) = CS(a); CS(B)

4. CS(aupB)=CS(a)uCS(B)

5. CS(a*)={e} uCS(a) uCS(;a)u...

Each seq of « represents a way to perform «. «is an empty action if CS(«) = @.
In the sequel, for any seq o and set A of seqs, we use oA to denote the set
{oT|7 € A}. For any model, define S, the interpretation of € in this model, as
the whole universe. It can be shown that S, = U{S,|o € CS()}.

In the semantics defined in last section, atomic actions are interpreted as
pairwise disjoint binary relations and compound actions are interpreted as sets
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of traces. As a result, the following proposition holds (assume again that we
have fixed a model 9, with traces computed in that model):

Proposition 4.1 For any a and 3, if CS(a) nCS(B) = @, then S, N Sp = @.

Proof. Assume S, N Sg # @. Let wy...w, be a trace in S, N Sg. Then there
is a seq aj...a, in CS(a) and a seq by ...b, in CS(B) s.t. wg...wy, is in
Sar;..an a0d Sp. p. . Then for any 7 s.t. 1 <7 <n, wi_jw; is in Sy, and Sy,
As atomic actions are pairwise disjoint, a; = b; for any ¢ s.t. 1 <¢ <n. Then
aj...an =by...b,. This means C'S(a) nCS(B) + @. O

This is a crucial fact for this work.
Let = denote the relation of initial segment for sequences and 2 the converse
of g, called extension.

Definition 4.2 [Mutual extension, a-difference] Let o and 7 be two seqs. Then
o~T1ifif o €7 or 7 co. Call this the relation of mutual extension. Say that
o is z-different from 7 if o ¢ 7.

For example, ac is z-different from ab, but a is not z-different from ab, as
a € ab. cab is also z-different from ab, as ab ¢ cab and cab % ab, although ab is
a segment of cab. Here are some basic facts about the relation of z-difference.
As € is an initial segment of any seq, no seq is z-different from e. x-difference is
closed under extension: if o # 7 and 7 € 7/, then o # 7’. The relation of mutual
extension is closed under initial segment: if c ~ 7 and 7' €7, then o~ 7. If o
is z-different from 7, then there is no way to extend o s.t. the extension of o
is identical to 7, and there is also no way to extend 7 s.t. the extension of 7 is
identical to o. The notion of z-difference is intuitively understood as follows.
Assume that o is z-different from 7. Then there is no moment during the
performance of ¢ at which the agent has done 7, and there is also no moment
after the performance of ¢ at which the agent has done 7, no matter what
he/she does afterwards.

For any actions « and 8, « is z-different from 3, o # B, if for any seqs
o€ CS(a) and 7 € CS(B), o # 7. The relation of z-difference for actions
formalizes the word “else” in the imperatives such as “don’t watch cartoons
anymore and do something else”. 3 is something else but « if § is x-different
from «. Note that given an action «, there might be many actions each of
which is something else. For example, both b and ¢ are something else for
a. This means that the relation of z-different itself is not enough to handle
the notion of to do something else, as the latter also involves a quantifier over
actions. Luckily, for any «, among the actions which are something else, there
is a greatest one in the sense that it is the union of all of them. This lets us
deal with the notion of to do something else without introducing any quantifier
over actions.

Definition 4.3 [The function of opposite] Let A be a set of seqs. A, the
opposite of A, is defined as the set {T|7 # o for any o € A}.

Ais always closed under extension; this is an important feature of the function
of opposite. Opposite is different from complement: A is always a subset of A,
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but not vice versa. Here is a counter-example: let A = {ab}; then a € A but
a ¢ A. Opposite has certain connection with complement. Define AT as the set
of the seqs which are z-equal to some seq in A. AT is called the tree generated
from A. It can be seen that A = AT. About AT, there is a different way to
look at it. Let A’ be the smallest set which contains A and is closed under
extension, and A" the smallest set containing A’ which is closed under initial
segments. It can be verified that A” = AT, This result will be used later. Note
that AT might not be closed under extension.

The following proposition specifies some important properties of the func-
tion of opposite:

Proposition 4.4

1. This is easy to show.

2. By the sixth item of this proposition, A ¢ A;0. As A;© ¢ A;0,
AcA;0. Then An(A;0)=g.

3.0eAUO o gfdrforanyTe AuUO < g#7forany 7eAand o ¢ 7
foranyre@c»aeﬁandoe(:l.

4. Let 0 € A. Assume o ¢ A. Then there is a 7 € A s.t. o ~ 7. This is
impossible.

5. Let 0 € A;©. Then o # 7 for any 7 € A;0. Assume o ¢ A. We want
to show o € (A;0). Then there is a k € A s.t. 0 €k or kK E 0. Assume o E k.
Let x €O, as © # @. Then kx € A;0. As 0 Sk, 0 € kx. Then o ~ kx. This
is impossible, as o € m Then k € 0. Let 0 = k). We want to show ) € ©.
Assume not. Then there is a 7€ © s.t. A~ 7. Then kA » k7. Then k7 € A;O.
Then A ¢ A;©. This is impossible. Then A € ©. Then kA € (A;0), that is,
oe(A;0).

6. Let 0 € A. Then o # 7 for any 7 € A. Let 7' € A;©. Then there is a
TeAst. 77 As ¢ is closed under extension, o # 7/. Then o € A; ©. mi

The converse of the fourth item does not hold generally. As for any A, A is
closed under extension, we can get that for any A, if A is not closed under

extension, then A ¢ A. Here is an example: let I = {a,b} and A = {aa,ab};

then A = bIT3 and A = aII; then aaa € A but aaa ¢ A. The converse of the fifth
item does not hold either and the reason is that (A; (:5) ¢ A; © might not hold.
What follows is a counter-example: let Iy = {a,b}, A = {aa,a} and © = {ab};
then © = bII§ U aallf; then aab e A; O; as aab € A; O, aab ¢ A; ©. The fifth item
has a condition, that is, ©® # @. This item does not hold without the condition.
For a counter-example, let Ty = {a,b} and A = {ab}. Then A;© = CS, as
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A;0 =g. We see that a¢z and a¢A;(:).
Proposition 4.5 For any a € llppy, there is a § € Uppy, s.t. CS(B) = CS(a).

Proof. As shown in the literature of automata theory, a set A of seqs is a so
called regular language if and only if there is a a € Ippy, s.t. CS(a) = AL,
Therefore, it suffices to show that C"E\(E) is a regular language. As mentioned
in section 4, CS(a) = CS(a)T where CS(a)T is the tree generated from
CS(«). Then it suffices to show that C'S(a)T is a regular language. Let © be
the smallest set which contains C'S(«) and is closed under extension. It can
be seen that CS(«;(a; U---Uay)*) = © where Iy = {aj,...,a,}. Then O is
a regular language. Let ©' be the smallest set containing © which is closed
under initial segments. By [5], the closure of a regular language under initial
segments is also a regular language. Then ©’ is a regular language. As stated
in section 4, this ©' equals to CS(a)”. Then CS(a)7 is a regular language.
By [5], the complement of a regular language is also a regular language. Then
CS(a)T is a regular language. m]
This 8 is called the opposite of «, denoted by @&. Here is an example: let
Iy = {a,b,c}; then @ = (buc); (aubuc)*. Tt can be easily shown that CS(@) =
U{CS(y) |~ # a}. Hence, @ is the union of all the actions which are something
else but a. To refrain to do « is to do something else; to do anything else is to
do @.

As mentioned in the introduction, it is reasonable to require that anything
else but a has empty intersections with « and with «; 8. The following propo-
sition states that this is indeed the case:

Proposition 4.6 S3nS, =@ and Sz NSy =93.

This result can be proved by use of proposition 4.1 and 4.4.

In standard relational semantics, an action « is interpreted as a binary
relation R,. Then neither Ry N R, = @ nor Ry N R,.3 = @ is generally the case
even if atomic actions are pairwise disjoint. Here is a counter-example for both.
Let a,b and ¢ be three atomic actions. Let R, = {(w1,w2)}, Rp = {(wa,w3)}
and R, = {(wy,w3)}. We see that the three atomic actions are pairwise disjoint.
As c is z-different from a;b and a;b is the union of all the actions z-different
from a;b, we know R. € Rz. As R.n Ry = {(w1,ws3)}, RgnRap #@. cis
z-different from a, then R. € Rz. R. N Rgyp = {(w1,ws)}, then Rz N R,y # @.
In usual process logics, atomic actions are viewed as sets of state sequences
which might not be binary relations. Then Sgn S, = @ and Sgn Sy = @
do not generally hold, given that atomic actions are pairwise disjoint. What
follows is a counter-example for both. Let S, = {wjws}, Sp = {wows} and
S. = {wiywows}. a, b and c are pairwise disjoint. ¢ is z-different from a;b, then
S. ¢ S(;;vb. Se N Sap = {wiwaws}, then Sz N Sap # @. ¢ is a-different from a,
then S, € Sz. S.n Sa;b = {w1w2w3}, then Sz N Sa;b * J.

1 Regular languages are defined in terms of finite deterministic automata. For details of
this, we refer to [5].
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By proposition 4.4 we can get that S, € S5 and 555 €S5S, 5. It can
be verified that neither of the converses of the two results holds. Cons1der1ng
that opposite is some type of negation, one might wonder about this. However,
when restricted to the class of normatively concise actions, the two converses
hold. What is a normatively concise action? Here we just show its idea by an
example and does not give its formal definition. Assume that there are only
two atomic actions: a and b. Look at the two sentences: “the agent ought to do
a;a or a;b” and “the agent ought to do a”. The two sentences have the same
meaning but the first one is not given concisely. In this sense, we say that the
action (a;a)U(a;b) is not normatively concise but a is. We leave exploring this
issue further as our future work.

5 Validity

By means of to do anything else, we now can express obligations. Oc«, « is
obligated, is defined as |@|b; it means that no matter what alternative 8 to «
is done, and now matter how 3 is performed, at some point in the process a
bad state will be encountered. The truth condition of O« is as follows:

11. M, w I+ Oa < for any trace wy ... wy,, if wg =w and wy ... w, € Sz, then
w; I- b for some i s.t. 1<i<n

By now all the three normative notions are defined and we can illustrate the
logic PDDL a bit.

PDDL has the following two features: its semantics does not take the start-
ing point of doing an action as a point of the process of doing this action;
whether an action is allowed is totally determined by what happens during
the process of doing this action. The two features together imply whether an
action is allowed at a state has nothing to do with this state. One may wonder
what if the starting point of doing an action counts in the process of doing this
action. Suppose so. Then ¢ — ||a]¢ would be valid for any a and ¢. Then both
b - Fa and b - Oa would be valid. This means that in bad states, everything
is forbidden and everything is obligated. This is of course undesirable. Our
present definition at least has the advantage that it is possible to escape from
a bad state with a good action.

There is some bonus which we can get from the two features mentioned
above. For ease of stating our core points for refraining to do something, we
in this work does not introduce the action constructor test. A test ¢? in trace
semantics is a set of states in which ¢ is true. As the starting point of doing an
action does not count in the process of doing this action, the action of testing
does not have a process. Then trivially, |¢?|« is not satisfiable and {$? )¢ is
valid. As a result, F'(¢7) is not satisfiable and P(¢?) is valid. This means that
there is no restriction on testing and testing is always free. Considering that
testing is just some mental action and does not directly change the world, we
think that this is desirable.

The following valid formulas express some connections between the deontic
operators:
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1. PO{<—>—|F06
2. Oa < Fa&
3. Pa— {a)T

The first formula says that an action is permitted if and only if it is not forbid-
den. In addition, we can verify that P(aub) — (PaA Pb) is not a valid formula.
Putting the two facts together we can get that the operator P introduced in this
work is not for the so called free choice permission but for lack-of-prohibition
permission. The second formula tells that an action is obligated if and only if
not doing it is forbidden. If an action is permitted, then it is doable; this is
what the last formula says. Kant’s Law, whatever should be done can possibly
be done, expressed as Oa — {a)T, does not generally hold in PDDL. To see
this, imagine a model with a dead state, that is, one from which no transition
starts. Then for any atomic action a, a is obligated trivially but not doable at
this dead state.

What follows are some valid formulas which essentially involve action con-
structors:

1. Oa - O(aup)
2. Fa - F(o;8)
3. P(a;f) - Pa
4. O(a; B8) - O«

The first formula shows that Ross’s Paradox is not avoided: the agent has the
duty to post the letter; therefore, he/she has the duty to post it or burn it. As
argued in [8], we do not think that this is a problem. By the second formula,
if killing is prohibited, then killing and then surrendering is also prohibited.
But note this does not mean that if killing is prohibited, then surrendering is
prohibited after killing. Indeed, it can be verified that Fk A (k) Ps is satisfiable
where k and s represent the actions of killing and surrendering respectively.
By the third formula, if smoking and then leaving is permitted, then smoking
is permitted. From the fourth formula we can get that the duty of rescuing
the injured is implied by the duty of rescuing the injured and then calling
an ambulance. These examples show that our logic does not suffer from the
problem with [11] that was mentioned in the introduction.

Let’s say that a state of a model is an awkward state if doing any atomic
action at it will end in a bad state. Then at such states, for any atomic action
a, a is not allowed. Then at them, nothing is allowed except those actions such
as o and ¢? which contain one-element traces. As a result, neither Oa -~ Pa
nor Pa v P@ is valid.

6 A Variation

We put some constraints on the logic PDDL: in syntax, there are finitely many
atomic actions and a special action 0; in semantics, atomic actions are pairwise
disjoint. These constraints give PDDL the power to express to do something
else. This is an implicit way to deal with to do something else. There is a
different way to handle it, that is, explicitly introducing an action constructor
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for it.

Let Iy be a countable set of atomic actions and ® a countable set of atomic
propositions. Let a range over IIy and p over ®q3. The sets IIoppr, of actions
and ®p,ppr, of propositions are defined as follows:

az=al|(a)|(ava)|a* | @

¢u=p|T]b|-0|(¢nr0)]]af¢

Here in “Iloppr,” and “@p,ppr.”, “O” is for “opposite”’. The action @ is called
the opposite of a; to do @ is to do something else but a. The intuitive reading of
this language is as the language ®pppr, specified in section 3. F'a and P« are
defined as before and O« is directly defined as |&[b. Compared with ®pppr,,
®p,ppr, has infinitely many atomic actions and does not have the empty action
0.

M= (W,{R,|aelly}, B,V) is a model where

1. W is a nonempty set of states
2. for any a €lly, Ry €W x W

3. BcW

4. V is a function from ® to 2V

Models are understood as before. Here we do not require that atomic actions
are pairwise disjoint.

Fix a model MM = (W, {R,|a €Iy}, B,V). Recall that a sequence wy . ..w,
of states is called a trace if wyR ... Rw, where R = U{Ry|a € IIp}. Let T
denote the set of traces as before. In section 4, we define a relation x-different
on CS which is the set of computation sequences. Here we define it on 7 in
a similar way: for any traces o and 7, o is a-different from 7, o ¢ 7, if c & 7
and 7 % 0. By use of the relation z-different, we in section 4 define a function
opposite on the power set of CS. We here define it on the power set of T
similarly: for any set A of traces, let A, called the opposite of A, be the set
{r e T|1 ¢ 0 for any 0 € A}. This opposite function also has the properties
specified in proposition 4.4.

Each «a € [Igpppry, is interpreted as a set S, of traces in the following way:

Se =R,

Spy =S5 ® 5y
S@JVZSBUS7

Sar =W uUS,uSaqU...
5. S5=25,

Here the operation ® is defined as in section 3. We make a few points in this
place. In section 4, we assign each « in IIppr, an action @ in Ilppy,. The
assignment makes use of the relation z-different and the function opposite; the
action & follows our idea for to do something else stated in section 2. In this
section, @ is directly given in syntax; however, Sz, the interpretation of @, uses
the relation of z-different and the function of opposite. Here & also follows our
idea for to do something else. 7T is the set of state sequences which can be

= N
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made by performing basic actions. It can be seen that for any «, Sz € 7. This
means that the action constructor ~ does not essentially introduce new actions
in this sense: whichever state can be reached by performing an action with ~
can be reached by performing an action without .

M, w IF ¢, ¢ being true at w in M, is defined as in section 3. The notion of
validity is defined as usual. This logic is called PoDDL. A check of the formulas
from section 5 shows that the new approach does not make a difference for
the validity /invalidity of these formulas.

7 Connections and Future Work

If we accept a state based approach of good and evil, it would be interesting
to find out how the two ways of formalizing the notion of refraining to do
something are related. Do they have the same expressive power or not? Next,
it would be interesting to give complete axiomatisations.

The state based approach to the distinction between good and evil has some
inherent limitations that carry over to our proposals above. As mentioned in
section 5, almost nothing is allowed in the states we called awkward states.
In reality, we never stop acting. Even if we are doing nothing, we are still doing
something. There may be cases where, in order to act, we have to violate some
prohibition. So what is prudent action in such situations? How should agents
act in awkward states? Intuitively, they should transit to those states which are
relatively better than others. Instead of a black and white division of evil and
good states, we need some shades of grey, or even better a relational approach
where some states are better than others. This is future work.

Since morality has to do with our interaction with others, another important
step to take is from single agent to multiple agent deontic logic. Even more
realistic seems an approach where obligations are relational, and where an
obligation of some agent A to do something or to refrain from doing something
is always an obligation to some other agent B. A proposal for a formalization
of this idea in terms of propositional dynamic logic is given in [16]. One of
the attractions of this is that it allows us to model conflicts of duty, such as
the conflicts between professional obligations and family obligations that we all
know so well.
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Abstract

Multivalued setting is quite natural for deontic action logic, where actions are usu-
ally treated as obligatory, neutral or forbidden. We apply the ideas of multivalued
deontic logic to the phenomenon of a moral dilemma and, broader, to any situation
where there are conflicting norms. We formalize three approaches towards normative
conflicts. We present matrices for the systems and compare their tautologies. Finally,
we present a sound and complete axiomatization of the systems.

Keywords: deontic action logic, multivalued logic, moral dilemma, Belnap-Dunn
lattice.

1 Introduction

The need for merging directives coming from different sources is quite com-
mon in social life. 'We may have, for instance, state laws, corporation rules
of conduct, religious regulations, orders, requests or expectations coming from
different people that apply to the same situation. Usually the different di-
rectives can be harmoniously combined. In contemporary European countries
state law allows for the freedom of religion, most corporations do not regulate
what employees do in their free time so when a person is obliged by the rules
of his or her religion to participate in a religious service on Sunday (or another
day free from work) he or she can easily comply with such regulations.

However, sooner or later, one can face conflicting regulations, impulses or
motivations. It is enough to add to the example the factor that the partner of
our agent wants to go hiking for the whole Sunday to have a conflict.

In many cases such a conflict can be quite easily resolved. Several possible
ways of solving norm conflicts have been presented, including preferences on
norms or norm sources (see e.g. [16]) or Rabbis’ decision in the Talmudic
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system (see e.g. [1]). Applying a game theoretical approach in which an agent
gets penalties and payoffs depending on the importance of the norm and the
level of violation or compliance would be another one (see e.g. [6]).
Sometimes, however, an agent cannot resolve the conflict. Such situations,
especially when they apply to existentially important matters, are recognized in
the literature as moral dilemmas and have been extensively discussed in ethics.
Moral dilemmas have also been studied in deontic logic. There are many,
mutually consistent, definitions of moral dilemmas in the logical literature (see
e.g. [15, p.36], [14, p.259], [9, p.283]) ! . Below we present one of the definitions:

Definition 1.1 By a deontic dilemma I mean a situation in which, in a univo-
cal sense of ought, some state of affairs, A, both ought to be and ought not to
be [...] More broadly, a deontic dilemma would be a situation in which there
are inconsistent states of affairs, A and B, both of which ought to be [...] More
broadly still, a deontic dilemma would be a situation in which it is impossible
for both A and B to be realized even though both ought to be, where the sense
of impossibility could be anything appropriate to the context of discourse, from
some metaphysical impossibility to a more mundane practical incompatibility.
[11, p.462]

We will limit ourselves to the situations in which we deal with clearly de-
fined normative systems in which specific actions are obligatory, forbidden or
unregulated (indifferent). The systems do not have to be codified, we just as-
sume that there is no doubt how to classify an action within a given system.
Loosely speaking we can say that the justification for such norms lies in the fact
that actions are regarded, from some point of view, as good, bad and neutral
respectively. We will, however, not consider the rationale of norms but accept
them as they are.

That allows us to use three/four-valued logic as a technical tool. Multi-
valued logic has been present in deontic logic from the 1950s [17,10,4], more
recent works include [18,7,20]. The biggest advantage of many-valued logic is
its conceptual simplicity and efficient decidability. The latter feature is espe-
cially important for applications in artificial systems making many-valued logic
popular among researchers in computer science.

In the present paper we use a many-valued logic approach for deontic logic
focusing on merging norms. The cases of normative conflict, especially dilem-
mas are most interesting and challenging so we put most of our effort to model
these cases. The presented systems, however, can be used also to model merg-
ing of non-conflicting normative systems. Finally, we want to obtain the general
normative (legal, moral or social) evaluation of actions carried out in a complex

1 As far as we know ethics provides no definite answer to the question whether moral dilem-
mas really exist (see e.g., [26,12]). Experiencing conflicting norms in real life we may state
following Horty [15, p.37] that: ‘even if it does turn out, ultimately, that research in ethics
is able to exclude the possibility of conflicts in a correct moral theory, it may be useful all
the same to have a logic that allows for conflicting oughts’.
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environment consisting of many, possibly inconsistent, normative sub-systems.

As we have mentioned above the idea of multivalued deontic logic is not new.
Our contribution lies in providing a new reading of action operators within the
logic, making it suitable for dealing with normative conflicts. In the paper we
discuss three systems. The first of them is based on the matrices introduced
in [17] and complemented with more operators on actions in [10]. The other
two systems are original. All of them are presented in a unified way slightly
different from the earlier formalizations.

The paper has the following structure. In section 2 we introduce and inter-
pret Antigone’s story, a classical example of a moral dilemma. In section 3 we
introduce formal tools. We define a language of a deontic action logic (section
3.1), explain the interpretation of its main operator (section 3.2) and define
matrix systems (section 3.3). In section 4 we present three logics defining their
matrices and axiomatizations. The systems formalize different accounts of as-
sessing decisions in the presence of conflicting norms. In section 5 soundness
and completeness of the systems is proved. In section 6 we list tautologies
which are common and specific for the three logics. It is important to note
that the intuitions are formally reconstructed within the matrix systems and
the fact that some formulas are or are not tautologies in a specific system is

just a consequence of the application of intuitions on the level of matrices?.

2 Antigone’s example

Let us start our detailed investigations with an example of a moral dilemma
from Sophocles’ Antigone.

Creon, as the new ruler of Thebes, has decided that Polyneices will be in
public shame and his dead body will not be sanctified by holy rites, but
will lie unburied on the battlefield. Polyneices’ sister Antigone believes that
she should bury his body according to universal laws given by gods. Thus,
whatever she does, she is in conflict with one of the directives that she should
comply with — as a subject to Creon or as a subject to gods.

Let us analyze this example from the point of view of action theory in a
deontic context. Antigone has two options: bury her brother or not. Obviously
there is no other possibility. One can look at them at different levels referring
to the various intentions or descriptions under which they are carried out (see
[3] or [8, essay 3]). At the basic level of crude behavior (bodily movements)
burying Polyneices is an ‘elementary act’ done with a basic intention whose
content is free from the social context of the situation. The other option is not
as simple to interpret at this level but, regardless of any possible and, to some
extent justified, criticism, it can be understood as carrying out any other action.
This, however, does not help us to understand the essence of the situation.
We certainly must look at Antigone’s possible acts within their social and

2 Some results described in the paper were presented in a preliminary form at ESSLLI 2012
workshop ‘Trivalent Logics and their applications’.
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normative context. Then burying Polyneices is no longer elementary. It carries
all social saturation. From the point of view of the tragedy it is important
that burying Polyneices is in defiance of Creon’s edict and in accordance with
divine law (custom). On the other hand any behavior different from that is in
accordance with Creon’s edict and in defiance of divine law 3.

Thus, we can think of Antigone’s possible acts as determined by their so-
cially grounded interpretations. Those interpretations constitute the charac-
teristics of a behavior that is meaningful from the deontic point of view. Those
interpretations have also an essential impact on the agent’s choices that in the
case of Antigone are: comply with Creon’s edict and comply with divine laws
(custom). As the next step we can attach deontic value (that means a decla-
ration whether the act is obligatory, forbidden or unregulated) to the agent’s
choices. In our case complying with Creon’s edict is obligatory, since he is a
king and, on the other hand, complying with divine laws is also obligatory.

Thus, the same action of burying Polyneices is, in the light of the Creon’s
edict, forbidden and, in the light of customs, obligatory. Analogously, not bury-
ing Polyneices is at the same time obligatory and forbidden. Such a situation
is in deontic logic treated as (normative) inconsistency. Normally, any action
should not be at the same time obligatory and forbidden. The reason of the
inconsistency in our case is that, despite the fact that each of the normative
systems (Creon’s edict and custom) taken separately is consistent, they cannot
be harmoniously combined, i.e. it is impossible to fulfill both obligations.

Nonetheless, Antigone herself or any other person may want to judge or
assess the behavior in the given situation. Ideally one would like to have a
logical system which can help to choose what to do. In the case of a genuine
dilemma, as we understand it, it is impossible. Still we can try to define the
normative status of the behavior of an agent facing a dilemma. We expect
from such a judgment to be consistent and inform us unambiguously whether
a given action is obligatory, forbidden or unregulated (neutral).

Thus we have three levels (compare our analysis of Antigone’s example
illustrated in Figure 1): (1) available actions, (2) normative description — con-
sisting of possibly inconsistent specific norms coming from different systems
of norms and (3) final judgment — consistent synthesis of norms applying in a
given situation.

The modeling principle accepted in the paper and necessary to use the tools
of many-valued logic is that the deontic value of an action can be computed
from the deontic values of its basic elements using functions connected with
operators in a way analogous to truth values and truth connectives of propo-
sitional calculus. We do not claim that this assumption covers all the deontic
intuitions, we rather want to explore its possible consequences.

The main problem that remains open in the approach is to decide what

3 There may be of course more socially important, relevant aspects of what Antigone does
such as the fact that she is Polyneices’ sister, Creon’s niece or that she is a woman, but at
that point we just focus on the two most important ones.
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Fig. 1. In the figure edict stands for action ‘comply with Creon’s edict’, custom —
‘comply with divine laws (customs)’ and bury — ‘burying Polyneices’.

should be the deontic value of a combination of obligatory and forbidden
action—we will propose and discuss three proposals in section 4. Other combi-
nations like obligatory (forbidden) with obligatory (forbidden) and obligatory
(forbidden) with neutral seem to be straightforward.

3 Formalization

Let us start with introducing a formal language we shall use in our considera-
tions.

3.1 Language

The language we shall use can be defined in Backus-Naur notation in the fol-
lowing way:

(1) ¢ u= O(a) [—plene
(2) a = g |@lalNa
where a; belongs to a finite set of basic actions Actg, ‘O(«)’ — a is obligatory,
‘al P’ — a and B (aggregation of a and f); ‘@ — not a (complement of «). ‘=’
and ‘A’ represent classical negation and conjunction, respectively (‘V’; ‘=’ and
‘=" are the other standard classical operators and are defined in the standard
way). Further, for fixed Actg, by Act we shall understand the set of formulas
defined by (2). Let us stress that the language has two kinds of operators:
inner ones operating on names — complement and combination, and outer ones
operating on propositions — the usual Boolean connectives? .

We use obligation as the only primitive deontic operator defining weak

permission, prohibition and neutrality respectively:

(3) P(a) =4 ~O(@)

4 See also [17,22,23,25,21], where the language of deontic logic is built in a similar way.
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(4) F(Oé) =df O(a)
(5) N(a) =4 =O(a) A -O(@)

3.2 The meaning of I operator

The crucial issue for our formalization is the interpretation of M operator. Its
main idea is shared among all systems we will discuss. Namely, the operator
is treated as an aggregation of socially grounded intentions of two given ac-
tions. Thus, if a M B appears in a formula, then « and 8 have to be different
descriptions that can be attached to the same particular action. Usually in
this context o and S represent types of action coming from different normative
systems and « M 8 refers to the same action when we express its final deontic
status after merging the normative systems. Let us for example consider the
following formula:

(6) O(a) AN(B) = O(a )

The intended interpretation of (6) applies to actions that can be called « and
B at the same time. « and § are descriptions taken from different normative
systems. If in the system using description « any action of type « is obligatory
and in the system using description [ any action of type g is neutral, then
any particular action that is both a and £ is obligatory, when both normative
systems are taken into account 5,

As a consequence of the accepted interpretation M—as aggregation—should
be commutative and associative:

(7) alNpf=Na«a
(8) (@npB)ny=an(Bny)
3.3 Matrices

We shall define our logics by means of matrix semantics. Let us now formally
define the principles of matrix systems. Since we are using a ‘two level’ language
we need a slight modification of a usual matrix semantics, which we define
below.

Definition 3.1 [Deontic matrix] D-matrix for language L is a tuple
(D,{F,N, 0}, {-,M}), where: D is a non-empty set of deontic values; {F,N, O} is
a set of deontic functions from D to Fregean truth values {0, 1}; {-, M} consists
of functions s.t. —: D — D and M : D? — D.

5 To clarify the interpretation let us present a formal notation alternative to the one we use
in the paper. Let a refer to a particular action of type a M S (so a is also of type «a and of
type B), k and I be labels for normative systems and k x [ be a label for a system resulting
from merging k and [. Let further the deontic status of actions be recorded using deontic
operators (O, F or N) with the label of respective normative system as a subscript and action
name as an argument, e.g.: O;(a). Now formula (6) takes the form:

Ok (a) ANi(a) = Opxi(a)

We prefer our ‘main’ notation since it is simpler and much closer to the usual language of
deontic action logic.
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We take into account three matrix systems. In two of them a set of deontic
values D will consist of three elements, i.e. D = {f,n,o} (forbidden, neutral
and obligatory respectively), and in one of them D will include four elements:
b, T,L1,g, where T and L are two special neutrality cases.

Definition 3.2 [Tautology] Formula ¢ is a tautology of matrix M iff v(¢) =1
for every interpretation Z of actions occurring in ¢. A set E(M) defined below
is a set of tautologies of M.

E(M)={p € For : v(p) =1 for every interpretation Z}

4 Different accounts of judgment in the case of
conflicting norms
4.1 Pessimistic view on moral dilemmas

Matrices of the pessimistic system As we have mentioned in the intro-
ductory section the settings for defining multivalued deontic logic can be found
in the classical work of Kalinowski [17]. Its extension presented by M. Fisher
[10] employs the pessimistic view on moral dilemmas®. In this approach there
are three deontic values of actions, i.e., every action is either obligatory (o),
forbidden (f) or indifferent/neutral (n). Then deontic operators of permission,
obligation, prohibition and neutrality are characterized by referring to deontic
and truth values (see table 1). One can see that the deontic operators F, N and
O are language counterparts of the deontic values f, n and o, respectively.

a | F(a) | N(a) | O(a) | P(a)

711 0 0 0

n 0 1 0 1

0 0 0 1 1
Table 1

The action negation is defined by table 2. A complement of an obligatory
action is forbidden, a complement of a forbidden action is obligatory and
finally a complement of a neutral action is also neutral.

a | a Nl fln|o
flo Sl S
niln n|fln|o
o | f ol flo|o
Table 2 Table 3

Operation of combination of deontic values is defined by table 3. The view
corresponds to the intuition that an action that is from one point of view oblig-
atory and from the other forbidden is here finally regarded as forbidden and

6 Fisher’s system has one more inner connective — alternative, which is defined as a De
Morgan dual of the inner conjunction. We do not use that connective because we cannot
find a clear intuitive reading of it in the context of our investigations.
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therefore judged as bad. That reveals the tragic dimension of moral dilemma.
There is no good solution, no matter what an agent does its action is bad in
the end.

We can say that in this approach in the conflicting situation both norms that
are connected with a compound action are considered in the deontic evaluation
of the action but the fact that one of them forbids the action is taken into
account as ‘more important’.

Now let us try to express the Antigone example in the language. The set of
basic actions Acty should consist of actions being relevant to the situation; in
this case we shall take into account the actions described by socially grounded
intentions (as we have defined it above in section 2): complying with Creon’s
edict (let us use edict for it) and complying with divine laws (custom). Thus,
burying Polyneices can be normatively interpreted as: edict M custom, whereas
not burying Polyneices carries the following normative description”: edict M
custom. Providing Z(edict) = o and I(custom) = o, we obtain that Z(edict I
custom) = f and Z(edict N custom) = f.

In our formal language we could describe the situation as follows:

9) F(edict) A O(custom) — F(edict M custom)
(10) F(custom) A O(edict) — F(edict M custom)

Axiomatization of the pessimistic system The matrix representation of
the pessimistic system is natural as it is very close to the intuitive investigations.
One can, however, ask about the proof theoretic presentation of the systems.
An axiomatisation of the Fishers multivalued deontic logic from [10] with
the matrices for negation and conjunction identical to our pessimistic system
was presented by L. Aquist in [4]®. We present an axiomatization that is
slightly simpler. Its rules are: Modus Ponens, point substitution (substitution

7 The Reader may wonder whether @M 3 is a complement of o M B and vice versa, i.e.,

whether @M B = oM B. In the systems presented in this paper it is not the case. However, it
can be shown that it is the case in the atomic Boolean algebra with two generators « and
and two additional axioms stating that atoms (atomic actions) a3 and @M g equal 0, i.e.,
they are impossible. We shall not enter into discussion about algebraical issues here. The
interested Reader should consult section 2.3.1 in [24].

8 Aquist’s system F consists of PC laws, Modus Ponens, Substitution rule, Replacement in
PC-theorems, and ten axioms: Three of them are mentioned explicitly:

(11) O(a) — P(a)
(12) P(a) A O(b) — O(a M b)
(13) P(a) A P(b) — P(amb)

and the next seven obtained by ‘Extensionality (restricted)’ rule that turns the seven PC
laws chosen by Aquist into deontic formulas, e.g. the rule states that PC law

PAG—=p
can be transformed into
(14) P(amb) — P(a)
by replacing p/a, ¢/b and putting P in the antecedent and consequent.
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for action variables) and extensionality for identity of actions understood as
synonymy of action descriptions. Action identity is defined by axioms: (7) and
(8) and the following double complement equation:

(15) a=a

We assume that all substitutions of PC laws in the system are common axioms
of the system. For the specific axioms we use the following formulas:

(16) —(0(a) AF(a))
(17) Fo) = F(aT1 )
(18) Fl(amn ) = F(a) VF(3)
(19) P(a) AO(B) — O(ar B)
(20) O(an g) — O(a) vV O(B)

(16) guarantees consistency of norms coming from one source. Formulas
(17) and (18) state that a compound action is forbidden if and only it has
at least one forbidden component. So since each of Antigone’s choices has
forbidden aspects, each of them has to be forbidden. (19) states that a com-
pound action is obligatory, providing one of its components is obligatory and
the other one permitted (so not forbidden). (20) expresses the fact that an
obligatory compound action implies that one of the components is obligatory.
Some chosen theses of the system are in Table 8.

4.2 Optimistic view on moral dilemmas

Matrices of the optimistic system In the optimistic view on moral dilem-
mas the tables for deontic operators and action negation are the same as tables
1 and 2. What differentiates this approach from the previous one is the table
for ‘" (compare tables 3 and 4). With the second solution we have the op-

Ny fln|o
flLflf]oe
n|flnl|o
o|lol|lolo
Table 4

posite situation. When we have an act exhibiting elements of something good
and something bad the act is always good. Thus providing Z(edict) = o and
Z(custom) = o, we obtain that Z(edictMcustom) = o and Z(edictMcustom) = o.
In this approach Antigone did something good by carrying out the action of
burying Polyneices (of course if she had chosen otherwise it would have been
good as well).

Analogously to the statement saying that in the pessimistic system we have
both conflicting norms in force we can say that in the optimistic case only one
of the norms is present in a final judgment. Moreover, it is always the norm
that was actually followed by the agent.
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The optimistic view on moral dilemma, contrary to the approach presented
in the previous section, liberates an agent from the burden of guilt in a con-
flicting situation. Following one obligation is enough to make the decision
(whatever it is) good.

Axiomatization of the optimistic system Definitions and rules are as in
the pessimistic view. Axioms of the optimistic system consist of (16), (18),
(20) and the following ones:

(21) -0(a) ANF(B) = F(am1 B)
(22) O(a) = O(an B)

We can see that in this approach a necessary condition for the compound action
to be forbidden is that one of its components has to be forbidden (18). In this
approach it is not sufficient that one of the two components of the compound
action is forbidden to make the compound action forbidden (formula (17) is
not a tautology of the optimistic system); it also has to be guaranteed that
the second one is not obligatory (21). Thus obligation in this view is ‘stronger’
than prohibition in the sense that a compound action is obligatory if and only
if one of its components is obligatory — (20) and (22).

Let us observe that axiom (19) of the pessimistic system follows from (22),
so it is also a thesis of the optimistic system. On the other hand axiom (21) of
the optimistic system follows from (17), so it is a thesis of the pessimistic one.
So we may conclude that the formulas (17) and (22) are characteristic for the
pessimistic and optimistic systems respectively.

Some chosen theses of the system are in Table 8.

4.3 ‘In dubio quodlibet’ view on moral dilemmas

In this approach the combination of good and bad is treated as neutral, con-
flicting norms derogate one another. Thus if an action is obligatory for one
reason and forbidden for another in the final judgment it is unregulated.

Again, as in the case of the optimistic system, an agent is free from the
responsibility for breaking a regulation if it is impossible to follow all of them.
The inconsistent norms disappear when the inconsistency is revealed.

In the case of our running example Antigone did something neutral by
carrying out the action of burying Polyneices and doing opposite would have
also been neutral.

That effect, however, cannot be achieved with trivalent matrices with the
preservation of associativity, since we would have: (oMo) M f=0M f =n and
oM(oMNf)y=o0Mn=o.

Matrices For that reason we take a structure resembling the Belnap-Dunn
[5] construction concerning truth and information, replacing them respectively
by moral value and deontic saturation depicted in the following diagram? :

9 The idea of applying Belnap’s construction to deontic action logic was first introduced in
a preliminary form in [20].
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-
saturated
deontic f 0
saturation
1L
neutral

forbidden  deontic value  obligatory

Two new deontic values appear here: | and T. The former is attached
to actions that are deontically unsaturated (have no deontic value at all, are
plainly neutral). The latter is attached to actions that are deontically oversat-
urated (have obligatory and forbidden components). Both of them are neither
‘purely’ obligatory nor ‘purely’ forbidden, and in that sense are neutral.

Formally operator ‘I is interpreted as supremum in the structure. More-
over, negation of T is T and negation of L is 1. The definitions of the
operators can be expressed by tables 5 and 6.

a |« nlfl1L]T|o
flo SIS T]T
L Tl FfL]T]o
T T T T|T|T|T
o| f o| Tlo|T]|o
Table 5 Table 6

a | F(a) [ No(a) | N°(a) | N(a) | O(a) | P(a)

f 1 0 0 0 0 0

1 0 1 0 1 0 1

T 0 0 1 1 0 1

0 0 0 0 0 1 1

Table 7

The interpretation of the deontic atoms is defined by Table 7. The table
shows that intuitively values L and T are both treated as neutral. Thus, in a
sense, the system remains trivalent, though formally there are four values that
can be attached to actions. We have two new operators in the table: N, and
N® that are intended to represent deontic values | and T in the language.

The last two views on a moral dilemma, contrary to the approach presented
in section 4.1, liberate the agent from the burden of guilt in a conflicting sit-
uation. If anybody is to be responsible for the situation, then it is the norm
givers.
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Axiomatization Definitions and rules are the same as in the pessimistic sys-
tems. We have one new definition:

(23) Ni(@) =qr P(a) AP(@) A =N*(a)
(

Axioms of the system consist of (16), (18), (20) and the following ones:

(24) N’(a) — N*(@)

(25) N°(a) — P(a)

(26) N®(a) — —O()

(27) Fla) AF(8) = F(am B)

(28) O(a) AO(B) = O(a B)

(29) N°(@) v (O(a) AF(B)) = N°(ar1f)
(30) N®(a ) = N°(a) VN*(B) v (O(a) ANF(B))
(31) Np(aT18) = Ni(a) ANg(5)

(32) O(a) AN, (B) = O(aT1 B)

(33) F(a) AN, (8) = Flan B)

(16), (24), (25) and (26) characterize relations between deontic concepts as
defined in table 5.

(18) and (27) characterize prohibition and (20) and (28) state the properties
of obligation.

(29) and (30) describe deontic saturation. So according to the axioms a com-
pound action is deontically saturated if and only if one of its two components
is obligatory and the other one is forbidden or one of them is oversaturated.

Deontic unsaturation is characterized by axioms (31), (32) and (33). (31)
(and the implication from right to left which is also a thesis of the system)
states that a compound action is deontically unsaturated if and only if all of
its components are unsaturated. (32) and (33) express the fact that obligation
and prohibition are stronger than deontic unsaturation.

5 Soundness and Completeness of the systems

Theorem 5.1 The three systems described above are sound and complete with
respect to their matrices.

Proof. We show the complete proofs for the pessimistic and optimistic sys-
tems. The proof for the ‘in dubio quodlibet’ system is straightforwardly anal-
ogous. For the completeness part of the proof we use the method of S. Halldén
from [13] applied also in [4] for Fisher’s deontic logic and in [19] for Kalinowski
Ky system.

To apply the method we have to be able to express the deontic values of
actions in the language. Table 1 allows us to do that by connecting uniquely
values f, n and o of action a with formulas F(«), N(«) and O(«) respectively.

Thus, we can connect any formula ¢ and its interpretation Z with a formula
describing the interpretation for the action variables occurring in ¢ — let us use
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the symbol ¢z for that formula. For example, let us consider ¢ = P(aM ) in
which we apply the interpretation Z; in which we interpret o as f and 3 as o.
Then we have'%: P(a18)z, = F(a) A O(B).

A formula ¢ is valid in a matrix system if it takes a distinguished value
for any interpretation of action expressions.We have to show that in such a
case we can prove ¢ from axioms. We will show that in two steps: (i) for
any interpretation Z under which ¢ takes a distinguished value the formula
‘o7 — ¢’ is provable and (ii) the disjunction of all ¢z for all interpretations is
also provable. That will conclude the completeness proof.

For (i) it is enough to show that there exists a thesis of the system corre-
sponding to each ‘entry’ in the matrices of the system '* — the straightforward
induction on the number of occurrences of action operators completes the proof.
The respective formulas are as below.

The matrix of action complement is the same for pessimistic and optimistic
systems. It is to be described as follows:

(34) Fla) - O(@)
(35) N(a) — N(@)
(36) O(a) — F(@)

The matrix of accumulated actions for pessimistic system is characterized
below:

(37) F(o) NF(B) = F(aT1 )
(38) F(a) AN(B) = F(a1 B)
(39) F(a) NO(B) — F(al1 )
(40) N(a) ANF(B) = F(an B)
(41) N(a) AN(B) = N(aT15)
(42) N(a) AO(B) = O(am B3)
(43) O(a) ANF(B) = F(am B)
(44) O(a) AN(B) = O(aT13)
(45) O(a) NO(B) = O(am1 B)

The matrix of parallel execution for optimistic system is characterized by
formulas (37), (38), (40), (41), (42), (44), (45) and two formulas below:

(46) F(a) ANO(B) = O(a )
(47) O(a) ANF(B) = O(an B)
Formulas (34), (35), (36) after the replacement of defined operators with O

turn to PC tautologies (in the case of (35) we have to apply the double negation
identity axiom (15)).

10 The formula ¢ is used only to determine the set of variables that are used to construct the
formula 7.

11 The formula is an implication with the conditions defining the position in the matrix as
the antecedent and the representation of the value in the matrix as the consequent.
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Then for the pessimistic system we prove that formulas (37), (38), (39),
(40), (43) follow from (17), formula (41) follows from (20) and (17), formula
(42) follows from (19) and formula (44) from (19) and (7), and finally formula
(45) follows from (16) and (19).

For the optimistic system we prove that (37) follows from (16) and (21);(38)
from (21) and (7); (40) from (21); (41) from (22) and (18) and finally (42), (44),
(45) follow from (22). Formulas (46) and (47) follow from (22).

For (ii) we have to notice that the formula in question is a disjunction of
formulas representing all possible interpretations for variables in ¢. Such a
disjunction follows from formula: F(a) vV N(a) V O(a).

For soundness, since we use standard rules of deduction and classical un-
derstanding of proposition operators, it is enough to check that identity axioms
and the specific axioms of the systems are valid tautologies of the matrices. O

| formula / logic in section | 4.1 | 4.2 | 4.3 |
P(a) vV P(@) + + +
O(a) = P(w) + + +
F(a) = -P(a) + + +
O(a) = —P(a) + + +
=(0(a) A O(@)) + + +
—(0(a) A F(a)) + 1+ | +
P(a) AP(B) — P(am1B) + + +
O(@)nO(B) = 0(amp) | + | + | +
Fla)AFB)=Flanp) | + | + | +
N(a) AN(B) — N(am1B) + + +
O(@npB) = 0(@VvOop) | + | + | +
O AFB) =F@@np) | + | — | =
F(a) » F(am B) + — —
P(amB) — P(a) AP(B) + — —
O(a) NF(B) —» O(am1B) — + —
O(a) - O(an B) — + —
O(a) NF(B) = N(a ) — — +
N(am B8) — N(a) AN(B) + + —
N(a) AO(B) — O(a j) + + -
O(anpB) — O(a) A O(B) — — —
FlamB) = Fl@AFB) | — | = | =

Table 8

‘4’ indicates that a formula is a tautology of the system; *

—’ indicated otherwise.

6 Some formulas

In Table 8 formulas being tautologies in the indicated systems are gathered.
All the systems have formulas defining the relation among the notions of per-
mission, prohibition and obligation as common tautologies. None of them has
a counterpart of Ross formula O(a M ) — O(«) A O(B). Not surprisingly the
differences occur when we deal with combinations of actions. In such cases the
systems behave according to the content of their deontic tables.

From the content of table 8 it is easy to notice that none of the 3-valued
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systems either contain or is contained in the 4-valued system. Moreover, pes-
simistic and optimistic systems are in the same relation — none of them is
contained in the other.

7 Conclusions and further work

Moral dilemmas are present in human considerations concerning morality from
the very beginning. They are the kind of phenomenon which in principle cannot
be solved — we can either look for ways of eliminating them or try to understand
them better from various points of view. In the paper we have chosen the
second possibility. We have presented three approaches towards assessing an
agent facing a dilemma in the framework of multivalued deontic action logic.

One of them, which we call pessimistic, reveals the tragic character of dilem-
mas. Any action of an agent facing conflicting norms is treated as forbidden.
Another one, which we call optimistic, makes us treat any decision in the case
of normative conflict as good, provided that at least one obligation is fulfilled.
Yet another, which we call ‘in dubio quodlibet’, reflects the intuition that con-
flicting norm derogate one another and the situation of normative conflict is
treated as unregulated. Thus any decision in the presence of a dilemma is
treated as deontically neutral.

Our study shows that all those points of view lead to consistent formal
systems that take the form of different deontic action logics. The sound and
complete axiomatic systems are presented and their theses are compared. We
believe that formalizing them can help in their critical analysis.

We can say that what we have presented consists of different attempts to
create a consistent normative system from mutually inconsistent components.

From the technical point of view the third system is the most interesting.
It uses a four value structure similar to the Belnap-Dunn lattice used in the
epistemic context.

Still a lot of questions that can be formulated within the proposed frame-
work remain untouched in the paper. Let us just mention two of them. The
first one is extending the formalization and concerns the notion of permission.
In the paper we use the notion of weak permission understood as the lack of
obligation to do the opposite ([2]). However, in normative systems we also deal
with explicit or strong permission. The question remains how actions explicitly
permitted in one normative system and forbidden in another should be judged.

The other problem is of a more intuitive and applicative character. In the
present paper we just present three possible formal accounts of judging an
agent’s actions in the context of normative conflicts. It is a matter of further
study to compare them with the actual practice of ethical, legal or psychological
assessment of actions in real life situations.
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Abstract

Deontic logic sentences define what an agent ought to do when faced with a set of
norms. These norms may come into conflict such that a priority ordering over them
is necessary to resolve these conflicts. Dung’s seminal paper raised the — so far open
— challenge of how to use formal argumentation to represent non monotonic log-
ics, highlighting argumentation’s value in exchanging, communicating and resolving
possibly conflicting viewpoints in distributed scenarios. In this paper, we propose a
formal framework to study various properties of prioritized non monotonic reasoning
in formal argumentation, in line with this idea. More precisely, we show how a version
of prioritized default logic and Brewka-Eiter’s construction in answer set program-
ming can be obtained in argumentation via the weakest and last link principles. We
also show how to represent Hansen’s recent construction for prioritized normative
reasoning by adding arguments using weak contraposition via permissive norms, and
their relationship to Caminada’s “hang yourself” arguments.

Keywords: Abstract argumentation theory, prioritized normative reasoning.
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1 Introduction

Since the work of Alchourrén and Makinson [1] on hierarchical normative sys-
tems, in which a priority or strength is associated with the authority which
promulgated a norm, reasoning with priorities of norms has been a central chal-
lenge in deontic logic. This has led to a variety of non-monotonic formalisms
for prioritized reasoning in deontic logic, including a well known approach from
prioritized default logic (PDL) and answer set programming — recently given
argumentation semantics [13] (and to which we refer as the greedy approach);
an approach by Brewka and Eiter [3] (which we refer to as the Brewka-Eiter
construction); and a recent approach in hierarchical normative reasoning by
Hansen [9], which we refer to as the Hansen construction. Given as input a set
of norms with priorities, these approaches may produce different outputs. Con-
sider the following benchmark example introduced by Hansen [9], and which
results in the prioritized triangle.

Example 1.1 [Prioritized triangle — Hansen [9]]

Imagine you have been invited to a party. Before the event, you receive

several imperatives, which we consider as the following set of norms.

- Your mother says: if you drink (p), then don’t drive (—x).

- Your best friend says: if you go to the party (a), then you’ll drive () us.

- An acquaintance says: if you go to the party (a), then have a drink with me
(p)-

We assign numerical priorities to these norms, namely ‘3’, ‘2’ and ‘1’ cor-
responding to the sources ‘your mother’, ‘your best friend’ and ‘your acquain-
tance’, respectively. Whereas default and answer set programming-based ap-
proaches derive p, Hansen [9] argues convincingly that in normative reasoning
p should not be derived. Meanwhile, the greedy approach and the Hansen
construction return x, but the Brewka-Eiter construction returns —zx.

Given that these different non-monotonic approaches yield different results,
and further given Young and colleagues [13] representation result for prioritized
default logic in argumentation, we wish to investigate the representation of such
prioritized normative systems in formal argumentation. Therefore, the research
question we answer in this paper is: how can Brewka-Fiter’s and Hansen’s
approaches for prioritized mon monotonic reasoning be represented in formal
argumentation?

In this paper, we aim to make as few commitments as possible to specific
argumentation systems. We therefore build on Tosatto et al. [11]’s abstract
normative systems, and a relatively basic structured argumentation framework
which admits undercuts and rebuts between arguments, and allows for prior-
ities between rules making up arguments. We show that different approaches
to lifting priorities from rules to arguments (based on the weakest and last link
principles) allow us to capture the greedy and Brewka-Eiter approaches, while
the introduction of additional arguments through the principle of weak contra-
position, or through so called hang yourself arguments, allows us to obtain the
Hansen construction.
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A key point of our formal framework is that it addresses the challenge
raised by Dung [6] aiming at representing non-monotonic logics through for-
mal argumentation. In particular, argumentation is a way to exchange and
communicate viewpoints, thus having an argumentation theory representing a
non-monotonic logic is desirable for such a logic, in particular when the argu-
mentation theory is simple and efficient. Note that it is not helpful for the
development of non-monotonic logics themselves, but it helps when we want to
apply such logics in distributed and multiagent scenarios.

The layout of the paper is as follows. First, we introduce our formal frame-
work, and the three constructions. Second, we present our representation re-
sults, and demonstrate the relation between weak contraposition and hang
yourself arguments. Finally, in concluding remarks, we discuss the main contri-
butions of our approach, and highlight the future directions to be investigated.

2 Prioritised abstract normative system

In this section, we introduce the notion of prioritized abstract normative system
(PANS) and three different approaches to compute what normative conclusions
hold (referred to as an extension). A PANS captures the context of a system
and the normative rules in force in such a system, together with a set of permis-
sive norms which identify exceptions under which the normative rules should
not apply. There is an element in the universe called T, contained in every
context, and in this paper we consider only a finite universe. A PANS also
encodes a ranking function over the normative rules to allow for the resolution
of conflicts.

Tosatto et al. [11] introduce a graph based reasoning framework to classify
and organize theories of normative reasoning. Roughly, an abstract normative
system (ANS) is a directed graph, and a context is the set of nodes of the graph
containing the universe. In a context, an abstract normative system generates
or produces an obligation set, a subset of the universe, reflecting the obligatory
elements of the universe.

Based on the notion of abstract normative system defined by Tosatto and
colleagues [11], a PANS is defined as follows.

Definition 2.1 [Prioritized abstract normative system| A prioritized abstract
normative system PANS is a tuple P = (L, N, P, A, r), where

e L=FEU{-e|e€ E}U{T} is the universe, a set of literals based on some
finite set E of atomic elements;

e N CL x Lis a set of ordinary norms;
e PC L x L is a set of permissive norms;

e A C L is a subset of the universe, called a context, such that for all ¢ in E,
{CL, —\CL} Z 4

e r: NUP — IN is a function from the norms to the natural numbers;

and where NN P = .
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Ordinary norms are of the kind “if you go to the party, then you should
have a drink with me”, whilst permissive norms take the form of statements
such as “if you go to the party, then you don’t have to have a drink with me”.
Both ordinary norms and permissive norms are conditional norms, requiring
some condition to hold (e.g., going to the party) before their conclusion can be
drawn. To distinguish the ordinary norms of N from the permissive norms of
P, we write (a,z) for the former and (a,z) for the latter, where a,x € L are
the antecedent and conclusion of the norm respectively. When no confusion
can arise, a permissive norm is also represented as (a,z). Let u,v € NUP
be two norms, we say that v is at least as preferred as u (denoted u < v) if
and only if 7(u) is no more than r(v) (denoted r(u) < r(v)), where r(u) is also
called a rank of u. We write u < v or v > v iff w < v and v £ u. Given a
norm u = (a,z) or (a,x), we write ant(u) for a to represent the antecedent of
the norm, and con(u) for = to represent the conclusion of the norm. We say
that a PANS is totally ordered if and only if the ordering < over N U P is
antisymmetric, transitive and total. We assume that the set of norms is finite.
For a € L, we write @ = —a if and only if « € E, and @ = e for e € F if and
only if @ = —e. Given a set S, we use S ¥ L to denote that fa,b € S s.t. a = b,
i.e., a and b are not contradictory.

Example 2.2 [Prioritized triangle [9]] In terms of Def. 2.1, the prioritized
triangle can be represented as a PANS P; = (L, N, P, A, r), where

o [ — {a,p,x, —-a, 7p, ﬁx}’

e N = {(%p)v(p?_'x)ﬂ(a?x)}’
QP:Q)’A:{G/,T},

e r((a,p) = 1, 7((p,~x)) = 3, and r((a,2)) = 2.

Figure 1 visualizes the prioritized triangle, with the crossed line between a and
-z denoting the norm (a, ).

N ONOWR0O

a 2’5 > [a] @p)]  [@p)(p,~x) [(a,x)]

(a) (b)

L

Fig. 1. The prioritized triangle (a), with the related arguments and the attacks among
them visualized as directed arrows (b).

Given a totally ordered PANS, existing approaches of reasoning with pri-
oritized norms may give different consequences. We consider three approaches
(among others) that give three distinct consequences to the prioritized trian-
gle example: the greedy approach of PDL, the Brewka-Eiter construction and
the Hansen construction. Existing approaches consider only PANSs without
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permissive norms (i.e., P = (). In this paper, we extend these approaches to
PANSs with permissive norms. So, the following definitions are applicable for
both cases when P = () and P # (.

First, a greedy approach (as used in PDL) always applies the norm with
the highest priority among those which can be applied if this does not make
the extension inconsistent.

Definition 2.3 [Greedy approach] Given a totally ordered PANS P = (L,
N,P,A,r),anorm u € NUP and a set S C L:

e We say that u is acceptable with respect to S, if and only if the following
conditions holds:
- ant(u) € S,
- SU{con(u)} ¥ L, and
- v € NUP such that v > u, v has not been previously applied, ant(v) € S,
and S U {con(v)} ¥ L.

e Let Gp : 2L — 2L be a function, such that Gp(S) = SU{con(u)} if u € NUP
is acceptable with respect to S; otherwise, Gp(S) = S.

* Given A, G'p has a fixed point (denoted as G (A), such that the extension
of P by using the Greedy approach (denoted as Greedy(P)) is equal to:

{a € GR(A)|3{br,... b} CGR(A): by € A,
Vi € {1,...,]€— 1}7(biabi+1) €N,
and (bg,a) € N}

Note that since P is totally ordered, using the Greedy approach guarantees
that there is a unique extension.

Building on the Greedy approach, Brewka and Eiter [3] defined the following
construction.

Definition 2.4 [Brewka-Eiter construction] Given a totally ordered PANS
P=(L,N, P, A, r),and aset X D A:

e Let PX=(L,N', P', A, '), where
- N'={(T,l2) | (I1,l2) € N,l; € X} is the set of ordinary norms,
- PP={(T,l3) | (l1,12) € P,l; € X} is the set of permissive norms,
- and r'((T,l2)) = r((l1,12)) for all (I1,l2) € N UP are priorities over norms.

o If X = Greedy(PY), then X is an extension of P by using the Brewka-Eiter
construction, denoted as X € BnE(P).

Our definition (Def. 2.4) and the original formalism of Brewka and Eiter [3]
are different, in the sense that in our definition we do not make use of default
negation to represent the exceptions, i.e., the defeasibility of a (strict) rule,
but we use defeasible rules and the notion of applicability of such rules. This
means that the correct translation of the prioritized triangle of Example 2.2

ends up as the following logic program * :

1 Note that in [3] ro < r3 means that ro has higher priority than rs.
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Io: a.
ry:p :- not —p,a.
rp :X :- not —x,a.
rz: X :- not x,p.
ro <rz3<rp;<rg

If priorities are disregarded, then this logic program has two answer sets:
{a,p,z} and {a,p,~z}. Thus, considering priorities, the former is the unique
preferred answered set, as pointed out in Example 2.6 below.

Similarly, Hansen [9] defined the following construction by building on the
Greedy approach.

Definition 2.5 [Hansen construction] Given a totally ordered PANS P =
(L,N, P, A, r):

e Let T = {uy,us,...,u,} be a linear order on N U P such that uy > us >
.>un

e Forall RC NUP, let R(A) = {z | x can be derived from A with respect to
R}.

e We define a set ¢ as & = ¢,, such that
- @ =0,
- D = @ U {uy}, if AUR(A) ¥ L where R = ®; U {u;}; otherwise,

Qi1 =D,

¢ The extension of P by using Hansen construction (denoted as Hansen(P)) is
equal to Greedy(P’), where P’ = (L, N', P, A, r), in which N’ = NN ® and
Pr=PnNnao.

Example 2.6 [Prioritised triangle: extensions] Regarding P; in Example 2.2,
we get three different extensions when using these approaches. For the greedy
approach we obtain S; = {a}, Gp (S1) = {a,2}, G¥ (S1) = G, (S1) =
{a,p,z}. For the Brewka-Eiter construction, given X = {a,p,-x}, we
have P{X = (L,N',P', A,r"), where N’ = {(T,p),(T,z),(T,—z)}, P = 0,
" ((T,p) =1, P((T,—~z)) = 3 and 7' ((T,z)) = 2; Greedy(P;*) = X. Since
no other set could be an extension, BnE(P) = {{a,p,—z}}. Finally, for
the Hansen construction, let u; = (p,—x), us = (a, z), and uz = (a,p),
and T = {uj,us,uz}. Then &g = 0, & = {w1}, P2 = {u1,us2}, and
O = O3 = &y = {uy,us}. So, P} = (L,N', P’ A, r), where N = {uy,us},
P’ = . Since Greedy(P;) = {a,z}, Hansen(P1) = {a, z}.

3 Argumentation theory for a PANS

In this section, we introduce an argumentation theory on prioritised norms.
This theory builds on ideas from ASPICT [10]. Given a PANS, we first define
arguments and defeats between them, then compute extensions of arguments
in terms of Dung’s theory [6], and from these, obtain conclusions.

In a PANS, an argument is an acyclic path in the graph starting in an
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element of the context. We assume minimal arguments — no norm can be
applied twice in an argument and no redundant norm is included in an argu-
ment. Permissions are undercutting arguments containing at least one permis-
sive norm. We use concl(a) to denote the conclusion of an argument «, and
concl(E) = {concl(a) | « € E} for the conclusions of a set of arguments E.

Definition 3.1 [Arguments and sub-arguments] Let P = (L, N, P, A,r) be a
PANS.

A context argument in P is an element ¢ € A, and its conclusion is
concl(a) = a.

An ordinary argument in P is an acyclic path a = [uy,...,u,], n > 1, such
that:
(i) Vie {1,...,n}, u; € N;
(i) ant(uy) € A;
(iii) con(u;) = ant(u;y1), 1 <i<n-—1;
(iv) {ant(uy),..., ant(u,)} ¥ L; and
(v) #i,5 € {1,...,n} such that i # j and u; = u;.
Moreover, we have that concl(a) = con(uy,).

An undercutting argument in P is defined in terms of an ordinary argu-
ment, by replacing the first condition with (1’) 3 € {1,...,n} such that
u; € P.

The sub-arguments of argument [ug,...,u,] are, for 1 <1i <n, [u,...,u;].
Note that context arguments do not have sub-arguments.

The set of all arguments constructed from P is denoted as Arg(P). For
readability, [(a1,a2), ..., (an—1,an)] may be written as (ai,az,...,an_1,a,).
The set of sub-arguments of an argument « is denoted as sub(«).

We follow the tradition in much of preference-based argumentation [2,10],
and use defeat as the relation among arguments on which the semantics is based,
whereas attack is used for a relation among arguments which does not take the
priorities among arguments into account. To define the defeat relation among
prioritized arguments, we assume that only the priorities of the norms are used
to compare arguments. In other words, we assume a lifting of the ordering on
norms to a binary relation on sequences of norms, written as « > 3, where «
and [ are two arguments, indicating that « is at least as preferred as (.

There is no common agreement about the best way to lift > to »=. In ar-
gumentation, two common approaches are the weakest and last link principles,
combined with the elitist and democratic ordering [10]. However, Young and
colleagues [13] show that elitist weakest link cannot be used to calculate >,
and proposes a disjoint elitist order which ignores shared rules. Based on these
ideas we define the orderings between arguments according to the weakest link
and last link principles (denoted as =, and »; respectively) as follows.

Definition 3.2 [Weakest link and last link] Let P = (L,N, P, A, r) be a
PANS, and a = [ug,...,u,] and S = [v1, ..., vy] be two arguments in Arg(P).
Let &1 = {us,...,u,} and ®o = {v1,...,v,}. By the weakest link principle,
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ary Biff v e Py \ Dy s.t. Yu € P1 \ Po,v < u. By the last link principle,
@ >_'l ﬂ iff Unp Z Um-

When the context is clear, we write > for =,, or =;. We write a > 3 for
« = B without 8 = a.

Given a way to lift the ordering on norms to an ordering on arguments, the
notion of defeat can be defined.

Definition 3.3 [Defeat among arguments| Let P = (L, N, P, A,r) be a PANS.
For all o, 8 € Arg(P),

« attacks f iff 5 has a sub-argument 3’ such that
(i) concl(a) = concl(f)
a defeats 3 iff 8 has a sub-argument 5’ such that
(i) concl(a) = concl(f8’) and
(ii) « is a context argument, or 5’ ¥ a.
The set of defeats between the arguments in Arg(P) is denoted as Def(P, ).
In what follows, an argument o = [uq,...,u,] with ranking on norms is
denoted as u; ... uy : (), where r(a) = (r(ur), ..., 7(uyn)).

Example 3.4 [Prioritised triangle, continued] Consider the prioritised triangle
in Example 2.2. We have the following arguments, visualized in Figure 1.b:

Ao a (context argument)
A (a,p): (1) (ordinary argument)
Ay (a,p)(p,—x) : (1,3) (ordinary argument)
As (a,z): (2) (ordinary argument)

We have that A, attacks Az and vice versa, and there are no other attacks
among the arguments. Moreover, As defeats As if (2) ¥ (1,3) (last link), and
Ag defeats As if (1,3) # (2) (weakest link).

It is worth mentioning that Dung [7] proposes the notion of a normal attack
relation, which satisfies some desirable properties that cannot be satisfied by
the ASPICT semantics, i.e., the semantics of structured argumentation with
respect to a given ordering of structured arguments (elitist or democratic pre-
order) in ASPICT. In the context of the current paper, this notion could be
defined as follows. Let o = (ay,...,a,) and 8 = (b1,. .., by, ) be arguments con-
structed from a PANS. Since we have no Pollock style undercutting argument
(as in ASPICT) and each norm is assumed to be defeasible, it says that o nor-
mally attacks argument 8 iff 8 has a sub-argument 5’ s.t. concl(«) = concl(f’),
and r((an—1,an)) > 7((bm-1,bm)). According to Def. 3.2 and 3.3, the normal
defeat relation is equivalent to the defeat relation using the last link principle
in this paper.

Given a set of arguments A = Arg(P) and a set of defeats R = Def(P, »),
we get an argumentation framework (AF) F = (A, R). For aset B C A, B
is conflict-free iff fo, 3 € B s.t. (o, 3) € R. B defends an argument o iff
V(B,a) € R, Iy € B st. (v,8) € R. The set of arguments defended by B
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in F is denoted as Dx(B). A set of B is a complete extension of F, iff B
is conflict-free and B = Dx(B). B is a preferred (grounded) extension iff B
is a maximal (resp. minimal) complete extension. B is a stable extension,
iff B is conflict-free, and Yoo € A\ B, 38 € B s.t. (f,a) € R. We use
sem € {cmp, prf, grd, stb} to denote complete, preferred, grounded, or stable
semantics. A set of argument extensions of F = (A4, R) is denoted as sem(F).
Then, we write Outfamily for the set of conclusions from the extensions of the
argumentation theory, as in [12].

Definition 3.5 [Conclusion extensions] Given a prioritised abstract normative
system P = (L, N, P, A, r), let F = (Arg(P), Def(P,>)) be the AF constructed
from P. The conclusion extensions, written as Outfamily(P, >, sem), are the
conclusions of the ordinary and context arguments in argument extensions.

{{concl(a) | @ € S, is an ordinary or context argument} | S € sem(F)}

Multi-extension semantics can yield different conclusions when norms may
yield multiple most preferred results. Additionally, it is important to note that
conclusions of a PANS are drawn only from ordinary and context arguments.

Example 3.6 [Prioritized triangle, continued] According to Example 3.4, let
A = {Ao,...,A3}. We have F; = (A, {(A2, A3)}) where Ay =; A3, and
Fa = (A, {(43,42)}) where A3 =,, As. For all sem € {cmp, prf, grd, stb},
Outfamily(P, =;, sem) = {{a,p,—x}}, and Outfamily(P,r,, sem) =
{{a.p, z}}.

We now turn our attention to the properties of the argumentation theory
for a PANS. Since all norms in a PANS are defeasible, it is obvious that our
theory maps to the framework of ASPICT. According to the corresponding
properties in [10], the following three propositions follow directly.

Proposition 3.7 Let F = (A, R) be an AF constructed from a PANS. For
all o, € A: if « attacks 5, then « attacks arguments that have 5 as a
sub-arqgument; if a defeats B, then o defeats arguments that have 8 as a sub-
argument.

Proposition 3.8 (Closure under sub-arguments) Let F = (A, R) be an
AF constructed from a PANS. For all sem € {cmp, prf, grd, stb}, VE € sem(F),
if an argument o € E, then sub(a) C E.

Proposition 3.9 (Consistency) Elements of Outfamily are conflict free.

The following two properties formulate the relations between non-argument-
based and argument-based approaches for reasoning with a totally ordered
PANS without permissive norms.

Proposition 3.10 (Greedy is weakest link) Given a totally ordered PANS
P = (L,N,P,A,r) where P = 0, and F = (Arg(P), Def(P,=.)). It holds
that F is acyclic, and Greedy(P) = concl(E) where E is the unique complete
extension of F.
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Proof. First, since P is totally ordered, under >, the relation =, among
arguments is acyclic. Hence, F is acyclic, and therefore has a unique extension
under all argumentation semantics mentioned above.

Second, given Greedy(P), let E = {(a1,...,a,) € Arg(P) | {a1,...,an} C
Greedy(P)}. According to Def. 2.3, it holds that concl(F) = Greedy(P). Now,
we verify that E is a stable extension of F:

(1) Since all premises and the conclusion of each argument of E are con-
tained in Greedy(P) which is conflict-free, it holds that E is conflict-free.

(2) V8 = (b1,...,bm) € Arg(P) \ E, by, ¢ Greedy(P) (otherwise, if b, €
Greedy(P), then (b1, ...,bm—1) C Greedy(P), and thus § € E, contradicting to
B¢ E). Then 3a = (ay,...,a,) € E, s.t. a, = bj, 2 < j < m. Then, we have
the following two possible cases:

* (ap—1,a,) and (bj_1,b;) are applicable at the same time: in this case, since
an € Greedy(P), r((an—1,an)) > r((bj—1, b;)). It follows that (a1,...,an)
=w (b1,...,bj). So, B is defeated by c.

* (@n—1,a,) is applicable, (b;_1, b;) is not applicable: in this case, there are in
turn two possibilities:
- (a1,...,apn) = (b1,...,b;): B is defeated by .
- (b1,...,b) = (a1,...,a,): in this case, I3y = (c1,...,¢x) € E st ¢ =

bi, (c1,...,¢k) =w (b1,...,b;), 2 <i < j. Then, g is defeated by ~.

Since E is conflict-free and for all 3 € Arg(P) \ E, 8 is defeated by an
argument in F, F is a stable extension. Since F is acyclic, F is the unique
complete extension of F. a

Proposition 3.11 (Brewka-Eiter is last link) Given a totally ordered
PANS P = (L,N,P,A,r) where P = (), and F = (Arg(P), Def(P,=;)). It
holds that BnE(P) = {concl(E) | E € stb(F)}.

Proof. (=:) VH € BnE(P), let E = {(a1,...,a,) € Arg(P) | {a1,...,an} C
H}. According to the Brewka-Eiter construction [3], H = concl(E), because
Va € H, there exists at least one argument (ai,...,a,) s.t. a, = a and
{a1,...,an—1} C H, which is in turn because if a,, € H, then (a,_1,ay) is
applicable w.r.t. H, and hence a,_; € H; recursively, we have a; € H for all
ie{l,...,n—1}

Let (Argsg, Defeatsg) be an AF, in which Argsy = {«a | sub(a) C E},
Defeatsy C Argsg x Argsg that is constructed in terms of the last link princi-
ple. It holds that Defeatsy C Def(P, ;). For all & € Argso\ E, concl(a) ¢ H.
Then, 38 € FE s.t. concl(a) = concl(f) and S defeats a by using the last link
principle. It follows that E is a stable extension of (Args,, defeats,). Now, let
us prove that F is a stable extension of F.

We need only to verify that for all a € Arg(P) \ Argso, « is defeated by
E. 1t follows that « has at least one sub-argument (otherwise, it should be
included in E, contradicting o ¢ Argsg). Let 8 be a sub-argument of « such
that 8 has no sub-argument. It follows that g is in Argsg. Then we have the
following two possible cases:



Liao, Oren, van der Torre and Villata 149

e [ is defeated by E: In this case, « is defeated by FE.

e (3 is not defeated by E: In this case, § is in E (since F is a stable extension).
Then, according to the definition of Argsg, the direct super argument of
(say ') is in Argsg. We in turn have two possible cases similar to the cases
with respect to 8. Recursively, we may conclude that « is defeated by FE or,
a is in E (this case does not exist).

(<:) For all E € stb(F), let P = (L,N', P', A,7") where P’ =, N’ = {(T,b) |
(a,b) € N and a € concl(E)}, and r/(T,b) = r(a,b) for all (a,b) € N and
a € concl(E).

Let E' = {(T,ay) | (a1,...,a,) € E}.

In order to prove that concl(E) is an extension of P in terms of the Brewka-
Eiter construction, according to Proposition 3.10, we only need to verify that
E’ is a stable extension of (Arg(P’), Def(P’,>!,)) which is an AF of P’ by
using the weakest link principle. This is true because:

¢ Since E is conflict-free, E’ is conflict-free.

e For all 5’ € Arg(P’) \ E’, let 5 be a corresponding argument in Arg(P) \ E
st. B = (b1,...,bn), B/ = (T,by,), and all sub-arguments of § are in E.
Since ( is not in F, it is defeated by E. Since all sub-arguments of 8 are not
defeated by F, there exists an argument in E whose conclusion is in conflict
with concl(8) = concl(f). So, ' is defeated by E'.

O

4 Weak contraposition

Gefner and Pearl [8] introduces conditional entailment, combining extensional
and conditional approaches to default reasoning. Conditional entailment deter-
mines a prioritization of default knowledge bases. A distinguishing property of
conditional entailment is what we can call weak contraposition, which inspires
our weak contraposition property.

Output under weak contraposition is obtained by adding the contrapositives
of the norms to the permissive norms. The priorities of the permissive norms
are the same as the priorities of the original norms.

Definition 4.1 [Weak contraposition] Let wep(N) = {(Z,a) | (a,z) € N}.
Outfamily,,.,,((L, N, P, A,r), =, sem) = Outfamily((L, N, P Uwep(N), A, "), =
,sem), where r'((Z,a)) = r((a,z)), and r'((a,z)) = r((a,z)) otherwise.

In the running example we add three contrapositives. Given a contextual
argument a, the undercutting arguments for —a do not affect the result, as
they are always defeated by the contextual argument. So the only additional
argument to be considered is the undercutting argument for —p. This can block
the argument for p, as required.

Example 4.2 [Prioritized triangle, continued] Consider P; in Example 2.2,
visualized in Figure 2.a. We have wep(N) = {(-p, —a), (z, -p), (-x,—-a)}, and
assume that contrapositives have the same priority as the original norms, i.e.,
r(wep(N)) = (1,3,2). We have the following arguments:
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Ay a (context argument)
A (a,p): (1) (ordinary argument)
Az (a,p)(p,—z) : (1,3) (ordinary argument)
As (a,z): (2) (ordinary argument)
Ay (a,z){x,—p):(2,3) (undercutting argument)
As (a,z){x,—p)(-p,—a) : (2,3,1) (undercutting arg.)
Ag (a,p)(p, ~x){~z,—a) : (1,3,2) (undercutting arg.)

Argument Ag is not defeated by any argument, and defeats A5 and Ag. We
therefore consider only arguments A; to Ay4.

As before, Ay attacks Az and vice versa. In addition, A4 attacks both A;
and As, Ay attacks A4, and As attacks Ay.

By using the last link principle, we have that A4 defeats A; and thus As;
and that Ay defeats A3 and thus A4. In this case, under the stable and pre-
ferred semantics, there are two extensions {Ap, A1, A2} and {Ap, As, A4}. So,
Outfamily,,.,(P1, =1, sem) = {{a,p, -z}, {a, z}}, where sem € {prf, stb}.

By using the weakest link principle, we have that Ay defeats A;
and thus As; and that Az defeats As. In this case, for all
sem € {cmp, grd, prf, stb}, { Ao, A3, A4} is the only extension. So,
OUtfamilywcp(Plv twa sem) = {{avx}}

[@pl [@p).(P [(a.x)] [@p]  [@p)pe.~x)
oo =—="0 Omoun0
[a] [@x)]
(%)
[(@,%),<x,~p>] [(P,~X)l(@.x)]

(a) (b)
Fig. 2. The prioritized triangle of Example 4.2 (a) and of Example 5.3 (b).

The following proposition shows that the Hansen construction can be repre-
sented in formal argumentation by weakest link, if the set of permissive norms
is extended with the contrapositions of the norms in N. Note that to capture
Hansen’s reading of the prioritized triangle, we need to add more structure to
the example. The proof is along the lines of the proof of Proposition 3.10.

Proposition 4.3 (Hansen is weakest link plus wcp) Given a totally or-
dered PANS P = (L, N,P,A,r) where P = 0, P' = (L, N,P' A, r'") with
P’ = wep(N) and ' ((z,a)) = r((a,x)), and r'((a,x)) = r((a,z)) otherwise,
and F = (Arg(P"), Def(P',=y)). It holds that Hansen(P) = concl(E) where
E is the set of ordinary arguments of the unique complete extension of F.
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Proof. [Sketch] First, closure under sub-arguments and consistency follow
from Proposition 2 and 3, because we reuse the definitions of weakest link.

Second, P does not have to be totally ordered, as there may be permissive
norms with the same rank as one of the ordinary norms. Thus, it no longer
holds that Arg(P) must be totally ordered under »,,, and thus F is not neces-
sarily acyclic. Nevertheless, thanks to the properties we imposed on arguments,
there is still only one unique extension under all the argumentation semantics
mentioned above.

Third, let E = {(a1,...,an) € Arg(P) | {a1,...,an} C Hansen(P) or Ji <
n such that a; ¢ Hansen(P)}. According to Definition 4, it holds that
concl(E) = Hansen(P). Now, we first prove that E is a stable extension of
F:

(1) Since all premises and the conclusion of each argument of E are con-
tained in Hansen(P) which is conflict-free, or one of the premises is not in
Hansen(P), it holds that E is conflict-free.

(2) VB = (b1,...,bm) € Arg(P) \ E, by, ¢ Hansen(P) (otherwise, if b, €
Hansen(P), then (by,...,bmn—1) C Hansen(P), and thus § € E, contradicting
the requirement that 8 ¢ E). Then 3a = (a1, ...,a,) € E, such that a,, = b;,
2 < j < m. The two cases are analogous to the two cases in the proof of
Proposition 3.10.

Since E is conflict-free and for all 5 € Arg(P) \ E, B is defeated by an
argument in F, F is a stable extension. F is thus the unique complete extension
of F. a

5 Hang Yourself Arguments

We now introduce another type of argument, the hang yourself argument (ab-
breviated HYA) for prioritized normative systems. HYAs were introduced in
a non-prioritized setting by [4,5]2. A HYA is made up of a hypothetical argu-
ment «, and an ordinary argument (3, with contradictory conclusions. A third
argument, ~, serves as the premise for «. If argument v;a (where ; denotes
concatenation of arguments to obtain a super-argument) is an ordinary argu-
ment which conflicts with 8, then a contradiction exists, meaning that either
~ or the HYA is invalid.

Definition 5.1 [Hang yourself arguments] Given a prioritized abstract nor-
mative system PANS P = (L, N, P, A,r).

A hypothetical argument in P is similar to an ordinary argument in Defini-
tion 3.1. The only difference is that in a hypothetical argument, ant(u;) ¢ A.

A hang yourself argument in P , written «|f8 consists of a hypothetical
argument « and an ordinary argument § with opposite conclusions, such
that for sub-arguments o/, 8’ of o and 3 respectively, we have that if o/ and
B’ have opposite conclusions, then o = o/ and 8 = 3.

2 They are also called Socratic-style arguments due to their connection with Socratic style
argumentation.
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For convenience, given an argument 5; a where 8 = [(a1,a2), ..., (a;—1,a;)]
and o = [(a;,@i+1),..-,(@n-1,a,)], where (aj,a; + 1) has rank r;, we
write 7(3;a~!) to denote the priority obtained from the sequence of ranks
Ty ey TiyTn—1y .y Ti41-

Definition 5.2 [Defeat for HYAs] A HYA «|f defeats an argument +y iff there
is a sub argument 4’ of y such that 7/; « is an argument, and r(8;a~1) 4 r(v').
A HYA «|f is defeated by an argument ~ if and only if

(i) ~y defeats j3; or
(ii) there is a sub argument " of v such that v’; « is an argument, and r(y’) 4
r(Biat);
Example 5.3 [Prioritized triangle, continued] Consider P; in Example 2.2,
visualized in Figure 2.b. The only relevant hang yourself argument is

(p, z)|(a, ~x) which defeats (a,p) depending on the ranking of (p,z), (a, ).
We thus have the following arguments:

Ay a (context argument)
A1 (a,p): (1) (ordinary argument)
Az (a,p)(p,—z) : (1,3) (ordinary argument)
As (a,z): (2) (ordinary argument)
Ay (p,—x)|(a,z) : (3),(2) (hang yourself arg.)

A; and A, each defeats Ay if (2,3) # (1). As defeats Ay if (1,3) # (2). Ay
defeats A; and A, if (1) and (1, 3) # (2, 3) respectively.

For weakest link, A4 defeats A; and As, and A3 defeats As. We therefore
have Outfamily(Py, =, sem) = {{a,x}} for all complete semantics.

An argument containing weak contrapositives may be seen as a kind of
HYA. More precisely, consider an argument A = [(a1,a2), ..., (an—1,a,)], and
another argument B = [(b1,b2),..., (b, a,)]. These two arguments result in
a sequence of weak contrapositive arguments:

B; [(@n, an-1)]
B; [<@7 anfl); <an713 an72)]

B;[...; (az,a1)]

Note that the last argument in the sequence is always defeated by the
context argument. The remaining arguments attack (and may defeat) the
different sub-arguments of A.

We now prove that the hang yourself argument is equivalent to the weak
contrapositive argument.

Proposition 5.4 The HYA § = [(ai,ai11), .-, (an—1,0,)]|B is equivalent to
the weak contrapositive argument w = B;...;(G;11,a;) in the sense that §
defeats a subargument o' of a if and only if w defeats o' .
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Proof. Without loss of generality, assume that w attacks o’ on its last argu-
ment. Then the rank of w is r(w) = r(8), r((an-1,an)), ..., r((a;, a;1+1)). From
Definition 5.2, the HYA defeats « if r(a/) % r(w). Similarly, o defeats the
HYA if r(w) % r(a’). The final situation in which the weak contraposition is
defeated holds if o defeats 8. In such a situation, the HYA is also defeated.
Thus, the situation where the weak contraposition defeats (is defeated by) « is
identical to when the HYA defeats (is defeated by) o. O

6 Conclusions

In this paper, we provide a step towards studying non-monotonic logics through
formal argumentation theory. Here, we begin addressing this challenge by con-
sidering three distinct systems for prioritized nonmonotonic reasoning, showing
that they are different forms of our theory of argumentation. In particular, we
showed how the Greedy approach of prioritized default logic can be repre-
sented by the weakest link principle; the Brewka-Eiter approach of answer set
programming by the last link principle; and the Hansen approach of deontic
logic using the weakest link principle extended with weak contraposition. We
also showed that for weakest link, weak contraposition is a special case of hang
yourself arguments.

While most work in formal argumentation uses very general frameworks
to study argumentation systems, we use a very simple argument system to
study the links between argumentation and prioritized norms. In particular,
we utilised prioritized abstract normative systems, where norms are represented
by a binary relation on literals, priorities are represented by natural numbers,
and all norms have a distinct priority.

The main lessons that can be learned from our results are as follows. The
weakest link principle corresponds to the greedy approach which is computa-
tionally attractive, but conceptually flawed. It should be adopted only when
computational efficiency is the most important property. Thus, to get a more
balanced result, the last link approach seems to be better for a wide number
of potential applications, e.g., multiagent systems. This means that the pros
and cons of both solutions have to be considered, and the decision regarding
which to use depends on the application scenario of interest. Finally, Hansen’s
approach is a sophisticated way to deal with prioritized rules, and can be mod-
eled using weakest link to handle conflicts, as we have shown. Our results are
relevant not only when modelling normative systems, but also potentially when
a developer must make a choice regarding which link principles to use when
developing an argumentation system.
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Abstract

We present a logic which supports reasoning about an agent’s belief formation and
belief change due to evidence provided by other agents in the society. We call this
logic DEL-ES which stands for “Dynamic Epistemic Logic of Evidence Sources”. The
term ‘evidence source’ refers to an agent in the society who provides evidence to
believe something to another agent. According to DEL-ES, if an agent has gathered
a sufficient amount of evidence in support a given fact ¢ then, as a consequence,
she should start to believe that ¢ is true. A sound and complete axiomatization for
DEL-ES is given. We discuss some of its interesting properties and illustrate it in a
concrete example from legal contexts.

Keywords: Modal logic, Epistemic Logic, Evidences, Reasons.

1 Introduction
A. J. Ayer put in his book [2, p. 3] :

A rational man is one who makes a proper use of reason: and this implies,
among other things, that he correctly estimates the strength of evidence.

In the same vain, this paper attempts to look into the ways that a rational
agent handles evidence, as reasons, to support or reject her beliefs. Notions of
evidence and justification pervade in legal contexts, in that various parties that
are involved would collect evidence, and then use them to support their own
claims or beliefs, or reject those of the opposing parties. The following three
aspects suddenly become relevant, namely, evidence collection, belief formation

1 We would like to thank the three anonymous reviewers of the DEON conference for their
useful comments and suggestions. This work has been presented at the Workshop on Logical
Dynamics of Social Influence and Information Change, March 22, 2016 in Amsterdam, and
at the Chinese Conference on Logic and Argumentation, April 2-3, 2016 in Hangzhou, we
thank the audience and their inspiring questions.
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and belief revision. We will pursue the problems that arise when we pay more
attention to the social enviroment in which evidence is not simply given, but
provided by certain sources through communication.

Logical investigation of evidence and justification is not something new to
us. Here we only mention two research areas that have inspired our work.
[1] proposed so-called justication logic which explicitly expresses evidence as
a term and possible manipulations of evidence as operations over terms. This
framework has been further connected to the notion of beliefs and belief re-
vision in [5]. The notion of evidence, understood as a proposition,? and its
relationships with belief, are studied in recent papers [7,8]. The latter work
has a single-agent perspective and clearly states that it left open the issues of
evidence sources (i.e., where does the evidence come from?). This is where we
started our journey.

Motivated differently, social influence in terms of individual’s belief change
has caught a lot of attention in recent years. [16] presented a finite state
automata model with a threshold to deal with social influence. As a simple
case, agent ¢ would change her belief from p to —p if all her neighbors believe —p.
This model can successfully explain social phenomena, like peer pressure, and
behavior adoption. [3] further enriches this model by introducing quantitative
measurement on trust between agents and strength of